HASL - 14CM - 2

ANACONDA COMPANY GRANTE, NEW MEXICO

OCCUPATIONAL AND NON-OCCUPATIONAL RADIATION AND CONTAMINATION

by

Industrial Hygiene Branch Health and Safety Laboratory

Issued: January 27, 1958

Distribution: Cy 1 - W.B. Harris, HASL, NYOO Cy 2 - J. C. Johnson, Director, HM, Wash. Cy 3 - G. V. Beard, E&M, Wash. Cy 4 - R. Barker, L&R, Wash. Cy 5 - M. Mann, L&R, Wash. Cy 6 - HASL Publications

U.S.Atomic Energy Commission New York Operations Office Health and Safety Laboratory

A-2

TABLE OF CONTENTS

REAL ARTICLE PROVIDED AND AND A STREET

Page PURPOSE AND SCOPE 3 RESULTS OF STUDY 3 Weighted Exposures to Alpha Emitting Dusts 3 4 Silica Dust External Radiation 4 Redon 4 PRESENTATION OF DATA 4 METHOD OF STUDY 5 5 Alpha Emitting Dust Radioactive Components of Airborne Dust 5 5 Silica Dust Free Silica Analysis of Airborne Material 5 6 Direct Radiation 6 Radon PROCESS DESCRIPTION 6 DISCUSSION 7 Exposures to Alpha Emitting Dust 7 Sources of Excessive Exposure 8 Direct Radiation 11 AFPENDIX A Recommendations APPENDIX B Maximum Allowable Concentrations for Alpha Emitting Dusts APPENDIX C Process Flow Diagrams Figure 1 - Sandstone Acid Figure 2 - Acid Mill Figure 3 - Carbonate Crushing Figure 4 - Carbonate Mill APPENDIX D Table II - Uranium-Radium Ratios Table III - Ratio of Analytical Values to Radiometric Count APPENDIX E Table IV - Total Alpha Exposure (Daily Average) Expresses as Daily Average Gross Alpha Count Table IV-A - General Air Concentrations in Selected Locations

TABLE OF CONTENTS

- 2 -

APPENDIX F

Table VI - Results of Petrographic Analysis (Airborne Dust) Table VII - Chemical (Settled Dust) Table VIII - Atmospheric Dust Concentrations (Silica)

APPENDIX G

Job Analysis Sheets

APPENDIX H

Survey Sample Sheets (Copies 1 and 6 only)

PURPOSE AND SCOPE

During the week of November 26, 1956, a comprehensive survey of uranium milling facilities of Anaconda Company at Grants, New Mexico, was conducted jointly by the New Mexico Department of Health, Occupational Health Field Group of the U.S. Public Health Service (USPHS), and Health and Safety Laboratory (HASL) of the U.S. Atomic Energy Commission (USAEC). This survey is one of a series being conducted by HASL in cooperation with other interested governmental groups, at various uranium ore concentration mills in an attempt to define potential industrial hygiene hazards associated therewith.

A preliminary inspection was made of plant facilities to ascertain generally the nature and extent of these hazards. After an evaluation of findings, it was determined that inhalation of alpha emitting radioactive and silicous dusts were basically major potential hazards as well as direct radiation to the body. The extent of radioactive dust hazard was judged to be plant-wide in extent; inhalation of silica dust was deemed a significant industrial hygiene problem essentially in sandstone comminution areas.

Responsibility for investigation of silica dust hezards was assumed by the New Mexico Department of Health and the Occupational Health Field Group of the USPHS. The latter group also assumed responsibility for assessing external radiation and radon hazards. HASL primarily conducted a radioactive dust survey of the entire milling facility.

Information was sought during the radioactive dust survey both to determine weighted exposures of all employees to airborne radioactive dust and to define sources of excessive dust concentration. During this survey silica dust counts were obtained throughout sandstone crushing areas.

At the time of the survey, mill processes consisted of caustic treatment of limestone ores and treatment of sandstone ores by an acid-leach, resin-inpulp procedure.

RESULTS OF STUDY

Radioactive Dust

TABLE I

WEIGHTED EXPOSURES TO ALPHA EMITTING DUSTS

Number of employees studied Average of all employees Maximum individual exposure

451 13 x 10⁻¹¹ ν c/ml* (290 d/m/M³) 330 x 10⁻¹¹ ν c/ml (7300 d/m/M³)

NUMBER OF	PERCENT		TED EXPOSURES
EMPLOYEES	OF TOTAL	$10^{-11} \mu c/ml$	$d/m/M^2$
242	53.6	45	11 0
32	7.8	5-10	110-220
126	27.9	10-25	220-550
35	7.8	25-50	550-1100
16	2.9	> 50	>1:100
		7	1 mg

*Concentrations in air of alpha emitting radioactive dusts are normally reported by this office in units of disintegrations per minute per cubic meter (d/m/M3). In 10 CFR Part 20 units of microcuries per ml of air (ν c/ml) are used. Both units of concentration will be used interchangenbly throughout this report. The number of microcuries has been determined by dividing the total rate, in dpm of alpha emissions by 2.2 x 10⁶ dpm per //c.

 $5 \times 10^{-11} \text{ }/\text{m/m} (110 \text{ d/m/M}^3) = \text{maximum allowable concentration (MAC) in air for natural uranium.}$

A discussion of the rationale of the suggested MAC for ore dust appears in Appendix B.

Significant sources of alpha emitting radioactive dust were primarily in limestone (carbonate) crushing, yellow cake processing, and pilot plant areas. A major contributing factor in each case of overexposure was found to originate in one or more of these areas.

Silica Dust

Samples were taken in all areas where relatively high exposure to workers was anticipated, i.e., the sandstone ore dry grinding circuit. Dust counts ranged from 1.9 million particles per cubic foot (mppcf) to 20.2 mppcf and were essentially below the MAC of 20 mppcf assigned to this dust (3-8% free silica by weight).

External Radiation

Gamma radiation levels were measured in areas where relatively high exposure to workers was anticipated. Results ranged from 0.1-0.15 mr/hr. Exposure to these dose rates during a normal work week would not exceed 4-6% of the permissible cumulative dose.

Radon

Radon concentrations were determined in areas where maximum exposure to workers was considered to be most likely. Measurements of airborne radioactivity of radon as determined from activity measurement of RaC¹ on dust filtered from air in core storage rooms was in the range of C.5-1 x 10^{-9} μ c/ml or 0.5-1% of the maximum permissible level.

PRESENTATION OF DATA

A summary of results for the radioactive dust survey is indicated in Table I. Becommendations are included in Appendix A. A detailed discussion of radioactive components of airborne dust appears in Appendix B. Flowsheets of the processing of sandstone (acid) and limestone (carbonate) ores are shown in Figures 1-2 and 3-4 respectively, in Appendix C. Table II and III in Appendix D indicate uranium-radium ratios and comparisons between chemical and radiometric results. Daily average gross alpha exposures are listed in Table IV in Appendix E. Table IV-A in Appendix E lists general air concentrations in selected locations. Table V lists yellow cake area breathing zone results. Appendix F contains Tables VI, VII, and VIII which are respectively, Results of Petrographic Analyses, Chemical Settled Dust, and Atmospheric Silica Dust Concentrations. Job Analysis Sheets are contained in Appendix G.

METHOD OF STUDY

ĺ

and the second second

Alpha Emitting Dust

Air-dust samples were collected by drawing air through $1 \frac{1}{8}$ diameter Whatman #41 filter discs at rates of 25 or 30 liters per minute. Filter discs were analyzed for gross alpha activity on scintillation counters at the HASL. Redicactive dust concentrations (alpha $\frac{d}{m}$) were computed by dividing gross alpha analyses by respective total sample - air volumes.

Two types of air-dust samples were collected: 1) Breathing Zone (BZ) samples were obtained to measure dust concentrations in air breathed by employees engaged in specific jobs suspected of being dusty; 2) General Air (GA) samples were obtained to measure average dust concentrations in allareas routinely occupied by employees.

Repetitive samples were collected wherever feasible. General air and breathing zone samples were weighted to compute a daily exposure for each occupation.

Radioactive Components of Airborne Dust

Selected air-dust samples were analyzed photofluorimetrically and by alpha counting for uranium and radium respectively. Fadioactivity attributable to these components was compared and ratios determined in terms of $\frac{E}{E}$. In addition radioactivity attributable to uranium was compared, where applicable, to total activity originally counted and ratios determined in terms of $\frac{ME}{M}$. From these ratios one can estimate to what degree these components approach theoretical equilibrium.

Silica Dust

Silica dust samples were collected by drawing air through a midget impinger containing 10 ml of distilled water at a rate of 0.1 ofm. Each sample was transferred to a 1 mm deep cell shortly after collection and counted by standard light-field technique at a magnification of 100 times.

Free Silica Analysis of Airborne Material

Two methods were used to determine this material. The first of these used a sample of dust which had settled on rafters and ledges, assuming the material to be representative of an average condition. The other method was to sample enough air to permit performance either of a chemical analysis for free silica or a petrographic analysis.

- 5 -

Direct Radiation

Gamma radiation was measured with a Juno Survey Meter (Model SIC-17C) and reported in terms of mr/hr.

Fadon

Air was drawn through Whatman #41 filter paper (1 1/8" diameter) at a rate of 14-23 liters per minute for either a five or ten minute period. Forty to ninety minutes after the end of sampling, the alpha activity on the paper was measured by a Juno Survey Meter which was cross-calibrated against a laboratory counter using an Ra C¹ source. The radon concentration was computed using the method of Kuznetz as described in American Industrial Hygiene Association Quarterly, 17:85, 1956.

PROCESS DESCRIPTION

Sandstone (Acid) Circuit

Uranium ore in this circuit is processed by the Resin-in-Fulp (RIP) ion exchange method. Referring to Figures 1-2 in Appendix C, uranium bearing ores are delivered by railroad gondolas to an outdoor shakeout and bin storage area. A front-end loader conveys ore to a grizzly where it is dumped onto a belt feeder and transported to a jaw crusher. Crushed ore then is passed through a vibrating screen with oversize returning to an impact breaker. Ore passing the screens is fed to a sample tower and then to a series of storage bins. As needed, properly blended ores are wet ground in a rod mill, classified, and leached in sulfuric acid. A mechanical send-slime separation is made with sands going to tailings.

The slime portion is neutralized with sode ash. A proper FMF is obtained by reducing with ferrous sulfate. Pulp then passes to RIP tanks where uranium is separated. Pregnant eluate is clarified, treated with magnesium oxide to precipitate a complex uranium salt (yellow cake) which is then filtered, dried, and packed for shipment.

Limestone (Carbonate) Circuit

Referring to Figures 3-4 in Appendix C, high-lime ores are transported to the limestone primary crushing building by truck, dumped, swamped to a pan feed, and conveyed to a jaw crusher. Crushed ore is screened in the secondary crushing building. Oversize is passed through an impact breaker; screen undersize is processed through a short head crusher, conveyed to the sampling tower and then removed to storage bins. Limestone and sandstone crushers are in separate buildings, and both circuits are kept independent of each other. On occasion, however, sandstone ore may be crushed in limestone buildings when material demand warrants.

Blended ore from storage bins is wet ground in rod and ball mills, and caustic leached in autoclaves. It is then filtered, clarified, and precipitated with sodium hydroxide. Resultant yellow cake is filtered, dried, and packed for shipment.

- 6 -

DUST CONTROL AND TERSONNEL FROTECTION

For the most part, processing equipment in the ore plants was enclosed and ventilated except in the limestone primary crusher building where dust control facilities were essentially minimal. The survey team was informed that moisture content of limestone (carbonate) ore often was as low as 0.036%; it usually was 4-5% in sandstone (acid) ores. Variations in moisture content of cres undoubtedly influenced the extent of air dustiness in these areas. Exhaust air from ore processing facilities was discharged through Type N Wet Rotoclones. Sample processing equipment in the sample preparation building was hooded and ventilated.

Yellow cake final product from the sendatone circuit was packaged simultaneously in six individual drum filling units housed in a single enclosure ventilated by an exhaust fan located in the rear thereof. A similar type enclosure housing two individual drum filling units was used for yellow cake final product from the limestone (carbonate) circuit. Exhaust air from all yellow cake ventilation facilities was discharged through either a Wet Impact Dust Collector or a Microdyne.

Ventilation facilities were not checked for performance characteristics.

Dust respirators were worn by operators at essentially all of the dustier operations in the plant. Specific jobs for which respirators were worn are identified with asterisks on Job Analysis Sheets in Appendix G.

DISCUSSION

The maximum allowable concentrations for alpha emitting dusts is discussed in Appendix B.

Exposures to Alpha Emitting Dust

Total alpha exposures expressed as daily average gross alpha count are listed in Table IV in Appendix E. Approximately 47% of all employees were exposed to alpha emitting dust concentrations in excess of the maximum allowable. The average general air concentration for the plant was 420 d/m/M^3 (19 x 10⁻¹¹ //c/ml). The main sources of radioactive dust contributing to both high plant general air and personnel overexposures were essentially in three general areas, namely, limestone (carbonate) crushing, yellow cake processing and pilot plant. Twenty percent of all employees were overexposed by virtue of time spent in or near these areas as well as throughout the entire plant.

Dust respirators were worn by operators at essentially all of the dustier operations in the plant. However, it is recognized that there are limitations inherent in protection afforded by most filter type respirators and for this reason calculated exposures presented in this report are not adjusted for respiratory protection.

Sources of Excessive Excente

Carbonete Crushing Areas

High concentrations of airborno radioactive dust in both the primary and accondary limestone erushing buildings contributed directly to overexposures of twenty-four workers and indirectly to 125 workers. Average general air concentrations of 3400 d/m/M3 (160 x 10-11 Me/ml) and 720 d/m/M3 (33 x 10-11 Me/ml) were noted in the primary and secondary crushing buildings respectively. These high results were in striking contrast to average concentrations of 35 d/m/M3 (1.6 x 10-11 Me/ml) Me/ml detected in andstone (acid) crushing areas. Differences in ore moisture content undoubtedly had a direct bearing on these results. The survey team was informed that moisture content of 11mestone (corbonate) ores often was as low as 0.036%; it usually was 4-55 in sandstone (acid) ores.

Dust control facilities were essentially minimal in the primary crushing building. At the crusher level (lst sub-level) and transfer point, dust clouds were of such magnitude as to restrict vision to a faw feet. Average general air concentrations of 7300 $d/n/M^3$ (330 x 10-11 /c/sl) were detected in these areas. Fecults of three breathing some samples taken during pushing of one through the griszly averaged 1300 $d/n/M^3$ (61 x $10^{-11}/c/sl$). Operators were respirators during one processing operations, which afforded some measure of protection sgainst overwholaing dust concentrations encountered. Housekeeping procedures were almost entirely lacking. One operator was observed sticking his head into a clean-out door of a hopper to view the progress of one down from the griszly to the crusher feed pans. The survey group was informed that this was not an uncosmon practice by various crusher operators.

Mechanical exhaust ventilation was in considerable ovidence in the secondary orusher building. Overall dust levels were significantly lower than those encountered in the primary crusher building. Nevertheless, average general air concentrations ranging from 180-1000 d/m/MO (8.0 x 10^{-11} No/ml) were detected at several conveyor transfer points as well as at the Ceder Repids crusher, Symons crusher, and Ty-Rock sampling screen.

- 8 -

Yellow Cake Processing Areas

Forty-six workers were overexposed primarily from dust sources in yellow cake areas. One hundred and twenty-five other workers were overexposed indirectly in the same manner. General air concentrations were highly variable, ranging from 3-12,000 d/m/M³ (0.14-540 x 10^{-11} /c/ml) and averaging 1100 d/m/M³ (50 x 10^{-11} /c/ml).

Housekeeping procedures were not satisfactory. Spills were frequent and cleanup ineffective. Evidence of these conditions was obtained in the steam pan, drumming stations, and carbonate yellow cake filter areas which were major loci of air contamination. Maximum general air concentrations observed in these areas were 1100 $d/m/M^3$ (52 x 10⁻¹¹/c/ml), 2200-2800 $d/m/M^3$ (100-130 x 10⁻¹¹/c/ml) and 12,000 $d/m/M^3$ (550 x 10⁻¹¹/c/ml) respectively.

Listed in Table V (page 10) in descending order of magnitude are results of breathing zone samples taken at operations performed in this area. Workers were respirators while performing these operations and were afforded thereby a measure of protection against high airborne dust concentrations. Breathing zone concentrations at many operations listed in Table V were within range of general air concentrations in neighboring areas; this probably holds true for reported air concentrations of 1000 d/m/M³ (46 x 10⁻¹¹ μ c/ml) or less. Although it may be assumed that the latter operations did not contribute very much air contamination under these conditions, they should not be ignored since they may prove to be sources of radioactive dust later on.

It is clear, from an examination of Table V that several yellow cake processing operations may be incriminated as sources of radioactive dust. Shoveling yellow cake to buckets from pan, dumping into carbonate drum, and covering was a particularly offensive operation. The air concentration indicated by two samples taken during this operation was in the range of $7400-10.000 \text{ d/m/M}^2$ (340-460 c/m).

Existing multiple drum filling booths, although ventilated, were essentially inadequate as evidenced by high breathing zone and general air concentrations, reported previously, obtained therein. For example, breathing zone concentrations detected during beating and replacing of acid yellow cake drum averaged 9200 d/m/M³ (420 x 10^{-11} /c/ml).

TABLE IV A

GENERAL AIR CONCERTRATIONS IN SELECTED LOCATIONS

Location	No. of Semples	Lov.	<u>d/n/M</u> 3 Rich	RESULT	<u>pe/nl x 10-11</u> <u>evs.</u>
	7/6	.1	35 ድድስ	100	10
Flant	146	1	12,000		19
Acia Mills	57	1	140	33	1.5
ecid Crushing Flant	13	1	100	35	1.6
Mein floor and pit	9	5 1	95	32	1.5
2nd floor	2		100	151	6 . 9
3rd floor		29	53	41	1.9
heid Crizzly bree	4 6 3 3	11	95	38	1.7
Acid Sample Tower	6	3	56	24	1.1
Nain floor	3	17	56	31	1.4
2nd, 3rd and 4th floors	3	9	27	16	C.73
Acid Ore Bin Building	9	1	· 68	21	0.95
Conveyor area	4	9	63	36	1.6
lst floor	نې س	1	30	9	0.41
Cerbonste Crushing Plants Frimery Crushing Flant	23 /	160	7,700	1,500	71
Kain floor	4	230	960	570	26
Basement	3	7,000	7,700		
Secondary Crushing Plant	-	•			
Be sevent	3	400	1,300	680	31
Hain floor	3 3 3	270	660		19
Screen floor		510	1,400	-	
2ng floor	3	615	1,400		
Inclined conveyor ramp	4	160	900		21
Carbonate Mill	20	14	300		3.6
Rod and ball mill area	5	14	67		2.3
Burt filters	· 4	45	74		2.6
Gliver filters		17	55		1.7
leach tanka	3 4	79	300		10
Frecipitation	2	19	21	20	0.91
Yellow Cake Aree	18	3	12,000	1,100	51
Velsh Room	10	-		3	0.14
Purtace Area	1	-	-	44	2.0
Furnace Fred Bucking Nouse	.	-	-	M-1	第 章 電 もっ
	2	,	18	12	C.55
Bucking room	3 3 2 7	4 5	40	24	1.1
Heads pulverizing room	2) 2	25	14	0.64
Blending rocm	2	5 2			0.14
	6- 53	4	3	3 10	
Pilot Mill			23		C.45
Grinding, leaching, sand-sline	. 4	1	14	6	0.27
FIF Make-up banks	1	-107	- 	23	1.0
Precipitation and elution make- Yellow cake packaging	up 1 1	-		23	0.27 1.0

-

TABLE IV A

Cerbonate Grizzly Area	3	7,00	C 7	,700	7,300	330
Semple Toyer	4	1	4	150	73	3.3
Ground Floor	1	-			150	6.9
2nd, 3rd and 4th floors	3	1	4	84	47	2.1
Ore Bin Building	13		4	180	68	3.1
Tripper belts	5	٤	ļo,	290	160	7.3
First floor	6		4	38	15	0.73
Reat of building	2		9	10	10	0.45
Acid Leaching Building	19		7.6	80	28	1.3
Grinding	3		7.6	33	20	0.91
Leeching	8		LC .	35	25	1.1
Classification	8	-	19	80	36	1.6
Operation floor	4		<u>}</u> (40	34	1.5
Ground floor	4		19	80	39	1.8
EIP Euildine	9		1	139	59	2.7
Make-up	1		1 10		66	3.0
Banka	. 3		24	36	29	1.3
Clarification	3	J.	1	9C	37	2.7
Elution and precipitation	2		25	1 3 9	130	6.0
		1				

TABLE Y

RESULTS FOR YELLOW CAKE AREA BREATHING ZONE SAMPLES

	***			ESULTS	
OPERATION	NO. OF SAMPLES	LOW	<u>d/m/MP</u> HIGH	AVERAGE	<u>10⁻¹¹ /ml</u> AVERAGE
<u>VI CAULAIVA</u>	CALIFICATION NO.	11410	****	A VLEGIOLD	FA V JOSEFFEREZ
Removing carbonate drum from carbonate filling station - shoveling yellow cake to buckets from pan and dumping	1	-	~	10,000	460
in drum Beating acid yellow cake drum and replacing	3	1300	15,000	9,200	420
Covering carbonate yellow cake drum	1	-		7,400	340
Cleaning acid yellow cake press	3	300	810	530	24
Cleaning carbonate clarification press	3	210	580	380	17
Cleaning seid yellow cake press floor	- <u>1</u>		-	300	14
Raking yellow cake in steam pan	3	150	310	240	11
Cleaning carbonate yellow cake press	3	100	ʻ 31 0	200	9.0
Cleaning carbonate yellow cake press floor	1	. 🛥		140	6.2
Sampling and covering acid yellow cake drum	31	50	280	130	5.9

Pilot Plant Area

The major source of contamination in this area was an operation involving cleaning of drive, removing of pan, and filling of drum. Results of three samples taken at this operation averaged 66,000 d/m/M³ (3000 x 10^{-11} , o/ml) and ranged from 48,000-80,000 d/m/M³ (2200-3700 x 10^{-11} , o/ml). This operation was entirely unventilated; smoke and dust were plainly visible during the sampling period. Operators wore respirators while performing these operations.

Silica Dust

Listed below is the most recent list of maximum allowable concentrations for silica dust as published by the American Conference of Governmental Industrial Hygienists.

DUST COUNT MDDOC	PERCENT Free Silica
5	>50
20	5-50
50	75

Results of petrographic analyses are shown in Table VI in Appendix F and indicated maximum particle sizes ranging from 75-150 microns and estimated weights of free silica of the order of 3-8%. Chemical analysis of a single

- 10 -

sample of settled dust in the sandstone crusher area indicated 9.5% quartz as indicated in Table VII in Appendix F. The MAC for gross dust count is 20 mppef at this silica content.

Samples for silica dust were taken in all areas where relatively high exposure to workers was anticipated, i.e., the sandstone crusher building, sandstone sample tower, sandstone fine ores bin; and sample preparation building. Results of analyses are given in Table VIII, Appendix F. Dust counts ranged from 1.9 million particles per cubic foot (mppef) to 20.2 mppef. At the locations and under the conditions sampled, it is clear that silica dust concentrations were essentially below the MAC.

Direct Radiation

The maximum permissible whole body exposure to gamma radiation is 5 rem/hr. Assuming the normal work week to be forty hours, an exposure to a uniform whole-body dose of 2.5 mr/hr of gamma radiation will result in a yearly cumulative whole-body dose corresponding to the maximum permissible amount.

Gamma radiation levels were determined in areas where relatively high exposure to workers was anticipated. Measurements ranged from 0.1 to 0.15 mr/hr. These are essentially insignificant when compared to the maximum permissible amount.

Beta radiation levels were not determined. 'In other mill surveys, significant beta dose rates have been detected along with gamma radiation but have not been found to be excessive. This problem is explored further in other reports in this series.

Radon

For purposes of regulations stipulated in 10 CFR Part 20, limits for radon prescribed therein will be considered to be met if measured radioactivity of one or more decay products (for example RaC¹) does not exceed that which would result from the occurence, at the time of sampling, of 1×10^{-7} micro-curies, per milliliter of air, of Rn²²² and each of its short-lived decay products, RaA, RaB, RaC, and RaC¹.

Radon concentrations were determined in areas where maximum exposure to workers was considered to be most likely. Measurements of airborne radioactivity of radon as determined from activity measurments of RaC¹ on dust filtered from air in core storage rooms was in the range of 0.5-1 x 10⁻⁹ \sim c/ml. These are insignificant when compared to the maximum permissible amount.

بحيح ومتعتين الراب منابك من

APPENDIX A

FECOMMENDATIONS

Carbonate Crushing Area

Dust control facilities were essentially minimal in the primary crusher building. The airborne hazard resulting therefrom was undoubtedly augmented by the low moisture content of processed ores. Steps should be taken to minimize these failings.

- 1. g. Dry ores should be wet down either at the ore dump location or at some other place prior to entering the mill proper. Caution must be exercised, however, in regard to freezing of wetted materials in cold weather. Such procedures as draining lines after each day's use, adding an antifreeze material, etc, must be considered.
 - b. The grizzly and jaw crusher beneath it in the primary crusher building should be enclosed and ventilated. Recommended exhaust rate for the grizzly is 200 cfm per square foot of hood opening but not less then 50 cfm per square foot of screen area. The crusher should be ventilated at a rate of at least 200 fpm through all openings in the enclosure.
- 2. An inspection port ventilated at a rate of 150-200 ft/min should be provided at the primary crusher.
- 3. Adequate ventilation should be provided in the secondary crusher building at all transfer points and at the Cedar Rapids crusher, Symons crusher, and Ty-Rock sampling screen. Minimum velocities of 150-200 fpm through openings should be maintained at all these points.
- 4. A regular schedule of housecleaning using non-dust producing cleanup methods should be instituted. Use of brooms and/or compressed air should be avoided. Industrial vacuum cleaners are to be preferred although wet cleaning may be more practical in certain areas. When the latter method is employed, high pressure nozzles should not be used with hose lines.
- 5. Until dust loadings are diminished to safe working levels in carbonate crushing areas, mill operators and any other personnel entering mill areas, while crushing and sizing are in progress, should wear respirators.

Yellow Cake Processing Area

6. Existing multiple drum filling ventilated booths are essentially inadequate. Individual ventilated enclosures for each drum are preferred. Enclosures should be ventilated individually at a minimum rate of 150 ft/min at tops of open drums.

Provision should be made for rapping, sampling, weighing, and covering drum within enclosure at each drum filling unit. Automatic vibrators or other analogous device should be installed on each drum feed hopper to insure continuous flow of material to drum.

If a single sampling station for all drum filling units is preferred, provision should be made for enclosing and ventilating the station and drum conveyor systems leading thereto. Minimum velocities of 150 ft/min through openings should be maintained.

- 7. Shoveling yellow cake to buckets from pan, dumping into carbonate drum, and covering, should be accomplished in ventilated booth. Ventilation at a minimum rate of 150 ft/min through opening would be required.
- 8. Exhaust ventilation should be provided for steam pan. Minimum air requirement would be 150 ft/min across face of hood.
- 9. A regular schedule of housekeeping using non-dust producing cleanup methods should be instituted. Details suggested in recommendation number four are applicable here.
- 10. Until proper controls are provided, all yellow cake workers and any other personnel entering yellow cake areas, while operations are in progress, should wear respirators.

Pilot Plant Area

in all the second

11. Provide ventilated enclosure for drum filling operation. Minimum air requirement would be 150 ft/min at top of open drum.

APPENDIX B

MAXIMUM ALLOWABLE CONCENTRATIONS FOR ALPHA EMITTING DUSTS

In order to evaluate the degree of over-exposure of the personnel working in the uranium industry, it is necessary to apply the values which are stated in 10 CFR Part 20. Appendix B of this part lists the maximum permissible concentration in air for most of the materials of interest to this industry. Where a single element or isotope is involved the interpretation of the table presented in Appendix B is reasonably straightforward. For example, the maximum permissible concentration for natural uranium in the insoluble from, a value is given of 5×10^{-11} uc/ml.

Paragraph 20.5C further defines this value in terms of alpha disintegrations per minute with the statement that "the number of microcuries shall be determined by dividing the total disintegration rate in d/m from the mixture by 2.2 x 10^{+0} d/m/uc." It can therefore be readily seen that a value of 112 alpha d/m/M³ is the maximum permissible uranium concentration in the atmosphere, and all values may be compared directly to this.

Where a complex mixture of isotopes is encountered, it is necessary either that this mixture be broken down and each element analyzed separately or that some composite value of permissible concentration in air be chosen. Any value which is finally derived must be properly weighted for the respective insults which each isotope presents to the body. Precisely this latter situation exists in the handling of uranium ore.

Analyses which have been made in connection with this and other surveys indicate that by and large an air sample which is taken in those areas where uranium ore is handled is in isotopic equilibrium. In some cases small quantities of thorium and its daughter products also exist. Certain analyses which have been performed to date show some unexplained short lived decay. This tends to over-emphasize the original count by as much as a factor of 2. However, inasmuch as neglecting this results in a conservative estimate of exposure, this phenomenon will be overlooked until it can be accurately explained.

The equilibrium uranium decay series contains 8 successive alpha emitting substances. The first 4 of these materials are: U-238, U-234, Thorium 230, and Radium 226. According to the report of the National Committee on Radiation Protection NBS Handbook 52, the organ to which the uranium and the thorium are of primary interest is the lung, while the organ to which the radium is of interest is the bone. Calculations which have resulted in the permissible level of each of these materials assume a maximum permissible radiation dose to the critical organ of not more than 300 mrem/wk. Inasmuch as the uranium and the radium seek different body organs, the permissible concentrations of these materials cannot be considered to be additive. It must be assumed that each stands on its own and that the one delivering the greatest dose should govern.

It is very important, also, that any permissible level which is finally derived must be evaluated in terms of alpha d/m on the total sample rather than from a complex chemical analysis of the fractions followed by analysis of each component. Such chemistry is much too tedious and complex to be considered as a routine field technic. This will be possible if it can be demonstrated that the ore material is consistent in its equilibrium ratio.

When one measures the activity from ore material, it appears from the data which have been gathered in this survey that 25% of the total alpha activity is contributed by uranium 238 plus uranium 234; 12% is contributed by Thorium 230, and 12% is contributed by radium. This corresponds to true equilibrium, within the limits of the analytical method. If this is the case, as we believe it is, in order that there be not more than 5×10^{-11} uc of uranium <u>plus thorium</u> in a sample (37.5% of all the alphas), the total alpha count should not exceed 0.575 x 10⁻¹¹ or 13.3 x 10⁻¹¹ uc.

In order that there be not more than 2.4×10^{-11} uc of radium, the sample must contain not more than $\frac{2.4}{0.125} \times 10^{-11}$ or 19 uc.

In connection with this it is noted that page 14 of Handbook 52 states: "In the case of radiumuc.....values are based on the disintegration rate of the parent isotope only." This would indicate that although the value as listed states radium 226 plus one-half the daughters, the energy contribution of the daughters is added to that of the parent material in the calculation but should not be assessed in sample evaluation.

Inasmuch as the effective dose of the uranium contribution is significantly higher than that of the radium contribution, it is recommended that the effective uranium dose govern. This would permit the following values to be used in assessing the internal hazard from the various materials in the ore processing plants:

1. Material which is substantially all ore - 13.3 uc/ml (300 d/m/M²)

2. Where the material is uranium or of any unknown equilibrium ratio a value of 5×10^{-11} uc/ml should be used (100 d/m/M³).

It should be pointed out that as the ore progresses through processing, the decay products are selectively removed along with the inert materials. Therefore, the alpha component from uranium becomes proportionately greater in the air dust. Whereas in normal ore, radium is approximately 12.5% of the total activity and uranium approximately 25%, the concentrate dust contains 99% of uranium and 1% of radium.

One might assume a transition in the relative isotope fractions as the material progresses through concentration, but although this phenomenon has not been fully investigated, it appears that substantially all of the air contamination in the intermediate areas is due to concentrate dust against which the uranium MAC is strictly applicable.

APPENDIX D

1

TABLE II

URANIUM-RADIUM RATIOS

			والمرجعة بمنتقد بالمرتبة بمناقبه						a Da
			A-3		17 A 39				gRa x 10-9
	UPAI	NIUM~	vg/M			IUM~ MI			
LOCATION	No.	Low	High	AVE.	No.	Low	High	Ave.	Ratio
LIMESTONE AREAS		,		_					
At Grizzly-swemping and	1	-	-	9 8	1	-	-	15	150
cleanup									
At Grizzly-during dumping	z 1		-	240	1		-	6 3 0	260
of Haystock ore	-								
Primary Crusher-ground	2	26	93	60	2	4.7	250	130	220
floor level			-						
Crusher-first floor	1	<u></u>	<u></u>	390	1	-	-	120	320
Primary Crusher-first	2	75	1100	590	2	10	211	110	160
sub level	~			21-	-				
Under first floor	٦			1400	1	÷	-	18	13
	1 1	•••		4700	1	_		970	210
Primary Crusher-dis-	Ŧ	-		4100	ž.		~	910	and V
charge onto belt	•			200	7			110	000
Secondary Crusher-first	1		-	370	1		-	140	370
de ck	_				-			• •	
Secondary Crusher-first	1	4 28		- 180	1	-	-	2.2	12
floor at Symons Crusher				1	_				
Secondary Crusher-third	1	-		14	1	-	-	31	2200
deck									
Sample Tower-first deck	1	-	-	48	1	-	-	16	330
Sample Tower-third deck	2	100	330	220	2	35	37	36	230
Top of Storage Bins	·1	-	حناو	48	1		-	3.5	73
* ~									
AVERAGE VALUE							<u>,</u>		320
SANDSTONE AREAS								. :	
Crusher-first floor	3	24	96	48	3	2.4	65.0	33	25.0
Crusher-vibrating screen	-	18	52	31	3	2.1	5.3		41
SL69		10		<i>A a a</i>	_	pro 0 - 2	2.2	J •V	•••-
Crusher-area of head	3	13	31	20	3	2.2	11	5.9	310
	2	1)	ـ در	2)	A, 9 A.	-AA-	107	مير
pulley	2	21	ME	JE	2	n e	17 J	3.2	81
Sample Tower-first deck	3	24	75	45 17	3	0.5	7.4		
Sample Tower-second deck			-			<u> </u>		5.7	340
Sample Tower-third deck	3	46	80	58	3	0.4	6.3		56
Sample Tower-fourth deck		-		39	1	-		1.4	36
Fine Ores Bin-top level	2	14	65	40	2	1.6	4.8	3.2	180
Fine Cres Bin-bottom	1		-	21	1	-		0.5	24
level									
Feed to Rod Mill	1	÷	-	17	1	-	-	0.2	12
AVERAGE VALUE									100

For one in equilibrium, the value of the ratio $\frac{gRa}{gU}$ is approximately 330 x 10⁻⁹. The preceding data would seem to indicate that radium and uranium are in the correct proportions in limestone ore handling areas but not in areas where sandstone ore is processed.

.....

TABLE III

LOCATION	to <u>t</u> al count d/m/M ³	UFANIUM <u>Mg/M3</u>	RATIO
Limestone Areas			
Crusher-first floor	960	390	0.41
Crusher-under first floor	770 0	1400	0,18
Secondary Crusher-top of conveyor #		190	0.14
Secondary Crusher-first floor st	660	180	0.28
Symons			
Semple Mill-first floor	150	27	0.18
Sample Mill-fourth deck	84	11	0.14
Storage Bin-top	290	48	0.16
Storage Bin-top	180	28	0.16
AVERAGE VALUES		د	0.21
Sandstone Areas	~1		
Crushing Plant-second deck	100	16	0.15
Crushing Plant-at primary crusher	95 ⁷	15	0.16
Sample Mill-third deck	27	5.1	0.19
Sample Mill-first deck	21	2.0	0.10
Storage Bin-main belt	68	11	0.16
Storage Bin-chute discherge.	44	12	0.27
AVERAGE VALUES			0.17

RATIO OF ANALYTICAL VALUES TO RADIOMETRIC COUNT

For ore in equilibrium, the ratio $\frac{\mu g}{d/m}$ is approximately 0.18. The preceding data tends to indicate uranium is essentially in correct proportion to total activity in all ore handling areas.

APPENDIX E

TABLE IV

TOTAL ALPHA EXPOSURE (DAILY AVERAGE) EXPRESSED AS DAILY AVERAGE GROSS ALPHA COUNT

,

JOB DESCRIPTION	NO. OF	DAILY AV. d/m/M ³	ERAGE EXPOSURE
	ALL AVENUE	<u>0/11/11</u>	10-11 vc/ml
General Crushing Plant	6	980	45
General Crusher Foreman	1	2000	90
Crusher Foreman	1	730	33
Crushing Plant Shift Bosses	4	800	36
Acid Crushing Plant	17	35	1.6
Primary and Secondary Crusher Operator		38	1.7
Sample Tower Operator	3	23	1.0
A-Bins Tripper Operator	3 3 3 3 1	23	1.0
Grizzly Laborer		37	1.7
Relief Operator	í	33	1.5
Sample Tower Men	4	48	2.2
Fortherests 6 to m		•	200 (1)
Carbonate Crushing Plant	12	1900	88
Primary Crusher Operator	2	2600	120
Secondary Crusher Operator	2	. 670	31
Sample Tower Operator	2	99	4.5
C-Bin Tripper and Shuttle Operator	2	84	3.8
Griszly Laborer	2	7300	330
Relief Operator	1	720	33
Clean-up Laborer (1	640	29
Acid Leaching	00		
Acid Mill Superintendent	37	26	1.2
Foreman	1	24	1.1
Grinding Operators	4	26	1.2
Leaching Operators	7	20	0.9
Classifier Operator	11	25	1.1
Swamper	11	34	1.5
•	3	19	0.9
Ion Exchange Building	44	58	n (
Assistant Mill Superintendent	1	59	2.6
Mill Foremen	4	64	2.7
RIP Makeup Operator	4	66	2.9
Electrician and Precipitation Operator	3		3.0
nir Makeup Sub Uperator	4	130 82	6.0
RIP Bank Operators	14		3.7
Floor Labor	4	29 50	1.3
Swamper	3	59 59	2.7
Clarification Pressman	7	59 64-	2.7
		04.	2.9

İ

TABLE IV (cont'd)

Carbonate Mill	46	120	5-4
Assistant Mill Superintendent and	2	590	27
Foreman			
Shift Foreman	3	130	5.8
Relief Shift Foreman	1	630	29
Precipitation Operator	4	230	10
Burt Filter Operators	8	58	2.6
Grinding Operator	4	54	2.5
Grinding Sup Operator	. 4	38	1.7
Leach Operator	3	160	7.2
Oliver Filter Operators	6	38	1.7
Swamper and Bull Gang	11	79	3.6
Yellow Cake	36	1000	47
Shift Foreman		1100	- 51
Relief Shift Foreman	í	630	29
Semple Room Operator	3	330	15
Acid Dryer and Drum Bester	3 1 3 8	1300	58.0
Acid Dryer Helper	.4	1000	47
Carbonate Dryer Operator	3	1000	46.0
Acid Yellow Cake Press Laborer	17	1100	50
Carbonate Press Laborer	. 5	1000	47
Floor Man	2	880	40
Bucking House	ъ¢	~ ~	• •
Lead Man	18	23	1.0
	2	12	0.5
Pulpmen	4	45 ,	2.0
Coffee Mill Men	3	14	0.6
Core Splitters Mihe Sample Bucking Room	7	3 24	0.1 1.1
-	ŕ	£.44	404
Metallurgical	<u>4</u> 1	90	4.1
Chief Metallurgists	1	120	5.5
Assistant Chief Metallurgist	1	220	9.8
Pilot Mill Foremen	1	14	0.6
Shift Foreman	4	110	4.8
Pilot Mill Supervisors	3	10	0.5
Pilot Mill Grades 3-5-6-7	21	120	5.2
Metallurgical Grades 3-5-6	10	48	2.2
Mechanical	194	260	30
Machine Shop Welder	174	280 770	12
Plant Repair	, ·	110	35
Carpenter Shop (Painter)			
Electrical			
Plant Engineer Surveyors		•	
Lube Department Foreman	109	420	20
Lubrication Men	· · · · · · · · · · · · · · · · · · ·	in the second	
Yard Department-Repairmen and Labore	rs	•	in a second s
Water Department-Water Tenders	• •	· · · ·	
Equipment Operator and Truck Driver			
· · · · · · · · · · · · · · · · · · ·			

Ĥ

Í

Į

. .

TABLE IV (cont'd)

Acid Plant and Power House Plant Engineer and Draftsman Yard Department (Janitors)			
Water Department (Water Tender's Helpen	r) 74	-7	0.3
Office Personnel			
Chemical Laboratory Clerks			
Lubrication Department	10	310	14.0
Carbonate Wet Mill	3	79	3.6
Acid Mill-Grinding and Leaching Building	ng 2	30	2.4
Acid Mill-Ion Exchange Building	2	58	2.6
Yellow Cake Section	1	1100	51.
Carbonate Mil-Crushing Section	1	1500	68
Acid Mill-Crushing Plant	1	35	1.6
TOTAL	451		

290

13

AVERAGE

APEENDIX F

TABLE VI

RESULTS OF PETROGRAPHIC ANALYSIS (AIRBORNE DUST)

SAMPLE DESCRIPTION	MAXIMUM SIZE	\$ <10µ COUNT	S FREE SILICA COUNT BELOW 100	estimated weight \$ FREE S102	REMARKS
GA - Sandstone crusher area	7 5	90	2	5	Chiefly carbonate, opaque particles, silicates and quartz. There is a substan-
GA - Bucking room	75	95+	tr	3	tial emount of organic fiber - presumably from a filter.
GA - Sandstone crushing plan first floor	nt, 150	90	2	8	Sample contains less carbonate, more silica than the above samples.
GA - Sandstone, sample mill sampler's cage	in 100	95	1	6	Similar to sample above but with less silicate.

NOTE: Since the \$ free silica by count is lower in the <10µ range than the estimated weight \$ of free silica, one may infer that the opaque particles were essentially of fine size.

TABLE VII

CHEMICAL (SETTLED DUST)

LOCATION

\$ QUARTZ

9.5%

Sandstone crusher - first floor

TABLE VIII

ATMOSPHERIC DUST CONCENTRATIONS (SILICA)

	NO. OF	DUST	APPCF	
LOCATION OF OFERATION	SAMPLES	LOW	HIGH	AVEFAGE
		_		
Sandstone Crusher-first floor	3	1.9	20.2	9.9
Sandstone Crusher-vibrating screen area	3	3.0	5,0	4.0
Sandstone Crusher-third deck	1	-		3.8
Sendstone Crusher-area of head pulley	3	3.6	11.4	7.5
Sendstone Sample Tower-first deck	3	2.2	10.3	7.5
Sandstone Sample Tower-second deck	1			11.0
Sendstone Sample Tower-third deck	3	4.9	10.3	8.3
Sandstone Sample Tower-fourth deck	l	••		10.3
Sandstone Fine Ores Bin-top level	2	7.7	10.7	9.2
Sandstone Fine Ores Bin-bottom level	1	· 🕳	-	3.3
Sandstone Feed to Rod Mill	1		-	3.5
Sample Preparation Building-bucking room	1	-		1.9
Sample Preparation Building-Bucking room	1		-	2.6
BZ - Roller man				
Sample Preparation Building-BZ Coffe Mill-	1		-	4.5
Operator ,				
Sample Preparation Building-bucking room	1	-	-	4.6
(Drying Area)				
Sample Preparation Building-pulp room	1	-	-	2.2
Sample Preparation Building-drying room	1	-	-	1.8
Front End Loader - BZ - in cab loading sandsto	one l	-	-	5.9
ore				

i de la composition d

, t.,

بالعاصية المشر

APPENDIX G

JOB ANALYSIS SHEET

GENERAL CRUSHING PLATN DEPT.

.Y. FORM 144 11-9-52)

OF ERATOR: GENERAL CRUSHER BOREMAN _____MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

	OPERATION OR OPERATING AREA	. 0	TIME PER PERA. MIN)	OPERA. PER SHIFT	TIME PER SHIFT (MIN) (T)	NO. OF SAMP. • LES	CC LOW	NCENTRA /11 /M ³ HIGH	TION (C) AVG	AVG CON'C;* TIMES TOTAL TIME (TXC)
	GA Crushing Plants			· · · · ·	240	. 36	1	7700	3920	943000
	GA Main Office			· .	240	1	. 6 0	-	14	3360
					· ·				· .	
					1.					· ·
									7 16	
							, A			
									· · ·	
		.							. •	
									·	
<u> </u>		[;		
			- .						• .	
		· .								
hange 2									-	
- E)				•					÷ .	
			х.							
()									•	
							•	. •		
			······································		L	l				<u>l</u>
	"Adjusted to two significan	t figun	res	Σ	T_180	•	•		Σ(Τ)	(·C) 947,000
A. (6	10		
	$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{1970}{1970}$			هيوننگ رايېچې به دېرو	d/m /M3 m			6 7	THE MAXIMUM BLE CONCEN-	
64 <u>1</u>	4 (1)				•				TRATIO	
					· • •					
						•				

ł

Y. FORM 144

]	OPERATION		TIME PER	OPERA. PER	T I ME PER	NO. OF SAMP.	CONCE a./m	NTRATION /M ³	AVG CON'C:+ TIMES
	OR OPERATING AREA		OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW H	(C IIGH AV	
4 ~	ruck Scale Room				60	•			
GA R.	.R. Scale				30 .				
GAR.	.R. Trest id & Pit- lleys				60				
GA A	cid Grushing Plent		•	-	180	14	1 1	02 35	6350
UA CA P	arbonate Crushing Lant				150	23	160 77	00 1546	232000
ļ									
			. *		1				
			·· *			· ·			
		•						·	
							· · ·	. ·	
								·	
. :.					· · · ·				
	<u></u>		<u> </u>	<u> </u>	L	<u>l</u>	<u>I</u>		· · · · · · · · · · · · · · · · · · ·
"Adju	sted to two significan	it fi	gures	2	E T 330	• •. •		Σ ((T x C) 238,000
Σ []	<u>x C) =730</u>				d/m	/M3 =	2.4 	ALI	MES THE MAXIMUM Lowable concen- Ation.

1

GENERAL CHUSHIN OF CRATOR: CRUSHING PLANT	<u>KRN</u>	· · · ·	<u>1</u> MEN,	SHIFT:	_ \$HIFTS/[AY: _	EN/DAY
OPERATION OR OPERATING AREA	TIME PER OPERA. (MIN)	OPERA. PER Shift	TIME PER Shift (min) (t)	NO. OF SAMP. LES	CONCENTR d/m /m ³ Low High	TION (C) AVG	AVG CON'C;+ TIMES TOTAL TIME (TXC)
GA Truck Scale Rooms GA R.R. Trestle & Pit Alleys			60 60				
GA Acid Crushing Plant GA Carbonate Crushing Plant			180	13 23	1 102 160 7700	35.3	6350
						1546	279000
		· ·	-				
		- -					
		· · · · · · · · · · · · · · · · · · ·					
"Adjusted to two significant fi	gures	Σ	т 36 0			Σ(Τ)	C)285,000
$\Sigma \frac{(T \times C)}{\Sigma (T)} = -795$	` 		đ/m	/ _M 3 <u>.</u>	2.7		THE MAXIMUM BLE CONCEN- N.

1557 1600-05

•

OPERATION OPERATION OR OPERATING AREA		TIME PER OPERA. (MIN)	OPERA. PER SHIFT	TIME PER Shift (min) (t)	NO. OF SAMP. LES	CONCENTRA d/m/M3 LOW HIGH	(C) AVG	AVG CON'C Times Total Ti (TXC)
GA Main Floor & Pit	, ,			300	. 9	5 95	32	9600
GA 2nd Floor				120 .	2	1 102	51	6120
GA 3rd Floor	. 1			60	2	29 53	41	2460
TH STU CANNE	1							
	,							
	I				 '			
	I							
	- 1							• • •
		, ,			· · · ·		1	
· .								·
								•
					· · ·	· · ·		· · · ·
					1			· .
				. '				1
	· .				<u>.</u>		· · ·	
					· · · ·			· · ·
	.							
	` I				1		.	· ·
I					'			
,					1			
<u>.</u> .	-				· · · · · · · · · · · · · · · · · · ·			. · .
				<u> </u>	<u> </u>	<u> </u>		
"Adjusted to two signific	cant fi	gures	Σ	ст 480			Σ(тх	^{C)} 18200
$\Sigma \frac{(T \times C)}{\Sigma} = \frac{37}{37}$				d/m /	· .	0.1	TIMES T	

.

ү. FORH 144 1-4-52)

...

AGID GRUSHING PLANT DEPT. OFERATOR: SAMPLE TOWER OPERATOR 1 MEN/SHIFT: 3 SHIFTS/DAY: 3 MEN/DAY

OPERATION OR OPERATING AREA	TIME PER OPERA. (MIN)	OPERA. PER SHIFT	TIME PER SHIFT	NO. OF SAMP. LES	CONCENTRA a/m/m3 Low High	(C) AVG	AVG CON'C. TIMES TOTAL TIME (TXC)
GA Main Floor		·	(min) (t) 300	3	17 56	31	9300
GA 2nd, 3rd Eth Floors			130	3	9 27	16	1780
	1						
	[. [• •
			بہ				- -
							а. ⁻ .
	et i			· .			
۳							
2				{		· · ·	
				1		· .	
						•	
						:	
		· · ·					
"Adjusted to two significant f	lgures	Σ	ET 480			2 (T :	x C) 11,100
			đ/m	. 3 -	0.08		THE MAXIMUM
$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{23}{23}$	<u></u>	and the second secon	a/a	/ M 🎽 🛄	V	ALLOWA	BLE CONCEN- IN.
	-		···· ··· ···	یکی در این منطقات میتردند. منابعها در م			·

Y. FORM 144 1-9-52)

.

ACID CRUSHING PLANT DEPT. A-BINS TRIPPER OPERATOR OF ERATOR:

T

N.

λ.

Y. FORM 144 1-4-521

•

1 MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

OPERATION	TIME PER	OPERA. PER	TIME PER	NO. OF Samp.	CONC d	ENTRATION m/m ³ (C)	AVG CON'C.+
OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH AVG	TOTAL TIME (TXC)
GA A-Bins Conveyor Area			240	4	96	8 36	8640
GA 1st Floor			240	5	1 3	0 9	2160
	· .					· · ·	
			1.			·	
·						· · · · ·	
· · · · · · · · · · · · · · · · · · ·						• •	
			-	ĺ			
			· ·	}		· ·	
		•				:	
				ł		5° .	
						•	
	· ·						
			· ·				
		•				<i>:</i>	
•							
				<u> </u>]
Adjusted to two significant f	gures	Σ	т 480			Σ(Τ	x C) 10,800
·			*.		0.08		
$\frac{(T \times C)}{\Sigma} = 22.5$	· · · · · · · · · · · · · · · · · · ·		d/m/	/M ³ m	0.00		THE MAXIMUM ABLE CONCEN-
· · · · · · · · · · · · · · · · · · ·			• .	· • •	19 - 19 19	10711	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ACID CRUSHING PLANT DEPT.

OF ERATOR:

GRIZZLY LABORER

3_SHIFTS/DAY: _3_MEN/DAY I

OPERATION	T IME PER	OPERA. PER	T I ME PER	NO. OF Samp.	CONCENT	3	AVG CON'C;* TIMES
OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW HIG	(C) AVG	TOTAL TIME (TXC)
GA At Grizzly Area			240	. 4	11 95	38	9120
GA Main Floor			120	5 -	5 55	26	3120
GA 2nd & 3rd Floors			120	4	1 202	46	5520
4,		l	1.				
1							
					· ·	. ·	
						. ·	
l						с 1 м.	
						:	
			· · ·			•	
		·					
<u></u>							
"Adjusted to two significant	t figures	Σ	т 480		•	Σ (Τ)	(C) 17,800
$\Sigma = \frac{(T \times C)}{\Sigma (T)} = \frac{37}{37}$			d/m	∕ы3 ∎	0,1 0,4		THE MAXIMUM BLE CONCEN-
$\Sigma = \frac{1}{\Sigma (T)} = \frac{57}{57}$	<u></u>			7 177 		TRATIC	

. FORM 144 1-4-521

ACID CRUSHING PLANT DEPT. CRUSHING PLANT RELIEF

OF ERATOR: ____OPERATOR

Y. FORM 144 1-4-52)

.

______MEN/SHIFT: ______SHIFTS/DAY: _____MEN/DAY

OPERATION	TIME PER -	OPERA.	TIME	NO. OF	CONCENTRA	TION	AVG CON'C Times
OR Operating Area	OPERA. (MIN)	PER Shift	PER Shift (min) (t)	SAMP. LES	LOW HIGH	(C) Avg	TOTAL TIME (TXC)
Daily Weighted Average Exposure for Primary				•			
and Secondary Crusher Operator			240 ·			37.8	9100
Daily Weighted Average Exposure for Sample	-						н.н. ^т .
Tower Operators			80			23.0	1840
Daily Weighted Average Exposure for A-Bins			·		· ·		
Tripper Operator	. •		80			22.5	1800
Daily Weighted Average Exposure for Grizzly			-1				
Laborers			89			37	2960
							· · · · ·
				,			· · · ·
			· · ·				
			· .			•	
	<u> </u>			<u> </u>	<u> </u>		<u> </u>
"Adjusted to two significant f	igures	2	ст 480		•	Σ(т)	(C) 15,700
· · · ·			. •		0.1	7145e	THE MAXIMUM
$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{32.6}{2}$			d/m	/M ³ =	0.3		BLE CONCEN-
· · ·							
·				× .		· · · · ·	

ACID CRUSHING PLANT SAMPLE TOWER LEAD MEN

.Y. FORM 144

OF ERATOR: .

11-4-52)

1_MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

OPERATION	TIME PER -	OPERA. PER	TIME PER	NO. OF SAMP.	CONCENT	RATION 3	AVG CON'C. TIMES
OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW HIG	ドレノ	TOTAL TIM
GA Acid Sample Tower			240	. 6	9 56	23	5520
GA Carbonate Sample							
Tower	· -		240	4	14 152	73	17600
						· · ·	
						ż	
						•	
	-						
	1		ļ,				
				}		, ·	
				. 	:		
							· ·
		· ·		1		· · ·	
				. .		· · ·	
		·					
	·						
			1				
						•	
					•		
•					ł		

ACID CRUSHING PLANT DEPT. OF SRATOR: SAMPLE TOWER LEAD MAN RELIEF

.Y. FORH 144 11-4-52)

1_MEN/SHIFT: 1_SHIFTS/DAY: 1_MEN/DAY

OPERATION OR OPERATING AREA		TIME PER OPERA. (MIN)	OPERA. PER SHIFT	TIME PER SHIFT (MIN) (T)	NO. OF SAMP. Les	CONCENTR d/m ³ Low High	(C)	AVG CON'C;* Times Total time (TXC)
GA Acid Sample Tower				240	. 6	9 56	23	5520
GA Carbonate Sample Tower				240	4	14 152	73	17600
							· ·	
							• • • • •	
							·	
	·							
,								
				· · · ·				
"Adjusted to two significo	int f	gures	Σ	^T 480			Σ (Τ)	^(C) 23,100
$\Sigma = \frac{(T \times C)}{\Sigma (T)} = \frac{48.7}{48.7}$				d/m/	′ _M 3 _"	0.2	TIMES	THE MAXIMUM BLE CONCEN-

CARBONATE CRUSHING PLANT DEFT. PRIMARY CRUSHER OPERATOR 1_MEN/SHIFT: 2_SHIFTS/DAY: OF ERATOR:

.

MEN/DAY

	OPERATION	TIME	OPERA.	TIME PER	NO. OF SAMP.	CONCENTR d/m/M	3 • • [AVG CON'CI+ TIMES
	OR OPERATING AREA	OPERA. (MIN)	I PER	FER SHIFT (MIN) (T)	LES	LOW HIGH	(C)	TOTAL TIME (TXC)
GA	Primary Crusher - Main Floer			120	- 4	230 960	570	68400
GA	Primary Crusher Basement			120	3	7000 7700	7300	876000
**BZ	Pushing Ore throu Grate atop Crushe	gh r		240	3	620 9000	1330	319000
					*		- -	
						· ·		
			,					* - -
							4. 	
								· ·
					-			
							ć	
				· · · · ·				
**1	ilter respirator a	orn						r:
"Adjı	isted to two significa	nt figures		Σ τ 480	• •		Σ(Τ	x ^{C)} 1,260,000
Σ	<u>T x c) 264</u> E (T)	ю 		d/m	/M3 m	8.8 26.4		THE MAXIMUM Able Concen-
·		· · ·				1997 - 1997 N		et v e
- ·	· · · · · · · · · · · · · · · · · · ·				· ·	-		

FORM 144 4-52)

1.11

CARBONATE CHUSHING PLANT DEPT.

.Y. FORM 144 11-9-52)

- . . .

O R		TIME PER	OPERA.	TIME PER	NO. OF Samp.	دە: م	MENTRA	TION	AVG CON'C,+ Times
OPERATING AREA		OPERA. (MIN)	PER Shift	SHIFT (MIN) (T)	LES	LOW	нісн	(C) AVG	TOTAL TIME (TXC)
GA Secondary Crusher Basement	r			60	·· 3	40 3	1255	680	4080
GA Main Floor	• •			120	3	274	663	420	50400
GA Screen Floor				60	3	5 1 0	1400	1000	60000
GA 2nd Floor		· .		180	3	615	1400	1000	180000
GA Inclined Conveyo: Ramp	r			60	4	160	900	4 7 0	28200
							•		
								. ·	
								. •	
							:		
							,	· · ·	
				· · ·	з., .			· · _	
								T	

	CARDONATE SAMPLE	CRUSHING TOWER OPP	PLANT	DEPT.	
or charon.					

.

.Y. FORM 144 11-4-52)

1_MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

	OPERATION	TIME PER	OPERA.	TIME	NO. OF	ငစ္န	MAENTRA MIMAS	TION	AVG CON'C.+ TIMES
]	OR OPERATING AREA	OPERA. (MIN)	PER SHIFT	PER SHIFT (MIN) (T)	SAMP.	LOW	HIGH	(C) AVG	TOTAL TIME (TXC)
	GA Ground Floor			240	- 1	-	-	152	3 6500
	GA 2nd, 3rd, 4th Floors			240	3	14	84	47	11300
ĺ						· .		· · ·	
			}						
							į.	2	÷
					-1 1				
			 					· · ·	
1									
			· .						
								• • •	. : .
								•	
)									
								•	
l						. 1.,			
ŀ								·	
	Adjusted to two significant f	igures	Σ	т 480			•	Σ(Τ	x C) 47,800
•	<u>1T x C) - 99.3</u> Σ (T)			d/	27 ₁ 3 ≊	0.3			THE MAXIMUM ABLE CONCEN-
Σ 	Σ (Τ)	·	·		····		،	TRATIC	
. 1									

CARBONATE CRUSHING FLANT DEPT. OF ERATOR: _

C-BINTRIPPER & SHUTTLE OFER. _____MEN/SHIFT: _____SHIFTS/DAY: _ 2 MEN/DAY ł

OPERATION		TIME PER	OPERA. Per	TIME PER	NO. OF SAMP.	00	ICENTRA		AVG CON'C;* Times
OR OPERATING AREA		OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) AVG	TOTAL TIME (TXC)
GA Tripper Belts				240	. 5	89	291	155	37200
GA 1st Floor				120	6	4	38	16	1920
GA Rest of Building				120	2	9	10	10	1200
•								•	
				1.			• •		
						ŕ	·		
				J					
								-	
	,								
			· · · ·			-	:		
					:			· .	
				17 F. J. 19					
			· .			· .			
			· ·						
						. iy			
					-				
"Adjusted to two significa	nt fl	gures	Σ	т 480		·		Σ (т)	···· c) 40,300
<u>, (T.X.C)</u> 83.9				d/m		0.3 0.8			THE MAXIMUM
$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{83.9}{}$			······································		M			ALLOWA TRATIO	BLE CONCEN- N.

.Y. FORM 144 11-9-52)

CARBONATE CRUSHING PLANT DEPT. GRIZZLY LABORER

. . . .

OF ERATOR: -

.Y. FORM 144 1-9-52)

,

1

OR OPERA. SHIFT SI OPERATING AREA (MIN) (MII	PER SAMP. HIFT LES N) (T) 480 3	LOW HIGH	(C) TOTAL TIME AVG (TXC) 7300 3500000
		7000 7700	7300 3500000
	n i jiyan		
			I
"Adjusted to two significant figures $\Sigma T 4$	180		Σ (T x C) 3,500,0
	3 L	24.1 72.9	TIMES THE MAXIMUM
$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{7290}{7290}$	d/m _{/M} 3 =_	TETT	ALLOWABLE CONCEN- TRATION.
		· · · ·	

-----CARBONATE CRUSHING PLANT DEPT.

OFERATOR:

1

.Y. FORM 144 11-4-52)

CRUSHING PLANT RELIEF OPERATOR _____MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

OPERATION	TIME PER	OPERA. PER	TIME PER	NO. OF Samp.	CON	CENTRA	· ·	AVG CON'C; . Times
OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) AVG	TOTAL TIME (TXC)
Daily Weighted Average								
Exposure for Primary								
Crusher Operator			80				2632	211000
Daily Weighted Average	-							
Exposure for Secondary								· .
Grusher Operator			80				671	53700
Daily Weighted Average						· .		
Exposure for Sample					ŗ			
Tower Operator			160				99.3	15900
Daily Weighted Average		. .	1					
Exposure for C-Bin	· ·		1					· · · · · · · · · · · · · · · · · · ·
Tripper & Shuttle Operator			80				e n ol	6940
_							83.9	6710
Daily Weighted Average Exposures for Griszly	-							
Laborer	P.		80				728.8	58300
							12010	00200
								·. ·
								·
				·				
	-		· ·					
								· · ·
								stantin and an and a stanting of the stanting
- · · · · · · · · · · · · · · · · · · ·				·	·			
					· · · · · · · · · · · · · · · · · · ·	. •		
djusted to two significant fi	fures	Σ	T 480	· .	•		Σ(Тх	^C 345,000
<u>(T x C)</u> 719 Σ (T)			d./ma ∕		2.4			HE MAXIMUM
Σ (Τ)	****		u/m./	PH	-1. T.		ALLOWABI	LE CONCEN-
:				· · · ` .			•	· .

CARBONATE CRUSHING FLANT DEPT. CLEAN-UP LABORER G-PLANT 1 MEN/SHIFT: 1 SHIFTS/DAY: 1 MEN/DAY OF ERATOR:

OPERATION	TIME PER	OPERA. PER	TIME PER	NO, OF Samp.	CON d	ICENTRA	TION (C)	AVG CON'C;+ TIMES
OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	H1GH	AVG	TOTAL TIME (TXC)
GA Secondary Crusher Basement			180	3	377	1255	680	122000
GA Main Floor			120	3	274	663	423	50800
GA Inclined Conveyor Ramp			90	4	191	900	470	42300
GA Screen Floor			60	3	510	1400	1000	60000
GA 2nd Floor	ĺ		30	3	615	1400	1000	30000
				ľ				
		,						
							• •	
								• •
· · ·								
								· · · · · · · · · · · · · · · · · · ·
							:	
			· · · · ·			· · · ·	· .	
djusted to two significant	figures	Σ	ст 480		<u></u>		Σ (Τ	x C) 305,000
<u>(T x C) - 635</u> Σ (T)			d/ma	/M ³ a	2,1		TIMES	THE MAXIMUM ABLE CONCEN-
Σ (Τ)				- · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		TRATI	

.Y. FORM 144 11-9-52)

۱

25

,

ACID LEACHING DEPT. ASS'T. MILL SUPERINTENDENT

12

Y. FORM 144 1-9-52)

.

OF ERATOR:

	OPERATION		TIME	OPERA.	TIME	NO. OF	CON	CENTRI /m/m3	TION	AVG CON'C
	OR OPERATING AREA		PER OPERA. (MIN)	PER	PER Shift (min) (t)	SAMP.	LOW	HIGH	(C) avg	TIMES TOTAL TIME (TXC)
GA	Acid Ore Bins				240	. 9	1	68	21	5040
GÁ	Leaching Bldg				240	19.	7.6	80	28	6720
			-							
.										
									-	
j									•	
		-							•	
						,			· ·	
								•	· ·	
									. •	
				. 1	,	2			· ·	
		·				•	-		-	
									•	
	<u>.</u> .						.• 			
			•					- * * .		
		•			180		· · ·	•		44 466
-Adju	sted to two signific	cant fi	gures	Σ	т 480			•.	Σ(Τ)	(·C) 11,800
- 1I	<u>x c)</u>						A A			THE MAXIMUM
ΣΞΣ	<u>x c)</u>				d/m /	M ~ ~ <u></u>	0.2		ALLOWA	BLE CONCEN- N.
	·						· · · · · · · · · · · · · · · · · · ·			
			- <u></u>							

FORN 144 9-521

JOB ANALYSIS SHEET

LEACHING	DEPT.
TOPEMAN	
1.01.004	
	LEACHING FOREMAN

.

1_MEN/SHIFT: ______SHIFTS/DAY: 4___MEN/DAY

	OPERATION		TIME PER -	OPERA.	TIME PER	NO. OF Samp.	CON d/1	CENTRA M /M3	TION	AVG CON'C .*
G	OR OPERATING ARE	EA	OPERA. (MIN)	PER Shift	SHIFT	LES	LOW	HIGH	(C) AVG	TOTAL TIME (TXC)
G	GA Acid Ore Bin	18	-		30	. 9	1	68	21	630
-	GA Grinding				90	3	7.6	33	20	1800
	GA Leaching		-		120	8	10	35	25	3000
	GA Classificati	.0 n			180	8	19	80	36	6480
	GA Mill Office				··60	3	3	14	10	600
									·	
3										
					,				-	en e
										•
						· .				
		• ••								
1				. 	•					
			· ·,							
	· · · · · · · · · · · · · · · · · · ·									
	<u>.</u> .						• •			
		· .		. · .	· · · · · ·			. •		
	·····				т 480	•			7	12,500
Int	Adjusted to two sign	sjicant ji	g ut 83	4	•				2 (1)	
Σ	<u>(T x C)</u> Σ (T)	26.0			4 /1	R _M 3 <u>⊪</u>	0.3			THE MAXIMUM BLE CONCEN-
	2 (1)				· .	~ ,			TRATIO	
•										

ACID LEACHING DEPT. GRINDING OPERATOR 3 1 MEN/SHIFT:

SHIFTS/DAY: MEN/DAY

and the second

	OPERATI	ON	TIME	UPERA.	TIME	NO. OF	CON	MENTR	TION	AVG CON'C
	OR OPERATING	AREA	OPER/	SHIFT	PER Shift (min) (t)	SAMP.	LOW	HIGH	(C) Avg	TOTAL TIM (TXC)
	A Acid Ore	Ring			60	9	1	68	21	1260
					420	3	7.6	33	20	8400
	GA Grinding	Section			ALCO.					
-67			ć							· · · · · ·
										· · ·
						[
							,			
					,		. 			
						Ì			· ·	•
								,		·
							· ·		• •	Ì
						e e s				
					· · · ·					
									•	
	· ·									
		1.					:		'	
			······································		** .	+				9660
• Aaj	usted to two	significa	nt figures	2	ст 48	0	•		Σ (Τ	x (C)
								•		
	<u>T_X_C)</u> Σ (T) —		20		dy	/m M3 =	. 0	•2	ALLOWA	THE MAXIMUM
					· ·		·		TRATIC	N.
	·									

FORM 144 4-52)

OF ERATOR:

ACID LEACHING DEPT.

.Y. FORM 144 11-4-52)

۰,

t.

₽....

OPERATION	T IME PER	OPERA. PER	T I ME PER	NO. OF Samp.	CON	M3	TION	AVG CON'C:* Times
OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) AVG	TOTAL TIME (TXC)
GA Acid Ore Bins			120	· 9	1	68	21	\$520
GA Grinding Section			360	3	7.6	33	20	7200
· · · ·							- ,	· · ·
					-			
			J.			•		
			. 1					
	· · ·		·				. •	
						t.	· .	
							: ·	
				1.1.1			•	
			N					
. · · ·					· ·		•	
			· .	e e			÷	
·····			<u> </u>	l				
"Adjusted to two significant	floures	•	T480		· · · · ·	•	Σ(т)	^(-C) 9720
			450	. ·				9720
$\frac{(T \times C)}{\Sigma (T)} = -20$			d/m	M3 m	0.2			THE MAXIMUM BLE CONCEN-
2 (1)			•	н.			TRATIO	N.

متصبيح ببأتي بتباد مادها برباري

ACID LEACHING DEPT. OF ERATOR:

.

Y. FORM 144

4-52)

1_MEN/SHIFT: _3___SHIFTS/DAY: ____MEN/DAY

	RATION	T IME PER	OPERA. PER	TIME	NG. OF Samp.	CONCENTRATIC	ON AVG CON'C
	OR TING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW HIGH	(C) TOTAL TIL AVG (TXC)
GA Leach	ing Section			480	. 8	10 35 25	5 12000
				-			
							·.
					: · ·		
		·					
			-	-			
				· .			
						- -	
						•	
•	•			1			

ACID LEACHING DEPARTMENT OF ERATOR: .

15

.

57. FORM 144 11-4-52)

۰.

OPERATION	TIME PER -	OPERA.	TIME	NO. OF	CON	CENTRA	TION	AVG CON'CI+ TIMES
OR OPERATING AREA	OPERA. (MIN)	PER Shift	PER Shift (min) (t)	SAMP.	LOW	HIGH	(C) AVG	TOTAL TIME (TXC)
GA Leaching Section			480	8	10	35	25	12000
				, ,				· · · · ·
•								•
					ر			•
							÷	
			1					
						•		
		. .	1					
			Į .				а	
					·.			
· · · ·								
			Į					. · ·
						1. 1		
								₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
*Adjusted to two significant f	lgures	Σ	; t 480	••••			Σ (т)	(C)12,000
				9	· ·			THE MAXIMUM
$\frac{(T x C)}{\Sigma (T)} = \frac{25.0}{25.0}$			a/m	M	0.3	ىدىر شوۇغۇرىرىتى رايىلىرى بىر	ALLOWA TRATIO	BLE CONCEN- N.
·			•	2 *				· · · ·

OPERATION	TIME PER	OPERA.	TIME PER	NO. OF	CONCENTE d/m/m	ATION	AVG CON'C
OR OPERATING AREA	OPERA. (MIN)	PER Shift	SHIFT (MIN) (T)	SAMP. LES	LOW HIGH	(C)	TOTAL TIME (TXC)
GA Classifier Operating Floor	3		360	· 4	9 0 40	34	12240
GA Cyclone Operating Floor			120				
						· .	
						- 2 -	· ·
		. -				. ·	
						· ·	
						• • •	
			· ·· ·	-			
	-						
					$\frac{1}{2}$		
							[

- -

.Y. FORM 144 11-9-52)

.

ACID LEACHING DEPT.

OPERATION	TIME PER -	OPERA.	TIME Per	NO. OF Samp.	CONCER d/m/	MTRATION	AVG CON'C. Times
OR Operating Area	OPERA. (MIN)	PER SHIFT	SHIFT (MIN) (T)	LES	•	(C) Igh Avg	TOTAL TIME (TXC)
GA Classifier Operating Floor			300	. 4	30 40	34	10200
GA Cyclone Operating Fl	por		120				
GA Classifier Ground Floor			60	. 4	19 80) 39	2340
an a					. .		
			1				
	· · ·						
				,			
	· ·						
				1 - -			
						· ·	
		•					

.Y. FORM 144 11-9-52)

.

.Y. FORM 144 11-4-527

2

JOB ANALYSIS SHEET

	ACID	LEACHING	DEPT.
OF ERATOR:	S	AMPER	
OF ERATOR:			

1_MEN/SHIFT: 2_SHIFTS/DAY: 3_MEN/DAY

	(MIN)	PER Shift	PER Shift (min) (t)	NO. OF SAMP. LES	CI/HI LOW HIGH	(C)	TIMES TOTAL TIME (TXC)
GA Acid Leaching Build	ing		240	· 1 9	7.6 80	28	6720
GA Acid Bin Bualding -							
1st Floor			240	5	1 30	9	2160
						•	· · ·
	· · ·						
						2	
			1			• • •	
						· .	
					1		
		· ·					· · ·
			· ·				
		· ·					
		· .					
							· ·
· · · · ·							
		<u> </u>	···· ·		<u> </u>].
djusted to two significant	figures	Σ	4 8 0			Σ (Т	^{K -C)} 8880
<u>(T x C)</u> 18.5			d/m	/M ³ =	0.2		THE MAXIMUM BLE CONCEN- N.

TON EXCHANGE BLDG DEPT. ASS'T. MILL SUPERINTENDENT

1 MEN/SHIFT: 1 SHIFTS/DAY: 1 MEN/DAY

	OPERATION		TIME PER OPERA.	OPERA. PER SHIFT	TIME PER SHIFT	NO. OF SAMP. LES		TRATION M3	AVG CON'C;* Times Total Time
ا حـــَبنــــ	OPERATING A	REA	(MIN)	50171	(MIN) (T)		LOW HI	GH AVG	(TXC)
GA 1	RIP Buildin	g			480	9	1 13	9 59	28300
								• •	· · ·
								· ·	
	•		, . , .						
					<i></i>				
					1			•	
									1.
						2.1		· · · .	
	•								
				<u></u>					
*Ad jus	ted to two _s si	gnificant	figures	Σ	т 480			Σ(Τ)	(c) 28 ,3 00
1 T	× .C)							TIMES	THE MAXIMUM
Σ	<u>x·C)</u> (T)		<u></u>		d/m /	/Ń∃ ≊	0,6		BLE CONCEN-
		:	· .		•		10 - C		

11-4-52)

OF ERATOR:

1.7. FORM 144 11-9-52)

JOB ANALYSIS SHEET

1 MEN/SHIFT: 3 SHIFTS/DAY: 4 MEN/DAY

- P	OPERATION		TIME PER	OPERA. PER	TIME PER	NO. OF SAMP.	co	NCENTRA	TION	AVG CON'C. Times
	OR OPERATING AREA	· .	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) AVG	TOTAL TIN (TXC)
	G. Control Office				60					
	GA RIP Makeup				50 ·	7 -	-		66	3960
	GA RIP Banks				90	. 3	24	36	29	2610
	GA RIP Fit				60					
· · · 11	GA Clarification				120	3	1	9 0	37	4440
	GA Elution & Ppt'n				90	2	125	139	132	11900
		·								
					1.				· .	
- Inn m										
				ан 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 -	· · ·					
			•					s		
									· ·	
						2			· ·	
								·		
							·			
				-						
	• ·		: · ·							
		<u> </u>			1					
• /	ljusted to two significan	nt flg	ures	Σ	T 360	•	•••		Σ (Τ>	····C) 22,900
Σ	<u>(T x C)</u> 63.8	<u> </u>			∂/m /	′ _M 3 ≊	0.6			THE MAXIMUM BLE CONCEN-

1.7. FORM 144 (11-4-52)

JOB ANALYSIS SHEET

ION EXCHANGE BLDG. DEPT. OF ERATOR: <u>RIP MAKEUP OPERATOR</u>

and the second second

_____MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

	OPERATION		TIME PER -	OPERA.	TIME PER	NO. OF Samp.	CO	NCENTRA	TION	AVG CON'C. TIMES
<u> </u>	OR OPERATING ARE	A	OPERA. (MIN)	PER SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) Avg	TOTAL TIM (TXC)
GA	RIP Makeup				480	1	-	-	66	31700
										· ·
			•							
										· · ·
					· · ·					,
				-	}				:	
		·					. ·			
									· .	
							ļ			
		, -	, .							
									·.	
						2				
					· · · ·					
					-					
					· · ·					
						ł				

OF ERATOR: ELUTRON & PPTN. OPERATOR

.Y. FORM 144 11-9-52)

1___MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

OPERATION Or Operating Area	TIME PER OPERA. (MIN)	OPERA. PER SHIFT	TIME PER Shift (min) (t)	NO. OF Samp. 'Les	CONCENTRAT d/m/m3 Low High	ION (C) AVG	AVG CON'C, TIMES TOTAL TIM (TXC)
GA Elutron and Precipi- tation Floor			480	2	125 1 3 9 1	132	62360
	-						
			•			2	
			ید ا				
						11 a.	
			• •	2.			· .
					•		· • •
"Adjusted to two significant fi	gures	Σ	T 480			Σ(тх	°C) 63360
$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{132}{132}$			d /m /	∕ _M Э ≖ <u>`</u>	1		HE MAXIMUM DLE CONCEN-

ION EXCHANGE BLDG. DEPT. RIP MAKE-UP SUB-OPERATOR

.Y. FORM 144

OF ERATOR: _

11-4-52)

.

1_MEN/SHIFT: ______SHIFTS/DAY: ____MEN/DAY

OPERATION		T IME PER	OPERA. PER	TIME PER	NO. OF SAMP.	CON	CENTRA		AVG CON'C;+ Times
OR OPERATING AREA		OPERA. (MIN)	SHIFT	SHIFT (min) (t)	LES	LOW	HIGH	(C) A V.G	TOTAL TIME (TXC)
GA RIP Makeup				360	_ 1	-	-	66	23800
GA Elution & Preci tion	pita-			120	2	125	139	13 2	15800
								· ·	
	·			-1					
								. ·	
							ų.		
									· · · · · · · · · · · · · · · · · · ·
			-						
			· .						
· · · · · · · · · · · · · · · · · · ·									
	· · · · ·	<u> </u>	l	L	1	L	•		L <u></u>
"Adjusted to two signifi	cant fi	gures	Σ	т 480	· . . ·			Σ(Τ)	(-C) 39,600
$\Sigma \frac{(T \times C)}{\Sigma (T)} =$		\$2		d/m	/ M ³ ∞	0.8			THE MAXIMUM BLE CONCEN-
	•					.•		ann r i U	••••

a .		ION EXCHANCE	BLD.	DEPT.				•			
OF	ERATOR:	RIP BANK OPI	ERATC	R		2MEN.	SHIFT:	3 sı	HIFTS/D	7 AY:	AEN/DAY
	0	PERATION		TIME	OPERA.	TIME	NO. OF	co	MC/ENTRI	ATION	AVG CON
		OR Rating Area		PER OPERA. (MIN)	PER Shift	PER Shift (min) (t)	SAMP. LES	LOW	HIGH	(C) Avg	TIMES TOTAL T (TXC)
	GA RIP	Bank Section				480	3	24	36	29	13900
										•	
			:								
F									• .		
-							4	ł			
									•		
				•			-				
			·								
				L. L.	- 1						
-						· . ·					
· · · · ·				<u> </u>	I	l	<u> </u>	<u> .</u>			
•	ld jus ted	to two significa	int fi	gures	Σ	480 T		· ·		Σ(тх	1 <u>399</u> (-C)
Σ	<u>(τ χ c</u> Σ (τ)		29			đ		0.1			THE MAXIMUM

14

· .

ION EXCHANGE BLDG. DEPT.

OF ERATOR:

1.7. FORM 144 11-4-52)

٩

	TIME PER -	OPERA. PER	TIME PER	NO. OF SAMP.	CONCEN	TRATION 3	AVG CON'C.+ Times
	OPERA. (MIN)	SHIFT	SHIFT	LES	LOW HIG	(C) Sh Avg	TOTAL TIME (TXC)
n			480	. 3	24 3 6	29	13900
. '							
					.		
						• .	
			/				
						· ·	
	·	· · ·	· · ·			. ·	
						· · · ·	
				}		· · ·	
				1			
					$r = r_{f}$		
						· ·	
	11		(MIN)	(MIN) (MIN) (T) 20 480	(MIN) (T) n 480 3	(MIN) (MIN) (T) 10 480 3 24 36	(MIN) (T) (OW HIGH AVG

<u>e</u>

:

.Y. FORM 144

a –

,	ION	EXCHA	NGE	BLDG.	DEPT.
OF ERATOR:	<u> </u>	DOR LA	BOR		

_____MEN/SHIFT: _3_____SHIFTS/DAY: _4___MEN/DAY

	OPERATION		TIME PER	OPERA.	TIME	NO. OF	с с	NCENT	AVG CON'C:* TIMES	
	OR Operating Area		OPERA. (MIN)	PER Shift	PER SHIFT (MIN) (T)	SAMP.	LOW	HIG	(C)	TOTAL TIME (TXC)
(GA Ion Exchange Bldg.	-			480	9	1	139	59	28300
								·		
									* <u>*</u>	
									· .	
					1					
}		-			1					
					н. 					
			. I						· · ·	
ļ						:				
Ì										
ļ					-					
Ì										
Í			1			. 1 .				

4.7. FORM 144 11-4-52)

	<u>APED</u>	ATION	TIME	OPERA.	TIME	NO. OF	co	NCENTR	ATION	AVG CON'C .*
	. *	DR ING AREA	PER OPERA. (MIN)	PER SHIFT	PER Shift (min) (t)	SAMP. LES	LOW	1 <u>/т / м</u> 3 Н⊺ GH	(C)	TIMES TOTAL TIME (TXC)
	tion T	nks, Precipi ank Area, ication Area			420	8		139	58	24400
· · · · · · · · · · · · · · · · · · ·		keup Area			60	4			66	3960
		and the sure wer						-	00	3900
									÷	
1										
								·		
							• •			
	· .				· · · · · · ·			* . + .	· .	
	"Adjusted to i	wo _, significant	figures	2	E T 480				Σ (Т	x C) 28,300
	<u>(T x C)</u> - Σ (T)		59			/ _M 3 <u>m</u>	0.6		TIMES	THE MAXIMUM

14. Y. FORN 144

٦

ION EXCHANGE BUILDING DEPT. OF ERATOR:

CLARTFTGATTON PRESSMAN ____MEN/SHIFT: ____SHIFTS/DAY: ___MEN/DAY

		· · · · · · · · · · · · · · · · · · ·		المتفاقية الأراكي والمحمد					
	OPERATION	TIME PER	OPERA.	TIME PER	NO. OF	CON	CENTRA	TION	AVG CON'C:* TIMES
	OR OPERATING AREA	OPERA. (MIN)	PER Shift	SHIFT	SAMP.	LOW	HIGH	(C) AVG	TOTAL TIME (TXC)
	**BZ Cleaning clarifica- tion press	160	1	160	4	68	138	94	15000
	GA Clarification Section) I		200	. 3	.1	90	37	7400
	GA Best of Building			120	6	24	139	70	8400
						j.			
				. 1	-				
								. ·	
					· .				
						;			
	· · ·					· . ;			
Ĩ									
_						•			
	· · · ·	- -							

1

CARBONATE MILL DEPT. ASS'T MILL SUP'T

۰.

Y. FORM 144 1-4-52)

OFERATOR: .

.

, .

____MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

OPERATION	TIME PER OPERA.	OPERA. Per	TIME PER	NO. OF SAMP. LES	CONCENTR	ATION (C)	AVG CON'C.* TIMES TOTAL TIME
OPERATING AREA	(MIN)	SHIFT	SHIFT (MIN) (T)		LOW HIGH		(TXC)
GA Carbonate Mill			240	. 20	14 302	7 9	19000
GA Yellow Cake Section	n .		240	18	3 12000	1100	264000
	•						· · ·
						2	
						•	
							н Настания н
	a not	ч ,					
				{			
						· ·	
			l			· .	
		х 					
					的推动。		
			· · · · · · · · · · · · · · · · · · ·			*1	
djusted to two significant	figures	Σ	T 480			2 (T)	(C) 283,000
							THE MAXIMUM
$\frac{(T \times C)}{\Sigma (T)} =5$	88		d/m	/M ³ B	5.9	ALLOWA TRATIO	BLE CONCEN- N.
					× // ··· // · (/ · · ·		• • • • • • • • • • •

11. Y. FORM 144 ((11-4-52)

JOB ANALYSIS SHEET

· ·

	OPERATION		T I ME PER	OPERA. PER	T I ME PER	NO. OF SAMP.	co d/	NCENTRATION M /M3	AVG CON'C
. : 	OR OPERATING ARE	A	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	(C) HIGH AVG	TOTAL TIME (TXC)
GA	Carbonate Mil	1			240	20	14	302 79	19000
GA	Yellow Cake S	Section			240	18	3	12000 1100	264000
								· · · · · ·	· · ·
	·			e -				• .	
				ļ			2	:	
					-1 ⁻¹			· · · ·	
								· ·	-
r .									
		, Y	,						
F									
			· ·						
		·	- -						
								· · ·	
.			L	L	···· ·	l			<u> </u>
• Ad ju	ted to two sign	ificant fi	gures	Σ	T 480		· .	Σ(Τ	× C)283,000
. (T	<u>x.C) - 58</u>	• •			d/m /	/3 m ⁻¹	5.9		THE MAXIMUM
ΣΣ	<u>x C) 55</u> (T) 55	20			u/m/	м ⁻	247	TRATIO	BLE CONCEN-

....

	CARBONA	re mi	L DEP	ť.
OF SRATOR:	CARBONATE	MILL	SHIFT	FOREMAN
0. 5.011010				

111-9-521

1_MEN/SHIFT: ______SHIFTS/DAY: ____MEN/DAY

OPER	ATION	TIME PER .	OPERA. PER	TIME PER	NO. OF SAMP.	co d/m	NCENTRI	ſ	AVG CON'C
_	DR ING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) AVG	TOTAL TIM
GA Rod an Area	d Bell Mill			90	[`] 5	14	67	50	4500
GA Bust F	ilters			90	4	45	74	58	5220
GA Cliver	Filters			90	3	17	55	217	3420
GA Leach	Tanks		-	- 60	4	79	302	20	13000
GA Precip	itation			60	2	19	21	1100	1200
GA Yellow	Cake Section			30	18	31	2000	7	33000
GA MIII O				60	3	3	14		420
		·							
		•					a.		
								e transferencia. A transferencia	
									•
	· · · ·								. ·
-			· .						

"Adjusted to two significant figures

127

 $\frac{(T \times C)}{\Sigma (T)}$

Σ

Σ T 480

a/m /1

Σ (T x C) 60,900

TIMES THE MAXIMUM

ALLOWABLE CONCEN-

TRATION.

.Y. FORM 144 (11-4-52)

CARBONATE MILL DEPT.

CARBONATE MILL SHIFT FOREMAN OF ERATOR: RELIEF

MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

	OPERATION	TIME	OPERA.	TIME PER	NO. OF SAMP.		NCENTRA 1/m /M ³		AVG CON'C TIMES
	OR OPERATING AREA	OPERA. (MIN)	PER SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) A V.G	TOTAL TIN (TXC)
	GA Rod and Ball Mill Area			45	5	14	67	50	2250
	GA Burt Filters			45	4	45	74	58	2610
	GA Oliver Filters			45	3	17	55	38	1710
	GA Leach Tanks			30	4	79	302	217	6510
,	GA Precipitation			30	2	19	21	38	1140
	GA Yellow Cake Section			255	18	3	12000	1125	286000
	GA Mill Office			30	3	3	14	10	300

"Adjusted to two significant figures

625

Σ T 480

d/m /M³

Σ (T x C301,000

TIMES THE MAXIMUM

ALLOWABLE CONCEN-

TRATION.

<u>(T x ·C</u> Σ (T) Σ

<u>x ·C</u>)

the second

CARBONATE MILL DEPT. PRECIPITATION OPERATOR

11-4-52)

OF ERATOR: .

<u>1_MEN/SHIFT:</u><u>_______SHIFTS/DAY:</u><u>_____MEN/DAY</u>

	OPERATION		TIME PER -	OPERA.	T I ME PER	NO. OF Samp.	co d	NCENTRA	TION	AVG CON'C.+ Times
	OR OPERATING AR	EA	OPERA. (MIN)	PER Shift	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) AVG	TOTAL TIME (TXC)
	GA Precipitatio	n Area		-	120	. 2	19	21	132	15800
	GA Yellow Cake	Area			60	18	3	12000	1125	67500
	GA Carbonate Ar	'6 8			300	18	14	302	87	26,100
					1.			· .		
2	<i>a</i> :									
_										
					[·		
(2002)								:	·	
					•				· · ·	· ·
)/										
						•				
(.										
							, *			
		· ·					1			
2										
"	Adjusted to two sign	ificant f	lgures	Σ	T480			•	Σ (т)	····C) 109,000
						· .	. [.]			THE MAX I MUM
3	$\frac{(T \times C)}{\Sigma (T)} =$	228			d/m	/ _M 3 <u>≈ 2.</u>	3			BLE CONCEN-
										· · ·
		_				<u>>-</u>			· .	

.ү. гоны 144 11-4-52)

OF ERATOR:

JOB ANALYSIS SHEET

CARBONATE MILL DEPT. BURT FILTER OPERATOR

____MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

	OPE	RATION		TIME PER	OPERA.	TIME PER	NO. OF Samp.	CON đ	M M3		AVG CON'C, . TIMES
a		OR ING AREA		OPERA. (MIN)	PER SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) AVG	TOTAL TIME (TXC)
	GA Burt I	Alter Area	ļ.			480	. 4	45	74	58	27800
							-				
									•	· ·	• •
				· · ·							
										2	
					-						
									· ·		· · ·
						4			•		
					· .					. ·	
			×.	- '.							
										. :	
			•				· · ·			· .	
				-							
ļ											
								•			
د		· · · ·			<u> </u>						
	"Adjusted to	two signific	cant f	igures		Σ T 480				Σ (Τ :	(C) 27,800
								•	•		
jΣ	<u>(T x C)</u> Σ (T)	¥	58			d/m	/M ³	0.6	,		THE MAXIMUM BLE CONCEN-

9.7. FORM 144 11-9-52)

JOB ANALYSIS SHEET

CARBONATE MILL DEPARTMENT OFERATOR: BURT FILTER SUB OPERATOR

_____MEN/SHIFT: ______SHIFTS/DAY: _____MEN/DAY

e e	OPERATION	TIME PER	OPERA. PER	T I ME PER	NO. OF Samp.	CONCENT	3 : [AVG CON'C Times
	OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW HIG	(C) H AVG	TOTAL TIN (TXC)
	GA Burt Filter Area			480	. 4	45 74	58	27800
								· · ·
							1.14	• • • •
				· ·				
						·		
								: .
								•.
								· · · · · · · · · · · · · · · · · · ·
						· · ·		
а - Сп								
					. ·			- - -
			- Tra					· · ·
						• •		
		· · · ·		· .	•••••	•		*********
	Adjusted to two significa	nt figures	Σ	L 80	•	•	Σ(ΤΧ	^{C)} 27,840
Σ	<u>(T x C)</u> <u>58</u> Σ (T)			d /m	′ _M 3 ∞	0.6		HE MAXIMUM LE CONCEN-
					· ·			

1.7. FORM 144 11-4-52)

1

JOB ANALYSIS SHEET

		OPERATI OR OPERATING			TIME PER OPERA. (MIN)	OPERA. PER SHIFT	TIME PER Shift (min) (t)	NO. OF Samp. Les	CON d LOW	CENTRA M /M3 HIGH	TION (C) AVG	AVG CON'C TIMES TOTAL TI (TXC)
	GA	Carbonate Ball Mill		und			240	5	14	67	50	12000
- 5	GA	Carbonate Area	o Ore I	3in			240	13	4	179	68	16300
										·		
							4			·		
-												• •
				··· *						1		-
												.:
												· · · · · · · · · · · · · · · · · · ·
	-Adju	sted to two,	signifi	cant fi	gures	Σ	т 480				Σ(тх	c) 18,30
	Σ 11	<u>x.c)</u>		38		·	d /m	/m ³ ≖	0.4			THE MAXIMUM BLE CONCEN-

1

	OPE	RATION		TIME PER ·	OPERA.	TIME	NO. OF	C0	NCENTRA d/m/M ³	TION	AVG CON'C. Times
	OPERA	OR TING AREA		OPERA. (MIN)	PER SHIFT	PER SHIFT (MIN) (T)	SAMP. ILES	LOW	HIGH	(C) Avg	TOTAL TIME (TXC)
	GA-Leach	Tank Area	ເສ			480	. 6	23	302	157	75400
											· ·
											· · ·
										1	
							-				
_i										÷.,	
						· · · · · · · · · · · · · · · · · · ·					
i											
				2	· .·						· ·
				·.					;		
<u>مر</u>			•								
											2
Í											
Í								• • • • •			
-						· · · · ·					
	······································	.	· · ·	·							
	Adjusted to	two _, signifi	cant fi	lgures	Σ	T 480				Σ (Τ)	C) 75,400

Y. FORM 144 1-4-52)

1.Y. FORM 144 11-4-52)

JOB ANALYSIS SHEET

OPERATION	T IME PER	OPERA, PER	TIME Per	NO. OF Samp.	c.01 ف	MCENTRAT		AVG CON'C: TIMES
OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) AVG	TOTAL TIM
GA Oliver Filter Area			480	. 3	17	5 5 -	38	18200
	; ;							
						·		
			~					
		•						
	. '						:	
						:		
			· ·				. :	
				÷				
l				С				
					· · · :			
		<u> </u>						
"Adjusted to two significant fi	gures	Σ	T 480				Σ(Τ)	(C) 18,200
$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{38}{38}$			d/m	• .	0.4		TIMES	THE MAXIMUM

•...*

1.Y. FORM 144 11-4-52)

ι.

JOB ANALYSIS SHEET

2

CARBONATE MILL DEPT.

OF ERATOR: OLIVER FILTER SUB-OPERATOR ______ MEN/SHIFT: _____ SHIFTS/DAY: _____MEN/DAY.

. .	OPERATION	TIME PER	OPERA.	TIME	NO. OF	C.0	NCENTRA	TION	AVG CON'C TIMES
ļ	OR OPERATING AREA	OPERA. (MIN)	PER Shift	PER SHIFT (MIN) (T)	SAMP.	LOW	₫ <mark>/121</mark> Н⊺GH	(C) Avg	TOTAL TIN (TXC)
2	GA Oliver Filter Aree	1		480	- 3	17	55	38	18200
.e.									•
		· .			•				
						2			
				~					
	• •			1					
-									
ł									
								м.	~
						4			
									•
						•			
·			L				-		and a sum of the State of the State
	"Adjusted to two significan	t figures	Σ	T480				Σ(Тх	^{-C)} 18,200
Σ	Σ <u>(T x C)</u> 			d/m /	/ _M 3 ≝	0.4	an a		HE MAXIMUM

1.1.7. FORM 144 1111-9-92)

OF ERATOR: .

JOB ANALYSIS SHEET

GARBONATE MILL DEPT. SWAMPER

1_MEN/SHIFT: ______SHIFTS/DAY: _____MEN/DAY

	OPERATION	TIME PER ·	OPERA.	TIME	NO. OF	C01	ICENTRA	TION	AVG CON'C: TIMES
	OR Operating Area	OPERA. (MIN)	PER Shift	PER Shift (min) (t)	SAMP.	LOW	HIGH	(C) AYG	TOTAL TIME (TXC)
;	GA Carbonate Mill Areas			480	20	14	302	7 9	37990
()									
								:	
				1					
								· · ·	
					[·			· ·	
1									
								: 	
								· .	
	· · · · ·								
							•		
		<u></u>	J		<u> </u>	1			I <u></u>
	"Adjusted to two significant f	igures	2	E T 480	· .			Σ(Τ	^{× C)} 37,900
					•				THE MAXIMUM
بدینار	$\Sigma \frac{(T \times C)}{\Sigma} = \frac{79}{79}$			d/m	/M3 =	0.8	وي في يوني من المركز الم	ALLOWA	BLE CONCEN-

	CARBONATE	MILL	DEPT.	
DFERATOR:	BALL GAN	3		

.Y. FORM 144 11-4-52)

8_MEN/SHIFT: _____SHIFTS/DAY: _____8MEN/DAY

	OPERATION	TIME PER -	OPERA.	TIME	NO. OF	CON	ICENTRA	TION	AVG CON'C. TIMES
	OR OPERATING AREA	OPERA. (MIN)	PER SHIFT	PER SHIFT (MIN) (T)	SAMP.	d LOW	/m HIGH	(C) AVG	TOTAL TIM (TXC)
1-1	GA Carbonate Mill Areas			480	- 20	14	302	79	37,900
	· · ·								
									· · · ·
						1			
								÷	
				<i></i>					· ·
)					-
<u>ت</u>									
(*)						- -	-	· .	
		}						· ·	
Í								· · ·	
ن ا									
						n in			-
	"Adjusted to two significant f	lgures	Σ	т 480			•	Σ(Τ)	(C) 3 7, 900
Σ	<u>(T x C)</u> 79			d/m	/M ³ =		a film y all da fa maji sang da		THE MAXIMUM BLE CONCEN- N.

.Y. FORM 144

JOB ANALYSIS SHEET

1_MEN/SHIFT:_ 3 SHIFTS/DAY: 3MEN/DAY

OF ERATOR: -

HELLOW CAKE DEPT.

SHIFT FOREMAN

OPERATION	TIME PER	OPERA.	TIME	NO. OF	CON đ	CENTRAT	ION	AVG CON'C: TIMES
OR OPERATING AREA	OPERA. (MIN)	1 124	PER SHIFT (MIN) (T)	SAMP. LES	LOW	HIGH	(C) AVG	TOTAL TIM
GA Yellow Cake Area			480	18	3	12000	1125	54000
			1					
1								
ĺ						:	••••	
1								
				1				
l .								
			L	L]			
*Adjusted to two, significa	int figures	·	Σ T 480			•	Σ(Τ	(C) 54,00
<u>, (I.x.C)</u> 1125	•		a/	mg _M 3 ≊	3. { 1.1	3		THE MAXIMUM
$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{1125}{2}$,		an a	TRATIC	
	. *		.e					

OPERATION OR OPERATING AREA	TIME PER OPERA. (MIN)	OPERA. PER SHIFT	TIME PER SHIFT (MIN) (T)	NO, OF SAMP, 'LES	CC LOW	HIGH	TION (C) AVG	AVG CON'C; Times Total Time (TXC)
GA Yellow Cake Area			255	.18	3	12000	1125	287000
GA Rod and Ball Mill Area			45	5	14	67	50	2250
GA Burt Filters			45	4	45	74	58	2610
GA Oliver Filters			45	3	17	55	38	1710
GA Leach Tanks			30	4	79	302	217	6510
GA Precipitation			30	2	19	21	20	600
GA MILL Office			307	3	3	14	10	300
					· · ·			
	<u> </u>	<u> </u>	<u> </u>		l			; · ·
*Adjusted to two significant f	igures	2	E T 480	•	•		Σ (Т ж	^(C) 301,000
$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{628}{5}$			á/m.				TIMES	THE MAXIMUM

1. Y. FORM 144 11-4-52)

.

.Y. FORM 144 11-4-52) JOB ANALYSIS SHEET

OPERATION	TIME PER	OPERA. PER	TIME PER	NO. OF Samp.	CON	CENTRA 1/11/M3	TION	AVG CON'C TIMES
OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) AV.G	TOTAL TIN
**BZ Sampling and cover- ing laud yellow cake							· .	
drum	2.8	18	50	3	50	275	129	6500
GA Weigh Room			240	1	-	-	3	720
GA Furnace Area			60	1			44_	2640
GA Yellow Cake Area			130	17	53	12000	1125	146000
			,					
							·	
				1				
					• 1.			
····	· · · · ·		L					
"Adjusted to two significant fig ##Filter Respirator wor	ures D o	Σ	^T 480	· .	•		Σ(Τ)	(C) 156,00
$\Sigma \frac{(T \times C)}{\Sigma (T)} = 325$				м ^{Э ш}	3.3	·	TIMES	THE MAXIMUM

11-4-52)

	OPERATIO	N	TIME PER -	OPERA.	TIME	NO. OF	CONCENTRA	TION	AVG CON'C.* TIMES
1	OR OPERATING	AREA	OPERA. (MIN)	PER SHIFT	PER Shift (min) (t)	SAMP.	CI/18 LOW HIGH	(C) avg	TOTAL TIME (TXC)
**B2	Beating a cake drum ing	cid yellow and replac	1	18 포 쿨	9.	3	1300 15000	9150	82400
GI	Yellow cal	ke erea			471	18	3 12000	1125	530000
		· .	i sur						
					· · ·				
Ì						· ·			
• Aaji	usted to two	significant f	igures		, T 480		<u> </u>	Σ(Τ)	^(C) 612,900
Σ τ	<u>τ x·C)</u> Σ (τ) —	1270				/ M ³ m	12.7	TIMES	THE MAXIMUM BLE CONCEN-

- 1. Y. FORM 144 1111-4-521

ı.

. -----

JOB ANALYSIS SKEET

YELLOW CAKE DEPT. ACID DRYER HELPER OFERATOR:

1.MEN/SHIFT: ______SHIFTS/DAY: ______MEN/DAY

	OPERATION	TIME PER .	OPERA. PER	TIME PER	NO. OF Samp.	CONC d	ENTRATION	AVG CON'C TIMES
	OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	•	(C) HIGH AVG	TOTAL TIN (TXC)
	**BZ Sampling drums	2.8	18	50	. 3	50	275 129	6500
	GA Yellow Cake area			430	18	3 12	000 1125	484000
<u></u>								
				·				
						ţ		
							. ·	
					1.1.1		••••••••	
				·				
. (**								
			· · · · ·			· · ·		•
-	ex filter resp. worn						and the state of the	
	"Adjusted to two significan	t figures	Σ	T 480	• •		Σ(тж	^{C)} 490,000
Σ	<u>(T x C)</u>			d /m /	"3 s	10.2		THE MAXIMUM
	4 (1)				••••••••••••••••••••••••••••••••••••••	un tellin földstransassana	TRATIO	LE CONCEN- I.

•	
OF ERATOR:	,

YELLOW CAKE DEPT.

CARBONATE DRYER OPERATOR 1 MEN/SHIFT: 3 SHIFTS/DAY: 3 MEN/DAY

.

	OPERATION	TIME	OPERA.	TIME	NO. OF		ICENTRA	TION	AVG CON'C.+ Times
	OR OPERATING AREA	PER OPERA. (MIN)	PER SHIFT	PER Shift (min) (t)	SAMP. LES	LOW	HIGH	(C) AVG	TOTAL TIME (TXC)
**BZ	Removing carbonate drum from carbonate filling station - shovelling yellow cake to buckets fro pan and dumping in drum		1	5.5	1	-		10000	55000
≉*BZ	Covering yellow cak drum	e 1.25	3	3.75	1	-		7400	27800
GA	Yellow cake area			350.75	18	3	12000	1125	395000
 GA	Burt filter area			120	4	45	74	58	6960
	sted to two significant Filter respirator wo		2	^{e t} 480			•	Σ.(Τ.)	(·C) 485,000
ΣΣ	<u>(x c) 1010</u> (x)	na ya ya ku		d/n	y _M 3 ∞	10.1			THE MAXIMUM BLE CONCEN- N.
					- * *			_	

		OPERATION	TIME PER	OPERA.	TIME	NO. OF	co	DNCENTRA	TION	AVG CON' TIMES
		OR OPERATING AREA	OPERA. (MIN)	PER SHIFT	PER SHIFT (MIN) (T)	SAMP.	LOW	HÌGH	(C) AVG	TOTAL TI (TXC)
	**B2	Cleaning acid yellow cake press	35	1	35 .	3	296	810	525	18400
	**BZ	Cleaning press floor	5	1xz	2.5	1		, -	301	7530
	GA	Yellow cake area			442.5	18	3	12000	1125	498000
		. 1			·	'				
		1					1			l
		1								
		1				'				ĺ
								·	. 1	
1 =		1								
		• • • • • • • • • • • • • • • • • • • •								
1		. 1								
1-1 1		. 1								
		. 1								
·		1				1				
		1							· · · ·	
		!								· .
	·									I. <u>.</u>
	• Ad fu:	sted to two significant fig	A 41 4 0 8		Σт 480		•		S IT Y	
		Alter respirator worn		_	1 April 1				4 11 5	··C) 524,0
		<u>x c)</u> - <u>1090</u>	~		d/m/	/M3 m				THE MAXIMUM BLE CONCEN-

P.C

Y. FORM 144 11-4-52)

.

.Y. FORM 144 11-4-52)

JOB ANALYSIS SHEET

 OPERATION OR OPERATING AREA	A	TIME PER OPERA. (MIN)	OPERA. PER SHIFT	TIME PER SHIFT (MIN) (T)	NO. OF SAMP. LES	CONC d/ LOW	CENTRAT /M3 m HIGH	ION (C) AV.G.	AVG CON'C.4 TIMES TOTAL TIME (TXC)
32 Beating acid cake drum and placing		1	18x2	9	3	1300	15000	9150	82000
A Yellow cake a	rea			471	18	3.	12000	1125	530000
						1			
				ء * م					
							ı.		
	·								
- -						· · · · · · · · · · · · ·			
justed to two signi	ficant f	l igures		Σ T 480	I	1		Σ(тх	(C) 612,000

.

•Y. FORM 144

JOB ANALYSIS SHEET

YELLOW CAKE DEPT. 5_MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY OFERATOR: CARBONATE PRESS LABOR TIME CONCENTRATION AVG CON' TIME OPERATION OPERA. NO. OF PER ⁵м3 TIMES PER PER SAMP. TCT OR TOTAL TI OPERA. SHIFT SHIFT LES LOW HIGH AV.G. OPERATING AREA (MIN) (TXC) (MIN) (T) **BZ Cleaning carbonate 197 5910 102 312 30 3 2x2/537 yellow cake press **BZ Cleaning yellow cake 274 137 1 2x1/5 2 5 press floor **BZ Cleaning carbonate 382 4580 3 205 576 12 222/7 20.5 clarification press **BZ Dumping carbonate clarification press 190 111 2x1/7 1.7 3 65 180 6 cake into sump 3 12000 490000 1125 18 434.3 GA Yellov cake area 501,00 480 *Adjusted to two significant figures ΣΤ $\Sigma \cdot (T \times \cdot C)$ **Filter respirator worn. 10.4 TIMES THE MAXIMUM (T_X_C) ... 1040 Σ ALLOWABLE CONCEN-Σ (Τ) TRATION. L 1. A. S. A.

ų,

	.Y. FORM	144
·	11-4-521	

	TELLOW	CAKE	DEPT.
OF ERATOR:	FLOOR	MAN	والمراجع المحاوية والمحافظ والمحافظ والمحاوي والمحافظ

____MEN/SHIFT: _____SHIFTS/DAY: ____MEN/DAY

n L:

	OPERATION	TIME PER ·	OPERA. PER	T I ME PER	NO. OF SAMP.	co	NCENTRAT	(C)	AVG CON'C;* TIMES
0	OR PERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	AVG.	TOTAL TIME (TXC)
	leaning carbonate larification press	20.5	202/7	12	. 3	205	576	382	4600
**BZ D	umping carbonate larification press ake into sump	6	2x1/7	1.7	3	65	180	111	190
	ing yellow cake in Rass pan			120	3	146	309	242	29000
GA Y	ellow cake area			346.3	18	. 3	12000	1125	390000
				`۔ ر					
								· · ·	
		. ************************************						1	
_								-	
3									
						· · · ;			
*Ad jus 1	ted to two significant f	igures		Σ 1480				Σ (Τ)	^(C) 424,000
	ter respirator worn			- 		• • •			
$\Sigma \frac{11}{\Sigma}$	<u>x C)</u>		در رو التقوير من و	d/m	/M3 =	-8,9			THE MAXIMUM
				••••		•••	• .		

BUCKING HOUSE DEPT. OF ERATOR: ______IFATMEN

OR OPERA. SHIFT SH	ER SAMP. IFT LES) (T) 0 3		ENTRAT TYM3 HIGH 18	(C) Avg 12	TOTAI (7 5760
GA Bucking room	80 3	4	18	12	5760
					, , ,
	1			.]	
	: · · ·		:		
					:
					•
		<u> </u>	- .		<u>,</u>
"Adjusted to two significant figures 2 T 4	80	· · ·	·	Σ (Тх	C) 5
$rac{11 \times C}{r} = 12$	d/119, _M 3 ∞	• 0.04 0.1			THE MAXIN
$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{12}{12}$	су му м ³ м		an a	ALLOWAE	BLE CONCI N.
		·			
				del fran <u>es</u>	

Y. FORM 144 1-4-52)

JOB ANALYSIS SHEET

BUCKING HOUSE DEPT.

OF SRATOR: _____PULPMEN

1_MEN/SHIFT: _______SHIFTS/DAY: _____MEN/DAY

	OPERATION	TIME PER -	OPERA. PER	TIME	NO. OF Samp.		TA M3	ľ	AVG CON'C; TIMES
	OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) Avg	TOTAL TIM (TXC)
	**BZ Fulverizing tailings and cleanup	2.5	6	15	3	2	55	38 .	570
	**BZ Screening tailings	1.5	6	9	3	20	29	24	216
	**BZ Rolling tailings and air cleaning	1.5	6	9	. 3	< 1	137	53	477
	GA Tails Pulverizing Room			81	2	22	32	27	2190
	**BZ Taking material out of blender and split ting	3	. 6	18	1	ж. —	-	148	2669
	**BZ Grinding riffle fine in BICO pulverizor	s 5	6	 30	1	-		6	180
	**BZ Rolling fines from BICO pulverizer	3.5	6	21	1	-	-	25	525
	##BZ Screening fines	4	· 6	24	1	-	-	3	72
	**BZ Pulverizing Screener fines	2.5	6	15	1	-	-	6	90
	**BZ Rescreening and blowing off reller	2	6	12	4	-	-	220	2640
_	**BZ Riffling end rolling 4 times	15	6	90	1			53	4777 0
	**BZ Cleaning equipment with an air jet	7.5	6	4 5	1	-	-	120	5400
F	GA Heads pulverizing room			81	3	5	40	24	1940
									· ·
	Adjusted to two significant fine second seco	gures	Σ	T 480		•		Σ (Τ χ	c) 17,100
Σ	$\frac{(T \times C)}{\Sigma (T)} = \frac{45}{45}$			ā/m/	M 3 =	0,2			HE MAXIMUM

COFFEE MILL MEN OF ERATOR:

1 MEN/SHIFT: 3 SHIFTS/DAY: 3 MEN/DAY

	OPERATION	TIME PER	OPERA.	T I ME PER	NO. OF SAMP.	cor d	INCENTRAT	[AVG CON'C;* Times
	OR OPERATING AREA	OPERA. (MIN)	PER Shift	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) A V.G	TOTAL TIME
BZ	Cleaning and reassem ling coffee mill	>- 11	6	66	1	-		22	1450
BZ	Dumping 5 cans into coffee mill and tran ferring to blender	₽- ⁻ 7	6	42	2	20	10	5	210
BZ	Empt yin g blender inte 7 cans	3	6	18	2	20	27	24	432
BZ	Splitting 7 cans from blender	8	6	48	2	3	4	4	192
BZ	Dumping 3 cans sand- stone from splitter to blender	.75	6	4	1	=		20	80
BZ	Filling 3 pans from can and putting into drier	3	6	18	2	14	17	16	288
BZ	Dumping 1½ cans re- jects into paper bag	.75	6	4	1	-	-	80	320
BŻ	Cleanup of splitter, blender, sweep floor		6	36	1 1 •	-	4	16	576
GA	Blending room			244	3	5	25	14	3420
						• •			
∼ Aāju	sted to two significant f	lgures	Σ	і т 48 0	<u></u>	<u>i</u>	•	Σ(Τ)	(-c) 6970
ت ²	<u>x c) - 14</u>			d/n	¥ 3 ∞	0,0	5		THE MAXIMUM BLE CONCEN-

.Y. FORM 144 11-4-52)

у. FORM 144 (1-4-52)

BUCKING HOUSE DEPT. OF ERATOR: MINE SAMPLE BUCKING ROOM <u>3 MEN/SHIFT: 2 SHIFTS/DAY: 7 MEN/DAY</u>

	OPERATION	TIME PER	OPERA. PER	TIME PER	NO. OF SAMP.	10.0	ICENTRAT		AVG CON'C:* TIMES
	OR DPERATING AREA	OPERA. (MIN)	PER Shift	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) AV.G	TOTAL TIME (TXC)
·							ر <u>ی د مند بنی را ملمج میک</u>		
	Pulverizing core								· · ·
	Samples - putting in envelope	1.5	1/3 x30	10 ·	3	0	440	260	2600
	Rolling core sample and cleanup	1.5	1/3x30	10	3	0	370	129	1290
	Pulverizing sludge in Braun pulverizer	5.0	1/3x30	10	3	47	317	146	1460
	Rolling and riffling sludge	4	1/3x30	10	3	3	25	14	140
₩BZ	Air blasting Braun pulverizer	2	1/3x30	10-	3	33	117	81	810
GA	Bucking room			430	3	4	18	12	5160
						÷.	х		
								· .	
_									
			· .						
•									
							. *		
44.34 F.	Her resp. worn	L	<u>L</u>						
	ed to two significant fi	gures	Σ	T 480	· * · ·		- -	Σ(Τ x	·C) 11,500
$\Sigma \frac{11}{\Sigma}$	<u>x C)</u> 2	k	رگير ڪي ڪ	d/m/	/ _M 3 a	0,0 0-2)8 -	ALLOWAE	THE MAXIMUM
				· .			· .	TRATION	1.
-									
					· · · ·			•	
	o								

11-4-52)

JOB ANALYSIS SHEEL

٠ OF ERATOR: METALLURGICAL DEPT. CHIEF METALLURGIST

1_MEN/SHIFT: 1_SHIFTS/DAY: 1_MEN/DAY

	OPERATI	ON	T I N PE	AE OPERA. R PER	TIME	NO. OF Samp,		NCENTRAT	1	AVG CON'C;* Times
	OR OPERATING	AREA	OPEI (мі	NA. SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) Avg	TOTAL TIME (TXC)
	· · ·									
	GA Main offi	.Ce			300	3	3	14	10	3000
-	GA Pilot mil	L			60	7	<1	23	10	600
	GA Plant				120	146	1	1200 ()	423	50400
									ſ	
										· · ·
9257										
_										
										• •
			;							
~									· · :	·
				{						
_										
		••			•					
					· · · ·		l tar	. •		· .*

Y. FORM 144

JOB ANALYSIS SHEET

METALLURGICAL DEPT. OF ERATOR: ASS'T. CHTEF METALLURGIST

1__MEN/SHIFT: ____SHIFTS/DAY: ____MEN/DAY

OPERATION	TIME PER	OPERA.	TIME	NO. OF	C.0	NCENTRA	TION	AVG CON'C:4 Times
OR OPERATING AREA	OPERA. (MIN)	PER SHIFT	PER SHIFT (MIN) (T)	SAMP.	LOW	HIGH	AV.G.	TOTAL TIME (TXC)
GA Main Office			60	· 3	3	14	10	600
GA Pilot mill			60	7	1	23	10	600
GA Plant			120	146	1	12000	324	50400
			з! 1					
							. · · ·	
							· .	
		1						
	1	1	1					
				-	-			•
					-			

OPERATION	TIME PER -	OPERA.	TIME	NO. OF	C01	NCENTRAL C. MAY M 3	ION	AVG CON'C. TIMES
OR OPERATING AREA	OPERA. (MIN)	PER SHIFT	PER SHIFT (MIN) (T)	SAMP.	LOW	HIGH	(C) Avg	TOTAL TIME (TXC)
GA Main Office			60	3	3	14	7	420
GA Pilot Mill			120	7	- 1	23	10	1200
GA Acid Mills			60	- 57	1	139	33.2	1990
1								
 - -						. .		
					}		·	
			~*					
			1					
ł								
							· .	
			·					
							· ·	
l								
·····		<u></u>	L	<u>l</u>	<u> </u>			<u> </u>
"Adjusted to two significant	figures	Σ	Е т 240	••••		•	Σ(Τ	k-C) 3400
			• 6	•		~ 1		THE MAXIMUM
$\Sigma \frac{(T \times C)}{\Sigma (T)} = \frac{14.1}{2}$		كريوار المائل المراقع معرجي	d y ii	¥ _M 3 ∞	فيابع بعد من	0.1	ALLOWA	BLE CONCEN-
		·				ì		
			and the second secon		80 6777777777777777777777777777777777777			-
	1	· · · · ·	1944. 	gen de Malén II _{en}				
2 21 8				2. X				

	OPERATION		TIME PER -	OPERA. PER	TIME PER	NO. OF SAMP.	co	NCENTRAT	10N (C)	AVG CON'C. Times
	OR OPERATING AREA		OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	AVG	TOTAL TIM
	GA Pilot Mill				120	7	1	23	10	1200
	GA Sample Towers				120	10	9	152	44	5280
	GA Plant				60	146	1	12000	423	25400
ب ع ي										
							1		·.	
1.80							}	,		
						· ·				
i.				· · ·				1. 2		
							 		V (T	
	Adjusted to two signi	ficant f	igures	•	Σ 7 300	-		• ·	μ []	x C) 32,000
Σ	$\frac{(T \times C)}{\Sigma (T)} =$	106			d/m	/M ³ m			ALLOW	THE MAXIMUM
	4 (1)								TRATIC)N.
						٦.				

VVD MARALIDED DHEET

METALLURGICAL DEPT.

OFERATOR: BILOT MILL SUPERVISORS

$\sum_{\substack{\text{OPERATING-AREA}\\\text{OPERATING-AREA}} \frac{\text{PER}}{(MH)} \frac{\text{SMPT}}{(MH)} \frac{\text{SMPT}}{(MH)} \frac{\text{OpERATING-AREA}}{(DW)} \frac{\text{OpERATING-AREA}}{(TXC)} \frac{\text{OpERATING-AREA}}{$		OPERATION		TIME	OPERA.	TIME	NO. OF	C.01	NCENTRAT	ION	AVG CON'C TIMES
$\frac{OPERATING AREA}{GAPERATING AREA} (MR) (MR) (T) (MR) (T) (MR) (T) (MR) (T) (MR) (T) (MR) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T$		OR		OPERA.	PER	SHIFT	SAMP. • LES	u	/ m	(C)	TOTAL TH
GA FILOT MILL GA FILOT MILL 360 7 1 23 10 3600 *Adjusted to two significant figures Σ T ₃₆₀ Σ (T x C) = 10 Σ (T x C) = 10 Τίμες της βάλλαμας Δ Π και μαιαια το της ματικού το της της ματικού το της της ματικού το της της ματικού το της				(MIN)		(MIN) (T)					
"Adjusted to two significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ Times the maximum $\Sigma \frac{(T \times C)}{2} = 10$ $d/m /M^3 = 0.1$		GA Pilot Mill				360	- 7	1	23	10	3600
*Adjusted to two significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ $\Sigma \frac{(T \times C)}{2} = 10$ $d/m / M^3 =$. 1								
"Adjusted to two significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ Times the maximum $\Sigma \frac{(T \times C)}{2} = 10$ $C/m /M^3 = 0.3$									• •		
"Adjusted to two, significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ $\Sigma \frac{(T \times C)}{2} = 10$ $d/m / M^3 = 0.1$ ALLOWABLE CONCEN-											
"Adjusted to two, significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ $\Sigma \frac{(T \times C)}{2} = 10$ $d/m / M^3 = 0.1$ ALLOWABLE CONCEN-											
"Adjusted to two, significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ $\Sigma \frac{(T \times C)}{2} = 10$ $d/m / M^3 = 0.1$ ALLOWABLE CONCEN-				l I -							
*Adjusted to two significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ $\Sigma \frac{(T \times C)}{2} = 10$ $d/m / M^3 = 0.2$ TIMES THE MAXIMUM											· · ·
*Adjusted to two significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ $\Sigma \frac{(T \times C)}{2} = 10$ $d/m / M^3 = 0.2$ TIMES THE MAXIMUM $\Sigma \frac{(T \times C)}{2} = 10$ $d/m / M^3 = 0.2$	(°)		1								
-Adjusted to two significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ Times the maximum $\Sigma \frac{(T \times C)}{T} = \frac{10}{1000}$						2					
*Adjusted to two significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ $\Sigma \frac{(T \times C)}{T_{10}} = \frac{10}{10}$ $d/m / M^3 = \frac{10}{10}$)					
*Adjusted to two significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ $\Sigma \frac{(T \times C)}{T_{100}} = \frac{10}{10}$ $d/m / M^3 = -\frac{10}{C_{100}}$								Į			
"Adjusted to two significant figures ΣT_{360} $\Sigma (T \times C)_{3600}$ TIMES THE MAXIMUM $\Sigma \frac{(T \times C)}{T \times C} = 10$ $d/m / M^3 = 0.3$ Allowable Concen-											
$\Sigma \frac{(T \times C)}{M}$				· · .					. ^N		
$\sum \frac{(T \times C)}{2} = \frac{10}{2}$											
$\Sigma \frac{(T \times C)}{M^3} = Allowable Concen-$	1										
TIMES THE MAXIMUM $\Sigma \frac{(T \times C)}{M} = \frac{10}{M}$ Allowable concen-											
$\Sigma = \frac{(T \times C)}{M^3} = \frac{10}{M^3}$ Allowable concen-											
$\Sigma = \frac{(T \times C)}{2}$ ALLOWABLE CONCEN-											
TIMES THE MAXIMUM $\Sigma \frac{(T \times C)}{M} = \frac{10}{M}$ Allowable concen-			•								
$\Sigma = \frac{(T \times C)}{10} = \frac{10}{10}$	·				<u> </u>		<u> </u>	L	and the second secon		
$\sum \frac{(T \times C)}{N^3} = \frac{10}{10}$		Adjusted to two signific	cant fi	putes		E Taxa				Σ (т :	(·C)
$\Sigma \frac{(T \times C)}{M}$ ALLOWABLE CONCEN-		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , ,	0		300	. •				3000
TRATION.	Σ.	<u>(] x c) </u>	10		ويعتر بالمربع	e Im	/M ³ =	<u> </u>	and a state of the s		
		2 (1)						••••		TRATIO	IN.
											

		OPERATION	TIME	OPERA.	TIME	NO. OF		CENTRAT	ION	AVG CON' TIMES
		OR OPERATING AREA	OPERA. (MIN)	PER Shift	PER SHIFT (MIN) (T)	SAMP.	LOW	HIGH	(C) AVG	TOTAL T (TXC)
	₩#BZ	Gleaning, drier, removing, 1 pan and filling drum	1.75	1/7x9/3	.75	3	48000	80400	65440	49100
9	GA	Grinding, leaching, sand-slime	-		150	4	1	14	6	900
•	GA	RIP Make-up Banks			180	1		23	23	4150
	GA	Precipitation and Elution Make-up			134.25	1		6	6	\$05
	GA	Yellow Cake Packagin	g .		15	1,		23	23	345
1					~					
									i s	
								ι.		
									·:	
17.97										
1107										
1										•
1177 - 1				-						
										• • • • •
,	×* /- *Aājus	The resp. Worn ited to two, significant fl	gures	Σ	^T 480				Σ(тх	^(-C) 55,300
Σ	ε <u>(1</u> Σ	<u>x c) - 115</u>			d/m	/M ³ =	1.2) • • • • • • • • • • • • • • • • • • •		THE MAXIMUN BLE CONCEN-
	- An and a second						•.			

1-4-52)

JOB ANALYSIS SHEET

METALLURGICAL DEPT. . OFERATOR: MET LAB GRADES 3. 5. 5 _____ MEN/SHIFT: _____ SHIFTS/DAY: _10 MEN/DAY

OPERATION	TIME PER	OPERA.	TIME PER	NO. OF SAMP.	CONCENTRATION			AVG CON
OR OPERATING AREA	OPERA. (MIN)	PER Shift	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) A V.G	TOTAL (TXC
GA Carbonate Sampling Plant			180	4	14	156	73.5	13200
GA Acid Sempling Plant			180	6	9.	56	23	4140
			-]			
			/					
			;					
·								
	-							•
		· · · ·			· · · · · ·			•
		l		l			[an de la desta
"Adjusted to two significant fi	gures		T 360	-	•		Σ (T x C) 17,34	
$\frac{(T \times C)}{\Sigma} = \frac{49}{49}$			ā /m ./	M 3 ª	0.7	D- Dage Carallel synchrony synchrony ar		HE MAXIMUM LE CONCEN-
			.1.					
		C. M. Martin and Street Street Street						

OR OPERA. OPERA. SHIFT SHIFT LES LOW HIGH AVG (TXC			OPE	RATION		TIME PER .	OPERA.	TIME PER	NO. OF SAMP.	CON	ICENTRAT	[I ON	AVG CON
GA Plant 480 146 1 12000 423 203004			OPERA		 	(PER SHIFT	SHIFT	LES				TOTAL T
		GA	Plant	· · · · · · · · · · · · · · · · · · ·				480	146	1	12000	423	203000
					,							·	
								· ·			· .		
												ł	
									1				
												•	
							- 						
							· ·		· .				
						````							
									1			,	
								· .					
										· ·			
	<i>i</i> in						•						
										• 			
				. · · ·				· · · · · · · · · · · ·					·
		= Ad ju	sted to	two _{signifi}	cant fi	gures	. Σ	T 480	• •	• •		Σ (Τ χ	C) 203,0
"Adjusted to two significant figures ET480 E (T x C) 203,0		11	x (C)				•	_				TIMES '	THE MAXIMUN
TIMES THE MAXIMUM	1 1	یکہ ۲		•423	L	ومؤوسة معاملاتها الاخاة الكرد		₫/¥	м ^{Э м}	4.2		ALLOWAR	BLE CONCEN-

YARD DEFT. JANITURS (3 men) а ^с

WATER DEFT. -WATER TENDER'S HELPER (1 men.) OF ERATOR: OFFICE PERSONNEL (16 mon.) GHEM. LAB CLERKS (2 mon.)

	OPERATION	TIME PER -	OPERA. PER	TIME PER	NO. OF SAMP.	CQI	NCENTRA	TION	AVG CON'C:* TIMES	
	OR OPERATING AR	REA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	LOW	HIGH	(C) avg	TOTAL TIME (TXC)
GA GA	Power House	and/or			150				F7 ·	2260
	Offices				480	3	3	14	7	3360
مرتب	/ 									
										· · ·
							}			
										х.
										· ·
			{				1	· ·		
· ·									· · · ·	
			\$ · · ·							
		$\{i_{j_1}^{i_1}\}_{j_2} = \{i_{j_1}^{i_2}, \dots, i_{j_n}^{i_n}\}$								
					, [–]					
						· .				
									· * .	· .
			· .							· .
		$= \int_{-\infty}^{\infty} \int_{-\infty}^$								
			,						•	
							ľ			
		$\frac{1}{1}$		· .						
	i i i			1						· .
						.   .				
		<u>任祝</u> 一/4、		<u> </u>	<u> </u>	<u> </u>	<u> </u>			l
¶. • 4a 4	usted to two sig	smitten + +	lauroo		5 Т				Σ (т	X C)
			-6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	•	480		· .	• •		3360
								•		THE MAXIMUM
Σ	<u>T x C)</u>				a/n	/M ³ ^B	0,0	7	ALLOW TRATI	ABLE CONCEN-
	· ·				• •		197 ⁴			· · · ·
			1) 1)							
			an a				ille de la companya d La companya de la comp	n nu incenter		
		· .								

.Y. FORM 144 11-9-521

# JOB ANALYSIS SHEET

LUBRICATION DEPT. OFERATOR: -

______MEN/SHIFT: ______SHIFTS/DAY: _____MEN/DAY

		OPERATION	T)ME PER	OPERA. PER	TIME PER	NO. OF SAMP.	C0	NCENTRA		AVG CON TIME:
		OR OPERATING AREA	OPERA. (MIN)	SHIFT	SHIFT (MIN) (T)	LES	10¥	HIGH	(C) AVG	TOTAL T
	GA	Cerbonate Wet Mill (3 mem)			480	20	14	302	79	<b>37</b> 900
	GA	Acid Mill - Grinding & Leaching Building (2 men)	5		480	30	1	139	30	14400
	GA	Acid Mill - Ion Ex- change Building (2 men)			480	9	1	139	58	27800
	GA	Yellow Cake Section (1 man)			480	18	3	12000	1125	540000
	GA	Carbonate Mill Crush ing Plant (1 man)	<b>-</b>		480	23	160	7700	1500	720000
	GA	Acid Mill Crushing Plant (1 man)			480	12	1	102	<b>3</b> 5	16800
		· · · ·						: .		
					· · · · ·			· · ·		
	*Adj	usted to two significant	figures	2	ET 480				Σ (Τ	x C)
	Σ	<u>T x C) = 307</u> Σ (T)			đ/m	/ _M 3 ≖	3_1			THE MAXIMUM ABLE CONCEN- DN.
97			. :		• • • •	- 7.				