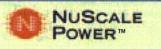
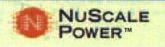
Nonproprietary

n Inconcerning manifestioned distance of Proceedings

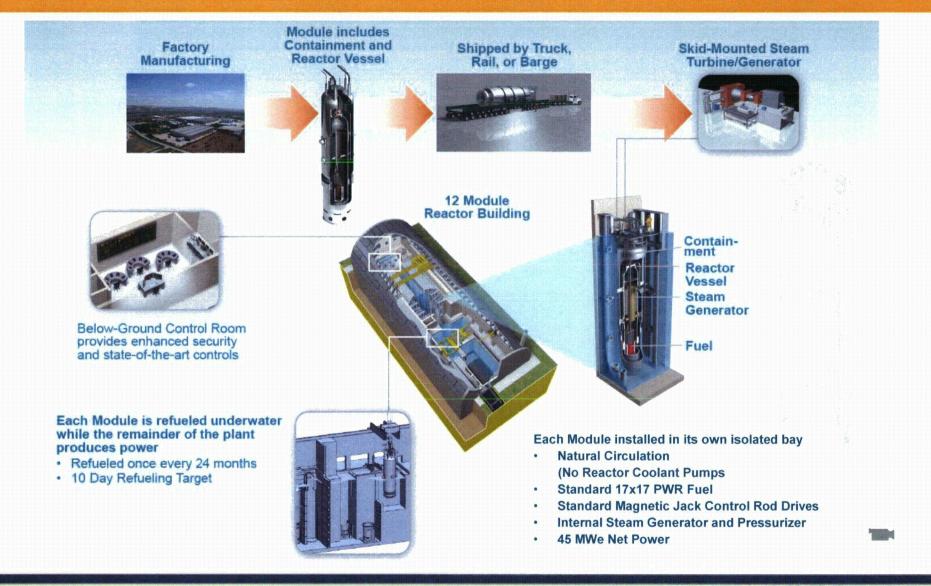
Mechanistic Source Term


October 3, 2012

© 2012 NuScale Power, LLC


Agenda

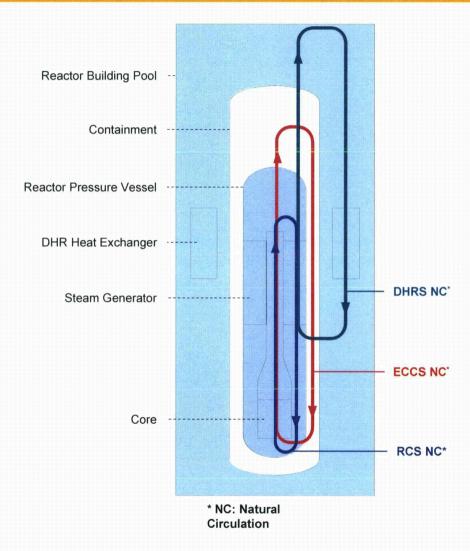
- Purpose
- Background of NuScale design
- NuScale mechanistic source term (MST) methodology for DCD
- NuScale scoping dose results
- Future MST pre-application engagement



Purpose

- Communicate NuScale pre-application objectives
 - agreement on the approach to MST for evaluation of DBA
 - recognize differences in the NuScale design and the impact on MST
- Discuss NuScale analysis methods and tools
- Present NuScale design-specific scoping Chapter 15 dose results
- Agreement on future NuScale MST pre-application engagement

Plant Overview

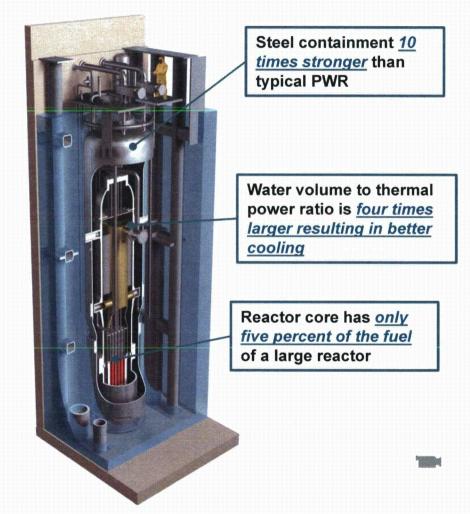


Nonproprietary © 2012 NuScale Power, LLC

4

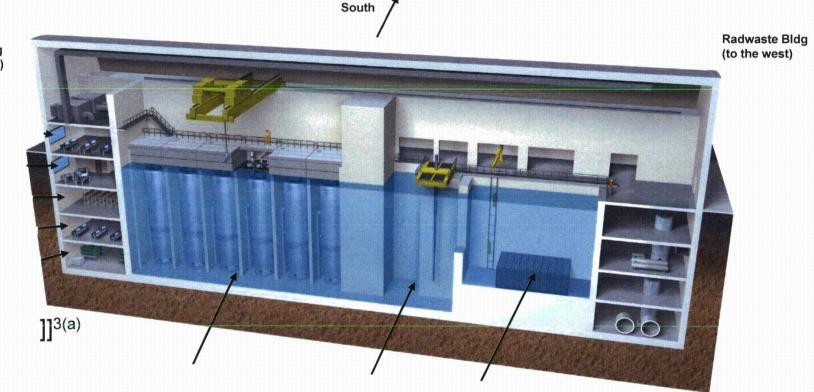
Plant Overview – Natural Circulation

- Natural circulation in the reactor coolant system (RCS)
- Natural circulation in the decay heat removal system (DHRS)
- Natural circulation in the emergency core cooling system (ECCS)

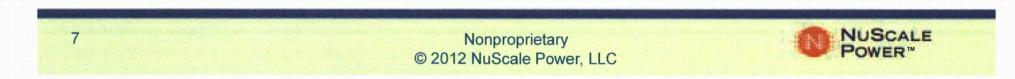


NUSCALE

Reactor Module Overview


- Natural Convection for Cooling
 - Passively safe, driven by gravity, natural circulation of water over the fuel
 - No pumps, no need for emergency generators
- Seismically Robust
 - System submerged in a below-ground pool of water in an earthquake resistant building
 - Reactor pool attenuates ground motion and dissipates energy
- Simple and Small
 - Reactor is 1/20th the size of large reactors
 - Integrated reactor design, no large-break loss-of-coolant accidents
- Defense-in-Depth
 - Multiple additional barriers to protect against the release of radiation to the environment

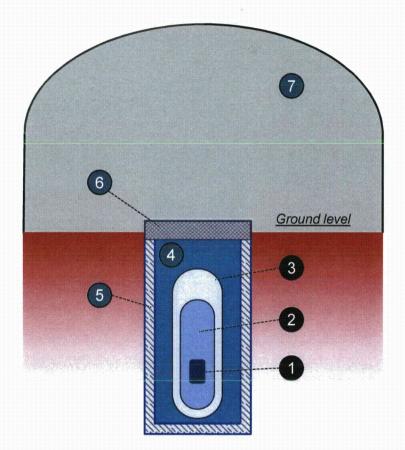
45 MWe Reactor Module

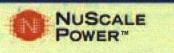


Reactor Building Cutaway View

Annex Bldg (to the east)

]]

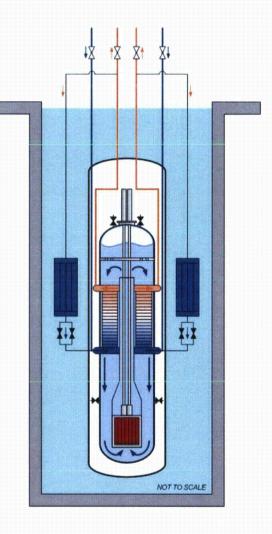

Barriers between Fuel and Environment

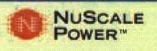

Conventional Designs

- 1. Fuel pellet and cladding
- 2. Reactor vessel
- 3. Containment

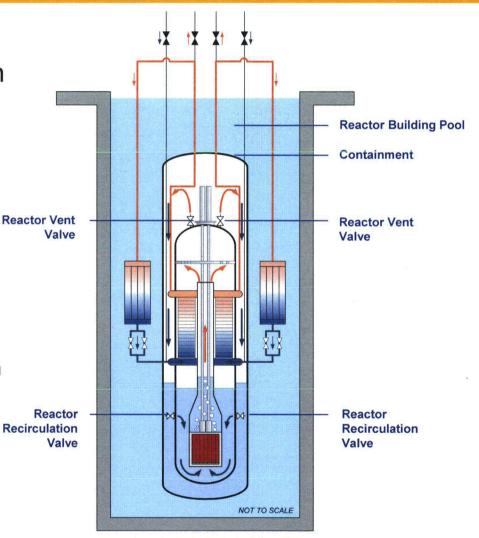
Additional Features in NuScale Design

- 4. Water in reactor pool (10 million gallons)
- 5. Stainless steel lined concrete reactor pool
- Biological shield covers each reactor
- Reactor building (Seismic Category I)





Passive Decay Heat Removal System

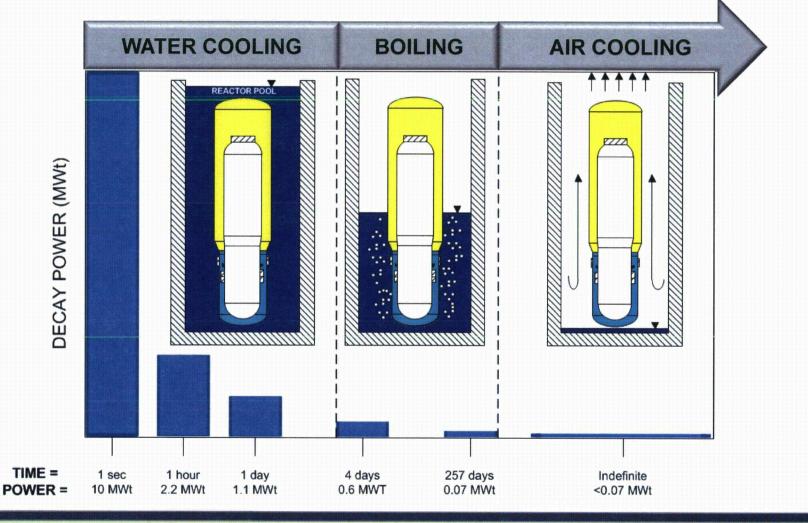

- Main steam and main feedwater isolated
- Decay heat removal (DHR) isolation valves opened
- Decay heat passively removed via the steam generators and DHR heat exchangers to the reactor pool

ECCS/Containment Heat Removal

- Reactor vent valves opened on safety signal
- When containment liquid level is high enough, reactor recirculation valves open.
- Decay heat removed:
 - condensing steam on inside surface of containment vessel
 - convection and conduction through liquid and both vessel walls

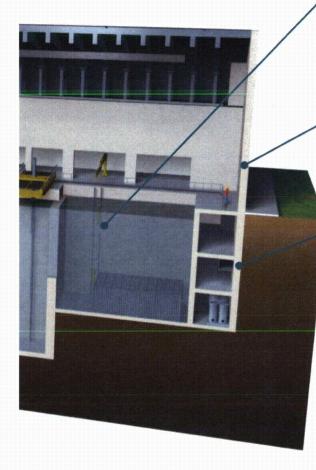

Nonproprietary © 2012 NuScale Power, LLC

Ship by Truck, Rail, or Barge


- Integrated reactor module
- Factory manufactured
- Transportable by truck, rail, or barge
- 15 meters x 4.5 meters
 - 400 tons

Stable Long-Term Cooling without Pumps or Power

Containment and fuel cooled indefinitely for all 12 modules without pumps or power



Nonproprietary © 2012 NuScale Power, LLC

12

Spent Fuel Pool Safety

Increased Cooling Capacity

- More water volume for cooling per fuel assembly than current designs
- Redundant, cross-connected reactor and refueling pool heat exchangers provide full back-up cooling to spent fuel pool.

External Coolant Supply Connections

 Auxiliary <u>external water supply connections are easily</u> <u>accessible</u> to plant personnel and away from potential high radiation zones (current problem in Japan).

Below Ground, Robust Deep-Earth Structure

- Below ground spent fuel pool is housed in a <u>seismically</u> robust reactor building.
- Stainless steel refueling *pool liners are independent from* <u>concrete structure to retain integrity</u>.
- Pool wall located underground is <u>shielded from tsunami wave</u> <u>impact and damage.</u>
- <u>Construction of structure below ground in engineered soil</u> <u>limits the potential for any leakage.</u>

Purpose and Desired Outcomes

Design basis accidents for which consequences are to be calculated in DCD (red shaded row shows LOCA accident, which is being addressed today)

SRP Section	Accident	SMR Basis and Notes
15.0.1	LOCA	No large LOCA, but small LOCA may be important
15.1.5	Main steam line system pipe breaks (MSLB)	All designs have main steam systems, main steam isolation valves, and a secondary side coolant activity
15.3.3 and 15.3.4	RCP rotor seizure or shaft break	Applicable to designs that use reactor coolant pumps
15.4.8	Rod ejection	Applicable to designs with control rod drives that are external to the reactor pressure vessel
15.6.2	Small primary coolant line break outside containment	All designs have small pipe lines that penetrate both the primary coolant system and containment
15.6.3	Steam generator tube failure (SGTF)	All designs have steam generators with tubes and an assumed primary coolant activity
15.7.4	Fuel handling accident (FHA)	All designs handle spent fuel under water in a pool
15.7.5	Spent fuel cask drop	Applicable to designs that will transport spent fuel from the spent fuel pool

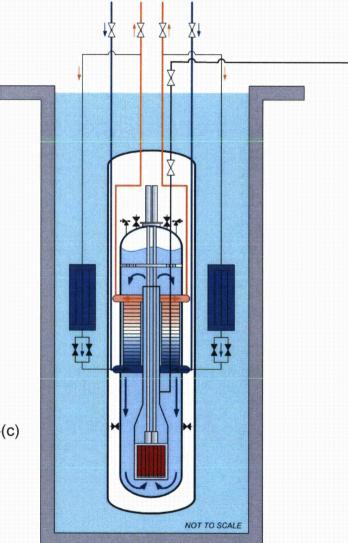
]]

15	Nonproprietary	
	© 2012 NuScale Power, LLC	FOWER

Flow Chart of MST Development for DCD

]]

16	Nonproprietary	NUSCALE Power
	© 2012 NuScale Power, LLC	


]]

17	Nonproprietary © 2012 NuScale Power, LLC	NUSCALE Power

]]

18	Nonproprietary © 2012 NuScale Power, LLC	

CVCS LOCA Inside Containment

NUSCALE POWER"

]]^{3(a)-(c)}

Nonproprietary © 2012 NuScale Power, LLC

]]

]]

20	Nonproprietary © 2012 NuScale Power, LLC	

Example for low burnup, LEU early in-vessel release fractions*

Plant	Case	Noble Gases	Halogens	Alkali Metals	Te Group	Ba/Sr Group
	4A	8.9965E-1	8.8787E-2	6.8651E-2	7.4077E-2	1.677E-3
	4B	6.8859E-1	1.6660E-1	1.6848E-1	1.7821E-1	2.9957E-3
	4C	5.8950E-1	1.5635E-1	1.6140E-1	1.5146E-1	3.5057E-3
Sequoyah	4D	7.9759E-1	1.3809E-1	8.6136E-2	9.5699E-2	1.1094E-3
	4E	7.5621E-1	1.7540E-1	9.9710E-2	1.0095E-1	1.3011E-3
	4F	9.4152E-1	6.4745E-1	6.7333E-1	6.7622E-1	5.0103E-3
	4G	8.0231E-1	1.7610E-1	1.1269E-1	1.2463E-1	1.2680E-3
	1A	9.5091E-1	5.2944E-1	2.2071E-1	2.8872E-1	5.9523E-3
Surry	1B	8.3540E-1	3.9021E-1	3.4885E-1	3.7563E-1	5.9087E-3
	1C	9.3994E-1	8.1663E-1	5.9862E-1	7.9121E-1	9.7568E-3
-	1D	9.3938E-1	6.9225E-1	5.7164E-1	6.9093E-1	4.2902E-3
	1F	8.7420E-1	3.9375E-1	3.5144E-1	3.8276E-1	5.2463E-3

*Taken from Table 21 of Sandia Report SAND2008-6664, April 2010 on high burnup/mixed oxide source term update

]]

22	©	Nonproprietary 2012 NuScale Power, LLC	

]]^{3(a)-(c)}

- Offsite X/Q values same as other advanced plant DCDs (i.e., 80 85 percentile site meteorology from ALWR URD)
- Determine NuScale-specific CR X/Q (ARCON96) and control room habitability system parameters
- Determine curie release versus time from containment based on design basis containment leak rate and in-containment transport results
- Calculate doses and compare against CFR TEDE limits:
 - limiting two-hour EAB dose (25 rem)
 - 30-day LPZ dose (25 rem)
 - 30-day control room dose (5 rem)

]]

]]

© 2012 NuScale Power, LLC	POWER"	
---------------------------	--------	--

]]

25	Nonproprietary © 2012 NuScale Power, LLC	

Flow Chart of MST Development

]]

26	Nonproprietary © 2012 NuScale Power, LLC	

]]

27		Nonproprietary	NUSCALE Power**
		© 2012 NuScale Power, LLC	POWER

]]^{3(a)-(c)}

NUSCALE POWER"

]]

]]^{3(a)-(c)}

NUSCALE POWER"

]]

Future MST Pre-Application Activities and Engagement

]]

]]^{3(a)-(c)}

NUSCALE POWER"

Preliminary Set of NuScale MST DSRS Items

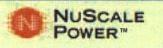
]]

]]^{3(a)-(c)}

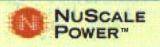
NUSCALE POWER"


Nonproprietary

Nuclear Module and Fuel Handling


Maurice LaFountain, Project Manager, Primary Systems

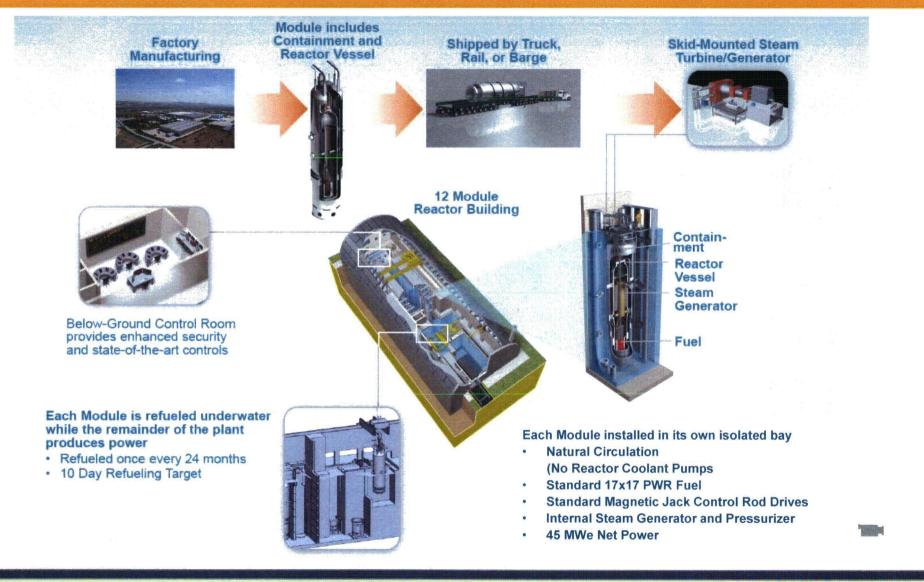
October 4, 2012


Agenda

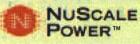
- Purpose
- Background
- Plant overview
- Regulations and related guidance
- Nuclear module and fuel handling
- Feedback and next steps

Purpose

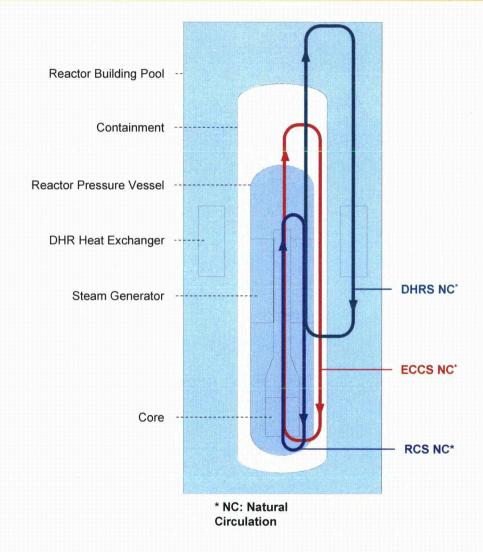
- Familiarize the U.S. Nuclear Regulatory Commission (NRC) with NuScale nuclear handling
- Obtain agreement on requirements and guidance applicability
- Discuss Design-Specific Review Standard cooperation with the NRC staff



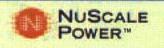
Background


- April 2009 meeting with the NRC to discuss refueling operations
- October 2011 meeting with the NRC to discuss NuScale design and applicability of requirements and guidance

Plant Overview

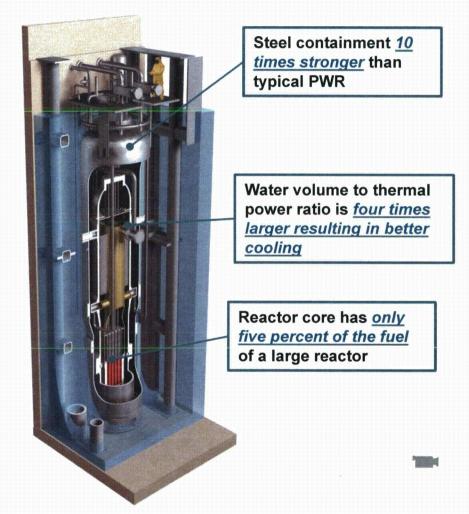


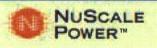
Nonproprietary © 2012 NuScale Power, LLC



5

Plant Overview – Natural Circulation

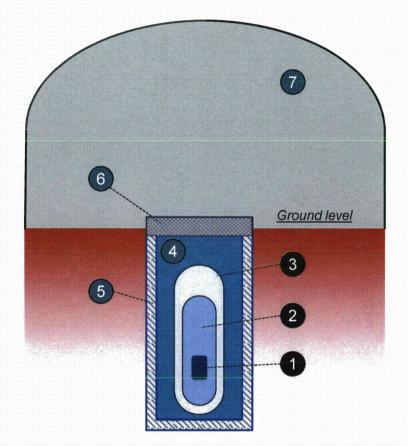

- Natural circulation in the reactor coolant system (RCS)
- Natural circulation in the decay heat removal system (DHRS)
- Natural circulation in the emergency core cooling system (ECCS)

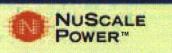

Reactor Module Overview

- Natural Convection for Cooling
 - Passively safe, driven by gravity, natural circulation of water over the fuel
 - No pumps, no need for emergency generators
- Seismically Robust
 - System submerged in a below-ground pool of water in an earthquake resistant building
 - Reactor pool attenuates ground motion and dissipates energy
- Simple and Small
 - Reactor is 1/20th the size of large reactors
 - Integrated reactor design, no large-break loss-of-coolant accidents
- Defense-in-Depth
 - Multiple additional barriers to protect against the release of radiation to the environment

45 MWe Reactor Module

Nonproprietary © 2012 NuScale Power, LLC

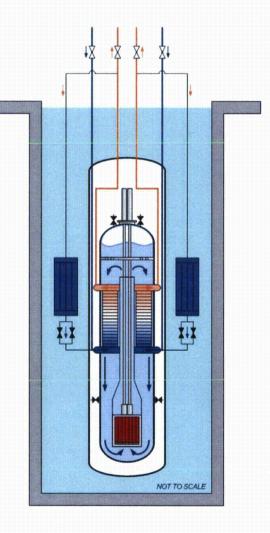

Barriers between Fuel and Environment

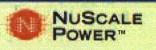

Conventional Designs

- 1. Fuel pellet and cladding
- 2. Reactor vessel
- 3. Containment

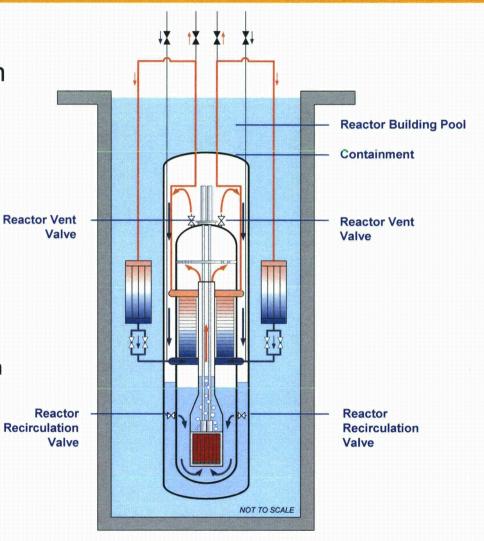
Additional Features in NuScale Design

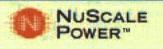
- 4. Water in reactor pool (10 million gallons)
- 5. Stainless steel lined concrete reactor pool
- 6. Biological shield covers each reactor
- Reactor building (Seismic Category I)





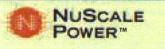
Passive Decay Heat Removal System


- Main steam and main feedwater isolated
- Decay heat removal (DHR) isolation valves opened
- Decay heat passively removed via the steam generators and DHR heat exchangers to the reactor pool

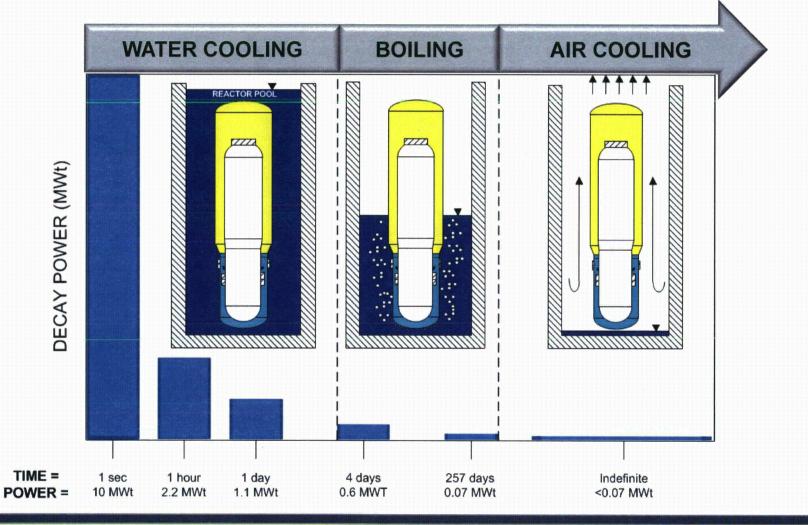


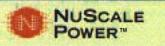
ECCS/Containment Heat Removal

- Reactor vent valves opened on safety signal
- When containment liquid level is high enough, reactor recirculation valves open.
- Decay heat removed:
 - condensing steam on inside surface of containment vessel
 - convection and conduction through liquid and both vessel walls



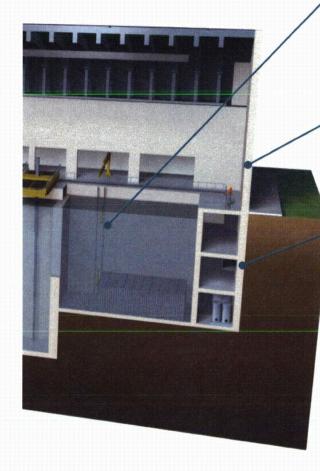
Ship by Truck, Rail, or Barge


- Integrated reactor module
- Factory manufactured
- Transportable by truck, rail, or barge
- 15 meters x 4.5 meters
 - 400 tons



Stable Long-Term Cooling without Pumps or Power

Containment and fuel cooled indefinitely for all 12 modules without pumps or power



Nonproprietary © 2012 NuScale Power, LLC

12

Spent Fuel Pool Safety

Increased Cooling Capacity

- More water volume for cooling per fuel assembly than current designs
- Redundant, cross-connected reactor and refueling pool heat exchangers provide full back-up cooling to spent fuel pool.

External Coolant Supply Connections

 Auxiliary <u>external water supply connections are easily</u> <u>accessible</u> to plant personnel and away from potential high radiation zones (current problem in Japan).

Below Ground, Robust Deep-Earth Structure

- Below ground spent fuel pool is housed in a <u>seismically</u> robust reactor building.
- Stainless steel refueling *pool liners are independent from* <u>concrete structure to retain integrity</u>.
- Pool wall located underground is <u>shielded from tsunami wave</u> <u>impact and damage.</u>
- <u>Construction of structure below ground in engineered soil</u> <u>limits the potential for any leakage.</u>

Handling Overview

]]

]]^{3(a)}

Nonproprietary	
© 2012 NuScale Power, L	LC

NUSCALE POWER"

Regulations and Guidance

- Regulations
 - 10 CFR Part 50
 - GDC 32, 61, 62, 63
- Regulatory Guides
 - 1.13, 1.26, 1.33
- NUREGs
 - 0612, 0554, 0800 (SRP)
- Codes and standards
 - ASME NQA-1, NOG-1, BTH-1, B30.2
 - ANSI/ANS 57.1
 - ANSI N14.6

15

Nuclear Module and Fuel Handling

]]

]]^{3(a)}

Nonproprietary	NUSCALE Power
© 2012 NuScale Power, LLC	Power™
	Nonproprietary © 2012 NuScale Power, LLC

Receiving New Fuel

]]

τ

AL AL LA LA LA LA LA

a aa ••

]]^{3(a)}

NUSCALE POWER"

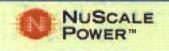
17

New Fuel Elevator

[[

]]^{3(a)}

NUSCALE POWER"


Ν	Ionproprietary
© 2012	NuScale Power, LLC

Fuel Handling Machine

[[

]]^{3(a)}

19

Reactor Building Crane

]]

NUSCALE POWER"

Module Import Trolley

]]

NUSCALE POWER"

Nonproprietary	
© 2012 NuScale Power,	LLC

Lower Reactor Pressure Vessel Loading from Transport

]]^{3(a)}

NUSCALE POWER"

Nonproprietary © 2012 NuScale Power, LLC

22

Module Import

]]

]]^{3(a)}

NUSCALE POWER"

Upper Reactor Module Import

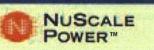
]]

]]^{3(a)}

NUSCALE POWER"

Nonproprietary	
© 2012 NuScale Power,	LLC

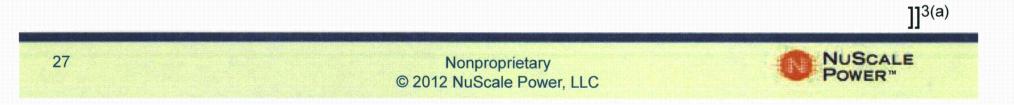
Upender and Dry Dock Operation


]]

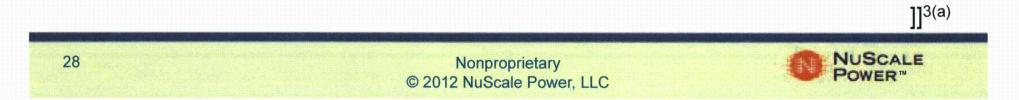
25 Nonproprietary © 2012 NuScale Power, LLC **NUSCALE Power**™

]]^{3(a)}

Module Upender


Nonproprietary © 2012 NuScale Power, LLC

]]^{3(a)}


26

Initial Fueling of Lower Reactor Pressure Vessel

Module Assembly

[[

Module Assembly

]]^{3(a)}

NUSCALE POWER"

Nonproprietary © 2012 NuScale Power, LLC

29

Reactor Flange Tool

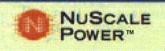
]]^{3(a)} NUSCALE POWER™

Nonproprietary © 2012 NuScale Power, LLC

30

[[

Cart Assembly


]]^{3(a)} NUSCALE POWER™

Nonproprietary © 2012 NuScale Power, LLC

31

Flange Bolting Operation

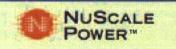
Nonproprietary © 2012 NuScale Power, LLC

]]^{3(a)}

32

Refueling

Dry Spent Fuel and Cask Handling

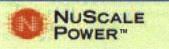


34

Design Progress Summary

]]^{3(a)}

Nonproprietary © 2012 NuScale Power, LLC



35

]]]

Feedback and Next Steps

- Regulatory guidance and NuScale compliance
- Standard operations and equipment
- Special requirements
- Design-Specific Review Standard development
- Future interactions

