### **BELL BEND NUCLEAR POWER PLANT**



**PUBLIC MEETING:** 

Pre-Submittal Overview of Revised FSAR Section 2.5, Reflecting

-Plant Relocation on Site -Probabilistic Seismic Hazard Analysis (PSHA) updated with the 2012 Central and Eastern United States (CEUS) Seismic Source Characterization

### AGENDA

- Introductions, Purpose/Background
- Plot Plan Change (PPC)/Site Geotechnical Investigation Overview
- FSAR 2.5.1, Basic Geology and Seismic Information
  - Work to define site region, vicinity, and area as a result of the PPC
- FSAR 2.5.2, Vibratory Ground Motion
  - Implementation of the 2012 Central And Eastern United States (CEUS) Seismic Source Characterization (SSC) (Fukushima RAI 118 Question 2.5.2-1)
- FSAR 2.5.3, Surface Faulting
  - Additional field reconnaissance as a result of PPC
- FSAR 2.5.4, Stability of Subsurface Materials and Foundations
  - Foundation conditions, bearing capacity, settlement, lateral uniformity
- FSAR 2.5.5, Stability Of Slopes
  - Changes due to PPC





### **PURPOSE AND BACKGROUND**

### • Purpose

- Provide NRC with the pre-submittal overview of the revised FSAR Section 2.5
  - Bell Bend plant re-location on site
  - PSHA updated with the 2012 CEUS SSC
    - Fukushima RAI 118 Q 2.5.2-1 Response
  - Schedule for submittal
- Background

PPI NUCLEAR DEVELOPMENT

- July 11, 2012 NRC Public Meeting on Bell Bend seismic path forward
- Respond to the Post Fukushima 2.1 NTTF
  - Recommendations



### PLOT PLAN CHANGE (PPC) OVERVIEW







### **NEW GEOTECHNICAL INVESTIGATION**

#### **BORING LOCATION PLAN**



### **TYPICAL SUBSURFACE PROFILE**

#### **POWERBLOCK AREA**



Note: Values shown on Figures represent minimum to maximum thickness



### **TYPICAL SUBSURFACE PROFILE**

#### **ESSENTIAL SERVICE WATER EMERGENCY MAKEUP SYSTEM (ESWEMS) AREA**

#### Subsurface Profile 3



Note: Values shown on Figure represent minimum to maximum thickness





### **GEOPHYSICAL TESTS** DOWNHOLE AND PS SUSPENSION AT CENTER OF CONTAINMENT







### FOUNDATION CONDITIONS EXCAVATION PLAN



- Basemats supported by either
  - Concrete fill
  - Competent rock
    (Vs ≥ 6500 fps)
- Competent and uniform load bearing foundation interface

![](_page_8_Picture_6.jpeg)

![](_page_8_Picture_7.jpeg)

### **FOUNDATION INTERFACES**

#### PROFILE A, EAST-WEST THROUGH NI AND TI

![](_page_9_Figure_2.jpeg)

![](_page_9_Figure_3.jpeg)

DISTANCE (METERS)

DISTANCE (FEET)

![](_page_9_Picture_5.jpeg)

#### FOUNDATION INTERFACES PROFILE B, NORTH-SOUTH, EPGB-NI-EPGB

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_10_Picture_3.jpeg)

![](_page_10_Picture_4.jpeg)

### **FOUNDATION INTERFACES**

#### PROFILE C, NORTH-SOUTH, ESWB-NI-ESWB

![](_page_11_Figure_2.jpeg)

![](_page_11_Figure_3.jpeg)

DISTANCE (FEET)

![](_page_11_Picture_5.jpeg)

## **FOUNDATION INTERFACES**

#### **PROFILE D, EAST-WEST ON SOUTH SIDE, RWPB-EPGB-ESWB**

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_3.jpeg)

#### NEW GEOPHYSICAL INVESTIGATION SHEAR WAVE VELOCITY, NI

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_4.jpeg)

### NEW GEOPHYSICAL INVESTIGATION CONCLUSIONS/SUMMARY

- Full site stand alone investigation due to plot plan change
- Shear wave velocity is high, consistent with measurements from previous investigation
- Hard rock conditions throughout the full extension of the site area
  - Including ESWEMS pump house and retention pond

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

**BASIC GEOLOGIC AND SEISMIC INFORMATION** 

- Site area
  - Updated reconnaissance effort results consistent with previous investigation
- Site vicinity and site region
  - Assessed and determined that no update is required (based on new site investigation)
- Section updated to remove EPRI-SOG references
- Added EPRI/DOE/NRC CEUS 2012 SSC
- Conclusion: site remains suitable from a geologic perspective

![](_page_15_Picture_9.jpeg)

![](_page_15_Picture_10.jpeg)

**VIBRATORY GROUND MOTION** 

- PSHA for the BBNPP site
  - 2010 PSHA for new plant location based on updated EPRI-SOG SSC
  - 2012 PSHA for new plant location based on 2012 CEUS SSC (NUREG-2115)
  - Mmax and Seismotectonic sources that encroach into the 200 Mi (320 Km) vicinity
  - RLME sources
  - Ground motion attenuation EPRI (2004, 2006)
- Updated site response analysis

![](_page_16_Picture_9.jpeg)

## **MMAX SOURCE ZONES**

MESOZOIC AND YOUNGER EXTENDED REGION (MESE) AND NON-MESE (NMESE)

![](_page_17_Figure_2.jpeg)

Narrow interpretation of Mmax source zones MESE and NMESE, (MESE-N and NMESE-N, respectively)

![](_page_17_Picture_4.jpeg)

![](_page_17_Picture_5.jpeg)

## SEISMOTECTONIC SOURCE ZONES

ROUGH CREEK GRABEN (RCG) IS NOT PART OF REELFOOT RIFT, NARROW PEZ

![](_page_18_Figure_2.jpeg)

- MIDC-A: Midcontinent Craton A
- SLR: St. Lawrence Rift
- NAP: Northern Appalachians
- AHEX: Atlantic Highly Extended Crust
- ECC-AM: Extended Continental Crust Atlantic Margin
- PEZ-N Paleozoic Extended Crust (Narrow)

![](_page_18_Picture_9.jpeg)

![](_page_18_Picture_10.jpeg)

### **REPEATED LARGE MAGNITUDE EQs**

**RLME SOURCES USED FOR THE BBNPP PSHA** 

![](_page_19_Figure_2.jpeg)

- Charlevoix
- Charleston
- Wabash Valley
- New Madrid Fault System (NMFS)
- Commerce Fault Zone (CFZ)
- Eastern Rift Margin (ERM-N, ERM-S)
- Marianna

![](_page_19_Picture_10.jpeg)

![](_page_19_Picture_11.jpeg)

## SOURCE CONFIGURATION MODELS

SC: SOURCE CONFIGURATION USED FOR BELL BEND PSHA

| SC    | WEIGHT | DISTRIBUTED SEISMICITY                   | RLME SOURCES                                                                                                                                                        |
|-------|--------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M-I   | 0.160  | Study Region                             | New Madrid Fault<br>System (NMFS)<br>Charlevoix<br>Charleston<br>Wabash Valley<br>Commerce Fault<br>Zone (CFZ)<br>Eastern Rift Margin<br>(ERM-N, ERM-S)<br>Marianna |
| M-II  | 0.048  | MESE-N, NMESE-N                          |                                                                                                                                                                     |
| M-III | 0.192  | MESE-W, NMESE-W                          |                                                                                                                                                                     |
| S-I   | 0.320  | AHEX, ECC-AM, PEZ-N, NAP, SLR,<br>MIDC-A |                                                                                                                                                                     |
| S-II  | 0.160  | AHEX, ECC-AM, PEZ-N, NAP, SLR,<br>MIDC-B |                                                                                                                                                                     |
| S-III | 0.080  | AHEX, ECC-AM, PEZ-W, NAP, SLR,<br>MIDC-C |                                                                                                                                                                     |
| S-IV  | 0.040  | AHEX, ECC-AM, PEZ-N, NAP, SLR,<br>MIDC-D |                                                                                                                                                                     |

![](_page_20_Picture_3.jpeg)

#### PSHA RESULTS BELL BEND PSHA VIBRATORY GROUND MOTION

- At response frequencies of 10 Hz and above, hazard is similar to the previous PSHA performed with the use of an updated EPRI-SOG SSC
- At response frequencies less than 10 Hz, hazard is higher than the one estimated with the use of the EPRI-SOG SSC

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

### **PSHA RESULTS** UNIFORM HAZARD RESPONSE SPECTRA (UHRS) FOR HARD ROCK

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

### **PSHA RESULTS**

**DEAGGREGATION 1E-4 MEAN ANNUAL FREQUENCY OF EXCEEDANCE** 

• High Frequency

#### • Low Frequency

![](_page_23_Figure_4.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

### **PSHA RESULTS**

**DEAGGREGATION 1E-5 MEAN ANNUAL FREQUENCY OF EXCEEDANCE** 

• High Frequency

#### • Low Frequency

![](_page_24_Figure_4.jpeg)

![](_page_24_Picture_5.jpeg)

![](_page_24_Picture_6.jpeg)

### **PSHA RESULTS** CONTRIBUTION PER SOURCE, 1 Hz

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

### **PSHA RESULTS** CONTRIBUTION PER SOURCE, 10 Hz

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

### SITE RESPONSE ANALYSIS

**GROUND MOTION RESPONSE SPECTRA (GMRS)** 

- Updated Ground Motion Response Spectra (GMRS)
- GMRS defined according to RG 1.208 guidance
  - Free-field outcrop at top of competent rock (sound Mahantango formation)
  - Approach 2B of NUREG/CR-6728
  - Vertical GMRS established with V/H ratios (NUREG/CR-6728)
    - $V_{S30}$  for BBNPP site is greater than (>) 6500 fps
    - Hard Rock

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)

### **SITE RESPONSE ANALYSIS** FOUNDATION INPUT RESPONSE SPECTRA (FIRS)

 The Nuclear Island (NI) Foundation Input Response Spectra (FIRS) is the basis for the comparison to the US EPR<sup>™</sup> Certified Seismic Design Response Spectra (CSDRS)

- FIRS is defined as an In-Column outcropping motion at the elevation of the NI basemat
- The following comparisons are shown based on soil column used in 2010 (PPC, EPRI-SOG)

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

### **GMRS/FIRS/PBSRS**

![](_page_29_Figure_1.jpeg)

### **GROUND MOTION RESPONSE SPECTRA**

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_2.jpeg)

### FOUNDATION INPUT RESPONSE SPECTRA (FIRS)

EPRI SOG VS. CEUS 2012 (2010 EPRI-SOG BASED ON OLD SOIL COLUMN)

![](_page_31_Figure_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

### **RESPONSE TO RAI 118**

POST FUKUSHIMA NTTF RECOMMENDATION

- Response to RAI 118 submitted to NRC on 11/15/12
- Evaluated potential impact of 2012 CEUS SSC (NUREG-2115) on the rock UHRS and GMRS/FIRS
  - 2012 CEUS SSC Included updated earthquake catalog, Source Zones/RLME Sources, and characterization of maximum magnitude and recurrence parameters
  - Model differences from updated EPRI-SOG (1986) previously used
  - Prudent to update PSHA and GMRS/FIRS using 2012 CEUS SSC

![](_page_32_Picture_7.jpeg)

![](_page_32_Picture_8.jpeg)

### **RESPONSE TO RAI 118**

POST FUKUSHIMA NTTF RECOMMENDATION

- PSHA Implementation
  - Used Source Zones that extend to within 200 miles of the BBNPP Site
  - Updated geological, geophysical, and seismic data indicate no need to modify the 2012 CEUS SSC or supplement with local sources
  - Minimum M 5.0; no CAV filter
  - For Distributed Seismicity Source Zones, hazard integration carried out to a distance of 435 miles

![](_page_33_Picture_7.jpeg)

![](_page_33_Picture_8.jpeg)

### **RESPONSE TO RAI 118**

**POST FUKUSHIMA NTTF RECOMMENDATION** 

- GMRS/FIRS
  - Updated following guidance in RG 1.208
  - Impact to GMRS (Not Comparable)
    - In 2010, GMRS developed as PBSRS
    - In 2012, GMRS developed for surface outcrop of competent Material
  - Impact to NI FIRS (basis for SSE)
    - None for spectral acceleration (SA) at 10 Hz and above
    - Increase of about 10-15% for SA less than about 7 Hz

![](_page_34_Picture_10.jpeg)

![](_page_34_Picture_11.jpeg)

SUMMARY AND CONCLUSIONS

- PSHA And GMRS/FIRS updated using 2012 CEUS SSC and following RG 1.208
- For NI FIRS
  - Negligible impact at high frequency response
  - Increase of 10-15% at low frequency response
- FSAR 2.5.2 revised to reflect updated PSHA, site response, and GMRS

![](_page_35_Picture_7.jpeg)

![](_page_35_Picture_8.jpeg)

PPI NUCLEAR DEVELOPMEN

- Additional field reconnaissance was performed due to the plot plan change
- Results of this effort were consistent with previous efforts
- There is no potential for tectonic fault rupture and there are no capable tectonic sources within a 25 mi (40 Km) radius of the BBNPP site
- Minor editorial changes made, including reference changes (removed reference to R.G. 1.165, for example)

![](_page_36_Picture_5.jpeg)

**STABILITY OF SUBSURFACE MATERIALS AND FOUNDATIONS** 

- Summary of foundation conditions
- Bearing capacity analysis
- Settlement analysis
- Lateral uniformity

![](_page_37_Picture_6.jpeg)

![](_page_37_Picture_7.jpeg)

### **TYPICAL SUBSURFACE PROFILE**

#### **POWERBLOCK AREA**

![](_page_38_Figure_2.jpeg)

Note: Values shown on Figures represent minimum to maximum thickness

![](_page_38_Picture_4.jpeg)

FOUNDATION CONDITIONS

- Basemats of safety related buildings placed on
  - Concrete fill, or
  - Competent rock (V<sub>s</sub> > 6500 fps)
  - Competent and Uniform load bearing interface

| STRUCTURE                                | FND DEPTH [ FT ] | MATERIAL |            |
|------------------------------------------|------------------|----------|------------|
| Nuclear Island                           | NI               | 39       | Concrete   |
|                                          | 1ESWB            | 33       | Mahantango |
| Eccential Convice Water Duilding         | 2ESWB            | 33       | Concrete   |
|                                          | 3ESWB            | 33       | Concrete   |
|                                          | 4ESWB            | 33       | Concrete   |
| Emorgancy Dower Concration Building      | 1-2EPGB          | 11       | Concrete   |
| Emergency Power Generation Building      | 3-4EPGB          | 11       | Concrete   |
| Essential Service Water Emergency Makeup | ESWEMS           | 30       | Concrete   |

![](_page_39_Picture_7.jpeg)

**BEARING CAPACITY ANALYSIS RESULTS** 

- Buildings are placed on concrete or competent rock: bearing capacity is not an issue
- Rock bearing capacities are higher than concrete bearing capacity
- Overall allowable static bearing capacity is in excess of 120 ksf, while allowable dynamic bearing capacity is in excess of 180 ksf,
  - Well in excess of US EPR<sup>™</sup> requirements
    (22 ksf static/35 ksf dynamic bearing pressures)

![](_page_40_Picture_6.jpeg)

![](_page_40_Picture_7.jpeg)

SETTLEMENT ANALYSIS, RESULTS AND CONCLUSIONS

- Overall settlements are below 0.1 inches throughout the footprint of the foundation
- Settlement is negligible for the BBNPP site
- BBNPP tilt is less than 0.06 in/50 Ft
- Settlement criteria specified in US EPR<sup>™</sup> FSAR
  2.5.4 (Tilt<0.5 in/50 Ft) is met.</li>

![](_page_41_Picture_6.jpeg)

![](_page_41_Picture_7.jpeg)

**ASSESSMENT OF LATERAL UNIFORMITY** 

### Site condition

 Non-Horizontal Rock and Concrete Interfaces and Different Buildings with Foundation Materials of Concrete or Rock (Mahantango Formation)

![](_page_42_Picture_4.jpeg)

- Impact on site response
  - The Best Estimate shear wave velocities of Mahantango formation and concrete are close and therefore impedance is small.
  - Foundation materials are uniform for an area larger than the basemat of the building (no local effect).
  - Condition does not have an impact on site amplification analysis.

![](_page_42_Picture_9.jpeg)

![](_page_42_Picture_10.jpeg)

**ASSESSMENT OF LATERAL UNIFORMITY** 

### Site condition

 Slightly non-horizontal rock/concrete and backfill interfaces

![](_page_43_Figure_4.jpeg)

- Impact on GMRS
  - GMRS defined at top of competent material (Mahantango formation)
  - The GMRS is influenced by the foundation material and the underlying rock and not sensitive to backfill above foundation elevations

![](_page_43_Picture_8.jpeg)

ASSESSMENT OF LATERAL UNIFORMITY

### Site condition

 Slightly non-horizontal rock/concrete and backfill interfaces

![](_page_44_Figure_4.jpeg)

- Site condition
  - Slightly sloping topography

- Impact on FIRS/PBSRS
  - No abrupt changes between backfill and foundation line
  - No dimensional effects to FIRS
  - Impedance between concrete and rock, and the thickness of backfill at foundation Location, are accounted for in the analysis
- Impact on horizontal layer assumption
  - 8% Gradient < US EPR<sup>™</sup>
    20%

![](_page_44_Picture_13.jpeg)

### FSAR SECTION 2.5.4 CONCLUSIONS

- BBNPP safety related structures are placed on either rock or concrete layers providing competent and uniform load bearing layers
- The foundation materials provide very high allowable bearing capacities (>100 ksf)
- Settlement is negligible
- Lateral uniformity met: Horizontal site with uniform properties within foundation footprints
  - Gradient at BBNPP 8% < US EPR<sup>™</sup> 20%

![](_page_45_Picture_6.jpeg)

![](_page_45_Picture_7.jpeg)

### FSAR SECTION 2.5.5 STABILITY OF SLOPES

- Section updated as a result of Plot Plan Change
- Inputs into slope stability analyses such as groundwater elevation and seismic input also updated
- Based on analyses provided in this section, it is concluded that the constructed and natural slopes at the site are stable with adequate factors of safety

![](_page_46_Picture_4.jpeg)

![](_page_46_Picture_5.jpeg)

- Wall 1A and 1B
  - 20ft wide road supported between the two walls
  - Closest Safety-Related Structure is 290-ft away (Rad Waste Processing Building)

![](_page_47_Figure_4.jpeg)

**STABILITY OF SLOPES** 

- Wall 3A and 3B
  - No critical surface circles extend into ESWEMS retention pond berm area

![](_page_48_Figure_4.jpeg)

![](_page_48_Picture_5.jpeg)

![](_page_48_Picture_6.jpeg)

![](_page_48_Picture_7.jpeg)

- Bell Bend Nuclear Power Plant Site PSHA updated with the use of the 2012 CEUS SSC
  - Most "up to date" seismic source characterization
  - Fully reflects new location of plant on Site
  - Responsive to the Post Fukushima 2.1 NTTF recommendations
    - Key Input To FSAR 2.5 Revision
- Favorable geotechnical conditions

![](_page_49_Picture_7.jpeg)

![](_page_49_Picture_8.jpeg)

 On track to provide FSAR Chapter 2.5 to NRC by 12/31/2012

- To include revised core boring logs and seismic refraction report (Part 11F, 11G)
- PPL is now set to begin seismic reconciliation of the Bell Bend safety related structures (3.7 and 3.8)
  - Consistent with the US EPR<sup>™</sup> Design Certification
  - Responsive to the Post-Fukushima Near Term Task Force Recommendation 2.1

![](_page_50_Picture_6.jpeg)

![](_page_50_Picture_7.jpeg)