HASh - 14

CCCUEATLOM GOD HON-OCCUPETIOMAL RODTATIOA AMD CONTEMTEATIOA

by

Industrial Hygiene Branch
Health end Safety Laboratory

Issued: January 27, 1958

Distribution:

CI 1 - W.B. Harris, HASL, MOO
My 2 -J. C. Johnson, Director, FM, Wash.
Cy 3 - G. V. Beard, Brit, Wash.
Dy 4 - E. Barker, Lir, Wash.
Ce 5 - M. Mann, Lek, Wash.
U. 0 .

Cy 6 - Hash Publications

New York Operations Office Health and Safety Laboratory
Pege
PUPFOSE RND SCOPE 3
hesulid of stuin 3
Weighted Exposures to Alphe Emitting Dusts 3
Silica Dust 4
External Radiation 4
Redon 4
PRESENTATION GF DATA 4
METHOD OF STUNY 5
Alpha Emitting Dust 5
Radionctive Components of Airborne Dust 5
Silica Dust 5
Free Silica Analysis of Airborne piaterial 5
Direct ladiation 6
Fadon 6
PROCRSS DESCRTPTION 6
DISCUSSION 7
Exposures to Alphe Emitting Dust 7
Sources of Excessive Exposure 8
Direct Fadiation 11
AFPENDIX A.
Recommendations
AP ENDIX BMaximum Allowable Concentrations for Alpha maitting Dusts
APT ENDIX C
Process Flow Diagrams
Figure 1 - Sandstone Acid
Figure 2 - Acid Mill
Figure 3 - Carbonate Crushing
Figure 4 - Carbonate Mill
APPENDIX DTable II - Uranium-Radiun RatiosTable III - Ratio of Analyticel Values to fadiometric Count
APreNDIX ETable IV - Total Alpha Exposure (Daily Average) Expresses asDaily Avarege Cross Alpha Count
Table IV-A - General Air Concentrations in Selected Locations

TABLE OF COMTENTS

AFYENDIX F
Table VI - Fesults of Fetrographic Analysis (Airborne Dust)
Table VII - Cheraical (Sottled Dust)
Table VIII - Atnospheric Dust Concentrations (Silica)
AFPGNDIX G
Job Analysis Sheets
APPETDIX H
Survey Sample Sheets (Coples 1 and 6 only)

PURPOSE SND SCOFE

During the week of November 26, 1956, a comprohensive suryey of uranium milling facilities of Anaconda Company at Crants, New Mexico, was conducted jointly by the New Mexico Department of Health, Oecupational Health Field Group of the U.S. Public Health Service (USPHS), and Health and Safety Laboratory (HASL) of the U.E. Ltomic Energy Comaission (USAEC). This survey is one of a series being conducted by HASL in cooperetion with other intorested governmental groups, at various uramium ore concentration mills in an attempt to define potential industrial hygiene hagards associated therewith.

A preliminary inspection was made of plant facilities to ascertain generally the nature and extent of these hagards. After an evaluation of findings, it was determined that inhalation of alpha emtting radioaetive and silicous dusts were basioblly major potential hazerds as well as cirect radiation to the body. The extent of radioactive eust hazari was judged to be plant-wide in extent; inhelation of silica dust was deemed a signifieant industrial hygiene problem essentially in sandstone cominution areas.

Responsibllity for investigation of silice dust he\%ards was assumed by the New fexico Department of Health and the Oocupationkl Health Field Group of the USFHS: The latter group also assumed responsibility for aspessing external radiation end radon hazards. HASL primerily conducted a radioaotive duat survey of the entire milling facility.

Information was sought during the radioactive dust survey both to determine weighted exposures of all employees to airborne redioactive dust and to define sources of excessive dust concentration. During this survey silica dust counts were obtained throughout sandstone crushing areas.

At the time of the survey, mill processes consisted of caustic treatrent of limestone ores and treatment of sandstone ores by an acid-leach, resin-inpulp procedure.

EESULTS OF STUDE
Radiogctive Dust
TABLE I

WEIGITED FXPOSURES TO ALPHA MUITGIAG DUSTS

Thmber of employees atudied Average of all employees Maximum individual exposure

NUMBER OF	FEFCENT
EAPLOYEES	OF TOTAL
242	53.6
32	7.8
126	27.9
35	7.8
16	2.9

RANGE OF WEIGHTED EXPOSURES	
$10^{-11} \mu \mathrm{~N} / \mathrm{ml}$	$\mathrm{d} / \mathrm{m} / \mathrm{M}^{3}$
5	$\angle 110$
$5-10$	$110-220$
$10-25$	$220-550$
$25-50$	$550-1100$
>50	>1100

Concentrations in air of alpha emitting radioactive dusta ere normally reported by this sffice in units of disintegrations fier minute per cubic meter $(\mathrm{d} / \mathrm{m} / \mathrm{m} 3$). In 10 CFR Fart 20 units of microcuries fer ml of air (we/mi) are used. Both unita of conceatration will be used interchangeably throughout this repar. The number of microcurles has been deternined by dividing the total rate, in dpm of alphe entssions by 2.2×10^{6} dpm per NC.
$5 \times 10^{-11} \mathrm{Ne} / \mathrm{ml}\left(110 \mathrm{~d} / \mathrm{m} / \mathrm{M}^{3}\right)=$ maximum alloweble concentretion (MAC) in air for naturel uranim.

A discussion of the rationale of the aucgested FAC for ore dust appears in Appendix B 。

Significent sources of alpha mitting radioactive dust were primarily in limestone (carbonate) erushing, yellow cake processing, and pilot plant areas. A major contributing factor in each case of overexposure wes found to originate in one or more of these areas.

Silica Dust

Smples were taken in all areas where refetively high exposure to workers was antiaipated, 1.0., the sandstone ore dry grinaing circuit. Drast counts ranged from 1.9 willion particles per cubic foot (mppef) to 20.2 mppef and were easentially below the MAC of 20 mppof assigned to this dust ($3-8$) free silica by weight).

External Eadiation

Gama radiation levels were measured in sreas where relatively high exposure to workers was anticipated. Results ranged from $0.1-0.15 \mathrm{mr} / \mathrm{hr}$. Exposure to these dose rete during normal work week would not exceed $4-6 \%$ of the perniseible cumulative dose.

Badon

Radon concentrations were determined in areas where marimum exposure to workers was considersa to be most likely. Measurenents of airborne radioactivity of radon as determined from activity measuresent of $R a C^{1}$ on duct filtered from air in core storage romes was in the range of C.5-1 $\times 10^{-9}$ pe/mal or $0.5-1 \%$ of the meximm perrissible level.

GRISENTATION OP DETA

A sumary of results for the redioactive dust survey is indeated in fable I. recomendstions are included in Aprendix A. A detailed discussion of raciom active components of airborne dust appears in Appendix B. Flowsheets of the processing of sandstone (acid) and limestone (carbonate) ores are shom in Figures 1-2 and 3-4 respectively, in Appendix C. Table II and III in Appendix 1 indicete uraniwn-radium ratios and comparisons between chemical and rediometric results. Daily average gross alpha exposures are listed in

Table IV In Appendix E. Table TV-A in Appondix E lists general air concentrations in selected locations. Toble V iists yellow cake area breathing zone results. Appendix F contains Tables VI, VII, and VIII which are respectivoly, Results of Fetrographie Analyses, Chenical: Settled Thast, and Atmospheric Silice Dust Concentrations. Job Analysis Sheets are contained in Appendix C.

METHON OF STYDY

Alphe Finitting Dust

Air-dust samples were collected by drawing air through $11 / 8^{\prime \prime}$ diameter Whatman \#4l filter dises at rates of 25 or 30 liters per minute. Filter dises were analyzed for gross alphe activity on scintillation counters at the HASL. Redioactive dust conoentrations (alpha $\mathrm{a} / \mathrm{m} / \mathrm{M} 3$) were computed by dividing gross alphe anelyses by respective totel smple - air volumes.

Two types of air-dust samples were collected: 1) Breathing Zone (BZ) samples were obtained to measure dust concentrations in air breethed by employees engeged in specific fobs suspected of being dusty; 2) General Air (GA) semples were obtained to measure average dust concentrations in allereas routinely occupied by employees.

Repetitive samples were collected wherever feasible. General air and breething zone semples were welghted to compute a delly exposure for each occupation.

Radiogetive Components of Airborne Dast

Selected air-dust samples were anelyzed photofluorimetrically and by' alpha counting for uramium and radium respectively. Fadioactivity attributable to these components was compared and retios determined in terms of E Ra. In addition radioactivity attributable to uranium was compared, wherg applicable, to total activity originally counted and retios determined in terms of 留 $\frac{\mathrm{H}}{\mathrm{II}}$. From these ratios one oan estimete to what degree these components approsch theoreticel equilibrium.

S1lica Dust

Silica dust samples were collected by drawing air through a midget impinger containing 10 ml of distilled water at a rate of 0.1 ofm. Fach sample was transferred to a 1 mm deep cell shortly after collection and counted by standard light-field technique at a magnification of 100 times.

Free Silica Anslysia of Ajrborne Material

Two methods uere used to determine this material. The firgt of these used a sample of dust which had settled on rafters and ledges, assuming the material to be representative of an average condition. The other method was to semple enough air to permit performanoe efther of a chemfeal analysis for free silica or petrographic anelysis.

Direct Radiation

Gama radiation was measured with a Juno Survey Meter (Model SIC-17C) and reported in terms of $\mathrm{mr} / \mathrm{hr}$.

Fadon
Air was drawn through hatman H 41 filter peper ($11 / g^{\prime \prime}$ diameter) at a rate of 14-23 liters per minute for either a five or ten minute period. Porty to ninety minutes after the end of sampling, the alphe retivity on the paper was measured by a Juno Survey Meter which was cross calibrated againgt a leboratory counter using an Ra C^{1} source. The radon concentration was computed usine the method of Kumetz as described in American Industrial Hygiene Association Quarterly, 17:85, 1956.

EROCESS DESCRIFTIOE

Sancistone (Acta) Clreuit

Uranium ore in this cirouit is processed by the Recin-in-Pulp (RIP) ion exchange method. Referring to Figures 1-2 in Appendix C, uranium bearing ores are delivered by railroad gendolas to an outdoor shakeout and bin storage ares. A front-end loader conveys ore to a grizaly where it is dumped onto a belt feeder and transported to a jaw crusher. Crushed ore then is passed through a vibrating sereen with oversize returning to an impact breaker. Ore pessing the screens is fed to a sample tower and then to a series of atorage bins. As needed, properly blended ores are wet ground in a rodmill, classified, and leached in sulfuric acid. A mechanical sond-slime separation is made with sands going to tailings.

The slime portion is neutralized with sode ash. A proper mis is obtained by reducing with ferrous sulfate. Pulp then passes to RIP tanks where uranium is separated. Pregnent eluate is clarified, treeted with magnesium oxide to precipitate a complex uranikm salt (yellow cake) which is then filtered, dried, end packed for shipment.

Limestone (Carbonate) Cireulit

Referring to Figures 3-4 in Appendix C, high-lime ores are transported to the limestone primary crushing building by truck, dumped, swemped to a pan feed, and conveyed to a jaw crusher. Crushed ore is soreened in the secondary crushing building. Oversize is passed through an impact breaker; sorean undersize is processed through a short head crusher, conveyed to the sampling tower and then removed to storage bins. Limestone and sandstone crushers are in separete buildings, and both circuits are kopt independent of each other. On occasion, however, sandstone ore may be crushed in limestone buildings when materiel demand warrents.

Blended ore from storage bins is wet ground in rod and ball mills, and caustic leached in autoclaves. It is then filtered, clarified, and precipitated with sodimn hydroxide. Resultent yellow cake is filtered, dried, and packed for shipment.

For the most part, processing equipment in the ore plants was enclosed end ventilated except in the linestone prinmay crusher building where dust control facilities were essentially minimal. The survey tean was informed that moisture content of limestone (eerbonate) ore often wes as low as 0.036%; it usually was $4-5 \%$ In sandstone (acid) ores. Variations in moistiar content of cres undoubtediy influenced the extent of air dustiness in these areas. Exhaust air from ore proeessing facilutes was discharged through type Wot kotoclones. Semple nrocessing equipment in the semple preparation building was hooded and ventilated.

Yellow cake final product from the sadatone circuit was packaged simultaneously in six individual drun filling units housed in a single enclosure ventilated by an exhaust fan located in the rear thereof. A similer type enclosure housing two individual drum filling units was used for yellow ceke final product from the limestone (carbonate) circuit. Fwhast air from all yellow cake ventilation facilities was discharged through either \& Wet Impact Dust Collector or a Microdyne.

Ventilation facilities were net checked for performence characteristics.
Dust respirstors were worn by operators at escentially ell of the dustier operations in the plent. Specific jobs for which respirators were worn are identified with asterisks on Job Analysis Sheets in Aprendix G.

DISCUSSIOA

The maximu allowable concentrations for alpha emitting dusts is discussed in Appendix B.

Exnosures to Alpha Enitting Dust
Total alpha exposures expressed as daily average eross alpha count ere listed in Table IV in Appendix E. Approximately 47% of all employees were exposed to slpha emitting dust concentrations is excess of the maximum allowable; The averge general air concentration for the plant was $420 \mathrm{~d} / \mathrm{m}_{1} / \mathrm{M}^{3}$ ($19 \times 10^{-11} \mu \mathrm{c} / \mathrm{mil}$). The main sourees of radioective dust contributing to both high plant general air and personnel overexposures were essentially in three general areas, namely, limestone (carbonate) crushing, yellow coke processing and pilot plant. Twenty rercent of all employees were overexposed by virtue of time grent in or near these areas as well as throughout the entire plant.

Dust respirators were worn by operators at essentially all of the dustier operations in the plant. However, it is recognized thet there are limitetions inherent in protection afforded by most filter type respirators and for this reason celculated exposures presented in this report are not adjusted for respiratory protection.

Sourche de suangive wagure

 secondary eruebing baildituga rospectively. These hifh romulsa were

 ores.

Dust enatrol fecilitles ware egantieliy whatial in the wripaty cruching builaing. 㖛t the crusher lavel (1gt gub-level) was trangfer
 fou feot. ywomge genernal alr concentrithons of $7300 \mathrm{~d} / \mathrm{m} / \mathrm{M}^{3}(330 \times 16-11$ pe/al) were detected in thene wreas. Sectajs of thrae bresthing sone

Yellow Coke Processing Axes

Forty-six workers were overexposed primarily from dust sources in yellow cake areas. One hundred and twenty-five other workers were overexposed indirectly in the same mamer. General air concentrations were highly variable, ranging from $3-72,000 \mathrm{~d} / \mathrm{m} / \mathrm{M}^{3}\left(0.14-540 \times 10^{-11} \mathrm{~d} / \mathrm{ml}\right)$ and averaging $1100^{\circ} \mathrm{d} / \mathrm{m}^{2} / \mathrm{m}^{3}\left(50 \times 10^{-11} \mathrm{Ne} / \mathrm{ml}\right)$.

Housekeeping procedures were not satisfactory. Spills were frequent and cleanup ineffective. Evidence of these conditions was obtained in the steam pan, druming stations, and carbonate yollow cake filter areas which were major loci of air contamination. Marimum generel air concentrations observed in these areas were $1100 \mathrm{~d} / \mathrm{m} / \mathrm{M}^{3}\left(52 \times 10^{-11} \mathrm{~m} / \mathrm{ml}\right), 2200-28 \mathrm{Co} \mathrm{d} / \mathrm{m}^{2} / \mathrm{m}^{3}$ $\left(100-130 \times 10^{-11} \mathrm{Nc} / \mathrm{ml}\right)$ and $12,000 \mathrm{~d} / \mathrm{m}^{3}\left(550 \times 10^{-11} \mathrm{Nc} / \mathrm{mi}\right)$ respectively.

Listed in Table V (page 10) in descending order of magnitude are results of breathing zone samples taken at oparations performed in this area. Workers wore respirators while performing these operations and were afforded thereby a measure of protection against high airborne dust concentrations. Breathing zone concentrations at many operations listed in Table V were within range of general air concentrations iń neighboring areas; this probably holds tme for reported air concentrations of $1000 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}\left(46 \times 10^{-11}\right.$ M / ml) or less. Although it may be assumed that the latter operstions did not contribute very much air contamination under these conditions, they showid not be ignored aince they may prove to be sourcea of radioactive dust later on.

It is clear, from an examination of Table V that several yellow coke processing operations mby be incriminated as sources of radioactive dust. Shoveling yellow cake to buckets from pan, dumping into oarbonate drum, and covering was a particularly offensive operation. The air concentration indicated by two samples teken during this operation was in the range of $7400-10,000 \mathrm{~d} / \mathrm{m}^{3} \mathrm{~m}^{3}(340-460 \mu \mathrm{c} / \mathrm{ml})$.

Existing multiple drum filling booths, elthough ventilated, were essentially inadequate as evidenced by high breathing zone and general air coneentrations, reported previously, obtained therein. For exsmple, breathing zone concentrations detected during beating and replacing of acid yollow cake drum averaged $9200 \mathrm{~d} / \mathrm{m} / \mathrm{M}^{3}\left(420 \times 10^{-11} \mathrm{Nc} / \mathrm{ml}\right)$.

MABLE I

GECULTS FOR YELLOW GAKE AREA BREETHING ZONE SAMPLES

	NO. Of			ULTS	$10^{-11} \mathrm{Ne} / \mathrm{ml}$
OPERASIOR	GAMPL ${ }^{\text {S }}$	Low	ETCH	AvEREG	AVIRAGE

Femoving carbonate drum from carbonate
filling station - shoveling yellow
cake to buokets from pan and dumping
in drum
Eeating acid yellow cake drum and replacing
Covering carbonate yellow cake drum
Cleoning acid yellow cake press
Cleaning carbonate clarification press
Cleaning acid yellow eake press floor
Faking yellow cake in steam pen
Cleaning carbonate yellow cake press
cleaning carbonate yellow cake pross floor
Sampling and covering acid yellow cake drum

1 - - 10,000 460
$10^{-11} 10 \mathrm{c} / \mathrm{m} 1$

3	1300	15,000	9,200	420
1	-		7,400	340
3	300	810	530	24
3	210	580	380	17
-1	-	-	300	14
3	150	310	240	11
3	100	310	200	9.0
1	-	-	140	6.2
3	50	280	130	5.9

Pllot Plont Area

The major source of contamination in this area wes an operation involving cleaning of drier, removing of pan, and filling of drum. Fegults of three samples taken at this operation averaged $66,000 \mathrm{~d} / \mathrm{m} / \mathrm{M}^{3}\left(3000 \times 10^{-11} \mathrm{No} / \mathrm{ml}\right)$ and ranged from $48,000-80,000 \mathrm{~d} / \mathrm{m} / \mathrm{As}^{3}\left(2200-3700 \times 10^{-11} \mathrm{cc} / \mathrm{ml}\right)$. This operation was entirely unventilateds gmoke and dust were plainly visible during the sampling period. Operators wore respirators while performing these operations.

Silica Dust

Listed below is the most recent list of maximum allowable concentrations for silica dust as published by the American Conference of Govermental Industriel Kygienists.
$\frac{\text { DUST COURP }}{\text { mpoce }}$
5
20
50

PGRGENT
Erec Silioa
>50
5-50
>5

Results of petrographic anslyses are shown in Table VI in Appendix F and indicated maximua particle sizes ranging from 75-150 miorons and estinated weights of free silica of the order of 3-8\%. Chemical analysis of a single
semple of settled dust in the sandstone crusher area indicated 9.5\% quartz os indicated in Table VII in Appendix F. The MAC for gross dust count is 20 -rppef at this silica content.

Samples for silica dust were taken in all areas where rolatively high exposure to workers was anticipated, i.e., the sandstone crusher building. sandstone sample tower, sandstone fine ores bin, and semple preparation building. Results of analyses are given in Table VIII, Appendix F. Pust counts ranged from 1.9 million particles per eubic foot (mppef) to 20.2 mppef. At the locations and under the conditions sampled, it is clear that silica dust concentrations were essentielly below the MAG.

Direct Fediation

The maximum permissible whole body exponure to gamm radiation is $5 \mathrm{rem} / \mathrm{hr}$. Assuming the normal work week to be forty hours, en exposure to a untform whole-body dose of $2.5 \mathrm{mr} / \mathrm{hr}$ of gema radiation will result in a yearly cumulative whole-body dose corresponding to the meximum permissibie amount.

Gama radintion levels were deterntned in areas whers relatively high exposure to workers was anticipeted. Measurements ranged from 0.1 to $0.15 \mathrm{mr} / \mathrm{hr}$. These are escentially insignificant when compared to the maximu permissible amount.

Beta radiation levels were not determined. 'In other mill surveys, significant beta dose rates bave been deteetod along with gama radiation but heve not been found to be excessive. This problem is explored further in other reports in this series.

Radon

For purposes of regulations stipulated in 10 CFR Pert 20, limits for radon prescribed therein will be considered to be met if measured radionctivity of one or more decay products (for example RaCl) does not exceed that which would result from the ocourence, at the time of sampling, of 1×10^{-7} microcurios, per milliliter of air, of Pn^{222} end ach of ite short-lived decay producta, RaA, RaB, RaE, and Rac!.

Redon concentrations were determined in areas where maximua exposure to workers was considered to be most likely. Measurements of airborne radioactivity of radon as determined from activity measuments of Racl on dust filtered from aif in core storage rooms was in the range of $0.5-1 \times 10^{-9}$ ereal. These are insignifieant when compered to the maximu permissible amount.

APPENDIX A

FBCOMFMDATIOHS

Cerbonate Crushins Area

Dust control fecilities were essentially minimal in the primary crusher building. The airborne hazard resulting therefrom was undoubtediy augnented by the low moistura content of processed ores. Steps should be taken to mintraize these failings.

1. A. Dry ores should be wet down either at the ore durap location or at sone other place prior to entering the mill proper. Caution must be exergised, however, in regard to freesing of wetted materials in cold weather. Such procedures as draining lines after each day's use, adding an antifreeze material, etc, must be considered.
b. The grizely and jaw erusher beneath it in the primary crusher building should be enolosed and ventilated. Recormended exhaust rate for the grizzly is 200 ofm per square loot of hood opening but not less then 50 efm per square foot of sereen area. The crusher should be ventilated at a rete of at least 200 fipa through all openings in the enclosure.
2. An inspection port ventilated at a rate of 150-200 ft/inin should be provided at the primery erusher.
3. Adequate ventilation should be provided in the sacondary crusher busiding at all transfor points and at the Cedar Rapids crusher, Symons crusher, and Ty-Rock sempling gereen. Minimum veloeities of $150-200$ fim through opening should be maintained at all these points.
4. A regular schedule of housedeaning using non-dust producing eleanup methoda should be instituted. Use of brooms and/or compressed alr should be avoided. Industrial vecuma cleaners are to be preferred although wet claning may be more practical in certain areas. When the letter method is employed, high pressure nozeles should not be used with hose lines.
5. Until dust loadings are diminished to safe working levels in carbonate crushine areas, mill operators and any other personnel entering mill areas, while erushing and sizing are in progress, chould wear respiretors.

Yellow Cake Processing Area

6. Eristing miltiple drum filling ventilated boothe ere essentially inadequate. Individual ventilated onclosures for each drum are preferred. Enclosures should be ventilated individually at a minimum rate of $150 \mathrm{ft} / \mathrm{min}$ at tope of open drums.

Frovision should be made for rapping, sampling, weighing, and oovering drum within eneloaure at each drum filling unit. Automatic vibrttors or other analogous device should be ingtalled on each drum feed hopper to insure continuous flow of naterial to drum.

If a single sampling atation for Ell drum filling units is preferred, provision should be made for molosing and ventilating the station and dmun conveyor systems leading thereto. Minimum velocities of $150 \mathrm{ft} / \mathrm{min}$ through openings should be maintained.
7. Shovoling yellow cake to buckets from pan, dumping into carbonate drun, and covering, should be accomplished in ventilated booth. Ventilation at a miniman rate of $150 \mathrm{ft} / \mathrm{min}$ through opening would be raquired.
8. Hohaust ventilation bhonld be provided for steam pan. Minimm air requirement would be $150 \mathrm{ft} / \mathrm{min}$ aeross face of hood.
9. A regular schedule of housekeeping using non-dust producing cleamp methoas should be instituted. Deteila suggested in recomendation number four are applicable here.
10. Until proper controls are provided, all yellow ceke vorkers and any other personnel entering yeilow cake areas, while operations are in progress, should wear respixators.

Pilot Plant Area

11. Provide ventilated enclosure for drum filling operation. Minimun air requirement would be $150 \mathrm{ft} / \mathrm{min}$ at top of open armm .

APPENDIX B

MAXIMUM ALLOWABLE CONCENTRATIONS FOR ALPHA EMITTTING DUSTS

In order to evaluate the degree of over exposure of the personnel working in the uranium industry, it is necessary to apply the values which are stated in 10 CFR Part 20. Appendix B of this part lists the maximum permissible concentration in air for most of the materials of interest to this industry. Where a single element or isotope is involved the interpretation of the table presented in Appendix B is reasonably straightforward. For example, the maximum permissible concentration for natural uranium in the insoluble from, a value is given of $5 \times 10^{-11} \mathrm{uc} / \mathrm{ml}$.

Paragraph 20.5C further defines this value in terms of alpha disintegrations per minute with the statement that "the number of microcuries shall be determined by dividing the total disintegration rate in d / m from the mixture by $2.2 \times 10^{+6} \mathrm{~d} / \mathrm{m} / \mathrm{uc} \mathrm{on}^{\mathrm{n}} \mathrm{It}$ can therefore be readily seen that a value of 112 alpha $\mathrm{d} / \mathrm{m} / \mathrm{M}^{3}$ is the maximum permissible uranium concentration in the atmosphere, and all values may be compared directly to this.

Where a complex mixture of isotopes is encountered, it is necessary either that this mixture be broken down and, each element analyzed separately or that some composite value of permissible concentration in air be chosen. Any value which is finally derived must be properly weighted for the respective insults which each isotope presents to the body.

Precisely this latter situation exists in the handing of uranium ore。

Analyses which have been made in connection with this and other surveys indicate that by and large an air sample which is taken in those areas where uranium ore is handled is in isotopic equilibrium. In some cases small quantities of thorium and its daughter products also exist. Certain analyses which have been performed to date show some unexplained short lived decay. This tends to over-emphasize the original count by as much as a factor of 2. However, inasmuch as neglecting this results in a conservative estimate of exposure, this phenomenon will be overlooked until it can be accurately explained.

The equilibrium uranium decay series contains 8 successive alpha emitting substances. The first 4 of these materials are: 0.238 , U-234, Thorium 230, and Radium 226. According to the report of the National Committee on Radiation Protection NBS Handbook 52, the organ to which the uranium and the thorium are of primary interest is the lung, while the organ to which the radium is of interest is the bone. Calculations which have resulted in the permissible level of each of these materials assume a maximum permissible radiation dose to the critical organ of not more than $300 \mathrm{mrem} / \mathrm{wk}$. Inasmuch as the uranium
and the radium seek different body organs, the permissible concentrations of these materials cannot be considered to be additive。 It must be assuned that each stands on its own and that the one delivering the greatest dose should govern.

It is very important, also, that any permissible level which is finally derived must be evaluated in terms of alpha d/m on the total sample rather than from a complex chemical analysis of the fractions followed by analysis of each component. Such chemistry is much too tedious and complex to be considered as a routine field technic. This will be possible if it can be demonstrated that the ore material is consistent in its equilibrium ratio.

When one measures the activity from ore material, it appears from the data which have been gathered in this survey that 25% of the total alpha activity is contributed by uranium 238 plus uranium 234; 12 $\frac{1}{2} \%$ is contributed by Thorium 230, and $12 \frac{1}{2} \%$ is contributed by radium. This corresponds to true equilibrium, within the limits of the analytical method. If this is the case, as we belleve it is, in order that there be not more than 5×10^{-11} uc of uranium plus thorivim in a sample (37.5%; of all the alphas), the total alphe count should not exceed 0.505×10^{-11} or 13.3×10^{-11} uc.

In order that there be not more than 2.4×10^{-11} uc of radium, the sample must contain not more than $\frac{2.4}{0.125} \times 10^{-11}$ or 19: uc.
In connection with this it is noted that page 14 of Handbook 52 states: "In the case of ridium .ooove.o.o.ovalues are based on the disintegration rate of the parent isotope only". This would indicate that although the value as listed states radium 226 plus one-half the daughters, the energy contribution of the daughters is added to that of the parent material in the calculation but should not be assessed in sample eveluation.

Inasmuch as the effective dose of the uranium contribution is significantly higher than that of the radium contribution, it is recommend that the effective uranium dose governo This would permit the following values to be used in asseging the internal hazard from the various materials in the ore processing plants:

1. Material which is substantially all ore $-13.3 \mathrm{uc} / \mathrm{ml}\left(300 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}\right)$
2. Where the material is uranium or of any unknown equilibrium ratio a value of $5 \times 10^{\infty 11} \mathrm{uc} / \mathrm{ml}$ should be used ($100 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}$)

It should be pointed out that as the ore progresses through processing, the decay products arie selectively removed along with the inert materials. Therefore, the elpha component from uranium becomes proportionately greater in the air dust. Whereas in normal ore, radium is approximately 12.5% of the total activity
and uranium approximately 25\%, the concentrate dust contains 99% of uranium and 1% of radium.

One might assume a transition in the relative isotope fractions as the material progresses through concentration, but although this phenomenon has not been fully investigated, it appears that substantially all of the air contamination in the intermediate areas is due to concentrate dust against which the uranium MAC is strictly applicable。

CABBONATE MILL

URASTOM-RADIUA RATIOS

LOCATION

No. Lon High Avg.

EADIMA~ME/ $/ \mathrm{H}^{3}$ Ho. Low High Aygo

$$
\begin{aligned}
& \frac{\text { Ra }}{\text { gu }} \times 10^{-9} \\
& \text { Ratio }
\end{aligned}
$$

LIMESTONE AREAS
At Crisely-swampiry and 1 - - 981 - 150

of Haystack ore
$\begin{array}{lllllllllll}\text { Primary Crusher-ground } & 2 & 26 & 93 & 60 & 2 & 4.7 & 250 & 130 & 220\end{array}$
floor level
$\begin{array}{llllllllll}\text { Crusher-first floor } & 1 & - & - & 390 & 1 & - & - & 120 & 320 \\ \text { Primary Grusher-first } & 2 & 75 & 1100 & 590 & 2 & 10 & 211 & 110 & 160\end{array}$
sub level
$\begin{array}{lllllllll}\text { Under first floor } & 1 & -1400 & 1 & - & 18 & 13 \\ \text { Primary Crusher-dism } & 1 & - & -2700 & 1 & - & 970 & 210\end{array}$
charge onto belt
Secondary Crusher-first 1 - - 370 - 370
deck
Secondary Crusher-first 1 - $\quad-18012$
floor at Symons Crusher
Secondary Crusher-third 1
deck
Sample Tower-first deck 1 -
$\begin{array}{lllllllllll}\text { Sample Tower-third deck } & 2 & 100 & 330 & 220 & 2 & 35 & 37 & 36 & 230\end{array}$
AVERAGE VALUE 320
SANDSTONE AREAS

AVERAGE VALUE

For ore in equilibrium, the value of the ratio $\frac{\text { ghat }}{\text { gU }}$ is approximately 330×10^{-9}. The preceding data would seen to indicate that radium and uranivin are in the correct proportions in limestone ore handing areas but not in areas where sandstone ore is processed.

TEBLE III

BATLO OF RHALYTICAL VALUES TO RADTOLETRIC COUNT

LOCATION	$\begin{gathered} \text { TOLAL CGNT } \\ \mathrm{d} / \mathrm{m} / \mathrm{M}^{3} \\ \hline \end{gathered}$	$\begin{aligned} & \text { UAANIUM } \\ & \mu \mathrm{M} \mathrm{M}^{3} \end{aligned}$	$\begin{aligned} & \text { WTIO } \\ & \text { 管 } / m \end{aligned}$
Limestone Arees			
Crusher-first floor	960	390	0.47
Crusher-under first floor	7700	1400	0.18
Secondary Crusher-top of conveyor \#1	1400	190	0.14
Secondary Crusher-first floor at	660	180	0.28
Symons			
Semple Mill-first floor	150	27	0.18
Sample laill-fourth dack	84	11	0.14
Storage Bin-top	290	48	0.16
Storage Bin-top	180	28	0.16
gVipage values			0.21
Sindstong Areas			
Crushing Plant-second deck	100	16	0.15
Crushing Plant-at primary crusher	95^{\prime}	15	0.16
Sample Mill-third deck	27	5.1	0.19
Sample Mill-first deck	21	2.0	0.10
Storage Bin-main belt	68	11	0.16
Storage Bin-chute discherge.	44	12	0.27
AVERAGE VALUES			0.17

For ore in equilibrium, the ratio $\frac{\mu \mathrm{V} 0}{\mathrm{dm}}$ is approximately 0.18 . The preceding data tonds to indicete urenium is essentially in correct proportion to total activity in all ore hamiling areas.
(2)

TABLE IY
 TOTAL ALPHA EXPOSURE (DATLY AVERAGE) TXTPESSED AS DAILY AVERAGE CROSS MLPHA CODYT

JOB DESSERPSIION	MO. OF WTPLOYESS	DAILY AVERAGE FZPOSURE $\mathrm{d} / \mathrm{m} / \mathrm{m}^{3} \quad 10^{-\mathrm{MI}} \mathrm{Nc} / \mathrm{ml}$	
General Crushing Plant	6	980	
General Crusher Formon	1	2000	90
Crusher Foreman	1	730	33
Crushing Plant Shift Bosses	4	800	36
Acid Crushing Plant	17	35	1.6
Primary and Secondary Grusher Operator	- 3	38	1.6
Sample tower Operator	3	23	1.7
A-Bins Tripper Operstor	3	23	1.0
Grizzly Laborer	3	37	1.7
Rellef Operator	1	33	1.5
Sample Tower Men	4	48	2.2
Carbenate Grushing Plant	12		
Primary Crusher Operator	12	2600	88 120
Secondary Crushar Operator	2	670	121
Sample Tower Operator	2	99	4.5
Grizin Tripper and Shuttle Operetor	2	84	3.8
Relief Operator	2	7300	330
Clean-up Laborer	1	720	33
	1	640	29
Acja Leaching	37		
Acid Mill Superintendent	1	26	1.2
Foreman	4	26	1.2
Crindine Operators	7	20	0.9
Classifier Operator	11	25	1.1
Classifier Operator	11	34	1.5
Swailer .	3	19	0.9
Ion Exehange Butlding			
Assistont Mill Superintendent Mill Foremen	1	58 59	2.6
MIP Makeup Operator	4	64	2.9
Electrician and Precipitation Operator	4	66	3.0
RIP Makeup Sub Operator	3	130	6.0
RIP Bank Operatora	4	82	3.7
Floor Labor	1.4	29	1.3
Swemper	4	59	2.7
Clarificethon Pressman	7	59 64.	2.7

TABLE IV (cont'd)

Carbongte M12	46	120	5.4
Assistant Mill Suporintendent and Foreman	2	590	27
Shift Foreman	3	130	5.8
Pelier Shift Foreman	1	630	29
Precipitation Operetor	4	230	10
Burt Filter Operators	8	58	2.6
Grinding Operator	4	54	2.5
Grinding Sup Operator	4	38	1.7
Leach Operator	3	160	7.2
Oliver Filter Operators	6	38	1.7
Swamper and Bull Geng	11	79	3.6
Yellok Cake	36	1000	47
Shift Foreman	3	1100	51
Ralief Shift Foreman	1	630	29
Semple Room Operator	3	330	15
Leld Dryer and Drum Beeter	8	1300	58.0
Heid Dryer Helper	- 4	1000	47
Carbonate Dryer Operator	3	1000	46.0
Acid Yellow Cake Press Laborer	7	1100	50
Carbonate Press Laborer	5	1000	47
Floor Man	2	880	40
Bucking House	18	23	1.0
Lead Man	2	12	0.5
Pulpren	4	45	2.0
Goffee Mill Men	3	14	0.6
Core Splitters	2	3	0.1
Mihe Sample Bucking Room	7	24	1.2
Metallurgical	41	90	4.1
Chief Motallurgists	1	120	5.5
Assistant Chiof Motallurgist	1	220	9.8
Pilot Mill Foremen	1	14	0.6
Shift Foreman	4	110	4.8
Pilot Mill Supervisors	3	10	0.5
Pilot Mill Grades 3-5-6-7	21	120	5.2
Metallurgieal Grades 3-5-6	10	48	2.2
Mechanical	194	260	12
Plont Repair	1	770	35
			3
Carpenter Shop (Painter)			
Plant Fingineer Surveyors			
	109	420	20
Lubrioation Men			
Yard Department-Repairmen and LaborersWater Department-Water Tenders			
Equipment Operator and Truck Driver			

TABLETV (cont'd)

Acid Plant and Power House Plant Enginear and Draftman Iard Departinent (Jouitors) Water Depertment (Water Tender"s Helper) Office Personnel
Chemieal Laboratory Clerks
Lubrication Dapartment 10
Carbonate Wet Mill 3
Acid Mill-Grinding and Leaching Building 2
scid Mill-Ion Exchange Huilding 2
Pellow Cake Section 1
Garbonate Mil-Crushing Section 1
Acid Hill-Crushing Plant 1
451
TOTAL
Average 290 13

TABIE VI
EESULTS OF TETROGRAPHTC AHALISIS (AIPBORNE DOST)

TABIE UII
CHEMICAL (SEMYLED DUST)

LOCATION
Sandstone crusher - first floor
\& GUAPEX

$$
9.5 \%
$$

TABLE VIII

ATMOSPHERIC DUST CONCENTRATOPS (SILICA)

LOCATION OR OEEEATIOX	NO. OF	DUST COUNT WPPCE		
	SAMPLES	LOU	HIGH	AVETAGE
Sandstone Crusher-first floor	3	1.9	20.2	9.9
Sendstone Crusher-vibrating sereen mraa	3	3.0	5,0	4.0
Sandstone Crusher-third deck	1	-	-	3.8
Sendstone Crusher-erea of head pulley	3	3.6	21.4	7.5
Sendstone Carple Tower-first deak	3	2.2	10.3	7.5
Sandstone Semple Tower-second deek	1	-	-	11.0
Sendstone Sample Tower-third deck	3	4.9	10.3	8.3
Sendstone Semple Tower-fourth deck	1	-	-	10.3
Sandstone Fine Orea Binmtop level	2	7.7	10.7	9.2
Sandstone Fine Ores Bin-bottom Level	1	-	-	3.3
Sandstone Feed to Rod Mill	1	-	-	3.5
Sample Preparation Building-bucking room	1	-	-	1.9
Sample Preparation Building-Bucking room EZ - Roller man	1	-	-	2.6
Sumple Preparation Euilding- BZ Coffe Mill Operator	1	-	-	4.5
Sample Preparation Building-bucking room (Drying Area)	1	-	-	4.6
Sonple Preperation Building-pulp room	1	-	-	2.2
Somple Preparation Euilding-arying room	1	-	-	1.8
Front lind Loeder - 32 - In ceb loading sands	one 1	-	-	5.9

GENERAL GRUSHING PLATN DBPT.
OF ERATOR: GETBRAL CRUGEHEP MREMGA \qquad 1 MEN/SHIFT: _LSHIfTs/Dar: fuen/oar.

GENERAL CHUSHEEG PLAMT DEPT
 OFERATOR:
 \qquad cerusber mobrally

 _ 1 MEN/SHIFT: _ SHIFTS/DAY: _ MEN/DAY.
\qquad TImes the maximin ALLOWABLE CONCEN. tRATION.

OF ERATOR:

- MEN/SHIFT: \qquad S_SHIFTS/DAY: - R_MEN/DAY. GRTMARY \& SECONDARY CRISHER

GA 2nd Floor
GA 3rd Phoor

- Adjusted to two significant figures
ΣT
480
$\sum \frac{(T \times \cdot C)}{\sum(T)}$
 $d / m^{3} /$ i 3
times the maximum ALLOWABLE CONCEN. tration.

ACID GRUSHITNG PLANT DEPT.
OF oRATOR: \qquad 1 MEN/SHIFT: \qquad 3shifts/DAY: 3 men/oar

0.08 OR 2
times the maximum Allowable concern. ration.

AgED gRUSHTMG PLANT DEPT.
of ©RATOR: $A-B I N S$ TRIPPER OPERATOR

0.08 0.0

TIMES THE MAXIMuM Allowable concern. ration.

ACID CRUSHING PLANT DEPT. CRUSHING PLant reliter
OF ERATOR: \qquad
\qquad men/shift: \qquad _MEN/DAY.

- Adjusted to two, significant figures

2. 480
times the maximan allowable concten. tration.

- SAMPIE TOLER TRAD ME

OFERATOR: SAMPLE TOLER LKAD MEN \qquad MEN/SHIFT: 3_SHIFTS/DAY: 3MEN/DAY.

$\begin{gathered} \text { OPERATION } \\ \text { OR } \\ \text { OPERATING AREA } \end{gathered}$	$\begin{gathered} \text { TIME } \\ \text { PER } \\ \text { OPERA. } \\ \text { (MIN) } \end{gathered}$	$\begin{aligned} & \text { OPERA. } \\ & \text { PER } \\ & \text { SHIFT } \end{aligned}$	$\begin{gathered} \text { TIME } \\ \text { PER } \\ \text { SHIFT } \\ (\text { MIN })(y) \\ \hline \end{gathered}$	no. of SAMP. Les			avg con'c: TIMES total time (TXC)
GA Acid Sanple Tower			240	6	956	23	5520
GA Carbonate Sample Tower			240	4	14.152	73	17600

times the maxianum
$d / m / M^{3}=$ \qquad Allowable concentration.

ACID CRUSKHEG PLANT DEPT.
OF ERATOR: SAMPLEE TGRER LRAD MAN RGLIEF \qquad 1.men/shift: \qquad shifts/day: 1 men/day

Adjusted to two stgnificant figures
\sum T480
E.(TXC) 23,100
$\sum \frac{(T \times C)}{\sum(T)}=$
48.1
$\mathrm{d} / \mathrm{m}^{3}-\quad \begin{gathered}0.2 \\ 0.2\end{gathered}$ Times the maximam thation.
carbonate ciushmag plant bert. OPERATOR: \qquad 1 MEN/SHIFT: 2_SHIFTS/DAY: - MEN/DAY.

Wilier respirator worn
-Adjusted to two. significant figures
$\Sigma T 480$
$\Sigma(T \times C) 1,260,000$
$\mathrm{dm} / \mathrm{m}^{3}=\frac{8.8}{26.4} \quad \begin{gathered}\text { Times the max imam } \\ \text { allowable concern. } \\ \text { ration. }\end{gathered}$

GARBOMATE GEUSHING PLANT DEPT.
OFERATOR: \qquad
SBCONDERY ORUGHBR OPEFATOR \qquad 1 MEN/SHIFT: _ 2 SHIFTS/DAY: _ ZMEN/DAY.

GA Inclined Conveyor Ramp

JOB ANALYSIS SHEET

```
| . CABEOMLTE COUSHING PLMNT DEPT.
OFERATOR:
1_MEN/SHIFT: 2_SHIFTS/OAY: 2 MEN/OAY
```


- Aajusted to two.significant figures

VT 480 - 0.3
$\sum \frac{(T \times P)}{\sum(T)}$ 99.3

Garbonate crushing plant dept.
OF ERATOR:
C-BIIMTIPPER \& SHUTTLE OFER.
\qquad
\qquad MEN/SHIFT: \qquad 2 SHIFTS/DAY: 2MEN/DAY

*Adjusted to two, significant figures
$\sum \frac{C T \times C}{\sum(T)}$ 83.9
$\Sigma(T \times C) 40,300$
0.3
$d / m \cdot / M^{3} u$ 0.8

TIMES THE MAXIMNM ALLOWABLE CONCEN. TRATION.

carbonate crusenng plant depr.

OFERATOR: GRUSHING PLAFP RELTEF OPERATOR \qquad 1 MEN/SHIFT: \qquad shifts/DAY: \qquad 1 men/oar.

Adjusted to two significant figures
$\Sigma{ }^{T} 480$
$\Sigma \cdot(T \times)_{345,000}$
$\sum \frac{(I x \cdot C)}{\sum(T)}$ \qquad
719
2.4
times the maximain $d / x^{3} / M^{3}=2$ Allowable concentration.

```
    CARDONATE CRUSHING FLANT DEPT.
OFERATOR:
```

\qquad

```
1_MEN/SHIFT: 1_SHIFTS/OAY: 1MEN/OAY
```


\qquad

times the maximum ALLOWABLE CONCEN. ration.

$\sum \frac{(T \times \cdot C)}{\sum(T)}$ \qquad $a / m / m^{3}=0.2$
TIMES THE MAXIMAM Allowable concen. tration.

$\sum \frac{(T X \cdot C)}{\sum(T)}$
26.0
$x / \sin ^{3}=$
0.3
times the maxianm allowable concern. RATION.
 1-4-521

AGID LEACHING DEPI.
OF ERATOR: GRINDING SUM=OPBRATOR \qquad 1 MEN/SHIFT: \qquad 3_SHIFTS/DAY: 3MEN/DAY.

7200

JOB ANALYSIS SHEET
\qquad MEN/SHIFT: 3SHIFTS/OAY: \qquad MEN/DAY.

OPERATION
OR
OPERATING AREA
GA Classifier Operatine
Iloor
Gia Oyclone Operating

Gia Oyclone Operating

$$
\Sigma T 360
$$

$$
\Sigma(T \times C) 12,200
$$

$$
\Sigma \frac{1 T \times \cdot C)}{\Sigma(T)} \quad \mathrm{a} / \mathrm{m} / \mathrm{m}^{3}=
$$

\qquad Allowable concen. TRATION.

of ERATOR: \qquad ACID LEACHING DEPT. OLASSIETMR SUB-OEERATOR \qquad 1 mEn/shifi: 3 \qquad shifts/oay: _LMEn/dar.

-Adfusted to two significant figures
Σ T 360
$\Sigma \cdot(T \times C)$
12,500
$\sum \frac{(T x \cdot C)}{\Sigma(T)}$ \qquad
$d / m^{2}=$ \qquad times the maxinam allowable concen. tration.

ION EXCHANGE BLD. DEPT. OF ERATOR: RIP BANK OPERATOR

2 MEN/SHIFT: ${ }^{3}$ SHIFTS/DAY: ${ }^{7}$ MEN/DAY.

- Adjusted to two. significant figures
$\sum \frac{1 T-x \cdot C}{\sum(T)}$ 29 0.3

ION EXCHANGE BLDG. DEPT.
OF ERATOR: RIP BAND SJB DPERATOR
2 MEN/SHIFT: 3_SHIFTS/OAY: FMEN/OAY.

$\sum \frac{(T X \cdot C)}{\sum(T)}$
TIMES THE MAXIMUM. ALLOWABLE CONCEN. TRATION.

ION EXGHANGE BLDG. DEPT.
oferator: \qquad
\qquad MEN/SHIFT: \qquad SHIFTS/DAY: MEN/DAY.

\square

ION GXCMANEE BUTUDTHG DAPI.
\qquad
\qquad MEN/SHIFT: _ 3_shifts/oAy: 7.MEN/DAY.

-Adjusted to two significant figures *Filter reapirator woxm.
$\Sigma T 480$
$\Sigma \cdot(T \times C) 30,800$
times the maximum ALLOWABLE COMCEN. tration.

CASBONATE MLiL DEPI.
OF sRATOR: GARBONATE MILL SHIFT FOREMAN 1 MEN/SHIFT: 3_SHIFTS/DAY: 3_MEN/DAY.

-1djusted to two.significant figures $\quad \sum T 480 \quad \sum \cdot(T \times C) 60,900$
$\sum \frac{(T x \cdot C)}{\sum(T)}=$ 127
$d / m i / m^{3}=$
TIMES THE MAXIMUMM ALLOWABLE CONCENtration.

GARBOMATE MILL DEPT, Ó ERATOR: PRECIPITATION OPERATOR
-
\qquad

GA Burt Pilter Area

CARBONATE MILL BEPT.
OF GRATOR: OLIVEA FILTER SUREOPERATOR
1 PREN/SHIFT:
\rightarrow SHIFTS/DAY: MEN/DAY.

-1djusted to two significant figures
ΣT_{480}
$\Sigma(T \times C)$
18,200
$\sum \frac{(T \times(E)}{\sum(T)}$

$d / 2 / m^{3}=$

TIMES THE MAKIMAMM Allowable concen. thation.

YELLOW CAKE DEPT.

OF oRATOR: RELIEF SHIT IT FORMER
\qquad
 Area

GA Burt Filters
GA OLiver Filters
CA Leach Tanks
A Prempitation
GA MIIL Office
$\sum \frac{1 T x \cdot C)}{\sum(T)}=$
628
d / m^{3} \qquad TIMES THE MAXIMUM allowable concent. tration.

YELLOW GAKE DEPT.
OF ERATOR: \qquad
\qquad MEN/SHIFT: ${ }^{3}$ shifts/DAY: 3 MEN/OAY

$\sum \frac{(T x \cdot C)}{\sum(T)}=$ \qquad 325
$d / \mathrm{m}_{\mathrm{M}}{ }^{3}$ \qquad 3.3

TIMES THE MAXIPMNA ALLOWABLE CONCEN. TRATION.

YELTOW CAKE BEPT.
OF ERATOR: ACID UBYER OPITATOR _

-Adjusted to two significant figures
ΣT_{480}
$\Sigma(T \times C) 612,000$
$\sum \frac{(T \times(C)}{\sum(T)}=$
1270
$d / 109 / m^{3}=12 a 7$
TIMES THE MAXIMMM Allowable concen. tration.

YBLION CAKE DEPT.
OFERATOR: \qquad 1 MEN/SHIFT: \qquad 3_shifrs/DAY: 4men/Dar

*4 filter resp. surn
*adusted to two, significant figures
$\Sigma T_{4,00}$
$\Sigma \cdot(T \times C)_{490,000}$
$\sum \frac{(T x \cdot C)}{\Sigma(T)}=$
1020
$d / m / m^{3}$ \qquad
times the maxiaum allowable concen. tration.

YELLOW CAKE DEFT.
OF GRATOR: ACID YERTOH CATE PMRSS LaBOR

-1djusted to two significant figures * Fillter respirator worn.
$\Sigma T 480$
$\Sigma(T \times C)$
524,000
$\frac{1 T \times C)}{\sum(T)}=$ \qquad $d / m / m^{3} m$ \qquad times the maxitianm allowable concen. tration.

$\sum \frac{(T x \cdot C)}{\sum(T)}-$ \qquad $d / n / m^{3}=$
times the maxiraua ALLOWABLE CONCEN. RATION.
\qquad MEN/SHIFT: 1 SHIFTS/DAY: 5 MEN/DAY

$\sum \frac{(T \times C)}{\sum(T)}$ \qquad
$2 / m^{3}=$
10.4
times the maxiaum allowable concen. tration.

YELIOW CAKE DRPT.

OF ERATOR: \qquad M MEN/SHIFT: SHIFTS/OAY: \quad MEN/OAY

*Adfusted to two significant figures
$\Sigma T 480$
$\Sigma(T \times \cdot C) 424,000$

TIMES THE MAXIMUM ALLOWABLE CONCEN. TRATION.

BUCKING HOUSE DEPT.
of ERATOR: \qquad
\qquad 1.mEn/shift: \qquad 3_shifts/day: \qquad men/DAY.

"Adjusted to two significant figures * ${ }^{2}$ Filter respirator worn.
$\sum \frac{(T \times C)}{\sum(T)}$ 45
$\Sigma T 480$

\qquad
\qquad 1 MEN/SHIFT: \qquad 3 SHIFTS/DAY: 3 MEN/DAY

"Adjusted to two significant flgures
$\sum T 480$
$\Sigma(T \times C)$
6970

BUCKIFG HOUSE DBPT.
OF ERATOR: HINE SAMFLE BUCKING ROOM \qquad 3 MEN/SHIFT: \qquad 2 shifts/oar: 7 men/oar.

MEPALLEROTCAL DEPT.
OF ERATOR: SHTET POREWAN \qquad MEN/SHIFT: \qquad SHIFTS/DAY: _L_MEN/DAY.

\qquad
\qquad
TImes the maximum Allowable concen. tration.

MATALIJRGICAL DEPT.

$\sum \frac{I T x \cdot C)}{\sum(T)}$ \qquad $d / n^{2} / n^{3}$
TIMES THE RAXIMUM ALLOWABLE CONCEN. TRATION.

 \qquad MEN/SHIFT: \rightarrow SHIFTS/DAY: M\&NEN/OAY. GHEM. LAB CLERKS (2 men)

TIMES THE MAXIOAMM ALLOWABLE CONCEN. trayton.

