

Containment Accident Pressure Committee

Task 4 – Operation in the Maximum Erosion Rate Zone (CVDS Pump)

Author:	Ankur Kalra (Sulzer Pump)
Project Manager:	Kenneth Welch (GEH)
Committee Chairman:	John Freeman (Exelon)

INFORMATION NOTICE

Recipients of this document have no authority or rights to release these products to anyone or organization outside their utility. The recipient shall not publish or otherwise disclose this document or the information therein to others without the prior written consent of the BWROG, and shall return the document at the request of BWROG. These products can, however, be shared with contractors performing related work directly for the participating utility, conditional upon appropriate proprietary agreements being in place with the contractor protecting these BWROG products.

With regard to any unauthorized use, the BWROG participating Utility Members make no warranty, either express or implied, as to the accuracy, completeness, or usefulness of this guideline or the information, and assumes no liability with respect to its use.

BWROG Utility Members			
CENG – Nine Mile Point	Chubu Electric Power Company		
DTE – Fermi	Chugoku Electric Power Company		
Energy Northwest – Columbia	Comisión Federal de Electricidad		
Entergy – FitzPatrick	Hokuriku Electric Power Company		
Entergy – Pilgrim	Iberdrola Generacion, S.A.		
Entergy – River Bend/Grand Gulf	Japan Atomic Power Company		
Entergy – Vermont Yankee	J-Power (Electric Power Development Co.)		
Exelon (Clinton)	Kernkraftwerk Leibstadt		
Exelon (D/QC/L)	South Texas Project		
Exelon (Oyster Creek)	Taiwan Power Company		
Exelon (PB/Limerick)	Tohoku Electric Power Company		
FirstEnergy – Perry	Tokyo Electric Power Company		
NPPD – Cooper			
NextEra – Duane Arnold			
PPL – Susquehanna			
PSEG – Hope Creek			
Progress Energy – Brunswick			
SNC – Hatch			
TVA – Browns Ferry			
Xcel – Monticello			

Executive Summary

This BWROG Technical Product provides an evaluation of the impact of cavitation on the service life of the Sulzer CVDS pump model used at the Monticello station and other BWR stations. The evaluation considers the potential effects of operating in the range of NPSH_A that result in the maximum erosion rate.

Implementation Recommendations

This product is intended for use to address (in part) issues raised in the NRC Guidance Document for the Use of Containment Accident Pressure in Reactor Safety Analysis (ADAMS Accession No. ML102110167). Implementation will be part of the BWROG guidelines on the use of Containment Accident Pressure credit for ECCS pump NPSH analyses.

Benefits to Site

This product provides a technical response to the NRC concerns raised about the potential for cavitation wear during long term pump operation in a post-accident environment.

SULZ	ER							
QUALITY LEVEL	SULZER	PUI	MPS (US) INC	D	00	CUMENT		
Direct		2.5.19	. ,				ASME SECT	CODE
Indirect	ORDER NO:						CLAS	
	TITLE: Ta	sk 4 –	- Operation in Maxin	ານm	Er	osion Rate Zone	CODE (YEAF	
	Su	lzer P	umps (US) Inc.				SEAS	
	Me	ontice	llo - 12x14x14.5 CV	DS	RH	IR Pump	YEAR	
	CUSTOMER G	E-HIT	TACHI Nuclear En	ergy	y A	mericas LLC		
	PROJECT M	ontice	ello Nuclear Powe	r Sta	atio	on, Monticello, M	N	
CUSTO	MER P.O. NO. 43	7054	820					
						CONTRAC	T NUMBER	
SPECIF	FICATION NO.					ITEM / TAG	G NUMBER	
CUSTOMER AP	PROVAL NUMBER	:	CUSTOMER APP	'RO\	VA	L REQUIREMENT		
				l No		☑ Informati		
	DMER APPROVAL STAN licable/available)	ΛP	CERTIFIED AS A VALI	D SU	JLZE	ER PUMPS (US) INC. D	OCUMENT	
(,		□ For Outside Ver	ndor		□ Risk Relea Report #		tion
			⊠For Manufacture					
			Sulzer Pumps (L	IS) li	nc.	□ Other (spe		
			APPROVALS (SIG	SNA	TU			Date
			Engineering			DN omaraseken)		04/23/12
			Quality Assurance					
CERTIFICATION	(when applicable)			1 [0	iginating Advan		<u> </u>
	certified to be in comp	liance				ept: Advan	ice Engine	ering
	ABLE PURCHASE OF 6, PROCEDURES, AN				D			
					Ву	Ankur Kalra	L	
THE APPENDICE	S.				Tit	le: Hydraulic D	esign Eng	gineer
					Da	ate: 11/7/2011		
Professional Engin	loor							
FIDIESSIDITAI EIIGIII						APPLICABLE S.		RS:
State	Registration	No.				100072780)	
Date				╞			<u> </u>	0
						E12.5.1912		Rev.
						DOCUMENT IDE	NTIFICAT	ION

TABLE OF CONTENTS

1.0	PURPOSE2
2.0	BACKGROUND2
3.0	SCOPE
4.0	ANALYSIS4
5.0	CONCLUSION12
6.0	BIBLIOGRAPHY13

SULZER Sulzer Pumps (US) Inc

1.0 PURPOSE

To evaluate the impact of cavitation on the service life of a Monticello RHR pump impeller. Cavitation in a pump can result in pump vibration, noise and component erosion. This report addresses the material erosion aspects of an impeller under cavitation. The material erosion of an impeller under cavitation is predicted using formulae from Gülich's Book; Centrifugal Pumps [Ref 1]. These formulae were developed in an EPRI study [6] from empirical data collected for various pump types for predicting the number of hours an impeller will survive under reduced Net Positive Suction Head (NPSH). The purpose of this evaluation is to show that the impeller service life is at least 30 days (720 hours) of operation when operating at reduced NPSH margin.

2.0 BACKGROUND

The service life of an impeller can be predicted based on a defined percentage of material loss due to cavitation erosion and on a known or predicted cavitation bubble length. The three primary factors influencing cavitation erosion are : 1) The hydrodynamic cavitation intensity. 2) The cavitation resilience of the material. 3) Time duration over which the cavitation is acting. The hydrodynamic cavitation intensity is related to the volume of the cavitation vapor (related to bubble length) in the flow and the differential pressure $(p-p_v)$ driving the implosion of the bubbles. The cavitation resilience is purely a function of the mechanical properties of the material. The rate of cavitation erosion will then depend on the hydrodynamic cavitation intensity, the material cavitation resilience and the time duration during which the cavitation is occurring. The service life of an impeller undergoing cavitation depends strongly on absolute pressure of the fluid (suction pressure minus vapor pressure) which drives the gas-bubble implosion, the impeller material properties (strength and modulus of elasticity), and on the flow characteristics and liquid properties. Gülich [Ref 1] explains that cavitation erosion occurs only when the hydrodynamic cavitation intensity (dependent on flow and fluid properties) exceeds the cavitation resistance (dependent on material properties; fixed for a given material and temperature) of the impeller material and that "hydrodynamic cavitation intensity increases with the total volume of all vapor bubbles created in the flow".

The length of the cavitation bubble is related to the bubble volume, which in turn is an indicator of the damage producing potential. The optimal way to determine the true bubble length for a given impeller geometry while operating under a given set of inlet conditions (flow rate and NPSHa) is by flow visualization from model testing. Recently, with the advent of advanced CFD techniques it is possible to simulate the bubble length as a function of inlet conditions. [[

]] Relationships between cavitation bubble length and the rate of material erosion have been derived empirically.

3.0 SCOPE

For evaluating impeller damage due to cavitation erosion; impeller material properties, flow properties, and available NPSH are considered for this analysis.

- a) Impeller life due to cavitation damage is predicted using Gülich's empirical formulae and CFD analysis results [8].
- b) Validity of the impeller life prediction formulae conducted during experimental and field operation analysis work is briefly discussed.
- c) Impeller life prediction method is presented in a step-by-step format. Calculation steps include methods for bubble length, material resilience, erosion power, erosion rate and impeller life calculation. Several conservatisms, which are listed in section 5, are incorporated in the calculation.

SULZER	Task 4 – Operation in Maximum	E12.5.1912	12-14-14 5 CVDS
Sulzer Pumps (US) Inc	Erosion Rate Zone		12x14x14.5 CVDS

4.0 ANALYSIS

A CFD study of the Monticello RHR impellers using a commercial CFD package was conducted to predict NPSH 3%, bubble lengths, and bubble location under varying flow rates and NPSH margins [8]. Figure 1 shows bubble lengths versus NPSH margin predicted by the CFD analysis for four different pump flow rates. As would be expected, Figure 1 shows the bubble length grows as the NPSH margin decreases.

[[

Figure 1: Bubble Growth versus NPSH margin

]]

SULZER Sulzer Pumps (US) Inc	Task 4 – Operation in Maximum Erosion Rate Zone	E12.5.1912 12x14x14.5 CVDS
The bubble lengths	and the corresponding NPSHa values ob	tained from the CED results are then
0	ormulae to predict maximum erosion rate	
	•	NPSH margins at different flow rates. It

is observed that the maximum erosion occurs at [[]] for an NPSHa margin of [[]]. A sample maximum erosion rate calculation for the [[]] flow is provided in the following sections of the report along with the corresponding impeller service life calculation.

[[

Figure 2: Erosion Rate versus NPSH Margin

NPSH values corresponding to the full diameter impeller (14.5") are used for this analysis. The current Monticello trim diameter is [[]] (approximately [[]] trim). [[

]]

SULZER Sulzer Pumps (US) Inc	Task	4 – Operatio Erosion Ra			num	E12.5.1912	12x14x14.5 CVDS
Impeller Material:	[[<u>SI units</u>]] <u>Imper</u>	<u>ial units</u>	
Tensile strength, R n Young's modulus, E Impeller blade thickr cavitation length ² , e Density of water, p (Gravitational constant Impeller outer diamete Circumferential velociti impeller eye, u ₁ Eye Area (each side	ness at at 95°F) nt, g eter, D ₂ er, D ₁ city ³ at	[[2.01 x 10 ¹¹ [[994 kg/m ³ 9.81 m/s ² [[N/m²]]]]	[[29,20 [[0.994 32.2 f		
, , , , , , , , , , , , , , , , , , ,	,	[[]]			11	
Meridional velocity ⁴ , NPSH 3%	C ₁	[[[[]] (]] as pred	licted by CFD)	

The formulae used in this report for predicting impeller erosion rate and impeller service life have been empirically derived from a large pool of cavitation test results obtained from several pump manufacturers for different pump types [6]. These test results were used to develop a correlation between NPSH, cavitation resistance, vapor density, speed of sound, gas content, and the erosion rate.

These formulae have been verified through experimentation using visual inspection techniques. Bruno Schiavello in paper, "Pump Cavitation – Various NPSHR Criteria, NPSHA Margins, and Impeller Life Expectancy" [Ref 5] validates Gülich's erosion rate formulae by comparing the cavitation damage depth on impellers in the field with the predicted values. Several other field tests and research papers have verified the use of these formulae for accurately predicting impeller service life.

² [[

³ Calculated as π x (impeller eye diameter) x (revolutions per second)

⁴ Meridional velocity is calculated as flow rate, Q, divided by eye area

SULZER	Task 4 – Operation in Maximum	E12.5.1912
Sulzer Pumps (US) Inc	Erosion Rate Zone	12x14x14.5 CVDS

Following steps outline the impeller life prediction method in a step-by-step approach.

Step 1: Calculate resistance to cavitation damage (U_R) for the impeller material

This quantity depends only on the impeller material properties. For [[]] at 35°C (95°F):

[[

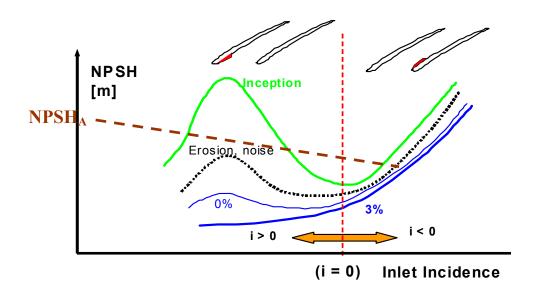
]]

Step 2: Estimate cavity length

Cavity length data is generally obtained experimentally using flow visualization techniques or analytically from CFD simulation results. In the case of the Monticello RHR pumps, cavity lengths were determined via CFD, see Figure 1. A bubble length of 0.05 m, obtained from the CFD analysis for 3900 gpm at the NPSH margin of 2.0 (predicted maximum erosion zone), is used for this sample calculation.

When the cavity length data is absent and there is an NPSH margin (additional NPSH available above the NPSH_{3%} required), the following formula can be used to estimate cavity length based on impeller geometry and coefficients derived from the NPSH values.

]]


]]

Depending upon flow conditions and the impeller inlet geometry the bubble formation can occur at the suction side, the pressure side or both sides of the impeller blade inlet (Figure 3 shows the general effect of incidence angle on cavitation bubble formation). Generally, zero incidence angle (i = 0) occurs at the BEP flow rate. However, 1-D Excel based flow calculation tools, and the CFD analysis results provide evidence that for the Monticello impeller design the positive flow incidence angle is observed at the blade inlet (suction side cavitation) even at the highest flow rate considered for the analysis ([[]]). Therefore, only suction side erosion calculation methods are used for the impeller life analysis. In the case of Monticello RHR impeller, the vertical red line (Figure 3), zero incidence occurs at approximately [[]] of BEP flow. Further, Figure 3 below also shows a

7

SULZER	Task 4 – Operation in Maximum	E12.5.1912	12-14-14 5 CVDS
Sulzer Pumps (US) Inc	Erosion Rate Zone		12x14x14.5 CVDS

general trend for NPSH_i (inception cavitation), NPSH_{3%}, Noise and Erosion as a function of inlet flow incidence.

Figure 3: NPSH, Noise and Erosion versus Inlet Incidence

The erosion formulae and the CFD results have been used to develop the relationship between erosion rate and the flow incidence angle (Figure 4) for the different flow rates. As shown in Figure 4, the lowest erosion rate zones are found at BEP ([[]]) and at low incidence angles

([[]]).

SULZER	Task 4 – Operation in Maximum	E12.5.1912	
Sulzer Pumps (US) Inc	Erosion Rate Zone		12x14x14.5 CVDS

[[

Figure 4: Maximum Erosion Rate versus Incidence angle

Step 3: Determine absolute pressure Δp at the impeller inlet

This is the differential pressure that drives bubble implosion. It is dependent upon NPSH_{A.} For this calculation, NPSHa is equal to [[]] times the NPSH_{3%} (See Figure 2 - maximum erosion zone at [[]]).

$$\Delta p = p_1 - p_V$$

= $\rho g(NPSH_A) - \frac{\rho}{2} c_1^2$
= $(994kg/m^3)(9.81m/s^2)(13.2) - \left(\frac{994kg/m^3}{2}\right)(6.47)^2$
= [[]]

 p_1 = suction pressure at impeller inlet p_v = vapor pressure at impeller inlet

Step 4: Determine erosion power PER

[[

]]

Erosion power is calculated as follows (Gülich, equation 6.1.2):

$$P_{ER} = C_1 \left(\frac{\Delta p}{p_{ref}}\right)^3 \frac{F_{cor}}{F_{mat}} \left(\frac{L_{cav}}{L_{ref}}\right)^{x_2} \frac{a}{a_{ref}} \left(\frac{\alpha_{ref}}{\alpha}\right)^{0.36} \left(\frac{\rho^{"ref}}{\rho^{"}}\right)^{0.44}$$

Where:

C ₁	= 5.4 x 10^{-24} W/m ² for suction side	de erosion (constant from empirical data)
Δр	= [[]]	(for [[]] flow rate)
p _{ref}	= 1 N/m ²	(used by Gülich in empirical calculations)
F _{cor}	= corrosion factor	
	= 1 for fresh water	(Sulzer Handbook 1.008.004 Table 3)
F _{mat}	= material factor	
	= 1 for ferritic steel	(Sulzer Handbook 1.008.004 Table 3)
L _{cav}	= [[]]	(From CFD analysis for [[]] flow rate)
L _{ref}	= 0.010m	(used by Gülich in empirical calculations)
X ₂	= 2.83 for suction side erosion	(constant from empirical data)
а	= speed of sound in the fluid	
	= [[]]	(water at [[]]) (Using Lubber and Graff's eqs)
a _{ref}	= 1497 m/s	(water at 20°C) (Using Lubber and Graff's eqs)
α	= gas content of fluid	
	= [[]]	([[]])
α_{ref}	= 24ppm	(reference: ordinary, untreated water)
ρ"	= density of saturated vapor	
	=[[]]	(water at [[]])
ρ" _{ref}	= 0.02 kg/m ³	(water at 20°C)

<u>For [[</u>

[[

]]

]]<u>:</u>

SULZER Sulzer Pumps (US) IncTask 4 – Operation in Maximum Erosion Rate ZoneE12.5.1912	12x14x14.5 CVDS
---	-----------------

[[]]

E_R = [[]] for [[]] flow

Step 6: Calculate expected impeller life LI, exp

$$L_{I,\exp} = \frac{(n)(e)}{3600\sum((\tau)(E_R))}$$

L _{I, exp}	= expected impeller life in hours
n	= defined proportion of impeller material lost at end of service life
е	= original thickness of impeller blade at site of cavitation
	= [[]]
τ	= duration of service at particular load considered

The function τ would be used in situations where the impeller was subject to different cavitation conditions over the course of its service life. In this study only one cavitation situation is being considered for the estimation of impeller service life, so $\tau = 1$.

[[

]]

[[

]]

SULZER	Task 4 – Operation in Maximum	E12.5.1912	
Sulzer Pumps (US) Inc	Erosion Rate Zone		12x14x14.5 CVDS

5.0 CONCLUSION

The cavitation erosion and the impeller service life calculations for the maximum erosion zone show						
that the Monticello RHR impeller wou]] while operating at the					
flow rate and NPSH margin correspo]] and [[]]				
respectively. This service life is [[]] times the minimum required servic	e life of [[

]]

Based on the above analysis, the impeller life at the maximum erosion rate greatly exceeds the [[]] mission time. Hence, it can be concluded that the impeller integrity is assured.

6.0 **BIBLIOGRAPHY**

- [1] J. Gülich <u>Centrifugal Pumps</u> (2008), Springer-Verlag publishers Section 6.6 "Cavitation erosion"
- [2] Speed of Sound in water -

http://resource.npl.co.uk/acoustics/techguides/soundpurewater/content.html#LUBBERS

- [3] ASTM Standards A487A/487M-93 (Reapproved 2007)
- [4] ASME B31.1-1995
- [5] Bruno Schiavello, "Pump Cavitation Various NPSHR Criteria, NPSHA Margins, and Impeller Life Expectancy".
- [6] Gülich JF: Guidelines for prevention of cavitation in centrifugal feedpumps. EPRI Report GS-6398, Nov 1989.
- [7] Philippe Dupont and Gary Fitch, "Impeller Life Prediction in Pumps", 10th European Fluid Machinery Congress, April 2008.
- [8] Philippe Dupont, Bruno Maroccia Investigation Report 2012, Numerical prediction of NPSH_{3%} by means of an impeller only CFD calculation for Monticello 12x14x14.5CVDS.