Lockheed Martin Nuclear Systems & Solutions

LOCKHEED MARTIN

Nuclear Systems & Solutions

DAL201210006 CLEARED FOR PUBLIC RELEASE

CLEARED FOR PUBLIC RELEASE

CN1012071

Outline/Agenda

- Introduction to Lockheed Martin
- FPGA-based Safety System Platform

Introduction - Lockheed Martin

A Leader in Global Security

The Men and Women of Lockheed Martin

- 123,000 Employees
- 66,000 Scientists, Engineers and IT Professionals
- Operations in 573 Facilities, 500
 Cities, 46 States and 75 Countries

Partners to Help Customers Meet Their Defining Moments

Lockheed Martin Locations

Our Customers

- Departments of
 - Defense
 - Homeland Security
 - Commerce
 - Energy
 - Health & Human Services
 - Housing & Urban Development
 - Justice
 - State
 - Transportation
- NASA
- Social Security Administration
- Environmental Protection Agency
- U.S. Postal Service
- Intelligence Communities
- Foreign Governments

We Never Forget Who We're Working For ™

DAL201210006 CLEARED FOR PUBLIC RELEASE

Lockheed Martin Energy Portfolio

Information Systems & Global Services

- Energy Efficiency
- Technical & Engineering Services
- Smart Grid
- Site & Lab Management

Electronic Systems

- **Energy Generation**
 - Solar

•

- Ocean Thermal
- Wave
- Biomass
- Fuel Cells
- Storage
- Micro-Grids
- Nano-Technology
- Nuclear Controls

Space Systems

- Carbon Monitoring Exploration
- Solar Power Exploration
- Wind Prediction

Aeronautics

- Aircraft Energy
 Technology
- Fuel Efficiency

A Global Security Company Addressing Energy and Climate Challenges

Nuclear I&C and Complementary Products

- Largest I&C supplier to the U.S. Navy systems on ALL nuclear vessels
- Design and manufacturing for GEN3+ reactor systems
 - Contracted and teamed with providers of safety-related equipment and designs
 - Commercial I&C
 - Safety (Class 1E) and non-safety equipment applications
- Integrated analog and digital designs
- Harsh environment/high reliability
 - Devices qualified to strict military standards (environmental)

Proven Track Record on Domain-relevant Products

DAL201210006 CLEARED FOR PUBLIC RELEASE

About Lockheed Martin

- **Development and support of products with life-spans** measured in decades **Major Competencies**
- Significant relevant competencies
- Extensive resources in people, labs, manufacturing, tools, and training provides vast amount of "reach back"

People and Places

- 123,000 employees
- 66,000 scientists and engineers
- 25,000 IT professionals
- Operations in 573 facilities, 500 cities, 46 states and 75 countries

- Nuclear I&C
- **Systems Engineering**
- **System Integration and Test**
- **Digital System Design**
- Safety Critical System Design
- **Product Sustainment**
- **Program Management**
- **Production Manufacturing**
- Logistics •
- Virtual Prototyping
- System Simulation/Modeling
- **Electronics Packaging**
- **Reliability/Maintainability** •
- Advanced Algorithms
- **Quality Assurance**

Beginning-to-End Product Development and Support

Established, Rigorous Process

 Mature Quality and Safety processes have proven history of building and certifying safety critical systems to our customers

Mature Process Maps to NRC Requirements Provides Roadmap to Qualification

SNPAS Partnership

- Lockheed Martin and State Nuclear Power Automation Engineering Systems (SNPAS) executed a Cooperative Development Agreement during Q4 2010
 - Received DoE Determination in September 2010
 - Established Dedicated Facility Outside of Scranton, PA in Q1 2011
 - SNPAS Technical Development Team On-Site in Dedicated Facility since Q2 2011
- Cooperative Development Program Activities
 - Mature the NuPAC Conceptual Design to a Documented, Validated and Qualified Platform
 - Perform CAP1400 Reactor Protection System (RPS) Requirements Analysis
 - Conceptualize CAP1400 RPS Architecture From NuPAC Platform Elements
 - Establish SNPAS Systems Engineering Policy, Procedure & Instruction Infrastructure Based on NQA-1
 - Provision of Initial Target Plant CAP1400 RPS Hardware

FPGA-based Safety System Platform

Motivation

- The application of digital technology challenges the licensing of I&C safety systems
- Key Issues
 - Potential software common-cause failures
 - Inter-channel communication
 - Cyber security
 - Communication between non-safety and safety systems
 - Dedication of commercial off-the-shelf equipment

CN1012071 - 15

- Provide a control system platform for digital I&C safety systems to support the effective design, construction and operation of both existing and new reactors
- Key Points:

Objective

- Digital technologies enhancing safety, reliability and efficiency
- Technical approach eliminating commoncause failure vulnerabilities
- Design, qualification and production under an Appendix B quality assurance program

Complexity Over Time

DAL201210006 CLEARED FOR PUBLIC RELEASE

Safety System Platform

• The DS3[™] a.k.a. the NuPAC

- Based on functional and physical requirements in EPRI TR-107330
- Design to eliminate common-cause failure vulnerabilities
 - No microprocessors, operating systems, or executable software
 - FPGA-based state machine
- Design for safety
 - Simple and deterministic
 - Functionally and physically segmented
- Security of an embedded system
- Certified Building Blocks
 - Generically-qualified (with U.S. NRC approval) modules ready to be configured for customers' applicationspecific requirements

NRC Approved – Generic Building Block (Safety Evaluation Report)

A Premier FPGA-based Platform Designed Specifically for Use in NPP I&C Safety Systems

Development Process Requirements

- Lockheed Martin Process
- Project-specific processes for programmable logic
 - IEEE Std. 7-4.3.2-2003
- Quality Assurance Requirements
 - QMS meets ASME NQA-1

Starting Point for the Product Design Activities

CN1012071 - 18

Product Specification

Lockheed Martin Product Specification

- Derived requirements from NRC incorporated, endorsed, or accepted industry standards
 - Functional, Performance, and Physical Requirements
 - Based on EPRI TR-107330

10CFR50.55a(h)

NUREG-800

(SRP Chapter 7)

NRC SER

(Project Number 669)

EPRI TR-107330

(Generic Qual of

Commercial PLC)

RG

1.152

Product

Specification

DAL201210006 CLEARED FOR PUBLIC RELEASE

Copyright © 2012 Lockheed Martin – All Rights Reserved

Form Factor and Function Similarity to Commercially-available PLCs

CN1012071 - 19

Physical Architecture

- Generic, modular, scalable and distributed
- Generic Logic Module (GLM)
 - Input Processing, Logic Solving, Output Processing
- Chassis mounted / cabinet installed
- Industry-standard card form factors and chassis
- Suitably rugged for design basis events and long service life
 - Withstand requirements per EPRI TR-107330
 - Environmental, EMI/RFI, ESD, Seismic

Paradigm

• Integrates all functionality of a PLC on a single GENERIC LOGIC MODULE, the GLM

- User-configurable I/O supports all standard types
- Provides an onboard FPGA-based logic solving capability
- Scalability provided by paralleling and cascading GLMs
 - Efficiently supports partial system upgrades/retrofits up to complete safety system replacements or new plant safety system architectures

Promotes SYSTEM SAFETY

- Avoids the highly-integrated and highly-complex (Decentralized vs. Centralized Architecture)
- Keeps the design as simple as possible architecture reduces system infrastructure and associated complexity
- Supports functional and physical partitioning
- Simple hardware-based state machine versus a complex microprocessor with an operating system and software
- Facilitates diversity, verifiability, and thus licensability

SIMPLIFIES system-level FMEA for retrofits

Akin to Legacy Hardware-based Systems (e.g. Trip Modules)

Functional Partitioning

Partitioning of logic solving capability

Keep the design as SIMPLE as possible

- Avoids the highly-integrated and highly-complex
- Many small modest logic elements instead of one large complex logic element
- No system size limitations, and no performance degradation with increase in system size
- Enhances ability to verify and validate
- Provides the easiest path to licensing success

Notional Implementation

- Platform provides a flexible FPGA-based architecture
- Applicable to both safety & non-safety applications
- Seeking generic approval via NRC Safety Evaluation Report (SER)
- Submitted topical report accepted for review in May 2012

Questions

