Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Subcommittee on Fukushima
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Wednesday, October 3, 2012

Work Order No.: NRC-1921

Pages 1-375

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	SUBCOMMITTEE ON FUKUSHIMA
8	+ + + +
9	WEDNESDAY
10	OCTOBER 3, 2012
11	+ + + +
12	ROCKVILLE, MARYLAND
13	+ + + +
14	The Subcommittee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2B3, 11545 Rockville Pike, at 8:30 a.m., Stephen P.
17	Schultz, Chairman, presiding.
18	
19	SUBCOMMITTEE MEMBERS:
20	STEPHEN P. SCHULTZ, Chairman
21	J. SAM ARMIJO, Member
22	SANJOY BANERJEE, Member
23	DENNIS C. BLEY, Member
24	CHARLES H. BROWN, JR. Member
25	MICHAEL L. CORRADINI, Member
ļ	

		2
1	DANA A. POWERS, Member	
2	HAROLD B. RAY, Member	
3	JOY REMPE, Member	
4	MICHAEL T. RYAN, Member	
5	WILLIAM J. SHACK, Member	
6	JOHN D. SIEBER, Member	
7	GORDON R. SKILLMAN, Member	
8	JOHN W. STETKAR, Member	
9		
10	NRC STAFF PRESENT:	
11	ANTONIO DIAS, Designated Federal Official	
12	SUDHAMAY BASU, RES/DSA	
13	JEROME BETTLE, NRR/DSA	
14	TIM COLLINS, NRR/DSS	
15	ROBERT DENNIG, NRR/DSA	
16	ROBERT FRETZ, NRR/JLD	
17	ED FULLER, RES/DRA	
18	TINA GHOSH, RES/DSA	
19	JOHN MONNINGER, NRR/JLD	
20	AJ NOSEK, RES/DSA	
21	ALLEN NOTAFRANCESCO, RES/DSA	
22	WILLIAM RULAND, NRR	
23	MARTY STUTZKE, RES/DRA	
24	AARON SZABO, NRR/DPR	
25		
Į		

		3
1	ALSO PRESENT:	
2	NATHAN BIXLER, Sandia National Laboratories	
3	PAUL GUNTER, Beyond Nuclear*	
4	MARK LEYSE*	
5		
6	*Participating via telephone	
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
I	I	

	4
1	A-G-E-N-D-A
2	Opening Remarks 5
3	Steve Schultz, ACRS
4	Introduction
5	Robert Fretz, JLD
6	Design and Regulatory History, and
7	Foreign Experience
8	Robert Dennig, DSS
9	Filtered Containment Venting System (FCVS) in Severe
10	Accident Management
11	Jerry Bettle, DSS
12	MELCOR Analysis
13	Sud Basu, RES
14	MACCS2 Analysis
15	Tina Ghosh, RES
16	Nathan Bixler, Sandia
17	Risk Evaluation
18	Marty Stutzke, RES
19	Regulatory Analysis
20	Aaron Szabo, DSS
21	Qualitative Arguments
22	Tim Collins, DSS
23	Next Steps
24	Robert Fretz, JLD
25	Public Comment
I	

	5
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIR SCHULTZ: Good morning. This
4	meeting will now come to order. This is a meeting
5	of the Advisory Committee on Reactor Safeguards
6	Subcommittee on Fukushima. I am Stephen Schultz,
7	chairman of the subcommittee.
8	Members of the subcommittee in
9	attendance are Jack Sieber, Sanjoy Banerjee, Dick
10	Skillman, Dennis Bley, Dana Powers, Harold Ray, Sam
11	Armijo, John Stetkar, Michael Ryan, Bill Shack,
12	Charlie Brown, Joy Rempe and Mike Corradini.
13	The purpose of today's meeting is to
14	receive a briefing and hold discussions with the
15	staff on the development of a position paper
16	addressing the value of filtered vents.
17	The entire meeting will be open to
18	public attendance. Rules for the conduct of
19	participating in this meeting have been published in
20	the Federal Register as part of the notice for this
21	meeting.
22	The subcommittee will hear presentations
23	by and hold discussions with representatives of the
24	NRC staff and other interested persons regarding
25	this matter. The subcommittee will gather
ļ	

(202) 234-4433

	6
1	information, analyze relevant issues and facts,
2	formulate proposed positions and actions as
3	appropriate for deliberation by the full committee.
4	Another subcommittee meeting on the same
5	briefing is scheduled for October 31st followed by a
6	full committee briefing in November. The staff is
7	currently developing a position paper that is due to
8	the Commission by the end of November.
9	Antonio Dias is the Designated Federal
10	Official for the meeting. A transcript of the
11	meeting is being kept and will be made available as
12	stated in the Federal Register notice. We request
13	that all speakers first identify themselves and then
14	speak with sufficient clarity and volume so that
15	they can be readily heard.
16	We have received no written comments
17	from the public. We have received requests for time
18	to make oral statements from Mr. Mark Leyse and Mr.
19	Paul Gunter. I understand that there are other
20	stakeholders in the audience as well as on the
21	bridge line today who are listening in on today's
22	proceedings and they will also be given the
23	opportunity to address the subcommittee at the end
24	of the briefing.
25	As stated we have future meetings
l	I

(202) 234-4433

	7
1	established for hearing additional information
2	related to this topic. We have already had two
3	meetings of the subcommittee, one an introduction to
4	the topic held earlier this year and another
5	subcommittee meeting held just recently. But this
6	is the most developed presentation that we have had
7	so far and so we look forward to today's discussion.
8	We'll now proceed with the meeting and I
9	will call upon Mr. Bill Ruland from the Office of
10	Nuclear Reactor Regulation to open the
11	presentations. Bill? Thank you.
12	MR. RULAND: Thank you, Mr. Chairman and
13	good morning to everyone.
14	The staff is here today to discuss the
15	regulatory analysis it has prepared to inform a
16	Commission decision on the need for additional
17	improvements to the containment venting systems that
18	were ordered for BWR Mark I and Mark II plants in
19	March of this year.
20	The staff was directed by the Commission
21	to provide backfit analyses under the current
22	regulatory analysis framework for two incremental
23	changes.
24	First, modify the current ordered
25	reliable hardened vent such that the vent will be
	I

(202) 234-4433

(202) 234-4433

	8
1	functional in severe accident conditions. The
2	current requirements do not include severe accidents
3	capability, only station blackout functionality.
4	Second, require that a high-efficiency
5	external filter be included as part of the severe
6	accident capable vent system.
7	Today the staff will provide you with
8	considerable information gathered and the analysis
9	performed for these options to support the
10	Commission's decision.
11	As you alluded to, or as you stated, Mr.
12	Chairman, in future meetings the staff will present
13	its recommendations. We'd like to receive a letter
14	of course from the committee after those meetings.
15	I believe it's fair to say at the outset
16	that while the per-plant cost using available
17	technology is not judged prohibitive the staff
18	expected that the filtered containment venting
19	system would not pass the quantitative cost-
20	beneficial test under the current regulatory
21	analysis framework. Also, a conclusive argument for
22	adequate protection was not anticipated.
23	The findings that we present today are
24	consistent with those expectations. Consequently,
25	the staff's recommendation will depend heavily on
Į	1

(202) 234-4433

	9
1	consideration of other qualitative factors. This
2	weighing of qualitative factors is ongoing and is
3	the key task before the staff now.
4	The staff will speak today for all of
5	the matters I've touched on in this brief
6	introduction as well as as to how the EPRI analysis
7	in the recently published technical report have been
8	considered.
9	We look forward of course to your
10	questions. Bob, do you want to introduce the team,
11	please?
12	MR. FRETZ: Sure. Thank you, Bill, and
13	thank you, Dr. Schultz and the committee for giving
14	us the opportunity to brief you on this subject.
15	With me here at the table is John
16	Monninger. I guess you can introduce yourself.
17	MR. MONNINGER: Good morning. I'm John
18	Monninger, the associate director of the Japan
19	Lessons Learned project director within the Office
20	of Nuclear Reactor Regulation.
21	MR. DENNIG: Bob Dennig, chief of the
22	Containment and Ventilation Branch at NRR.
23	MR. BETTLE: Jerome Bettle. I work for
24	Bob Dennig in the Containment and Ventilation
25	Branch.
l	I

(202) 234-4433

MR. FRETZ: Good morning. Again as this slide suggests the purpose of our presentation is to brief you on at least the preliminary results of our regulatory analysis regarding the issue of filtered venting. And again, looking at our analysis related to the BWR Mark I and Mark II containment designs only.

And here's a slide on the proposed 8 I understand that in order to accommodate 9 schedule. members of the public as well as other proposed 10 speakers we will not be following this. We'll be 11 following the actual agenda that was published and 12 placed on there. But again, this is our proposed 13 14 schedule. It's a very challenging schedule.

Again, the outline for today's discussions is shown on slide 4. And as you can see by the materials that we handed out for today's briefing there's a lot of material to discuss.

I guess the good news is that there will be one or two speakers speaking so that we will be able to present you with the various experts from each of the areas that provided their input and expertise in the various matters.

Again, as mentioned earlier some of this material we have discussed before but we felt that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	11
1	it was very important to go over some of the things
2	we talked about in previous meetings to at least
3	provide the opportunity for just discussion on those
4	matters. We had additional questions been
5	thought of from the previous meetings.
6	And again, we will finalize the
7	discussion with our next steps, pretty much where do
8	we go from here.
9	And as mentioned earlier, this whole
10	effort culminates with an IOU to the Commission to
11	provide its recommendations by November 30th. That
12	seems like a couple of months from now but there's a
13	lot to do between now and then. As previously
14	alluded, we will be coming before the subcommittee
15	at the end of this month as well as the full
16	committee on the following day.
17	And again we appreciate the coordination
18	that we've had between the staff and the ACRS
19	regarding scheduling of those meetings. I know it's
20	been a challenge to make sure that everyone was
21	available to at least hear what the staff said. So
22	again, there's a lot to do.
23	The staff has a number of interactions
24	that it will have with the Fukushima Steering
25	Committee between now and the time we speak next.
	I

(202) 234-4433

	12
1	And again it all culminates to submitting a
2	Commission paper by the end of November. Next
3	slide, slide 6.
4	Again, the purpose of the paper is
5	known. As mentioned by Bill Ruland we are going to
6	be looking at a number of options including whether
7	or not to install severe accident-capable vents or
8	filtered vents. And another option that we are
9	looking at is a performance-based approach. And
10	that will be discussed during the subsequent
11	discussions today.
12	Our SECY paper outline essentially
13	follows our discussion that we had today. This
14	slide might be a little bit familiar from our
15	previous things, but the staff there's a lot of
16	information to present.
17	And the staff intends to provide the
18	bulk of the details relating to various subject
19	matters in enclosures to a SECY paper that will
20	summarize essentially what's in the enclosures. We
21	felt that there's a lot of information to present
22	and we wanted to present it to the Commission in a
23	clear way so that they can again be informed on the
24	various aspects of it.
25	The first three enclosures are really
I	I

(202) 234-4433

	13
1	intended to provide sort of a foundation or lay a
2	common understanding of venting and severe accident
3	management and how they all relate.
4	The technical analysis enclosure will
5	provide information relating to essentially the
6	information that was important for coming up with
7	this regulatory analysis and the conclusions from
8	the regulatory analysis. Again, we will discuss an
9	evaluation of various options that we are
10	presenting.
11	And finally, we do plan to discuss our
12	involvement with stakeholders. We felt that that's
13	been a very important part of the process, to engage
14	not only the regulated industry but as well as
15	members of the public during this whole entire
16	process.
17	Current status. One of the things we
18	want to stress is that our technical and policy
19	assessments are ongoing. We are still working on
20	some of the results. In fact, as a bit of
21	housekeeping, as an attachment to your slides we do
22	have a 3-page addendum highlighting some of the
23	latest information that we have gotten regarding the
24	MELCOR analysis. So again, we are right now only in
25	the preliminary stage. Again, this is what we hope
	I

(202) 234-4433

	14
1	to share with you today.
2	Again, as I mentioned earlier the staff
3	will continue to engage the Fukushima Steering
4	Committee on developing the path forward. And again
5	we will be making recommendations once this
6	assessment is complete.
7	I'd like to turn the presentation over
8	to Bob Dennig who is the chief of the Containment
9	and Ventilation Branch in the Office of Nuclear
10	Reactor Regulation.
11	CHAIR SCHULTZ: Thank you, Bob. Bob,
12	before you start I'd just like an administrative
13	item to be handled.
14	Those of you who are on the bridge line,
15	please if you have mute capability on your phones
16	please use them. We are getting some feedback in
17	the room from individuals turning pages. And we
18	also get static if the phones are not on mute. So
19	please take advantage of that and put your phones on
20	mute until there is an opportunity for comment later
21	today.
22	Thank you. Bob?
23	MR. DENNIG: Thank you. I'm going to
24	move quickly through a high-level summary of
25	basically regulatory history from Mark I's and Mark
ļ	I

(202) 234-4433

	15
1	II's. The technical implications and details of
2	some of these aspects will be talked about by
3	subsequent speakers from the Office of Research.
4	First slide, please.
5	At the beginning, basically Mark I
6	containments have been on the radar screen for quite
7	some time. Probabilistically it goes back to WASH-
8	1400. The nominal characteristics that put it on
9	the radar screen is the inability to handle severe
10	accident overpressure challenges and this is because
11	of the inability to deal with gas buildup in a
12	severe accident, and the fact that BWRs have three
13	times the quantity of zirconium as PWRs which gives
14	the potential for generating a substantial amount of
15	hydrogen gas during a severe accident. Next slide,
16	please.
17	All of the containments were looked at
18	as you well know in the Containment Performance
19	Improvement Program and the Mark I was sort of the
20	flagship or the origin of that program. Coming out
21	of that program the staff recommended several
22	modifications to improve the robustness or the
23	performance of the Mark I containment in severe
24	accident conditions and those include the improved
25	hardened vent.
I	

(202) 234-4433

	16
1	By "hardened" we mean that the plants
2	always had the capability to vent through a low-
3	pressure standby gas treatment path, but that was
4	judged to be unreliable and would not take the
5	pressures post accident. And so "hardened" means
6	that it will take higher pressures reliably.
7	Reactor pressure vessels
8	depressurization system improvements. This had to
9	do with extended dc power for operating SRVs. This
10	has been addressed by the SBO capability that's in
11	the new order.
12	Provide alternate water supply to
13	reactor pressure vessel and drywell sprays. You'll
14	hear later how this has been folded into the
15	response to 9/11 and more recently in mitigating
16	strategies. And then of course improve emergency
17	procedures and training.
18	Coming out of that SECY paper was 89-17.
19	The Commission at that time approved the hardened
20	vent as a feature that could be put into be
21	installed under 50.59 by BWR Mark I's and so that
22	resulted in the issuance of the Generic Letter 89-
23	16. And that gets us to where we were before
24	Fukushima.
25	The other recommendations were parsed
	I

(202) 234-4433

	17
1	off to be included in the IPE program which was
2	ongoing at that time. Next slide, please.
3	MEMBER SIEBER: Just as a matter of
4	clarification, this hardened vent is seismically
5	capable?
6	MR. DENNIG: No.
7	MEMBER SIEBER: No, okay.
8	MR. DENNIG: No.
9	MEMBER SIEBER: If it's not seismically
10	capable how capable of handling deflagration or
11	detonation?
12	MR. DENNIG: The generic letter said
13	that it should be able to deal with that. That was
14	in the generic letter.
15	MEMBER SIEBER: Okay.
16	MR. DENNIG: So to the extent that
17	MEMBER SIEBER: Were they designed that
18	way? The ones that were installed.
19	MR. DENNIG: The staff's overview was to
20	look at the responses to the generic letter
21	following the BWR Owners Group guidance and I
22	believe that included that factor. I don't know to
23	what extent anybody did any check calculations or
24	anything like that.
25	MEMBER SIEBER: Well, to me that's an
	1

(202) 234-4433

	18
1	important factor and one that I would like to
2	personally look into further.
3	MR. DENNIG: Well that currently is not
4	part of what's in the order.
5	MEMBER SIEBER: Okay.
6	MR. DENNIG: Next slide, please. A
7	similar accident signature profile to the Mark I.
8	The exception that was noted is that the TW sequence
9	was not as predominant for Mark II's. Interestingly
10	the risk profile was dominated by early failure with
11	a release that
12	MEMBER BLEY: I'm not sure that
13	everybody knows the TW. Could you?
14	MR. DENNIG: It's a loss of containment
15	heat removal capability with not necessarily losing
16	core-cooling capability.
17	Anyway, the risk profile was dominated
18	by early failure with release that bypasses the
19	suppression pool. For that reason at that time the
20	venting that was being considered for the Mark I was
21	considered for the Mark II but it was not brought
22	forward because it would require, in the view of the
23	people doing the analysis it would require an
24	external filter similar to the one that was being
25	that had just been installed in all the Swedish
	I

(202) 234-4433

	19
1	plants which is the MVSS, Multi-Venturi Scrubbing
2	System.
3	So one aspect of this is we have an
4	order out there that has a vent that's not filtered
5	for Mark II's so there's some need to revisit this
6	observation with regard to filtering for Mark II's.
7	Again, we didn't go forward with the
8	generic backfit hardened vent. It was spun off into
9	the IPE program. Next slide, please.
10	With regard to this is a very quick,
11	breezy summary of filtered containment vents here.
12	You can track back to a TMI action item that was
13	enshrined in 50.34(f) that provided one or more
14	dedicated containment penetrations sized to a single
15	3-foot, et cetera, et cetera, et cetera. So there
16	was some provision going forward for filtering.
17	Shoreham submitted a supplemental
18	feature for their containment that was basically the
19	Barseback filtration system which is Jerry will
20	talk later about this. It's a very large, large,
21	large, large containment cylinder of gravel.
22	I've mentioned that the possibility of
23	filters came up during the CPIP. It wasn't pursued
24	at that time. There wasn't any detailed cost-
25	benefit analysis done. The filters that were
I	I

(202) 234-4433

	20
1	available included Venturi scrubbers but that wasn't
2	looked at. We were still looking at large, large
3	gravel field-bed sand beds as a primary concept.
4	MEMBER CORRADINI: Just an information
5	question. So all these various designs you're
6	speaking about have tested decontamination factors?
7	There is data out there to look at if one were to
8	install it the decontamination factor would be X, Y
9	or Z?
10	MR. DENNIG: The ones that are installed
11	elsewhere and are available now, yes. Jerry will
12	talk about that when we get to his presentation.
13	You notice that anything I don't want to talk about
14	is Jerry's.
15	(Laughter)
16	MEMBER POWERS: Well, I think it's
17	important to understand, Mike, that when they say a
18	decontamination factor of so much and depending
19	on what you're putting into this.
20	MEMBER CORRADINI: Well, I was going to
21	say it depends on the input, the input isotopes.
22	MEMBER SIEBER: And physical forms.
23	MEMBER POWERS: Well, I mean most of
24	these things depends actually on the particle size.
25	If I put marbles in I'd probably have very high
I	I

(202) 234-4433

	21
1	decontamination factors for most filtration systems.
2	If I put atoms in I don't have any decontamination
3	factor at all. So these have been tested against
4	some
5	MEMBER SIEBER: Input distribution and
6	flow.
7	MEMBER POWERS: input material. I
8	mean, we have not I keep hoping for a RAND but
9	apparently we don't have any filtered vents hooked
10	up to reactors that have accidents. So we don't
11	really have a test on the actual material going in.
12	And what goes into the filtered vent
13	depends on everything that's occurred before it gets
14	to that filter. So, you've got to put a codicil on
15	all these decontamination factors that people quote
16	because kind of the way people in the business of
17	marketing filtered systems tend to quote rather high
18	decontamination factors and they're absolutely
19	accurate given what they put into it.
20	MR. DENNIG: Next slide, please. Just a
21	recap of the order that was issued in, what was it,
22	February? EA-12-050, Reliable Hardened Vent Capable
23	of Performing During Prolonged SBO. And it is
24	designed for use prior to onset of core damage
25	designed for the prevention of core damage, to
I	I

(202) 234-4433

	22
1	remove heat from the containment and depressurize
2	the containment.
3	Severe accident conditions were not
4	folded in. We did ask that they be designed to
5	minimize operator actions but we didn't do anything
6	by way of making sure that they would be protected
7	from post-accident high radiation and could perform
8	those operations. And we did stipulate that it
9	would discharge at a release point above the main
10	plant structures.
11	The installed vents in some cases did
12	not do that so we made sure that that was covered in
13	the current order. But again, hydrogen is not part
14	of the mix there. Next slide, please.
15	I think we've spoken with the committee
16	on a number of occasions on our foreign information-
17	gathering and the report. The paper will have an
18	enclosure that talks about all that and seeks to
19	summarize it, pull it all together.
20	One I guess general observation was that
21	what we heard in talking to regulators and licensees
22	overseas was basically what one could find in the
23	1988 CSNI report, "Specialist's Meeting on Filtered
24	Containment Venting Systems." Again, that was from
25	1988.
l	I

(202) 234-4433

	23
1	And I would direct your attention to
2	that. It does talk at length about submicron
3	particles and testing for efficiencies with
4	submicron particles. I'm pretty sure that the data
5	to independently confirm that isn't there but it at
6	least gives you a sense that the topic was
7	addressed.
8	The other insight was that the filtered
9	containment venting system is considered as part of
10	a severe accident management system that is there to
11	as passively as possible control containment
12	pressure while you are trying to restore containment
13	flooding and core cooling. And so they see it as a
14	suite if you will of capabilities. Get water in,
15	make sure that the containment takes care of itself,
16	we don't have to manage that.
17	MEMBER BANERJEE: Is that CSNI report
18	available?
19	MR. DENNIG: Oh, sure.
20	MEMBER BANERJEE: Relatively readily?
21	MR. DENNIG: Yes.
22	MEMBER BANERJEE: Could we get hold of
23	it?
24	MEMBER POWERS: There is that report,
25	but there's also a specialist report on the status

(202) 234-4433

	24
1	of aerosol science. And there's an appendix on
2	filtered vent in that. And it's actually pretty
3	decent, more of a status report than it is, you
4	know, here's how these things work and here's how
5	well they work. But it updates.
6	MEMBER BANERJEE: Any experimental
7	results?
8	MEMBER POWERS: There are lots of
9	various things. Is there an experiment on a full-
10	blown filter system? Well, there's some on a
11	Venturi system, a scrubber, Venturi scrubber,
12	especially water-injection Venturis were done at SKI
13	but not as much as you would like.
14	There are lots and lots of issues on how
15	well these perform, especially with radioactive
16	materials.
17	MEMBER BANERJEE: So most of the tests,
18	Dana, were done with surrogates?
19	MEMBER POWERS: Technically, yes.
20	MEMBER BANERJEE: Thanks.
21	CHAIR SCHULTZ: Is the timing of that
22	report that you mentioned about the same?
23	MEMBER POWERS: No, no, no, it was
24	written
25	MR. DENNIG: 2009 I think is the
ļ	I

(202) 234-4433

	25
1	MEMBER POWERS: Yes, in the two
2	thousands or something, and it updates.
3	MR. DENNIG: I think it's 2009, CSNI
4	something something.
5	MEMBER POWERS: It has a superb
6	discussion of aerosol physics. Truly insightful.
7	MEMBER STETKAR: Did you write that
8	part?
9	(Laughter)
10	MEMBER BANERJEE: I presume that we know
11	the author.
12	MEMBER CORRADINI: I'm glad there's no
13	pride of authorship. Let me ask a different
14	question. So, taking away the experimental data for
15	I think I had asked this when I think you guys
16	were here in July. I don't remember exactly when
17	you were talking about foreign experiments. But I
18	thought it was asked at that time that you were
19	going to check into whether we pick any of these in
20	Sweden for example. Do they at least go through a
21	consistent set of calculations with their dominant
22	sequences
23	MR. DENNIG: Yes.
24	MEMBER CORRADINI: that show the
25	performance?

	26
1	MR. DENNIG: Yes.
2	MEMBER CORRADINI: So that you actually
3	see differences with and without?
4	MR. DENNIG: They are currently
5	requiring their plants that are being uprated to
6	perform a full, I think all the way at level 3 PRA
7	to confirm that with the 3 it will operate as a
8	standard.
9	So, and at the time that this was done
10	there was a program called the MITRA that was a
11	joint program with industry and the Swedish
12	regulator in which all these kinds of calculations
13	were done. One of the prescriptions in the 1980-81
14	government order was that they would examine all
15	overpressure sequences probabilistically and also
16	that if there was any alternative to using a filter
17	that that would be brought forward as this program
18	went on. So that was written into the law. So yes,
19	they have done all this.
20	MEMBER STETKAR: Do you know the results
21	of those comparative studies?
22	MR. DENNIG: In the sense of well,
23	the bottom line was there wasn't I don't have the
24	details of what they looked at and what they found,
25	but the outcome was that they didn't find an
ļ	I

(202) 234-4433

	27
1	alternative. That much we were told.
2	MEMBER CORRADINI: I guess what I'm
3	asking
4	MEMBER STETKAR: Release categories with
5	and without the filter is what I was asking about.
6	MEMBER CORRADINI: Right.
7	MEMBER STETKAR: Right.
8	MR. DENNIG: Yes.
9	MEMBER STETKAR: With and without a
10	filter what is the profile of their release
11	categories?
12	MR. DENNIG: Those calculations were
13	done and they are available and we can get them from
14	the regulator but we have not scrutinized them.
15	MEMBER STETKAR: Why not?
16	MR. DENNIG: As a matter of time I
17	suppose as much as anything else, plus they pretty
18	much run the same codes as we do and they do the
19	same kinds of analysis. A lot of their work was
20	based on NRC work.
21	MEMBER CORRADINI: I mean, I don't know
22	where John is going with this but where I'm going
23	with it is if there's not data as Dana said based on
24	some sort of surrogate set of materials with the sur
25	inventory and distribution that you can I was
I	1

(202) 234-4433

	28
1	just at another meeting yesterday that some people
2	were really worried about surrogates.
3	MEMBER BANERJEE: Why is that, Mike?
4	MEMBER CORRADINI: Well, I'm saying the
5	inherent data in this case, I'd want to see a
6	consistent calculation. I guess staff would I
7	would have expected staff to look at a set of
8	consistent calculations. Because with these
9	calculations you can run a computer program but
10	these computer programs, you can get almost anything
11	you want out of it if you tweak the knobs a certain
12	way. So I'd like to see
13	MR. DENNIG: Well, you'll from Research
14	we have done calculations with and without filters
15	here that you'll be able to scrutinize.
16	MEMBER CORRADINI: Okay. But just to
17	summarize, you know that these exist but you haven't
18	looked at the details of them is I think what John -
19	- was your answer to John. Is that correct?
20	MR. DENNIG: Right. We have not read
21	the MITRA report or pulled the addendums and
22	appendices thereto. We have gotten some analyses of
23	recent uprates that include filtering and passed
24	those onto Research for scrutiny at like the MELCOR
25	MAAP-level analysis. So there has been some of
Į	1

(202) 234-4433

	29
1	that.
2	Some of the calculations are done, you
3	know, done by the licensee and the authority is not
4	eager to put them out in the public domain so
5	there's that issue all the time. So, for a variety
6	of reasons we haven't been at that level but
7	Research will talk about how they have modeled
8	things and the results they've gotten with and
9	without filters.
10	MEMBER BANERJEE: Is it the general
11	feeling that sufficient data and validation exist so
12	that these things can be designed properly?
13	MR. DENNIG: Well, I think that's the
14	consensus of folks outside of our realm. I think
15	that's the consensus.
16	MEMBER BANERJEE: And that would be
17	something Research will address for us today?
18	MR. DENNIG: They're going to talk about
19	how they've modeled DFs and calculated
20	decontamination factors within MELCOR.
21	As far as the testing that's been done
22	the like I said, the CSNI report talks in detail
23	about high-efficiency scrubbing of submicron
24	particles and alludes to having to address that
25	problem. The Venturi scrubbing system is

(202) 234-4433

	30
1	specifically selected as having the capability to do
2	that where other systems, other approaches do not.
3	Coolants and sprays will not do that.
4	So, in consequence of that the and
5	the Swedes are the ones that started it. They went
6	off and looked at particulate-scrubbing technology
7	that came out of air quality which is wet Venturi
8	scrubbing. It was an old technology when they
9	looked at it but they adapted it to the purpose of
10	capturing submicron particles to the degree that
11	they needed to whereas other processes would not.
12	It was a specific design requirement for this.
13	MEMBER BANERJEE: So the pools would
14	not. If you had bubbles
15	MR. DENNIG: In some cases to some
16	degree they will and Dana knows more than I do. But
17	I think when we look at the research results later
18	you will see that, if they show that, that the large
19	things drop out. If you look at it by particle size
20	class the large things drop out and the smaller
21	things tend to go through. So it makes sense.
22	MEMBER POWERS: What happens in nearly
23	all filtration systems is the big stuff is pretty
24	easy to do. Very, very tiny stuff is very easy to
25	do because it diffuses rapidly. And there is a
l	1

(202) 234-4433

	31
1	minimum. If I plot the filter efficiency as a point
2	size there is a minimum. It is not zero, okay.
3	So that you, if you make your pool deep enough
4	you'll get everything. But they can be very, very
5	deep.
6	What the what we observed in sprays
7	is that minimum shifts with the droplet size. So
8	that by using a distribution of droplets you do
9	better than you do with a single droplet size.
10	What the Venturi does is it creates a
11	little bit of droplet mist in there that is a
12	particularly good size for getting the aerosol
13	particles that are most difficult or have the
14	minimum kind of efficiency of capture.
15	MEMBER CORRADINI: So it basically
16	creates what it needs to remove some class of size.
17	MEMBER POWERS: That's right. Now, if
18	you plot the efficiency of a water-injection Venturi
19	as a function of particle size there's still a
20	minimum in the efficiency. That's almost
21	unavoidable, okay, and it's just how shallow that
22	minimum is. And it happens to be less shallow than
23	passive kinds of systems.
24	MEMBER BANERJEE: It also creates
25	turbulence. That helps.
I	•

	32
1	MEMBER POWERS: These particles that
2	you're worried about, it takes awfully intense
3	turbulence to get them to cross stream lines.
4	MEMBER BANERJEE: What is the typical
5	size, Dana?
6	MEMBER POWERS: Typically around 0.1
7	micron, 0.1-0.2 microns are the problem particles.
8	MEMBER BANERJEE: Okay. Thank you.
9	MR. BASU: Bob, can I clarify one thing
10	just in my mind?
11	MR. DENNIG: Please.
12	MR. BASU: Sud Basu from the Office of
13	Research. In MELCOR we do calculate DF of whole
14	scrubbing, we do calculate the capture efficiency of
15	spray, so on and so forth. We don't calculate DF of
16	external filter.
17	So what I understand, most of the
18	discussion if not the entire discussion is centered
19	around the DF of external filter. We actually use a
20	number in MELCOR for external filter, a preassigned
21	or prescribed DF number. So, just for
22	clarification.
23	MR. DENNIG: This is the slide's up
24	there now. It's just illustrative of the general
25	statement about the reason for pursuing Venturi
ļ	

(202) 234-4433

	33
1	scrubbers for submicron particles, one of the things
2	that it does if you can't do electrostatic removal.
3	And at the point where Sweden was
4	deciding how to pursue this, there are two tacks
5	basically. One has to do with sands and gravels,
6	large-bank filters that comes out of like a defense
7	establishment filtering production plants and
8	reprocessing plants. And the other branch goes off
9	into wet Venturi scrubbing. And we didn't follow
10	the former branch to any great degree. And others
11	followed the Venturi scrubbing branch, and that's
12	what's developed at the present time. So you can
13	take that down.
14	MEMBER SKILLMAN: Bob, in your answer to
15	Dr. Banerjee's question relative to is this notion
16	going to work or is it going to be successful you
17	answered those outside of this community think so,
18	or words to that effect. May I ask you to expand on
19	that answer a little bit, please?
20	MR. DENNIG: As I'll talk about later
21	the majority of other countries have installed
22	Venturi scrubbing systems either after TMI, after
23	Chernobyl, after Fukushima. They all have
24	requirements for minimum DFs. They all scrutinize

and accredit the designs that their licensees have

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	34
1	put in as meeting those criteria and believe that
2	that is an effective answer to if you're going to
3	have to vent a containment that is an effective
4	answer to minimizing the release in a practical way
5	at a practical cost. And so that's where things
6	have settled.
7	MEMBER SKILLMAN: Okay, I understand
8	that. So, that is those outside the community.
9	Now, what's the thinking of those inside the
10	community?
11	MR. DENNIG: Well, the basic how
12	shall I characterize this? There's skepticism about
13	two things, the capability that's being promoted by
14	vendors, DFs of 10,000 or so.
15	MEMBER SKILLMAN: This is technical
16	skepticism?
17	MR. DENNIG: Technical skepticism. And
18	I think we had PSI in here talking to you about what
19	they did and how they did it and where they came out
20	on it. So that's their perspective. And we don't
21	have any firsthand PSI has not given us their
22	data, okay. AREVA has not given us their data. But
23	they do want and they have been accepted by the
24	regulators as doing the job.
25	MEMBER BANERJEE: PSI is the Paul

(202) 234-4433

	35
1	Scherrer Institute?
2	MR. DENNIG: Paul Scherrer Institute.
3	MEMBER SKILLMAN: Thank you, Bob. That
4	explained what I was asking for. Thank you.
5	MEMBER BANERJEE: But they didn't give
6	you the data because it's sponsored by some
7	subgroup?
8	MEMBER STETKAR: It's actually CCI.
9	It's a private company.
10	MEMBER BANERJEE: Oh, that's completely
11	different from PSI.
12	MEMBER STETKAR: Right. And apparently
13	PSI PSI I think has been contracted by them to
14	run some tests. But it's CCI for whoever they
15	MEMBER BANERJEE: PSI is a fairly
16	reliable organization.
17	MEMBER BLEY: But they're together. PSI
18	came to talk to us.
19	MR. MONNINGER: This is John Monninger
20	from the staff. I think there's a lot of good
21	questions here on the experiments that have been
22	done, the data that has been collected as a
23	prototypical, as a representative, et cetera.
24	You know, one of my thoughts is thinking
25	of the other things that we do within to address
I	I

(202) 234-4433

1 severe accidents is the state of technology in filters much, you know, is it significantly 2 3 different from how we have addressed disposition or 4 resolved other severe accident issues out there? Whether it's decisions the staff has made from 5 vendors submitting a corium debris cooling systems 6 7 within the lower cavity, whether it's the installation and testing of PARS, passive 8 9 autocatalytic recombiners. You know, whether it's 10 the external reactor vessel cooling system that Westinghouse has. 11 I think this is not within the design 12 basis accident spectrum, this is within the severe 13 14 accident spectrum. And from the meetings I've been 15 involved in, you know, we can't say it's a complete 16 suite of testing but it appears to be comparable to the other state of knowledge and testing that the 17 staff has looked at in resolving and addressing 18 19 other types of severe accident issues. That's just meant to put it in some 20 level of perspective. And the Agency has proceeded 21 with rulemakings and to impose requirements based on 22 that state of knowledge. 23 24 MR. DENNIG: Okay. Next slide, please. 25 MEMBER BANERJEE: If I interpret what

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

36

Í	37
1	you said it means that you're willing to proceed
2	with less complete knowledge than you would have for
3	certain design basis accidents.
4	MR. MONNINGER: I think the staff does
5	do that. I think, you know, with the validation of
6	our severe accident codes, our models, the level of
7	completeness of our PRAs, our risk assessments, yes,
8	I do believe that's true. And that's, you know, an
9	accepted regulatory practice. Whether it's good or
10	not is different.
11	MEMBER BANERJEE: Yes. I mean you're
12	stating a fact.
13	MR. MONNINGER: Yes.
14	MR. DENNIG: Next slide, please. I want
15	slide 16. I've touched on this already. The
16	installation of filtered containment venting systems
17	has largely been in response to operating experience
18	from large accidents. You can see that it was done
19	after TMI is the earliest and that's Sweden and they
20	did the earliest after Chernobyl. And now after
21	Fukushima there are commitments to install filtered
22	containment venting systems.
23	The some plants, if you look into it,
24	the commitment is from the industry and voluntary to
25	the extent that we understand voluntary.
I	I

(202) 234-4433

	38
1	MEMBER ARMIJO: Strange word.
2	MR. DENNIG: One of the consistent
3	things though is that the way it usually proceeds is
4	that there's a decision that's been made that since
5	the containment has to be vented it has to be
6	filtered and that decision gets made, and then the
7	regulator works with industry to develop the
8	specifications and the approaches. So the decision
9	comes early and then the effort to come up with a
10	feasible solution follows.
11	Some countries have done this, put in
12	filters as part of their periodic backfit reviews.
13	But again, my sense is that it was driven by
14	operating experience, in response to operating
15	experience.
16	And at the time that these decisions are
17	made it is highly likely that severe accidents were
18	not part of the design basis, that they were going
19	beyond the design basis and later would incorporate
20	it, pull it into the design basis. But at the time
21	it was decided to have a filtered release that was
22	not the case. Next slide, please.
23	MEMBER ARMIJO: Before you do that, Bob,
24	are these systems that have been installed
25	seismically qualified?
ļ	1

(202) 234-4433

	39
1	MR. DENNIG: Yes.
2	MEMBER ARMIJO: And so, the last bullet
3	I'm trying to understand. Severe accidents were not
4	part of the design basis for the filter? I mean, or
5	
6	MR. DENNIG: For the original plant.
7	MEMBER ARMIJO: For the original plant.
8	MR. DENNIG: Right. They had the same
9	thing as
10	MEMBER ARMIJO: So as far as
11	MR. DENNIG: design basis accidents,
12	you know, and successful if late recovery of ECCS
13	and stopping the accident process, the same thing as
14	we had.
15	MEMBER ARMIJO: Okay.
16	MR. DENNIG: Next slide, please. The
17	technical bases are to a great extent qualitative.
18	The regulators assert that it's FCVS is needed to
19	manage a severe accident with pressure challenges.
20	For example, the Finnish regulator,
21	their position is that a filtered containment
22	venting system is useful for anytime there are
23	fission products in the containment to manage the
24	accident.
25	Defense-in-depth to address
	I

(202) 234-4433

	40
1	uncertainties associated with severe accidents.
2	This was the point that was emphasized to us by the
3	Swedish regulator.
4	And then obviously it significantly
5	reduces offsite release and land contamination. And
6	they do except for Sweden who actually has a
7	criterion for that contamination.
8	The other countries have adopted an
9	achievable DF approach, available technology. They
10	specify that you have on the filter, for the filter
11	a DF of 1,000 for aerosols and 100 or so for iodine.
12	And that's where they pick it up. That's the
13	requirement. It's stipulated.
14	MEMBER CORRADINI: And then when they
15	because I guess Dana's going to help answer this
16	one. When you give a specification like that it
17	must be some average by some test? In other words,
18	because it is particle-dependent and you do get a
19	minimum. I remember some slides that Dana sent to
20	all of us kind of ahead of time on this. So, how is
21	the DF computed? Is it the minimum DF or is it some
22	integrated that takes account of particle size?
23	MR. DENNIG: The general assumption is
24	that the filters that are installed at the moment,
25	the technology at the moment, the DF is not
Į	I

(202) 234-4433

	41
1	sensitive to particle size to any great degree.
2	That is the representation.
3	MEMBER BANERJEE: Are these for the
4	Venturi scrubbers?
5	MR. DENNIG: Yes.
6	MEMBER BANERJEE: There is a minimum but
7	it's fairly flat.
8	MR. DENNIG: Well, you can well.
9	MEMBER CORRADINI: Well, I guess what I
10	was asking is when you said if, you know, you said
11	1,000 for particles and 100 for iodine. The
12	question that went through my mind is is that the
13	minimum? Is that some sort of computed average
14	based on a test?
15	MR. DENNIG: No, that's a minimum.
16	That's a greater than or equal to 1,000 for
17	aerosols. That's a minimum. I'm sorry, I
18	misunderstood.
19	MEMBER BANERJEE: So physically suppose
20	you had these Venturi scrubbers. How big are they?
21	MEMBER CORRADINI: They're big.
22	MEMBER SKILLMAN: They're huge.
23	MR. DENNIG: Did we bring the
24	comparative slide?
25	MR. BETTLE: Yes, there's some backup
	I

	42
1	slides.
2	MEMBER BANERJEE: You brought some
3	pictures?
4	MR. DENNIG: We'll show you that, yes.
5	We'll show you that. Do you want to put it up? We
6	have a slide.
7	MEMBER BANERJEE: Whatever you're
8	comfortable with.
9	MEMBER CORRADINI: Just tell us the
10	number and we'll look at it.
11	MR. DENNIG: It's in the backup slides.
12	MEMBER CORRADINI: Oh, it's not in this.
13	This is just the main slides, sorry.
14	MEMBER STETKAR: This is just a high-
15	level summary.
16	MR. BETTLE: This is Jerome Bettle. The
17	Barseback filter was a large seismic reinforced
18	concrete cylindrical structure about the size of
19	their primary containment is like 65 meters high.
20	The when they reduce the size down with the water
21	bath multi-Venturi filters those are about I believe
22	21 meters. And a lot of the current designs are 9
23	meters and less.
24	MR. DENNIG: So it's evolved over time.
25	MEMBER BANERJEE: I'm glad I asked that
ļ	1

(202) 234-4433

	43
1	question.
2	MR. DENNIG: Well, and there is a design
3	that's being put on the Chinese plants that splits
4	the scrubber section from the after-particle
5	removal, the metallic filter section. And they do
6	it in two pieces and it fits inside the reactor
7	building.
8	MR. BETTLE: For more constrained
9	installation locations.
10	MEMBER CORRADINI: What Chinese plants
11	are these?
12	MR. DENNIG: There are two PWRs that I
13	know of that have the AREVA filter installed on it,
14	and they're putting it on all their PWR forward
15	builds. And the last time
16	MEMBER CORRADINI: Not on their
17	construction, on their planned.
18	MR. DENNIG: Under construction.
19	Planned and under construction. They're putting
20	that system on their PWRs.
21	MEMBER BANERJEE: The AREVA plants.
22	MR. DENNIG: No, this is Chinese,
23	China's plants. They're using the AREVA design.
24	MEMBER CORRADINI: So let's just make
25	sure I'm clear. They have four AP1000's going up.
I	

(202) 234-4433

	44
1	Are they on the four AP1000's?
2	MR. DENNIG: I don't have any
3	information about that.
4	MEMBER CORRADINI: There's four I
5	mean, there's 26 plants in construction. When you
6	say they're on all the plants, that's an awful lot
7	of plants to put them on. So I just want to make
8	sure I'm clear on what they're doing.
9	MR. DENNIG: I can give you the list.
10	It does not include well, I don't know. I have
11	the list of names of PWRs.
12	MEMBER CORRADINI: I was figuring that
13	would be the answer I would eventually hear.
14	(Laughter)
15	MEMBER CORRADINI: Okay, fine. Thanks.
16	MEMBER BANERJEE: And are they
17	backfitting any or it's just going forward?
18	MR. DENNIG: The words are new builds.
19	MR. MONNINGER: Well, throughout the
20	world or within China?
21	MEMBER BANERJEE: Within China.
22	MR. DENNIG: I haven't heard backfit.
23	I've heard going forward.
24	Okay. Barseback was a one-of-a-kind and
25	it was obsolete pretty much by the time it was
I	

(202) 234-4433

45 1 installed. And the period of 1980-ish to 1986, the filter MVSS was developed in Sweden. And that's the 2 3 eighties technology and at that time that was fairly 4 expensive and the cost has gone down. The people we talked to considered the 5 cost low to modest. The idea is that -- best 6 expressed by there's a reasonable solution, a 7 8 reasonable cost that can be implemented in a 9 reasonable amount of time is pretty much the way 10 this has worked. MEMBER BANERJEE: Do you have any idea 11 what the cost is? 12 13 MR. DENNIG: Yes. 14 MEMBER BANERJEE: Could they give you some idea? 15 We think it's about 16 MR. DENNIG: Yes. 17 \$15 million for the filter and the appurtenances. MEMBER BANERJEE: That's installed cost? 18 19 MR. DENNIG: Yes. MEMBER BANERJEE: And roughly how long 20 does it take to do it? 21 The -- 2 years. 22 MR. DENNIG: It takes, what, two outages. And you can do this without 23 24 stopping production. You can do it in a way that doesn't impact production and tie it in during an 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	outage.
2	MEMBER SIEBER: And this is big enough
3	to actually perform its function?
4	MR. DENNIG: Everybody uses 1 percent
5	license power as the beginning point of the size and
6	then the things about how much fission product
7	loading and so on and so forth. Those are worked
8	out in designing a system for a specific customer.
9	CHAIR SCHULTZ: Bob, it would be a two-
10	outage schedule following design?
11	MR. DENNIG: Yes. Having the design in
12	hand from between `86 and `88 Sweden installed
13	MVSS's on all of their plants. On 10 units.
14	MR. MONNINGER: So that would be the
15	foreign experience. Now, if the NRC was or wasn't
16	to do something doesn't necessarily mean that that
17	would be the schedule here.
18	CHAIR SCHULTZ: I understand. Thank
19	you.
20	MEMBER BLEY: Bob, when you said the
21	Barseback filter was obsolete shortly after it was
22	installed, commercially obsolete or functionally
23	obsolete?
24	MR. DENNIG: Both. Thank you.
25	MEMBER BLEY: How far functionally
I	I

(202) 234-4433

	47
1	obsolete?
2	MR. DENNIG: It was designed and tested
3	to achieve 1,000 I think was the spec for that, and
4	it could I'm sure it could continue to achieve
5	that. It was in large part that size for heat
6	capacity considerations.
7	MEMBER BANERJEE: Was this that gravel
8	bed or something?
9	MR. DENNIG: Yes. This is just a huge,
10	huge, huge, huge building of gravel.
11	MEMBER BLEY: You didn't finish saying -
12	-
13	MR. DENNIG: Oh, it was just too
14	expensive and too large.
15	MEMBER BLEY: It would still do
16	MR. DENNIG: Oh, it would still perform
17	its function.
18	MEMBER BLEY: It was functionally
19	obsolete, it was just it was commercial.
20	MR. DENNIG: Oh, no. Okay, yes. There
21	were better solutions.
22	MEMBER BLEY: Fair enough.
23	MEMBER REMPE: In addition to subsequent
24	filter or replacement filter costs, are there
25	like testing costs? Like when we have a HEPA
I	I

(202) 234-4433

	48
1	filtration system we do testing. And are those
2	things very expensive?
3	MR. DENNIG: Yes. In other countries
4	these systems are they're not single-failure
5	proof but they are pretty much safety grade. They
6	have tech specs and they are tested periodically and
7	we do talk to the owners and operators about that
8	subject. And it's they characterize it as
9	minimal.
10	MR. MONNINGER: So, operational cost
11	once it's put in place?
12	MEMBER REMPE: They actually test how
13	good the filter is working at least with our system
14	in the lab and I just was wondering if that cost
15	very much.
16	MR. DENNIG: Oh, no, no, that's not
17	done.
18	MEMBER STETKAR: They do more like valve
19	cycling.
20	MR. DENNIG: Right, no, that's the way
21	it is.
22	And some of the well, they all have
23	chemistry, they all have iodine chemistry to one
24	degree or another so there's testing of that.
25	There's testing of the chemistry.
I	I

(202) 234-4433

	49
1	MEMBER BANERJEE: You mean they add
2	something to the water.
3	MR. DENNIG: Yes.
4	MEMBER BANERJEE: Like thiosulfate.
5	MR. BETTLE: And sodium hydroxide,
6	thiosulfate in the PSI system.
7	MR. DENNIG: Okay, next. As I mentioned
8	Sweden did develop subsequent to their decision to
9	put filters on their plants a land contamination
10	goal. And it is related to the dose received in the
11	first year from people returning to the site
12	following an accident assuming poor weather
13	conditions that concentrate the release in a small
14	area.
15	And the way they term it is that they
16	expect that with this filter they will have less
17	than 100 square kilometers of highly contaminated
18	property that would give somebody more than 5 rem in
19	the first year after they return to their homes.
20	MEMBER CORRADINI: I guess I didn't
21	appreciate how you said that. So maybe, can you say
22	it again? So they developed the goal after they had
23	the filter vent?
24	MR. DENNIG: They had decided to
25	since the containment had to be vented and it had to
I	1

(202) 234-4433

	50
1	be filtered that much they knew. At that point they
2	worked out
3	MEMBER CORRADINI: The effect on land
4	contamination.
5	MR. DENNIG: What yes. What was
6	achievable, what could be accomplished, and did that
7	meet their needs.
8	MEMBER CORRADINI: Okay. And the last
9	part, "meet their needs," means they have some sort
10	of performance goal about land contamination?
11	MR. DENNIG: The Swedish have no,
12	they don't have a contamination number, amount per
13	acre or square meter or anything like that. They
14	have this dose criterion that is going to be
15	calculated that pertains to the dose that would
16	return in public 1 year remaining in place 1 year
17	after the accident that they won't get more than 5
18	rem. They will get less than 5 rem in limited
19	areas.
20	MEMBER BLEY: Not to have this go on
21	forever but I'm a little confused by that because
22	from the way you stated it they've evacuated and now
23	they come back at some point in time and yet we
24	still have an area 100 kilometers square where they
25	get over 5 rem. So what determines that time
I	I

(202) 234-4433

	51
1	between the accident
2	MEMBER CORRADINI: Less than.
3	MEMBER BLEY: No, he said there would be
4	an area
5	MR. DENNIG: So, there's a limited area.
6	Yes, there are areas that you could return 100
7	MEMBER BLEY: Less than 100 kilometers -
8	_
9	MR. DENNIG: you would get less than
10	5 rem, yes, that's correct.
11	MEMBER BLEY: Over 5 rem.
12	MR. DENNIG: That's correct, yes. There
13	would be limited areas
14	MEMBER BLEY: Why would you put them
15	back if
16	MR. DENNIG: Well, that's they would
17	
18	MEMBER BLEY: What is that delta time
19	that they use to apply that? I'm just curious.
20	MR. DENNIG: Oh, it's a couple of weeks.
21	MEMBER BLEY: So it's real fast. You're
22	returning them back pretty fast.
23	MR. DENNIG: Yes.
24	MEMBER BLEY: Okay. After the emergency
25	is over essentially.
I	1

	52
1	MR. MONNINGER: A lot of the criteria
2	were driven by the need for no long-term
3	condemnation of the land. They wanted to ensure
4	that the populations could come back.
5	MEMBER ARMIJO: So it's temporary, a
6	very short period of evacuation for the bigger area
7	and no long-term condemnation for the more
8	contaminated area.
9	MR. MONNINGER: Right.
10	MEMBER ARMIJO: Okay.
11	MEMBER SIEBER: The driving nuclide for
12	the evacuation is iodine?
13	MR. MONNINGER: It's not my expertise
14	but I mean, it's all I think the rehabilitation
15	is the cesium within the soil for the long term.
16	But the actual evacuation
17	MEMBER CORRADINI: I just wanted I
18	had a follow-up question. Since you used Sweden as
19	an example at least this kind of illustrates. So,
20	just to repeat what I thought you said is they
21	decided to do it, they did it. They estimated or
22	computed with the effect of it that connected to
23	their land contamination goal.
24	So, when this thing fails what do they
25	calculate to be the probability of failure of this
I	1

(202) 234-4433

	53
1	filtered vent in containment? Do they have a
2	performance goal for that?
3	MR. DENNIG: One chance in 1,000 is what
4	they said. If it was called upon to work it would
5	be 1 time in 1,000 that it wouldn't work.
6	MEMBER CORRADINI: So that is part of
7	their PSA analysis.
8	MR. DENNIG: Yes.
9	MR. MONNINGER: And they use passive
10	rupture disk in the line with manual valve bypasses.
11	MR. BETTLE: Yes, yes. First 24 hours
12	no operator intervention.
13	MR. DENNIG: The Swiss, and there's a
14	paper, they have looked at with the installation of
15	a scrubber that has the 1,000-100 combination, the
16	effect on emergency measures and zoning and so on
17	and so forth. And they have a system where they
18	postulate, one, you've got your standby gas
19	treatment system and that works and they give that
20	1,000 and 100. Then they've got it's worse than
21	that, you have to go to then venting containment,
22	controlling containment pressure. The filter gets
23	1,000 and 100. And then they have another scenario
24	where that fails. And so they analyze all that
25	stuff to help refine their evacuation strategies.
l	I

(202) 234-4433

54 1 MEMBER BANERJEE: They can get -- what factor do they get on the iodine with these 2 3 scrubbers? 4 MR. DENNIG: It's 100 is what's assumed. 5 Again, the testing that's presented that you can get your hands on is higher than that, but as far as --6 MEMBER BANERJEE: 7 That has to assume 8 some organic iodides. This is elemental iodine. 9 MR. DENNIG: MEMBER BANERJEE: Elemental. 10 MR. DENNIG: 11 Right. 12 MEMBER BANERJEE: What happens if there's a lot of organic iodides? 13 14 MR. DENNIG: I think that's where Paul 15 Scherrer's approach comes in. They feel that 16 they've taken care of the iodine question with the 17 chemistry to a great degree. MEMBER BANERJEE: That would be 18 19 interesting to know. 20 MEMBER SIEBER: Could we postulate that if somebody installs a containment filtered vent and 21 they have a severe accident and they use the vent 22 and it actually works, is the vent and all of its 23 24 appurtenances shielded sufficiently so that people can still get around the plant to do emergency work? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	MR. DENNIG: Yes. All the things that
2	would occur to you
3	MEMBER SIEBER: What dose will the
4	operators get?
5	MR. DENNIG: in terms of the
6	practical engineering of the system have been done
7	and implemented. The shielding, the access, how you
8	drain the stuff out of the tank at the end.
9	MEMBER SIEBER: It would take a lot of
10	shielding because you basically moved a good part of
11	the radioactive part of the core into this filter.
12	MR. MONNINGER: Yes. Well, they utilize
13	existing plant structures. You know, you have walls
14	that are 4-feet reinforced concrete. You have
15	and where it would be, let's say the pipe would run
16	past equipment that you might want to have access to
17	post accident, they put up shielding. So they
18	MEMBER SIEBER: It would have to be
19	massive shielding.
20	MR. MONNINGER: Oh, yes. And as you see
21	on the original MVSS filter that the Swedish plants
22	have, you know, they started out with a reinforced
23	concrete vessel that has a liner in it so that
24	portion of it provides the shielding. And like what
25	Bob said, they have either the capability of the
I	I

(202) 234-4433

	56
1	filters located high enough they can, you know,
2	after the vent gets under control and you get
3	containment cooling back they can either gravity-
4	drain, open a valve and gravity-drain it back in the
5	containment or you can pump it back. You know, they
6	have installed pumps there behind, you know, some
7	pretty massive lead shielding bore areas. So,
8	they've considered the shielding needs.
9	MEMBER SIEBER: Thank you.
10	MR. DENNIG: Okay. I think I've covered
11	the points I wanted to make on this slide. Next
12	slide, please.
13	This is a preliminary rack-up of
14	installations outside of the U.S. The green is the
15	committed or installed, white is we're not quite
16	sure, red is we know they're not going to. And so
17	we're continuing to update this. We're interested
18	in Mark I's and Mark II's but that distinction is
19	not being made.
20	MEMBER CORRADINI: Maybe you said it and
21	we just didn't ask it. So, since Canada is so close
22	what's their regulatory basis for this?
23	MR. DENNIG: Okay. Back up to slide
24	MEMBER CORRADINI: I mean, you don't
25	have to unless you

(202) 234-4433

(202) 234-4433

	57
1	MR. DENNIG: I'd like to.
2	MEMBER CORRADINI: What I'm noting is
3	what I remember from China is that only the heavy
4	water reactors there are vent. That was because
5	they essentially adopted them from the Canadian
6	design which all their reactors are.
7	MR. DENNIG: Right.
8	MEMBER CORRADINI: But there is a
9	regulatory difference in Canada is my memory.
10	MR. DENNIG: I do not know the Chinese
11	regulatory basis.
12	MEMBER BANERJEE: The regulatory
13	difference in Canada to some extent is they look at
14	impaired emergency cooling as part of their
15	regulatory basis.
16	MEMBER CORRADINI: Right.
17	MEMBER BANERJEE: They require it.
18	MEMBER CORRADINI: Essentially it's not
19	a single-failure criterion. They actually assume
20	failure of the
21	MEMBER BANERJEE: Impairment of the
22	MEMBER CORRADINI: core cooling.
23	MEMBER BANERJEE: Yes, emergency
24	cooling. It's required.
25	MR. DENNIG: This is a quote that
	I

	58
1	succinctly summarizes. This is for Point Lepreau
2	for the decision. They have installed a filtered
3	vent outside their containment and they put in some
4	walls to shield it. And so this is the best
5	statement that I've found of their regulatory basis,
6	just exactly what it says.
7	MEMBER BROWN: Did they actually cost
8	\$14 million?
9	MR. DENNIG: That is the number that I
10	was given by the plant people.
11	MEMBER BANERJEE: This is a 600.
12	MEMBER CORRADINI: This is a CANDU 6.
13	Is this I mean, just a little more detail. Is
14	this part of the vacuum building design? Or is the
15	newer one with a large dry containment over the
16	MEMBER BANERJEE: Point Lepreau doesn't
17	have a vacuum. Bruce and Darlington do.
18	MEMBER CORRADINI: So this is an add-on
19	to their large dry.
20	MR. DENNIG: Yes.
21	MEMBER ARMIJO: Could you leave it up
22	just a little bit more? I just want to read that
23	last sentence.
24	MR. DENNIG: Well, we should provide the
25	backup slides that got used.
ļ	I

(202) 234-4433

```
(202) 234-4433
```

	59
1	MEMBER ARMIJO: Yes, if we could have
2	the backup slides.
3	MEMBER CORRADINI: And last question
4	since did the Canadians do a PSA, some sort of
5	PRA in terms of the performance of this system?
6	MR. DENNIG: Yes.
7	MEMBER CORRADINI: Was it similar to
8	what you quoted for the Swedes? Or the Swiss. I
9	can't remember which one you said was 1 in 1,000. I
10	guess the only reason I'm focused
11	MR. DENNIG: Yes, the reason why they
12	can say that it lines up well with SSG-3 and SSG-4
13	is that they did the level 2 PSA. And there are
14	guidelines in those guidance documents that they
15	stated that they met. I have another slide that has
16	the numerics on it I think. But it fits in well
17	with the criteria for large-release frequency and
18	the severe core damage frequency based on certain
19	plant damage states following the IAEA guidance.
20	And so they did that study and everybody was happy
21	with how that turned out.
22	MEMBER BANERJEE: Can you leave that on
23	for just a second?
24	MR. DENNIG: The Canadian one?
25	MEMBER BANERJEE: No, no. So with China
I	I

(202) 234-4433

	60
1	you're saying 13 are unknown status basically.
2	MR. DENNIG: Yes. That number is I'm
3	not quite sure where we got that number from that's
4	up there. I have to square that with my analyst,
5	get his laboratory to look at the Navy stuff. So
6	we'll clean that up. But since it was not BWR we
7	weren't particularly concerned about that aspect of
8	it.
9	MEMBER BANERJEE: Okay. Thank you.
10	MR. DENNIG: I think that's the end of
11	my thank you very much. Oh, I have one more?
12	Oh, okay. Here's the this is the distillation.
13	The boilers. And Mark I's and Mark II's, the lion's
14	share are here in Japan. The Mark I/Mark II no FCVS
15	decision, that is India and Mexico Mexico, yes.
16	The considering line, the Mark I is Spain and that
17	plant's shutting down in 2013. So I would guess
18	that they're not going to. And the Mark III is
19	still under scrutiny. And again that's Spain. But
20	they have PWRs and they have decided to put them on
21	PWRs.
22	But the regulatory authority's words
23	were they encourage everybody to have this. And the
24	PWRs apparently volunteered to do it. And there are
25	two BWRs that haven't. Like I said, one of them is

(202) 234-4433

	61
1	a Mark I that's being retired in 2013 and the other
2	one is it's a Mark III. I'm sorry, Mark III.
3	MR. MONNINGER: So approximately 90
4	percent of the boilers in the world either have them
5	or are committed to filters outside the U.S.
6	MEMBER ARMIJO: Could you go back to
7	that slide 19? The large number of PWRs that are
8	going to install them or have already installed
9	them, those include large dry containment systems.
10	So the issue of containment size wasn't really
11	wasn't central to their decision. They just said
12	could you explain why what their reasoning was?
13	MR. MONNINGER: We believe the majority
14	of the decisions are based on land contamination,
15	evacuation, large population zones. So that's
16	generally the worldwide experience is based on what
17	happens to the land and to avoid any type of long-
18	term evacuation.
19	MR. DENNIG: Now, they do differentiate
20	in the accident progression between the one and the
21	other and the way the containment behaves. And the
22	acknowledgment is that the large dry, it's going to
23	be a long time and it's going to be laid over
24	pressure. And they acknowledge all of that.
25	Nonetheless
ļ	I

(202) 234-4433

	62
1	MEMBER ARMIJO: They put in the same
2	size system to handle the
3	MR. DENNIG: One percent.
4	MEMBER ARMIJO: Yes.
5	MR. DENNIG: One thousand.
6	MR. BETTLE: Some of them require
7	somewhat less. Because if they assume that because
8	it's going to handle the pressure for awhile it may
9	be 24-48 hours before you need the vent. So they
10	could have it sized for like one-half a percent. So
11	some of them are designed for lesser.
12	MEMBER SHACK: And the French ones
13	wouldn't be Venturi filters, right?
14	MR. BETTLE: The French are the sandbed.
15	MEMBER SHACK: They will be.
16	MR. BETTLE: They will be.
17	MR. DENNIG: They will be.
18	MEMBER SHACK: They're changing them?
19	MR. DENNIG: Yes. For a long time we've
20	been told that they were swapping out and going to a
21	scrubber system for a number of reasons. One of the
22	reasons is that the sandbeds are on tops of
23	buildings and are not seismic. So they're going to
24	have seismic scrubbers installed.
25	And I think EdF. EdF is putting
	I

(202) 234-4433

	63
1	they're putting a scrubber on the English plant, on
2	Sizewell.
3	MR. MONNINGER: So currently the staff,
4	our assessment is just limited to the Mark I's and
5	Mark II's. So once we come up with our
6	recommendations, whether it's no action or whether
7	it's something else, following that we would look at
8	other designs.
9	And right now we believe the focus
10	should be on the Mark I's and II's predominantly due
11	to the regulatory technical issues associated with
12	the Mark I and II containments.
13	MEMBER ARMIJO: But if the driver is
14	land contamination it really doesn't really matter
15	whether it's Mark I or BWR.
16	MR. MONNINGER: It could depend. It
17	could depend upon your decision, and the releases,
18	and the frequency of the releases and the
19	vulnerabilities in the particular containment
20	designs.
21	You know, we are the Commission may
22	decide wherever and whatever basis the Commission
23	would like to decide, up or down, left or right, but
24	the staff is looking at the technical aspects of the
25	design of the Mark I's and II's and how that plays
l	I

(202) 234-4433

	64
1	into potential offsite releases, et cetera. So we
2	believe there are technical issues associated with
3	the Mark I's and Mark II's and you could potentially
4	differentiate them from the rest of the fleet.
5	MR. DENNIG: There is a history of
6	concern especially about the Mark I's that led to
7	venting. And so the obvious question is, okay, how
8	about, you know, what do you want to do with
9	retaining fission products. And this, the
10	technology has advanced in the last 20-25 years to
11	the extent that you'll hear. And so it's time to,
12	you know, revisit that decision.
13	As I said, when it was first made here
14	the focus was on concepts that involved large
15	sandbeds, underground large sandbeds. And to my
16	knowledge we never did any particular research on
17	Venturi scrubbing. Although it was mentioned a
18	couple of times I'm not aware of anything that we've
19	done.
20	We participated in the ACE program
21	testing and there were Venturi scrubbers tested
22	there, but the vendors brought those in and
23	MEMBER BANERJEE: Hyped them. Did they
24	hype them up?
25	MR. DENNIG: Oh, of course. Of course.
I	I

(202) 234-4433

	65
1	Sure.
2	MEMBER BANERJEE: That's really the
3	problem we face.
4	MR. DENNIG: Right, well sure.
5	MR. MONNINGER: It's not just the
6	vendors. I mean, any presentations we get from, you
7	know, not just the vendor filters but any
8	presentations. And we have to do the technical
9	question. Again, they've got to back it up with the
10	data and if they can't back it up
11	MEMBER BANERJEE: Look at them with a
12	very cold eye I think, a lot of these claims.
13	MEMBER POWERS: That's strange, isn't
14	it?
15	MEMBER SIEBER: In the
16	MEMBER POWERS: Well, let me interrupt
17	Jack to just reemphasize this. As far as I know I
18	have never seen a detailed wet Venturi scrubber
19	technology analyzed in a nuclear context. There
20	have been studies in connection with conventional
21	power plant dust removal things. But I've never
22	seen one in a nuclear context. That, you know, I
23	would say is at real academic study. The best
24	was done by the Swedes at SKI.
25	MEMBER SIEBER: I've not heard of any
I	I

(202) 234-4433

	66
1	modification of emergency planning tactics or
2	organization or warning devices or anything else
3	associated with whether you have a filtered vent
4	system. That will continue to be the case, right?
5	You'll still evacuate even though
6	MR. DENNIG: Oh yes. Yes. That goes
7	over to the local authorities and whatever federal
8	authority oversees that process and that goes on.
9	MEMBER SIEBER: Right. Okay.
10	MR. BETTLE: They don't take the
11	position that, hey, we have filters so there's no
12	need to evacuate.
13	MEMBER SIEBER: Right.
14	MR. BETTLE: They're still going to all
15	evacuate.
16	MR. MONNINGER: But the Commission could
17	at any time reopen it. And there are other EP
18	issues associated with Tier 3. There's the issue
19	with expanded use of KI. There's also an issue out
20	there with expanded EPZ.
21	So when you look at some of these issues
22	and we've had discussions back in the past about how
23	could a filtered vent or severe accident capable
24	vent help address hydrogen issues. Could a filtered
25	vent potentially help address these other issues out
ļ	

(202) 234-4433

	67
1	there? Potential EP issues.
2	MEMBER SIEBER: I think that it needs to
3	deal with the hydrogen issue to some extent, at
4	least be able to withstand it.
5	MR. DENNIG: Right. And what we've been
6	talking about has been designed to with the
7	hydrogen threat in mind. And in cases where the
8	containment is inerted then the system or filter
9	system is inerted prior to operation.
10	MEMBER SIEBER: Okay.
11	CHAIR SCHULTZ: I'd like to move to the
12	next presentation. Thank you, Bob, for yours.
13	We are behind our advertised schedule by
14	about 20 minutes. I'm not encouraging that we
15	complete the next presentation in a very short time,
16	but rather just draw attention to that. We will
17	have an opportunity to address the issues that I'm
18	sure continue to be on everyone's mind in subsequent
19	presentations and discussions.
20	Jerry, why don't you proceed.
21	MR. BETTLE: Okay. Yes, my name is
22	Jerome Bettle. I want to continue on. There's a
23	section there titled "Filtered Containment Vent
24	Systems in Severe Accident Management."
25	Just to get back to a little bit of the
	I

(202) 234-4433

	68
1	nuts and bolts out at the power plants, we took a
2	look at some of the plant procedures, the emergency
3	operating procedures, severe accident management
4	guides and the extreme damage mitigation guides.
5	After 9/11 the order EA-02-6 for the
6	interim compensation measures had a Section B.5.b
7	discussed injection into the reactor pressure vessel
8	and drywell. The follow-on in 10 C.F.R.
9	50.54(hh)(2) puts at a high level, made a
10	requirement and then there was endorsement of some
11	NEI document.
12	And more recently along with the order
13	for the reliable hardened vent was the EA-12-049
14	order for mitigating strategies which also included
15	a requirement for injection capability.
16	Nothing in our discussions so far have
17	said that we didn't think that water injection into
18	the drywell into containment wasn't needed as a
19	companion severe accident mitigation action, that
20	somehow just venting alone was going to save the
21	day.
22	Most of the procedures, they started out
23	on venting. A lot of this is from the emergency
24	operating procedures. There's some level of
25	assumption that standby gas treatment is going to
l	I

(202) 234-4433

	69
1	work. You're going to vent out, and the first line
2	is you go out through your normal vent purge pathway
3	to the standby gas treatment filtration system, and
4	they'll operate. Since that's not rated for much of
5	a pressure, containment pressure, it has to be like
6	1 to 2 pounds or less.
7	The other pathways that they then drop
8	down to, some plants maintain a line out for
9	depressurizing from integrated leak rate tests.
10	They say we've got a pipe we can use for that.
11	There's a couple other pathways some plants use, but
12	a lot of those are going to wind up basically
13	venting into the reactor building, other than the
14	Mark I's with a hardened vent. And in their case
15	that would be the one that would be the first line
16	if containment pressure was high.
17	Most of the venting for the design basis
18	accidents considers for eliminating the hydrogen-
19	oxygen mixture that might develop from radiolysis,
20	you know, many days after a DBA LOCA.
21	And again with that, if you have an
22	unfiltered vent the procedures, you know, you
23	certainly don't want to vent out radioactive
24	material to the environment, to the plant, to the
25	reactor building. You know, so there's plenty of
I	1

(202) 234-4433

	70
1	cautions along that line, but then there's others.
2	You're not going to allow a structural failure of
3	containment. So it's kind of a back-and-forth.
4	MEMBER ARMIJO: So if I'm trying to
5	follow that. So if you have this vent capability,
6	filter capability, then you are not encouraged but -
7	- you're not discouraged from venting.
8	MR. BETTLE: There would be less
9	hesitation and less discouragement from going to a
10	vent, especially from going to a vent early. The
11	consequences are likely to be fairly minimal.
12	MEMBER STETKAR: Jerry?
13	MR. BETTLE: Yes.
14	MEMBER STETKAR: Bob gave us an overview
15	of the hardware experience looking at the foreign
16	plants.
17	MR. BETTLE: Yes.
18	MEMBER STETKAR: Did you look at all at
19	their experience in rewriting their severe accident
20	mitigation guidelines, because they have them in
21	Europe, and their emergency operating procedures to
22	see how their philosophy preventing it, if I can
23	call it that, has changed or will change?
24	MR. BETTLE: No, we didn't read into
25	MEMBER STETKAR: Because that strikes
l	I

(202) 234-4433

1 me, rather than looking at what our procedures look like today with no filtered vents and trying to 2 3 divine what they might look like with a filtered 4 vent, it would be useful to look at people who have 5 installed them and see how their procedures are changed. Recognizing that unfortunately a lot of 6 7 them were installed at the time, the ones that are 8 installed in Europe were installed at the time when 9 they were developing severe accident mitigation So they're developed in parallel. 10 quidelines. However, the plants that are now 11 committing to install them will need to change their 12 severe accident mitigation quidelines appropriately 13 14 and one would presume that they're doing that. So 15 that would seem to be good experience to look at to see how their philosophy is changing. 16 MR. DENNIG: We saw the time line at the 17 Where in conjunction with installing the sites. 18 19 filter did they revise their procedures. MEMBER STETKAR: 20 Right. MR. DENNIG: But we never pulled the 21 22 string on that. And getting that, that's an 23 MR. BETTLE: 24 excellent suggestion. The only -- of those documents that I saw on the table while we were over 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

71

	72
1	in Europe weren't in English and I didn't think to
2	ask for translated copies. So maybe that's
3	something we can take a look at.
4	Going onto slide 23, the drywell
5	using drywell sprays for contamination. The
6	existing spray hose were designed for DBA purposes,
7	pressure control and heat removal. For the BWRs
8	Mark I's and Mark II's the original design was
9	typically from like 2,500 to 10,000 gallons per
10	minute for drywell spray. And even with that the
11	estimation was DFs might not be much more than 10.
12	We did give some credit for the design
13	spray scrubbing at at least one plant for when they
14	did their alternative source term license amendment
15	request. And pretty much they calculated down that
16	they had to take only 50 percent of the flow rate as
17	far as the input for the scrubbing. And from header
18	to floor, a 61-foot drop, you know, they would only
19	get credit for 8 feet of that because there's just
20	so many interferences with the spray flow inside the
21	Mark I and Mark II containments.
22	The portable pumps that have been
23	discussed are in the low one hundreds. You hear
24	that the absolute minimum would probably be about
25	100 gallons per minute to achieve boil-off of decay
I	I

(202) 234-4433

	73
1	heat. Other flow rates, the one that you saw from
2	the B.5.b stemming from that is 300 unless you can
3	justify less. EPRI has done some study assuming a
4	portable pump flow rate of 500 gallons per minute.
5	On those plants that would have headers
6	and spray nozzles arrayed for 10,000 gallons per
7	minute it's thought that if you're down in that 500,
8	300 range
9	(Laughter)
10	MEMBER ARMIJO: The spray is not going
11	to ignite.
12	MR. BETTLE: It's going to be more of a
13	number of garden hoses coming out in containment
14	effectively. Although it is
15	MEMBER POWERS: I mean, some of the
16	plants I mean, the original designs on the Mark
17	I's had this 10,000 gallon per minute kind of flow
18	rate and so they chose a particular nozzle.
19	MR. BETTLE: Right.
20	MEMBER POWERS: Some of the plants have
21	gone to a nozzle that didn't give you the 10,000
22	gallons a minute but it ignites at very low flow
23	rates.
24	MR. BETTLE: Usually for a lot of them
25	you consider if you have even 50 percent of the
	I

(202) 234-4433

74 1 design flow rate they'll still be almost, you know -2 3 MEMBER POWERS: All of them should work 4 at 50 percent. 5 MR. BETTLE: Right. MEMBER POWERS: It's the 10 percent 6 that's going to be --7 8 MR. BETTLE: They're down in the 5-10 percent range. 9 10 MEMBER POWERS: They just won't be a I mean, it'll be a --11 spray. However, you know, there 12 MR. BETTLE: would be a good line for flooding inside containment 13 14 because you're getting a distributed flow coming in. A lot of it's going to come down from the outside. 15 On the Mark I's especially it's going to hit the --16 a lot of it is going to drain down the outside to 17 the floor. 18 19 It's going to help you with keeping any 20 molten core that comes down from getting to the drywell wall. So it's an excellent entry point for 21 the drywell injection. However, you know, we don't 22 23 think that you can really take a whole lot of credit 24 for decontaminating the atmosphere. Suppression pool has been 25 Slide 24.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	talked about earlier. If you start out with 75
2	degree water and you're running down the T-
3	quenchers, you know, in 9, 10, 12 feet of
4	submergence in cold water you're probably getting a
5	DF of 1,000 or better. It's going to be excellent.
6	I think later on in our Office of Reactor Research
7	discussion they're going to talk about DFs of 100 to
8	300.
9	However, when the core comes out the
10	flow is going to be down the downcomer pipes. And
11	there's typically 80 to 100 of those and 20-24
12	inches of diameter so it's a very large area. The
13	injection of the water might be 4 or 5 feet. Then
14	if you flood up, you know, you might get 8 or 10
15	feet before you have to transfer to the drywell
16	vent. In that case if the water has come up to
17	about saturation your DFs with the downcomers is
18	probably no more than 10 either.
19	MEMBER POWERS: That's the
20	decontamination that you get in the pool itself?
21	MR. BETTLE: Yes. It's coming through
22	the pool.
23	MEMBER POWERS: When we looked at this
24	we got a lot of decontamination. When you come down
25	those big downcomer pipes the bubble comes out and
ļ	I

(202) 234-4433

	76
1	detaches and does its thing.
2	MR. BETTLE: Right.
3	MEMBER POWERS: The water surges back
4	up. And we got a lot of decontamination actually in
5	the pipe itself. You do this water surging back and
6	forth. I don't know that any of the codes actually
7	take account of that.
8	MR. BETTLE: Yes, that's probably some
9	element of uncertainty.
10	MEMBER POWERS: Well, you know, just how
11	you calculate it is kind of interesting. But it's a
12	classic moving boundary problem.
13	MR. BETTLE: Right.
14	MEMBER POWERS: Flow's coming down,
15	water's coming up and it's kind of a surging flow.
16	And you know, the DFs you're going to get are not
17	going to be heroic but 10 is going to be a very
18	feasible thing.
19	But I don't I don't actually know but
20	I don't think that the SPARK code or any of those
21	classic codes take into account that. And I know of
22	absolutely no experimental studies of big pipes
23	putting out bubbles and decontaminated.
24	Everything's been for the T-quenchers. Nothing's
25	been for, you know.
I	I

(202) 234-4433

	77
1	I mean even pipes like this, I don't
2	think anybody's ever done them. I mean, the problem
3	is one of bubble dynamics.
4	MR. BETTLE: T-quencher flow, those
5	holes are generally about 1 centimeter.
6	MEMBER POWERS: Easy to work with.
7	MR. BETTLE: And you're going to get
8	considerable velocity of the flow coming into the
9	water whereas you're not going to get a very
10	energetic discharge when you have the, you know,
11	after the cores come out, coming down through all
12	those downcomers. It's not like an initial LOCA
13	blowdown situation.
14	MEMBER POWERS: It's a nice, gentle
15	flow. But it's fairly dynamic in those pipes. And
16	I don't know whether anybody's ever.
17	MR. BETTLE: Okay. Onto slide 25. EPRI
18	has provided us some briefing. They have a report
19	that's available on their website for public
20	consumption that details their investigation using
21	the computer codes they use.
22	They use a portable pump for flooding
23	the drywell cavity or some flow path or the spray
24	header. They run with 500 gallons a minute. That
25	helps, I don't know, in terms of the spray for
I	1

(202) 234-4433

	78
1	scrubbing effect. But that's considerably more than
2	you would need for decay heat to boil off so it
3	maintains really helps to maintain suppression
4	pool cooling to give you some pool DF.
5	They do control containment pressure
6	that's near the design value. It gives them fold-
7	up, settling, plate-out. Helps out with the spray
8	effect even though it's relatively small. If you
9	just let it sit there and continually spray the
10	environment that's in containment it's going to
11	extract a lot of the aerosol.
12	And you also get a high velocity
13	discharge into the suppression pool when you
14	depressurize. They'll run 40 to 60 pounds. It gets
15	to 60, they'll open the vent line, drop it to 40 and
16	close the vents.
17	So they have to maintain let's say a
18	good indication and more or less continuous on
19	containment pressure and containment water level.
20	Because at some point they have to make a swap from
21	the wetwell vent to the drywell vent because at 500
22	gallons per minute you're going to flood up the
23	and seal off the wetwell vent line in somewhere
24	around 20 hours.
25	Slide 26. The EPRI report does mention
ļ	I

(202) 234-4433

	79
1	the fact that if you don't put water in the
2	containment it's going to heat up and temperature is
3	going to get up to 1,000 degrees and that's going to
4	compromise penetrations.
5	They really didn't have any discussion
6	that if you're maintaining the pressure with the
7	spray flows that you have coming in or the flooding
8	especially on the Mark I's up in the top of
9	containment, it's almost the cylindrical section.
10	Unless you have something with momentum forcing up
11	there it seems that the heating from the residual
12	hot stuff in the vessel is going to come out the top
13	of the vessel and keep the top of the containment a
14	lot hotter than down at the bottom where the water's
15	introduced.
16	MEMBER POWERS: And it gets very hot up
17	there.
18	MR. BETTLE: Yes. They didn't really
19	talk about the fact of the high reliance on

19 talk about the fact of the high reliance on 20 instrumentation procedures and the human 21 performance. And just taking a look at what they 22 had on the graphs of the pressure it appears that 23 the vent valves would be cycled between 15 and 22 24 times in a 72-hour period that they analyzed. 25 So that's quite a few cycles and you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	know, there's I'd say a considerable dependence on
2	knowing exactly what the pressure and the
3	temperature is, and fairly accurately too. So
4	you're putting a lot of reliance on the
5	instrumentation there to gain a substantial
6	decontamination factor from containment.
7	They're showing values that if you use
8	the regime that they assume that you can get the
9	containment itself will give you an effective the
10	pool and the spray will give you an effective
11	decontamination of anywhere from one to three
12	thousand. However, if you drop off of that regime
13	you can quickly fall back to the low hundreds and
14	even more so.
15	One other thing I didn't mention.
16	MEMBER POWERS: One hundred is a lot, by
17	the way.
18	MR. BETTLE: Pardon?
19	MEMBER POWERS: One hundred is a lot.
20	MR. BETTLE: Yes, yes.
21	MR. MONNINGER: Some of that is based on
22	the venting through the wetwell. And there is a
23	potential concern with venting through the drywell
24	also.
25	MR. BETTLE: Right. As the procedures
	I

(202) 234-4433

	81
1	would say if you need to vent you vent from the
2	wetwell, but if that's not available then you go to
3	the drywell vent. In that case there's, you know,
4	there's much that early in the event there's a
5	lot more that's going to come out if you have to
6	vent from the drywell.
7	One other thing they didn't talk about
8	that would seem to be a potential problem. They
9	didn't talk about inerting the vent line. If you're
10	going to cycle the vent line it's going to have a
11	large composition of steam most of the time. So if
12	you close the valves it's going to start cooling off
13	and you know, the air from outside is going to rush
14	back in and meet with the residual hydrogen that
15	might be in the pipes. So you may be repeatedly
16	giving yourself a combustible atmosphere inside that
17	pipe.
18	MEMBER POWERS: Do you have any ignition
19	source?
20	MR. BETTLE: No you don't, but coming up
21	near the top it doesn't take much to ignite a
22	hydrogen mixture. Just the static charges from a
23	flow of air will ignite them.
24	MEMBER BLEY: You used to get that in
25	the offgas system.

(202) 234-4433

	82
1	MEMBER STETKAR: I had a melted hard hat
2	trying to put one of them out.
3	MR. BETTLE: So yes, that is a
4	possibility. There's experience with it.
5	In developing this paper for the
6	Commission we're presenting a number of choices for
7	action or options. Of course option 1 is the no-
8	action option, the no-action action. That's to sit
9	with the at least for the time being with the
10	current order as far as reliable hardened vents, the
11	Order EA-12-50.
12	The second option would be to have an
13	increase where we the requirements we would have
14	to work it so that it was fully reliable and capable
15	for a severe accident environment.
16	The third option would be installing
17	that external filter on this vent line.
18	And the fourth option would be a
19	performance-based which we really haven't explored,
20	but that would get down to more of a plant-by-plant
21	evaluation.
22	Slide 28. Option 2, severe accident
23	capable vent. Some of the considerations there is
24	higher temperatures and pressures, especially if
25	you're going to have to vent off the drywell. The
ļ	I

(202) 234-4433

	83
1	temperatures up there could be considerably higher
2	than let's say containment design pressures.
3	If you're coming out a lot of these
4	hardened vents for the Mark I's tapped off one of
5	the inboard vent purge line valves. Typically they
6	have soft seats. I don't know what the containment
7	temperatures might be coming out of that line,
8	whether they would be suitable. You'd have to make
9	some changes in that hardware.
10	Again, the hydrogen issue that I was
11	talking about earlier, that you'd have to have if
12	you just open a vent and left it open, and you've
13	got the heat source in there and stuff's coming out
14	is there's a constant push going out that pipe. So
15	you're not going to have air and oxygen coming back
16	in that's going to maintain it inerted.
17	You know, whether it's your, you know,
18	hydrogen or carbon monoxide, as long as there's just
19	steam in there with it and no oxygen it's not a
20	problem. And when you vent it out the venting clear
21	of any building or any restriction to expansion
22	you'll have a small zone of combustible gas. You
23	know, you could have a flare going on there but it's
24	not going to impact anything.
25	Also, the shielding that you would need
ļ	I

(202) 234-4433

in the current order, it's not anticipating a 1 2 significant source term or radioactivity coming off 3 this -- the vent line when it's in service. So, you 4 know, I guess it could essentially run almost 5 anywhere. As long as people didn't have to squeeze past it, touch it and get burned it would be okay 6 7 for the current order. If it is going to be severe it can't be 8 9 going anyplace that you're going to need access to, 10 you know, to try to mitigate the event, operator recovering equipment locally or you're going to have 11 to put shielding up to enable that to occur. 12 One of the discussions about early 13 14 venting is to -- after the core damage starts to 15 occur in the vessel to vent a lot of the generated 16 hydrogen out before the core comes out of the bottom 17 of the vessel. That would allow you to maintain the vent closed for a considerable period of time. 18 19 And one of the things about being able to use the vent and maintain the low pressure is 20 that whatever developing or existing leakage that 21 you could have out of the containment into the 22 reactor building would be minimized to keep not only 23 24 the combustible gases from potentially leading to burning or explosion but also the steam environment, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

84

	85
1	the contamination that would be there, the airborne
2	makes it extremely difficult for anybody to access
3	the building to do anything good, you know,
4	regarding terminating the event or stabilizing the
5	conditions inside containment.
6	In talking about a wetwell vent, only
7	the existing order can specify whether there's
8	wetwell and drywell. As long as you don't have a
9	damaged core that means you've been able to inject
10	water into the vessel which means that the discharge
11	is coming out the SRVs to the pool. It's getting
12	scrubbed. And even if you have a vent off the
13	drywell it would come back up through the vacuum
14	breakers and go out the vent. So you'd be getting
15	the scrub.
16	In post accident of course or severe
17	accident the core could be coming out of the bottom
18	in which case if you're flooding up you're going to
19	seal off your wetwell vent path eventually. And
20	when you go to the drywell you don't have any
21	you're going to need to have a drywell path but it's
22	not going to not going to be nearly so good. So
23	the existing order didn't really consider the
24	venting location because drywell/wetwell doesn't
25	really make a difference until the core comes out of
ļ	1

(202) 234-4433

	86
1	the vessel.
2	Okay. Given the accident it's going to
3	be very uncertain how it progresses, you know,
4	whether you get some water injection, you slow it
5	down. Core damage starts, you arrest it, it starts
6	again. The suppression pool, the drywell sprays,
7	how much injection you have there, how much
8	subcooling you can maintain is all going to make for
9	a high let's say a considerable uncertainty as to
10	what actually is going to be able to get out of
11	containment, or how much you're going to be able to
12	reduce the radioactivity leaving containment.
13	And in consideration of where the pipes
14	that are currently routed it may be that rerouting
15	the pipe would turn out to be more of a concern than
16	with the just having the pre-severe accident.
17	You know, if you go out one side of the building or
18	if you run it out through the turbine building to
19	get to your elevated release point you may wind up
20	just reorienting the pipe and running out a
21	different side of the building up to the roof line.
22	MR. DENNIG: The point here was that
23	it's not entirely clear that you're incrementing
24	what you've already got from 89-16. That may not be
25	the best engineering solution or the least expensive
l	

(202) 234-4433

(202) 234-4433

	87
1	engineering solution.
2	MR. BETTLE: Okay. Option 3, the
3	filtered vent.
4	MEMBER ARMIJO: Just before we leave.
5	Now, would you have to do these same things, many of
6	the same things from option 2 to make option 3 work?
7	MR. BETTLE: Yes.
8	MEMBER ARMIJO: So option 3 includes
9	many of the elements in option 2.
10	MR. BETTLE: Yes.
11	MEMBER ARMIJO: Okay.
12	MEMBER STETKAR: In fact, the last
13	bullet on that option 2 slide, if you decide to put
14	a vent in that may have a bigger influence on the
15	routing of your pipe. That's what I've seen in
16	Europe. Just because of space for your filter or
17	structural capability, you know, to handle the
18	filter.
19	MR. BETTLE: That will dictate the
20	layout of the vent system.
21	Okay, option 3. We consider that to be
22	it would be a significant enhancement in severe
23	accident containment performance. You get the
24	capability of option 2 plus, you know, it kind of
25	extends the containment function and you preserve
	1

(202) 234-4433

	88
1	the defense-in-depth.
2	So far in discussing with the Europeans
3	and in looking through as much literature as we can
4	nobody has really identified a technical or safety
5	issue with putting filters in a vent system.
6	MR. DENNIG: It doesn't introduce any
7	new accidents or problems in coping with as long
8	as it doesn't interfere with the existing systems.
9	As long as it's not intertwined in some way with the
10	existing systems. If you do that things get a
11	little confused. But as long as you keep those
12	things fairly separate you can manage it.
13	MR. BETTLE: And for the most part the
14	Europeans have come out of separate penetration and
15	they keep it totally separated from any of the
16	systems. It's essentially a stand-alone. They
17	don't tie in with, you know, have just a valve
18	barrier to standby gas treatment or other
19	ventilation systems on the way out to the vent
20	point.
21	If you have a filter, however much you
22	have coming out it's going to be much smaller than
23	without a filter. And it's been implemented in a
24	number of countries. It's proven in the sense that
25	nobody's come up with a reasonable way it's a bad
	I

(202) 234-4433

	89
1	idea. And it's certainly a technology that is
2	available.
3	You can construct this with brass from a
4	wetwell with normally closed valves. And this would
5	be coming out to a filter. It would give you the
6	maximum amount of belt and suspenders reduction in
7	anything being released. It would be more conducive
8	to early venting, reduce the stress or any delay in
9	consideration of the potential releases.
10	And you can have one of the European
11	designs, a vent line from the drywell with one
12	branch, one with a rupture disk and the other with a
13	normally closed valves that you can open it up.
14	What you see there on slide 33 is what
15	you would have on a Mark I with this full-feature
16	vent system coming up, both the wetwell and the
17	drywell.
18	Okay, the external filter system. I
19	guess the staff would develop some sort of a
20	technical basis for requiring a minimum DF. There's
21	been some discussion before, there will probably be
22	some discussion later today. The Europeans for the
23	most part had a requirement of a DF of 1,000 for
24	aerosols and 100 for iodine.
25	We would engage all the stakeholders to
I	I

(202) 234-4433

develop appropriate performance criteria for the filters if it was made a requirement. And other features that would be under consideration, if you do have a filter it makes more sense in terms of having a passive actuation through let's say an open or exposed rupture disk.

7 MEMBER SKILLMAN: Jerry, what is the 8 assumption relative to the fission product inventory 9 or to, if you will, origin run for the core under consideration? How did -- 2,500 megawatt cores 10 around 15 "B" billion curies, fission products plus 11 In your earlier slides 12 actinides plus transuranics. I don't think you were being slick, I think you were 13 14 being accurate, but it sounded like slide 28, not 15 too hard to put this plumbing experiences. You get any number of those curies, you've got thousands of 16 17 R per hour on the interior coating of the piping, and approaching that piping is deadly. 18 19

MR. BETTLE: Yes.

So I'm wondering on 20 MEMBER SKILLMAN: your slide 32, what is the assumption regarding the 21 original isotopic inventory? Where do you start? 22 MR. MONNINGER: I think, you know, from 23 24 other countries and from our internal discussions, 25 you know, from the fission product at the end of

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	91
1	life it would decay some. But there's a general
2	thought that somewhere around 10 percent of the
3	source term would then be hitting the filter.
4	MEMBER SKILLMAN: Would leave
5	containment.
6	MR. MONNINGER: That would potentially
7	be the expectation, 10 percent of the source term
8	would be available to the filter and a
9	decontamination of approximately 1,000 is ballpark
10	of what has been considered internationally. So
11	it's not the entire core, it's probably a release
12	somewhere on the order of 10 percent or so. And we
13	would look at various calculations to see the amount
14	and quantity of core debris released to the
15	containment, and what happens with a body of water
16	on top of that, et cetera.
17	MEMBER SKILLMAN: We're talking about
18	severe accident management.
19	MR. MONNINGER: Yes.
20	MEMBER SKILLMAN: And that suggests to
21	me actions in maybe the 72-hour to 120-hour range,
22	not in the 30-day to 90-day range. This is
23	suggesting to me something that is unfolding and
24	individuals are taking action right now. And that
25	would say your isotopic burden is on the greater
Į	I

(202) 234-4433

	92
1	side than 10 percent, it's up in the 50 percent, 60
2	percent, not at the 10 percent level.
3	MR. MONNINGER: We have done some of the
4	calculations in looking at what is available for
5	release within the drywell in particular.
6	MR. DENNIG: I think that question will
7	fit in well with the Research presentation on their
8	MELCOR runs.
9	MEMBER CORRADINI: They've passed it
10	down the chain.
11	MR. DENNIG: I mean, we can wing it here
12	or let them answer.
13	MEMBER SKILLMAN: I know what it looks
14	like when you're up close and personal and I know
15	what those levels look like.
16	MR. MONNINGER: So the other thing to
17	keep in mind is, you know, the concern potentially
18	with the filters and the plate-out of the fission
19	product and sources.
20	I think the other thing to keep in mind
21	is without the filters they are directed to vent the
22	exact same source term and you will have the same
23	plate-out within these pipings. And if you don't do
24	the venting there are also procedures for sprays and
25	recirc and pumping from the suppression pools to the
I	

(202) 234-4433

	93
1	sprays.
2	So I think irregardless of the filters
3	there could be considerable source terms throughout
4	the entire reactor building. Whether it's just
5	shine through the reactor or whether it's the filter
6	in which they would do with the unfiltered vent, or
7	whether it's taken recirc from the suppression pool
8	of highly contaminated water throughout the reactor
9	building to inject into the spray.
10	So you know, I think we appreciate the
11	concern but we think there are also many other
12	scenarios that represent that same concern.
13	MEMBER SKILLMAN: Thank you.
14	MR. FULLER: This is Ed Fuller from the
15	Office of Research. You'll see later some
16	discussion of not only filtering or venting I should
17	say but also putting water on top of the core debris
18	that might exit the vessel.
19	And if you look at core melt progression
20	analyses you see that the preponderance of the
21	fission product releases that are coming out during
22	the period where the vent paths would actually be
23	effective, you would pretty much have the volatile
24	fission product inventory.
25	Any of the less volatile material would

(202) 234-4433

	94
1	be not tending to come out until you had core
2	debris-concrete interactions. And if you had such
3	core debris-concrete interactions the chances are
4	pretty high that you would have bypass pathways
5	develop and that would render the venting or
6	filtered vents ineffective, relatively ineffective.
7	So in terms of the inventory that one
8	would expect to go through the vent pathways I think
9	it's not 10 percent of the entire fission product
10	inventory in the core, it's a lot less than that.
11	Granted there's still a lot of decay heat that you
12	need to deal with, a lot of radioactive material
13	that you would need to deal with, which suggests to
14	me at least that you would need some sort of shields
15	around these pipes going to the toward the stack
16	or wherever.
17	MEMBER SKILLMAN: Thank you.
18	MR. BETTLE: Okay, onto option 4.
19	MEMBER ARMIJO: Jerry, before you leave
20	that. Just go back. If that same system had been
21	at Fukushima and those plants, I'm trying to think
22	faced with the same challenge how much better off
23	would we have been? It would have encouraged
24	earlier venting, at least I think it would, but if
25	the valves didn't have power, couldn't be opened.
I	1

(202) 234-4433

(202) 234-4433

	95
1	MR. BETTLE: Then the rupture disk would
2	relieve and
3	MEMBER ARMIJO: Set the rupture disk at
4	a low enough pressure.
5	MR. BETTLE: Yes. And there seems to be
6	some variance.
7	MEMBER ARMIJO: It would be totally
8	passive then.
9	MR. BETTLE: Yes. Anywhere from, what
10	do you say, containment design pressure to 120-140
11	percent is typically what a lot of them
12	MEMBER ARMIJO: Set it to zero. Anyway,
13	you can go low pressure so it would just take care
14	of itself.
15	MR. BETTLE: Yes.
16	MEMBER ARMIJO: And you didn't need any
17	power.
18	MR. BETTLE: Right. And that's where
19	you get into the, you know, the rupture disk opens
20	and it just carries on for 24 hours without any
21	operator action.
22	MEMBER STETKAR: I mean, if you look at
23	the European designs they
24	MEMBER ARMIJO: You don't have to do any
25	flow or any chemistry inside that tank, or anything
Į	1

```
(202) 234-4433
```

	96
1	has to be activated?
2	MR. BETTLE: Not to that point. Beyond
3	that eventually because of the heat and the decay
4	products you're going to steam off a little bit more
5	of that water. Initially you'll start out cool,
6	you'll condense some of the steam coming in. The
7	level will rise a little bit and it'll start
8	essentially boiling off and the level will drop.
9	And you can size depending on how big
10	you want that tank to be, or you can stand it to be,
11	you get at least, typically at least 24 hours but
12	you could go longer. You'll have separate tanks on
13	the side that you can open a valve and replenish the
14	water that's been steamed down and also the
15	chemicals that were in there, kind of like recharge
16	it. And subsequent to that time it probably will be
17	good for several more days without further
18	intervention.
19	MR. DENNIG: A general criteria is that
20	it will be passively operable for 24 hours without
21	active
22	MEMBER STETKAR: General criteria where?
23	MR. DENNIG: In the foreign reactor.
24	MEMBER STETKAR: Not necessarily all of
25	them. They have manually isolated, at least the
Į	

(202) 234-4433

	97
1	designs, some of the designs I've seen they keep the
2	rupture disk manually isolated. They have local
3	manual mechanical reach rods such that you don't
4	need either ac or dc power to operate the valves but
5	they have procedures about when to un-isolate the
6	rupture disk. Because it's not clear
7	MR. DENNIG: Point Lepreau doesn't have
8	a rupture disk.
9	MEMBER STETKAR: That's
10	MR. DENNIG: running with the valves
11	closed.
12	MEMBER STETKAR: But I mean you're
13	the point is that they've designed the system so
14	that they don't require electric power. They can
15	be, you know, they're motor-operated valves but
16	they've put long reach rods out through the shield
17	so operators can actually get there and control the
18	release, you know, mechanically, manually.
19	MR. MONNINGER: If you look what the NRC
20	did for the ABWR, the advanced boiling water
21	reactor, there's a rupture disk there. There also
22	is a valve and that valve is normally open. And
23	it's designed to be operable to be closed following
24	severe accidents. So for what it's worth that's
25	what we did for the ABWR.
I	

(202) 234-4433

	98
1	MEMBER ARMIJO: Yes. So my question was
2	really based, you know, don't give yourself credit
3	for the improvements that we're trying to put in
4	through the orders. With this system it's passive
5	enough that it would still have worked even with all
6	the things that didn't work at Fukushima. And I
7	guess it's the rupture disk and you don't have to do
8	anything actively to make the filter continue to
9	work for the duration that's important.
10	MR. MONNINGER: I think the notion is if
11	those two valves from the drywell were normally open
12	and then it's the rupture disk then yes.
13	MEMBER ARMIJO: And there's no rupture
14	disk on the wetwell vent?
15	MR. MONNINGER: No.
16	MEMBER ARMIJO: Just there.
17	MR. MONNINGER: Yes. But then you've
18	got, you know, if this did rupture you would have
19	you've got your vacuum breakers that go back
20	through. You have a pathway from your suppression
21	pool
22	MEMBER ARMIJO: But you get no scrubbing
23	in from the wetwell though.
24	MR. MONNINGER: Well, it would blow down
25	through the SRVs into your suppression pool, come up
ļ	1

(202) 234-4433

	99
1	and then this goes back to the vent pipe, right.
2	Your vacuum breakers allow the air to transfer back
3	from the suppression pool atmosphere to the drywell
4	and then you can go out through your rupture disk.
5	MR. BETTLE: Until the core comes out of
6	the bottom of the reactor.
7	MEMBER ARMIJO: Okay. So it would have
8	done some good had it been at this something like
9	this at Fukushima without any power would have done
10	some good.
11	MEMBER STETKAR: I think, yes,
12	mechanical reach rod depending on, you know.
13	Incentive to vent earlier, basically, I think is the
14	thing that it would have.
15	MR. MONNINGER: You could argue either
16	way. You could argue because you hear about some of
17	the political considerations in venting. Who knows,
18	maybe they would have gone in and tried to close one
19	of these valves. Who knows what they would have
20	done? You can argue it.
21	MEMBER STETKAR: Well, but that's what
22	I'm talking about in terms of the philosophy of once
23	you install one of these things how does the basic
24	accident management philosophy change, or does it?
25	Because if there's an overriding political

(202) 234-4433

	100
1	consideration that thou shalt not release a single
2	microcurie then it doesn't make any difference
3	because the operators will not do that.
4	MR. DENNIG: If you have an exposed
5	rupture disk pretty much everybody has come to terms
6	with the fact that that's the pre-approved relief
7	pressure. You know, everybody knows it's going to
8	go at that point.
9	MR. MONNINGER: There's also a notion
10	that the release through the filter is more or less
11	equivalent to what you would have from leakage
12	through penetration seals, et cetera.
13	MEMBER BANERJEE: This filter is just a
14	pool, right?
15	MR. BETTLE: It's a very engineered
16	pool. That's why you have the multi-Venturi or the
17	nozzle baffle plate, impingement plate system that's
18	supposed to be much more effective for removing the
19	
20	MEMBER BANERJEE: But it just makes
21	smaller bubbles.
22	MR. BETTLE: Yes, higher velocity
23	smaller bubbles.
24	MR. MONNINGER: And tortuous pathways.
25	MR. DENNIG: There are two things that
I	I

(202) 234-4433

	101
1	happen in the Venturi as I understand it. Number
2	one, you use a rectangular throat in the Venturi,
3	that seems to be the best way to do things. You
4	have multiple levels of injection in the Venturi on
5	all sides. And what it does is and the other
6	thing that's important is the relative velocity of
7	the fluid into the gas as far as the idea is to
8	have something that will under most conditions
9	maintain that coverage of that throat while the gas
10	is going through.
11	And there's also a phenomenon that is in
12	the literature and is talked about by AREVA where
13	there are like films that break off. It forms
14	liquid films as opposed to a droplet for trapping
15	particles.
16	And then the last thing is that in both
17	the Paul Scherrer design and the AREVA design, the
18	AREVA design ends in like a ram's head. It comes up
19	and hits a surface and goes down, and in the PSI
20	design it has a series of plates like an impactor
21	for taking things out. So that's another part of
22	it. So that whole regime, that whole thing, that's
23	how it's supposed to work.
24	MEMBER BANERJEE: So the gas goes up
25	this baffle pathway.
I	I

(202) 234-4433

	102
1	MR. BETTLE: Yes. That way it allows
2	you to have a much more compact filter because the
3	bubble rise, a very so it makes sure all the
4	bubbles are small and they have a very tortuous path
5	up, to wend their way up through.
6	MEMBER BANERJEE: And the flow comes in
7	into a manifold with multiple Venturis on it?
8	MR. BETTLE: Yes.
9	MEMBER BANERJEE: This is an old
10	chemical plant design then?
11	MR. BETTLE: Yes, yes.
12	MEMBER BANERJEE: Okay. I know how it -
13	- yes. They use exactly these systems for emergency
14	release of chemical reactors.
15	MEMBER CORRADINI: That's what I was
16	going to say, it's a loss prevention design, right?
17	Off of a reactor.
18	MEMBER BANERJEE: I have a picture in my
19	book.
20	MR. MONNINGER: The thought would be
21	that the staff, if this was one of the
22	recommendations, we would not specify the particular
23	design. You would specify the performance
24	attributes and however the industry wanted to design
25	or meet those performance attributes, that would be
Į	1

(202) 234-4433

	103
1	up to them to propose and demonstrate.
2	MEMBER BANERJEE: But you would
3	MEMBER ARMIJO: Isn't there a philosophy
4	that goes with this equipment of early venting that
5	you would kind of push in the management guidelines?
6	That says that really makes people rely on that
7	thing.
8	MR. DENNIG: The virtue I guess, one way
9	to put it is that it is not very sequence-sensitive.
10	So whatever is happening, this is outside the
11	containment and it will do its thing. And you don't
12	have to worry about where you are even in terms of -
13	- if it's passive even in terms of the pressure.
14	MR. MONNINGER: Regarding early venting
15	there is a proposal in to the staff from the BWR
16	Owners Group to explicitly look at that, to look at
17	changes to the emergency operating procedures/the
18	SAMGs. If you look at the current EOPs, you know,
19	Rev 4 in the staff's evaluation, the notion of
20	venting is at a last-ditch resort. So it's, you
21	know, and the venting pressure shall be at the
22	highest, highest, highest possibly ever allowed. So
23	that is the mentality.
24	MEMBER ARMIJO: That's what worries me,
25	that whole mentality with this system.
I	I

(202) 234-4433

	104
1	MR. MONNINGER: Right, but you can
2	change the framework. Industry has proposed to
3	change that framework for early venting but the
4	filter isn't part of that currently.
5	MEMBER ARMIJO: Right. Okay.
6	MEMBER POWERS: When you think about
7	these designs, mitigate releases during a severe
8	accident such that we're thinking about here, do you
9	think about a heat load on that upper head still and
10	the failure of your seals for the upper drywell
11	head? Or maybe more generally just the whole
12	possibility of bypass through penetration in the
13	containment.
14	MR. MONNINGER: I think you would have
15	to. I think one of the things not to talk about
16	MAAP analysis but to talk about the MAAP analysis,
17	they would postulate the one containment failure,
18	then the second, then the third. You know, starting
19	with liner failure and eventually the upper seals
20	going away or penetrations, et cetera.
21	Dependent upon how you operated this
22	thing if it was open and kept open your forcing
23	function, your driving pressure would essentially be
24	limited to the head of water there versus a strategy
25	that is keeping your containment pressure between 40
	1

(202) 234-4433

	105
1	and 60 pounds, you know, and the degradation of the
2	seals associated with that versus the head of water
3	there. I think it would be different.
4	MEMBER POWERS: I mean, I personally
5	have no idea what actually fails in the seals,
6	whether it's a dose embrittlement or actual
7	squeezing amount of pressure, something like that.
8	It strikes me that that's the tradeoff that you
9	you kind of have a baseline release going on because
10	of those seals and the penetrations. Mark I's tend
11	to be very good. Mark III's tend to be very
12	horrible and things like that on those baseline
13	releases.
14	But I mean, Sam asked you how this was
15	going to behave in the Fukushima accident. I think
16	the seal would become problematic and in looking at
17	the Fukushima accidents really had this. That's one
18	of the great auxiliary benefits of drywell sprays is
19	that you can get cooling up in there and push things
20	down and stuff like that.
21	MR. DENNIG: That's one of the reasons
22	to have the drywell vent is because it's the
23	advantageous location to remove heat from the upper
24	vent area.
25	MEMBER POWERS: Yes, that's true.
ļ	I

(202) 234-4433

	106
1	MR. BETTLE: Once you're venting through
2	the top head of containment, you know, you're not at
3	the absolute best position for taking heat out of
4	containment. But you know, you could have points
5	that are at least mid or above the fuel zone in the
6	reactor. So you take that kind of heat off of a lot
7	of the penetrations in there. Maybe not the head
8	itself. You know, it would help, it would seem to
9	help.
10	Slide 34. Option 4, performance-based.
11	This would be each plant performing a site-specific
12	cost-benefit analysis. You come up with a defined
13	source term for the plant and a defined
14	decontamination factor and go through what their PRA
15	and event frequencies are and DF. It would all be
16	custom for each individual plant.
17	MEMBER CORRADINI: Would you have
18	requirements in terms of a diversity of approach?
19	In other words, the one you I was reading these
20	kind of ahead of time and the one you highlighted
21	was the third one. Would you consider then they
22	would have to define a large release and then also
23	some sort of frequency with it and a diverse
24	approach to handle it? I'm trying to understand
25	what this means.
I	1

(202) 234-4433

	107
1	MR. DENNIG: I think it would start from
2	the presumption of core damage. You wouldn't
3	MEMBER CORRADINI: So given the
4	presumption of core damage. Then it would be what?
5	A definition of a large release over a cumulative
6	time period and some sort of reliability that or
7	some sort of demand you don't exceed it with some
8	frequency?
9	MR. MONNINGER: I don't think we've
10	fully worked it out. One of the potential outcomes
11	of this is, you know, if this was stylized according
12	to our current framework would you really come up
13	with any different result than your SAMA analysis.
14	I mean, essentially this is what your SAMA analysis
15	does, it look at the plant risk profiles. You cost
16	it out, it's site-specific, et cetera. Would this
17	result in anything different unless we went in with
18	some new type of deterministic criteria?
19	MEMBER CORRADINI: Like it must be
20	diverse.
21	MR. MONNINGER: Right. Or you know,
22	some criteria for defense-in-depth, some different
23	type of criteria for containment performance.
24	MEMBER CORRADINI: So, can I say it
25	differently? What you're saying is this sounds good
ļ	I

(202) 234-4433

	108
1	but once you defined it it would probably be status
2	quo. It would essentially degenerate to option 1.
3	That's what I heard you just say.
4	MR. MONNINGER: If you follow the
5	current regulatory process it could easily turn into
6	SAMA analysis option 1 status quo.
7	MEMBER CORRADINI: Should it be site-
8	dependent?
9	MR. MONNINGER: Well, the SAMA is site-
10	dependent to the extent that they do it for the wind
11	patterns, the people that live there, the source
12	terms, the release pathways, et cetera. You know,
13	we could potentially in this approach come up with
14	different types of metrics, et cetera, but then we
15	would be in that type of battle also.
16	MR. DENNIG: And this would be, in
17	talking about the EPRI insights report this would be
18	the place where you would entertain those sorts of
19	things as part of the mix.
20	MEMBER REMPE: You're thinking of using
21	the existing cost-benefit criteria? Are you
22	thinking of another one?
23	MR. MONNINGER: We use and this will
24	be a good discussion for this afternoon, the reg
25	analysis. We do use our existing tools, you know.
	1

(202) 234-4433

109 1 So until we change the tools we crank it through and what comes out comes out. And it's not acceptable 2 3 to be using it in other regulatory applications. Ιf 4 we think a different regulatory analysis approach is 5 needed here we should be using that in the other So we would have to use our current 6 approaches. Unless we justify and the Commission 7 approaches. 8 approves some other approach. MR. DENNIG: But the variable is the --9 The other considerations that --10 what's the term. MR. MONNINGER: Qualitative arguments? 11 Yes, that the Commission MR. DENNIG: 12 has directed that you consider when doing the cost-13 14 benefit analysis. 15 MR. MONNINGER: When we do our 16 regulatory analysis. 17 MR. DENNIG: Regulatory analysis. MR. MONNINGER: And that will be 18 19 discussed this afternoon too, the qualitative part. Is there some subtlety 20 MEMBER STETKAR: in option 4 that I'm missing? 21 This strictly says performance-based. I noticed it doesn't say risk-22 informed performance-based. And you were careful to 23 24 say that you would presume core damage. So you're presuming that option 4 has no information about 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	frequency or
2	MEMBER SHACK: Makes the cost-benefit
3	analysis a lot easier.
4	MR. MONNINGER: I don't think we've gone
5	that far in our thinking on it. I think we would be
6	challenged, you know, to do that.
7	MEMBER POWERS: It looks to me like the
8	DFs selected for the foreign filtered vent systems,
9	1,000 for the aerosol and 100 for the iodine is
10	based on what you can do reasonably in engineering
11	the system. When you say plant meets a defined DF
12	or a defined source term is that what you're talking
13	about or would you be looking for something more
14	closely tied to the Part 100 kinds of thinking?
15	MR. MONNINGER: You know, and I wouldn't
16	say the group has consensus because we haven't had
17	that level of discussions. I don't think we would
18	necessarily tie it to Part 100. I think it would be
19	more on the lines of what is traditionally looked at
20	in PRAs risk assessments, severe accidents.
21	MR. DENNIG: The underlying idea is to
22	set up a target, talk about how you're going to meet
23	it. That's the basic concept. And we start with
24	specifying a decontamination factor and that would
25	apply to the presumably to the whole plant. And
I	

(202) 234-4433

	111
1	the filter
2	MEMBER POWERS: I mean, that aspect of
3	it I like.
4	MR. DENNIG: And we go from that.
5	MEMBER POWERS: I'm including applying
6	it treating the plant as kind of a black box and
7	saying this is the DF I want. I would say that's
8	more consistent with the Part 100 philosophy than
9	coming in and saying your filter has to get a DF of
10	1,000 on aerosols. Because you get into
11	MR. DENNIG: Yes.
12	MEMBER POWERS: You put a constraint on
13	design and you disallow certain or disincentivize
14	certain activities that might be beneficial when you
15	do that.
16	I love Part 100 because it is really a
17	technology-neutral kind of regulation when the
18	regulators played the role of here's what I want. I
19	don't care how you get it, give me this. And in the
20	sense that you can get that idea. And certainly
21	saying I want a DF of this much for the plant and I
22	don't care what the individual parts are is
23	consistent with that.
24	MR. MONNINGER: So one of the thoughts,
25	if we've done 90 percent of the work in looking at
l	

(202) 234-4433

	112
1	options 2 and 3, you know, it would be more on the
2	order of 10 percent for option 4. One of the
3	thoughts was it would be some type of rulemaking
4	activity, maybe some type of ANPR or proposed
5	rulemaking.
6	It's sort of a different type track that
7	we would pursue option 4 versus and you'll see it
8	within the reg analysis. We haven't tried to cost
9	out option 4 at all. It's if you want to do
10	something different, you're not comfortable today
11	making a decision for options 2 and 3, should we do
12	something at maybe a slower pace through rulemaking
13	and get, you know, consider plant-specific factors.
14	So it's not as comparable to options 2 or 3.
15	The thought is if options 2 or 3 were
16	potentially supported by the staff or the Commission
17	they would more likely be orders. Option 4 would,
18	if it was supported by the staff or the Commission
19	be more in line of a rulemaking.
20	MEMBER POWERS: Always in these filter
21	systems, I mean just knowing how people design
22	filter systems they get very focused on the system
23	itself and they forget that there are many slips
24	`twixt the release and the outlet there. And there
25	are lots of potentials for bypassing filter systems
I	I

(202) 234-4433

	113
1	and things like that. So a more comprehensive
2	examination embodied in a performance-based approach
3	always looks much more attractive to me than looking
4	at a pipe and a filter no matter how good I think
5	that filter is.
6	MR. DENNIG: Again, without introducing
7	some additional factor the subject of putting
8	filters on plants has come up before. And if the
9	technology and the cost doesn't factor into things
10	then we're doing, you know, we're back at looking at
11	concepts of internal mechanisms and external
12	mechanisms. So we're kind of back there in looking
13	at the whole picture.
14	MR. BETTLE: And when you look at the
15	plant-specific, you know, there's some other
16	factors. Is this something that's just a one-time
17	shot evaluation or over time if you're doubling the
18	population or the value of the property around the
19	plant, or you add another operating unit there, you
20	know, and you have to assume simultaneous severe
21	accidents is that going to change what you need to
22	have? Put a second unit there, that puts you over
23	the line and you've got to put filters on both of
24	them. Those would be some of the stuff that I think
25	you'd have to consider with a site-specific
I	I

(202) 234-4433

	114
1	analysis.
2	Okay. Slide 35. Office of Reactor
3	Research has performed some modeling. We need to
4	look at some representative cases to see what kind
5	of releases we get to evaluate the options. They
6	did a number of cases. We didn't look to explore,
7	you know, worst case or best case, just that we had
8	some representative scenarios. And also there were
9	some additional cases run as sensitivity to get a
10	little bit better understanding of what we were
11	getting for results.
12	We used MELCOR calculations. These were
13	used in SOARCA and they also have done some modeling
14	of the Fukushima situation to see how well it would
15	track with what the MELCOR would give you.
16	And then they did the MACCS calculations
17	for venting with and without a filter for what you'd
18	get offsite. So I guess at that point the Office of
19	Reactor Research will continue.
20	CHAIR SCHULTZ: Thank you, Jerry. At
21	this time I'm going to call a break for the meeting.
22	I would like to warn everyone that we are well over
23	schedule.
24	We had scheduled a long lunch break to
25	accommodate a separate meeting that the committee
I	1

(202) 234-4433

	115
1	has. I'm going to see if we can shorten up that
2	lunch break so that we can accommodate more for the
3	presentations in the next session because I don't
4	want to take away time that we've scheduled for
5	that.
6	Can we just hold the slide that we just
7	presented on the screen rather than this one during
8	the break? Because this is an excellent
9	introduction to the next phase.
10	With that I'll call a break. I'm going
11	to make the break until 10 past, 15 minutes because
12	it's been a long morning already but please be back.
13	We will start at 10 past 11.
14	(Whereupon, the foregoing matter went
15	off the record at 10:53 a.m. and went back on the
16	record at 11:11 a.m.)
17	CHAIR SCHULTZ: I'm calling the meeting
18	back to session. I did want to make one comment.
19	For the benefit of the recorder and for the benefit
20	of an accurate transcript the recorder would like to
21	let everyone know that we're having trouble with
22	people talking over each other and hearing that
23	properly so it can be properly transcribed. So
24	please pay attention to that over the next few
25	hours. We have many people in the room and in this
	I

(202) 234-4433

	116
1	room voices carry and can conflict the transcript.
2	So please pay attention to that for the afternoon,
3	the rest of the morning and the afternoon.
4	With that I'll turn the discussion.
5	Bob, why don't you introduce this next session and
6	then Sud can begin.
7	MR. FRETZ: We have Sud Basu from the
8	Office of Research and Allen Notafrancesco. They
9	are to talk about the MELCOR analysis they
10	performed.
11	Again, as the slide shows or at least
12	what we tried to depict with the slide was the
13	MELCOR analysis was used to help us I guess begin
14	the process of informing our regulatory analysis.
15	And so Sud would like to talk about some of the
16	cases that they ran to help us in that aspect.
17	CHAIR SCHULTZ: Thank you. Next slide.
18	MR. BASU: Thank you, Bob, and thank
19	you, Mr. Chairman. In fact, if we can go back to
20	the slide that was projected I can cut back on a
21	couple of slides after that. That'll work, right?
22	So I want to show you MELCOR
23	calculations that were informed by SOARCA insight
24	and Fukushima insight. And these calculations
25	involve a number of prevention and mitigation
I	

(202) 234-4433

	117
1	features and measures, a combination thereof that
2	are actually involving the options, the four options
3	that you had seen earlier in previous slides.
4	So with that I'm basically going to skip
5	to the skip to slide 38, talk about what analyses
6	we have performed and what a subset of which
7	we're going to show you here.
8	So filtered vent MELCOR analyses. We
9	looked at accident sequences that were informed by
10	SOARCA and Fukushima. Specifically we looked at the
11	long-term station blackout.
12	By the way, most of these slides are
13	repeat slides from the September 5th meeting so I'm
14	going to go through as quickly as I can. And if you
15	have questions by all means interrupt me and I will
16	respond.
17	MEMBER SHACK: Isn't the 16-hour battery
18	life a little generous?
19	MR. BASU: Yes, it might be thought that
20	way. Now, if you look at the SOARCA we used very
21	conservatively 4 hours battery life. In Peach
22	Bottom though the battery emission time is actually
23	8 hours.
24	We have reason to believe that with the
25	new mitigation measures and severe accident measures
1	1

(202) 234-4433

	118
1	that may be coming out it may be amenable to a
2	longer battery life, battery emission time. And 16
3	hours was picked by us as the best case but we
4	showed you in the September 5th meeting that the
5	RCIC sensitivity with 4 hours and 8 hours really,
6	you know, does not change the overall bottom line of
7	our calculation and insights therein.
8	MR. MONNINGER: This is John Monninger.
9	Maybe I could throw something in.
10	One of the things we are looking at is
11	the timing and what is necessarily more bounding.
12	Is it a shorter RCIC time or is it a longer RCIC
13	time? Or is it a longer time to core damage?
14	You know, one of the thoughts is if the
15	time to core damage, core ex vessel, et cetera, is
16	earlier the suppression pool maybe isn't at as high
17	of a temperature versus, you know, putting until you
18	drain the RWST and then you have 12 hours of decay
19	heat into the suppression pool and you have less
20	scrubbing by the time it hits it.
21	Other issues that impact for the long
22	term are the longer term your transient is out you
23	also have the potential that you have added more and
24	more water to your suppression pool. And as the
25	level goes up eventually you lose that wetwell
ļ	I

(202) 234-4433

	119
1	venting capacity. So it's not quite clear in terms
2	of looking at filtered vents, in terms of looking at
3	the potential impact on the environment or land
4	contamination whether it's better or worse to look
5	at early severe accident or a later severe accident.
6	MR. BASU: So we kind of bounded within
7	a range from 4 hours to 16 hours. We looked at
8	that. That's in terms of the battery time of the
9	RCIC.
10	We did look into other sensitivities
11	like the flow rate and timing and the wetwell versus
12	drywell. In fact, two cases that I'm going to show
13	you this time, they were not elaborated in the last
14	presentations of the drywell venting cases.
15	So, going into 39, giving you the punch
16	line. And I'll sort of show you some thoughts to
17	support these. Basically what it says is the water
18	on the drywell floor is needed to prevent liner
19	melt-through.
20	This is not a new finding. We have
21	actually concluded this back in the early nineties
22	in connection with the liner melt-through failure or
23	liner melt-through study. The MELCOR calculations
24	that we have presented and are going to present here
25	basically confirms this, that you need water on the
ļ	I

(202) 234-4433

	120
1	drywell floor to prevent liner melt-through.
2	And incidentally if you have water on
3	the floor it does scrub the fission products and
4	reduces the drywell temperature at the same time.
5	So there is some beneficial effect of that.
6	Venting on the other hand, this is the
7	other mitigation measure if you will. It prevents
8	overpressurization failure. And we're making a
9	statement here. And you'll see later on why this is
10	wetwell venting is preferable to drywell venting.
11	Wetwell venting of course gets the benefit of full
12	scrubbing whereas the drywell venting doesn't. So
13	that way it is more preferable.
14	However, you need a combination of both.
15	If you do not have venting you are going to then
16	that's going to result in overpressure failure. If
17	you do not have water on the drywell floor it's
18	going to lead to melt-through. So you need a
19	combination of both and that's what basically we
20	concluded through our analysis.
21	So the nodalization, the MELCOR
22	nodalization that we have and you have seen this as
23	well, it comes from the Peach Bottom SOARCA study.
24	There's nothing new there. If you look at the
25	containment nodalization that shows you the various
ļ	I

(202) 234-4433

	121
1	flow paths, particularly for venting through drywell
2	and through wetwell.
3	I think there was a question in the last
4	session about what if we have different nodalization
5	and particularly in the reactor building
6	nodalization. If you look at the reactor building
7	nodalization these are high volumes so, you know,
8	I'm really not sure where the nodalization is going
9	to affect the overall outcome in an appreciable way.
10	So looking at the going to slide 41,
11	looking at the results. Again, these were shown in
12	the previous meeting. There's nothing new there on
13	slide 41.
14	I had an IOU from the last meeting about
15	why the venting cases are leading to early reactor
16	pressure vessel failure. And if you look at also
17	the hydrogen production in the next slide not the
18	next slide, slide 43 you'll see early venting
19	cases are producing also high quantity of hydrogen.
20	And these are related. What's happening
21	with the early venting, you are actually decreasing
22	the drywell pressure and that's going to impact the
23	accident progression in the vessel to increase
24	steaming. That's going to then lead to clad
25	oxidation and hydrogen production, higher melt
I	

(202) 234-4433

122 1 temperature and consequently the higher the vessel temperature leading to earlier failure. So that's -2 3 MEMBER CORRADINI: So that's a detail 4 5 that's important. Just so understand. So, the 6 communication between -- in the calculation, the communication between the vessel and the drywell is 7 8 such that because of the venting you're lowering the 9 pressure. 10 So what's the flow path -- what is the flow path out of the vessel? What is the -- I don't 11 want to say assumed. What is the model flow path 12 between the vessel and the drywell in that case? 13 14 It's not through the SRVs. It is? It is the SRV? 15 Yes, that's correct. MR. BASU: Okay, 16 so the two cases that I want to spend a little more 17 time on, these are the two cases that I did not elaborate on in the last presentation, last meeting, 18 19 case 12 and case 13. Both are drywell venting cases. Case 12 is only drywell venting whereas case 20 13 is the drywell venting with drywell spray. 21 The way we did these two calculations in 22 the MELCOR space is we actually disabled the SRV's 23 24 stack-open mechanisms so as not to route the flow 25 through the wetwell vent path. So that should have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	led to main steam line rupture ahead of the vessel
2	failure. And this is what you will see in the
3	I'm sort of going all the way to slide while I
4	don't have the slide number here printed I think
5	it's the second plot of drywell pressure. Okay.
6	No, next one, next one.
7	Okay, so you see for case 12 and 13
8	we're getting the main steam line creep rupture
9	ahead of the vessel failure. So that's the
10	difference between the two cases, the drywell
11	venting cases versus the wetwell venting cases.
12	Now, we could have actually simulated
13	the drywell venting cases in a manner similar to the
14	wetwell venting cases but that would have required a
15	much more involved workaround with MELCOR and some
16	of the models in MELCOR.
17	And again, at the end it would not have
18	made any difference in terms of the overall
19	findings. So, if I can go to the next slide that
20	shows you the and I'm talking cesium release as
21	just an indicator.
22	MEMBER CORRADINI: Sud, why don't I just
23	stop you because I'm trying to take your four tables
24	with your two figures. So can I just say it back to
25	you? I'm still back on your first observation, or
l	I

(202) 234-4433

1 the question that was asked of you and you're explaining which is hydrogen production goes up and 2 3 vessel failure time goes down. 4 MR. BASU: A couple of hours. 5 MEMBER CORRADINI: A bit. 6 MR. BASU: Yes. 7 MEMBER CORRADINI: Yes. And they -hydrogen production is connected because you're 8 9 getting more steam flow out of the core through the 10 hot cladding. And one more time, the vessel -- I'm still trying to understand why you get more steam 11 flow but that's my problem at this point. 12 And then the vessel failure is due to 13 14 what? You said it and I didn't catch it, I 15 apologize. The change --MR. BASU: Early vessel failure --16 17 MEMBER CORRADINI: Yes, earlier. MR. BASU: -- is due to increased 18 19 oxidation of cladding raising the melt temperature higher. 20 MEMBER CORRADINI: And then when it 21 slumps it slumps --22 It slumps and because the 23 MR. BASU: 24 vessel head failure is, you know, the creep rupture failure so it depends on the temperature and 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

124

	125
1	pressure.
2	MEMBER CORRADINI: Right. Thank you.
3	MEMBER REMPE: Why don't you explain
4	about the steam flow, that there's more steam flow
5	going through. What you said was why you have more
6	oxidation.
7	MR. BASU: Yes.
8	MEMBER REMPE: Could you is there
9	is the pressure in the vessel still at full pressure
10	because you just are lifting the relief valve,
11	right?
12	MR. BASU: Yes.
13	MEMBER REMPE: So why is it
14	MR. BASU: But it's the delta between
15	the drywell and the vessel.
16	MEMBER CORRADINI: But isn't it choke
17	flow? So it wouldn't matter what the downstream
18	pressure is for the flow rate.
19	MR. BASU: Why is it choke flow?
20	MEMBER CORRADINI: Well, because we're
21	at very high pressures inside the reactor vessel and
22	we're only about tens of psi.
23	MR. BASU: But you're tightly coupled.
24	MEMBER CORRADINI: Well, that's what I
25	was trying to get at. I was trying to understand
I	

(202) 234-4433

	126
1	why they're tightly coupled versus I would think
2	they were uncoupled.
3	MR. BASU: In the Mark I configuration
4	your containment is tightly coupled with your
5	vessel, SRVs and others.
6	MEMBER CORRADINI: But we're still at
7	what pressure is inside the vessel. Very high
8	pressures, yes?
9	MR. BASU: It's at high pressure, yes.
10	MEMBER CORRADINI: So then it shouldn't
11	be affected by the downstream pressure. We're
12	around 1,000 psi in the vessel and only less than
13	100 psi in
14	MR. BASU: In the drywell.
15	MEMBER CORRADINI: Right. That's above
16	a choke flow limit so it should be just the upstream
17	pressures determining the flow rate. That's what
18	I'm what I guess I'm asking is are the SRVs
19	maybe I should ask the question. Are the SRVs
20	opening more frequently when you're venting than
21	when you're not venting?
22	MR. BASU: If SRV stack-open mechanism
23	is disabled.
24	MEMBER CORRADINI: So they're always
25	opening and closing, opening and closing. Right,
	1

(202) 234-4433

127 1 I'll think about it some more. Thank you. MEMBER ARMIJO: Sud, just before you --2 could you go back to 44, slide 44? 3 4 MR. BASU: Forty-four, yes. 5 MEMBER ARMIJO: I'm trying to The case 15 is --6 understand. 7 MR. BASU: Is a drywell spray, wetwell 8 venting. MEMBER ARMIJO: Right and RCIC. 9 So 10 that's about the best you can do, right? You're doing everything right. You're spraying your 11 wetwell vent and everything. 12 Then case 14 you don't vent at all. 13 14 MR. BASU: Right. 15 MEMBER ARMIJO: But the head fails, or 16 the head flange fails. But yet you get much more iodine release --17 MR. BASU: And cesium release. 18 19 MEMBER ARMIJO: -- in the case 15. Am I reading this wrong? 20 MR. BASU: Yes, and the question came 21 22 up. 23 MEMBER ARMIJO: Why is that? And the benefit from cesium isn't that much better with a 24 wetwell vent. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	128
1	MR. BASU: No.
2	MEMBER ARMIJO: A factor of 3.
3	MR. BASU: So what's happening is
4	remember the spray is coming on at 24 hours whereas
5	the head flange is opening before that. So, about
6	an hour or so before that in the case of
7	MEMBER ARMIJO: So, but my question is
8	why don't we get a lot more release, both cesium and
9	iodine, in case 14 than in case 15.
10	MR. BASU: Okay, so if you go back to
11	slide 42. So for case 14 you do not have any
12	venting, correct?
13	MEMBER ARMIJO: Right.
14	MR. BASU: So, the head flange is going
15	to open up at about 26 hours. Right?
16	MEMBER ARMIJO: But it's still bottled
17	up.
18	MR. BASU: Yes, it's bottled up. And
19	you're getting a couple of hours' of benefit of
20	drywell spray there. Whereas in case 15 you are
21	actually opening the vent an hour before the drywell
22	spray is coming on. So you're not having the
23	benefit of any scrubbing for about an hour.
24	MEMBER ARMIJO: That may be true but it
25	sure does not satisfy. Okay, I understand what
	I

(202) 234-4433

	129
1	you're saying.
2	MR. BASU: Okay? So if I can get the
3	cesium release to environment plot. Next one. So
4	these are the cesium release and you have seen
5	these. After 48 hours. And basically what it says
6	there, if you have a case where there's no venting,
7	no spray and that's case 2 with just RCIC it is
8	going to lead to liner melt-through and sort of
9	leading to pretty high cesium release to
10	environment, fairly high in relative terms, relative
11	to the other cases that are shown there. But it is
12	still on the order of, you know, between 1.2 to 1.4
13	percent.
14	CHAIR SCHULTZ: So Sud, did you
15	you're not presenting case 13 here.
16	MR. BASU: No, that's the next slide.
17	CHAIR SCHULTZ: Okay. I'll wait. Thank
18	you.
19	MR. BASU: So we want to compress now
20	this here with the next slide.
21	MEMBER CORRADINI: Before you do that.
22	MR. BASU: Yes.
23	MEMBER CORRADINI: I'm sorry. So, was
24	this what Sam was asking? Maybe I was still on my
25	first question. So, for the figure you have up
l	I

```
(202) 234-4433
```

130 1 there the purple is case 14 where I don't have a 2 drywell vent and yet the cesium release is low. Is 3 that what you were asking, Sam? MEMBER ARMIJO: Yes, I didn't 4 5 understand. 6 MEMBER CORRADINI: I guess I'm slow to pick up your question. I'm still scratching my head 7 8 on that one. 9 MEMBER ARMIJO: It may be true but it 10 sure isn't satisfying that the lowest release is when you don't --11 MEMBER CORRADINI: Is when it's bottled 12 13 up. 14 MEMBER ARMIJO: Yes, when it's bottled 15 up and you're putting the containment at risk. The 16 spray is helping. 17 MEMBER CORRADINI: But -- I agree with But just since Dana is thinking what I was 18 you. 19 thinking, I was comparing the purple quy to there -where the hell is he. 20 MEMBER ARMIJO: To the best case is 21 black. 22 MEMBER CORRADINI: To the case 7 which 23 24 is a wetwell vent and spray in it. MEMBER ARMIJO: Yes. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

ĺ	131
1	MEMBER CORRADINI: Is 7 the black?
2	MEMBER ARMIJO: Seven is case
3	MR. BASU: Fourteen.
4	MEMBER CORRADINI: No, that's the
5	drywell vent. I'm looking at where I'm going
6	with this is in my mind the optimal case of all
7	would be eventually that I would vent through the
8	wetwell and I'd try to moisten up the drywell which
9	is essentially case
10	MR. BASU: Fifteen.
11	MEMBER SHACK: Fifteen is a wetwell
12	vent.
13	MEMBER CORRADINI: I read that as a
14	drywell vent.
15	MR. BASU: No, no.
16	MEMBER CORRADINI: I'm sorry. Excuse
17	me. I'm sorry.
18	MR. BASU: I apologize. The vent, when
19	it says vent, that's wetwell vent.
20	MEMBER SHACK: But I think the price
21	you're paying for that lower release is that you're
22	pressurizing the drywell head. You're getting your
23	drywell head failure in 14. So you know, you're
24	trading off a release.
25	MEMBER CORRADINI: In 14 you're not
I	I

(202) 234-4433

	132
1	venting at all.
2	MEMBER SHACK: That's why you're losing
3	the drywell.
4	MR. BASU: That's why you're losing the
5	drywell head.
6	MEMBER CORRADINI: I understand. So
7	you're making a trade here. So then, just so we're
8	clear, so why is the black higher than the purple?
9	MEMBER ARMIJO: Exactly.
10	MEMBER STETKAR: Is there no release
11	through the
12	MEMBER ARMIJO: The drywell head has to
13	release.
14	MEMBER POWERS: My understanding is that
15	
16	MEMBER CORRADINI: We're picking on you
17	because we can't get the Sandia people in front of
18	us.
19	MEMBER POWERS: My understanding is that
20	they're venting prior to spraying for an hour.
21	MEMBER CORRADINI: Okay.
22	MEMBER BLEY: So really we need all
23	these scenarios laid out.
24	MEMBER REMPE: Yes.
25	MEMBER STETKAR: Would anybody actually
1	

	133
1	do that if they had sprays available?
2	MEMBER POWERS: Would anybody allow the
3	drywell pressure to go over the ultimate before they
4	opened up the wetwell vent? Yes.
5	(Laughter)
6	MEMBER ARMIJO: I think it's been done.
7	MEMBER CORRADINI: So then, that's fine.
8	Dana alerted me to my lack of memory.
9	So now I'm opening up the vent early. I
10	have the drywell spray. And therefore the reason
11	I'm not getting more decontamination through the
12	wetwell is simply this pressure well by that time is
13	saturated?
14	MR. BASU: No, you are actually venting
15	without the benefit of drywell spray for about an
16	hour.
17	MEMBER CORRADINI: Okay. And that's why
18	I'm getting most of the black. Okay. Okay, I'll
19	stop for now. Sorry.
20	MR. BASU: So what we want to do is
21	contrast that with the cesium release for the two
22	cases that are here this time to the drywell venting
23	cases, case 12 and case 13 which is in the next
24	MR. FRETZ: There's an updated slide in
25	your packets.
l	I

(202) 234-4433

	134
1	MR. BASU: So I think
2	MEMBER ARMIJO: That's the one in this
3	little supplement?
4	MEMBER BLEY: Two updated tables.
5	MR. BETTLE: This is Jerry Bettle. As a
6	point of clarification. When you show this as being
7	a release to the environment that's outside the
8	reactor building, right?
9	MR. BASU: Yes.
10	MR. BETTLE: So when they talk about the
11	releases are lower, you're just loading up the
12	reactor building with the release if it's coming out
13	the head. Is that a correct statement?
14	MR. BASU: Say that again?
15	MR. BETTLE: That when you're showing
16	releases to the environment that means outside the
17	reactor building.
18	MR. BASU: Outside the reactor building,
19	that's correct.
20	MR. BETTLE: So when you have a low
21	release coming out of the head you'd be loading up
22	into the reactor building and should that
23	disintegrate later then you'll get the release at
24	that point.
25	MR. BASU: Yes, but any release numbers
I	1

(202) 234-4433

	135
1	that you see here are releases to the environment.
2	MR. BETTLE: Right, which is external of
3	the reactor building.
4	MR. BASU: External of the reactor
5	building.
6	MEMBER STETKAR: So the reactor building
7	is perfectly tight.
8	MEMBER BROWN: No, this is outside the
9	reactor building.
10	MEMBER STETKAR: I'm still trying to
11	rationalize why a release from the head to the
12	reactor building isn't a release to the environment.
13	MEMBER BLEY: But what's in the model
14	about the reactor building?
15	MEMBER STETKAR: That's what I thought I
16	just heard him say.
17	MR. BASU: I'm saying that these
18	releases that you see here are releases outside.
19	MEMBER BROWN: Outside the reactor
20	building?
21	MR. BASU: Outside the reactor building.
22	MEMBER BROWN: So the reactor building
23	is open now, it's busted.
24	MR. FRETZ: If you go back to slide 40
25	you can see the flow path from the seals to the
ļ	1

	136
1	control volume. Go back to slide 40. You see flow
2	path 903, the seals there. That's the flow path
3	through the seals to that control volume, and then
4	it'll migrate to the other control volumes, you
5	know, the spent fuel pool and then out the reactor
6	building.
7	I think what Jerry was trying to
8	highlight, if this is the release to the atmosphere
9	there's a significant source term and operator
10	action issue within the reactor building. Is that
11	the point of?
12	MR. BETTLE: Yes. Plus it's going to be
13	loading up in the reactor building
14	MEMBER STETKAR: You have to come to the
15	microphone.
16	MR. BETTLE: Yes, if it's leaking out
17	into the reactor building it's going to be loading
18	up in the reactor building. If something happens to
19	the reactor building later that's when the release
20	to the environment will occur. And this graph
21	really doesn't show that.
22	MEMBER BROWN: So this, the graph is
23	representative of the reactor building not being
24	closed up.
25	MR. BETTLE: Exactly.
ļ	

(202) 234-4433

	137
1	MEMBER BROWN: It's open. The roof blew
2	off or whatever.
3	MR. BETTLE: It's
4	MEMBER BROWN: If it's outside how does
5	it get out?
6	MEMBER ARMIJO: I mean it's not tight in
7	a typical analysis
8	MEMBER BROWN: Yes, but that's got to
9	you've got to have some I mean, if it's not tight
10	that's different than having total access. I mean,
11	does that model the reactor building to get it out?
12	Is that what this does?
13	MEMBER POWERS: In a typical analysis
14	when you release that high in a Mark I you typically
15	get a DF of about 2 in the from what gets
16	released to what actually escapes into the
17	environment. Around number 2.
18	MEMBER BLEY: And that's sort of what
19	they're showing.
20	MEMBER POWERS: And if you go lower you
21	can get a much higher DF. But typically up around
22	the head at that level you come up with the
23	combination of interception and gravitational
24	deposition release and that gives you a DF of about
25	2. That is about half of what your release goes to
	I

(202) 234-4433

	138
1	the environment.
2	MEMBER BLEY: So the reactor building is
3	treated like a filter.
4	MEMBER POWERS: It has a very
5	substantial leak rate and I can't remember. I mean,
6	I don't know what they did in these calculations at
7	all but typically I think the without blowing out
8	the blowout panels which clearly happened at Unit 1
9	at Fukushima. If you don't blow out the blowout
10	panels I think there's a circulation in there of
11	about 1 volume per hour. I think. But I don't know
12	what you did in these calculations.
13	MR. BASU: Well, it's the same set that
14	was used for Peach Bottom.
15	MEMBER POWERS: Peach Bottom has been
16	analyzed with every code and every approximation
17	since 1974.
18	MR. BASU: We're talking about Peach
19	Bottom
20	MEMBER BLEY: At least from your results
21	a fair amount's leaking out.
22	MR. BASU: For these drywell venting
23	cases.
24	MEMBER BLEY: Yes.
25	MEMBER CORRADINI: Is there if I
I	

	139
1	might just ask since a bunch of us are still
2	unfortunately buried in the weeds. Is there a
3	backup document from Sandia that we can look at so
4	we don't have to keep on asking this stuff?
5	MR. BASU: We have a document that we're
6	
7	MEMBER CORRADINI: Putting together?
8	MR. BASU: putting together.
9	MEMBER CORRADINI: Okay.
10	MR. BASU: It's not Sandia.
11	MEMBER REMPE: And it'll identify the
12	different scenarios and the assumptions?
13	MR. BASU: That's correct.
14	MEMBER REMPE: And present pressure
15	histories for the reactor.
16	MR. BASU: And I see we're putting
17	together a document which will form the attachment
18	to the SECY paper.
19	MEMBER CORRADINI: Okay, that's fine.
20	MR. BASU: That's something that we can
21	share with you.
22	MEMBER REMPE: We're having another
23	meeting, I forgot now, is it in a month or something
24	like that? And so can we have that document or a
25	draft of it before that meeting so that we don't go

(202) 234-4433

	140
1	through this again?
2	MEMBER BLEY: Just for scheduling, we're
3	actually writing a letter on this in November?
4	CHAIR SCHULTZ: At the November meeting.
5	MEMBER BLEY: When are we going to see
6	this document? The November meeting?
7	MR. BASU: Before well, there is a
8	subcommittee meeting on October 31st I believe.
9	MEMBER BLEY: That's like a week before.
10	MEMBER STETKAR: That's like 2 days
11	before.
12	MEMBER BLEY: Oh, that's right, that's
13	that week.
14	MR. MONNINGER: The various there's
15	of course the Commission paper with a bunch of
16	different enclosures. The status of those various
17	documents is in different percentages. So, you
18	know, it's probably 80-90 percent or so. Some of
19	them are less.
20	To facilitate recommendation from the
21	ACRS letter-writing we would have all the intent to
22	give you, you know, the draft paper enclosures to
23	support the discussions
24	MEMBER BLEY: A couple of days before
25	you want a letter.
ļ	I

(202) 234-4433

	141
1	MR. MONNINGER: Well, the question is
2	how far in advance. The question is how far in
3	advance.
4	MEMBER BLEY: How about now.
5	MR. MONNINGER: Well, today it's not
6	written. The steering committee hasn't even you
7	know, realistically the steering committee will have
8	the first version of this on October 16th. And we
9	have to reflect the views of the steering committee
10	prior to getting it to the ACRS. Then there will be
11	a second version that's given to the steering
12	committee. So hopefully the intent would be to give
13	the subcommittee the second draft that we would
14	present to the steering committee.
15	We have to make sure that the staff's
16	recommendation is supported because we're interested
17	not only in your views on the analysis but the
18	staff's recommendation. So we have to make sure we
19	have a pretty firm recommendation prior to giving
20	you that. And that, you know, is in the process of
21	being made now and will become more and more firm as
22	the steering committee sees our documentation and
23	analysis.
24	MEMBER ARMIJO: John, I think we're
25	talking about the Sandia report. It is not likely
I	1

(202) 234-4433

	142
1	to change as a result of a staff recommendation. A
2	report's a report.
3	MR. BASU: This is not going to be a
4	Sandia report. It's still an NRC report.
5	MEMBER BLEY: But isn't there a Sandia
6	report behind this that reports this analysis?
7	MR. BASU: No, there is no Sandia
8	report. Sandia has only done the calculations. We
9	are putting together the report.
10	MEMBER BLEY: What's kind of troubling
11	is if you look at the difference between old 48 that
12	we got electronically and new 48 that we got today
13	there's a substantial difference which means things
14	people are tweaking things in models that are in
15	a state of flux. And for us to write a letter in
16	November doesn't seem reasonable.
17	MR. MONNINGER: We did mention up front
18	that the analysis is ongoing and we're here to
19	present preliminary results. We could give to the
20	subcommittee documents, you know, enclosure 1 this
21	day, enclosure 2 that day, et cetera. And some of
22	them are much more ripe for the ACRS review steering
23	committee than the rest.
24	MR. RULAND: The staff of course is
25	under extreme schedule pressure to deliver this.

(202) 234-4433

	143
1	And first of all, we're doing our best.
2	Secondly is to remember when I opened my
3	opening remarks I said that the cost-benefit cases
4	were not made. And so the purpose of the MELCOR
5	calculations is to feed into the cost-benefit
6	analyses.
7	And what I would suggest is that
8	regardless of what the analysis shows it doesn't
9	demonstrate that the cost-benefit hurdle was
10	reached. So we are providing this because the
11	Commission in fact directed us to do this. And so
12	we're providing it and of course we need your
13	comments.
14	But ultimately we didn't demonstrate
15	that filters were cost-beneficial, that reached that
16	level. And in fact the qualitative arguments were
17	one of the things that we're going to talk about
18	today. And we're going to be particularly
19	interested in what your opinion is about our
20	qualitative argument.
21	MEMBER CORRADINI: Let me ask then
22	let me reverse the question we're asking then. So
23	if you can go to slide, I don't know what slide.
24	It's the one with cesium release to environment.
25	After your tables. Back up.
Į	I

(202) 234-4433

144 1 So what I take out of this with fuzz since all of this is fuzzy -- so any line I add or 2 3 subtract a factor of 2 at least -- is that, is kind 4 of what Dana said to me to explain it which is if I 5 don't vent it's going to leak out the top which is If I do vent at an appropriate time scale 6 un-qood. If I spray and vent it makes 7 I make things better. 8 things better. And that purple thing out there 9 still gets me crazy. But except for that purple 10 line that succession of things makes sense to me. So then to get to Bill's -- let me ask 11 Bill a question then. So what would have been the 12 person-rem averted have to be to make it cost-13 14 beneficial? If 1 percent is not good enough or 15 three-tenths of a percent is not good enough to have person-rem averted what would it have to have been 16 to make it cost-beneficial? 17 MR. MONNINGER: So and we'll go through 18 19 that some in the afternoon. MEMBER CORRADINI: Okay. 20 So you're holding off. 21 MR. MONNINGER: A lot more would be the 22 potential next slide which would be the venting 23 24 through the drywell. And you can see, you know, it's a -- you know, it's a factor of 100 greater, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the source term through the drywell. And that is one of the concerns with regard to the current procedures do preferentially have venting through the wetwell. There is always the option there to go venting through the drywell and you're directed to vent irregardless of consequences. So if operator access was not available or random failure in the wetwell valves, et cetera.

9 The other scenario is, you know, what is 10 the particular time in the accident where the suppression pool will be flooded up such that the 11 wetwell vent is no longer available and you'd have 12 to use the drywell. And we're not quite sure that 13 14 we can bound all these various scenarios in the 15 timing, whether the core melt is early, the suppression pool is relatively cool, you have very 16 17 good scrubbing and you have plenty of room within the suppression pool. You transfer the majority of 18 19 your source term to the suppression pool and then you can ultimately go to the drywell. 20 Whereas a more bounding -- or realistic or bounding case, 21 whatever, a later scenario where the suppression 22 pool is more heated up, there's less scrubbing and 23 24 there's the potential that early in the transit you lose the wetwell path. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

(202) 234-4433

145

146 1 So, you know, there's a significant 2 difference in the releases between wetwell and 3 drywell. And our analysis, even though we ran 31 4 cases, you know, and some of this stuff, it sort of 5 took some of the good work that EPRI did is the timing is about 10 or 12 hours for the flooding up 6 7 of the suppression pool. Unfortunately we did not do the 8 9 integrated analysis. We assume one or the other. We didn't, you know, now Monday morning we said wow, 10 if we had to do it again we would do some type of 11 integrated analysis over time that a certain portion 12 of the transient goes through the wetwell vent and 13 14 the rest of it goes through the drywell vent. You 15 know, we didn't do that. You know, it's obvious to us that maybe 16 17 that would have been better to do now, but when you do look at the numbers and all the uncertainty, you 18 19 know, in the end we did the analysis, we did the regulatory analysis and we think what is very 20 important to us will be the qualitative arguments 21 that we will develop. 22 We're not hanging our hat on any one 23 We think there are scenarios that could 24 scenario. be a combination between wetwell and drywell, and if 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	we came in and we said well definitively we think
2	it's going to be 19 hours and it's all going out the
3	drywell we would be challenged. And that's it
4	won't be a success path to argue this accident
5	sequence versus that accident sequence versus that
6	accident sequence.
7	MEMBER ARMIJO: But I'm sorry, I
8	guess I'm really confused now. Case 3 looks pretty
9	good. That's just case 2 with a wetwell vent and
10	you leave the vent open. And you're saying that's
11	not a real case? I'm talking slide 48. That one.
12	So case 3 is the green line, lower right-hand
13	corner, and it's just the case 2 and leaving wetwell
14	vent open. What's wrong with that procedure?
15	MR. MONNINGER: There's nothing
16	necessarily wrong with it. The question is, you
17	know, if we were to take that accident sequence do
18	we believe that that would represent the majority of
19	the potential challenges to the plant.
20	MEMBER ARMIJO: Fair enough, that's fair
21	enough. You don't know enough yet to say one way or
22	the other whether that's but that's what I'm
23	looking for. What's the best we can do with what
24	we've got?
25	MEMBER STETKAR: Well, let me ask you,
l	

(202) 234-4433

	148
1	is it a problem that you just simply don't have a
2	decent level 2 SPAR model for the Mark I
3	containment?
4	MR. MONNINGER: Right. I mean our
5	models are
6	MEMBER STETKAR: Because we've heard a
7	lot about how much the PRAs are available and used
8	for SAMA analyses and how much they're used. If you
9	had an actual level 2 model you wouldn't be worried
10	about all of this integration or what fractions or
11	which ones might be worse or which ones. You'd have
12	the whole spectrum.
13	MR. MONNINGER: And even then, some of
14	the thought process goes when we do our PRAs, the
15	level 1, 2 or 3's, we're very much focused on the
16	early releases, the doses to the public. You know,
17	there's a general mentality that the earlier the
18	core damage occurs, the earlier release, the more
19	challenging it will be.
20	MEMBER STETKAR: release categories.
21	MR. MONNINGER: It's not necessarily
22	obvious that that would be the case for looking at
23	the filters and environmental releases because the
24	population has already been evacuated then. So then
25	you're looking at when is the most challenging time
I	I

(202) 234-4433

	149
1	for the filter, the challenging time for the
2	containment. Is it early on or is it later? Is it
3	these protracted Unit 2, Unit 3 scenarios that
4	happened at Fukushima? You know, is that
5	MEMBER STETKAR: You'd still have
6	release categories.
7	MR. MONNINGER: So Marty Stutzke, and he
8	did do some modeling of containment event trees and
9	CCFPs and we will discuss that this afternoon. But
10	it is a limitation that we do have.
11	CHAIR SCHULTZ: Regardless of whether
12	you move forward with detailed evaluation of the
13	quantitative response it certainly appears that
14	there's some very important information with regard
15	to drywell vent, for example, that ought to be drawn
16	from the analyses that have been performed. Is that
17	going to be part of the documentation and when will
18	that portion be ready for review?
19	MR. MONNINGER: So, the MELCOR portion
20	of it is written. The MACCS portion is still being
21	written. What the staff globally thinks about those
22	two hasn't been pulled together yet. But we know we
23	need to provide that to the subcommittee.
24	CHAIR SCHULTZ: And will it include the
25	discussion, perhaps even more elaborate that you've
ļ	I

(202) 234-4433

	150
1	just provided which is the Monday morning decision-
2	making about how one would do a better analysis to
3	get more informed results about the performance and
4	perhaps severe accident management approaches?
5	MR. MONNINGER: Yes, we definitely could
6	weave that in there.
7	MEMBER BLEY: A very simple question.
8	Is there a slide 41 that has cases 2, 3, 6 and 7? I
9	got two slide 42's and no 41 in my package.
10	MEMBER CORRADINI: There is
11	electronically there is a 41.
12	MEMBER BLEY: In the electronic one?
13	Okay. I didn't pull that up. Let me pull that up.
14	CHAIR SCHULTZ: Other comments then
15	related to this portion of the presentation? Thank
16	you very much. I appreciate it.
17	MR. BASU: Thank you.
18	MEMBER REMPE: I guess, can we ask again
19	about how soon we can get the report that's just the
20	MELCOR description? I mean, we talked about that
21	it's going to go to some sort of staff committee
22	review, senior whatever, but if it happens the 16th
23	are we going to get it like the 20th of the month?
24	MR. BASU: Okay, John?
25	CHAIR SCHULTZ: On our agenda we're
ļ	I

(202) 234-4433

	151
1	ready to move forward. I'm sorry.
2	MEMBER REMPE: But I had a question
3	again. I didn't get a firm answer of how soon we
4	could just get the MELCOR description report which
5	shouldn't change too much more I would think.
6	MR. BASU: Joy is asking how soon after
7	the steering committee
8	MEMBER CORRADINI: Blesses it.
9	MR. BASU: blesses.
10	MR. MONNINGER: I think the MELCOR
11	report is, you know, it's factual. So there isn't
12	as much sensitivity to that. We do want to though
13	provide a high-quality document to the ACRS. And
14	all our documents of course are always high-quality.
15	(Laughter)
16	MR. MONNINGER: But with that said we
17	should be able to get back, you know, by end of
18	today or tomorrow to give you an ETA. I think it
19	would be more of a notion of release from the
20	particular offices than a blessing from the steering
21	committee for the MELCOR reports.
22	What's more sensitive to us is how we
23	use it, how it plays in our recommendation. You
24	know, the draft Commission paper is much more
25	sensitive to us.
ļ	I

(202) 234-4433

152 1 MEMBER BLEY: I think we understand that 2 but --3 MR. MONNINGER: But we should be able -yes. 4 5 MEMBER BLEY: -- the analysis report so we can see what's going on here. 6 7 MEMBER REMPE: And the assumptions in 8 the case. 9 Would really be helpful. MEMBER BLEY: 10 MEMBER REMPE: They could expedite that and we could see it very close to after the 16th. 11 MEMBER BLEY: And if we get that too 12 close to the end we just won't have looked at it and 13 14 we'll have to say something like, well, the 15 qualitative stuff's all right if the analysis was 16 okay. 17 MEMBER REMPE: There were a lot of questions that we couldn't figure out. 18 19 MR. MONNINGER: We should be able to get an answer on the MELCOR report, you know, by today, 20 21 tomorrow. That would be helpful. 22 MEMBER REMPE: MR. MONNINGER: Not providing it, just 23 24 when we would provide it. MEMBER REMPE: Right, and asking them to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	let you expedite that.
2	MR. MONNINGER: Right.
3	CHAIR SCHULTZ: All right. The next
4	presentation is going to begin. This is a
5	presentation of the MACCS analysis with Tina Ghosh
6	and Nathan Bixler.
7	With regard to this it has been
8	scheduled on the agenda as an hour. We want to
9	maintain the afternoon schedule approximately where
10	we had originally intended. If we need to break
11	this we'll make that the presentation before and
12	after lunch we'll make that determination as we go
13	through. We may have to do that. I'm hoping we
14	don't but let's see how it goes. Thank you.
15	MS. GHOSH: Okay, thank you. I'm Tina
16	Ghosh. We asked Nathan Bixler to join us from
17	Sandia. Nate is the kind of the MACCS lead for
18	the NRC. In fact, I think the overall lead for
19	MACCS at Sandia. So any code work and
20	applications Nate's kind of the lead on. And if we
21	can go to the next slide.
22	MEMBER POWERS: Tina, let me interrupt
23	you and just say that I do work for Sandia
24	Laboratories. I actually know this guy. I shall
25	refrain from comment on his work. Which is superb,
I	I

(202) 234-4433

	154
1	by the way.
2	(Laughter)
3	MS. GHOSH: We wanted to start with a
4	brief overview of what MACCS is and what it does.
5	And the reason is that, you know, there's been a lot
6	more attention on MACCS the code that we use for our
7	reg analysis in more recent times. Since Fukushima
8	people have become a lot more interested in level 3
9	consequence analysis-type information. So it's been
10	more recently that a wider audience has gotten
11	exposed to the tool and a lot of questions come up.
12	So we thought this might be a good
13	opportunity just to provide a brief overview of what
14	the code actually does. And Nate will do that and
15	after that I will provide a presentation of what our
16	preliminary MACCS analyses have shown. So if we go
17	to the next slide I'll turn it over to Nate for the
18	overview.
19	MR. BIXLER: Okay. So MACCS2 is also
20	referred to as the MELCOR Accidents Consequence Code
21	System and it's version 2 which is the where the
22	"2" comes from at the end. It was developed for the
23	NRC by Sandia as a PRA tool primarily with the idea
24	of being able to use it for analyses like the one
25	that we're doing now. It was used in SOARCA, in a
ļ	I

(202) 234-4433

	155
1	whole variety of other recent studies.
2	It was first released in `97 and stems
3	from a whole series of codes that were developed at
4	Sandia starting with CRAC, then CRAC2, MACCS, then
5	MACCS2. CRAC was originally developed for WASH-
6	1400. CRAC2 was used in what's called the Sandia
7	Siting Study that was published in 1982, also some
8	other early PRAs. MACCS, the original MACCS code
9	was used in NUREG-1150 and MACCS2 has been used
10	since roughly 1997.
11	The purpose of the code is to estimate
12	consequences generally in terms of health effects.
13	Before you get to health effects you have to
14	estimate doses. So it really does that as well.
15	And it estimates economic impacts in terms of land
16	areas and economic cost.
17	It is the code that's used by the
18	industry as well as by the NRC. There's no
19	alternative code currently available that's used in
20	the U.S. at least to compete with it. So it's used
21	both by the industry and the NRC for evaluations of
22	consequences.
23	Around 2001 we began developing an
24	interface code called WinMACCS that is intended to
25	make it easier to use the MACCS2 code. It assists

(202) 234-4433

1 in creating inputs so it functions as a preprocessor to MACCS2. It also functions as a post-2 3 processor. And one of the main reasons for 4 developing it in the first place was to allow for 5 uncertainty, sampling of uncertain input variables to determine how much effect they have on the 6 7 outcomes. And you may be familiar with the uncertainty analysis that's being done for SOARCA is 8 9 being used in that mode there. 10 It was reviewed at the beginning of SOARCA by an expert panel who evaluated the way that 11 we were intending to use it for SOARCA and also made 12 suggestions for improvements to the code. And many 13 14 of those improvements were actually implemented to 15 support the SOARCA study. CHAIR SCHULTZ: What does that make the 16 17 timing of that peer review approximately? I'm going to guess 2005. MR. BIXLER: 18 19 Something. Two thousand six maybe. Yes, right in there. 20 MS. GHOSH: And the overall SOARCA study 21 22 was peer reviewed as well. Right, yes. So there was a 23 MR. BIXLER: 24 separate peer review at the beginning of the work to give us comments on the directions we were planning 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

156

	157
1	to take, and then a peer review that a group that
2	met and gave us comments along the way as we were
3	conducting the study.
4	Okay, slide 52, please. This is a
5	cartoon that we often use. It really depicts a
6	couple of things. It depicts the ways that MACCS2
7	models atmospheric transport, the mechanisms that
8	are used there. For example, it models plume rise
9	and dispersion and also dry and wet deposition. Wet
10	deposition occurs when it's raining.
11	The figure, the cartoon also shows the
12	dose pathways that are modeled. Those include
13	inhalation. Inhalation is both directly from the
14	cloud or the plume and from resuspension. It models
15	cloudshine, groundshine, deposition under the skin
16	for determining a dose to the skin and ingestion.
17	All of those pathways are modeled. Okay, next
18	slide, please
19	MACCS2 is divided into three modules.
20	Earlier if you go back to the old MACCS code these
21	were actually three separate codes that were run
22	sequentially. One thing that MACCS2 did was to
23	integrate these three separate codes as three
24	modules so it's easier for the user to use now. You
25	just run one calculation instead of three separate
ļ	I

(202) 234-4433

	158
1	ones.
2	The three parts though are ATMOS which
3	does the atmospheric transport and deposition
4	portion of the calculation. It's not associated
5	with a particular phase as are the EARLY and CHRONC
6	parts of the code. EARLY does the emergency phase
7	which is allowed to last between 1 day and 1 week.
8	Typically for NRC applications we would use the full
9	week to define the emergency phase.
10	It calculates prompt and latent health
11	effects, and those are associated with doses that
12	are short-term and longer lifetime doses to
13	calculate those types of health effects.
14	It treats the types of actions that you
15	would expect to see during the emergency phase which
16	are sheltering, evacuation and relocation. I'll
17	talk more about each of these modules in the next
18	few slides so we'll come back to some of these
19	thoughts.
20	In the CHRONC module of the code we're
21	treating the longer term. Both what's called the
22	intermediate phase which can last up to a year and
23	the long-term phase which can last up to 10 to the
24	10th seconds which translates into about 317 years.
25	But typically we set the long-term phase to be on
	1

(202) 234-4433

	159
1	the order of 30 to 50 years. Fifty was used in
2	SOARCA and it's being used in this, the work that
3	we're presenting today.
4	MEMBER ARMIJO: In the SOARCA work, in
5	calculating health effects you used both the LNT
6	model and a threshold model.
7	MR. BIXLER: Yes.
8	MEMBER ARMIJO: Did you use both in this
9	analysis?
10	MR. BIXLER: So far we have only looked
11	at LNT in this analysis. And to support a cost-
12	benefit analysis what you really need are not
13	numbers of health effects or health effect risk
14	although we present those results. What you need
15	are population dose and the offsite economic costs
16	that MACCS2 predicts.
17	So those two pieces would be used in the
18	cost-benefit analysis and they're independent of any
19	dose threshold that you might implement. So I think
20	the thinking here was it wasn't so essential for the
21	purpose of this study to look at the threshold kinds
22	of calculations.
23	MEMBER SIEBER: Do you always assume
24	that there's an inversion layer?
25	MR. BIXLER: Yes, we always assume that
ļ	I

(202) 234-4433

	160
1	there's an inversion layer.
2	MEMBER SIEBER: And so that makes it
3	pretty conservative.
4	MR. BIXLER: Yes, it adds some
5	conservatism, definitely.
6	MEMBER SIEBER: Do you happen to know
7	the percentage of time roughly that there is an
8	inversion versus no inversion?
9	MR. BIXLER: At Peach Bottom in
10	particular? No, I don't know that. I haven't
11	looked into that.
12	MEMBER SIEBER: I used to fly every day
13	so I don't remember seeing that many inversions.
14	MR. BIXLER: Yes, okay. The CHRONC
15	calculation reports the effects of decontamination.
16	These are the types of actions that would be taken
17	during the long-term phase, decontamination,
18	introduction and condemnation. We'll talk about
19	each of those in a little bit more detail later as
20	well. Okay, next slide, please, 54.
21	So looking at the ATMOS model, the ATMOS
22	model again does the atmospheric transport with
23	dispersion, deposition. It's based on a Gaussian
24	plume segment model which is different than a
25	steady-state Gaussian plume model if you're familiar
I	I

(202) 234-4433

	161
1	with that distinction.
2	It has provisions for meander which is
3	an expansion of the plume in a horizontal cross-wind
4	dimension and also for surface roughness which
5	causes an expansion of the plume in the vertical
6	dimension.
7	It doesn't specifically treat some
8	things that would exist in reality like irregular
9	terrain, spatial variations in the wind field and
10	temporal variations in wind direction. Once a plume
11	begins to be released it travels in a straight line.
12	So it has that kind of quality to it, that after
13	beginning of release the direction doesn't change.
14	So in that regard it's a single weather tower sort
15	of calculation. It doesn't depend on multiple
16	weather towers. Yes.
17	MEMBER SIEBER: And so you don't
18	consider at all trapping in valleys?
19	MR. BIXLER: No.
20	MEMBER SIEBER: Where people live.
21	MR. BIXLER: No, we don't. That's not
22	part of the calculation.
23	MEMBER SIEBER: So this sort of
24	underestimates the health effect.
25	MR. BIXLER: It could in that situation,
I	

1

2

MEMBER SIEBER: Right.

3 MR. BIXLER: Okay. There was a study 4 conducted I'm thinking about 5 years ago roughly 5 reported in NUREG/CR-6853 where we compared with two Gaussian puff codes. Those are RASCAL and RATCHET. 6 RASCAL is used in the emergency response center 7 8 here. Both of those two codes are created by PNNL 9 and they're both based on Gaussian puff models. 10 We also compared with a Lagrangian particle-tracking code from the NARAC group at 11 Lawrence Livermore called LODI which is considered 12 one of the state of the art codes in doing 13 14 atmospheric transport. 15 The comparison showed that MACCS2 on the 16 average, averaged over a year's worth of weather was 17 within a factor of 2 if averaged around the compass, and within a factor of 3. Generally much better 18 19 than a factor of 3 but at the extreme factor of 3 at a specific grid location. 20 And that study was done out to 100 21 For the purposes of a lot of the studies 22 miles. that are done with MACCS2 the distance is only out 23 24 to 50 miles. So that was a bit farther than perhaps we needed to look. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	Multiple plume segments are allowed in
2	the newest version of the code. We allow up to 200.
3	So you can the thinking behind that is to allow
4	the maximum use of the wind data that you have.
5	Usually we have the wind data on an hourly time
6	frame. We can carve up the overall release into
7	hour time segments and the MACCS2 code allows each
8	plume segment to travel in a different direction
9	depending on what direction the wind happens to be
10	blowing at the beginning of the release for that
11	plume segment. So you can in a simple way account
12	for the fact that not all of the plume goes off in
13	one direction and not the same group of people
14	don't receive the entire dose. It could travel.
15	MEMBER SHACK: The segment then
16	continues in that straight line through the whole
17	calc.
18	MR. BIXLER: Once it begins it continues
19	but then at the next hour the next plume segment may
20	travel in a different direction.
21	The ATMOS also accounts for plume rise
22	from the initial release height due to buoyancy of
23	the plume, the effects of the building wake in terms
24	of the initial size of the plume and also the
25	potential trapping of the plume in the building
	1

(202) 234-4433

	164
1	wake. It accounts for dry and wet deposition, dry
2	deposition being a relatively slow process, wet
3	deposition being intermittent but a very rapid
4	process for depositing the plume.
5	And it accounts for radioactive decay
6	and ingrowth for up to 150 radionuclides in up to 6
7	generations. Usually we use about 50 to 60
8	radionuclides to do nuclear reactor accidents. So
9	that's more than enough. Next slide, 55, please.
10	Okay, continuing with the ATMOS module.
11	These days what we usually do at Sandia and the NRC
12	has done in the study that we're talking about now
13	is to use MELCOR to generate a source term. We have
14	an interface tool called MELMACCS that digests the
15	plot file produced by MELCOR and extracts all the
16	information you need to run MACCS2 to do a
17	consequence analysis. So it really automates the
18	treatment of the source term. It automates it and
19	is relatively foolproof so that you don't end up
20	with operator error from trying to hand-create the
21	inputs that you need.
22	The met data that are required by ATMOS
23	include wind speed and wind direction at least
24	hourly. And we have now capability to look at half-
25	hourly and every 15-minute time periods as well.
	I

(202) 234-4433

	165
1	You also need Pasquill's stability
2	category. That's a derived quantity that's usually
3	derived from measuring temperature differences in
4	the atmosphere.
5	You need precipitation rate. All those
6	first three bullets are hourly information. The
7	last one is a seasonal, it's four times per year.
8	We use an a.m. and p.m. mixing height. Those are
9	minima and maxima in the mixing heights averaged
10	over a season of the year.
11	There are a number of sampling options
12	that the user can select. Several of them deal with
13	just single weather sequences to look at a specific
14	case. But most of the time we use multiple weather
15	sequences so that we can get statistics on what the
16	plume might do over the course of a year's worth of
17	data. The year's worth of data is intended to be
18	representative of it's archive data but it's
19	intended to be representative of the future as well.
20	And that's what we would normally do. Typically
21	these days we're doing about 1,000 weather samples,
22	weather trials to estimate the effect of 8,760 data
23	points that we have in our weather file which
24	represents 1 year, 365 times 24.
25	The outputs from ATMOS include basic
ļ	I

(202) 234-4433

Í	166
1	things like the dispersion parameters that go into
2	the Gaussian plume equation, chi over q which is a
3	dilution factor and the fraction of material
4	remaining in the plume accounting for radioactive
5	decay and deposition under the ground.
6	We can also get time-integrated error
7	concentrations and ground concentrations at various
8	points along the path of the plume.
9	MEMBER STETKAR: Nathan, are all your
10	meteorological data just sampled independently? The
11	precipitation.
12	MR. BIXLER: They're usually from a
13	single tower at the plant, at the site.
14	MEMBER STETKAR: No, I'm talking about
15	you had 8,760 data points for each of these. Some
16	of them would be correlated in the real world.
17	MR. BIXLER: Yes.
18	MEMBER STETKAR: The storms, for
19	example.
20	MR. BIXLER: Right. Well, these are
21	measuring the data points. So, if there's a real
22	correlation that should be observed in the data that
23	we're using.
24	MEMBER STETKAR: A single sample of all
25	four of those sub-bullets under number 2 or are they
I	I

(202) 234-4433

	167
1	four separate samples?
2	MR. BIXLER: Okay, I think I understand
3	the question. What we do is we start when we do
4	a weather trial we start at a particular time and
5	then we look at hour by hour what are the data in
6	the weather file. So we're not independently
7	sampling one hour and assuming that it stays that
8	way, we're looking at our sample really is
9	selecting an initial time point when the release
10	begins and then looking at the data in the weather
11	file hour by hour.
12	MEMBER STETKAR: But again, under that
13	second sub-bullet you have four different pieces of
14	data. You're saying you sample all four of them at
15	the time that they were reported.
16	MR. BIXLER: Yes.
17	MEMBER STETKAR: Thank you.
18	MR. BIXLER: Yes, exactly. Okay, next
19	slide, 56, please. Okay, now we'll look into the
20	EARLY module, the second module in MACCS2.
21	MEMBER CORRADINI: Just I'm sorry.
22	This is a side question. So as you went through
23	ATMOS the basic assumptions are very similar to
24	RASCAL. To a first approximation they're
25	essentially the same.
I	1

(202) 234-4433

	168
1	MR. BIXLER: I think that's right. The
2	difference would be RASCAL allows you to have
3	multiple weather towers instead of a single one.
4	MEMBER CORRADINI: I just wanted to make
5	sure because you were comparing it to something much
6	more sophisticated. Something that's in the open
7	for emergency planning that comes to my mind is
8	RASCAL but they're of a similar vintage and type.
9	MR. BIXLER: Yes.
10	MEMBER CORRADINI: Okay, that's fine.
11	MR. BIXLER: RASCAL is a Gaussian puff
12	model which means that you have the puff is
13	located by a single point at the center of the puff
14	and it can travel three-dimensionally around the
15	through the grid as opposed to a Gaussian plume
16	model that is a straight line kind of model. So
17	that's the major difference between the two. Okay.
18	Okay, so EARLY is looking at the
19	emergency phase. And it calculates acute and
20	lifetime doses for each of the pathways that are
21	listed there. The only one that's missing is
22	ingestion. We don't consider ingestion during the
23	emergency phase. We only in fact consider it during
24	the long-term phase.
25	EARLY also calculates the health effects
ļ	I

(202) 234-4433

	169
1	that are associated with those doses which are early
2	injuries, early fatalities and latent health effects
3	both occurrences and fatalities from latent health
4	effects induced by a type of cancer.
5	The doses are subject to several actions
6	that can occur during this time, sheltering,
7	evacuation and relocation. The difference between
8	evacuation and relocation is really the way that
9	those two things are triggered. Evacuation is
10	generally implemented following the declaration of a
11	general emergency at the plant. Relocation is based
12	on exceeding a projected dose. So it would be
13	usually implemented at a later point in time, that
14	evacuation would have the higher priority and be
15	implemented more rapidly, relocation a bit on the
16	longer range of time.
17	MEMBER SKILLMAN: Nathan, how would
18	EARLY, results from EARLY differ for instance if it
19	were applied to Cooper Nuclear Station out in the
20	Midwest in a vast, very low-population area versus
21	Indian Point that is in close to a large urban
22	population?
23	MR. BIXLER: Okay. I haven't talked
24	about it up to this point, in fact, I don't think
25	it's in any of the slides, but part of the input to
	I

(202) 234-4433

	170
1	MACCS2 is what's called a site file. The site file
2	contains the surrounding population on a grid-by-
3	grid basis, so a fairly good detail on where the
4	population are actually located. It also, the site
5	file also contains economic values for the land
6	surrounding the plant. So the value of property for
7	example would be contained in the site file.
8	So those two things, those two
9	categories of information would be very site-
10	specific. In addition, the met file would typically
11	be site-specific. So you'd look at a met file for
12	each of those locations separately.
13	MEMBER SKILLMAN: Thank you, Nathan.
14	MR. BIXLER: Yes. Okay. Outputs from
15	the EARLY module include doses, health effects, land
16	contamination areas and things of that nature. Next
17	slide, 57, please.
18	Now looking into the CHRONC module. The
19	CHRONC module includes the intermediate phase.
20	Typically for NRC applications up to this point in
21	time we have not treated the intermediate phase.
22	We've set the duration to zero and basically skipped
23	over the intermediate phase.
24	But if you include the intermediate
25	phase it's a fairly simple part of the calculation.
I	I

(202) 234-4433

	171
1	It's just looking at groundshine doses and
2	resuspension inhalation. Again, not including any
3	treatment of ingestion doses. And the only
4	protective action that's considered is continuing
5	relocation. The people may still be relocated away
6	from their homes if doses would warrant that.
7	The next phase is the long-term phase,
8	typically 50 years in most of the calculations we've
9	done recently. I've seen some SAMA analyses that
10	are based on 30 years so both of those are being
11	used.
12	The dose pathways include everything
13	that's still applicable at that point in time.
14	Groundshine resuspension from things that have
15	deposited and kicked back up into the air and
16	ingestion. So at this point we would pick up the
17	ingestion pathway.
18	The protective actions are based on two
19	criteria, habitability and farmability, habitability
20	being the more important of those two criteria. The
21	actions that would be taken based on those two
22	things are decontamination of land, interdiction of
23	land which would extend beyond decontamination.
24	Decontamination is considered a period of
25	interdiction, so it's the beginning of interdiction
I	I

(202) 234-4433

ĺ	172
1	but interdiction can follow and continue longer than
2	the decontamination period would take. And then the
3	final option if all else fails is condemnation.
4	Next slide, please.
5	MEMBER CORRADINI: Which you have a
6	payment associated with.
7	MR. BIXLER: Yes. Yes. The
8	condemnation you're saying?
9	MEMBER CORRADINI: Yes.
10	MR. BIXLER: Yes. We would tally the
11	value of the land, of the property that's being
12	condemned in that case, yes.
13	Okay, this is a logic tree or a decision
14	tree for the protective actions that would be taken
15	during the CHRONC module.
16	The first question is is the
17	habitability criterion met initially right after the
18	emergency phase. And if the answer is yes then no
19	actions are needed. People would return to their
20	homes at that point if they're not already at home.
21	MEMBER ARMIJO: What is that criterion?
22	Is it a single number or a number of different
23	things?
24	MR. BIXLER: It's a number in terms of a
25	dose. It's an organ which is usually effective, so
	I

(202) 234-4433

	173
1	it's an effective dose. And it's a time period. So
2	for example, at Peach Bottom the state criterion for
3	habitability is 500 millirem in 1 year, in the first
4	year, and not more than that in subsequent years.
5	But usually the doses tail off in subsequent years.
6	So the way we enforce that is to check to see if
7	anyone would receive more than 500 millirem in the
8	first year after beginning at the beginning of
9	the long-term phase. Okay. So, that's what happens
10	if the habitability criterion is initially met.
11	If the answer to that first question is
12	no then the next question is asked and that's can we
13	decontaminate to a sufficient level to restore
14	habitability. And MACCS2 considers three
15	decontamination levels. So it would begin by asking
16	for the lowest level of decontamination is that good
17	enough. And if it is it would do that level of
18	decontamination, population would return afterwards
19	and that would be the end of it.
20	If the answer is no it would
21	sequentially consider higher levels of
22	decontamination up to the highest level that is in
23	the input. And if that's still if that's
24	sufficient then it would do that.
25	If not, it will ask the next question
I	I

(202) 234-4433

	174
1	which is can I restore habitability by
2	decontaminating plus an initial period of
3	interdiction. And if the answer to that is yes it
4	would first start out by performing the highest
5	level of decontamination and then it would interdict
6	for an additional period of time up to the
7	maximum that's allowed in the code is up to 30
8	years. So it would potentially go as far as 30
9	years, usually much less than that, but that's the
10	max allowable. And then after those two things are
11	performed the population would return home.
12	MEMBER CORRADINI: So is this are all
13	of these based on the protection action guidelines?
14	So that if I have a long-term dose of greater than -
15	- I can't remember the number, they can't come back?
16	MR. BIXLER: Yes. EPA has the EPA
17	PAG has 2 rem in the first year and one-half a rem
18	per year thereafter. And that's what most states
19	would adopt as their
20	MEMBER CORRADINI: Some states are more
21	restrictive though.
22	MR. BIXLER: Pennsylvania is more
23	restrictive. I don't know if there are others but
24	there may be.
25	MEMBER CORRADINI: So 2 rem in the first
I	I

(202) 234-4433

	175
1	year and one-half a rem thereon.
2	MR. BIXLER: Yes.
3	MEMBER CORRADINI: And all these kind of
4	if/then/elses inside the computer thing just
5	basically says what got deposited, where does it sit
6	relative to those protection action guidelines.
7	MR. BIXLER: Yes. Okay, the last thing
8	that's considered if everything up to this point has
9	failed, and there are two ways that it can fail, is
10	the first way that it can fail is the
11	habitability can't be met by the highest level of
12	decontamination plus up to 30 years of interdiction.
13	You still can't meet the habitability criterion so
14	we condemn the property.
15	The second way that you can condemn
16	property is if it's not cost-effective. MACCS2
17	makes the decision purely based on economics. I
18	don't know if that's the rule situation or not but
19	that's the logic that's built in is the decision is
20	purely based on economics.
21	MEMBER REMPE: So the user has to then
22	input the worth of the property and then how much it
23	cost for labor?
24	MR. BIXLER: To do the decontamination,
25	yes.
ļ	1

(202) 234-4433

	176
1	MEMBER REMPE: And the user has to be
2	savvy enough to know the hours for the
3	decontamination and the cost of the labor.
4	MR. BIXLER: Yes. There's a period of
5	time needed to conduct the decontamination, a
6	decontamination factor and a cost associated with
7	that. A few other parameters as well but those are
8	probably the primary ones.
9	Okay, next slide, please.
10	MEMBER CORRADINI: But what about
11	just out of curiosity because so if one wanted to
12	look at a sensitivity on the protection action
13	guidelines is there a flexibility to look at
14	different guidelines?
15	MR. BIXLER: These are all user input
16	values, so yes, they can.
17	MEMBER CORRADINI: Just curiosity.
18	Thank you.
19	MR. BIXLER: Yes. Okay, continuing with
20	the CHRONC module. The economic costs that are
21	reported include six items. Yes, I think this is
22	the right slide, 59. The six items are listed here.
23	There's a per diem and lost income cost for people
24	who are evacuated and relocated.
25	Over the longer term if people have to

(202) 234-4433

177 1 be away from their homes for a longer term there's a one-time moving expense that can include lost income 2 for some number of weeks or whatever it is that you 3 4 want to include with that. 5 The next category is decontamination labor and materials. The next one is loss of use of 6 That's based on kind of an expected rate 7 property. 8 of return on investment for property that you own. 9 The next one is condemnation of property which is 10 just the value of the property itself. And the last one is in case the accident were to occur during the 11 farming season, the growing season, the value of the 12 crops or dairy products that are lost as a result of 13 14 the accident. 15 The outputs are doses -- was there a 16 question? What's the use of 17 MEMBER STETKAR: property, for example, if property contained General 18 19 Motors for example. Is it simply the value of that manufacturing facility and the real property that it 20 sits on, or is it loss of the entire production of 21 General Motors automobiles for some period of time? 22 MR. BIXLER: No, the current model just 23 24 accounts for the value of the property itself. Ιt doesn't account for any economic activity at that 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	property.
2	MEMBER STETKAR: Okay, thank you.
3	MR. BIXLER: Okay. So the outputs are
4	doses by pathway and organ, latent health effects,
5	and those are usually calculated for a variety of
6	organs and then summed up to get a total, and the
7	economic cost. And as we mentioned earlier you can
8	also get land contamination areas can be output as
9	well which is sometimes considered a subcategory of
10	economic cost.
11	MEMBER ARMIJO: In all of these economic
12	costs is there inflation adjustment in your model?
13	MR. BIXLER: There is not really an
14	inflation adjustment. There's an expected rate of
15	return and there's a loss of value of property due
16	to lack of maintenance. Both of those are a rate.
17	For example, during interdiction you don't maintain
18	property so there's a loss per year. Usually it's
19	20 percent is the assumed loss per year of the value
20	of property.
21	MS. GHOSH: In terms of the input values
22	if we have Census data the inflation is
23	different.
24	MR. BIXLER: Okay, yes. Tina makes a
25	good point. We usually would base the calculations
I	I

(202) 234-4433

	179
1	on a specific year, a target year, and we would
2	inflation-adjust if we have, for example, if we have
3	2002 economic data, that's what was used in SOARCA
4	and also used in this study, we would inflation-
5	adjust that to a target year when we assume that the
6	accident is going to occur. We would also do the
7	same thing with the population data. So in that
8	sense, yes, they are adjusted.
9	MEMBER ARMIJO: That's what I was
10	getting at.
11	MR. BIXLER: Okay.
12	MEMBER SHACK: But then you do
13	everything is then expressed in terms of 2012
14	dollars.
15	MR. BIXLER: Yes, exactly. That's
16	right. Okay, next slide, number 60.
17	CHAIR SCHULTZ: Nathan, at this time I
18	think this is a good this slide's a good
19	introduction to what is going to follow which is
20	another section of the presentation. You've made a
21	very comprehensive presentation on the descriptive
22	features of the methodology so thank you for that.
23	With that I will call a recess for
24	lunch. And I'm going to ask so that we can start
25	the afternoon well for a sit-down time of 1:30. And
ļ	

(202) 234-4433

(202) 234-4433

	180
1	I'll bang the gavel at 1:35. Just so everyone knows
2	we will therefore begin at 1:35.
3	(Whereupon, the foregoing matter went
4	off the record at 12:34 p.m. and went back on the
5	record at 1:34 p.m.)
6	CHAIR SCHULTZ: Break is completed for
7	lunch and we're ready to resume the presentation.
8	We are in the middle of the presentation associated
9	with the MACCS code and the second piece associated
10	with that as well. So with that I'll turn the
11	presentation back over to you, Nathan, for this
12	slide.
13	MR. BIXLER: Okay. This is my last
14	slide before I turn it back over to Tina again. And
15	this is just describing some of the standard uses
16	for the MACCS2 code.
17	The first category there is for PRAs and
18	things that are kind of like a PRA, for example,
19	SOARCA we've used MACCS2 for. This type of study, a
20	reg analysis, is something that MACCS2 is very
21	useful for.
22	NEPA studies are used in licensing and
23	license extensions in terms of SAMA and SAMDA
24	analyses. Those are generally done with the MACCS2
25	code.
Į	I

1 And the last category there is another -- is not an NRC-type activity, it's a DOE activity 2 3 where MACCS2 is used pretty much throughout the 4 community of DOE facilities to do safety analyses 5 for authorization bases. These are often called documented safety analyses. 6 7 And then the last bullet there is just 8 pointing out that there's an international usership 9 for MACCS2. I think we're up to 12 countries now 10 including the U.S., 11 international countries plus the U.S. And I've kind of lost track of the number 11 of users but I think there are probably several 12 hundred at this point. 13

One thing I'd like to inject before I turn it back over to Tina is that it was pointed out earlier that there are some situations where MACCS2 would give you a conservative result or a nonconservative result.

19For example, the mixing layer height20issue or valleys and a variety of things like that.21There are situations where you may get a22conservative answer or you may get a non-23conservative answer.24For NRC applications we use MACCS2 in a25role where we're looking primarily at mean results

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	182
1	and those conservatisms or non-conservatisms tend to
2	average out, not entirely and not always but they
3	tend to do that. And so the means tend to lose most
4	of the effect of some of those conservatisms and
5	non-conservatisms.
6	Okay, I think with that, Tina?
7	MS. GHOSH: And we can skip this slide.
8	We added some references, that's just for your own
9	reference. We don't have to go through those. So
10	I'll talk now about the analysis which is in
11	progress but I'll talk about our preliminary
12	analyses for the filtered vents.
13	So, in terms of supporting the
14	regulatory analysis, the cost-benefit analysis
15	portion, we used MACCS2 to calculate the offsite
16	population doses which feeds directly into the reg
17	analysis as well as the economic cost.
18	And just a quick note that MACCS for the
19	offsite population doses, it's not only included the
20	public doses, doses to members of the public, but
21	also decontamination workers who are doing the
22	offsite decontamination. Those all get lumped into
23	the offsite population dose.
24	Then in addition to those two metrics
25	that we are feeding into the reg analysis we also
I	I

(202) 234-4433

	183
1	looked at a few additional metrics. One was the
2	population-weighted latent cancer fatality risk
3	which we've generally called individual latent
4	cancer fatality risk and the individual prompt
5	fatality risk, and land contamination. Which again
6	the other metrics are dependent on land
7	contamination but we looked at it as a separate
8	metric.
9	And the way we defined land
10	contamination for our purposes is to look at
11	different thresholds of cesium-137 concentration in
12	the soil. And when we get to the results you'll see
13	what that is. That's one way of defining land
14	contamination.
15	And we, for the purposes of reg analysis
16	we do everything out to 50 miles. So for most of
17	these metrics we looked out to a circle of 50 miles,
18	a radius around the plant.
19	The only exception to that is for the
20	land contamination numbers that we're reporting we
21	actually went out as far as we still found some land
22	contamination that exceeded the thresholds. In some
23	cases that's beyond 50 miles that we found exceeding
24	the threshold. So for land contamination the only
25	metric where the results are not limited to 50
ļ	I

(202) 234-4433

	184
1	miles. All the other results are for the 50-mile
2	circle.
3	MEMBER RYAN: What would drive that? I
4	guess the meteorological conditions?
5	MS. GHOSH: Yes, that's right. How much
6	the source term is and the meteorology.
7	MEMBER RYAN: That's fine. I just want
8	to understand what role thanks.
9	CHAIR SCHULTZ: And Tina, those are done
10	as Nathan indicated on a best estimate basis or not
11	getting into non-conservatisms associated with the
12	boundaries?
13	MS. GHOSH: Right, yes.
14	MR. BIXLER: For NRC applications we
15	tend to use MACCS2 in a best estimate mode. We try
16	to do the best job we can of matching what the real
17	conditions might be. For DOE analyses, on the other
18	hand, they tend to be very conservative. They're
19	looking at 95th percentile weather and things like
20	that. So those are two different ways of using
21	MACCS. You can use it in either mode, but for NRC
22	applications we tend to try to use it in a best
23	estimate mode.
24	MEMBER RYAN: It's interesting too.
25	Maybe you'll talk about this and if you will I'll

(202) 234-4433

	185
1	wait, but cesium, I understand why it's a marker,
2	it's fairly soluble, it's fairly prevalent and all
3	that and it's a nice marker. Strontium on the other
4	hand is insoluble but it's an important marker. On
5	that side of it there's lots of other individual
6	radionuclides that for one reason or another may
7	rise to prominence in a calculation or in a real-
8	world circumstance. Have you treated any other
9	nuclides or you're really just looking at cesium?
10	MS. GHOSH: Well you know, the analysis
11	itself certainly looked at all of the important
12	radionuclides. I think Nate mentioned typically
13	fifty-something.
14	The reason we focus on cesium is because
15	iodine of course is important. When you look at
16	prompt fatality risk you have to look at iodine. In
17	this case, and I'm getting partly to the
18	MEMBER RYAN: If I'm getting ahead of
19	you, that's okay, I'll wait.
20	MS. GHOSH: Yes, for land contamination
21	we concentrate on cesium because that turns out to
22	be the most important.
23	MEMBER RYAN: I'm fine. All right,
24	that's good. Thanks.
25	MS. GHOSH: Okay.
	I

(202) 234-4433

	186
1	MEMBER POWERS: Typically there's about
2	a factor of 10 difference in the release fractions
3	typically between strontium and cesium.
4	MS. GHOSH: So, the inputs we used for
5	the MACCS deck, we started with the SOARCA project
6	deck as was mentioned, the same with the MELCOR
7	folks. And there was a couple of key differences.
8	Obviously the source term would be different. We
9	took the source terms that were generated by the
10	MELCOR analysis to feed into MACCS. And in
11	addition, the ingestion pathway was actually turned
12	off for SOARCA and we turned it back on for this
13	analysis. So those are the two key differences.
14	The habitability criterion that we used,
15	that's when you allow people to come back, because
16	we're looking at Peach Bottom we based it on the
17	Pennsylvania state guideline which I think we
18	discussed this morning. It's a little bit more
19	stringent than the EPA guideline, it's 500 millirem
20	per year starting right at the first year.
21	And then
22	MEMBER ARMIJO: Quick question. Do you
23	remember or know what the Japanese habitability
24	criterion is for return? Is it more conservative
25	than this, or the same, or higher?
l	I

(202) 234-4433

	187
1	MEMBER CORRADINI: As I understood it
2	the protection action guidelines are very similar to
3	this. They moved them out basically on 1 rem. But
4	the moving back in, there was a the staff
5	probably has it somewhere. There was a July 17th
6	date where they actually have regions where they're
7	moving them back in but I don't know what the dose
8	level is.
9	MEMBER ARMIJO: I have a number I
10	have a suspicion it's more conservative than the 500
11	but I'm not positive.
12	MEMBER CORRADINI: I think it is.
13	MEMBER POWERS: Somehow 50 millirem is
14	sticking in my mind.
15	MEMBER ARMIJO: Fifty?
16	MEMBER CORRADINI: Above background. A
17	delta, a very small delta.
18	MEMBER POWERS: But you know, why that's
19	sticking in my mind I don't know.
20	MR. NOSEK: Hi, my name is A.J. Nosek, I
21	work at the Office of Research.
22	I believe what the Japanese are using,
23	for habitability they're using a 2 rem threshold,
24	for return and habitability. And they plan to in
25	the future clean that down to 100 millirem past

(202) 234-4433

	188
1	habitability. That would be their cleanup standard.
2	MEMBER ARMIJO: That's the same as us,
3	same as EPA. That's what it sounds like.
4	MS. GHOSH: Okay, so the next point
5	actually Nate already covered in his overview. We
6	do do a statistical sampling of weather sequences
7	and in this case we used about 1,000 weather trials
8	because obviously we don't know when a hypothetical
9	future accident might occur. So we're taking into
10	account the uncertainty and the exact starting point
11	that the accident might occur.
12	And we limited our analysis to the
13	linear no-threshold dose-response model which is our
14	regulatory model still at this point. So unlike
15	SOARCA where we looked at the alternate dose
16	threshold models, in this case we only looked at the
17	LNT model. Next slide, please.
18	So just a quick overview. In the
19	emergency phase, you know, MACCS essentially models
20	people evacuating. And this is done by grouping the
21	population into groups of people who behave
22	similarly and we call those cohorts. So cohort 1 is
23	the zero- to 10-mile public, just the general public
24	that's in zero to 10 miles.
25	Cohort 2 is the 10- to 20-mile shadow
Į	I

(202) 234-4433

189 1 evacuation. So these are folks who haven't been directed to evacuate but they hear that zero to 10 2 has been directed to evacuate and they voluntarily 3 4 choose to evacuate themselves. Cohort 3 is a special category for the 5 zero to 10 schools. Generally the schools are 6 7 evacuated I believe in advance of the rest of the 8 population. They generally get an early evacuation. 9 And then similarly there may be others in the 10 general population, a zero to 10 shadow who evacuate earlier than they're directed to do so. 11 Cohort 4 is the special facilities that 12 are within the EPZ and that's hospitals, prisons, 13 14 basically institutions that for example have good 15 shielding and need special evacuation provisions in 16 essence. Cohort 5 is the zero to 10 tail. 17 These are the slow pokes, so they kind of are much slower 18 19 than the rest of the general population. And then much like NUREG-1150 and other 20 studies, we also assume that there's some portion of 21 the population in the zero- to 10-mile region that 22 simply won't evacuate even though they're told to do 23 24 so. And in this case we assume that to be 0.5 25 percent of the population. Next slide, please.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	190
1	So, I just wanted we wanted to make a
2	few notes on the decontamination factor of the
3	filters that we're assuming. So for the MACCS
4	portion of the analysis we essentially took all of
5	the MELCOR source terms
6	MEMBER CORRADINI: Just one little
7	clarification.
8	MS. GHOSH: Yes.
9	MEMBER CORRADINI: I know that in
10	certain states you don't evacuate based on distance
11	as much as you evacuate based on an emergency
12	planning region that is approximately distance, like
13	county. Is that how that's done in these little
14	circles? You know what I'm saying?
15	MEMBER SIEBER: That's the way
16	Pennsylvania does it.
17	MEMBER CORRADINI: There's a name for
18	it. I can't remember the acronym.
19	MR. BIXLER: It's called a keyhole.
20	MEMBER CORRADINI: No. No, no, no.
21	MR. BIXLER: ERPA? You might be
22	thinking about ERPA?
23	MEMBER CORRADINI: Yes.
24	MR. BIXLER: Here we're evacuating the
25	entire 10-mile zone.
	I

	191
1	MEMBER CORRADINI: You're just going out
2	and
3	MR. BIXLER: Yes, right. MACCS2
4	currently doesn't have the capability of just
5	evacuating a portion of the 10-mile EPZ. It does
6	the whole thing.
7	MEMBER CORRADINI: Or a keyhole.
8	Because one thing is just this, the other thing is
9	with the keyhole approach. But then on top of that
10	at least in Wisconsin they overlay that for any sort
11	of emergency and then say okay, within this fraction
12	of a county they have a siren. And it's not exactly
13	what it is, but that grouping is alerted and they go
14	out. Whether it's it's usually a little bit
15	larger than whatever any of these are.
16	MR. BIXLER: Yes, yes.
17	MEMBER CORRADINI: And that's not here.
18	MR. BIXLER: No, it's not here. We're
19	working on a keyhole evacuation model currently. In
20	fact, it's basically complete but not available for
21	use quite yet. It needs to be tested and so forth.
22	But not used in this study.
23	MEMBER CORRADINI: Okay, thank you.
24	MS. GHOSH: So, the decontamination
25	factor of the filters. So you'll see in the results
ļ	I

(202) 234-4433

Í	192
1	that are coming up on the next slides we took the
2	source terms from MELCOR and then we modeled both
3	the cases with and without filters.
4	And we just want to note that neither
5	MELCOR nor MACCS2 actually models mechanistically
6	the decontamination effect of the external filter.
7	So in essence we are just assigning a
8	decontamination factor value. It's a prescribed
9	value that we've assigned to the external filters.
10	And we've used several example values to see what
11	the differences might be.
12	And also the decontamination factor
13	well, I guess this is an obvious point. But would
14	only be applied to the portion of the release that's
15	going through the pathway that's connected to the
16	venting, the filtered venting.
17	MEMBER POWERS: One of the things the
18	MACCS does is it calculates the deposition of
19	radionuclides in this plume as it moves along. That
20	deposition those deposition velocities are
21	functions of particle size. This decontaminated
22	material presumably has different particle sizes
23	than the non-decontaminated material. Do you
24	account for those in doing your deposition
25	calculations?
I	I

(202) 234-4433

	193
1	MR. BIXLER: The short answer is no. We
2	do account for what MELCOR tells us comes through
3	the suppression pool accounting for that
4	decontamination. But since we're just applying a
5	decontamination factor to the MELCOR flow that comes
6	out through what would be the filtered vent we're
7	just applying that DF across the board to all
8	aerosol sizes. We don't have a basis for selecting
9	which aerosol sizes get decontaminated differently
10	than others.
11	MEMBER POWERS: So you're just
12	attenuating the entire distribution by a factor and
13	not shifting the size distribution.
14	MR. BIXLER: That's right, yes.
15	MEMBER POWERS: So that has the effect
16	of accelerating your of increasing your particle
17	deposition relative to what it probably would be. I
18	mean, there's no there's the other problem of
19	course of agglomeration of those particles that may
20	shift them back into the larger distribution.
21	MS. GHOSH: Yes, that's true. I guess
22	based on discussions, and I wasn't part of all the
23	discussions, but based on internal discussions we've
24	had I guess there have been some vendor claims that
25	the latest filter technology is able to filter
	I

(202) 234-4433

	194
1	particles down to lower sizes than one would
2	previously have thought.
3	I don't think we've done we haven't
4	done any independent studies on that but I guess
5	that was one thought, that perhaps this isn't that -
6	- if that were true then perhaps it's not that far
7	from what would actually happen. It may be an open
8	question.
9	And, right. So for the MACCS input then
10	the MELCOR source term only from the relevant flow
11	path, you know, where the filtered venting is
12	reduced by the decontamination factor that's
13	assigned to that filter. So if we can go to the
14	next slide.
15	The next two slides, there's a lot of
16	information here we've just summarized in two
17	tables. So these are the same eight cases that you
18	saw the MELCOR results were this morning and even
19	earlier.
20	And I just want to point out a couple of
21	things before I start. We're only presenting a
22	couple of the decontamination factor cases that
23	we've run. For the wetwell venting cases we also
24	ran a decontamination factor of 2 and 100. And
25	those results will be available in the draft SECY
	I

(202) 234-4433

	195
1	enclosure that we are developing now. But anyway,
2	to give an idea of what difference the different
3	results produce we just are showing the
4	decontamination factor of 10 cases for the wetwell
5	venting.
6	The contaminated area which is the third
7	row in the tables, again we base this on a threshold
8	level of the cesium concentration, the aerial
9	concentration of cesium. And we picked we looked
10	at three or four different values. And these were
11	based on what IAEA were reporting following
12	Chernobyl.
13	And just so you know, the 15 microcuries
14	per meter squared in the case of Chernobyl
15	corresponded roughly to about an external dose about
16	800 millirem per year the first year, 1986, and then
17	dropped down to about 200 millirem per year for
18	several years after that. Just so you have some
19	idea at least for the Chernobyl case what that
20	contamination level corresponded to in terms of
21	external dose.
22	So we have here the population dose for
23	that 15-mile circle around the plant as a first
24	entry. The second is the individual latent cancer
25	fatality risk. The third is the land contamination
	I

(202) 234-4433

	196
1	area and the fourth is the total economic cost.
2	MEMBER CORRADINI: And then if I might
3	just, just to remind myself. The last row is all
4	the things that you guys went through this morning.
5	MS. GHOSH: That's right.
6	MEMBER CORRADINI: So in theory this
7	should account for everything. In theory.
8	MR. BIXLER: If you were doing a SAMA
9	analysis you would add in the population dose times
10	\$2,000 per person rem. We're not doing that.
11	MEMBER CORRADINI: Okay, except for
12	that.
13	MS. GHOSH: And not the onsite cost
14	either.
15	MEMBER CORRADINI: Sure.
16	MS. GHOSH: So you'll see that later in
17	the reg analysis. So this is just the offsite
18	economic cost minus the population dose cost.
19	MEMBER CORRADINI: Got it. Right. So,
20	just the reason I asked that because my next
21	question is so, I benchmark this against what to get
22	a sense of reality? Or is it just a relative thing?
23	I should look at the base case divided into all the
24	others from a relative reduction. In other words,
25	should I believe the numbers or not believe the
I	I

(202) 234-4433

	197
1	numbers?
2	MR. MONNINGER: For cost, for economic
3	cost we have on slide 78 some benchmarks that Marty
4	Stutzke will cover in detail.
5	MEMBER CORRADINI: Well, my next
6	question would be did you apply this analysis to one
7	of those base cases to see if you were within a
8	factor of 10, 2, or 10 percent.
9	MS. GHOSH: So, I think you asked this
10	question yesterday.
11	MEMBER CORRADINI: Yes, I did.
12	MS. GHOSH: I guess in a different
13	forum.
14	MEMBER CORRADINI: It's not a different
15	forum. It's highly connected.
16	MS.GHOSH: No, no, no, I know. The
17	topic of that discussion was different but of course
18	it's connected. In fact, this is one of the
19	activities that has to do with that SECY.
20	We haven't modeled Fukushima yet. In
21	fact, we think it's a little bit premature to do so
22	just because a lot of the we're still gathering
23	information. Even on just the source terms I've
24	seen quite a few different numbers coming out. And
25	certainly on the real economic cost. I mean, we've
I	

(202) 234-4433

	198
1	seen some projections but we're still gathering
2	data. So we haven't done that type of benchmarking
3	yet.
4	I think there are a number of us who
5	think that it would be valuable to do at some point
6	but it's premature at this point. But I think what
7	you can see is so we're giving you a range of cases.
8	MEMBER CORRADINI: That's fine.
9	MS. GHOSH: And a range of numbers that
10	we've computed at least for the calculations we've
11	done. And you can kind of compare those against
12	some of the real-world costs that you'll see in the
13	slides later to kind of see where it falls, you
14	know, with respect to other real events.
15	MEMBER CORRADINI: Okay. I just kind of
16	anticipated you were going to tell me don't believe
17	any of this, just take column 2 and divide row 4
18	into the next set just to look at a relative change.
19	Because until you benchmark. While you
20	benchmark.
21	MS. GHOSH: Yes. Certainly the relative
22	numbers are maybe more valuable at this point than
23	the absolute numbers.
24	Okay, and so on that point in terms of
25	the relative numbers, you know, one of the things

(202) 234-4433

	199
1	that we're really trying to look at is how much
2	benefit do you get from applying a filter to
3	venting. So venting and then applying the filter to
4	the venting.
5	So, you'll see that there is inherently
6	a non-linear relationship between the
7	decontamination factor and what you get in terms of
8	a population dose and individual health risk as well
9	as the contaminated area and economic cost. And I
10	guess intuitively it makes sense, right? Because
11	the decontamination factor is only applied to one
12	pathway. So where you have a release coming from
13	multiple pathways you're not going to get the full
14	benefit of that decontamination factor. So that's
15	one intuitive point.
16	With the land contamination area you can
17	often see a super-linear effect and that's because
18	we're reporting contamination levels above a
19	particular threshold. So, if you don't reach that
20	threshold, if you're just under it you might lose a
21	big chunk of, you know, area. So that also makes
22	intuitive sense. So that explains some of the
23	inherent non-linearities.
24	The other thing is with the latent
25	cancer fatality risk for a lot of the numbers that
Į	I

(202) 234-4433

	200
1	we've calculated the habitability criterion kind of
2	provides a backstop against how much risk you can
3	incur. Because you don't allow people to come back
4	and get long-term doses until you reach that
5	habitability criterion. So that can account for
6	some non-linearities as well.
7	MEMBER ARMIJO: But if you had used the
8	same threshold value on health effects as you used
9	in SOARCA for this calculation would there be any
10	difference among any of these cases for the latent
11	cancer fatality risk?
12	MS. GHOSH: Do you mean in terms of
13	trends between
14	MEMBER ARMIJO: Yes, just there's a
15	threshold below which, you know, the number is
16	latent cancer fatalities.
17	MS. GHOSH: Yes, I think much like the
18	land contamination area you probably you would
19	see a greater non-linear effect because in essence
20	you don't start counting until you reach a certain
21	threshold. So it would be a more pronounced effect
22	if you looked at the threshold dose models.
23	MEMBER ARMIJO: But the benefit of the
24	filter would be less.
25	MR. BIXLER: It would be less if you had
I	

(202) 234-4433

	201
1	
2	MEMBER STETKAR: But it might look like
3	the land contamination in that sense.
4	MS. GHOSH: It may be more, actually. I
5	think it may be more because with the LNT model you
6	may see bigger differences if you apply the dose
7	threshold.
8	MEMBER ARMIJO: Well, that's what has me
9	confused. So maybe offline I'll talk to somebody
10	else.
11	MEMBER CORRADINI: Just a follow-up to
12	Sam's question. Maybe I misunderstood. The third
13	row is the contaminated area maybe it isn't the
14	same. Is the third row anywhere related to the
15	protection action guidelines for rehabilitation? Is
16	this like an intermediate number?
17	MS. GHOSH: Yes, so that's what I was
18	mentioning before. In this case we're simply
19	reporting a threshold value for cesium aerial
20	contamination. So we can translate that to what it
21	was for Chernobyl. So in IAEA's calculations for
22	Chernobyl that translated to an 800 millirem per
23	year dose in the first year and about 200 millirem
24	per year for several years after that.
25	MEMBER CORRADINI: Okay, I missed that.
l	I

(202) 234-4433

	202
1	Okay, thank you. Thank you very much.
2	MS. GHOSH: Okay, so and the other thing
3	is I almost I had reproduced the MELCOR results
4	right before these tables because in order to
5	understand why you see the differences that you do
6	in the results you need to, you know, what I just
7	said about the non-linear effects but also you need
8	to see what's going on with the source term in the
9	release pathways in order to get the full
10	explanation.
11	So I guess well, we all have the hard
12	copy handouts. The key results to look at in
13	parallel are on pages 41 through 44 which basically
14	tell you what's happening with the source term
15	coming out that's feeding into the MACCS analysis.
16	MEMBER STETKAR: Tina?
17	MS. GHOSH: Yes?
18	MEMBER STETKAR: Can you go to the next
19	slide? Unless there's something pertinent
20	particularly on this one. Because we raised the
21	question a few hours ago about 15 versus 14.
22	MS. GHOSH: Right.
23	MEMBER STETKAR: And the MELCOR results
24	on slide 44 show higher releases in case 15 compared
25	to case 14 by about a factor of 3 roughly. These
I	

(202) 234-4433

203 results seem to indicate that with a filter case 15 1 is much better than case 14. 2 MEMBER BLEY: Which is where we came in 3 4 thinking --5 MEMBER STETKAR: Which is where we came in thinking it ought to be. 6 7 MR. MONNINGER: But the MELCOR doesn't 8 have the filter applied. 9 MEMBER STETKAR: Oh. 10 MR. MONNINGER: The MELCOR would be the unfiltered red. 11 MEMBER STETKAR: Unfiltered versus 14. 12 13 Okay, never mind. 14 MR. MONNINGER: Tina threw the 10 on 15 hers. 16 MEMBER STETKAR: Never mind. You get 17 about the factor of 3 here so, sorry. Thank you. It does hang together. 18 19 MS. GHOSH: Yes. MEMBER STETKAR: MELCOR only had a vent. 20 It didn't have a filter. It sort of had a filter --21 MEMBER BLEY: Even though it had a 22 wetwell vent you didn't take advantage of the wet. 23 MEMBER STETKAR: It sort of --24 MR. MONNINGER: We took advantage of the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	204
1	wetwell scrubbing but we didn't throw an extra
2	MEMBER BLEY: An extra filter.
3	MEMBER CORRADINI: When they have
4	"unfiltered" here that means nothing external to the
5	
6	MEMBER STETKAR: MELCOR model.
7	MEMBER BLEY: But it did go through the
8	wetwell.
9	MR. MONNINGER: Yes.
10	MEMBER BLEY: And back on the old one,
11	going through the wetwell didn't do what
12	MEMBER STETKAR: And it had a de facto
13	reactor building filter on it, you know, factor of 2
14	or so.
15	CHAIR SCHULTZ: It appears it had a
16	benefit there, the wetwell did, and then as a result
17	it appears that the DF associated with the filter
18	for the wetwell vent is much lower than what it's
19	been proposed for the drywell.
20	MEMBER BLEY: Actually that's not so.
21	Back on 44, 43-44, the wetwell, going through the
22	wetwell made it worse.
23	CHAIR SCHULTZ: I'm talking about the
24	assumptions here though with regard to the DF for
25	the filter associated with drywell and wetwell.
	I

(202) 234-4433

	205
1	MEMBER CORRADINI: Just the other thing
2	that because we had discussions at break about
3	this. Just to take case 14. Case 14 is what got
4	out by 48 hours, not what got out up to 30 days.
5	This is just the release up to 48 hours.
6	MS. GHOSH: Right, it's truncated at 48
7	hours.
8	MEMBER CORRADINI: That's probably a big
9	effect as to why I'm still looking at case 14.
10	It looks just strange and I think it's just got to
11	be because it was cut off.
12	MR. DENNIG: This is Bob Dennig. I'm
13	not sure that I need to say anything, but
14	(Laughter)
15	MR. DENNIG: the 10 is not in any way
16	mechanistically or algorithmically or in any way
17	connected to what kind of a scrub you calculate in
18	MELCOR for the pool. The 10 is a 10. It was
19	arbitrarily assigned that value. It was a low value
20	as the minimum value which is what 90 percent for
21	all for small particles it would be 90 percent
22	removal for a factor of 10. And that's just in
23	there, that's just an input.
24	CHAIR SCHULTZ: Tina, each of the
25	categories that are selected there for a population

(202) 234-4433

	206
1	dose down to the economic cost over the 50-mile
2	radius. Each of those four have different stories
3	that they tell associated with the comparative
4	evaluation of each case. Are you telling that today
5	as to what findings or are we going to hear that
6	later? How is this going to be captured in the
7	quantitative and qualitative assessment features?
8	MS. GHOSH: Yes, we I mean today we
9	have just a very high-level summary of what came out
10	of the MACCS analysis. I think you'll hear a lot
11	more in the reg analysis and also Marty's
12	uncertainty analysis talks about it because they've
13	done additional sensitivity analyses and kind of put
14	together the story of what it all means.
15	I was going to offer just a couple of
16	very high-level thoughts. Certainly when you have
17	cases 12 and 13 where you have main steam line
18	rupture you can see that the overall consequences
19	are quite a bit greater because everything is going
20	to the drywell.
21	When you do put a filter, if you vent
22	and you put a filter on the vent you can see that
23	you attain a substantial reduction in all of the
24	consequences across the board. And certainly if
25	you're starting out with a decontamination factor of
	I

(202) 234-4433

	207
1	1,000 and then looking at the comparison with 5,000,
2	the incremental benefit there is not very large.
3	You're getting a very large benefit from the DF of
4	1,000.
5	For cases 14 and 15 the drywell sprays
6	are effective and you don't get any containment
7	failure in case 15. That's just a note.
8	And if we can go back to the previous
9	slide, slide 66, we can see that essentially any
10	kind of wetwell venting is better than nothing at
11	all. So for these cases even when you have
12	unfiltered venting you're still better off than if
13	you don't vent at all. And you do get of course an
14	additional benefit when you put the filter on.
15	MEMBER POWERS: I guess I always have
16	trouble drawing that kind of conclusion from this
17	portrayal of the results. Because there are in fact
18	no descriptions of the distribution of the output
19	here. That if I look for instance at the difference
20	between 400,000 rem and 180,000 rem in me, but if I
21	found that looking at 1 sigma on either side of it,
22	the two numbers were in fact indistinguishable I
23	might draw a different conclusion than if in fact I
24	found that there was some differences in the 2 sigma
25	distribution there.
ļ	I

(202) 234-4433

	208	
1	I'm wondering why you present things as	
2	just the mean and don't provide since you	
3	calculated I presume in MACCS some indication of	
4	what the distribution of the results are.	
5	MS. GHOSH: Yes, and you know, I guess	
6	maybe we should clarify here. The distributions	
7	that we're getting are based just on weather	
8	uncertainty. So it's only on	
9	MEMBER POWERS: I think I understand	
10	that.	
11	MS. GHOSH: Yes. But there's also	
12	epistemic uncertainty which we have not	
13	MEMBER POWERS: Well, I'm certain there	
14	are, but even given the limitations in your code of	
15	just having the weather which I think is unremovable	
16	uncertainty, that no amount of research is going to	
17	change the fact that the weather changes, it seems	
18	to me that that's integral for drawing conclusions	
19	from these results. Or am I missing something?	
20	MS. GHOSH: I think that's certainly one	
21	way to look at it. You know, I think the reason we	
22	focused on the mean is just because it's kind of	
23	been NRC policy to use the mean results and cost-	
24	benefit analysis. But essentially we do have the	
25	information on the distribution of results.	
ļ	I	

(202) 234-4433

	209
1	And as I mentioned, you know, I think
2	Aaron and Marty's going to go through the
3	sensitivity studies and uncertainty analyses that
4	they've done so we are going beyond just these mean
5	kind of point estimates almost in the overall
6	analysis. But we could also look at the range of
7	results from the weather uncertainty.
8	MEMBER POWERS: Just because you're
9	comparing two things. And especially where you have
10	a distribution in the result there's a pretty fair
11	probability that you get numbers that within the
12	range of variability of the weather you really can't
13	tell the difference between the two numbers in
14	actuality.
15	MEMBER STETKAR: You said you only run
16	1,000 samples out of your 8,760. Do you test is
17	it Monte Carlo sampling? Do you test for
18	convergence on the mean? I mean, if they test for
19	convergence
20	MEMBER POWERS: Oh, well, convergence on
21	the mean is probably instantaneous. It's probably
22	10 that got convergence on the mean. Even for the 1
23	sigma level I would assume that 1,000 gets you more
24	than adequate convergence there.
25	MEMBER STETKAR: Yes, I would believe
I	I

(202) 234-4433

	210
1	SO.
2	MEMBER POWERS: If you were asking about
3	the 99th percentile then it would be more dubious,
4	but
5	MS. GHOSH: I suppose one thing I would
6	wonder is, you know, if the effects of the weather
7	uncertainty are about the same on the two cases,
8	while you may have some overlap if you look at the
9	total spread one would expect that you're going to
10	get the ranges to be different. And so maybe what
11	you're interested in is what percentage of the total
12	spreads are overlapping in some area. I think
13	that's an interesting question.
14	But I don't think we have any intuitive
15	reason to believe that the spreads would be that
16	different for one case versus another. So we could
17	look at the total range of the two but I think
18	comparing the means is still a meaningful metric
19	because the spreads would be around, you know, the
20	mean.
21	MEMBER CORRADINI: But just to get to
22	Dana's point though, it's fair to say that you've
23	got the data and you could look at it.
24	MS. GHOSH: Yes, that's fair.
25	CHAIR SCHULTZ: And I think that would
ļ	I

(202) 234-4433

	211
1	help in what I'm sure we could spend weeks on if not
2	the afternoon associated with comparing and asking
3	why are the differences here where we see between
4	case 3 and case 7, or the results from different
5	elements that are part of the output. How are they
6	connected or disconnected and how might we use the
7	results then in a regulatory analysis. What's the
8	appropriate way both quantitative and qualitatively.
9	MEMBER RYAN: Tina, have you done a lot
10	of either sensitivity studies or inter-case
11	comparison studies to see how they react to various
12	parameter values or changes in parameter value?
13	MS. GHOSH: Well, Marty is going to
14	MEMBER RYAN: I guess I'm asking the
15	basic question what do you know and what don't you
16	know in these four cases.
17	MS. GHOSH: In terms of individual
18	inputs to the analysis for instance?
19	MEMBER RYAN: That's one aspect but the
20	other is how they behave once you start running the
21	calculation one to the other. We're making a lot of
22	comparisons and discussing a lot of parameters and
23	how they behave, but I'm not real sure I don't
24	have a hook in reality yet which one of these I
25	actually believe is fact and what's a calculated
ļ	

(202) 234-4433

(202) 234-4433

	212
1	estimate.
2	MS. GHOSH: Yes. I think, yes, I guess
3	this discussion today is not going to be completely
4	satisfying. I think our writeup is going to be
5	hopefully more satisfying because we go into more
6	detail about explaining why the different results
7	are what they are. I mean, I think we have
8	explanations for the differences, and again, it has
9	partly for these results has partly to do with
10	what's coming out of the MELCOR analysis and the
11	source term signature.
12	So it's which pathways, you know, how
13	long stuff is leaking out of the drywell head
14	flange, for instance, whether or not you have
15	drywell liner failure, whether you even have
16	containment failure, how effective the sprays are,
17	either core spray or containment spray when you do
18	have them.
19	It's a very it's a long story and we
20	don't have a satisfyingly succinct summary today but
21	I think when you do see the SECY enclosure hopefully
22	it'll get to more of that.
23	MEMBER RYAN: Okay. I guess when you
24	get to that point you'll be dealing with a little
25	bit more complex kind of human exposure
ļ	1

(202) 234-4433

	213
1	circumstance. I guess right now we're kind of
2	dealing with contamination and external doses. Have
3	you looked at intake pathways other than just
4	external exposure?
5	MS. GHOSH: Yes. Actually
6	MEMBER RYAN: Direct gamma and crude and
7	all that other stuff sometimes can be much more
8	important than external gamma radiation.
9	MS. GHOSH: Yes and well, actually,
10	we can get to that in the we can go to slide 68.
11	MEMBER RYAN: Well, I don't want to rush
12	you out of order. If you're going to get to it
13	that's fine.
14	MS. GHOSH: Well, that's okay. I think
15	we could continue to have a very lengthy discussion
16	on this but I still don't know if it will be
17	completely satisfying.
18	MEMBER RYAN: That's fine.
19	MS. GHOSH: We should get to some to the
20	punch lines for at least the MACCS portion of the
21	analysis. And I don't think these will be
22	surprising but we did model all the pathways. This
23	kind of confirms what we've seen in other
24	applications.
25	In terms of the long-term radiation the
	I

(202) 234-4433

most important isotope is still cesium-137. this is accounting for everything. And the of are mostly coming from groundshine versus oth things. I believe that's because the resident in the body is pretty low for cesium-137. So groundshine is the overwhelmingly dominant ext	doses ner nce time
3 are mostly coming from groundshine versus oth 4 things. I believe that's because the residen 5 in the body is pretty low for cesium-137. So	ner nce time
4 things. I believe that's because the residen 5 in the body is pretty low for cesium-137. So	nce time
5 in the body is pretty low for cesium-137. Sc	
)
6 groundshine is the overwhelmingly dominant ex	
	kposure
7 pathway. That's kind of why we have spent so	o much
8 time concentrating on the cesium-137.	
9 In terms of the prompt fatality r	risk we
10 see essentially no prompt fatality risk. Eve	en in
11 the cases 12 and 13 where we had much higher	release
12 fractions, particularly of iodine if you go b	back to
13 the MELCOR tables we still don't see a prompt	-
14 fatality risk.	
15 I think in one case there was a	
16 conditional 1 in 1 billion chance, so conditi	ional.
17 So then if you weight that by the frequency of	of how
18 likely that accident is to happen we are way	down in
19 the weeds. And we're comfortable saying esse	entially
20 no prompt fatality risk. And the other ones,	, there
21 wasn't even a number that we could compute.	So we
22 continue to focus on the latent cancer fatali	ity
23 risk.	
24 There are a couple of cases that	were
25 very, very low absolute risk where the emerge	ency

(202) 234-4433

(202) 234-4433

	215
1	phase had a higher contribution. But for the most
2	part we're really talking about risk coming from
3	people coming back to their homes after the
4	habitability criterion has been met. So it's the
5	long-term phase of accumulating a lot of small doses
6	after you've come back to your property.
7	And then, the other thing as I mentioned
8	before, just inherently there is a non-linear
9	relationship between the decontamination factor that
10	you apply and both the land contamination area and
11	the health effects for the reasons I mentioned
12	before. So anyway, that's our very high-level
13	summary of what we're seeing new out of the MACCS
14	analysis.
15	But yes, I recognize for the discussion
16	of the tables we have to put together the story all
17	the way from the beginning of what's happening in
18	the reactor all the way through the offsite
19	consequences portion. So if there are any more
20	specific questions on the table entries, I mean we
21	can try to address those here but I don't know if
22	that would be valuable or not.
23	CHAIR SCHULTZ: Other questions from the
24	committee at this time?
25	MEMBER SHACK: The sensitivity studies
I	I

(202) 234-4433

(202) 234-4433

	216
1	between say the 4-hour battery life and the 16-hour
2	battery life are going to be covered by somebody
3	else?
4	MS. GHOSH: Did anybody do that
5	sensitivity?
6	MEMBER CORRADINI: This morning we were
7	told that there was some sensitivity.
8	MR. MONNINGER: Yes, and that would
9	the results would be in the MELCOR report. The
10	difference yes.
11	MR. BASU: In the MELCOR portion of the
12	report, MELCOR analysis?
13	MEMBER SHACK: Somewhere.
14	MR. BASU: Now, we haven't done the
15	MACCS analysis with all the sensitivities that we
16	did in the MELCOR area. So I don't think you're
17	going to
18	MEMBER SHACK: Well, I'm just sort of
19	wondering how much of what we're seeing here is due
20	to the fact that you have a 16-hour battery life and
21	this is a very, very protracted extended accident
22	versus shorter battery life. That just seems to me
23	as sort of a basic case to look at. I could go back
24	and look at SOARCA except SOARCA didn't calculate
25	all these things.
	I

(202) 234-4433

217 1 MEMBER STETKAR: Or RCIC failing to 2 start. 3 MR. BASU: For MELCOR we're still going 4 to give you the release fractions of cesium and 5 iodine for 4-hour and then 12 hours. So that, you can look at the proportion and see what sort of 6 7 effect MACCS will --8 MEMBER SHACK: When it's non-linear I, 9 you know. 10 MR. BASU: Yes. MS. GHOSH: I think, well we talked 11 about some of the preliminary SOARCA uncertainties 12 when we came in April, back in April. And the one 13 14 small --15 MEMBER CORRADINI: You're assuming old 16 people can remember. 17 MS. GHOSH: You guys are not that old. I don't take that -- not a good excuse. I think 18 19 that from there we went up to an 8-hour battery life. So we didn't go all the way up to a 16-hour 20 battery life but what we found is it doesn't make 21 much difference for the 48-hour release. It doesn't 22 make that much of a difference. 23 24 But anyway, I'm sure the MELCOR writeup will have the 16 versus 4. So it makes of course a 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

218 1 difference in the early hours but almost no 2 difference for the 48 hours which is -- actually, we 3 were surprised, frankly. We thought that it would 4 make more difference. 5 CHAIR SCHULTZ: Hearing no more questions, thank you very much for your 6 7 presentations. We'd like to go right into the next presentation on the agenda which is risk evaluation 8 9 by Marty Stutzke. 10 MR. STUTZKE: Being aware of the schedule I thought I'd tell you a little anecdote. 11 I was preparing my presentation last night and my 12 10-year-old daughter came and asked me for help with 13 14 her homework problems. And she laid down about a 15 dozen 3-digit subtraction problems. I said this is going to take a long time, and she goes well, it 16 will be a lot faster if you just watch and don't ask 17 any questions. 18 19 (Laughter) MEMBER STETKAR: Are you trying to tell 20 us something? 21 I didn't think I could get 22 MR. STUTZKE: away with it. 23 24 MEMBER STETKAR: But it's a very good 25 story, thank you.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	219
1	MR. STUTZKE: So, I'll reintroduce
2	myself. I'm the senior-level advisor for PRA
3	technologies in the Office of Research. We'll be
4	talking about the risk evaluation here with some
5	background.
6	First of all, the purpose of why we did
7	it, some background on CCFPs and some insights from
8	SAMA analyses. I'll summarize the tech report or
9	approach that I used, and the results and some crude
10	uncertainty work that I've done to try to give you
11	some insight. Next slide, please.
12	So, the purpose is to estimate the risk
13	reduction, the delta risk from installing severe
14	accident containment vent in the reg analysis. And
15	the metrics of importance are the change in the 50-
16	mile population dose, the change in the 50-mile
17	offsite cost, the change in the onsite worker dose
18	risk and the change in the onsite cost risk.
19	In addition, because the MACCS people
20	had calculated all these measures of land
21	contamination I decided it would be helpful to look
22	at the change in land contamination risk. Land
23	contamination as Tina told you, it's the area,
24	square kilometers, of land that's contaminated above
25	15 microcuries per square meter.
I	

(202) 234-4433

	220
1	So if I do a normal risk calculation I
2	would take that metrics, square kilometers times the
3	accident sequence frequency and at least made a unit
4	of measure of square kilometers per reactor year
5	which I have no idea on Earth what that means.
6	MEMBER CORRADINI: Why not take the
7	ratio of the square kilometers to essentially what
8	the utility owns? So I would have essentially a
9	ratio of what is offsite to onsite.
10	MR. STUTZKE: That could work. What I
11	did was then take the risk and I divided it by the
12	sum of the release sequences. So what you get is a
13	frequency-weighted average area that's contaminated
14	above a certain level conditioned on the occurrence
15	of the accident. So it shows you units of
16	changes of square kilometers and things like that.
17	It seemed to be a little bit more helpful to me.
18	But realize there's no regulatory guidance on
19	something that's acceptable like this. Okay. Next
20	slide, please.
21	Conditional containment failure
22	probabilities. These are for BWRs it's taken out
23	of the IPE results like this for Mark I's, II's and
24	III's containments. In general IPEs found that the
25	early containment failures were all due to liner
ļ	1

(202) 234-4433

Í	221
1	melt-throughs, large majority of them. And the late
2	containment failures are overpressurization failures
3	as well as basemat melt-throughs.
4	So you see similar results between the
5	Mark I's and Mark II's, and the Mark III's there's a
6	different distribution. If you flip over to the
7	next slide yes.
8	MEMBER CORRADINI: When you said early
9	and late you only were talking about Mark I, about
10	liner melt-through. There ain't no such animal
11	under Mark III.
12	MR. STUTZKE: Yes.
13	MEMBER CORRADINI: Okay. So what is the
14	early in the Mark III?
15	MR. STUTZKE: I'd have to look that up.
16	MEMBER CORRADINI: I don't remember
17	myself but I
18	MR. STUTZKE: Yes, I'd have to look it
19	up. Since the focus here has been on Mark I's and
20	Mark II's.
21	MEMBER CORRADINI: Okay, that's fine,
22	that's fine.
23	MR. STUTZKE: The next slide shows the
24	results for the PWRs as well but I won't discuss
25	them.
	1

222 1 MEMBER STETKAR: Marty, you didn't mention containment isolation failure. Are those --2 3 is that part of late? MR. STUTZKE: That's part of the bypass. 4 5 MEMBER STETKAR: Part of bypass. That's part of bypass. 6 MR. STUTZKE: 7 MEMBER STETKAR: So that's not -- okay. 8 Thank you. MR. STUTZKE: And there are issues with 9 10 reportability of segregating those out. MEMBER STETKAR: Surprising where that 11 is then. Thank you. 12 MR. STUTZKE: Yes. 13 14 MEMBER SKILLMAN: Marty, what are the 15 early failures for the large dry and for the ice condensers, please? 16 MR. STUTZKE: In terms of what --17 MEMBER SKILLMAN: I presume bypass is 18 19 failure, late failures are overpressurization. What is early failures for those two classes? 20 MR. STUTZKE: I'm going to have to look 21 22 those up. MEMBER SKILLMAN: Just curiosity. 23 Thank 24 you. MR. MONNINGER: So we tried to put it in 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	223
1	here for our perspective but for the other
2	containment designs
3	MEMBER SKILLMAN: You're doing peas
4	versus peas is what you're doing.
5	MR. MONNINGER: Yes.
6	MEMBER SKILLMAN: Okay, thank you.
7	MR. STUTZKE: The next source of
8	information comes from extending the intervals
9	between integrated leak rate tests that are required
10	by Appendix J in Part 50. And a number of licensees
11	have submitted and the staff has approved various
12	license amendments.
13	This is not a complete set. This is a
14	sampling of the information. But the methodology
15	provides information that lets one derive
16	conditional containment failure probability. In
17	fact, in some of these submittals they actually
18	report the numbers like this.
19	MEMBER CORRADINI: This is after they've
20	done all the tightening and all they've tried to do?
21	I don't understand what the final number means.
22	Because with an ILRT I thought they go through a lot
23	of to pass the test.
24	MR. STUTZKE: Right, but the idea here
25	is originally plants did ILRTs three times in 10
ļ	I

(202) 234-4433

	224
1	years. And now the idea is to extend the interval
2	to once in 10 years or once in every 15 years like
3	that like this. And what you find is the
4	following breakdown by the causes of conditional
5	containment failure probability.
6	You know, the ILRT is fixated on the
7	isolation failures, the liner leak-throughs and
8	things, things that would be detected by the test
9	and as a result because the contribution is small
10	you don't set much influence or sensitivity to the
11	interval between tests.
12	What I was interested in was the
13	contribution from accident phenomena that would
14	include things like liner melt-through, overpressure
15	failures, and I was trying to make a comparison
16	between this and the previous graphs I showed you to
17	see what have we learned since we did IPEs about the
18	likelihood of containment failure.
19	This accident phenomena column is the
20	ground on which we play here for filtered venting if
21	you want to look at it that way.
22	Okay. Then we went through a process
23	next slide, please.
24	MEMBER CORRADINI: Marty, I'm sorry that
25	I'm slow. Since none of the numbers change do I
	I

(202) 234-4433

	225
1	interpret that to mean I learn nothing or the test -
2	- I really don't understand what we're trying to get
3	out of this. I'm sorry.
4	MR. STUTZKE: Okay. The numbers that
5	change because of ILRT are the frequency of the
6	percent contributions of the isolation failures.
7	MEMBER CORRADINI: They kept going up
8	but don't really amount to anything.
9	MR. STUTZKE: Well, actually, they go
10	MEMBER SIEBER: Well, look at the
11	conditional containment failure probability.
12	MEMBER REMPE: You're testing less
13	frequently.
14	MR. STUTZKE: Yes, you're testing less
15	frequently and you expect the contribution to go up
16	proportionally like this.
17	MEMBER SIEBER: What was the last
18	column? There's a pretty wide variation there.
19	MEMBER CORRADINI: But what I guess I
20	was now I see, I think I understand what Marty
21	was saying. The only column that really is changing
22	is the isolation failure.
23	MEMBER SIEBER: Yes, that's right.
24	MR. MONNINGER: For our purposes one of
25	the questions out there are what are the potential

(202) 234-4433

1 accident sequences or scenarios in which a filter may or may not be beneficial. And what we're trying 2 3 to say is that for some of this accident phenomena, 4 liner melt-through, overpressure, et cetera, the 5 boilers, the Mark I's and Mark II's have a high probability of failure and could the filtered vents 6 7 play a beneficial role in there. 8 Could the filtered vents play a 9 beneficial role in this accident phenomena column? 10 They're not going to help isolation failures. So licensees are reporting a high failure probability 11 for their own plants and this is where we believe 12 the filtered vent has value in potentially driving 13 14 these numbers down. John, is this -- or 15 MEMBER STETKAR: 16 Marty, is this different than the message that I --17 kind of subtle message in the EPRI report which says well, there are a whole bunch of other ways that the 18 19 containments fail so we're only going to focus on this -- the message I got -- small fraction of the 20 events that a filter might help you? This says a 21 large fraction of the events a filter might help 22 23 you. 24 MR. STUTZKE: Potentially. The problem here is it just says -- for the ILRT methodology it 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

226

	227
1	just says accident phenomena. And you can't really
2	break out is it overpressure failure versus liner
3	melt-through. Some of the analyses, the submittals
4	actually give you that level of detail.
5	MR. MONNINGER: I think the other thing
6	they potentially say is a filter by itself is not
7	necessarily a solution. You need a package deal.
8	MEMBER STETKAR: Oh, I understand that.
9	There's a lot of introductory material in that EPRI
10	report where they go through winnowing down all of
11	the scenarios into the subset that they're really
12	going to look at. Okay, I guess I understand.
13	Thanks.
14	MR. STUTZKE: Okay, slide 75. We went
15	through every license renewal submittal up to
16	February of this year and looked at all of the
17	SAMAs.
18	And this is a breakdown by plant type of
19	which SAMAs had considered filtered containment
20	venting before, and if they had to what type of
21	analysis was done, so forth and so on.
22	So, if you look at the 23 BWR Mark I's
23	in 5 of the submittals the filtered vent doesn't
24	show up. It's simply not one of the SAMA options
25	that was evaluated. But it was evaluated in 16 of
I	I

(202) 234-4433

	228
1	the other ones, 11 through a screening analysis and
2	5 through a more detailed analysis.
3	When we say "screening analysis," the
4	way that that's done in SAMA is they take the
5	baseline risk of the plant and they monetize it.
6	And then one assumes that the fix, the plant
7	modification being considered completely eliminates
8	the risk. So the risk is now zero. If the cost of
9	the implementation is bigger than that maximum
10	possible monetized risk they screen it out.
11	Something like that. And so that's where the
12	MEMBER STETKAR: Monetized risk at
13	\$1,000 per person-rem?
14	MR. STUTZKE: Two thousand.
15	MEMBER STETKAR: Two thousand.
16	MR. STUTZKE: Two thousand. Yes, and
17	there's an agreed-upon NEI methodology on how these
18	SAMAs are conducted like this.
19	MEMBER CORRADINI: So could you just
20	repeat that again please for the screening?
21	MR. STUTZKE: Okay, you take the total
22	risk. So in this case we're talking about offsite
23	risk, population dose risk, the offsite consequences
24	that are computed from MACCS by the licensees
25	through a level 2 type of PRA-type process, plus the
ļ	I

(202) 234-4433

	229
1	onsite risk which would include doses to the
2	workers, the onsite cleanup cost. In this case, in
3	SAMAs they include replacement power cost, et
4	cetera. And all of those risks are then monetized.
5	So they come out with some sort of a dollar amount.
6	MEMBER CORRADINI: And they compare it
7	to?
8	MR. STUTZKE: They compare it the cost
9	of implementing a proposed
10	MEMBER SHACK: The maximum possible
11	benefit you could get from anything.
12	MR. STUTZKE: And so the point here is
13	when you get this sort of screening analysis you
14	don't get any detail about filtered venting and what
15	they assumed in the analysis like this. So I had a
16	look
17	MEMBER CORRADINI: Just out of curiosity
18	since they did a comparison of dollars to dollars,
19	what were they using for the cost of the filtered
20	venting?
21	MR. STUTZKE: Well, it varies. Some of
22	them are at \$1 million. There's a lot of them at \$6
23	and then there's some at \$10.
24	MEMBER CORRADINI: So all lower than
25	what staff has been suggesting is the delivered
ļ	

(202) 234-4433

	230
1	MR. STUTZKE: You know, as you would
2	suspect. You know, there's basically one quote that
3	one utility made and everybody else copied it.
4	(Laughter)
5	MR. STUTZKE: Well, you know, in
6	fairness they do 100 SAMAs. There's 200 different
7	mods and they're looking for some efficient way to
8	zap through the analysis like that. But I drilled
9	down into some of the Mark I containments that
10	actually provided.
11	This is the sum total of information on
12	how those detailed analyses were actually done.
13	Those benefits are not times 1 million or anything,
14	that's just the actual benefit. Like this and
15	you can see what they're doing is to adjust the
16	accident progression source terms just by a factor
17	of 2.
18	And it raises all sorts of questions
19	because it's not clear that the venting to prevent
20	overpressurization failure is part of the analysis
21	here. It's not what we're really talking about
22	here. So, I'm left with somewhat of a suspicious
23	mind here that these things aren't maybe as
24	illuminative as I thought they would be
25	illuminating, illustrative as I thought they would
I	I

(202) 234-4433

	231
1	be.
2	Okay, so while I was compiling tables
3	don't worry, I'll start doing some analysis in a few
4	minutes. There's been this debate or discussion
5	within the staff on what the appropriate core damage
6	frequency is to use in this type of an analysis
7	because the severe accident event starts with the
8	occurrence, the assumption that core damage exists.
9	And so if one wants to calculate delta risk, those
10	delta risks are directly proportional to the CDF.
11	It's pretty simple. So, from NUREG-1150 a cdf
12	MEMBER CORRADINI: Not in the real world
13	though, right?
14	MR. STUTZKE: No.
15	MEMBER CORRADINI: Okay, yes.
16	MR. STUTZKE: From 1150 the Peach Bottom
17	results using the Livermore seismic hazard curves
18	sums up about 10 to the -4. The staff has three
19	Mark I SPAR internal and external event models
20	combined. Those are patterned after licensees'
21	IPEs, we just adapted them over.
22	And you can see they're in the low 10 to
23	the -5 ranges like this. The range of core damage
24	frequencies from SAMA analyses from 2 to 6 times 10
25	to the -5. I should point out most SAMA analyses
Į	

(202) 234-4433

	232
1	only do internal events.
2	MEMBER BLEY: How about this SPAR oh,
3	the SPAR has the external vents in it.
4	MR. STUTZKE: There's a few. These are
5	the ones that I have that are relevant.
6	MEMBER BLEY: The external?
7	MR. STUTZKE: Yes, these are the real
8	external event, full set of fault trees, event
9	trees.
10	MEMBER STETKAR: Without seismic?
11	MR. STUTZKE: No, these are with
12	seismic.
13	MEMBER STETKAR: Those have seismic.
14	MR. STUTZKE: Yes.
15	MEMBER STETKAR: Oh, good.
16	MR. STUTZKE: But what I was saying was
17	most of the SAMA analyses don't even do external
18	events. What they do is put on an external event
19	multiplier onto the benefit and to scale it up by a
20	factor of 2 or 3 or 2.7 I've seen like this and it's
21	not helpful because I don't really know what the CDF
22	is coming out of it.
23	Then last and not least is what we've
24	termed the global statistical value. That's five
25	events, TMI, Chernobyl, three units at Fukushima
	I

(202) 234-4433

	233
1	divided by 15,000 reactor years. Gives you a number
2	of 3 to the -4.
3	MEMBER CORRADINI: And that's close to
4	the upper bound, the report upper bound in WASH-
5	1400.
6	MR. STUTZKE: Right. Now, there is a
7	staff working group looking at this separately so
8	I'll set that aside.
9	Onto slide 78. I started to compile
10	some offsite economic consequences. And I may get
11	to your question of how do you know these numbers
12	are any good, but MACCS is computing out of here.
13	The first place is in the reg analysis
14	handbook. It says if you don't have information or
15	opportunity to do a consequence study assume \$3
16	billion for core damage and offsite consequences.
17	MEMBER CORRADINI: In 1990.
18	MR. STUTZKE: In 1990 dollars.
19	MEMBER CORRADINI: Wow.
20	MR. STUTZKE: Those actually came from
21	NUREG-1150. Those are actually out of NUREG-1150.
22	It's a little follow-on study that was done.
23	For the SAMA analyses, you know, they
24	rangte between six-tenths of \$1 billion up to \$30
25	billion like that. Peach Bottom is up at \$10
I	I

(202) 234-4433

	234
1	billion.
2	MEMBER BLEY: And those are whatever
3	dollars were used when they were calculated.
4	MR. STUTZKE: At the time of the SAMA.
5	So those are like 2005 up to the present time, stuff
6	like this like that.
7	Looking on the internet I discovered a
8	report that was issued by the Japan Center for
9	Economic Research that was issued last year. And
10	they estimated the total cost of the accident of
11	\$250 billion.
12	When you look at what they did they had
13	\$190 billion to clean up and replace the unit in
14	that. In our regulatory analysis that's a separate
15	thing, that's not part of the offsite cost. So I
16	subtracted it out. So you get this \$62 billion for
17	the three units.
18	And I tried to look into the assumptions
19	that were driving that and they said well, we'll
20	just assume all land within 20 kilometers is
21	condemned and we'll buy it. No cleanup, no
22	interdiction, it's gone. And we'll pay people for
23	10 years that lived in that region. So it gives you
24	a value.
25	Last and not least is the current cost
	1

(202) 234-4433

	235
1	of the oil spill from the Deepwater Horizon
2	accident. It's roughly \$23 billion they paid out so
3	far in compensation. And I realize I threw that one
4	on there because it's an available number. I
5	actually learned it watching football the other
6	weekend. And the analogies are slippery pardon
7	the pun with the oil spill because, you know, an
8	oil spill is not like a reactor accident. But it's
9	some large industrial accident so it gives you some
10	ideas.
11	MR. MONNINGER: And maybe a marker for
12	what we've done for this would be base case 2 where
13	in today's dollars we calculated \$1.9 billion.
14	MR. STUTZKE: That's correct.
15	MR. MONNINGER: Is our base case. And
16	then we will then look at options.
17	MEMBER CORRADINI: Is there anything in
18	the chemical industry? I'm thinking of the
19	explosion in the plant in northern Italy that
20	essentially the land had to be I don't think
21	anybody's still living on it. I'm trying to think
22	of the name of the accident. It was in the
23	Dolomites. Do you know what I'm thinking of? It
24	was an explosion of a reactor essentially going out
25	of control and exploding. Loss of about 100 people.
ļ	I

(202) 234-4433

	236
1	MEMBER SIEBER: That was in India?
2	MEMBER CORRADINI: No, I'm not talking
3	Bhopal. I want to get to a country that worries
4	like we worry about it. So northern Italy. It was
5	about in the late nineteen seventies, `77, `78. I'm
6	pretty sure it was release of PCBs for dioxins.
7	MR. STUTZKE: I haven't looked at it in
8	detail. The thing about Bhopal with the cyanide
9	release is it all chemically combined and it went
10	away. Cleaned itself up. So you raise a good
11	point, I might be interested to collect some sort of
12	comparable industrial accidents that leave the same
13	lingering, long-term problem. Give us a benchmark.
14	Okay, slide 79. So, the decision was
15	made we're going to focus on BWR Mark I plants.
16	That's
17	MEMBER CORRADINI: Seveso. S-E-V-E-S-O.
18	MEMBER BLEY: Thanks. That's been a few
19	years back.
20	MEMBER CORRADINI: But lost a number of
21	people in the general public and the land was
22	contaminated for a wide region.
23	MEMBER STETKAR: Marty, on the previous
24	slide, just a quick one. They're really interesting
25	dollar comparisons. Does it give you much pause
I	

(202) 234-4433

	237
1	with the guidance that's in NUREG whatever the heck
2	it is, BR-0184 regarding valuations that are placed
3	on these things?
4	MR. STUTZKE: I'm not going to bite on
5	that question.
6	(Laughter)
7	MEMBER STETKAR: It was worth a shot.
8	MR. STUTZKE: No, I mean it's true.
9	First of all, these analyses that's in the handbook
10	are older. I mean they were done right after 1150
11	was done. And you know the plants are different
12	that way and of course the population, the
13	demographics have changed, et cetera, et cetera.
14	MEMBER STETKAR: Okay. Sorry. It was
15	worth a shot.
16	MR. STUTZKE: Okay, so as far as coming
17	up with a technical approach obviously if I were
18	king we would have banks of level 3 PRAs sitting up
19	in the Office of Research that I could go diddle
20	with and things like that. That's not going to
21	happen like that. We do have some simplified level
22	2 SPAR models but those are more proof of concept
23	that the Sapphire Software platform actually will
24	link things together like that.
25	MEMBER SIEBER: And they're just
ļ	I

(202) 234-4433

	238
1	internal events too, right?
2	MR. STUTZKE: Those are internal events.
3	And so there is some effort to expand the level 2's
4	into level 3's and into this to throw in the
5	external events as well. It's the ICM model,
6	integrated capabilities model. But those are still
7	in the future so I don't have, you know, fully
8	operational quantum loaded PRA so to speak to play
9	with here. So bear that in mind.
10	The other thing was that as the analyses
11	were progressing I kept getting different
12	sensitivity runs from the MACCS people and the
13	MELCOR people. We did this run, you know, no, we
14	did this one.
15	Okay, so what I did was I tried to
16	organize them into what I'll call candidate
17	modifications classified according to how does the
18	vent get open. Is it manual or is it passive
19	through some sort of a rupture disk because that
20	drives the frequency of the sequences.
21	The other two, where it's located. Is
22	it installed on the wetwell or on the drywell and is
23	it filtered or is it unfiltered. That affects the
24	consequence estimates. So I ended up with eight
25	modifications to the third power and ran those into
Į	

(202) 234-4433

	239
1	the PRA. And so what you'll actually see are the
2	delta risks with respect to what I call mod zero
3	which is the base case for each one of those. So
4	you can see, you know, the change in risk if I have
5	a passive drywell event without a filter. It's in
6	the pages.
7	The other thing that's necessary within
8	the event tree structure is to consider the fact
9	liner melt-through may be prevented by installation
10	of portable pumps or something like this. And we
11	wanted to credit that.
12	I think one of the things that bears
13	repeating is when we started the analysis it was
14	believed, and if you look at some of the old PRA
15	results we break down containment failure modes.
16	Oh, it's overpressure or it's a liner failure. And
17	we don't really talk about the fact you can have
18	both. It's an overpressure, oh, and then the liner
19	failed some hours later. We tend as PRA analysts to
20	group them and of course we all think mutually
21	exclusive and it ain't so in some cases. You can
22	have multiple things like this. And so you'll see
23	when I get into the structure I've tried to be very
24	clear about what I thought was going on here.
25	Some of the assumptions and the ground
l	1

(202) 234-4433

	240
1	rules here is we're using the existing guidance so
2	we're looking at a per-reactor basis. We're not
3	looking at multi-unit accidents yet.
4	We're not looking at spent fuel pool
5	accidents although my office director really wanted
6	me to go after that. The idea is well, without the
7	vent then you get Fukushima and maybe the spent fuel
8	pool gets damaged and there's this release. And I'm
9	going I don't know how to estimate the risk. There
10	are projects going on to be able to do that. So
11	it's set aside.
12	The other thing is that if you look at
13	the suite of MELCOR and MACCS runs and on a
14	personal note, I mean this has been a very
15	collaborative agreement between the Division of Risk
16	Analysis and DSA over in Research. We've worked
17	very closely. But unfortunately they can't run all
18	the sequences I can dream up.
19	It's like, well, what about LOCA
20	sequences or ATWS sequences, you know. Let's get to
21	some of the really sexy ones because all you guys
22	are doing are blowing the plant down and watching,
23	you know. Kind of boring. So everything I have is
24	station blackout sequences and from that I have to
25	infer well, does it apply to all types of sequences
I	I

(202) 234-4433

	241
1	that I'm interested in.
2	MEMBER STETKAR: Marty, do you have a
3	sense of other high-pressure sequences, how well
4	station blackout does as a kind of/sort of surrogate
5	for those?
6	MR. STUTZKE: I really don't.
7	MEMBER STETKAR: You don't? Okay. I
8	was trying to think about that and I'm not sure
9	either.
10	MR. STUTZKE: I mean, one could argue,
11	you know, if I had a LOCA that voids the vessel then
12	maybe the sequence progression is roughly the same
13	as when I voided it with station blackout. That may
14	be true with respect to the core but probably not
15	with the containment conditions.
16	MEMBER STETKAR: Yes, that's what I'm
17	starting to think.
18	MEMBER CORRADINI: Is a loss of heat
19	sink considered a subset of a station blackout?
20	MR. STUTZKE: I think it would be, yes,
21	a subset of that. It's more benign. It's like I
22	say, this starts with the teapot full and it just
23	boils it down.
24	MEMBER RAY: Well, wait a minute, Mike.
25	Suppose you lost the heat sink due to a dam failure?
Į	1

(202) 234-4433

	242
1	MEMBER CORRADINI: I simply asked
2	MEMBER RAY: I understand. I understand
3	why you asked the question but I'm just trying to
4	say it doesn't seem to me like it's a subset of SBO.
5	MEMBER CORRADINI: But wouldn't it
6	progress in terms of the accident similar to it?
7	It's essentially an outside, it's an outside-in
8	event but you still would progress that you're all
9	bottled up.
10	MEMBER RAY: Very possibly but if the
11	dam failure was very likely and the SBO was very
12	unlikely it seems like the two things are unrelated.
13	MR. STUTZKE: Okay, we had the most
14	MELCOR and MACCS cases for the 16-hour RCIC time.
15	Yes. And so you know, the presumption is well, the
16	thing's going to run 16 hours. I used the smallest
17	decontamination factors when filtering was
18	considered, generally 10. Standard PRA assumption
19	about no credit for recovering offsite power if it's
20	an external event.
21	The last bullet turned out to be rather
22	important in the analysis, and it's the notion that
23	as John had said before, venting a containment is
24	only part of the fix. You need to cool the debris
25	bed.
	1

(202) 234-4433

	243
1	And the assumption that I made in here
2	was, well, if you failed open a vent so now you
3	we always talked about it as you're going to lift
4	the drywell head. Well, you might fail other parts
5	of the containment. And the point is that the
6	reactor building or the aux building would be
7	contaminated and it's certainly going to be full of
8	steam and things like that. And so the assumption I
9	made was once that happens if they don't have the
10	portable pump and running it's not going to happen.
11	And if you look at the timing of the
12	MELCOR sequences for all of these you're seeing core
13	damage, the onset of core damage is about 24 hours.
14	And the challenge to the containment is roughly at
15	25 hours. So with 1 hour after core damage you
16	begin to get this 80 pounds inside the drywell. So
17	it basically says then if the portable pump doesn't
18	get up and running in that 1 hour after core damage
19	it's not going to happen. And you'll see how that's
20	reflected in the tree logic.
21	So without further ado we came up with a
22	simple release tree. Let me walk you through it for
23	those that are not PRA analysts. Generally the up-
24	branches mean yes or success, the down-branches mean
25	no or failure. The tree progresses through a
I	1

(202) 234-4433

(202) 234-4433

244 1 partitioning process. So we take the total core damage frequency and we divide it up. Some fraction 2 3 of it's due to internal events, loss of offsite 4 power, loss of grid, the LOCAs, things like this. 5 Some portion is due to external events, seismic, 6 tornados. Floods. From that then we partition them into 7 8 sequence types. And the characteristic, the 9 defining characteristic here is one is what's going 10 on with offsite power because offsite power could be recovered at some time. And the other thing is what 11 -- how much available time does the operator have to 12 Some of these sequences like ATWS, the 13 respond. 14 operator would have very little time to get a manual In other cases he's got time to do it. 15 vent open. 16 So I tried to partition the sequences that way. 17 Then funny enough the "other" category means it's not station blackout, it's not an 18 19 interfacing systems LOCA and it's not one of these faster transients. It's all other. Same sort of 20 21 partition exists for the external events except

we've already assumed that offsite power is gone so

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Then you see the venting, you vent in

The key assumption here is venting is always

it collapses down to simply bypass or not bypass.

(202) 234-4433

there.

22

23

24

25

	245
1	required, every sequence. The only time it's not
2	required is if we're talking about bypass sequences,
3	interfacing LOCAs or the containment. External
4	event bypass means the containment is actually
5	opened up like some seismic event has ripped the
6	penetration loose from the steam line.
7	MEMBER STETKAR: How do you handle the
8	fraction of containment isolation failures?
9	MR. STUTZKE: Those would be in the
10	bypass. But you'll see it's
11	MEMBER STETKAR: Okay. I just wanted to
12	make okay.
13	MR. STUTZKE: They're intended to be in
14	there and I understand.
15	MEMBER STETKAR: I mean, you know, a
16	reasonable fraction of scenarios are containment
17	isolation failure.
18	MR. STUTZKE: Right. Okay, then finally
19	given that venting succeeds we can consider the use
20	of the portable pump to provide either injection to
21	core spray or into drywell spray. If venting has
22	failed you see it goes directly to the end state.
23	The only subtlety here is if it is
24	station blackout and venting has failed there's
25	still a possibility to get water into the drywell.
ļ	I

(202) 234-4433

	246
1	If offsite power is recovered one could use
2	condensate, high-pressure servicewater, things like
3	this. So I included that in there.
4	Okay, so the 16 sequences then get
5	classified as to what I'll call the status of the
6	containment or the end state. And they're grouped
7	into four bins, either the containment is vented, or
8	it's suffered a liner melt-through, or it's suffered
9	an overpressure failure, or it's suffered an
10	overpressure failure and then a liner melt-through.
11	Now, quantification. Right now we
12	accept the values as shown in this table, and
13	there's some rationale behind them. The current
14	core damage frequency is at 2E-5 which is out of the
15	SPAR external event models. As I said the staff is
16	debating this now. We did a sensitivity study at 3
17	times 10 to the -4 and I think Karen will show you
18	some of those results.
19	The breakdowns, split fractions are
20	coming out of the SPAR models, whatever they are.
21	The one that I don't really have a good feel for is
22	this breakdown of external events that you bypass
23	the containment. NUREG-1150, that was one of the
24	major failure mechanisms where the assumption was
25	that the transient knocked the reactor vessel off

(202) 234-4433

	247
1	its pedestal and it pulled all the steam pipings
2	through and made this horrendous hole. And we no
3	longer that's as likely as it was.
4	Okay. As far as the treatment of this I
5	should the probability that the vent actually
6	fails. One of the things that I did rather cleverly
7	as a parenthetical comment is that I drew a single
8	event tree and designed it so that I could get all
9	of the cases by changing one number in the tree.
10	And that number is the probability the venting
11	fails. Everything else works.
12	So, for this mod zero, mod zero is the
13	current base case. You just set the probability a
14	venting fails to 1 and it's no credit for all it and
15	the tree works out. For these others who are slower
16	scenarios, station blackouts, 10 to the -3 comes out
17	of the SPAR-H manual. I bumped it up a little bit
18	for the faster transients to half. For the ones
19	where venting is done through the rupture disk, the
20	passive failure, I set it at 1 in 1,000. It seems a
21	good mechanical reliability number. We have good
22	offsite power recovery data for internal events from
23	NUREG/CR-6890.
24	And the probability that the portable
25	pump as installed is driven by SPAR-H. That one
I	I

(202) 234-4433

	248
1	actually is very consistent. We had Idaho Labs a
2	number of years ago do a study of the B.5.b
3	mitigative measures and these are numbers that they
4	derived.
5	MEMBER STETKAR: That includes the human
6	
7	MR. STUTZKE: It's all human. The
8	hardware's not in there.
9	MEMBER STETKAR: A little better than
10	that.
11	MR. STUTZKE: Yes. And it's almost
12	implementation error but I won't even try to break
13	it into diagnostic versus something like that. But
14	yes, this is to account for the guys running around
15	the plant schlepping the pump where it needs to go,
16	running the hose where it needs to be installed,
17	these sorts of things. Okay.
18	Now, for the mystery table which makes
19	sense to me, but
20	(Laughter)
21	MEMBER CORRADINI: So did you just skip
22	it or what?
23	MR. STUTZKE: It would be faster if you
24	just don't ask any questions.
25	(Laughter)
ļ	I

	249
1	MR. STUTZKE: Okay, going across the top
2	up here it says "Release Sequence End States" and
3	hopefully you will recognize vented liner melt-
4	through, overpressure or overpressure and then liner
5	melt-through is that identifier. Those match up to
6	the end states on the event tree, okay?
7	And because you are having as much
8	problem as I do, you know, the MACCS people, the
9	MELCOR people, they know that case 7B non-filtered
10	means this and I don't know what that means. So I
11	had to write my little pneumonics. Oh, that means
12	it's vented. That means it was stuck on the
13	wetwell. Okay? And that's what these designators
14	are for.
15	So up here at the top when I say vented
16	it means the containment is vented and the drywell
17	is wet meaning there's no chance of liner melt-
18	through. Or it's vented but the drywell is dry so
19	there's no overpressure failure but liner melt-
20	through could occur. And so forth. And the
21	sequence numbers here that match each one of those
22	end states are summarized so you can sort that out.
23	The more difficult problem now is coming
24	down on it I have the description of the plant
25	modifications in terms of the vent location and the
ļ	I

(202) 234-4433

	250
1	filter. Remember what distinguishes a modification
2	is the location, filtering or non-filtering, and
3	actuation method, passive or manual.
4	As far as the consequences go I can lump
5	manual and passive together because that only
6	affects the frequency. So the way to read this
7	table is if I want to consider modification 1, well,
8	what is that modification? That is a wetwell vent
9	that has no filter but is manually actuated. That's
10	the definition of mod 1. And I wanted to know what
11	MELCOR case, MACCS case I should use to worry about
12	overpressure failure. And I would read over and say
13	oh, that's case 6.
14	So, the consequences then change
15	depending on which modification I have in the tree
16	which accomplishes the other thing. And so I do
17	this through a lookup function.
18	Another example is if I wanted to have
19	mod number 6. So that's a wetwell location, it's
20	filtered and it's passively actuated. And I wanted
21	to know what is the consequence of the vented
22	sequence I would use either case 7 or case 15.
23	Seven is the case of course spray, 15 is the case of
24	drywell spray. And in both cases it's the filtered
25	case. So that's the magic link between all of the
I	I

(202) 234-4433

	251
1	MELCOR and MACCS runs that you've heard about and
2	the end states of the event tree.
3	Okay, results. First is contributions
4	to different types of containment failure modes.
5	Again, these are only affected by the probability of
6	actuation. So whether it's manually vented or
7	passively vented, doesn't matter what the
8	consequence is because we're dealing with frequency
9	contributions. And so you'll see the various
10	contributions lined up like that.
11	That total number is I'll call it,
12	it's analogous to conditional containment failure
13	probability. And the reason why I'll say that it's
14	analogous is, you know, is containment venting
15	actually a containment failure? Well, no. You've
16	tried to preserve the containment's function but in
17	fact the containment is not tight.
18	And so to avoid this word play with you,
19	if I said it was CCFP you'd go oh, it's a failure,
20	and I knew I couldn't win that argument. So I'll
21	call it analogous with that understanding.
22	Obviously if you had it in the containment venting
23	it goes to 100 percent because it has to go to one
24	of those categories. So that's the information.
25	But it's a notable reduction.
ļ	1

(202) 234-4433

252 1 What actually happens is that as you add the severe accident vent on here you move from one 2 3 end state to another. So you begin to avoid the 4 overpressure failures followed by liner melt-They just become pure liner melt-5 throughs. throughs. 6 There's no overpressure failure so they 7 shut. MEMBER CORRADINI: You talked about this 8 9 and I quess I now don't remember. How do I have the 10 overpressurization liner melt-through? Because later on I dry out the drywell and then it proceeds 11 onto liner melt-through? 12 Right, right. 13 MR. STUTZKE: 14 MEMBER CORRADINI: Okay. And then the reason that that's so dramatically less in a passive 15 16 is because there's some sort of failure to manually 17 open it when you wanted to? MR. STUTZKE: Right, and the passive is 18 19 very reliable. 20 MEMBER CORRADINI: Okay. MR. STUTZKE: Rupture disk. 21 Okay. Slide 86 starts the baseline risk results. 22 These are the point estimate values. We'll talk about the 23 24 uncertainty in a little bit. And I've tried to put this header on the top so you can easily distinguish 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	253
1	on the lefthand side are all the unfiltered cases
2	and the right-hand side are the filtered cases, this
3	location of a vent, wetwell versus drywell, and then
4	where it's manual or passive.
5	And these are the changes, the
6	reductions in risk with respect to mod 1. So green
7	means it's a reduction, red means it was actually a
8	risk increase. So the way to read this table would
9	say if I'm interested in a filtered wetwell vent
10	that has a rupture disk, it's passively actuated,
11	that's mod 6 and the point estimate, delta person-
12	rem per reactor year is 8.2. That number then gets
13	input to the reg analysis, monetized by \$2,000 a
14	person-rem, discounted over time, et cetera, and
15	Aaron Szabo will explain that.
16	MR. MONNINGER: So what's important is,
17	for example, he talked about mod 6 there. We're
18	comparing that back to mod zero or the base case.
19	And for our base case the failure was liner melt-
20	through and overpressurization. It didn't consider
21	what we talked about before, the potential for
22	drywell venting or wetwell venting.
23	So we're comparing all eight of these
24	cases to no venting capability at the site. Because
25	our first potential option would be to beef it up to
I	I

(202) 234-4433

	254
1	the severe accident capable and the next one would
2	be up to the filter. But we're not comparing these
3	cases against the potential for drywell venting.
4	MEMBER ARMIJO: So this overstates the
5	benefit because the base case has been defined very
6	conservatively.
7	MR. MONNINGER: The base case is
8	actually very minimal releases. The base case was -
9	_
10	MEMBER CORRADINI: Oh, the base case is
11	really containment failure.
12	MR. STUTZKE: It'll be a combination of
13	overpressure failure and overpressure followed by
14	liner melt-through failures. The base case says, as
15	John said, simply no venting is considered post
16	accident. So the phenomena evolves the way that
17	it's going to evolve and there's consequences to
18	that.
19	MR. MONNINGER: So it's way back there.
20	It's case 2 on page 41 and 43.
21	MR. STUTZKE: Like the MELCOR and MACCS
22	folks I actually have a writeup and you can see the
23	raw numbers for each modification. What I've shown
24	you here are the deltas relative to the mod zero.
25	The red bars for mod 3 and mod 4 should
Į	I

(202) 234-4433

	255
1	not surprise you. That says I have an unfiltered
2	hole in the drywell. We all know that's bad.
3	(Laughter)
4	MR. STUTZKE: That's the reason why we
5	have containment.
6	MEMBER SIEBER: And why you have them in
7	red.
8	MR. STUTZKE: The next slide on 87 is
9	the change or the reduction in offsite cost risk.
10	And you see similar sorts of trends like this. You
11	can see that installing a severe accident vent on
12	the wetwell is better than on the drywell because of
13	the scrubbing effect a little bit like this.
14	Obviously filtering is beneficial and passive
15	actuation is better than manual as far as the
16	reliability goes.
17	MEMBER ARMIJO: Not a whole heck of a
18	lot.
19	MR. STUTZKE: Surprisingly not a whole
20	heck of a lot. And considering the uncertainties.
21	MEMBER POWERS: Those numbers are almost
22	identical.
23	MR. MONNINGER: But then it's we only
24	gave it a decontamination factor of 10 though for
25	the filter.
I	I

(202) 234-4433

	256
1	MEMBER POWERS: Probably all it
2	deserves.
3	MEMBER STETKAR: And this is only \$2,000
4	per person-rem.
5	MR. STUTZKE: Actually these numbers
6	don't defend on that monetization constant. These
7	are directly out of the MACCS output and so they
8	know the dollars
9	MEMBER CORRADINI: So this is what MACCS
10	is computing with all its
11	MR. STUTZKE: All of its horsepower and
12	assumptions, yes. The \$2,000 would be on the
13	previous slide on 86, a rough monetization.
14	Okay, we also have reductions in worker
15	dose risk and onsite cost risk. And the assumption
16	there on the consequences, those are not coming from
17	MACCS because MACCS can't calculate onsite
18	consequences. So in the regulatory analysis we used
19	a value that said well, if it is vented and it's
20	unfiltered the dose rate will be this. If it's
21	vented but it is filtered the dose rate will be
22	somewhat lower. And if it's a containment failure
23	the dose rate to the workers is some really big
24	number.
25	Same thing with the cost, cleanup cost.
	I

(202) 234-4433

	257
1	You see on slide 89. That's why you don't see a
2	distinction between wetwell versus drywell in these
3	slides. The cost is the same.
4	What is interesting here is that some of
5	the earlier mods, mods 1 through 4, it's unfiltered
6	and yet there is a benefit to the worker. That's
7	because you've discharged it to the environment and
8	gotten it away from the worker. So it makes sense.
9	Last and not least on slide 90, remember
10	I talked to you before about the reduction in
11	conditional contaminated land area. And these are
12	the results.
13	So one way the way to interpret this
14	is let's consider let's pick a different mod now,
15	being mod number 2. So it's an unfiltered severe
16	accident vent attached to the wetwell passively
17	actuated. 224.8 fewer square kilometers that would
18	be contaminated above 15 microcuries. That's the
19	reduction in the land area that's contaminated above
20	15 microcuries per square meter.
21	And as you would expect these pattern-
22	wise match the population dose risk and they match
23	the offsite consequence risk. You see the red bars
24	are in the same place. I won't argue that they're
25	the same heights, but you see the same general
I	1

(202) 234-4433

	258
1	trend.
2	Okay. As part of the regulatory
3	analysis in addition to the point estimates you see
4	one needs some estimate of the high and the low
5	values. And thinking about it a little more and
6	thinking about the complexity of the event tree
7	structure it wasn't clear to me how to generate the
8	high value. Because if I say well, I increased the
9	probability that the vent fails to actuate, the risk
10	goes down a certain pathway. So it just seemed
11	easier to do some sort of an approximate Monte Carlo
12	approach to get a real feel for how this thing was
13	behaving like that.
14	This is under the type of analysis that
15	says the purpose of computing is insight, not
16	numbers. And so I realize it's not a real formal
17	analysis like that but it's trying to get a feel for
18	where the uncertainty slides. So I put
19	distributions not only on the numbers that affect
20	the sequence frequencies but also the consequences.
21	And we'll talk a little bit about how
22	that was done before I show you the results. CDF,
23	that was actually the easy one. It's log normal,
24	error factor of 10. People would debate whether
25	it's log normal or it's gamma but it's not
ļ	1

(202) 234-4433

(202) 234-4433

	259
1	unreasonable.
2	For all of the various split fractions
3	they're beta. The actual method is called
4	constrained non-informative power distributions.
5	That's why all of the parameters are set to one-half
6	and the other ones come out. I preserve the mean
7	value.
8	The technical insight is that when you
9	get to split fractions that have more than 2 and the
10	breakdown would be the sequence types for internal
11	hazards have four different categories. How do you
12	model that? Distribution. Generalized beta
13	distribution. So technically that was fun for me,
14	how to generate dose in Monte Carlo trial. Turns
15	out to be trivial, something like that.
16	Flipping over to the next slide, mod
17	zero were the event assumed to fail with probability
18	l's, not uncertain at all. The others follow on
19	these distributions.
20	Consequences. How do you put
21	uncertainty on the consequences in this type of a
22	form? Obviously you would want to know the aleatory
23	uncertainty because of the weather variations like
24	this, but there's also epistemic uncertainty
25	floating around like this.
1	

(202) 234-4433

	260
1	Well, the SOARCA team has been working
2	on this and I can tell you, I've read the draft
3	uncertainty report and it is a tour de force of
4	modern uncertainty analysis. If you have insomnia -
5	_
6	(Laughter)
7	MR. STUTZKE: it will fix that. It's
8	actually, it's quite good. I shouldn't joke. I
9	mean, how to break out what's driving the
10	uncertainty in that type of an analysis is very,
11	very impressive and I learned a lot out of it.
12	But, being that way, the easy way to
13	generate the consequences is to assume that they are
14	totally correlated, they're totally dependent. That
15	means if the consequence in case 2 should be higher
16	so should it for all the other consequences, so
17	they're proportional. So I moved them up in lock-
18	step, just scaled them up.
19	And I said well, okay, so that
20	simplifies my computational issue too because it
21	means I only need to generate one random number and
22	I can calculate all the consequences because I'm
23	just scaling everything. And I said well, not
24	knowing any better, must be log normal with error
25	factor of 10. I had read once in IEEE transactions
	1

(202) 234-4433

	261
1	on reliability about 25 years ago it says everything
2	looks log normal until you look.
3	MEMBER POWERS: That's exactly right.
4	MR. STUTZKE: You know?
5	MEMBER POWERS: Log normal fits
6	everything unless you look at it closely.
7	MR. STUTZKE: So I threw it on here and
8	then lo and behold I got the draft on SOARCA
9	uncertainty results. They gave me the 5th and the
10	95th and the median and so I got three points. And
11	I dutifully plotted them up on log normal
12	probability paper and it's almost a straight line.
13	(Laughter)
14	MR. STUTZKE: Like you said, don't look
15	very hard.
16	MEMBER STETKAR: And you were shocked to
17	learn that.
18	MR. STUTZKE: Yes, it turns out the
19	error factor is about 4 for latent cancer fatality.
20	And I'm going well, okay, so my 10 wasn't too far
21	off, and given the crudeness of this analysis. So
22	anyway, that's the spirit in which this is done, to
23	try to get some insight as to how bad how much
24	the numbers could be moving around.
25	So the next sets of viewgraphs show you
Į	1

(202) 234-4433

	262
1	this. In all cases if you look at the ratio of the
2	95th to the mean values it's about three and a half
3	to four, four and a half. It doesn't seem to change
4	from mod to mod, it doesn't change from consequence
5	to consequence. And it doesn't surprise me because
6	what drives the uncertainty here is the uncertainty
7	on the core damage frequency and the uncertainty on
8	the consequence. All of the uncertainty on operator
9	reaction and whether the pump's going to be
10	installed seems to be irrelevant and that's not
11	surprising.
12	MEMBER CORRADINI: It seems to be what?
13	I'm sorry.
14	MR. STUTZKE: It's irrelevant. It's not
15	driving, it's not affecting these numbers.
16	MEMBER CORRADINI: Not dominant.
17	MR. STUTZKE: But you would expect that,
18	so. So we can flip through the last sets of slides.
19	I don't know that there's anything to point out
20	other than you don't see mods 3 and 4 in the
21	uncertainty analysis. After realizing they were not
22	beneficial I just kind of dropped them out of the
23	analysis. There's no reason they couldn't be done.
24	I think maybe to wrap up here, these
25	uncertainty results again, you know, the high and
I	

(202) 234-4433

	263
1	low values needed in the reg analysis will be taken
2	as the 5th and the 95th values out of these types of
3	computations. It's probably a wide enough range to
4	demonstrate what the reg analysis needs to do.
5	If you all would care to comment on this
6	conditional contaminated land area risk metric I
7	would be very interested in that. Whether it's
8	useful. I think it's misleading. I thought about
9	it a great deal before I came up with this thing and
10	it's still not totally satisfying in some aspects.
11	Or not comment formally, drag me out in
12	the hallway.
13	CHAIR SCHULTZ: Comments for Marty on
14	this particular issue or other questions?
15	MEMBER ARMIJO: I have a question. On
16	your slide 90 I'm still trying to make sure I
17	understand. The case in which you have drywell
18	venting either manual or passive but no filtering,
19	there's an increase in the contaminated land area.
20	MR. STUTZKE: Yes.
21	MEMBER ARMIJO: But the base case has no
22	venting at all, no filtering and it fails at
23	containment somehow, somewhere along the line.
24	MR. STUTZKE: Right.
25	MEMBER ARMIJO: How can this be worse?
Į	1

(202) 234-4433

	264
1	MR. STUTZKE: This way you gave it a
2	direct path outside the reactor building. There's
3	no holdup. There's nothing slowing it down in mods
4	3 or 4.
5	MEMBER POWERS: Plus you release when
6	you open up the vent and you do not get the benefit
7	of any agglomeration and deposition in the
8	containment.
9	MEMBER STETKAR: Okay, so you don't have
10	any holdup volumes.
11	MEMBER CORRADINI: And just so I I've
12	got to look back. In mods 3 and 4 I can't
13	remember what slide it is. Mod 3 and 4, there are
14	cases in there where the drywell has core sprays on
15	it? Sorry, but I don't remember now.
16	MR. STUTZKE: You're on slide 84?
17	MEMBER CORRADINI: Right. I'm trying to
18	understand mod 3 and 4 is manual passive in terms of
19	that, but within that cases there's case 214, 12 and
20	13 which means you have a wet I do have a wet
21	drywell.
22	MR. STUTZKE: Yes. That's what the
23	upper rows are for because I couldn't remember them
24	either.
25	MEMBER CORRADINI: Okay. I do have a
	I

(202) 234-4433

	265
1	wet drywell but none of those are core sprays.
2	MR. STUTZKE: Well, if it says wet
3	drywell that means in your core spray or drywell
4	spray is on.
5	MEMBER CORRADINI: Okay. I'm sorry, I'm
6	sorry. I'm sorry.
7	MEMBER BLEY: And we always have RCIC
8	working?
9	MR. STUTZKE: Up to 16 hours until it
10	turns itself off.
11	MEMBER BLEY: Always works. It never
12	fails.
13	MR. STUTZKE: No, there's no RCIC fails
14	on demand.
15	MEMBER BLEY: Or over time.
16	MR. STUTZKE: I hear you. That may be,
17	you know, it goes back to that assumption.
18	Everything looks like an SBO until you look.
19	MEMBER STETKAR: Well, but if you looked
20	at one of your earliest slides 83 percent of the
21	internal event scenarios don't look like an SBO.
22	MEMBER CORRADINI: But that's not what
23	he's modeling. He's modeling the 12 percent.
24	MEMBER STETKAR: I understand that.
25	That's what we're saying.
I	I

```
(202) 234-4433
```

	266
1	MR. STUTZKE: Well, the 83 percent that
2	are not SBOs, the frequency is like it's what it is,
3	but the consequence is assumed to be just like an
4	SBO. Because we don't have MELCOR MACCS runs for
5	those non-SBO types of scenarios.
6	MEMBER STETKAR: But I mean, part of
7	that 83 percent is things like loss to feedwater and
8	RCIC fails to start.
9	MR. STUTZKE: All of these things.
10	MEMBER STETKAR: Which are high-pressure
11	melts.
12	CHAIR SCHULTZ: Other questions?
13	MEMBER BLEY: I have to study this
14	stuff.
15	MEMBER SKILLMAN: You asked about our
16	reaction to your contaminated land area.
17	MR. STUTZKE: Yes.
18	MEMBER SKILLMAN: I think it starts the
19	conversation. I'm not sure that the metric gives
20	exactly what it needs to be but I think it gets the
21	conversation going. So I think it's constructive,
22	it's useful.
23	MR. STUTZKE: I appreciate that because
24	there's so many different metrics MACCS2 could
25	actually produce. You know, they can talk about the
I	I

(202) 234-4433

	267
1	number of people that are evacuated, they can talk
2	about the amount of land that is interdicted, the
3	amount of land that is condemned. And the
4	distinction being that MACCS2 is using a return
5	criteria which is expressed in terms of dose. This
6	is contamination per unit area which in my mind is a
7	different beast, it's a different animal.
8	MEMBER BLEY: I'm having a little
9	trouble with one thing. I'm trying to align your
10	mods with the cases. Mods 3 and 4 with the vented
11	drywell always look bad. But in some of those cases
12	you'd have drywell spray, right? Why don't we see
13	something that lets us between 3 and 4 when do we
14	have drywell spray? When we look at your results
15	with the red bars on them we just see 3 and 4 bad
16	and there's no distinguishing between those.
17	MR. STUTZKE: Yes. The question is
18	which sequences does it go to.
19	MEMBER BLEY: Yes.
20	MR. STUTZKE: And
21	MEMBER CORRADINI: Because you have
22	just so I say it, this is what I was confused about.
23	You have four sequences folded in, into any one of
24	the mods.
25	MEMBER BLEY: Yes. And they're not
I	I

(202) 234-4433

	268
1	equally
2	MEMBER CORRADINI: Or not necessarily
3	four. You could have four or five.
4	MR. STUTZKE: Yes, the event tree
5	sequences apply to all mods, all 16 sequences
6	applies to every mod. And what you're changing is
7	the frequency, the proportion that goes there and
8	then the consequence that you multiply it towards.
9	MEMBER BLEY: So I can't see what I'm
10	looking for because they're
11	MR. STUTZKE: I haven't given you the
12	level of detail
13	MEMBER BLEY: probability weighted.
14	MR. STUTZKE: Yes.
15	MEMBER BLEY: Frequency weighted.
16	MR. STUTZKE: Right.
17	MEMBER BLEY: Yes.
18	MR. STUTZKE: In other words
19	MEMBER BLEY: But some of those things
20	would make a big difference. I would think they
21	would make a big difference.
22	MR. STUTZKE: See, in other words if I
23	go to wetwell venting or excuse me, drywell
24	venting, that's the issue. Mods 3 and 4. Can we
25	flip back to slide 81 to look at the actual tree

(202) 234-4433

	269
1	structure?
2	MEMBER CORRADINI: But the way I
3	interpret your table is there are four sequences
4	that are within those two mods. Or is that an
5	incorrect interpretation?
6	MR. STUTZKE: I think that's an
7	incorrect interpretation. The way to interpret it
8	is there are five sequences that comprise this
9	vented status. Sequences number 1 and 4, 5, 10 and
10	13. Right? All of those are binned into this
11	vented scenario which then if I'm going to evaluate
12	modification number 3 I will apply MACCS case 13 to
13	get its consequences.
14	MEMBER BLEY: Now, just this particular
15	point I was hanging on. There will be differences
16	in the results of each of those sequences that sit
17	in there. We can't see that.
18	MR. STUTZKE: Not at this level of
19	detail.
20	MEMBER CORRADINI: Nor do we know which
21	one of those might dominate, of the five which one
22	might be a dominant one or they just all are
23	MEMBER BLEY: We might be able to dope
24	that out if we look at them and think about it.
25	MEMBER STETKAR: Marty knows that.

(202) 234-4433

	270
1	MR. STUTZKE: It's in there but at the
2	same time
3	MEMBER BLEY: But I mean, the problem we
4	were having, we were even talking about this. This
5	says venting the drywell looks terrible. But if
6	simultaneously you're spraying the drywell it
7	probably doesn't look as terrible. You just can't
8	see that in the way the results are summarized.
9	MR. STUTZKE: Right. Yes, I need to
10	give you the further breakdown.
11	MEMBER BLEY: There must be more things
12	like that that are kind of hidden because of the
13	categorization we did. Which means we might draw
14	some conclusions at this level that you might not
15	hold. Except they should be probabilistically
16	weighted such that they're probably okay.
17	MR. STUTZKE: Yes. I mean and that's
18	the intent.
19	MEMBER BLEY: I have to think about that
20	a bit more.
21	MEMBER CORRADINI: But can I I'm
22	sorry that I now that Dennis asked a question now
23	I'm so case 12 in terms of the MELCOR calculation
24	linking to the MACCS calculation drives all five of
25	these branch points, of these event tree branch
	I

(202) 234-4433

	271
1	points.
2	MR. STUTZKE: End states.
3	MEMBER CORRADINI: Case 12 is drywell
4	vent at 24 hours.
5	MR. STUTZKE: Right.
6	MEMBER CORRADINI: Essentially modifying
7	case 2 which is the base case. And that has the
8	highest release fraction that MACCS then went and
9	sends out.
10	MR. STUTZKE: That's correct.
11	MEMBER CORRADINI: And it's higher than
12	everything. So unless one's looking at the MELCOR
13	calculation and says there's something inherently
14	conservative with that, that drives all five of the
15	cases.
16	CHAIR SCHULTZ: And so the integrated
17	response is fairly similar between each of these
18	presentations. For each of the metrics that were
19	chosen.
20	MEMBER CORRADINI: Yes. Because that's
21	the highest release fraction that would affect all
22	these key contributors, at least from what we heard
23	from the previous presenters.
24	CHAIR SCHULTZ: Where those previous
25	presenters were focusing in on particular event

(202) 234-4433

272 sequences and the differences in results. Core vent 1 and no vent. 2 3 MR. STUTZKE: Yes, and what you see 4 there is probabilistically weighted. It's the sum 5 times the sequence frequency times the consequence Classic risk definition. 6 summed up. 7 MEMBER BLEY: When we get to the point of figuring out whether your qualitative arguments 8 9 eventually make sense some of it's going to hinge on 10 the stuff that's tied up in this analysis in ways that we've got to figure out a little bit to see if 11 those arguments really carry through. Maybe there 12 is a particular set of things within one of these 13 14 cases that would look very well if we pushed it in 15 that direction. This might not all be clear to 16 anybody, I'm just babbling a bit. 17 MEMBER CORRADINI: My reaction is if we stopped at just what MELCOR says is released out of 18 19 containment it totally is dominated by that cesium I mean, all the subsequent things are 20 fraction. totally dominated by what you released. 21 That's right. 22 MEMBER SIEBER: MEMBER BLEY: Which if we go back to 23 24 this case says -- that's case 12, right, that gets us that one? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	273
1	MEMBER CORRADINI: That's what I read it
2	to be, yes.
3	MEMBER BLEY: If that's right then
4	within mod 3 and 4 which look bad on the charts we
5	were looking at, actually it's just the LNT case
6	that's so bad. This stuff's heavily interrelated.
7	I don't know if you guys have had a chance to
8	distill it at this deeper level to really be sure
9	about what you've got. I'm sorry, Marty.
10	MR. STUTZKE: No, maybe another way to
11	do it is to flip back to slide 85 that showed you
12	the frequency contributions.
13	MEMBER BLEY: Back with the top cases.
14	MR. STUTZKE: Each one of those so
15	these are the contributions for overpressure, liner
16	melt-through or both. And by implication, for
17	example, if I look at the manual vent column what it
18	says is 46.8 percent are vented, right? It's 100
19	minus the 53.2 percent, right? And so ask yourself
20	then so I'm going to take 0.4 percent times the
21	consequences of the overpressure MELCOR case and
22	19.6 percent times the liner melt-through case, et
23	cetera.
24	And so the bottom one here when you look
25	at mods 3 and 4 that says I'm taking 46.8 percent
I	I

(202) 234-4433

	274
1	times the vented case for mods 3 and 4 which says
2	it's through the drywell, it's not filtered and the
3	consequences are big as you pointed out. And that's
4	why you get the big red bars.
5	MEMBER CORRADINI: That's why the red
6	bar for the passive is larger than the red bar for
7	the manual.
8	MR. STUTZKE: Yes, because you've made
9	that hole even more reliable.
10	(Laughter)
11	MEMBER STETKAR: Some of the earlier
12	stuff we said is you don't put a rupture disk on
13	there, it's actually worse.
14	MR. STUTZKE: The other way to interpret
15	it is if you were to look at slide 87 for this
16	monetization and you see the big red bars, that
17	means you should be willing to spend \$592,000 to
18	remove the system. It's that bad.
19	CHAIR SCHULTZ: And I think that was
20	coming out in some of the results that were shown
21	earlier from the MACCS study.
22	MR. STUTZKE: These are the reflections
23	of the MELCOR MACCS results, just frequency averaged
24	together.
25	MEMBER BLEY: Unless you can make sure
	I

(202) 234-4433

	275
1	you don't get into that problem over here.
2	CHAIR SCHULTZ: That's correct.
3	MEMBER BLEY: You've got to do it in a
4	couple of pieces to get the argument. Interesting
5	stuff.
6	CHAIR SCHULTZ: Other questions?
7	MEMBER SKILLMAN: Yes, Marty, your
8	global statistical value on slide 77.
9	MR. STUTZKE: Yes.
10	MEMBER SKILLMAN: I've never seen that
11	before. Just how did you get the denominator,
12	please?
13	MR. STUTZKE: It's roughly 15,000
14	reactor years of worldwide operation.
15	MEMBER SKILLMAN: That's the calculated
16	value approximately today?
17	MR. STUTZKE: I saw that number reported
18	on the WANO website, World Association of Nuclear
19	Operators.
20	MEMBER SKILLMAN: Because I get a number
21	about half that. I was just curious. Thank you.
22	CHAIR SCHULTZ: We are ready for the
23	next topic before we have a break and the next topic
24	is regulatory analysis. Aaron Szabo is going to be
25	making that presentation. Bio break for 5 minutes.
l	I

(202) 234-4433

	276
1	(Whereupon, the foregoing matter went
2	off the record at 3:35 p.m. and went back on the
3	record at 3:44 p.m.)
4	CHAIR SCHULTZ: The next presentation is
5	associated with the regulatory analysis and
6	backfitting evaluation approach. Aaron Szabo is
7	going to make the presentation from the staff.
8	Aaron, please proceed. Thank you.
9	MR. SZABO <mark>: I'm Aaron Szabo, cost</mark>
10	analyst at NRR in the Rulemaking Branch. I work on
11	the regulatory analyses. Next slide.
12	This is just generally an outline I'm
13	going to go through. I'm just going to apologize
14	now for anyone who was here yesterday afternoon. A
15	lot of it might be similar. Hopefully maybe we've
16	got something new. But I'm going to go through just
17	the regulatory decision-making process, the
18	methodology for the regulatory analysis, kind of the
19	methodology for backfitting and then just go
20	specifically into the filtered vents regulatory
21	analysis. Next slide, please.
22	So, the first point I want to make about
23	regulatory analysis is it looks at all the costs and
24	all the benefits for any regulatory action. The
25	important thing to note is we've been talking in all
I	1

(202) 234-4433

	277
1	these past presentations of quantified analyses to
2	lead up to what eventually will go into the
3	regulatory analysis.
4	But really the quantification is only
5	one input to the regulatory analysis. For all those
6	costs and all the benefits we can't quantify we do
7	qualify them which the next presentation is going to
8	go into in more detail.
9	And also with the regulatory analysis
10	it's important for us to just outline all the
11	uncertainties with the analysis which you guys have
12	seen throughout today. In relation to just
13	backfitting for this situation it's based under 10
14	C.F.R. 50.109 which is the backfitting provision.
15	Next slide.
16	As you guys have heard before there's
17	four options in relation to when you see the
18	regulatory analysis. There's just a little bit of a
19	terminology difference. We call them alternatives
20	but it's essentially the same thing. We review all
21	four of these options through this.
22	And we are doing that using the current
23	framework which is NUREG/BR-0058 which is called the
24	Reg Analysis Guidelines, NUREG/BR-0184 which is the
25	Reg Analysis Technical Handbook and NUREG-1409 which
ļ	I

(202) 234-4433

	278
1	is the backfitting guidelines. If there are any
2	deviations that we make from the guidelines we just
3	provide them as a sensitivity analysis.
4	I also wanted to just reemphasize a
5	point about the technical handbook that Marty
6	brought up. Really a lot of the numbers were used
7	for examples. It was produced in 1997 based on
8	earlier reports. And the idea is you try and use
9	your MACCS code, your MELCOR and your MACCS when you
10	can. You really just fall back on these when you
11	don't have either the opportunity or the ability to
12	use those codes. Next slide, please.
13	Just when we perform a regulatory
14	analysis what we just do first is we identify the
15	problem and just look at what the alternatives are.
16	We determine if the action is a backfit which it
17	would clearly be in this situation. And then we go
18	through everything that we call attributes. Listed
19	there is everything what the attributes we looked
20	at for this regulatory action which include public
21	health and occupational health in case of an
22	accident, the offsite and onsite property as well as
23	the industry and NRC implementation operation costs.
24	As well as there's some other attributes like
25	regulatory efficiency as well as some other
I	I

(202) 234-4433

	279
1	situations like defense-in-depth that once again
2	will be talked about more later.
3	We then combine all those attributes
4	together, do a cost-benefit analysis and we develop
5	some recommendations for the Commission. Next
6	slide, please.
7	These recommendations are provided using
8	what we call the best estimate calculations per the
9	guidelines. As Marty pointed out their point
10	estimates for in this case. And this is just
11	kind of explaining what Marty's already done.
12	It's just we multiply all the
13	benefits and the costs times the probability. We
14	don't look at them without probability as clearly it
15	would just obscure things to the high end and might
16	give false impressions. And as stated before we
17	provide sensitivity analyses for the decision-
18	makers. Next slide, please.
19	On the backfitting, the first step in
20	backfit after you determine it is a backfit and
21	falls within the backfit rule is you look into
22	whether it falls under one of the exceptions.
23	Usually this would be adequate protection for these
24	cases. So the first review the staff would do would
25	be to look at whether any of these options would
I	

(202) 234-4433

	280
1	fall under the adequate protection determination.
2	If it doesn't fall under the adequate
3	protection justification we then go into what's
4	commonly called the backfit analysis. It's also
5	called cost-justified substantial safety
6	enhancement.
7	This is a two-part analysis. The first
8	part is the substantial safety enhancement. The
9	second part is the cost justified.
10	And I just wanted to lay out here
11	something that the Commission stated back in 1993 in
12	an SRM. It really states that for the substantial
13	safety enhancement section they really want to keep
14	it as a flexible option with what they originally
15	intended. After the backfit rule the staff went
16	back to the Commission with some lookbacks kind of
17	on the backfit rule and this is what the Commission
18	came back with.
19	It states that for the substantial
20	that includes both quantitative and qualitative
21	arguments. And the Commission would really like to
22	see things that even if it's not necessarily
23	considered what the staff might be substantial then
24	if it's still cost-justified they would like to see
25	it in front of them. And moving onto the next
I	I

(202) 234-4433

	_		-	
c	- L.	٦.	de	
0	<u>т</u>	ᆂ		

1

2	So for the substantial safety
3	enhancement section the attributes that we would
4	look at within the backfit rule would be just the
5	public health and occupational health. So really
6	the substantial safety enhancement section only
7	looks at the averted person-rem and not at any of
8	the onsite or offsite property or any implementation
9	or operation costs. Next slide, please.
10	And then just moving onto the cost-
11	justified section. This is where we would add in

11 everything. And this is really, when you're looking 12 at the backfit analysis this is really going to be 13 14 almost exactly the same thing as the regulatory 15 That's why the person who does the analysis. regulatory analysis usually just also does the 16 backfit analysis. It's just a lot of reference to 17 the regulatory analysis. And as you can see it's 18 all the attributes that I listed earlier. 19 Next slide, please. 20

As you saw during Marty's presentation he mentioned that the onsite property and the occupational workers came from the Technical Handbook and not from the MELCOR/MACCS code. I just wanted to provide within the Technical Handbook kind

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	282
1	of where these numbers came from.
2	For the onsite property, option 1, your
3	status quo is assumed was the upper bound of what
4	they said the onsite property costs would be which
5	were about \$2 billion in 1993. And escalating using
6	just a CPI, a consumer price index, to 2012 it's
7	about \$3.2 billion. Option 2 was what they
8	considered their middle or best estimate. We assume
9	that would be for just normal venting.
10	And option 3, the filtered vents we
11	thought would be close enough to TMI that the
12	options which were the low estimate or TMI for
13	within the Technical Handbook would be similar to
14	having a filtered vent. So, for the onsite property
15	that was \$750 million back when in 1981, or \$1.9
16	billion today.
17	For occupational workers during the
18	accident we used the same kind of analysis. The
19	Technical Handbook had an upper, middle and lower or
20	TMI and we followed the same idea.
21	Just as a quick note, it does assume
22	there's 1,000 workers onsite working on this so
23	they're all getting low dose. And the occupational
24	workers does not include the decontamination cleanup
25	cost of offsite property. That was actually
ļ	I

(202) 234-4433

283 1 subsumed within the MACCS2 public health, the person-rem code. So any of the decontamination or 2 3 cleanup offsite was accounted for there. Next 4 slide. 5 MEMBER SKILLMAN: Aaron, those options on page 109, slide 109 --6 7 MR. SZABO: Yes. 8 MEMBER SKILLMAN: -- are the same 9 options as indicated on slide 102? 10 MR. SZABO: Yes. Thank you. 11 MEMBER SKILLMAN: MEMBER ARMIJO: Aaron, these numbers 12 seem low to me. Let's take option 1. You -- or any 13 14 of them. You lose the reactor, right? 15 MR. SZABO: Yes. MEMBER ARMIJO: In these events. 16 And 17 replacement cost, is that included or not? MR. SZABO: Sorry, just -- this is not 18 19 including replacement energy costs. Sorry. 20 MEMBER ARMIJO: I mean the reactor, the investment. 21 MR. MONNINGER: It's just cleanup of the 22 site, decommissioning and cleanup is the onsite 23 24 property. It's not the replacement power --MEMBER ARMIJO: Not considered --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	284
1	MR. MONNINGER: or rebuilding it.
2	MR. SZABO: We do consider replacement
3	energy.
4	MEMBER ARMIJO: Just the energy.
5	MR. SZABO: Yes, but that is it is
6	part of the onsite property attribute but it is not
7	within this part of the onsite property. This is
8	just the property itself.
9	MEMBER SHACK: But again, if you're
10	looking at a cost to society why not the cost of the
11	replacement plant?
12	MR. SZABO: It will be it is included
13	in the regulatory analysis. This was just showing
14	these first couple of assumptions, these are
15	assumptions that we do make that I'll be showing
16	later.
17	However, for the plant itself because
18	we're assuming that we're at there's core damage,
19	there's severe accident, that unit itself is already
20	lost. So we wouldn't there's no delta
21	replacement energy from your status quo between your
22	options.
23	So I'll go into this well I can go
24	into this now. So your really only delta would be
25	if you have a multi-unit site. This would be the
I	1

(202) 234-4433

	285
1	difference between being able to work those other
2	units. That would be the only consideration we
3	would make within using the current framework as a
4	delta between.
5	MEMBER ARMIJO: Yes, I was off base
6	because if you lose a plant whether you have a
7	filtered vent or a non-filtered vent you've lost the
8	plant so it doesn't make any difference in the
9	got it.
10	CHAIR SCHULTZ: But it is a good point
11	for a sister unit onsite.
12	MEMBER ARMIJO: If you would somehow
13	lose that you'd know it wasn't through
14	contamination.
15	CHAIR SCHULTZ: That's a possibility.
16	MR. SZABO: Next slide. Yes, I'm about
17	to go into go to the next slide.
18	So this goes into our current framework
19	as well as our sensitivity analyses. Just going
20	through the parameters so you can see there's about
21	five different parameters that we've run
22	sensitivities for. I'll just go through them one by
23	one.
24	The dollar per person-rem, as was
25	mentioned quite a bit yesterday as well as today.
I	I

(202) 234-4433

NUREG-1530 is the dollar per person-rem. And it says that currently it's \$2,000 per person-rem. There's a currently and ongoing effort to update that number.

Therefore, as just -- we believe as a 5 conservative sensitivity analysis we use the most 6 7 recent EPA valued statistical life which is \$7.3 8 million as well as the most recent ICRP number 103. 9 And this is using the same -- this is the same 10 analysis that we did for determining the \$2,000 per The \$2,000 per person-rem was just the 11 person-rem. value of statistical life times a risk cancer factor 12 which was from ICRP number 60. This is just an 13 14 escalation of that to determine -- to come to the 15 \$4,000 which we provide as a sensitivity analysis. 16 Also, the discount rate, we currently 17 follow OMB Circular A-4 quidance which says that you should net present value, all values at 3 percent 18 19 and 7 percent. The basis for these numbers, the 3 percent was your return on a government investment 20 and your 7 percent was your return on a private 21 As we've seen --22 investment. (Laughter) 23 24 MEMBER STETKAR: Sure, you don't have to 25 retire in the next couple of years.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

286

	287
1	MEMBER ARMIJO: Better check those
2	numbers.
3	MR. SZABO: Those numbers, you know,
4	might not necessarily reflect the current market.
5	So as a sensitivity we're providing the undiscounted
6	discount rate. And this is also for both benefits
7	and the cost side because for your operation cost
8	you do have to do a net present value for that.
9	Then, as Marty was talking about, for
10	your CDF, for your initial event probability we used
11	the 2E to the -5th for our current framework as well
12	as the global statistical value just as a
13	sensitivity analysis.
14	Once again, kind of when Marty was
15	talking about his presentation he ran a Monte Carlo.
16	We used the point estimate as our best estimate.
17	However, we provide a low and a high of the 5th and
18	95th percentile.
19	And now onto replacement energy costs.
20	So in the current framework we follow the Technical
21	Handbook which was back in 1997 based on 1995 or
22	earlier numbers which said it was about \$15.4
23	million per year to replace energy.
24	Just to go into some background about
25	how we do the replacement energy costs. We assume
I	I

(202) 234-4433

	288
1	that every unit has a 10-year purchase power
2	agreement. So what we do is we assume that if you
3	have at least 10 years left in operation that you
4	wouldn't necessarily just multiply this 15.4 times
5	10 because you have to discount the numbers, but
6	it's similar to that. So, you losing a unit today
7	at an undiscounted rate would really cost \$154
8	million. The idea is that within 10 years they
9	would have established new energy sources to replace
10	that energy and would no longer be bound by that.
11	As stated, four, we assumed that the
12	other site would be lost if you are not able to do a
13	filtered vent. So we believe that there would be
14	enough radiation from either the status quo or just
15	venting without a filter that the other unit would
16	not be operational and thus you would need to
17	replace the purchase power.
18	Another ongoing effort is we have
19	provided we have developed new, updated,
20	regional-based replacement energy costs. And so
21	just a high and low from that as they are
22	sensitivity analysis is just it's either \$716,000
23	a year up to \$56.3 million. That's the lowest
24	regional the lowest low and the highest high. As
25	it's a sensitivity analysis we just wanted to
l	I

(202) 234-4433

(202) 234-4433

	289
1	provide the low and the high.
2	And generally for regulatory analyses
3	under the current framework we do not things that
4	are based on policy decisions are usually considered
5	to be too speculative for us to consider. However,
6	as we've seen from recent history the idea of a
7	policy decision to shut down all Mark I and Mark 2
8	reactors is not unreasonable so we've also decided
9	to provide that just as a sensitivity analysis.
10	Next slide, please.
11	Just as I mentioned before, the
12	recommendation, however, is based on the current
13	framework. With all these sensitivity analyses we
14	pretty much end up with 107 of them. So that kind
15	of gives you an idea of the general range of where
16	we're going, the highs and the lows. And there is
17	quite a range in that.
18	And there is no sensitivity provided for
19	the cost. However, we do provide a range for the
20	cost.
21	MEMBER ARMIJO: Aaron, would you go back
22	to that justification? What makes it reasonable to
23	consider that all the reactors, the Mark I and Mark
24	2 containments would be shut down by the Agency?
25	MR. SZABO: Well, we believe that it
	I

(202) 234-4433

290 1 wouldn't be an NRC decision. This would clearly be a decision made by politicians as I don't think we 2 3 would necessarily -- I don't know if we would have 4 the right to. 5 MEMBER ARMIJO: Okay, so it wouldn't be 6 a regulatory. It would be some --7 MR. SZABO: Yes. This would be a policy 8 decision above the NRC. 9 MEMBER POWERS: I quess what I don't 10 understand is how does that change with whether I have a filter or not. 11 It would be considered a MR. SZABO: 12 benefit for either venting or -- the idea is that 13 14 all Mark I and Mark 2 reactors would be shut down if 15 there was a significant release from a severe 16 accident. So if they're able to mitigate the severe 17 accident that it would still ensure enough confidence that the other reactors would still be 18 19 able to operate. MEMBER POWERS: At least my recollection 20 of the results that were shown to us just previously 21 is the only ones of those cases that was different 22 was the one where you had an unfiltered drywell 23 24 vent. Otherwise they were about the same. And so I'm still a little --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	291
1	MR. SZABO: It would be the same benefit
2	for both, for both option 2 and option 3, both
3	venting having a severe accident capable vent and
4	having a filtered vent would provide the same
5	benefit in relation to that.
6	MEMBER ARMIJO: But you have the German
7	experience where they have filtered vents. They're
8	shutting down all their reactors. So, I mean how
9	does that why is that?
10	MEMBER STETKAR: PWRs and BWRs.
11	MEMBER ARMIJO: P's and B's and
12	everything. So, you know, it just seems
13	MR. MONNINGER: That would argue to move
14	it from a sensitivity to the current framework
15	though, wouldn't it?
16	MEMBER ARMIJO: I don't know. I'm just
17	trying to find out is it right to or at all.
18	MR. RULAND: The purpose of doing the
19	sensitivity is just to provide information to the
20	decision-makers. And you know, you can agree or
21	disagree with the assumption but that's all, that's
22	the purpose of doing the sensitivity study.
23	MR. SZABO: So you can ignore it if you
24	don't believe any reactors would be shut down or,
25	you know.
	I

(202) 234-4433

	292
1	MEMBER BLEY: So this is just a one-
2	liner. The sensitivity study would be how likely
3	would it be that this would happen given the four or
4	five scenarios we've got, or eight, I'm sorry.
5	Whatever the number.
6	What is a sensitivity study? What I
7	haven't understood is under this case what is the
8	sensitivity study? What will you actually do?
9	What's the sensitivity you'll be looking at? It's
10	not sensitivity to this, this is a result, right?
11	MR. SZABO: It's a sensitivity in
12	relation to its I guess outside our current
13	framework is another way you can frame this. I
14	mean, instead of a sensitivity it's just a I
15	guess alternative framework is what you can think of
16	it as.
17	CHAIR SCHULTZ: You have to presume that
18	in the event of an accident, because we are assuming
19	that the accident occurs, that the vent having a
20	vent would make a difference as to whether you shut
21	down all 30 units or not. It's just an economic
22	evaluation of how much it would entail to shut down
23	30 units versus not doing it in the event that that
24	would make a difference in public reaction.
25	There's other cases there of course.
I	I

(202) 234-4433

1One would be for an event to occur without a vent,2and then that would cause all vents to be added to3Mark I and Mark II's at that point in time.4In other words, there's a number of5scenarios that could be envisioned and this is the6worst one at least for the Mark I and II's.7MEMBER ARMIJO: Go ahead.8MR. SZABO: Those are the same four.9There's quite a bit of sensitivity cases that are10going to be we're currently working on, are going11to be provided. I guess we'll get onto the costs.12We're still going through these are13preliminary numbers. For option 2 the idea is that14these are total costs, by the way, for industry.15That would cost about \$60 million so about \$2	
Mark I and Mark II's at that point in time. In other words, there's a number of scenarios that could be envisioned and this is the worst one at least for the Mark I and II's. MEMBER ARMIJO: Go ahead. MR. SZABO: Those are the same four. There's quite a bit of sensitivity cases that are going to be we're currently working on, are goin to be provided. I guess we'll get onto the costs. We're still going through these are preliminary numbers. For option 2 the idea is that these are total costs, by the way, for industry.	
 In other words, there's a number of scenarios that could be envisioned and this is the worst one at least for the Mark I and II's. MEMBER ARMIJO: Go ahead. MR. SZABO: Those are the same four. There's quite a bit of sensitivity cases that are going to be we're currently working on, are goin to be provided. I guess we'll get onto the costs. We're still going through these are preliminary numbers. For option 2 the idea is that 	
5 scenarios that could be envisioned and this is the worst one at least for the Mark I and II's. MEMBER ARMIJO: Go ahead. 8 MR. SZABO: Those are the same four. 9 There's quite a bit of sensitivity cases that are 10 going to be we're currently working on, are goin 11 to be provided. I guess we'll get onto the costs. 12 We're still going through these are 13 preliminary numbers. For option 2 the idea is that 14 these are total costs, by the way, for industry.	
<pre>6 worst one at least for the Mark I and II's. 7 MEMBER ARMIJO: Go ahead. 8 MR. SZABO: Those are the same four. 9 There's quite a bit of sensitivity cases that are 10 going to be we're currently working on, are going 11 to be provided. I guess we'll get onto the costs. 12 We're still going through these are 13 preliminary numbers. For option 2 the idea is that 14 these are total costs, by the way, for industry.</pre>	
MEMBER ARMIJO: Go ahead. MR. SZABO: Those are the same four. There's quite a bit of sensitivity cases that are going to be we're currently working on, are going to be provided. I guess we'll get onto the costs. We're still going through these are preliminary numbers. For option 2 the idea is that these are total costs, by the way, for industry.	
8 MR. SZABO: Those are the same four. 9 There's quite a bit of sensitivity cases that are 10 going to be we're currently working on, are goin 11 to be provided. I guess we'll get onto the costs. 12 We're still going through these are 13 preliminary numbers. For option 2 the idea is that 14 these are total costs, by the way, for industry.	
9 There's quite a bit of sensitivity cases that are 10 going to be we're currently working on, are goin 11 to be provided. I guess we'll get onto the costs. 12 We're still going through these are 13 preliminary numbers. For option 2 the idea is that 14 these are total costs, by the way, for industry.	
10 going to be we're currently working on, are going 11 to be provided. I guess we'll get onto the costs. 12 We're still going through these are 13 preliminary numbers. For option 2 the idea is that 14 these are total costs, by the way, for industry.	
11 to be provided. I guess we'll get onto the costs. 12 We're still going through these are 13 preliminary numbers. For option 2 the idea is that 14 these are total costs, by the way, for industry.	
We're still going through these are preliminary numbers. For option 2 the idea is that these are total costs, by the way, for industry.	ıg
13 preliminary numbers. For option 2 the idea is that 14 these are total costs, by the way, for industry.	
14 these are total costs, by the way, for industry.	
	-
15 That would cost about \$60 million so about \$2	
16 million per plant to install, to update the vents	0
17 be severe accident capable. And with our NRC cost	
as well it comes up to a total of about \$68 to \$72	
19 million. Next slide.	
20 So, here's the benefits for option 2	
21 based only on the current framework. The ranges as	ce
just based on the 3 and 7 percent discount rates.	
23 So the public health, the total person-rem averted	
24 is 112.	
25 MEMBER CORRADINI: And where does that	

(202) 234-4433

	294
1	come from? Just remind me where that comes from
2	then?
3	MR. SZABO: That's Marty's what Marty
4	had before based on reactor year. So he had I think
5	it was like 4 person-rem averted per reactor year
6	for wetwell.
7	MEMBER CORRADINI: That's why I was
8	going back to Marty's to find it.
9	MR. SZABO: Yes. So then you multiply
10	that by the 31 reactors per year and the average
11	life let is 25 years. So I'm not
12	MEMBER CORRADINI: Marty had oh, I'm
13	sorry. You're right, four. Sorry.
14	MR. SZABO: So it's that times 31 times
15	25 gives you about your 112.
16	MEMBER BANERJEE: Is there any benefit
17	to the goodwill? Like companies say things are
18	worth \$1.5 billion goodwill. We have that. Like
19	Proctor & Gamble will say a branding.
20	MR. SZABO: No.
21	MEMBER BANERJEE: We have no benefit to
22	goodwill out of this?
23	MEMBER POWERS: Goodwill is a fudge
24	factor in accounting.
25	MEMBER BANERJEE: But that's more real
I	1

```
(202) 234-4433
```

	295
1	than most of these things. Does it give you any
2	benefit of public perception?
3	MR. MONNINGER: You could potentially
4	include it within the qualitative arguments if you
5	felt it's
6	MEMBER BANERJEE: I don't know, I mean
7	these things are quantitative when it comes to
8	public companies. I mean people put values on them.
9	MEMBER BROWN: What about the public
10	confidence in the plants? I mean, there's no
11	benefit at all granted for that at all. And yet
12	based on the information, I mean the public
13	confidence in Japan now is zero.
14	MR. SZABO: Well that's getting into the
15	psychological benefits and there's questions as to
16	whether or not the NRC is allowed to consider
17	psychological benefits. I don't know if there's an
18	attorney here. I know at least some of them would
19	say you can't consider psychological costs or
20	benefits. And that's based on a TMI case from back
21	in the eighties.
22	MEMBER BROWN: So 30 years of not being
23	able to do anything. Real bad public confidence at
24	that time.
25	MEMBER BANERJEE: I think that's the
	I

(202) 234-4433

	296
1	most important factor.
2	MR. SZABO: I guess it is a factor.
3	MEMBER BROWN: It's a big factor.
4	MEMBER SIEBER: It has to reflect itself
5	directly in money. And good public perception of
6	nuclear power will not increase sales. The plant is
7	100 percent. And so you may get a public benefit
8	out of it but it's not worth it does not have a
9	monetary value because it doesn't reflect itself in
10	your financial statement.
11	MR. SZABO: And in general, I know
12	you're talking about for the operator. It is the
13	regulatory analysis does look at it in a societal
14	framework. So really our only our delta benefit
15	would be any I guess happiness from the people being
16	more confident in it.
17	MEMBER CORRADINI: So I guess I'm I'm
18	listening to what Sanjoy said. I haven't gotten
19	past I still don't understand your 112. But
20	where's the stock price loss in all of this? If I
21	were a utility and I had one of these and I released
22	it offsite what would my stock do? Would it stay
23	where it is? I don't think so. So where's that
24	cost or the negative of that cost reflected in any
25	of this?
l	

(202) 234-4433

	297
1	MR. SZABO: Well, I guess the my off-
2	the-cuff answer, other than it being very
3	speculative trying to come up with any number that,
4	you know, other than having a line stating that we
5	believe that the stock will drop.
6	MEMBER CORRADINI: You closed 30 BWRs
7	just a minute ago on your sensitivity so it's not
8	anymore nutty than that, excuse my English.
9	MR. RULAND: Aaron, you know, you don't
10	have to go here, you know.
11	(Laughter)
12	MR. RULAND: I mean, this is this is
13	very speculative as far as we're concerned.
14	MR. SZABO: Well, I just also wanted to
15	get into the idea of transfer of payments which is
16	what stocks essentially are. You know, someone has
17	to buy it, you know, to sell someone has to buy.
18	And it really comes we're looking at this as a
19	societal whole. So even if your stock's dropping
20	the idea that someone buys it is more of a transfer
21	of payment.
22	MEMBER CORRADINI: But I mean just
23	I'll push it, then I'll shut up. The Seveso
24	accident in Italy, the chemical company went
25	bankrupt. Bhopal, there is no more Union Carbide,
	1

(202) 234-4433

	298
1	okay? There is no more TEPCO. British Petroleum
2	I mean, we can pick these accidents all over the
3	place and they don't have to be nuclear and I guess
4	I'm back to Sanjoy. Sanjoy's point said it in good
5	perception. But forget percpetion, let's just deal
6	with money. The company will suffer somehow.
7	That's what I think you're getting at.
8	MEMBER BANERJEE: Well, the industry
9	does. The Seveso accident led to the Seveso
10	directive.
11	MEMBER CORRADINI: Right.
12	MEMBER BANERJEE: Which had an enormous
13	impact.
14	MEMBER CORRADINI: On loss prevention
15	for the chemical industry.
16	MEMBER BANERJEE: Hundreds of billions.
17	So I think you have to be and then they had to
18	install emergency relief systems which would handle
19	two-phase flows, you know, treatment after that.
20	It's a big deal. They had to do it.
21	MR. RULAND: Aaron, while these are
22	interesting issues they aren't in our current
23	regulatory framework.
24	(Laughter)
25	MEMBER ARMIJO: Could you just flip back

	299
1	one thing to the previous 112? The cost. Those
2	industry costs, are those the costs for the filtered
3	vent? These are just the costs of the accident.
4	MR. MONNINGER: This is beefing up the
5	valves for the existing order vent. We assume \$2
6	million per unit.
7	MEMBER ARMIJO: We're still on option 2
8	with upgraded hardware. Got it.
9	MR. SZABO: Let's go back to the
10	previous slide. So these are, as I was saying
11	before, they're kind of just pulled from Marty's
12	probability-weighted numbers and are extrapolated
13	out over all the reactor years and discounted.
14	And as you can see the offsite property
15	and onsite property provide a total benefit of about
16	\$16 and a half to \$24 and a half million. However,
17	as you can see the net value of option 2 is about
18	negative \$43 and a half to negative \$55 and a half
19	million for the industry total. Next slide, please.
20	Onto filtered vents. So here's
21	filtered vent cost is, the assumption is about \$15
22	million per unit.
23	MEMBER CORRADINI: So, now I'll take the
24	other side of the coin. You guys have used that
25	number three times today. I can't believe it's that
	I

(202) 234-4433

	300
1	cheap. I just cannot believe it's installed safety-
2	grade seismically qualified. That is, that's
3	MR. DENNIG: Not safety-grade.
4	MEMBER CORRADINI: Not safety-grade.
5	MEMBER BLEY: But it's got to be
6	seismic.
7	MEMBER CORRADINI: It's got to be
8	seismic. Fifteen million seems like a bargain
9	basement price.
10	MR. DENNIG: That number is extrapolated
11	from talking to vendors and talking to licensees.
12	And that number includes in at least one case a
13	seismic installation, the \$14 million for Point
14	Lepreau is seismic. The extent to which you would
15	get a seismic installation here for that amount of
16	money, I don't know, but that's not currently one of
17	the things that's in the mix as part of the option
18	is to make it
19	MEMBER CORRADINI: My only reaction is
20	that looks at least two to three times too cheap.
21	MEMBER ARMIJO: Yes, I agree with that.
22	Does that include the parts of option 2, the
23	upgrades in the option 2 to make this thing work?
24	MR. MONNINGER: No, this would be
25	costing this from a clean system. It's not the
	I

(202) 234-4433

	301
1	delta from option 2 to the current. It's costed out
2	on
3	MEMBER ARMIJO: But if they actually did
4	it they'd have to make some plant modifications to
5	get this thing in. Anyway, the cost seems low.
6	MEMBER STETKAR: I don't know where you
7	got your cost information, you know, your actual
8	installed cost information. I'm familiar with a
9	couple of plants in Europe that perhaps buried some
10	of their cost because they were doing major upgrades
11	to other emergency facilities at the same time. So
12	how much they allocated perhaps to this particular
13	feature might not necessarily be all that clear.
14	MR. BETTLE: Yes, the cost is going to
15	vary considerably from plant to plant. In talking
16	about like upgrading to a filter, the filter vessel
17	itself is probably going to dictate the routing.
18	Some plants might have to pretty much just sacrifice
19	what they currently have and then be better off or a
20	net cheaper arrangement is to go from scratch. So
21	it's going to vary quite a bit if you just focus on
22	that particular number.
23	Others are probably going to be there.
24	Probably not a whole lot less, but probably in that
25	ballpark. This is basically where the amounts of
I	I

(202) 234-4433

	302
1	foreigners in foreign countries the licensees
2	were telling us what they spent and putting it in
3	U.S. dollars.
4	MEMBER STETKAR: Can I ask which
5	particular countries?
6	MR. BETTLE: Sweden, Switzerland and
7	Canada. Now
8	MEMBER STETKAR: I know about
9	Switzerland. I don't want to share information,
10	but.
11	MR. BETTLE: Yes. The only guesstimate
12	as far as the actual filter vessel that we've
13	gotten, obviously these are a high-cost item and if
14	you want to get a firm quote you're going to have to
15	probably be ready to pony up money.
16	But you're looking at a ballpark of \$3
17	million for a vessel size to handle just the filter
18	itself, not the whole modification and piping system
19	and valving and so forth. But the filter itself
20	would be about \$3 million for 600 megawatts. It's
21	about \$6 million for a 1,200-megawatt unit. I say
22	that's not on the basis of a firm quote, so it's
23	just a
24	MEMBER STETKAR: That's without the
25	massive reinforced concrete seismically categorized
1	I

(202) 234-4433

	303
1	structure to house this thing. If you don't have
2	one.
3	MR. SZABO: So that gives us the total
4	of about \$470 to \$480 million for the cost. Moving
5	onto the next slide.
6	So our benefits. Once again your
7	person-rem for the public is about 212 averted,
8	about 6 to 10 million, you know, slightly higher
9	than what you saw for the severe accident capable.
10	The onsite property costs are really
11	where you'll see a big delta here. And that's where
12	you have your sites where you are now no longer
13	losing the other unit because you're in pretty much
14	what we assume sort of a TMI-type situation where
15	it's only the one unit is really gone and you're
16	still able to operate the other one. And that
17	provides a total benefit from to about \$125 to
18	\$211 million.
19	And as stated earlier, you know, that's
20	not quantitatively cost-beneficial. About \$250 to
21	\$350 million in the negative I don't think surprises
22	anyone.
23	MEMBER BROWN: So offsite property is
24	only that's the contamination and everything else
25	that goes with it. Is that wrapped up in that? And
Į	I

(202) 234-4433

	304
1	recovery of the land and all that type of stuff.
2	Only \$14 or \$15 million.
3	MR. SZABO: Yes, that's equivalent to
4	what the MACCS2 calls the economic consequences. We
5	just call it and that's, yes, frequency-weighted,
6	yes. And delta relative to what base would be.
7	MEMBER STETKAR: Remember the base is
8	really high. This is frequency-weighted delta,
9	right?
10	MR. SZABO: Yes.
11	MEMBER BROWN: Which means it really
12	costs \$30 billion but it's unlikely to happen so
13	it's only \$14 to \$20?
14	MR. SZABO: Delta.
15	MEMBER ARMIJO: If it happens it's going
16	to be a big number.
17	MR. SZABO: Yes, this is with 10 to the
18	-5 and the rest of Marty's probability tree.
19	MEMBER CORRADINI: So what was the
20	frequency used to weight this? I'm sorry.
21	MR. SZABO: Well, the initial CDF was
22	the 2E to the -5 and then it was yes, and then
23	Marty's. It's straight from Marty's earlier reactor
24	year.
25	MEMBER BANERJEE: So if you take the
Į	I

(202) 234-4433

	305
1	frequency out what have you got?
2	MR. SZABO: It's what the MACCS code was
3	saying earlier.
4	MR. MONNINGER: Base case was \$1.9
5	billion in cost and the cost for the up to the
6	cost for the drywell venting which was about \$30
7	billion. That's the bottom lines on 66 and 67.
8	MR. SZABO: Your filters drive you into
9	the hundreds of millions if not a couple of
10	hundred million if not lower.
11	MEMBER BLEY: When you make these
12	decisions just doing it on an expected value basis
13	is deceptive sometimes. Every time. And to also
14	see the probability and the real answers, or the
15	probabilities and the real costs is very helpful
16	because when you look at expected number of deaths
17	in an accident and you see 0.0004 that looks like a
18	little number but it's a high probability of zero
19	and a low probability of maybe a lot. And that's a
20	very different picture than you get just seeing the
21	expected value. So, whoever has to make decisions
22	on these things really needs more information than
23	just the expected value. It's very deceptive.
24	MEMBER STETKAR: The 5 percent
25	probability that you'd lose 40 percent of your net
ļ	I

(202) 234-4433

	306
1	worth is a lot different than your expected value of
2	a slight increase in your net worth.
3	MEMBER BLEY: I would certainly want to
4	see that.
5	MEMBER STETKAR: You would certainly
6	want to see that, wouldn't you?
7	MEMBER BLEY: I just think it's I
8	mean, it isn't wrong, but it's deceptive. I think
9	you need both. Here's the expected value and here's
10	what goes into it. A very high probability of no
11	cost or benefits, whichever side we're working on,
12	and a very low probability of something pretty big.
13	MEMBER CORRADINI: I mean, just to make
14	sure you see where since I haven't forgotten the
15	stock price. If you're going to take the cost of
16	the plant, or the cost of the offsite damage and put
17	the expected then at least I'd put in the chance I'd
18	lose the worth of the company with some probability-
19	weighted thing. Because that's just as probable
20	with this thing occurring as onsite damages.
21	MEMBER ARMIJO: Well, it's happened. At
22	TMI you lost GPU, you lost B&We.
23	MEMBER STETKAR: And TEPCO.
24	MEMBER ARMIJO: I mean, whether or not
25	stuff was released into the environment or not.
ļ	

(202) 234-4433

	307
1	MR. MONNINGER: To a certain extent I
2	think the staff tried to follow or followed the
3	regulatory analysis that we currently have. And you
4	know, as Bill mentioned we had expected the reg
5	analysis would not show it to be cost-beneficial.
6	So we could do things in here to increase the
7	numbers or decrease the numbers, but you know, given
8	the current way we do our analysis, our tools, et
9	cetera, we don't believe this is, you know, it would
10	significantly influence the numbers. So that's why
11	we think it's very important to have a good
12	discussion on the qualitative arguments that will be
13	influential in development of a recommendation.
14	MEMBER BLEY: I don't disagree with that
15	but I think you need even though the guidance
16	doesn't require it I think you need a quantitative
17	piece that puts into perspective these numbers.
18	What do they mean? Where did they come from? It
19	could be a high probability of \$300,000. You know,
20	it just doesn't communicate anything. You can call
21	that qualitative but don't put that quantitative
22	information in the qualitative discussion.
23	MEMBER BANERJEE: Suppose I was an
24	insurance company, you know, trying to insure these
25	things and this happens. Certainly I know the
	I

(202) 234-4433

	308
1	chemical plant business pretty well. It's not
2	driven by lots of incidents which have very high
3	probability but low loss. The insurance is really
4	driven by low-probability events which have very
5	high loss. So, you know, it's not this averaging
6	sort of way to do it.
7	MEMBER SIEBER: That's why they put
8	limits on the policies.
9	MEMBER BANERJEE: Well, they put limits
10	on maybe nuclear policies but.
11	MEMBER SIEBER: All the policies have a
12	limit.
13	MEMBER BANERJEE: So yes. Maybe for
14	but most of the time this is driven by very low
15	frequency but very high loss. Why don't we look at
16	things that way, more like an insurance company?
17	Suppose you were Zurich Re and had to insure this
18	plant. What would you do?
19	MR. MONNINGER: I mean, that's something
20	we can look into.
21	MR. RULAND: No doubt the committee who
22	is going to be writing a letter after our
23	(Laughter)
24	MR. RULAND: you know, our final set
25	of you know, when we actually present the
ļ	1

```
(202) 234-4433
```

	309
1	recommendation. Clearly if you include this in a
2	letter the staff will seriously consider what we
3	need to do.
4	MEMBER RAY: Why don't you consider the
5	value of the product produced by the plant?
6	MR. MONNINGER: Well.
7	MEMBER RAY: What fraction of the total
8	power produced by all the plants that come up with
9	this net value is even assuming one were to use
10	these numbers, what percent of that value is this
11	net value loss here? No, the negative net value.
12	The bottom line.
13	MR. MONNINGER: Right. So, this is the
14	cost offsite from the replacement power.
15	MEMBER RAY: How many plants are we
16	talking about here in this net value at the bottom?
17	MR. MONNINGER: It's just this is the
18	fleet.
19	MEMBER RAY: That's right.
20	MR. MONNINGER: The fleet.
21	MEMBER RAY: All right. How much
22	what is the value of the output of the fleet of
23	plants? Have you ever considered that on an annual
24	basis? I mean, this is trivial.
25	CHAIR SCHULTZ: Well, it comes into play
ļ	1

(202) 234-4433

	310
1	with the one sensitivity study that we discussed
2	earlier which is shutting down 30 plants.
3	MEMBER RAY: But just compare the net
4	value to whatever the heck it is that you're
5	producing with the assets that incur this cost
6	presumably. And you know, like I say, this is just
7	take a look at what you're talking about in terms
8	of the market value of the output of the plant
9	compared with the cost of making what Marty showed
10	to be some benefit assuming we're talking about the
11	benefit of the filter here in terms of improved
12	safety. Just this is
13	MEMBER STETKAR: But Harold, in some
14	sense here replacement power is not a contributor to
15	that delta.
16	MEMBER RAY: Correct. I'm just talking
17	about what does the fleet of plants, what is the
18	value of their output compared with the cost of
19	imposing on them a requirement for a filter.
20	MEMBER STETKAR: Oh, okay, I see.
21	MEMBER RAY: That's all.
22	MEMBER STETKAR: I see what you mean.
23	CHAIR SCHULTZ: It's a different
24	question but it's worthy of consideration.
25	MEMBER RAY: Yes. I mean, that's the
	1

(202) 234-4433

	311
1	way of, you know. Sanjoy is talking about
2	insurance. I mean, that's the way a business looks
3	at something like this. How much of the output that
4	I'm or the revenue that the plant output produces
5	is this costing me. It's a few minutes.
6	MEMBER BROWN: How many minutes of power
7	generation.
8	MEMBER RAY: It's ridiculous.
9	MEMBER BANERJEE: A power plant of 2.5
10	gigawatts is at least \$1 billion a year in power
11	roughly.
12	MEMBER RAY: Well, it's been awhile
13	since I I don't want to but I mean, it's a
14	simple calculation to make. And you know, the
15	revenue that the plant produces is way off the scale
16	compared with the cost, particularly if you put it
17	over you amortize the cost of the filter over how
18	many years. You pick a number, 10, 15, 20, 25.
19	It's nothing.
20	MEMBER ARMIJO: But Harold, none of
21	these options save the plant.
22	MEMBER RAY: Look, Sam, everybody can
23	have a perspective about whether it's warranted or
24	not from a safety standpoint. We're looking at
25	dollar numbers here and I'm only trying to put the
ļ	I

(202) 234-4433

	312
1	cost of the damn filter in perspective compared to
2	the output of the plant.
3	MEMBER ARMIJO: I understand, I
4	understand.
5	CHAIR SCHULTZ: One thing we're this
6	presentation does focus on the regulatory analysis.
7	And we're using the approaches that have been
8	established. The next presentation talks about
9	qualitative arguments some of which are quantitative
10	and may include this bullet.
11	MEMBER RAY: It's the only way I would
12	look at it I'll tell you. Because this is something
13	that may provide a benefit. You certainly don't
14	want to have it have a net negative safety benefit.
15	You know, in other words it needs to enhance the
16	safety of the plant. And if it's something that can
17	be done.
18	I mean, I think that's the way the
19	Europeans probably approached the problem is this is
20	something that we can do, it has arguably some
21	benefit, all of these calculations I don't think
22	amount to a hill of beans and it doesn't
23	(Laughter)
24	MEMBER RAY: it doesn't amount to
25	more than a small percent of the value of the plant

(202) 234-4433

	313
1	output.
2	MR. RULAND: One of the things that the
3	staff considered when we were doing this analysis is
4	if the staff got too creative when we started doing
5	this analysis and deviated from our process that
6	we've already established the staff would be rightly
7	open for criticism of trying to game the system to
8	get an answer that we wanted.
9	MEMBER RAY: Yes, but our job is not to
10	look at it the way you are forced to look at it.
11	MR. RULAND: That's fine.
12	MEMBER RAY: Okay? I mean, that's why
13	we're her.
14	MR. RULAND: And I fully appreciate
15	that. And all I'm suggesting is the staff, that's
16	the reason we've done the analysis the way we have
17	done it.
18	MEMBER CORRADINI: I mean, what Harold's
19	asking I guess is you're just saying on an annual
20	basis what fraction of it it compares to and the
21	answer is a few percent.
22	MEMBER BROWN: It's not even that much.
23	MEMBER BANERJEE: No, no, it's point few
24	percent.
25	MEMBER BROWN: Point zero zero few
l	I

(202) 234-4433

	314
1	percent.
2	MEMBER BANERJEE: If you take it over 25
3	years it's nothing.
4	MEMBER SIEBER: It's pretty cheap
5	compared to the income of the plants.
6	MEMBER ARMIJO: If you look at it as a
7	businessman this is a cost for public goodwill or
8	something like that.
9	MEMBER RAY: I can do that. Let's get
10	on with it. Stop this hand-wringing.
11	MEMBER BANERJEE: Indian Point probably
12	spends more than that on publicity.
13	CHAIR SCHULTZ: I do feel we're going to
14	get to this when we get to the next presentation.
15	MEMBER SHACK: Better move on.
16	MR. SZABO: Next slide. Thank you. I
17	just stated before, option 4, we don't really have
18	any quantitative analysis so we're just kind of
19	provide qualitative arguments. And you know, it is
20	amenable to the site-specific approaches as kind of
21	mentioned previously. I don't want to hash out that
22	conversation again so we're going to skip to the
23	next slide.
24	(Laughter)
25	MR. SZABO: So once again, as stated,
I	

	315
1	the qualitative arguments that Tim's going to be
2	presenting next are going to be provided in the
3	regulatory analysis. And just provide some examples
4	of qualitative arguments that have historically been
5	included is the safety goal policy qualitative
6	goals, the defense-in-depth on uncertainties as well
7	as consistency with standards, as well as there are
8	other options as to in relation to qualitative
9	arguments. Onto the last slide.
10	As stated before, you know, option 2 and
11	option 3 do not appear to be cost-beneficial within
12	the current framework. There are sensitivity
13	analyses that may provide cases that are cost-
14	beneficial. You are changing the global statistical
15	value as a CDF 15 times greater as well as some of
16	the other sensitivities.
17	And just as a final note there may
18	require some qualitative arguments for just the
19	substantial safety enhancement part, especially with
20	filters in relation to determining that there is a
21	substantial safety enhancement.
22	I'm now open to any questions.
23	(Laughter)
24	CHAIR SCHULTZ: I have a question for
25	clarification. On option 4 are we not saying that
I	I

	316
1	what option 4 does is postpone the regulatory
2	analysis on a site-specific basis to some different
3	evaluation? There's not a generic way or a combined
4	integral way to present it as a decision-making.
5	The decision is postponed to an individual site-
6	specific evaluation.
7	MR. MONNINGER: To a certain extent.
8	Hopefully when we have it developed I think it would
9	be an alternative. Option 1 is not then options
10	2 and 3 in order. Option 4 would be the staff would
11	look at doing some longer-term rulemaking and within
12	that actual rulemaking would be some type of
13	regulatory analysis based upon whatever we would be
14	requiring for the performance-based approach.
15	So it would be pushing it further down
16	the road as opposed to making a definitive decision
17	today is sort of how we're looking at option 4 to
18	address plant by plant by plant through some
19	performance-based approach. All the Mark I's and
20	II's plant by plant by plant performance-based
21	versus options 2, the severe accident capable vent
22	or filtered vent. We sort of looked at it on an
23	industry-wide approach and would come up with a
24	supporting regulatory analysis for that.
25	CHAIR SCHULTZ: Other comments or
I	I

(202) 234-4433

(202) 234-4433

	317
1	questions particularly aimed at the regulatory
2	analysis approach? And you've already stated,
3	Aaron, that the qualitative is going to be
4	incorporated in that piece of evaluation which is
5	going to be presented.
6	MR. MONNINGER: Or the staff could stop
7	at the quantitative, you know, and provide it. But
8	we think it's very important.
9	CHAIR SCHULTZ: But you provide a
10	justification for incorporating it in the past.
11	MR. MONNINGER: Yes.
12	CHAIR SCHULTZ: And you may go forward
13	with what we're going to hear next.
14	MR. MONNINGER: Yes. That's Tim.
15	CHAIR SCHULTZ: Hearing none we'll move
16	to the next presentation which is the qualitative
17	arguments. Tim Collins is going to present. We
18	welcome you, Tim. Very timely that you're here for
19	this presentation.
20	MR. COLLINS: Thank you very much.
21	Well, my portion of the discussion is a summary of
22	the qualitative arguments for on the question of
23	filters for the containment venting systems.
24	As Aaron mentioned, these are
25	considerations that can be included in the

(202) 234-4433

318 1 regulatory analysis in addition to the numbers that are associated with the cost-benefit analysis. 2 Next 3 slide, Bob. 4 Okay, this is just a summary of the 5 areas that I'm going to touch on. Most of these have come up in the course of your questions in the 6 7 course of the day in one way or another but I'll 8 talk a little bit about them more in qualitative 9 terms than in quantitative terms. Next slide. Okay, the first, probably the most 10 important consideration in the qualitative world is 11 enhancing defense-in-depth. A filtered vent 12 enhances defense-in-depth by improving the 13 14 containment. And the containment, it's the last barrier to fission product release and it's 15 therefore important for treating uncertainties in 16 severe accident progression in the likelihood of a 17 severe accident, and it's important in keeping us 18 19 away from the uncertainties that are associated with a large release. 20 It's important for health effects, it's 21 important for land contamination, environmental 22 consequences. And the containment is in fact the 23 24 last defense-in-depth measure for protection of the environment. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	319
1	Now, EP doesn't help the environment one
2	bit. EP is wonderful for health effects,
3	sheltering, relocation, that's fine, but it doesn't
4	do anything for things like land contamination and
5	the attendant consequences that go with land
6	contamination. So I want to talk about how
7	filtering improves the containment from a
8	qualitative perspective. Next slide.
9	Filtering improves the containment in
10	two ways, directly and indirectly. It directly
11	improves the containment performance clearly by
12	capturing the fission products that would otherwise
13	be released by an unfiltered venting process.
14	MEMBER POWERS: By that logic why
15	wouldn't you put two filters on the system?
16	MR. COLLINS: Why wouldn't you put two
17	filters on the system?
18	MEMBER POWERS: Yes. I mean, you're
19	I vent from the wetwell. I will have some
20	radionuclides. They will go into your filter. Some
21	fraction of them will come out so why don't I put
22	two filters on that?
23	MR. COLLINS: You will have normal
24	containment leakage that at some time would dominate
25	over anything that's filtered out.

(202) 234-4433

	320
1	MEMBER POWERS: It may dominate over
2	having one filter. I'm asking him on his argument
3	why not two.
4	MR. COLLINS: I guess I really don't
5	understand the question. If you have a vent and
6	it's unfiltered
7	MEMBER POWERS: It's always filtered if
8	you go through the wetwell.
9	MR. COLLINS: Okay, well let's say you
10	go through the drywell then.
11	MEMBER POWERS: And if it's sprayed then
12	it's also filtered.
13	MR. COLLINS: Okay. And in defense-in-
14	depth we try to approach things from protection in
15	the event of failures. What if it is a drywell
16	vent? What if we're venting from the drywell?
17	MEMBER POWERS: And you sprayed.
18	MR. COLLINS: No, I'm saying sprays have
19	failed at this point.
20	MEMBER POWERS: Okay. So I again ask
21	you why not two. If he's going to put one filter on
22	because it would capture some of the radionuclides
23	why not two or three until we hit your natural
24	leakage, wherever that may be. And I'll agree with
25	you that's an excellent place to decide stopping.
I	1

(202) 234-4433

	321
1	But why not go till we get John's limit which is a
2	good I mean, it's a good natural limit, I agree
3	with that.
4	MR. DENNIG: Tim, I think it goes back
5	to the uncertainty in the benefits that you're going
6	to get from the spray, the uncertainty of the
7	benefit that you're going to get from the pool.
8	In 1150 those uncertainties were
9	estimated and they range from no scrubbing up to
10	1,000. And they also looked at pool scrubbing and
11	concrete-core interactions in some detail.
12	And so the issue is largely one of you
13	have processes inside the containment that are
14	driven be melting sequences and uncertainties in
15	core melt progression, and the conditions of the
16	wetwell and the availability of the spray and the
17	efficacy of the spray. And in the perspective of
18	those uncertainties does this provide compensation,
19	does this make things more certain. Is this sort of
20	like the big eraser. You make a lot of mistakes but
21	this would take care of a lot of the uncertainty.
22	So I think if you have the ideal
23	conditions in the wetwell and if you have the 3,000
24	or 4,000 gpm spray in a large containment then you
25	get a huge benefit, or a large benefit from those
I	I

(202) 234-4433

	322
1	mechanisms. But the analysis that we've done
2	before, and this is for 1150, doesn't show that that
3	in the mean the median that that benefit is very
4	large. So, in the face of that uncertainty is this
5	preferable.
6	The other thing is that I mentioned
7	earlier for the Mark II's part of the reason for not
8	putting a vent on a Mark II is because of the
9	concern about the pool bypass altogether. So
10	there's a question there for Mark II's. If we're
11	not if we don't have new analysis that takes away
12	that concern about the bypass by melting through
13	underneath the containment then it seems that our
14	previous analyses show that you have to have a
15	filter. That's what the CPIP said.
16	MR. COLLINS: I think the question deals
17	with the sufficiency of the filter. At what point
18	do you stop.
19	MEMBER SHACK: That's defense-in-depth
20	when do you stop is what he's really asking about.
21	MR. MONNINGER: We talk a lot about
22	defense-in-depth and there's been some efforts
23	within Reg Guide 1.14 to allow the staff some tools
24	for assessing the extent of the robustness of
25	defense-in-depth but it's a very difficult area.
	I

(202) 234-4433

	323
1	There isn't much guidance out there to use to say
2	what is enough, what is sufficient. Can you really
3	quantify.
4	MEMBER POWERS: And that is exactly why
5	you have to resort to more quantitative risk
6	assessment methodologies because that's the vehicle
7	for capping defense-in-depth.
8	MEMBER SHACK: So sayeth the
9	structuralist.
10	MEMBER POWERS: So sayeth the
11	structuralist.
12	MEMBER CORRADINI: Can I ask it a
13	different way? What I heard in all the discussion
14	prior, primarily in Marty's case is that when he
15	talk the cumulative of all the things I'm not
16	going to talk about the money part is that for
17	health impacts this doesn't you can't find a way
18	to make the argument.
19	MR. COLLINS: That's right.
20	MEMBER CORRADINI: Are there other
21	things that you're going to make the argument, that
22	you might want to make the argument to do it for?
23	Because I don't sense it from a health impact
24	statement.
25	MR. COLLINS: Given the timing of the
ļ	

(202) 234-4433

	324
1	potential release and evacuation the only health
2	the majority of the health impacts are from the
3	repopulation when they come back, the re
4	MEMBER RAY: Michael, what about the
5	last bullet up there? I mean, to me, you know,
6	having operated a plant the ability to lower the
7	pressure more readily because I have a filter than I
8	would feel otherwise I could do seems like a great
9	benefit. I mean, I ran a large dry containment
10	plant where you couldn't do it at all period.
11	MEMBER POWERS: I guess I don't know
12	enough about operations here so I look to you guys
13	that know much more. But to me from an offsite
14	standpoint if I said I'm essentially creating a
15	higher level of confidence, assurance that I don't
16	have to deal with offsite emergencies and I improve
17	onsite severe accident capabilities to manage the
18	accident that's a very big thing. You already have
19	a filter.
20	MEMBER RAY: That's correct. I'm just
21	saying it improves the confidence I would have as an
22	operator to open the vent on the basis that I don't
23	really know how the wetwell is going to work. I
24	have more confidence in this design than I do in the
25	wetwell albeit you know more about it than I do and
l	I

(202) 234-4433

	325
1	I defer to your judgment. But it would improve my
2	confidence to open the vent if I had a filter on the
3	end of the vent to get the pressure down if I
4	thought that was something I needed to do. It's as
5	simple as that.
6	MR. MONNINGER: We think there's a level
7	between the filtered vent for a decontamination or a
8	decontamination factor and the integral plant
9	systems. We believe there's a level of independence
10	there. The plant, what's held up within the core,
11	what's released, the timing, the core-concrete
12	interaction, the temperatures within the suppression
13	pool, the timings and all. You know, we don't
14	believe you have those issues, those uncertainties
15	in having to know the accident progression, the
16	release pathways, et cetera, with the filtered vent.
17	It provides a level of independence from the
18	accident progression. It may not be fully
19	independent but having it sit out there.
20	MEMBER STETKAR: You may be talking at
21	odds because as I understand your characterization
22	that's a purely passive containment function
23	filtered vent, is that correct?
24	MR. MONNINGER: You said purely.
25	MEMBER STETKAR: Purely passive.

(202) 234-4433

	326
1	Rupture disk type.
2	MR. MONNINGER: It could be but there's
3	a bypass around it that you could engage.
4	MEMBER STETKAR: Harold is thinking
5	about other functions in addition to that.
6	MEMBER RAY: That's right. I'm just
7	saying that containment pressure is high. I'd like
8	to be able to relieve it. I'm more I'm just
9	reading the words off the chart. I have more
10	confidence in doing that if I have a filter on the
11	end and I'm not having to rely on somebody's
12	speculation about how the wetwell is going to do the
13	filtering for me.
14	MEMBER STETKAR: And in essence it is
15	more integrated to accident progression than what's
16	going on.
17	MR. MONNINGER: Right. And it would
18	have both the thought is it may potentially have
19	both pathways.
20	MR. COLLINS: Actually, Mr. Ray's point
21	is what I was referring to as indirectly helping
22	containment because
23	MEMBER RAY: No, I understand that.
24	MR. COLLINS: it frees the operator
25	to use the vent as a tool to help protect against
ļ	I

(202) 234-4433

	327
1	other challenges to the containment, challenges
2	other than overpressure challenges such as potential
3	hydrogen challenges or liner melt-through
4	challenges. I'll talk about both of those in a
5	couple of slides.
6	MEMBER POWERS: I guess I'm a bit
7	mystified on the hydrogen challenge.
8	MR. COLLINS: I'm going to have a slide
9	on that. It's about two down. Okay?
10	So as far as strengthening the
11	containment goes though I see you get the direct
12	effect of filtering what would otherwise be
13	unfiltered in the vent and then you get the freeing
14	of the operator to help other challenges to the
15	containment, okay?
16	There's also another before I get to
17	those, there is another defense-in-depth benefit
18	from filtering potentially which does touch on
19	health effects. Could you give me the next slide.
20	Filtering can also enhance defense-in-
21	depth for emergency planning implementation. This
22	would occur if we had an event where the earliest
23	challenge to the containment was an overpressure
24	challenge. In such a case if you had a filtered
25	vent that would provide protection against the
	I

(202) 234-4433

	328
1	overpressure challenge, the early one, but another
2	challenge to containment may be right down the road
3	like a liner melt-through, right? But that would be
4	somewhat later in time. So, the time between the
5	second challenge and the first challenge is
6	additional margin for the completion of sheltering
7	and evacuation. So that's an additional defense-in-
8	depth benefit.
9	MEMBER ARMIJO: How much of an increase
10	is that?
11	MR. COLLINS: That would really be
12	well, it would be event-dependent, it really would.
13	I mean, if you have an event where you get a little
14	bit of injection, injection gets knocked out and you
15	get another little bit of injection it could be a
16	substantial difference in time.
17	CHAIR SCHULTZ: That would have to tie
18	into a different emergency planning strategy
19	associated with
20	MR. COLLINS: The start of emergency
21	planning wouldn't change. You start at the same
22	time. The question is how much time you have before
23	you have a real challenge to the people where
24	there's a real release. It would be longer. So
25	there's more margin to complete the emergency

(202) 234-4433

	329
1	actions. You wouldn't start them at any different
2	time.
3	CHAIR SCHULTZ: I understand.
4	MR. COLLINS: You're just putting off
5	the real challenge to the containment. You
6	eliminate the early challenge, gives you more time
7	before you get the next challenge.
8	MEMBER POWERS: Let me understand.
9	CHAIR SCHULTZ: I would pick at this
10	phrase in there, but I'll let Dana go ahead.
11	MEMBER POWERS: At my plant I'm
12	guaranteed to release heavier-than-air noble gases.
13	Your filter does nothing for that. That shine from
14	that release is guaranteed then to afflict your
15	evacuating population. If I didn't filter I don't
16	have that guarantee that they will be afflicted by a
17	release.
18	MR. COLLINS: No, you would vent anyway
19	when you get the overpressure challenge initially.
20	You would release more than just the noble gases.
21	MEMBER POWERS: Whenever that is
22	necessary or happens naturally.
23	MR. COLLINS: Yes.
24	MEMBER POWERS: But you're claiming
25	credit for margin where I'm guaranteed to put a
I	

(202) 234-4433

	330
1	shine on those people.
2	MR. COLLINS: Okay, I guess you would
3	get a lesser effect by having the filters.
4	MEMBER POWERS: So I'm not sure what
5	I've gained here.
6	MR. COLLINS: Okay, you're saying you
7	haven't necessarily gained anything in EP space.
8	Okay, I understand what you're saying.
9	MEMBER POWERS: I'm just not clear what
10	you've gained here, especially when I look at the
11	consequence analyses that were presented earlier.
12	They seem that if I do a wetwell venting I don't
13	seem to see any distinguishable difference between
14	ordinary wetwell venting and venting through a
15	filter system.
16	MR. DENNIG: Yes, that's for that
17	sequence. For that set of circumstances, for that
18	sequence where you get the factor of 200 or 300 that
19	MELCOR calculated for the pool scrub. In a sequence
20	where you get 10 or less the core is outside the
21	vessel already and you're not getting the blowdown
22	through the T-quenchers and it's going through the
23	downcomers, the median is and the uncertainty
24	calculations is around 10 and the range is from, you
25	know, 1 to 1,000.
I	I

(202) 234-4433

331 1 And so if you get a sequence that puts 2 you up in the high range you're in good shape. Ιf you get a sequence that puts you out of that range 3 4 where the temperatures and the hydraulic conditions 5 in the wetwell or the level in the wetwell have changed then you don't get that. And so the 6 7 question is again, it's a hedge against or for 8 sequence independence if you will. 9 MEMBER SHACK: Which I quess isn't 10 captured in any of the analyses that you've done because you've always assumed you have those kinds 11 of releases. 12 The cases that were run, 13 MR. DENNIG: there were 30 cases. In all of those cases --14 MEMBER SHACK: The PRA feeds all events 15 16 through that back-end bin whereas in reality it 17 should be on a sequence-by-sequence basis and you may get the effects you're talking about. 18 19 MR. DENNIG: Yes. What I've been referring to is the uncertainty analysis that was 20 done in NUREG-1150 for all the sequences that twere 21 modeled for Peach Bottom. 22 MR. COLLINS: Next slide. Okay, this is 23 24 where the operator's confidence in having a clean release can help. And this is the hydrogen control 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	332
1	example I was talking about.
2	If the operator is confident that he can
3	vent without a significant offsite release then he
4	can intervene early to vent hydrogen and keep
5	containment pressure low. And if containment
6	pressure is maintained low that would reduce leakage
7	of hydrogen through penetration seals and decreased
8	leakage then reduces the threat of a hydrogen
9	explosion in the reactor building and any
10	consequences that go along with that explosion. And
11	it helps emergency responders who are probably
12	working in the reactor building to try to get some
13	water injected.
14	MEMBER POWERS: You're drawing a
15	distinction between the it is cleaner, you're
16	arguing, to go through an additional filter than
17	just going through the wetwell.
18	MR. COLLINS: Yes.
19	MEMBER POWERS: By roughly a factor of
20	10. But the noble gases are unaffected which would
21	have a most serious impact indeed upon your
22	emergency workers around the facility. They get
23	direct shine. It's pretty significant actually for
24	them. A few hundred million curies of xenon and
25	krypton that you will release.
	1

(202) 234-4433

	333
1	MEMBER STETKAR: The other question is
2	if they don't release it what will the corresponding
3	doses be. You know.
4	CHAIR SCHULTZ: If the hydrogen is not
5	controlled.
6	MEMBER STETKAR: If the hydrogen is not
7	controlled.
8	MEMBER BLEY: Time delay, it will
9	eventually get
10	MEMBER STETKAR: Yes, that's what I'm
11	saying. If indeed that time delay is long enough to
12	provide, you know, some sort of mitigation then it
13	can be a measurable delta.
14	MEMBER SIEBER: If you use that argument
15	though it seems to me that you need to have the vent
16	system capable of sustaining the hydrogen
17	deflagration or explosion. The condition to me, if
18	you want to use that argument, that you have to
19	design the vent system so that you won't get an
20	explosion or a deflagration which adds some cost to
21	it.
22	MEMBER SKILLMAN: What you've just
23	introduced in my mind is almost an entirely
24	different way of looking at this. Probably similar
25	to around the table I've been involved in bleeding
ļ	I

(202) 234-4433

	334
1	hydrogen from the pressurizer or from the makeup
2	tank to the gaseous waste holdup tank. I've done it
3	manually, know how to do it. That is an operations
4	action that an operator takes to change chemistry,
5	to change the dissolved hydrogen concentration or
6	maybe take preemptive action for a change that is
7	going to change the size of the bubble. That's
8	actually operating the reactor fueling system.
9	What you've introduced here is the idea
10	of operating the containment. That's what I
11	interpreted from what you just said. And there's
12	nothing wrong with that from my perspective except
13	that that is introducing a new set of operator
14	actions, a new set of operator behaviors and
15	intelligence as Dr. Powers said, a new path for what
16	could be significant quantities of xenon and
17	krypton.
18	When one decides to do this one is
19	making a decision to operate the containment.
20	That's different than having a passive membrane
21	first and release material to a filtered chamber.
22	So I think if we go down this path we need to be
23	thinking about a whole new set of training, a whole
24	new set of behaviorals that ensure that this is done
25	the way it is supposed to be done.
ļ	I

(202) 234-4433

(202) 234-4433

	335
1	MR. MONNINGER: So at risk for
2	potentially being wrong I'm pretty sure the current
3	EOPs for primary containment hydrogen control once
4	you reach 5 or 6 percent within the containment
5	direct you to vent currently. So, you know, those
6	noble gases, those impacts, et cetera, could and
7	I'll pull, you know, the EPGs, EOPs to make sure,
8	but I'm pretty confident. You don't just vent for
9	pressure control. You actually vent for hydrogen
10	control. And you can actually read into the primary
11	containment hydrogen control EOPs that would lead
12	one to believe that in the absence of indication of
13	hydrogen you could even potentially vent.
14	So what I'm trying to say is what we're
15	talking about here isn't potentially any worse than
16	the current state in which they would potentially be
17	releasing these noble gases along with the hydrogen
18	anyway. That's one point.
19	The second thing I would mention is
20	there is the current proposal in front of us from
21	the BWR Owners Group to proceed with a proposal for
22	early venting with the existing design of the plant.
23	So, I think to a certain extent it depends upon what
24	we're comparing this scenario to. I think a case
25	can be made that the scenario and the consequences
I	I

(202) 234-4433

	336
1	and the noble gases already exist. And what the
2	staff is potentially doing would be to make the
3	scenario better. Maybe not perfect, but better.
4	But we can check the
5	MEMBER SKILLMAN: I accept your argument
6	and your logic. You're saying hey, maybe it's just
7	an extension of what exists today, perhaps with some
8	enhanced training or some enhanced intelligence.
9	All I'm saying is you're actually talking about
10	operating your containment perhaps differently than
11	what is presently envisioned by the emergency
12	procedures or other procedures that the plant uses.
13	It just strikes me this is different.
14	CHAIR SCHULTZ: John, in the scenario
15	you painted as you've indicated the advantage of
16	having a clean release for hydrogen control, it's
17	very qualitative.
18	MR. MONNINGER: Yes.
19	CHAIR SCHULTZ: In terms of whether it's
20	going to impact operator action or not. Because in
21	what you've just described the operator is directed
22	to perform the release. So in one sense one would
23	say you can't use that as an argument to put a
24	filter on it or not in terms of this increasing
25	confidence.
Į	I

(202) 234-4433

	337
1	MR. MONNINGER: Well, I guess
2	CHAIR SCHULTZ: How you look at operator
3	action.
4	MR. COLLINS: Okay, next slide. This
5	goes along the same lines. If the operator is
6	confident of a reduced release then allows early
7	operator intervention to control pressure. And if
8	you can sustain low pressure you're facilitating
9	injection from any low-pressure source which may be
10	available. This increases your chances of early
11	melt arrest and protection of the liner.
12	Again, it would sustain lower pressure,
13	can reduce the leakage of fission products through
14	the penetration seals. This is the same question
15	that Dr. Powers just raised. If you're releasing
16	the noble gases though what are you trading off
17	there.
18	So maybe the last bullet is arguable.
19	It facilitates the use of all onsite resources. We
20	have to see. It seems to me if you have a filter on
21	there you've got a tool which you need to use as
22	best you can.
23	MEMBER POWERS: Well, the imponderable
24	in my mind is this question of am I more confident
25	with a filter or just with my pool. Now, I've done
Į	

(202) 234-4433

	338
1	experiments with pools and I'm enormously confident
2	in their ability to decontaminate. I become even
3	more confident, yet further confident if in fact I
4	use the wetwell sprays in conjunction with those
5	pools. So maybe I personally.
6	I don't know about operators or other
7	people. I don't know about the staff. If there's
8	some increment in their confidence that they have.
9	I mean, I don't know their psychology so I just
10	can't say. But what I do know is that pools are
11	enormously capable of removing aerosols and that
12	sprays are my darlings because they're just
13	wonderful in many, many ways. They especially
14	the drywell sprays because they do all kinds of
15	cooling functions in terrible things that are very
16	hot because you'd lost your drywell coolers at this
17	point in the accident. That's a half a megawatt of
18	heat removal that you really need in a very critical
19	location.
20	Now, what I don't know because I haven't
21	looked lately is in looking at the risk analyses how
22	often do we not have those spray systems. And maybe
23	there is a delta. But in all of the risk analyses
24	that have gone before nobody had highlighted that.

I hear people mumbling MEMBER STETKAR:

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	339
1	down there. I don't recall a lot of this. I
2	suspect a fair fraction of the core damage sequences
3	you may not have the normally installed sprays
4	available. If you think about power failures, dc
5	fires, seismic events, those types of things. You
6	know, it's been I don't have the models in front
7	of me. You certainly will have them available for
8	the high-pressure transients, you know, those kind
9	of things.
10	MEMBER POWERS: And that I mean, and
11	all of this may just simply argue that option 2 is
12	the way to go which is not the decision that's being
13	made here. It's developing qualitative arguments to
14	support option 3 right now. And I worry that we
15	heard developing arguments to support option 3 that
16	maybe we could develop arguments that say there are
17	downsides associated with option 3, or there are
18	options that achieve these things that I can do in
19	option 2.
20	MEMBER RAY: Well, as I said to you,
21	Dana, I'm more looking for what's the downside of
22	putting one of these things in.
23	MEMBER POWERS: Well, operational
24	complexity is the first thing that comes to mind.
25	MEMBER RAY: But the cost is not a
ļ	I

(202) 234-4433

(202) 234-4433

340 1 significant downside to me. But there may be other downsides and I'm certainly open to hear what they 2 3 are. 4 MEMBER SIEBER: One of the things that you point out here is you get early operator 5 intervention to control pressure. 6 There are a lot 7 but -- there's not a lot, but some BWRs, 8 particularly ones with power upgrades that rely on 9 containment pressure to avoid cavitating their 10 pumps, particularly as a result of GSI-191. If I was an operator I would probably think I have to 11 drive down a very skinny road now between too much 12 pressure and too little pressure in order to control 13 14 my -- what's going on in containment. 15 And I think that when you put that kind 16 of situation on an operator that's all he'll do. He 17 won't go and do other emergency duties. He'll concentrate on that because that's a difficult task 18 19 and it's all done manually. And I have --MEMBER RAY: We already confronted that 20 discussion. Without a severe accident we still have 21 to do that, don't we? 22 The notion is that you 23 MR. DENNIG: 24 really don't know. In the situations that we're talking about you don't know what your assets are 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	341
1	going to be basically. I mean that's the
2	presumption. You may have a lot of things, you may
3	have no things. What are your assets, how are you
4	going to work. We focused on the severe accident
5	management where you've gotten where you are because
6	you don't have anything. You don't have very much
7	to work with. You have to cobble something up.
8	So, all the features, the drywell spray,
9	the wetwell spray, core spray, all those things are
10	dependent on ac power, emergency ac power, and you
11	may not those. We're going to be damaged in some
12	way. So, the context is what do I know about my
13	assets, what am I going to have, what can I discern
14	of the conditions inside the containment and in
15	light of the information I have and the assets I
16	have what do I do.
17	MEMBER BANERJEE: What does early mean
18	here? How early?
19	MR. COLLINS: He could vent before he
20	reaches the containment design pressure or before he
21	reaches a rupture disk set point.
22	MEMBER SIEBER: Or before you get enough
23	hydrogen concentration to blow the reactor building
24	up.
25	MEMBER BANERJEE: So, let's take a
Į	I

(202) 234-4433

	342
1	scenario.
2	MEMBER SIEBER: That to me is the
3	driving issue is hydrogen buildup.
4	MEMBER BANERJEE: Can you sort of take a
5	scenario what is the earliest time that this could
6	happen? Are we talking about hours, days?
7	MEMBER SIEBER: Depends on the accident.
8	MR. MONNINGER: I mean for this, if we
9	went to the MELCOR calculations, you know, you would
10	be 16-18, you know, probably
11	MEMBER STETKAR: That's not the earliest
12	time.
13	MR. MONNINGER: For the MELCOR
14	calculations.
15	MEMBER STETKAR: But the MELCOR
16	calculations is not the earliest time in the real
17	world.
18	MR. MONNINGER: Right, right.
19	MEMBER BANERJEE: But what is the
20	earliest? Is it 12 hours, 15 hours?
21	MEMBER STETKAR: I don't do those
22	calculations, but the MELCOR calculations
23	MEMBER SIEBER: Beyond the first shift
24	I'll bet you. When you first start considering.
25	MR. DENNIG: Between 10 and 12 hours.
	I

```
(202) 234-4433
```

343 1 MR. MONNINGER: I mean, you could take the MAAP, the EPRI work and see, you know. 2 But 3 there's even sequences that would be even earlier 4 than that. You're a boil-down sequence. I mean, your LOCA if nothing else you're not boiling down. 5 You've got the pot of water there, you've got ATWS. 6 7 CHAIR SCHULTZ: In terms of timing think 8 of the progression at Fukushima. 9 MEMBER SIEBER: An active break in the 10 coolant system I think would bring you there pretty fast. 11 MEMBER BANERJEE: So it's a few hours. 12 CHAIR SCHULTZ: There may things that 13 14 you plan to do earlier than that certainly. MEMBER BANERJEE: You could stress the 15 16 operator. 17 CHAIR SCHULTZ: That's the question as we talked on the previous slide. Is that a stressor 18 19 to the operator or is that an advantage to the 20 operator? MEMBER SIEBER: Depends on the operator. 21 22 Different operators act different ways. MEMBER BROWN: It could be more of a 23 24 stressor if he figures out he can't do anything at all and the pressure is building up. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	344
1	CHAIR SCHULTZ: Exactly.
2	MEMBER BROWN: So which way does the
3	stressor go depending on what the specific event is.
4	MEMBER BANERJEE: So in a sense you've
5	given the operator another tool in the repertoire of
6	whatever they can do.
7	CHAIR SCHULTZ: I think that's what Bob
8	was getting to, Bob Dennig was getting to with
9	respect to the operator options.
10	MEMBER STETKAR: But that's what I
11	mentioned earlier. I think it would be really
12	interesting to look at plants that have implemented
13	the filtered vents to see whether, first of all,
14	they've actually changed their operator guidance,
15	their philosophy for dealing with these accidents.
16	If they have it would be really interesting to see
17	how that's changed. Have they put higher priority
18	on venting earlier? Have they put lower priority on
19	trying to estimate what the offsite dose might be
20	before they make a decision to vent? And I don't
21	know the answer to those questions.
22	But I mean a lot of those things can
23	feed into some of these qualitative arguments just
24	from the experience of people who have done it. You
25	don't need to speculate because actual people in
l	I

(202) 234-4433

	345
1	Europe who have plants that look an awful lot like
2	our plants have done this.
3	MEMBER BANERJEE: They also require
4	containment overpressure?
5	MEMBER CORRADINI: Require or allow?
6	MEMBER BANERJEE: And allow.
7	MEMBER ARMIJO: Once you allow it, it's
8	required.
9	MEMBER SHACK: Well, I mean we focused
10	too on the early use of this but to me one of the
11	attractive features is that you always have a vent
12	available. I might lose the wetwell vent in the
13	number of sequences.
14	MEMBER SIEBER: Yes, or it may not do
15	you any good.
16	MEMBER SHACK: And here I would have it.
17	MEMBER ARMIJO: You'd have the drywell
18	vent.
19	MEMBER SHACK: Well, I mean but I
20	mean I would always have a filtered vent available.
21	MR. COLLINS: You just went to my next
22	slide.
23	MEMBER ARMIJO: But Dana said, okay, you
24	can spray for the drywell venting. And you're
25	saying okay but
	I

	346
1	MEMBER SHACK: no ac power.
2	MEMBER ARMIJO: Well, you know, maybe
3	you'd better spend your money is better spent
4	putting \$30 million into assuring that you have
5	power for your sprays.
6	MEMBER SIEBER: So you buy another
7	diesel and it doesn't work.
8	MEMBER ARMIJO: Where are you going to
9	spend your money, on the existing equipment or a new
10	piece of equipment that's sort of like a panacea,
11	it's going to solve all your problems? Things never
12	quite work that way. It just seems to me we haven't
13	looked hard enough at how to make the best use of
14	existing equipment. That's where option 2 I guess
15	was going. Maybe broader.
16	MEMBER POWERS: One other question I
17	have more on philosophical basis for your study
18	because I don't know. I like confidence. I need a
19	filter. If I look at the risk profiles of our
20	plants I certainly see that seismic events are
21	commensurate with internal events as initiators.
22	And most of your sequences appear to be internal
23	event sequences. If I have a seismic initiator and
24	it's sufficient to disrupt my plant what does it do
25	to the filtration system? Or is that outside of
I	1

(202) 234-4433

	347
1	scope?
2	MR. MONNINGER: I think we would have to
3	if the recommendation was to proceed with filters
4	we would have to explicitly say whether the staff
5	believes it is merited to withstand seismic
6	conditions or not.
7	I mean if we're banking on it to provide
8	that level of protection post seismic we would
9	provide some level of need for designing and
10	withstanding seismic events. But I don't think
11	we're at that point yet. I'm not sure if that
12	helped.
13	MEMBER SHACK: Well, you said earlier
14	somebody said earlier in the meeting that the vent
15	and the presumably I carry that over into the
16	filter would be seismically qualified. It wouldn't
17	be something else but it would be seismically
18	qualified.
19	MR. MONNINGER: I think they might have
20	said the European.
21	MEMBER SHACK: It wouldn't be safety.
22	MR. MONNINGER: The Europeans were
23	and Bob can talk.
24	MR. DENNIG: The European installations
25	are except for single-failure they are safety-
1	

```
(202) 234-4433
```

	348
1	grade seismic the same as the plant. It's across
2	the board. It matches up that way except for the
3	single-failure notion.
4	One way to look at this is that given
5	that you have a containment that is of a size that
6	you know that it's too small and you have to vent
7	it, you're going to have to vent it, is it
8	beneficial to have that vent filtered or to just
9	take whatever release that you get under the
10	circumstances. But keeping it all inside the
11	containment isn't one of the options.
12	MR. COLLINS: Next slide.
13	CHAIR SCHULTZ: Let's see your next
14	slide.
15	MR. COLLINS: Which is what Dr. Shack
16	was just talking about. To have confidence again in
17	your filtration system and you can use the drywell
18	as a venting source as well as the wetwell.
19	And we also note that the current SAMGs
20	direct the operators to flood the drywell floor
21	which will eventually flood up the wetwell and block
22	off the wetwell vent. So the current strategies
23	would have them switch to a drywell vent. In this
24	case you'd have the same protection whether it was
25	coming off the wetwell or the drywell.
Į	I

(202) 234-4433

	349
1	Also, if you have a filtered system I
2	think you'd be more confident putting a rupture disk
3	on the system because you have minimal consequences
4	of an inadvertent actuation. Okay, next slide.
5	MEMBER SIEBER: If you have a rupture
6	disk that means you have no containment overpressure
7	to provide MGSH from then on.
8	MEMBER RAY: You've got an isolation
9	valve, Jack, but you'd have to close it, that's for
10	sure.
11	MEMBER SIEBER: Right, manually.
12	MEMBER RAY: That's right.
13	MR. COLLINS: Now, the second-to-last
14	item is consequence uncertainties. Once fission
15	products escape from the containment land
16	contamination comes into play regardless of what EP
17	actions you've taken into account. And the amount
18	of land contamination to a large extent is dependent
19	upon the magnitude of the release and the weather.
20	And the consequences associated with
21	land contamination are dependent on other factors as
22	well. The longer term weather patterns affect it,
23	the local hydrology, whatever the land use is and
24	what the public response is. And so the total
25	consequences if we try to do total economic
	I

(202) 234-4433

Í	350
1	consequences are really, really uncertain. Can I go
2	the next slide as well because there are more
3	consequence areas?
4	There's also the uncertainties in
5	consequences with regard to public response. I
6	mean, public anxiety can lead to things like impacts
7	on your energy supply chain. This is what happened
8	in Germany. They're closing down the nuclear power
9	stations. The Japanese are threatening to close
10	down their power stations.
11	I mean, when people get have to be
12	relocated for long periods of time, potentially
13	permanently, that has big socioeconomic impacts
14	which can affect things like the energy supply
15	chain. So a large release puts us in a condition
16	where we have little control over the potential non-
17	health effect consequences.
18	MEMBER ARMIJO: I think that holds for
19	any release. I think the German experience which
20	was shocking to me that even though they have all
21	the bells and whistles, they're still shutting down
22	all their plants. You know, that's fact.
23	MR. COLLINS: I wonder if what the
24	view of Fukushima would be if they hadn't had large
25	releases but they had melted down three cores. I
	I

(202) 234-4433

	351
1	wonder if that would be viewed as a success or a
2	failure.
3	MEMBER ARMIJO: I think they'd still
4	shut down all the plants.
5	MR. COLLINS: I wonder. If there had
6	been no release from that event after the horrific
7	tsunami, right? You could say despite the fact that
8	we had this horrific event, melted the cores, the
9	people were protected, the land was protected.
10	Would we call that a successful failure?
11	MEMBER ARMIJO: Or when people were
12	protected at Fukushima they certainly evacuated and
13	were inconvenienced and frightened, but their health
14	and safety was protected. That didn't count for
15	beans.
16	MEMBER POWERS: That raises the question
17	of I wonder what the magnitude of release would have
18	been if we had done a wetwell vent following the
19	guidelines that we think we have in place at our
20	plants.
21	In fact, I think that we see in the
22	analyses that the suppression pools work pretty damn
23	well for limiting the radionuclide release. When
24	they were allowed to do so.
25	MR. DENNIG: The first 4 days at
	l

(202) 234-4433

	352
1	Fukushima were wetwell vent releases. So you can
2	look at what the releases were during that period of
3	time if you want to get a sense of what value the
4	wetwell was.
5	MR. MONNINGER: I think there's a
6	question with regard to what happened to Unit 2.
7	And they talk about the potential preponderance of
8	the release or the land contamination coming from
9	Unit 2. I think there's a question out there as to
10	where that Unit 2 actually released from.
11	MEMBER POWERS: I think that's true.
12	MR. MONNINGER: For Unit 2.
13	MEMBER POWERS: And I certainly don't
14	know the answer. And I don't know of anybody that
15	does, but maybe there are people that do. But I
16	don't.
17	MR. COLLINS: There's also consideration
18	of our international practices. A requirement for
19	filtering the containment systems has been in place
20	at several European countries for many years, and
21	other countries are now adding the requirement.
22	Canada, Taiwan, Japan.
23	And if we went forward with a
24	requirement it would be directly responsive to a
25	recommendation from the recent meeting of members of
ļ	I

(202) 234-4433

	353
1	the Convention on Nuclear Safety where they
2	recommended measures to ensure containment integrity
3	and filtration strategies and hydrogen control. So
4	another consideration.
5	MEMBER POWERS: But aren't you already
6	in compliance with that? If I wetwell vent I have a
7	filtration strategy. If I inert I have a hydrogen
8	management for containment. So aren't you fully in
9	compliance with that?
10	MR. COLLINS: I don't know how the
11	judgment is made as to whether we're in compliance
12	with those practices or not. Certainly enhancing
13	the filtration capability and the hydrogen
14	management would be consistent with what they're
15	recommending.
16	MEMBER POWERS: Well, enhancing is not
17	required here. It says measures to ensure
18	containment integrity, filtration strategy and
19	hydrogen management for containment. It seems to me
20	like you have all of those already in these
21	particular plants.
22	MR. COLLINS: The recommendation is to
23	upgrade, right?
24	MEMBER ARMIJO: Your option 2 is in fact
25	an upgrade, isn't it?
I	·

(202) 234-4433

	354
1	MR. MONNINGER: Yes.
2	MEMBER ARMIJO: So that would be
3	consistent with that guidance. Maybe not the one
4	you want to do or you think is the best, but it
5	would be consistent.
6	MR. MONNINGER: We hadn't concluded on
7	any of the options yet.
8	MEMBER ARMIJO: Yes. Or what seems to
9	be the preferred.
10	MR. DENNIG: Option 2 does have the
11	downside of looking like you're saving the site,
12	protecting the site and dumping to the environment.
13	You are reliably able to open that vent to vent to
14	the environment, but it's not going to affect the
15	site of the reactor building or the response. So it
16	does have that downside.
17	MEMBER BANERJEE: Does that statement
18	only apply to BWRs or to PWRs as well?
19	MR. MONNINGER: It applies to PWRs as
20	well.
21	MEMBER BANERJEE: So, if I understand
22	it, most of the members are upgrading their PWRs as
23	well. Very few aren't.
24	MEMBER CORRADINI: France is. I'm not
25	sure others are.
I	I

(202) 234-4433

	355
1	MEMBER BANERJEE: Even the Chinese are.
2	MEMBER STETKAR: Yes, if you looked at
3	that chart.
4	MEMBER CORRADINI: The chart shows the
5	Chinese are doing their CANDUs. It's not showing
6	anything else from the chart.
7	MR. DENNIG: I'll get you the
8	information on the PWRs. They're doing forward
9	build on the PWRs. They're installing filters.
10	MEMBER CORRADINI: I guess I don't want
11	to be argumentative, but the current plants under
12	construction along the coast have no filtered vents.
13	The plants that are being planned inland will have
14	filtered vents, at least that's what they told me
15	when I was there 3 weeks ago. So it's different
16	because most of the plants in construction are along
17	the coast.
18	MR. DENNIG: Okay, I'll get you the list
19	that I have.
20	MEMBER BANERJEE: Well, whatever it is,
21	it applies really in general.
22	MEMBER CORRADINI: I guess I asked it
23	once earlier but I come back to it which is maybe
24	this is the wrong way of saying it, but it seems
25	staff is not looking at option 4 at all. You have
ļ	I

(202) 234-4433

1 it there as -- I look at it as do nothing, 2, 3 and some sort of performance-based. But it seems to me 2 3 the performance-based approach gives you flexibility to come up with this performance standard and let 4 5 the industry be somewhat innovative on how they want to approach it. 6 7 And you can designate the attributes you 8 want in that performance standard such that you can 9 demand diversity, you can demand a number of things 10 and still let the industry decide, and it would probably be on a site basis, what they need to do 11 for some sort of goal to be determined. 12 I'm not going to tell you guys what your goal is because 13 14 that also fits into all your -- but I guess I'm not 15 sensing that option 4 --16 MEMBER RAY: That's a two-edged sword, 17 Mike, from the industry standpoint. MEMBER ARMIJO: Maybe. 18 19 MEMBER CORRADINI: I'm sure it is in some sense. But it just seems to me, I sense 20 there's no appetite for option 4. It's always in 21 your slides but I just don't sense that there's a 22 lot of thrill there. 23 There's no health benefit 24 MEMBER REMPE: so it would be something for diversity? I mean, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	357
1	what would be the
2	MEMBER CORRADINI: Well, we were in
3	another subcommittee meeting last night, or
4	yesterday for a good 5 hours. I could come up with
5	a couple of reasons to do it.
6	MEMBER REMPE: The land contamination is
7	what you're thinking of?
8	MEMBER CORRADINI: Yes.
9	MR. MONNINGER: And you know, staff
10	appetite for it. I mentioned we're maybe 90 percent
11	looking at options 2 and 3. And you're right,
12	conceptually we're probably only 10 percent there on
13	option 4. We hadn't put the time and effort, but it
14	is, you know, something out there. We believe it
15	would still be within our paper. We're not wedded
16	to giving the Commission 1, 2, 3, or 4, but you
17	know, to the extent that we can develop it between
18	now and then we'll include it. We may come up with
19	two more options.
20	One thing I would mention, these
21	qualitative arguments, if you go back to our
22	quantitative analysis, neither option 2 or option 3
23	makes it on the cost-benefit. So, if the staff
24	we would need qualitative arguments for option 2 or
25	option 3 if that was a recommendation. It may be a
	I

(202) 234-4433

	358
1	little easier on option 2 because it's probably
2	closer to some type of line than it is for option 3
3	but we would need additional argument.
4	MEMBER SHACK: Well, you probably need
5	it for option 4 too I would suspect.
6	MR. MONNINGER: Yes.
7	MR. DENNIG: Once again I think we have
8	a different time line for Mark II's than we do for
9	Mark I's just because of the pool bypass that we've
10	identified earlier in the CPIP where we said that a
11	wetwell vent was not something to do because of that
12	probability of the pool bypass and the lack of a
13	scrub. So, to a certain extent that augurs for a
14	filter on Mark II's unless we have different
15	research that says that that's a different
16	situation.
17	MEMBER BANERJEE: Can't you make some of
18	these qualitative arguments quantitative?
19	MR. MONNINGER: We could potentially but
20	I guess
21	MEMBER BANERJEE: They seem overwhelming
22	compared to the quantitative arguments.
23	MEMBER SIEBER: Yes, but there's no
24	point of proof. You have to the point of proof
25	has to come from the regulatory analysis and you
	I

(202) 234-4433

	359
1	fail there.
2	MR. MONNINGER: I think one of the
3	things with the qualitative arguments that we're
4	sensitive to is we'll put them together and we want
5	to be as specific as possible for this. We don't
6	want to come up with qualitative arguments that can
7	be used for any staff flavor-of-the-day type
8	recommendations for improvement. So that's, you
9	know, it's difficult and there's, you know, once you
10	have a qualitative argument there's just so much you
11	can say. We don't
12	MEMBER BANERJEE: That's why I'm
13	wondering whether you can make them more
14	quantitative.
15	MR. MONNINGER: And I'd have to look at
16	Marty and Sud and Research to see what we could
17	actually do. We can but do we have the tools, do we
18	have the complete level 3 PRAs. You know, a lot of
19	the focus on the traditional PRAs are in the early
20	time frame. But when it comes to land contamination
21	it's not just potentially that core damage accident
22	in the early time frame that you're worried about.
23	It could be the one at 12, 24, 36, or 48 hours.
24	MR. COLLINS: There's so much
25	uncertainty in the analysis we're doing already if
I	I

(202) 234-4433

	360
1	we try to make this quantitative it's going to just
2	be more uncertain.
3	MEMBER SIEBER: I don't think you can do
4	it.
5	MEMBER CORRADINI: But let me now now
6	that I said one thing let me turn around and say
7	something else. What's the rush to judgment on what
8	to do with this? I sense a rush. Is this because
9	it's defined as a Tier 1 activity and you must come
10	to a judgment soon? It seems to me this is a fairly
11	big change such that you want to do it right with
12	enough thinking that you might want to wait till
13	some sort of level 3 PRA results come in.
14	MR. MONNINGER: It's a Tier 1 item so we
15	owe recommendation to the Commission end of
16	November. That recommendation could be to do
17	nothing.
18	MR. RULAND: Not only was this a Tier 1
19	item, the staff actually requested a delay. So, the
20	staff believed they needed to delay this because we
21	had additional work to do. So I would argue the
22	staff has not been rushing this.
23	MR. MONNINGER: We've actually had two
24	delays because this was originally part of the Tier
25	1 in those orders that went to the Commission in
ļ	I

(202) 234-4433

	361
1	February and March. However, we said it's complex
2	and can we deliver it to you in July. And then we
3	didn't make July and we've requested a second
4	extension. So you could argue that this
5	recommendation was actually due back in February.
6	MEMBER CORRADINI: So you're late.
7	(Laughter)
8	MR. RULAND: No, we are on time.
9	MR. MONNINGER: With all our schedule
10	extensions we are on time.
11	MEMBER REMPE: Do you think you're ready
12	or do you need another extension?
13	MR. MONNINGER: Personally, you know,
14	personally I mean with all the work that's been done
15	over the years, what's been done internationally I
16	don't think if we studied it for 2 or 3 more years
17	we would be at a significantly different state in
18	developing our recommendation. I don't think that
19	our quantitative analysis would significantly change
20	over the next 2 to 3 years. That's my personal
21	opinion.
22	MEMBER SIEBER: You might make it more
23	precise but I don't think you're going to come up
24	with a different answer.
25	MR. RULAND: Yes, we believe that's the
	I

(202) 234-4433

	362
1	case.
2	CHAIR SCHULTZ: Are there other
3	questions from the committee to Tim Collins on his
4	presentation? With that I'd like to thank you, Tim,
5	for the discussions that you've initiated.
6	One more piece on the agenda before we
7	move to public comment and that's, Bob, your
8	discussion associated with next steps.
9	MEMBER SIEBER: One slide.
10	MR. FRETZ: It's one slide. Again, as
11	we started out the whole presentation was that our
12	assessment continues. We really are not done yet so
13	we will hopefully take whatever insights we have
14	gained from today as well as some of the other
15	evaluations and develop the recommendations.
16	Our plans are to engage the steering
17	committee this month and to present our conclusions
18	later this month.
19	CHAIR SCHULTZ: There was more detail in
20	your earlier slide. We'll take this.
21	(Laughter)
22	CHAIR SCHULTZ: With that I'd like to
23	ask for public comments. First, from within the
24	room. We will be opening the phone line so that
25	those on the phone line could make comments if they
Į	1

(202) 234-4433

	363
1	so desire. I'm looking for people within the room
2	that would like to make public comments. Seeing
3	none I'd like to open the phone line for public
4	comments.
5	MR. GUNTER: Paul Gunter.
6	CHAIR SCHULTZ: Paul, I thought you
7	might be on the phone.
8	MR. GUNTER: Thank you.
9	CHAIR SCHULTZ: Please go ahead.
10	MR. GUNTER: Thank you again for the
11	opportunity. My name is Paul Gunter. I'm with
12	Beyond Nuclear. We're out of Takoma Park, Maryland.
13	My question concerns option 1 and it's
14	directed to staff. My understanding is option 1
15	applies basically to for the Enforcement Action
16	2012-050. And I've been trying to understand that
17	the current order does not require for seismic-rated
18	changes to the hardened vent. And the interim staff
19	guidance speaks to what they call seismically
20	robust. And I'm wondering if staff can provide some
21	just a description of the differences between
22	seismically rated and seismically robust.
23	CHAIR SCHULTZ: Paul, two things. One,
24	I'm going to ask you to do two things. The first is
25	in the format for the subcommittee what you're
	I

(202) 234-4433

	364
1	provided the opportunity for is a public comment,
2	not a question to the staff.
3	MR. GUNTER: Okay.
4	CHAIR SCHULTZ: So if you can first just
5	rephrase what you've stated as a comment we'd
6	certainly take it into consideration. And could you
7	please be sure you're speaking clearly as you can
8	into your phone. It's coming over a bit unclear.
9	So in terms of your diction and so forth.
10	MR. GUNTER: Yes, I'm on a cell phone.
11	CHAIR SCHULTZ: Okay, so take that into
12	consideration, please, and rephrase as a comment.
13	Thank you.
14	MR. GUNTER: Thank you. Again, my
15	concern regards the issue of seismic qualification.
16	And given, you know, sitting through this discussion
17	it seems as likely that, you know, the order that's
18	moving forward is what's going to stand. But the
19	current order does not it explicitly states that
20	the enhanced hardened vent will be seismically
21	robust. And it's my concern and it's the concern of
22	a number of members of the public that there is a
23	differentiation between seismically robust and
24	seismically qualified.
25	It was expressed earlier on in the
ļ	

(202) 234-4433

	365
1	subcommittee meeting that there was clearly a need
2	for a seismically qualified hardened vent. But the
3	order that stands, the order that's moving forward
4	now and the order that the licensees are currently
5	basing their designs basically writes out
6	seismically qualified vent.
7	And you know, the concern is that we
8	don't really understand or see how seismically
9	robust is defined. And I think that that needs to
10	be publicly stated. Thank you.
11	CHAIR SCHULTZ: Thank you for your
12	comment. If you could put your phone on mute so
13	that other members of the public calling in can make
14	their comments we'd appreciate it. Thank you.
15	Thank you, Paul.
16	MR. LEYSE: Yes, this is Mark Leyse.
17	CHAIR SCHULTZ: Mark, could you hold on
18	just a moment? I know you've provided us a slide to
19	look at and that's coming up on the screen
20	momentarily. I'll take your comment next.
21	MR. LEYSE: Okay, thank you.
22	CHAIR SCHULTZ: Okay, the slide that you
23	provided is on the screen here and everyone in the
24	room can see it. So go ahead and proceed.
25	MR. LEYSE: Thank you. Okay. Yes. I
I	I

(202) 234-4433

	366
1	would like to thank the ACRS for giving me the
2	opportunity to speak, to fill in for Robert Leyse.
3	The slide which you have on the screen
4	are five questions which he had. And I think the
5	primary question is the fifth question talking about
6	what would the minimum diameter of the vent need to
7	be.
8	CHAIR SCHULTZ: Mark, excuse me. Can
9	you identify yourself?
10	MR. LEYSE: Sure.
11	CHAIR SCHULTZ: Thank you.
12	MR. LEYSE: Mark Leyse, L-E-Y-S-E.
13	CHAIR SCHULTZ: And proceed, thank you.
14	MR. LEYSE: You're welcome. Yes.
15	First, I want to point out that in the September
16	5th, 2012 ACRS meeting Dana Powers said that, quote,
17	"Neither MELCOR nor MACCS have a very firm
18	experimental base for modeling core degradation in
19	BWR accidents," end of quote.
20	And today I want to supplement that. I
21	would like to discuss the fact that the NRC's MELCOR
22	and EPRI's MAAP codes under-predict the rates of
23	hydrogen production that would occur in a severe
24	accident, especially the rates of hydrogen
25	production that would occur if there were a re-

(202) 234-4433

	367
1	flooding of an overheated core which did occur in
2	the Three Mile Island accident. There was a phase
3	where the overheated core was re-flooded. In such
4	case there's massive hydrogen generation.
5	Anyway, the MELCOR code uses the
6	Urbanic-Heidrick correlation to help predict
7	zirconium steam reaction rates. And that
8	correlation is used between the temperatures of 15,
9	20 and 2,880 degrees Fahrenheit. So that's a pretty
10	significant temperature range for a severe accident.
11	In a 2001 OECD Nuclear Energy Agency
12	report, the title is "In-Vessel and Ex-Vessel
13	Hydrogen Sources," it states that computer codes
14	using the available zircaloy steam oxidation
15	correlation such as the Urbanic-Heidrick correlation
16	under-predict hydrogen production in severe accident
17	scenarios in which there would be the re-flooding of
18	an overheated core.
19	So the NRC's calculations with MELCOR
20	using the Urbanic-Heidrick correlation under-
21	predicts hydrogen production rates in severe
22	accident scenarios in which there would be a re-
23	flooding of an overheated core. And the EPRI's MAAP
24	code would also under-predict hydrogen production
25	rates.
I	

(202) 234-4433

	368
1	And there are plenty of other papers
2	that reiterate this same point. A 1999 paper
3	titled, "Current Knowledge on Core Degradation
4	Phenomena: A Review." That's from the Journal of
5	Nuclear Materials. That states, quote, "No models
6	are yet available to predict correctly the quenching
7	processes in the CORA and LOFT-LPFP2 tests. No
8	experiments have been conducted that are suitable
9	for calibrating the models. Since the increased
10	hydrogen production during quenching cannot be
11	determined on the basis of the available zircaloy
12	steam oxidation correlation new experiments are
13	necessary," end of quote.
14	Computer safety models also failed to
15	predict hydrogen production in the initial quench
16	facility experiments. A 1997 Oak Ridge National
17	Laboratory report explicitly states that, quote, "In
18	the initial quench facility experiments conducted at
19	Karlsruhe, Germany the hydrogen generation could not
20	be determined by available zircaloy steam oxidation
21	correlations," end of quote.
22	In a BWR severe accident hundreds of
23	kilograms of non-condensable hydrogen gas would be
24	produced up to over 3,000 kilograms at rates as high
25	as between 5 and 10 kilograms per second. That's if
I	I

(202) 234-4433

369 there were the re-flooding of an overheated reactor 1 2 core. So I want to just point out that a 3 4 reliable hardened vent piping would possibly need a 5 greater diameter in thickness than those of the 6 hardened vents that are presently installed in U.S. 7 BWR Mark I's which are typically 8 inches in diameter. And the hardened vent needs to be 8 9 designed so it would perform well in scenarios in which there would be a rapid containment pressure 10 increase, for example, in the scenarios in which 11 there would be the re-flooding of an overheated 12 13 reactor core. 14 Lastly, I want to say that the safety analysis conducted by the NRC with MELCOR and EPRI 15 16 with MAAP regarding filtered vents for BWR Mark I's and Mark II's need to be conservative, not non-17 conservative. And it seems to me that the results 18 19 of the MELCOR calculations that the NRC has are nonconservative, and that their results are misleading 20 because the code under-predicts the hydrogen 21 generation rates that would occur in an actual 22 severe accident. 23 24 Among other things, this would affect the time that the containment would need to be 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	370
1	vented, especially in those scenarios in which there
2	was a rapid pressure increase in the primary
3	containment from rapid hydrogen generation.
4	So I would urge the staff and ACRS to
5	please keep in mind that these calculations are non-
6	conservative. Please keep that in mind when you
7	review the MELCOR results of your calculations.
8	Thank you.
9	CHAIR SCHULTZ: Mark, thank you for your
10	comments. We appreciate them and I appreciate you
11	sending the information before the meeting so that
12	we can see the questions that you wanted to present
13	to us today.
14	MR. LEYSE: Yes. May I just add that I
15	just threw a lot of information at you know, I
16	was stepping in for my father, Robert Leyse. And
17	some of the information that I've just cited, there
18	are actually references at the end of the transcript
19	for the July 11, 2012 ACRS meeting.
20	There are about three slides and it has
21	duplicates some of the information. And there's
22	also at the end of that transcript a short paper I
23	wrote for NRDC that's called "Post-Fukushima
24	Hardened Vents with High-Capacity Filters for BWR
25	Mark I's and Mark II's." That's also at the end of
I	I

(202) 234-4433

	371
1	the July 11 transcript. So that has some more of
2	the information.
3	CHAIR SCHULTZ: You just referenced that
4	on this transcript for us and so that will direct
5	whoever is interested back to that set of data. I
6	do recall that and we have incorporated that into
7	that transcript as you've identified. Thank you.
8	MR. LEYSE: Which I really appreciate.
9	CHAIR SCHULTZ: Okay. Are there other
10	members of the public that would like to make
11	comments at this time? It would be on the phone
12	line. So if you're on the phone line and would like
13	to make a comment please identify yourself.
14	Hearing none I'll close the public
15	comment section of the meeting and ask members of
16	the committee for comments that they would like to
17	add at this time. Jack, do you have any final
18	comments? Sanjoy?
19	MEMBER BANERJEE: No.
20	MEMBER SKILLMAN: No, thank you.
21	MEMBER BLEY: Other than thanking the
22	staff for a really good discussion today, nothing
23	additional.
24	CHAIR SCHULTZ: Dana?
25	MEMBER POWERS: I have provided you
I	I

(202) 234-4433

	372
1	comments as we went along but I would echo the
2	presentations were just really first rate. I may
3	not agree with everything but it was very clear what
4	you were saying.
5	(Laughter)
6	CHAIR SCHULTZ: Harold?
7	MEMBER RAY: No further comments, thank
8	you.
9	CHAIR SCHULTZ: Mike?
10	MEMBER CORRADINI: Nothing, just again
11	thank the staff. I think it was a very good day.
12	We learned a lot.
13	CHAIR SCHULTZ: Joy?
14	MEMBER REMPE: I'd like to thank the
15	staff also, but I also would like to remind them to
16	please expedite some of the documents before the
17	next meeting because we don't all take the Evelyn
18	Wood speed reading class. And it would be nice to
19	have a little more time to digest it.
20	MEMBER POWERS: Just be aware that
21	she'll ask a lot of questions as a result. So you
22	want to be careful about what you provide.
23	MEMBER REMPE: Never as many as you,
24	Dana.
25	MEMBER CORRADINI: Make sure you
ļ	

(202) 234-4433

	373
1	optimize them.
2	MR. MONNINGER: We'll make sure we send
3	the research report so that's where all the
4	questions go.
5	CHAIR SCHULTZ: Charlie?
6	MEMBER BROWN: Just echo the credit. No
7	addition to the staff. And no other technical.
8	I made my piece.
9	CHAIR SCHULTZ: Bill?
10	MEMBER SHACK: No. Excellent
11	presentation, excellent discussion. I'm looking
12	forward to reading the paper. It should be a real
13	page-turner.
14	(Laughter)
15	CHAIR SCHULTZ: John?
16	MEMBER STETKAR: Nothing more, thanks.
17	MEMBER ARMIJO: Nothing more. A good,
18	good presentation, a lot to think about. Thank you.
19	CHAIR SCHULTZ: Well again I'd like to
20	just summarize in thanking the staff, all of the
21	staff who made presentations today consistently of
22	high quality. And I think, well, you realize more
23	than anyone how difficult those issues that you have
24	been directed to tackle have been. And in regard to
25	the presentation today as well as the work that has
I	1

(202) 234-4433

	374
1	been completed it was it is of very high quality.
2	Remaining as you can see from our
3	discussion and our questions and our considerations
4	there are still a lot of dynamics associated with
5	both the determination of the regulatory evaluation
6	and the decision-making that will follow.
7	One of the key areas that I think the
8	committee has stressed today is we've heard a lot
9	about the the upside benefit in terms of the
10	potentials that might move forward from a filtered
11	vent. We are equally as concerned about potential
12	downside risk associated with any change, whether it
13	be physical or operational in association with plant
14	modification or procedure modification.
15	That's not stating anything that we
16	don't already know but there are things on the
17	transcript that are certainly worthy of further
18	consideration by the group that is performing the
19	evaluation, documenting the work that has been done
20	and the steering committee that's going to be
21	helping to assess and evaluate what will be
22	presented to the Commission. So again, we look
23	forward to more information and we'll be also
24	providing further considerations. And we can talk
25	as we go forward.
I	I

(202) 234-4433

	375
1	So thank you very much again and we look
2	forward to information. With that I'll close the
3	meeting. Oh, excuse me.
4	MR. RULAND: Mr. Chairman, just one
5	final comment. On behalf of the staff I'd like to
6	acknowledge the recognition of the staff's effort.
7	I think it showed. This has been really a huge
8	effort.
9	And if you think about the NRC and all
10	the regulatory issues we've faced over the years I
11	would think that this is one of the most challenging
12	and probably one of the more significant actions
13	that the staff and the Commission has contemplated
14	over the last 5 to 10 years.
15	And I think you gave us a sufficient
16	amount of attention and clearly you see it too that
17	way. And so I'd just like to acknowledge that and
18	I'd just like to commend the staff from me
19	personally. Thank you.
20	CHAIR SCHULTZ: I appreciate you
21	providing that on the record. With that I'll thank
22	the staff once again and close the meeting.
23	(Whereupon, the foregoing matter went
24	off the record at 5:55 p.m.)
25	
ļ	I

```
(202) 234-4433
```


United States Nuclear Regulatory Commission

Protecting People and the Environment

Filtered Containment Venting Systems

Bob Fretz, Senior Project Manager Japan Lessons Learned Project Directorate Office of Nuclear Reactor Regulation

Advisory Committee on Reactor Safeguards Fukushima Subcommittee October 3, 2012

Purpose

 To present the staff's preliminary regulatory analysis of the need for filtered venting systems in BWR Mark I and Mark II containments

Proposed Schedule

- 8:40 9:00
- 9:00 9:45
- 9:45 10:30
- 10:30 11:00
- 11:00 12:30
- 12:30 1:30
- 1:30 2:30
- 2:30 3:30
- 3:30 4:30
- 4:30 5:00

Protecting People and the Environment

- Introduction
- Design and Regulatory History, and Foreign Experience
- FCVS in Severe Accident Management
 - **MELCOR** Analysis
 - MACCS2 Analysis
 - Break
 - **Risk Evaluation**
 - **Regulatory Analysis**
 - **Qualitative Arguments**
 - Next Steps

Discussion Outline

- Project Plan
- SECY Paper
 - 1. Design and Regulatory History
 - 2. Foreign Experience
 - 3. Analysis of FCVS in Severe Accident Management
 - 4. Technical Analyses (MELCOR/MACCS/PRA)
 - 5. Stakeholder Interactions
 - 6. Evaluation of Options
- Next Steps

Project Plan - Highlights

- November 30 SECY Paper to Commission
- November 20 SECY Paper to EDO
- November 1
- October 31 ACRS Subcommittee
- October 30
- October 16
- October 4
- October 3

Draft Rev. 2 CP to SC

ACRS Full Committee

- Draft Rev. 1 CP to SC
- **Public Meeting**
- ACRS Subcommittee

SECY Paper Approach

• Purpose of Paper

"The purpose of this paper is to provide the U.S. Nuclear Regulatory Commission (NRC) with information and recommendations from the NRC staff regarding the imposition of new requirements related to containment venting systems for boiling water reactors (BWRs) with Mark I and Mark II containments."

Options

- 1. No Change
- 2. Severe Accident Capable Vent
- 3. Filtered Vent
- 4. Performance-Based Approach

SECY Paper Outline

- SECY Paper with Summaries of Enclosures, Options, and Recommendations
 - Enclosures
 - 1. Design and Regulatory History
 - 2. Foreign Experience
 - 3. Analysis of FCVS in Severe Accident Management
 - 4. Technical Analyses (MELCOR/MACCS/PRA)
 - 5. Stakeholder Interactions
 - 6. Evaluation of Options

Current Status

- Technical and policy assessments and evaluations ongoing
- Preliminary results being shared, subject to change
- Continuing to engage Steering Committee on path forward
- Staff recommendations will be made when technical evaluations and policy assessments are complete

Design and Regulatory History, and Foreign Experience

Bob Dennig Office of Nuclear Reactor Regulation Containment and Ventilation Branch

- Mark I Containments
 - WASH-1400 & NUREG-1150 found that Mark I containments could be severely challenged if a severe accident occurred
 - Relatively small volume
 - Gas and steam buildup affect pressure more dramatically
 - BWR cores have ~3 times the quantity of zirconium as PWRs
 - Potential for hydrogen gas and containment pressurization

- Mark I Containments
 - Containment Performance Improvement Program
 - Determine what actions, if any, should be taken to reduce the vulnerability to severe accidents
 - Staff recommended
 - Improve hardened vent
 - Improve RPV depressurization system
 - Provide alternate water supply to RPV and drywell sprays
 - Improve emergency procedures and training
 - Commission approved hardened vent
 - Other recommendations evaluated as part of IPE program

• Mark II Containments

- Similar to Mark I, the most challenging severe accident sequences are station blackout and anticipated transients without scram
- Risk profile dominated by early failure with a release that bypasses the suppression pool
- Hardened venting was considered not beneficial because of unacceptable offsite consequences without an external filter like MVSS
- Staff did not recommend generic backfit of hardened vent, but recommended a comprehensive evaluation as part of the IPE program

- Filtered Containment Vents
 - TMI Action Item 10 CFR 50.34(f) "provide one or more dedicated containment penetrations, equivalent in size to a single 3-foot diameter opening, in order not to preclude future installation of systems to prevent containment failure, such as a filtered vented containment system"
 - Shoreham supplemental containment venting system
 - During the CPIP, possibility of filters for Mark I and Mark
 II containment vents was raised, but not pursued
 - Significant advancements in containment venting filter technology have occurred over the past 25 years

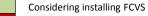
- What we have today...Order EA-12-050 requires
 - Reliable hardened vent capable of performing during a prolonged SBO (designed for use prior to the onset of core damage)
 - Severe accident conditions not considered
 - Designed to minimize operator actions
 - Discharges effluent to a release point above main plant structures

- Staff visited Sweden, Switzerland, and Canada
- Commission Paper will summarize FCVS regulatory and technical bases, and status of FCVS in other countries
- Insights from visits and public meetings consistent with previous findings
 - 1988 CSNI Report 156, Specialists' Meeting on Filtered Containment Venting Systems
- Together, FCVS and containment flooding scrub fission products from core debris and remove decay heat

- Government decree and/or regulator's order after TMI, Chernobyl, or Fukushima
 - Some plants installed or committed to install FCVS prior to requirement (e.g., Germany and Japan)
 - Regulator and industry develop guidance following regulatory decision (e.g., Sweden)
 - Some countries have periodic backfit reviews
 - Actual accidents more influential to decision (e.g., Switzerland)
 - Severe accidents were not part of the design basis when the decision was made

- Technical Bases Summary
 - Manage severe accident overpressure challenges
 - Defense-in-depth to address uncertainties associated with severe accidents
 - Significantly reduce offsite release and land contamination
- After Barsebäck filter was installed, subsequent filter costs considered low to modest

- Quantitative Bases Summary
 - Sweden land contamination goal
 - Require a Level 3 PSA
 - Level 1 frequencies low but not sufficient
 - After the decision, ensure equipment performance is acceptable generically and on plant-specific basis
 - Acceptable not judged quantitatively "significantly reduce", "almost eliminate", etc.
 - Factored into emergency planning



Status of FCVS Internationally

	Boiling Water Reactors (BWR) by Containment Types										LWGR
Country	GE Mark I	GE Mark II	ABB Mark II	GE Mark III	Other	ABWR	PWR	PWR/ VVER	PHWR	PHWR/ Candu	RBMK/ EGP
Belgium							7				
Bulgaria								2			
Canada										18	
China							13			2	
Czech Republic							6				
Finland			2					2			
France							58				
Germany					2		11				
Hungary							4				
India	2								16		
Japan	8	7		3	4	3	24				
South Korea (ROK)							19		4		
Mexico		2									
Netherlands							1				
Romania									1	1	
Russia								17			15
Slovakia								4			
Slovenia							1				
South Africa							2				
Spain	1			1			6				
Sweden			4		3		3				
Switzerland	1			1			3				
Taiwan	2			2			2				
Ukraine								15			
United Kingdom							1				

FCVS installed and operational, or Committed to installing FCVS

No FCVS; has not committed to installing FCVS

FCVS Status at Non-U.S. BWR Facilities

FCVS Status	GE Mark I	GE Mark II	ABB Mark II	GE Mark III	Other	ABWR	Tot	tals
FCVS Operational	1	0	6	1	5	0	13	30%
Committed	6	7	0	5	4	3	25	57%
Considering	1	0	0	1	0	0	2	5%
No FCVS	2	2	0	0	0	0	4	9%
Non-U.S. Totals	10	9	6	7	9	3	44	

Jerry Bettle Office of Nuclear Reactor Regulation Containment and Ventilation Branch

- Reviewed spectrum of plant procedures
- EOPs and SAMGs describe multiple containment vent pathways
- EDMGs provide portable pumps for RPV/DW injection
- Existing guidance provides for containment venting and injecting water to the reactor cavity
- EOPs focus on preventing core damage
- Decision to vent may be complicated with an unfiltered vent

- DW Sprays for Decontamination
 - Spray headers designed for DBA purposes (pressure control and heat removal) with flow rates of 1,000's GPM (provide estimated DFs around 10)
 - Portable pumps with flow rates in low 100's GPM result in spray nozzle dribble and DFs much less than full flow DFs
 - Good for cavity flooding
 - Not as effective for decontamination

- Suppression Pool for Decontamination
 - SRV discharge via T-quencher in bottom of subcooled suppression pool provides an aerosol DF of 100 to 300
 - Downcomer pipes which discharge higher in the suppression pool at or near saturation temperatures provide DFs of 10 or less

- EPRI Investigation of Strategies for Mitigating Radiological Releases in Severe Accidents
 - Employs a portable pump to flood drywell cavity and maintain suppression pool subcooling
 - Controls containment pressure near design value for holdup, settling, plate-out, spray effect, and high velocity discharge into suppression pool
 - Cycles containment vent valves to maintain containment pressure band (substantial reliance on instrumentation, valves/actuators, and operator actions)
 - Swap-over from WW to DW vent after 20 hours as containment floods up

- Staff preliminary assessment of EPRI investigation
 - Did not address potential increase in penetration leakage due to increased heat, radiation, and pressure
 - Did not address operation of valve, including instrumentation, procedures and human performance
 - Did not address water vapor condensation in vent line and potential for hydrogen buildup

Options Identified by Staff

- No Change (Option 1)
- Severe Accident Capable Vent (Option 2)
- Filtered Vent (Option 3)
- Performance-Based Approach (Option 4)

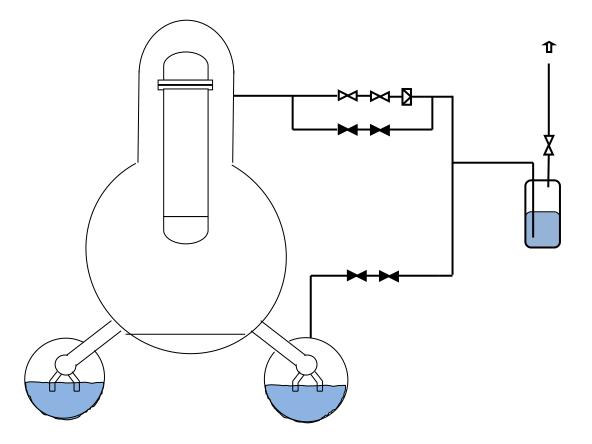
Option 2 - Severe Accident Capable Vent

- Upgraded reliable hardened vent for severe accident conditions and service
 - Higher temperatures and pressure
 - Hydrogen considerations in the vent line (inerting considerations)
 - Severe accident capable vent valves
 - Shielding for operator actions and personnel access to reactor building and/or remote manual operation of vent valves

Option 2 - Severe Accident Capable Vent

- Capable of safely handling hydrogen Protect the reactor building and mitigate early hydrogen pressurization
- Capable of safely handling fission products Maintain reactor building integrity for access to instrumentation and equipment, and facilitate operator actions
- Wetwell vent path only (did not consider consequences of swapover to drywell vent)
- Protects containment by venting even after core damage
- Success depends on uncertain accident progression, decontamination in the suppression pool, and drywell sprays
- Upgrading existing Mark I vent path may require more work than expected for the reliable hardened vent

- Significant enhancement in severe accident containment performance
 - Benefits of Option 2 plus defense in depth enhancements
- No identified technical or safety problems
- Venting with a filter results in a much smaller release compared to without a filter
- Proven, feasible option that has been implemented in several countries


- External Filter System
 - Vent line branch from wetwell with normally closed valves are most compatible with early venting
 - May eventually be submerged and unusable due to drywell water injection
 - Vent line from drywell with two branches (one with rupture disk and normally open valve for passive venting, and the other with normally closed valves for early manual venting)
 - Supports drywell floodup and avoids shifting from wetwell to drywell venting and reliance on operator action to preserve containment function for 24+ hrs

- External Filter System
 - Staff would develop a technical basis to require a minimum DF or other performance requirement
 - e.g., DF > 1,000 aerosols (including submicron),
 - e.g., DF > 100 elemental lodine
 - Engage stakeholders to develop appropriate performance criteria
 - May require active and passive features for prolonged SBO under severe accident conditions

• External Wet Filter System

Option 4 - Performance Based

- Potential approaches
 - Each plant meets a defined DF for a defined source term
 - Each plant meets criteria defined for combination of event frequencies and DF
 - Each plant performs a site-specific cost/benefit analysis
- Could potentially address forthcoming industry "filtering strategy" proposal (anticipating industry submittal)

Technical Analysis of Options 1, 2, & 3

- NRR identified a number of accident sequences (i.e., cases) to be evaluated by RES in support of conducting a Regulatory Analysis
 - Base cases were intended to be representative of options considered
 - Sensitivity cases also evaluated
- MELCOR calculations
 - Calculations informed by SOARCA and Fukushima
 - Various prevention and mitigation actions
- MACCS calculations
 - Venting with and without filter
- Event sequences and probabilities
- Consequence and frequency estimates

MELCOR Analysis

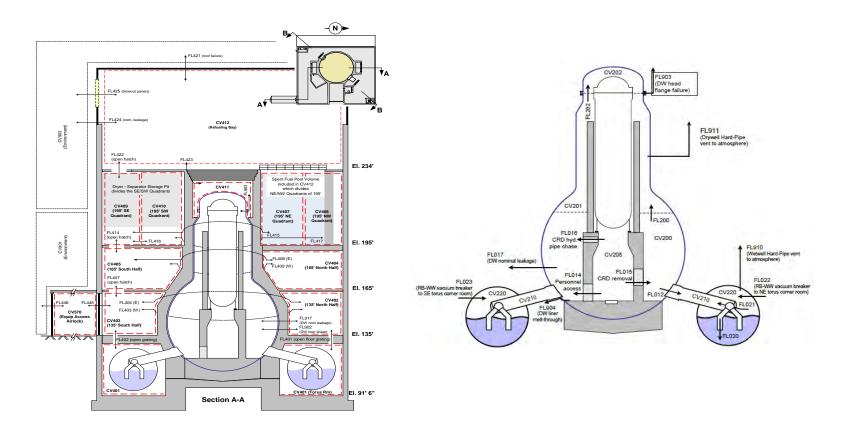
Sudhamay Basu and Allen Notafrancesco Office of Nuclear Regulatory Research Fuel and Source Term Code Development Branch

Insights on BWR Mark I Response

- SOARCA Peach Bottom Analysis
 - Base case SBO sequences with no sprays or venting
 - Primary containment vessel failure modes
 - DW liner shell melt-thru and over-pressure
 - Reactor building accident response
 - Blow-out panels open, local H2 combustion, and roof failure
- Fukushima
 - Long term SBO with protracted RCIC operation
 - Primary containment vessel failure modes
 - Over-pressurization with leakage thru drywell head and containment penetrations?
 - Reactor building accident response
 - Significant combustion events

Filtered Vent MELCOR Analysis

- Based on SOARCA MELCOR modeling
- Accident sequences
 - Informed by SOARCA and Fukushima
 - Long-term SBO (base case 16 hr RCIC)
- Mitigation actions
 - B.5.b and/or FLEX provide core spray or drywell spray (300 gpm)
 - Containment venting
- Sensitivity analysis
 - Spray flow rate and timing, wetwell versus drywell venting, and RCIC duration



Insights from MELCOR Calculations

- Water on the drywell floor is needed to prevent liner melt-through
 - Also scrubs fission products and reduces drywell temperature
- Venting prevents over-pressurization failure
 - Wetwell venting is preferable to drywell venting
- Need combination of venting and drywell flooding
 - More reduction in fission product release
 - Maintain reactor building integrity

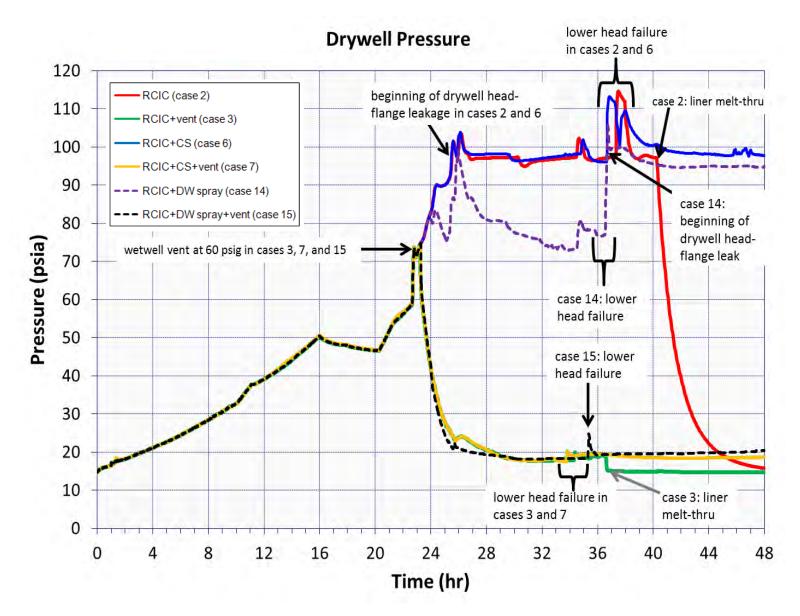
MELCOR BWR Nodalization

Reactor Building Nodalization

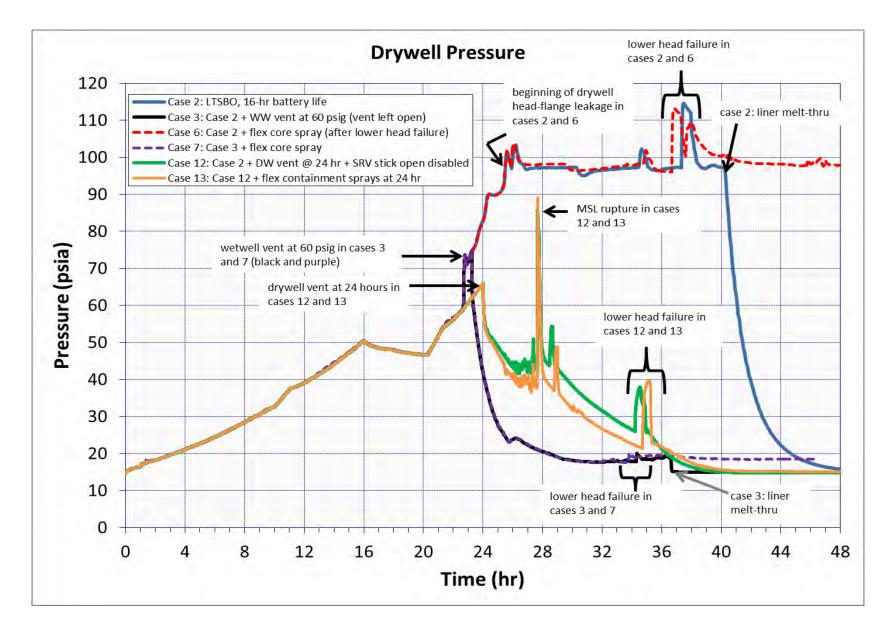
Containment Nodalization

Event Timing (hr.)	Case 2 RCIC only	Case 3 RCIC + wetwell vent	Case 6 RCIC + core spray	Case 7 RCIC + core spray + wetwell vent
Station blackout	0.0	0.0	0.0	0.0
RCIC flow terminates	17.9	17.9	17.9	18.0
Core uncovery	22.9	22.9	22.9	22.9
Relocation of core debris to lower plenum	25.9	25.9	25.9	25.8
RPV lower head failure	37.3	34.3	36.7	33.8
Drywell pressure > 60 psig	22.8	22.8	23.3	23.2
Drywell head flange leakage (>80 psig)	25.5		25.4	
Drywell liner melt-through	40.3	36.6		
Calculation terminated	48	48	48	48

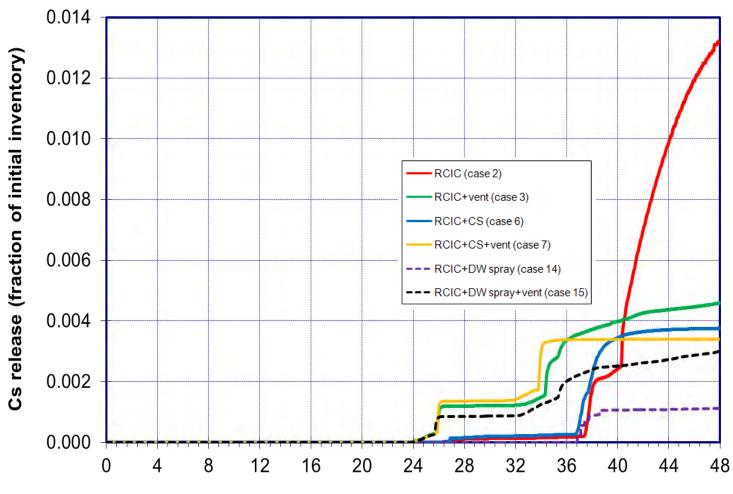
Event Timing (hr.)	Case 12 RCIC + drywell vent	Case 13 RCIC + drywell spray + drywell vent	Case 14 RCIC + drywell spray	Case 15 RCIC + drywell spray + wetwell vent
Station blackout	0.0	0.0	0.0	0.0
RCIC flow terminates	17.9	17.9	17.9	18.0
Core uncovery	22.9	22.9	22.9	22.9
Relocation of core debris to lower plenum	28.3	28.7	25.7	25.6
RPV lower head failure	34.2	34.7	36.6	35.3
Drywell pressure > 60 psig	27.7	27.7	23.2	23.3
Drywell head flange leakage (>80 psig)			25.8	
Drywell liner melt-through	34.8			
Calculation terminated	48	48	48	48

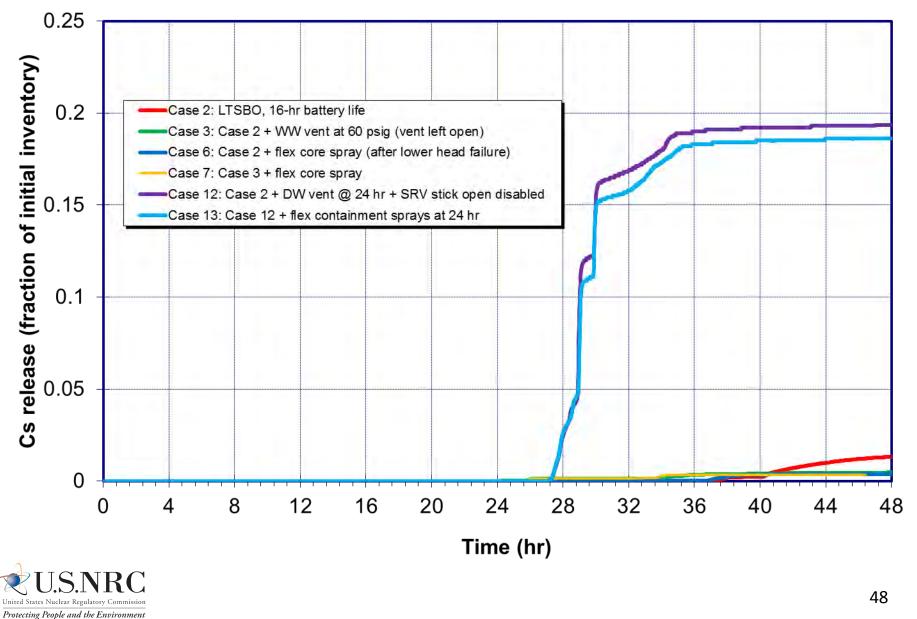


Selected MELCOR Results	Case 2 RCIC only	Case 3 RCIC + vent	Case 6 RCIC + core spray	Case 7 RCIC + core spray + vent
Debris mass ejected (1000 kg)	286	270	255	302
In-vessel hydrogen generated (kg-mole)	525	600	500	600
Ex-vessel hydrogen generated (kg-mole)	461	708	276	333
Other non-condensable generated (kg-mole)	541	845	323	390
Cesium release fraction at 48 hrs.	1.32E-02	4.59E-03	3.76E-03	3.40E-03
lodine release fraction at 48 hrs.	2.00E-02	2.81E-02	1.70E-02	2.37E-02



Selected MELCOR Results	Case 12 RCIC + drywell vent	Case 13 RCIC + drywell spray + drywell vent	Case 14 RCIC + drywell spray	Case 15 RCIC + drywell spray + wetwell vent
Debris mass ejected (1000 kg)	345	351	267	257
In-vessel hydrogen generated (kg-mole)	714	793	614	650
Ex-vessel hydrogen generated (kg-mole)	774	410	327	276
Other non-condensable generated (kg-mole)	922	485	383	270
Cesium release fraction at 48 hrs.	1.93E-01	1.86E-01	1.12E-03	3.01E-03
lodine release fraction at 48 hrs.	4.90E-01	4.84E-01	5.41E-03	1.86E-02





Cs Release to Environment

Time (hr)

Cs Release to Environment

MACCS2 Analyses Supporting Filtered Containment Venting Systems Commission Paper

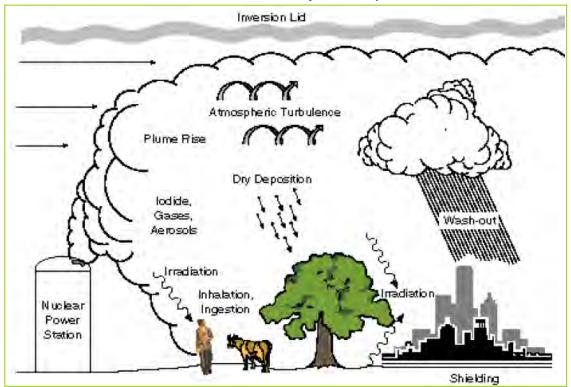
Tina Ghosh

Office of Nuclear Regulatory Research Nathan Bixler

Sandia National Laboratories

Outline

- Overview of MACCS2
 - MACCS2 Modules
 - ATMOS: Atmospheric Modeling
 - EARLY: Emergency Phase Modeling
 - CHRONC: Long Term Phase Modeling
 - MACCS2 Uses
 - References
- MACCS2 analysis for filtered containment venting systems
 - Scope of analysis
 - Inputs
 - Results of calculations, venting with and without filter


Overview of MACCS2

- MACCS2: MELCOR Accident Consequence Code System 2
 - Level-3 PRA tool to assess the risk and consequence associated with a hypothetical release of radioactive material into the atmosphere
 - First released in 1997
 - Evolved from series of codes: CRAC, CRAC2, MACCS, MACCS2
 - Estimates consequences
 - Health effects numbers and risks
 - Economic impacts land areas and costs
 - No equivalent industry code
- WinMACCS Graphical User Interface
 - Assist the user in creating MACCS2 inputs
 - Preprocessor for MACCS2 input
 - Postprocessor for MACCS2 output
 - Allow uncertainty mode sampling
- Use of MACCS2 in State-of-the-Art Reactor Consequences Analyses study peer-reviewed by independent panel of experts

Pathways to Receptors from Atmospheric Release

MACCS2 models the radioactive transport through the atmosphere (e.g. plume rise, dispersion, dry and wet deposition)

MACCS2 estimates the health effects from: inhalation, cloudshine, groundshine, skin deposition, and ingestion (e.g. water, milk, meat, crops)

MACCS2 Modules

- ATMOS
 - Not associated with a phase
 - Atmospheric transport and deposition
- EARLY (1 day to 1 week)
 - Emergency-phase
 - Prompt and latent health effects
 - Effects of sheltering, evacuation, and relocation
- CHRONC
 - Intermediate phase (0 to 1 year)
 - Long-term phase (0 to 317 years; 30-50 years typical)
 - Latent health effects
 - Effects of decontamination, interdiction, and condemnation

ATMOS Module

Atmospheric Transport and Dispersion (ATD) Estimates

- Dispersion based on Gaussian plume segment model
 - Provisions for meander and surface roughness effects
 - Phenomena not treated in detail in this model: irregular terrain, spatial variations in wind field, temporal variations in wind direction
 - A study (NUREG/CR-6853) comparing the MACCS2 ATD model with two Gaussian puff codes and a Lagrangian particle tracking code showed that the MACCS2 mean results (over weather) were within a factor of 2 for arc-averages and a factor of 3 at a specific grid location out to 100 miles from the point of release.
- Multiple Plume Segments (up to 200)
- Plume rise from initial release height
- Effects of building wake on initial plume size
- Dry and wet deposition
- Radioactive decay and ingrowth (150 radionuclides, 6 generations)

ATMOS Module (continued)

- MELCOR source term is input via MELMACCS
- Meteorological data required
 - Wind speed and direction
 - Pasquill stability category
 - Precipitation rate
 - Seasonal AM and PM mixing-layer height
- User selectable meteorology sampling options
 - Single weather sequence
 - Multiple weather sequences
 - Statistical sampling to represent uncertain conditions at the time of a hypothetical accident
- Outputs
 - Dispersion parameters, χ/Q , fraction remaining in plume
 - Air and ground concentrations

EARLY Module

• Emergency-phase consequences

- Acute and lifetime doses for following dose pathways
 - Inhalation (direct and resuspension),
 - Cloudshine
 - Groundshine
 - Skin deposition
- Associated health effects
 - Early injuries/fatalities from acute doses
 - Latent health effects from lifetime committed doses
- Doses are subject to effects of
 - Sheltering
 - Evacuation
 - Speed can vary by phase, location, precipitation
 - Relocation criteria for individuals
 - Based on projected dose
- Outputs
 - Doses, health effects, land contamination areas

CHRONC Module

- Intermediate Phase (optional, 0 to 1 year)
 - Dose pathways
 - Groundshine
 - Resuspension inhalation
 - Continued relocation is only protective action
- Long-Term Phase (up to 317 years, 30 to 50 typical)
 - Dose pathways
 - Groundshine
 - Resuspension inhalation
 - Ingestion
 - Protective actions
 - Based on habitability and farmability
 - Actions include
 - Decontamination
 - Interdiction
 - Condemnation

CHRONC Module (continued)

Decision logic for long-term protective actions

- Habitability criterion initially met?
 - No actions required
 - Population home at beginning of long-term phase
- Decontamination sufficient to restore habitability?
 - First-level decontamination performed if sufficient
 - Sequentially higher levels of decontamination performed if required
 - Population returns home following decontamination
- Decontamination plus interdiction sufficient to restore habitability?
 - Highest-level decontamination performed
 - Property is interdicted up to 30 years
 - Population returns home following decontamination plus interdiction
- Property is condemned when
 - Habitability cannot be restored within 30 years
 - Cost to restore habitability > value of property

CHRONC Module (continued)

- Economic costs
 - Per diem and lost income for evacuation/relocation
 - Moving expense lost income for interdicted property
 - Decontamination labor and materials
 - Loss of use of property
 - Condemned property
 - Contaminated crops and dairy
- Output
 - Doses by pathway and organ
 - Latent health effects
 - Economic costs

MACCS2 Uses

- PRAs and other severe accident studies (e.g., SOARCA)
 - Risks from operating a facility
 - Relative importance of the risk contributors
 - Insights on potential safety improvements
- NRC Regulatory Analyses
- NEPA Studies (National Environmental Policy Act) such as: License extension and new reactor applications
 - Environmental Impact Statements (EISs)
 - the results of the calculations are typically used to compare the accident risks posed by various alternatives
 - Severe Accident Mitigation Alternatives (SAMAs) and Design Alternative (SAMDAs) analyses required for license renewal and for new licenses
- DOE Applications: Authorization basis analyses performed for DBAs
 - the analyst is interested in conservatively calculated, bounding dose estimates for well-defined DBA and beyond-DBA accident scenarios. The results of this analysis are used to determine if the safety basis of the facility is adequate for operation (DOE 1989, 1992b)
- MACCS2 has an international usership (US plus over 10 other countries)

References

- Jow, H-N, J. L. Sprung, J. A. Rollstin, L. T. Ritchie, D. I. Chanin (1990), MELCOR Accident Consequence Code System (MACCS): Model Description, NUREG/CR-4691, Volume 2.
- Chanin, D., M. L. Young, J. Randall, K. Jamali (1998), Code Manual for MACCS2: Volume 1, User's Guide, NUREG/CR-6613.
- Chanin, D., M. L. Young, J. Randall, K. Jamali (1998), Code Manual for MACCS2: Volume 2, Preprocessor Codes COMIDA2, FGRDCF, IDCF2, NUREG/CR-6613.
- Young, M. L., D. Chanin (1997 draft), DOSFAC2 User's Guide, NUREG/CR-6547.
- Bixler, N. E., S. A. Shannon, C. W. Morrow, B. E. Meloche, and J. N. Ridgely (2003), SECPOP2000: Sector Population, Land Fraction, and Economic Estimation Program, NUREG/CR-6525 Rev. 1.
- C.R. Molenkamp, N.E. Bixler, C.W. Morrow, J.V. Ramsdell, Jr., J.A. Mitchell(2004), "Comparison of Average Transport and Dispersion Among a Gaussian, a Two-Dimensional, and a Three-Dimensional Model," NUREG/CR-6853.
- Consolidated NUREG/CR Manual Under Development

Scope of Analysis for Filtered Vents

MACCS2 used to calculate:

- Offsite population doses
 - Includes doses to public as well as off-site decontamination workers
- Individual latent cancer fatality risk and prompt fatality risk
- Land contamination
 - For different thresholds of Cs-137 concentration in soil (Ci/km²)
- Economic cost
- For 50-mile radius around plant

Inputs

- Work is based on the SOARCA project, which is documented in NUREG-1935 and NUREG/CR-7110 Volume 1
- Started with SOARCA inputs for Peach Bottom Atomic Power Station pilot plant (with exception of source term, and ingestion pathway modeled)
- Habitability (return) criterion used is 500 mrem/year, per Pennsylvania State guideline
- Statistical sampling of weather sequences used to represent uncertain conditions at the time of a hypothetical accident (~1,000 weather trials)
- Linear-no-threshold dose response model

Inputs – Six Emergency Phase Cohorts

- Cohort 1: 0 to 10 Public
- Cohort 2: 10 to 20 Shadow
- Cohort 3: 0 to 10 Schools and 0 to 10 Shadow
- Cohort 4: 0 to 10 Special Facilities
- Cohort 5: 0 to 10 Tail
- Cohort 6: Non-Evacuating Public (assumed to be 0.5%)

Inputs – Decontamination Factor of Filters

- Neither MELCOR nor MACCS2 models mechanistically the decontamination effect of an external filter
- A prescribed decontamination factor (DF) value is assigned for an external filter
- This DF is applied to only a portion of the total fractional release - the portion which is released through a flow path connected to venting
- For the MACCS2 input, the MELCOR source term from the relevant flow path was reduced by the DF

MACCS2 Results Per Event

Event	Base case Case 2	Base case with WW venting Case 3 Unfiltered Filtered DF = 10	Base case with core spray Case 6	Base case with WW venting and core spray Case 7 Unfiltered Filtered DF = 10
Population dose 50 mile radius <i>per event</i> (rem)	510,000	400,000 180,000	310,000	240,000 37,000
Population weighted latent cancer fatality (LCF) risk 50 mile radius <i>per</i> <i>event</i>	4.8E-05	<mark>3.3E-05</mark> 1.3E-05	2.5E-05	1.6E-05 2.2E-06
Contaminated area (km ²) with level exceeding 15 μCi/m ² <i>per event</i>	280	54 8	72	34 0.4
Total economic cost 50 mile radius <i>per event</i> (\$M)	1,900	1,700 270	850	480 18

MACCS2 Results Per Event (continued)

Event	Base case with drywell ventingBase case with DW venting and DW sprayCase 12 Unfiltered Filtered 1 DF=1,000 Filtered 2 DF=5,000Case 13 Unfiltered Filtered DF=1,000		Base case with drywell spray Case 14	Base case with WW venting & drywell spray Case 15 Unfiltered Filtered DF = 10
Population dose 50 mile radius <i>per event</i> (rem)	3,800,000 230,000 210,000	3,900,000 60,000	86,000	280,000 43,000
Population weighted latent cancer fatality (LCF) risk 50 mile radius <i>per event</i>	3.2E-04 1.6E-05 1.4E-05	3.3E-04 3.7E-06	6.4E-06	2.1E-05 2.7E-06
Contaminated area (km²) with level exceeding 15 μCi/m2 <i>per event</i>	9,200 28 25	8,800 2	10	28 0.3
Total economic cost 50 mile radius <i>per event</i> (\$M)	33,000 390 370	33,000 38	116	590 20

Insights from MACCS2 Calculations

 The health effect of interest is latent cancer fatality risk, which is controlled in part by the habitability (return) criterion

Essentially no prompt fatality risk

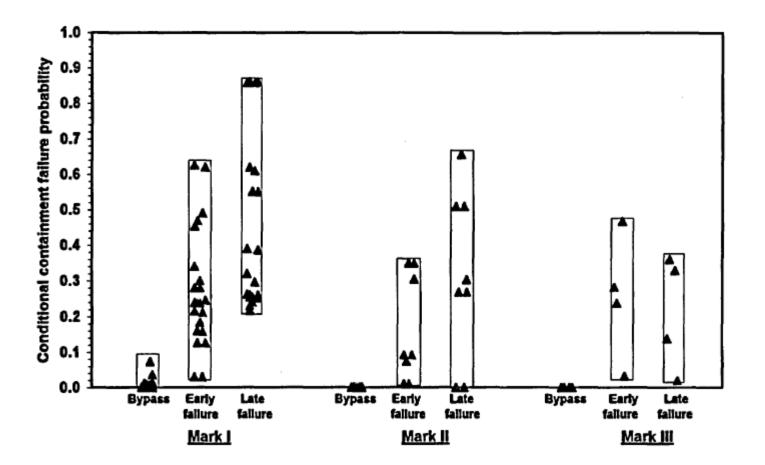
- In terms of long-term radiation, the most important isotope is Cs-137, and most of the doses are from ground shine
- There is a non-linear relationship between decontamination factor and both land contamination area and health effects

Severe Accident Containment Vent Risk Evaluation

Marty Stutzke Office of Nuclear Regulatory Research

Outline

- Purpose
- Conditional Containment Failure Probability
- Insights from Severe Accident Mitigation Alternatives (SAMA) Analyses
- Technical Approach
- Results
- Uncertainties



Purpose

- To estimate the risk reduction resulting from installation of a severe accident containment vent for use in regulatory analysis
 - 50-mile population dose (Δperson-rem/ry)
 - 50-mile offsite cost (Δ \$/ry)
 - Onsite worker dose risk (Δperson-rem/ry)
 - Onsite cost risk (Δ \$/ry)
 - Land contamination (Δconditional contaminated land area)

Conditional Containment Failure Probability (BWR Individual Plant Examinations)

Source: NUREG-1560, Figure 12.3

Conditional Containment Failure Probability (PWR Individual Plant Examinations)

Source: NUREG-1560, Table 12.17

Conditional Containment Failure Probability (ILRT Extension License Amendments)

Plant	Туре	ILRT Interval	Accident Phenomena	Bypass (ISLOCA)	Isolation Failures	Total CCFP
Cooper	Mark I	3 in 10y 1 in 10y 1 in 15y	94.6% 94.6% 94.6%	0.0% 0.0% 0.0%	1.0% 1.0% 1.0%	95.6% 95.6% 95.6%
Nine Mile Point 1	Mark I	3 in 10y 1 in 10y 1 in 15y	62.4% 62.4% 62.4%	2.7% 2.7% 2.7%	9.7% 9.7% 9.8%	74.8% 74.9% 74.9%
Peach Bottom	Mark I	3 in 10y 1 in 10y 1 in 15y	61.1% 61.1% 61.1%	2.4% 2.4% 2.4%	2.7% 3.4% 4.0%	66.2% 67.0% 67.5%
Pilgrim	Mark I	3 in 10y 1 in 10y 1 in 15y	97.7% 97.7% 97.7%	0.6% 0.6% 0.6%	0.0% 0.1% 0.1%	98.3% 98.3% 98.4%
Vermont Yankee	Mark I	1 in 10y 1 in 15y	86.8% 86.8%	1.1% 1.1%	0.1% 0.2%	88.0% 88.1%
LaSalle	Mark II	3 in 10y 1 in 10y 1 in 15y	82.9% 82.9% 82.9%	2.4% 2.4% 2.4%	0.4% 0.6% 0.8%	85.7% 85.9% 86.1%
Limerick	Mark II	3 in 10y 1 in 10y 1 in 15y	62.4% 62.4% 62.4%	1.3% 1.3% 1.3%	0.7% 1.5% 2.0%	64.4% 65.2% 65.7%

Consideration of Filtered Containment Vents in SAMA Analyses (As of February 2012)

Plant Type	Filtered Containment Vent Not Considered	FCV Considered (Screening Analysis)	FCV Considered (Detailed Analysis)	License Renewal Granted, but Limited SAMA	License Renewal Application Not Submitted	Total
BWR Mark I	5	11	5	1	1	23
BWR Mark II	1	3		2	2	8
BWR Mark III			1		3	4
PWR large dry containment	22	10	14		9	55
PWR subatmospheric containment			5			5
PWR ice condenser		2	4		3	9
Total	28	26	29	3	18	104

Screening Analysis: cost of implementation > plant-specific maximum possible monetized averted risk

Detailed SAMA Analyses of Filtered Containment Venting

Plant	Offsite Dose Reduction	Estimated Benefit	Notes
FitzPatrick	3.73%	\$4,090	Successful torus venting accident progression source terms were reduced by a factor of 2 to reflect the additional filtered capability
Pilgrim	0.00%	\$0	Successful torus venting accident progression source terms were reduced by a factor of 2 to reflect the additional filtered capability
Vermont Yankee	0.11%	\$200	Successful torus venting sequences were binned into the Low-Low release category to conservatively assess the benefit of this SAMA

Not clear if post-core-damage venting to prevent containment overpressurization failure was considered in these analyses

Core Damage Frequency

Source	CDF (/ry)
NUREG-1150 Peach Bottom (includes internal events, fires, and seismic events based on the LLNL hazard curves)	1E-4
SPAR Internal and External Event Models (BWR Mark I Plants) Duane Arnold Monticello Peach Bottom	1E-5 2E-5 2E-5
SAMA Analyses (Five BWR Mark I and Mark II plants with internal and external event PRAs)	2E-5 to 6E-5
Global Statistical Value	3E-4

Economic Consequences

Source	cost/event
Regulatory analysis handbook (NUREG/BR-0184, Table 5.6, Peach Bottom, 1990 dollars)	\$3B*
SAMA Analyses Peach Bottom Minimum for BWR Mark I and Mark II plants (Hatch) Maximum for BWR Mark I and Mark II plants (Hope Creek)	\$10B* \$0.6B* \$30B*
Estimated Fukushima offsite costs (3 Units) (Japan Center for Economic Research, June 2011, includes land condemnation for 20 km and compensation for 10 years)	\$62B
Deepwater Horizon oil spill	\$23B

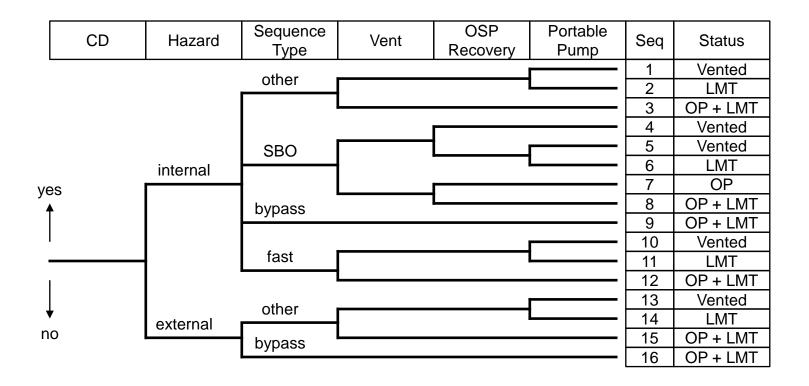
*Frequency-weighted average of the point estimates for internal events

Designing a Technical Approach

- Focus on BWR Mark I plants
- Risk modeling
 - No change in CDF
 - Need to use simplified Level 2/3 PRA
 - Not feasible to develop complete Level 3 PRA
 - SOARCA MELCOR and MACCS2 for Peach Bottom
- Eight candidate plant modifications
 - Vent actuation: manual or passive
 - Vent location: wetwell or drywell
 - Filter: no or yes
- Consideration of post-core-damage core spray or drywell spray to prevent liner melt-through

Affects frequency estimation

estimation


Affects consequence

Assumptions and Groundrules

- Use existing regulatory analysis guidance
 - Risk evaluation developed on a "per-reactor" basis
 - Multi-unit accidents not addressed
 - Spent fuel pool accidents not addressed
- Release sequence consequences are reasonably approximated by determining the consequences of SBO sequences
- Battery life is 16 hours
- Filter decontamination factor of 10
- No credit for recovering offsite power if core-damage was caused by an external hazard (e.g., seismic, high winds)
- If a sequence involves failure to open the vent or containment bypass (e.g., ISLOCA), then use of a portable pump (B.5.b/FLEX) for core spray or drywell spray following core damage is precluded due to a harsh work environment (high dose rates, high temperatures, etc.)

Release Event Tree

Release Sequence Quantification Data Sources

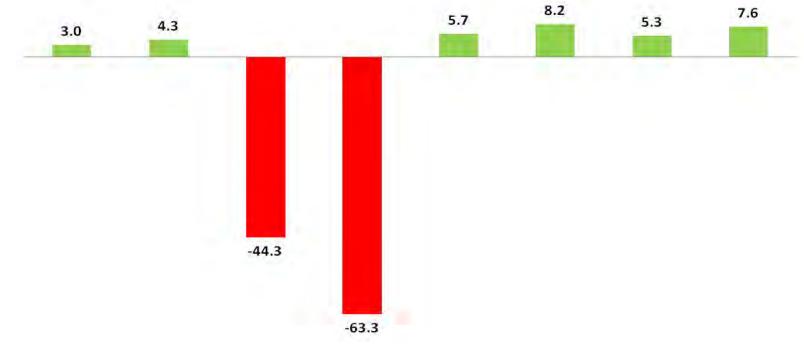
Parameter	Va	lue	Basis
Core-damage frequency	2E-	5/ry	SPAR models
Fraction of total CDF due to external hazards	0	.8	SPAR-EE models
Breakdown of sequence types for internal hazards	Other (not SBO, bypass, or fast)	0.83	SPAR models
	SBO	0.12	
	Bypass (ISLOCAs)	0.05	
	Fast (MLOCAs, LLOCAs, ATWS)	0.01	
Breakdown of sequence types for external hazards	Other (not bypass)	0.95	Engineering judgment
	Bypass	0.05	

Release Sequence Quantification Data Sources

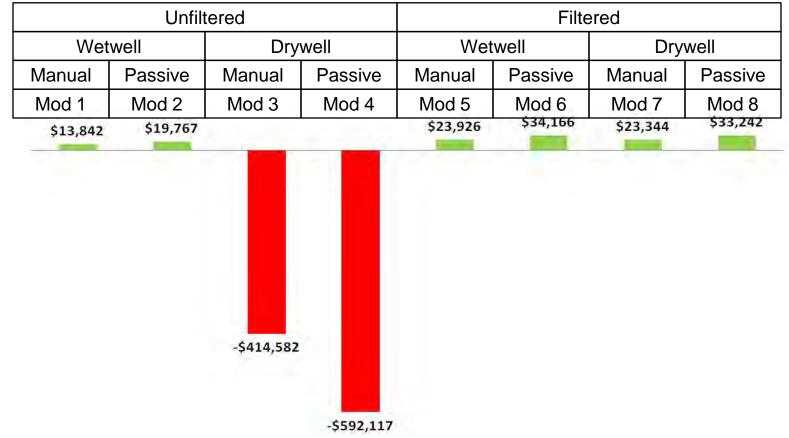
Parameter	Value		Basis	
Probability that severe accident vent fails to open	Mod 0 1		Current situation (base case)	
	Mods 1,3,5,7 – other or SBO	0.3	SPAR-H (manual vent, longer available time)	
	Mods 1,3,5,7 - fast	0.5	SPAR-H (manual vent, shorter available time)	
	Mods 2,4,6,8	0.001	Engineering judgment (passive vent)	
Conditional probability that offsite power is not recovered by the time of lower head failure given not recovered at the time of core damage (internal hazards)	0.38		NUREG/CR-6890	
Probability that portable pump for core spray or drywell spray fails	0.3		SPAR-H; consistent with B.5.b study done by INL	

Mapping Release Sequence End States to MELCOR/MACCS2 Cases

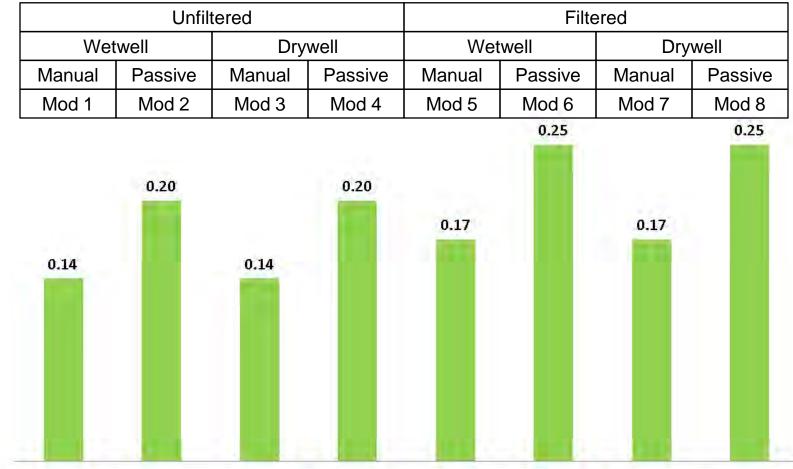
			Releas	e Sequence End	State		
		Identifier	vented	LMT	OP	OP + LMT	
		Vented	yes	yes	no	no	
		Drywell Status	wet	dry	wet	dry	
		Sequences	1,4,5,10,13	2,6,11,14	7	3,8,9,12,15,16	
Vent Location	Filter	Mod(s)	MELCOR/MACCS2 Case				
Wetwell	No	0 - none 1 - manual 2 – passive	Case 7 or 15 (no filter)	Case 3 (no filter)	Case 6	Case 2	
Drywell	No	3 - manual 4 – passive	Case 13 (no filter)	Case 12 (no filter)	Case 14	Case 2	
Wetwell	Yes	5 - manual 6 – passive	Case 7 or 15 (filter)	Case 3 (filter)	Case 6	Case 2	
Drywell	Yes	7 - manual 8 - passive	Case 13 (filter)	Case 12 (filter)	Case 14	Case 2	


Accident Sequence Frequency Contributions

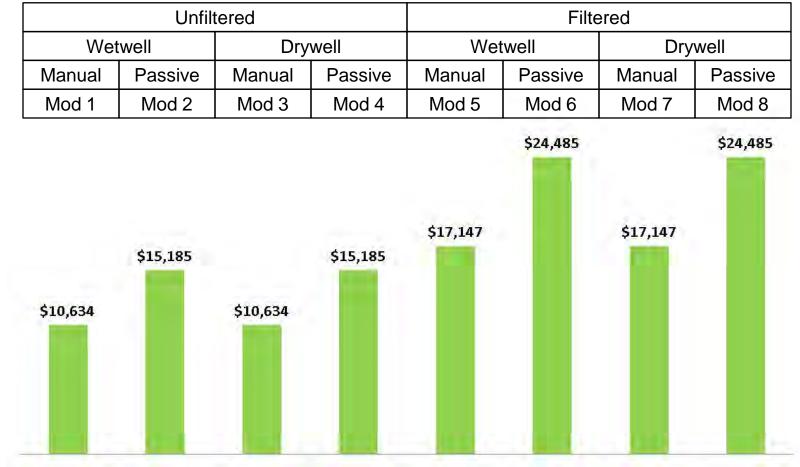
Containment Failure Mode	Manual Vent Mods 1, 3, 5, 7	Passive Vent Mods 2, 4, 6, 8
Overpressurization (OP)	0.4%	0.0%
Liner Melt-Through (LMT)	19.6%	28.0%
Overpressurization and Liner Melt-Through (OP + LMT)	33.1%	5.1%
Total	53.2%	33.1%


Reduction in Population Dose Risk (Δperson-rem/reactor-year)

Unfiltered				Filtered			
Wetwell Drywell		Wetwell		Drywell			
Manual	Passive	Manual	Passive	Manual	Passive	Manual	Passive
Mod 1	Mod 2	Mod 3	Mod 4	Mod 5	Mod 6	Mod 7	Mod 8



Reduction in Offsite Cost Risk (Δ\$/reactor-year)



Reduction in Worker Dose Risk (Δperson-rem/reactor-year)

Reduction in Onsite Cost Risk (Δ\$/reactor-year)

Reduction in Conditional Contaminated Land Area (Δsquare kilometers)

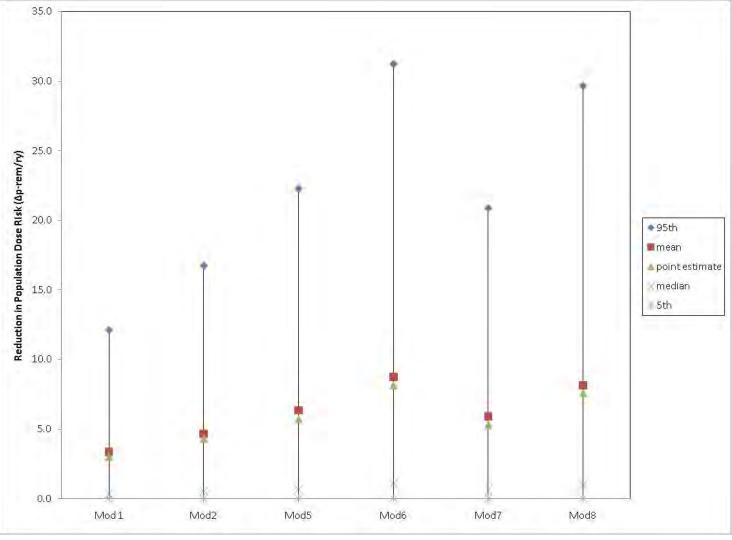
Unfiltered				Filtered			
Wetwell		Drywell		Wetwell		Drywell	
Manual	Passive	Manual	Passive	Manual	Passive	Manual	Passive
Mod 1	Mod 2	Mod 3	Mod 4	Mod 5	Mod 6	Mod 7	Mod 8
157.4	224.8			182.2	260.1	177.8	253.5
		-5,747.0					

Uncertainty Analysis

- Approximate Monte Carlo analysis performed to gain an appreciation of the uncertainties involved
 - Sequence frequencies
 - Sequence consequences

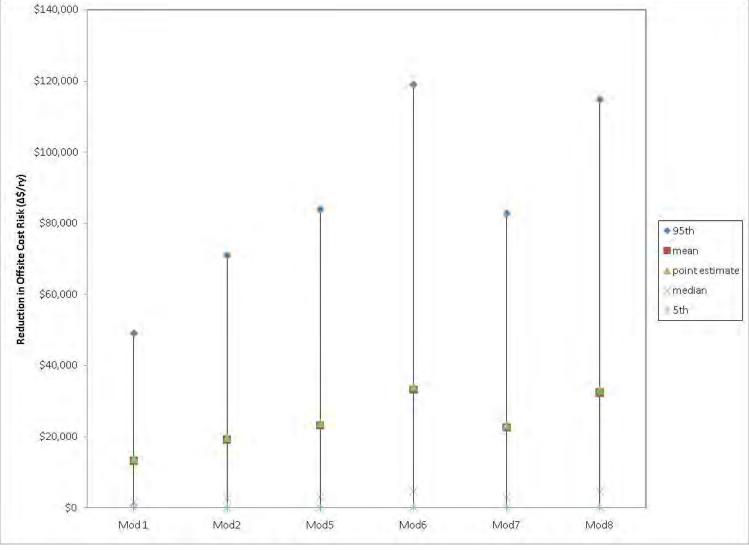
Uncertainty Parameters

Parameter	Me	ean	Parameters
Core-damage frequency	2E-5/ry		Log-normal; EF = 10
Fraction of total CDF due to external hazards	0.8		Beta; α = 0.5, β = 0.125
Breakdown of sequence types for internal hazards	Other (not SBO, bypass, or fast)	0.83	Dirichlet $\alpha 1 = 41$
	SBO	0.12	$\begin{array}{c} \alpha 2 = 6 \\ \alpha 3 = 2.5 \end{array}$
	Bypass (ISLOCAs)	0.05	$\alpha 4 = 0.5$
	Fast (MLOCAs, LLOCAs, ATWS)	0.01	
Breakdown of sequence types for external hazards	Other (not bypass)	0.95	Beta; $\alpha = 0.5$, $\beta = 9.5$
	Bypass	0.05	

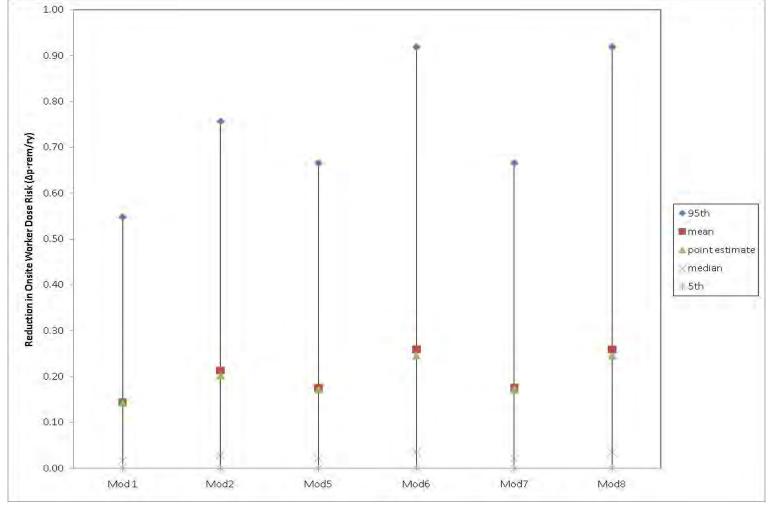


Uncertainty Parameters

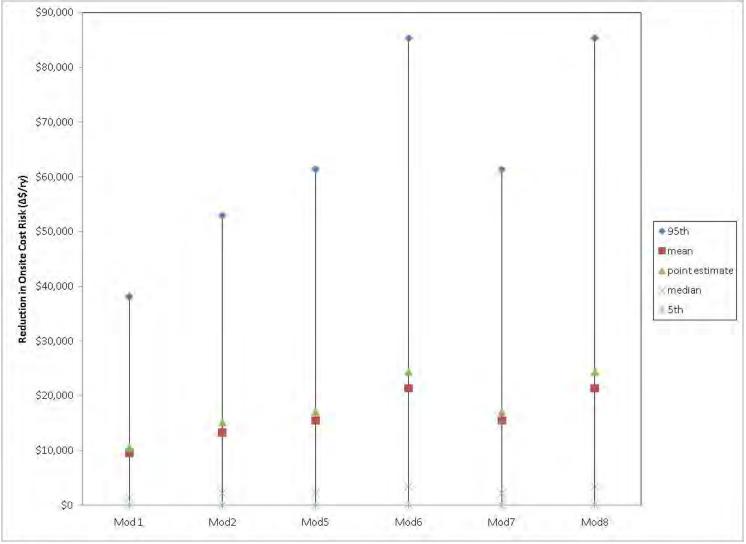
Parameter	Mean		Parameters
Probability that severe accident vent fails to open	Mod 0	1	Not uncertain
	Mods 1,3,5,7 – other or SBO	0.3	Beta; α = 0.5, β = 1.167
	Mods 1,3,5,7 - fast	0.5	Beta; $\alpha = 0.5, \beta = 0.5$
	Mods 2,4,6,8	0.001	Beta; α = 0.5, β = 499.5
Conditional probability that offsite power is not recovered by the time of lower head failure given not recovered at the time of core damage (internal hazards)	0.38		Beta; α = 0.5, β = 0.816
Probability that portable pump for core spray or drywell spray fails	0.3		Beta; α = 0.5, β = 1.167
Consequences	Per MELCOR/MACCS2 results and regulatory analysis assumptions		Log-normal; EF = 10 (correlated)



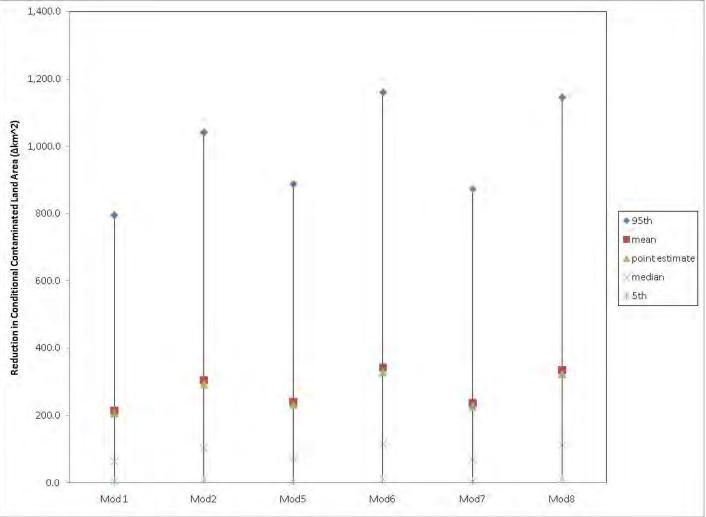
Uncertainty in Population Dose Risk Reduction



Uncertainty in Offsite Cost Risk Reduction



Uncertainty in Onsite Worker Dose Risk Reduction



Uncertainty in Onsite Cost Risk Reduction

Uncertainty in Conditional Contaminated Land Area

Regulatory Analysis and Backfitting

Aaron Szabo Office of Nuclear Reactor Regulation Rulemaking Branch

Outline

- Regulatory Decision-Making Process
- Methodology for Regulatory Analysis
 - Task-specific information
 - Steps for a Regulatory Analysis
- Backfitting
 - Adequate Protection
 - Cost-Justified Substantial Safety Enhancement
- Filtered Vents Regulatory Analysis
 - Assumptions and Sensitivities
 - Quantitative Analysis
 - Current Framework
 - Sensitivity Analysis
 - Qualified Attributes
- Summary

Regulatory Decision-Making Process

- Regulatory Analysis looks at all the costs and all the benefits of the regulatory action to inform decision-makers
 - Quantified and qualified
 - Identify uncertainties with the analysis
- Backfitting determines if we can impose a requirement on licensees (10 CFR 50.109)

Methodology for Regulatory Analysis

- 4 Options
 - 1: No Change (Re-affirm EA-12-050)
 - 2: Severe Accident Capable Vent
 - 3: Filtered Vent
 - 4: Performance-Based Approach
- All attributes dispositioned using current framework
 - NUREG/BR-0058, NUREG/BR-0184, NUREG-1409
 - Any deviations are identified and provided as a sensitivity analysis

Methodology for Regulatory Analysis

- Steps to perform a Regulatory Analysis
 - Identify legitimate alternatives and options
 - Determine if the action is a backfit
 - Evaluate attributes
 - Public Health (Accident)
 - Offsite Property
 - Industry Implementation

Develop recommendations

- NRC Implementation
- Regulatory Efficiency

- Occupational Health (Accident)
- Onsite Property
- Industry Operation
- NRC Operation

How Information is Provided

- Recommendations are provided using the "best [point] estimate" calculations
- Benefits and costs are determined by multiplying the probability of the event by the change in consequences
 - (e.g. Probability of event times (Alt. 1 consequence – Alt. 2 consequence))
- Sensitivity analyses are provided for decisionmakers

Backfitting

- Adequate Protection
 - Severe Accident Capable Vent
 - Filtered Vent
 - Performance-Based Approach

Backfitting - Cost-Justified Substantial Safety Enhancement

- 2 Part Analysis
 - Substantial Safety Enhancement
 - Cost-justified
- SRM-SECY-93-086, "Backfit Considerations"
 - The safety enhancement criterion should be administered with the degree of flexibility the Commission originally intended
 - The standard is not intended to be interpreted in a manner that would result in disapprovals of worthwhile safety or security improvements having costs that are justified in view of the increased protection that would be provided
 - Allows for both quantitative and qualitative arguments

Backfitting - Cost-Justified Substantial Safety Enhancement

- Substantial Safety Enhancement
 - Attributes included
 - Public Health (accident)
 - Occupational Health (accident)

Backfitting - Cost-Justified Substantial Safety Enhancement

- Cost-Justified
 - Attributes included
 - Public Health (accident)
 - Occupational Health (accident)
 - Industry Implementation and Operation
 - NRC Implementation and Operation
 - Offsite Property and Onsite Property
 - Regulatory Efficiency

Analysis Assumptions (NUREG/BR-0184)

• Onsite Property

- Option 1 = Upper bound (\$2B (1993) or \$3.2B (2012))
- Option 2 = Middle (\$1.5B (1993) or \$2.4B (2012))
- Option 3 = TMI (\$750M (1981) or \$1.9B (2012))
- Occupational Workers (during accident)
 - Does not include decontamination and cleanup
 - Assumes at least 1,000 workers (small dose)
 - Option 1 = Upper bound (14,000 person-rem)
 - Option 2 = Middle (3,300 person-rem)
 - Option 3 = TMI (1,000 person-rem)

Sensitivity Analysis

Parameter	Current Framework	Sensitivity Analysis
Dollar per person-rem	\$2,000 (NUREG-1530)	\$4,000 (EPA and ICRP No. 103)
Discount Rate	3% and 7% (OMB Circular A-4)	Undiscounted (Current Market)
Initial Event Probability	2E-05 PRA based (SPAR Model)	3E-04 Global Statistical Value (Accidents/Operation)
Monte Carlo PRA	Point Estimate	5 th Percentile and 95 th Percentile
Replacement Energy Costs	\$15.4 million/year (NUREG/BR-0184)	\$56.3 million/year to \$716,000/year (Updated, regional based with high and low values)
	Other unit(s) at site shutdown	All Mark I and Mark II reactors shutdown (30 units)

Sensitivity Analysis

- Recommendation will be based on current framework
- Assessed 107 sensitivity cases based on the consequence results for each option, not including the discount values
 - No sensitivity cases for Industry and NRC
 Implementation and Operation costs

Quantitative Analysis – Option 2, SACV (Current Framework)

- Estimated Costs
 - Industry Costs: \$60M
 - NRC Costs: \$8M to \$12M
 - Total Costs: \$68M to \$72M

Quantitative Analysis – Option 2, SACV (Current Framework)

- Estimated Benefits (range based on discount factors)
 - Public Health: 112 person-rem averted
 - \$4M to \$5.7M
 - Occupational Health: 5 person-rem averted
 - \$100,000 to \$200,000
 - Offsite Property (Cost Offset)
 - \$8M to \$11M
 - Onsite Property (Cost Offset)
 - \$4.4M to \$7.5M
 - Total Benefit
 - \$16.5M to \$24.4M
- Net Value
 - (\$55.5M) to (\$43.6M)

Quantitative Analysis – Option 3, Filtered Vent (Current Framework)

- Estimated Costs
 - Industry Costs: \$465M (based on \$15M per unit)
 - NRC Costs: \$8M to \$12M
 - Total Costs: \$473M to \$477M

Quantitative Analysis – Option 3, Filtered Vent (Current Framework)

- Estimated Benefits (ranges based on discount factors)
 - Public Health: 212 person-rem averted
 - \$6.3M to \$9.3M
 - Occupational Health: 7 person-rem averted
 - \$300,000 to \$400,000
 - Offsite Property (Cost Offset)
 - \$14M to \$20M
 - Onsite Property (Cost Offset)
 - \$104M to \$181M
 - Total Benefit
 - \$125M to \$211M
- Net Value
 - (\$352M) to (\$262M)

Quantitative Analysis – Option 4, Performance-Based (Current Framework)

- No quantified costs or benefits
- Discussion provided qualitatively
- Amenable to site-specific approaches

Qualitative Arguments

- Will be included in the Regulatory Analysis
- Historically, they have considered safety goal policy qualitative goals, defense-in-depth, uncertainties, consistency with standards (regulatory efficiency), etc.

Summary

- Option 2 (SACV) and Option 3 (filtered vent) do not appear to be cost-beneficial quantitatively in the current framework
 - Sensitivity analysis may provide cases that are cost-beneficial
 - May require qualitative arguments for "substantial safety enhancement"

Qualitative Arguments for Filtered Vents (Option 3)

Tim Collins Office of Nuclear Reactor Regulation Division of Safety Systems

Qualitative Arguments

- Defense-in-Depth
- Severe Accident Management Decision Making
 - Operator Response
 - Hydrogen Control
- Consequence Uncertainties
- International Practice

Enhances Defense-in-Depth

- Containment is an essential element of DID
 - Protects against uncertainties in prevention of severe accidents and potential consequences of a large release
- Filtering compensates for the loss of the containment barrier due to venting
- Filtering improves confidence to depressurize containment to address other severe accident challenges

Enhances Defense-in-Depth

- Filtering extends time for emergency planning implementation
 - Adds margin for uncertainty in weather, public response, collateral damage, communications, etc.

Severe Accident Management Decision Making

- Improves operator confidence in a "clean" release for hydrogen control
 - Allows early operator intervention to vent hydrogen and control containment pressure
 - Sustained lower pressure reduces leakage of hydrogen thru penetration seals
 - Decreased leakage reduces threat from hydrogen explosion to reactor building, spent fuel pool, and emergency responders

Severe Accident Management Decision Making

- Facilitates arrest of in-vessel melt progression and ex-vessel challenge to drywell liner
 - Allows early operator intervention to control pressure
 - Sustained lower pressure facilitates injection from low pressure water sources
 - Increases chances of early melt arrest and protection of liner
 - Sustained lower pressure reduces leakage of fission products thru penetration seals
 - Facilitates operator access to reactor building for recovery
 - Facilitates use of all onsite resources

Severe Accident Management Decision Making

- Operator confidence in "clean" release facilitates use of vent as a mitigation tool
 - Supports use of drywell and/or wetwell as vent inlet
 - Alleviates concerns with wetwell floodup strategy
 - Supports passive actuation
 - Minimal consequences of inadvertent actuation

Consequence Uncertainties

- Improves protection against uncertainties associated with potential land contamination
 - Fission product release fractions
 - Weather patterns
 - Farm products/food chain impacts
 - Hydrology
 - Economic impacts

Consequence Uncertainties

- Reduces potential for significant social repercussions
 - Public anxiety
 - Impact on energy supply chain

International Practices

- Consistent with recommendation from Extraordinary Meeting of Members of Convention on Nuclear Safety to upgrade "measures to ensure containment integrity, and filtration strategies and hydrogen management for the containment"
- Consistent with decisions of most European countries, Canada, Taiwan, and Japan

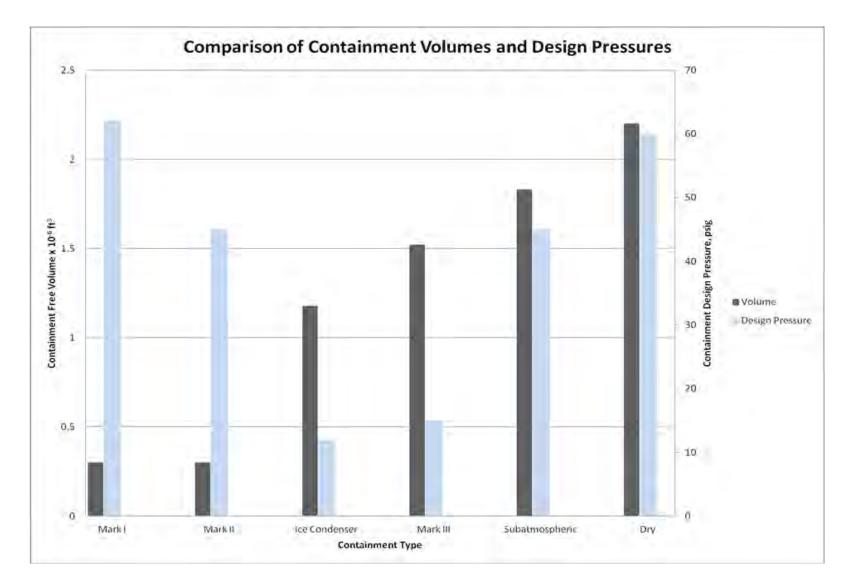
Next Steps

- Continue staff assessment and develop recommendations
- Engage Steering Committee
- Present conclusions and recommendations to ACRS on October 31 and November 1

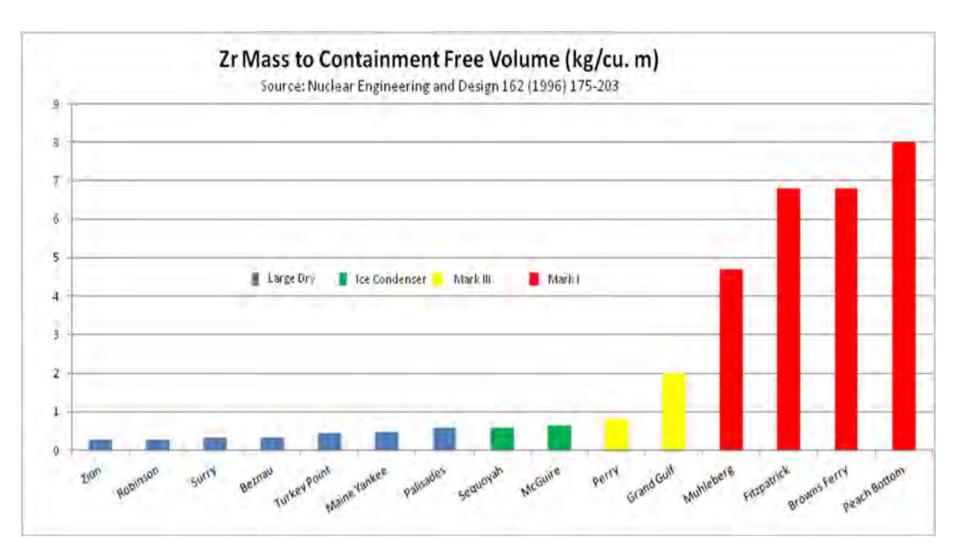
United States Nuclear Regulatory Commission

Protecting People and the Environment

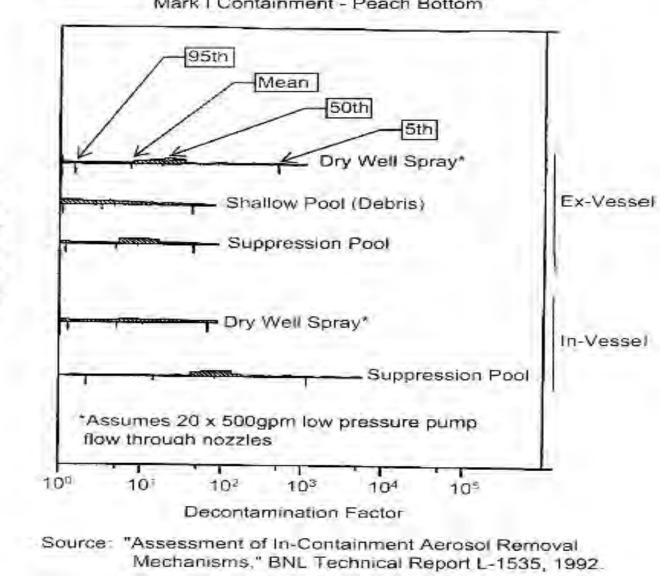
Filtered Containment Venting Systems


BACKUP SLIDES

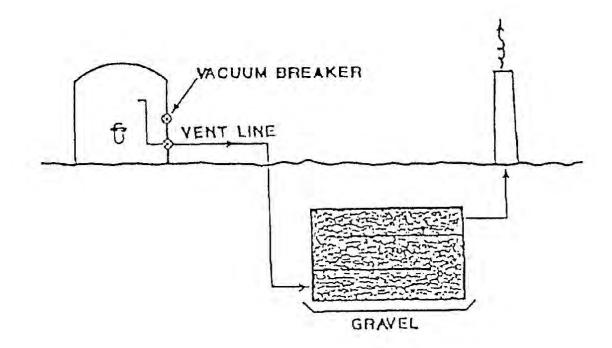
Advisory Committee on Reactor Safeguards Fukushima Subcommittee October 3, 2012


Bob Dennig

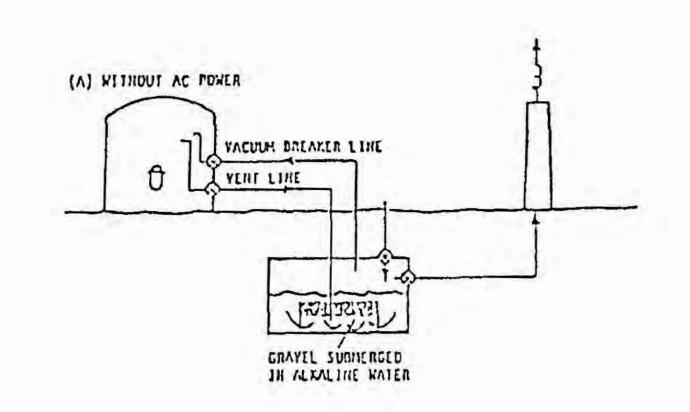
Backup Slides



U.S.NRC United States Nuclear Regulatory Commission Protecting People and the Environment


Probability of DF

Particle Collection Efficiency in a Venturi Scrubber: Comparison of Experiments with Theory 1986


- Introduction
- Venturi scrubbers are used widely for removing particles from gases because of their many attractive features: they remove submicrometer particles efficiently; they are compact and simple to build, so that initial investment costs are small in comparison to other types of particle collection devices; and they function well in problematic situations such as hot or corrosive atmospheres and when sticky particles must be collected.

20th DOE/NRC NUCLEAR AIR CLEANING CONFERENCE

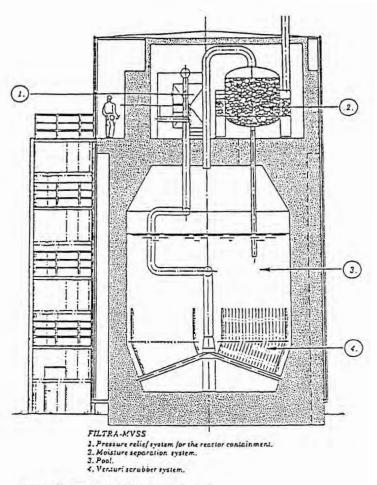
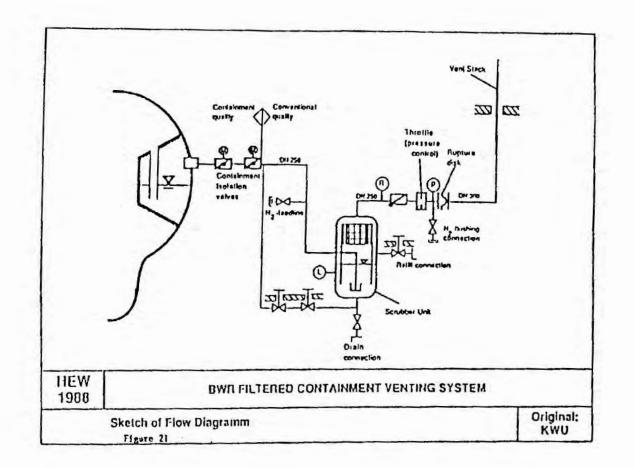



Figure 12 The Swedish MVSS Filter Concept

Sweden - FCVS DF Requirement

- No acute fatalities
- Limited area of first year dose from ground contamination (with rain) of greater than 50 mSv (5 Rem)
- Considered met if release of no more than 0.1% core inventory Cs-134, Cs-137, and lodine of 1,800 MWth reactor, similar for other nuclides important to land contamination (Chernobyl 1%)
- Required demonstrated minimum DF >100; MVSS designed for >500, tested >> 1,000

Canada – FCVS Requirement

" In 2007, the regulator and the utility discussed the installation of an FCVS similar to those on Swiss plants for severe accident management. The value of an FCVS was assessed by the licensee in a complete Level 2 PSA, including external events, in accordance with CNSC Regulatory Document S-294,. The analysis uses Severe Core Damage Frequency (SCDF), and large release frequency (>1% Cs-137 inventory) as decision metrics that align well with IAEA SSG-3 and SSG-4. The FCVS, costing approximately \$14 million Canadian, was found to be cost-beneficial when using the large release frequency metric. The stated purpose of the FCVS is "to prevent failure of containment integrity due to the increase of containment pressure beyond the failure pressure of approximately 220-230 kPa(g), or 31.9-33.4 psig."

Finland - STUK

- "Containment filtered vent systems have been installed in Finland at the two operating BWRs, Olkiluoto 1 and 2. They were installed in 1990 at both units as a plant modification."
- "The design purpose of the filtered vent is to decrease the containment pressure in a severe accident, if the pressure exceed a specified limit (see question 4). The system is useful in all severe accident sequences, where energy and fission products are released into the containment"

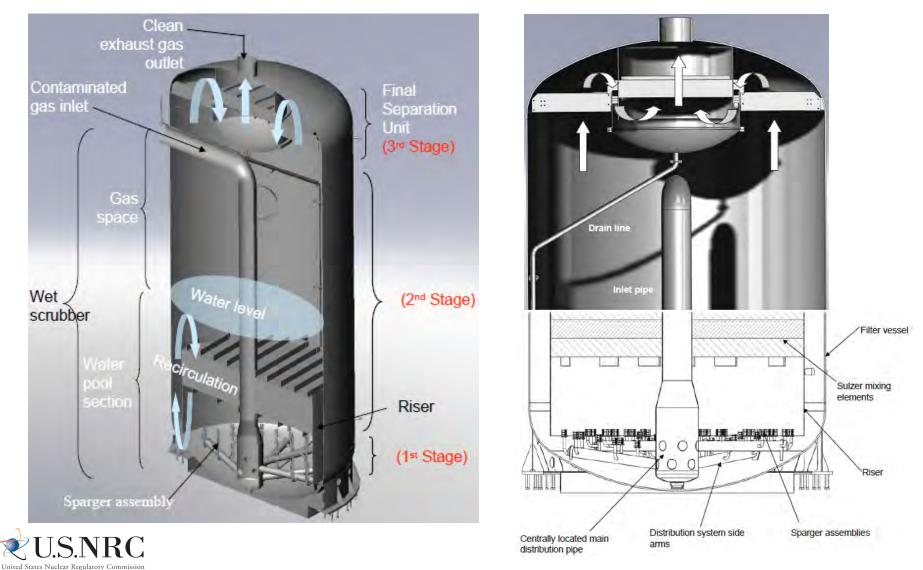
Required DFs for FCVS by Country

The following DFs are used

• <u>Aerosols</u>

– Sweden	BWR 100	PWR 500
– Germany	BWR 1000	PWR 1000
– Switzerland	BWR 1000	PWR 1000
– France	BWR NA	PWR 1000*
– Finland	BWR 1000	
Elemental Iodine		
– Sweden	BWR 100	PWR 500
– Germany	BWR None	PWR 100
– Switzerland	BWR 100	PWR 100
– France	BWR NA	PWR 10*
– Finland	BWR 100	

*Upgrade under consideration

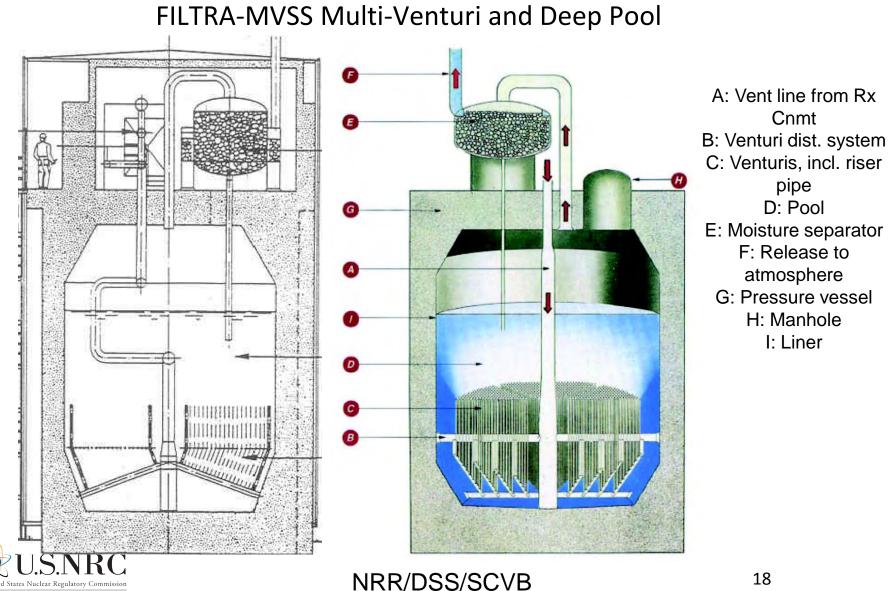

•

Jerry Bettle

Backup Slides



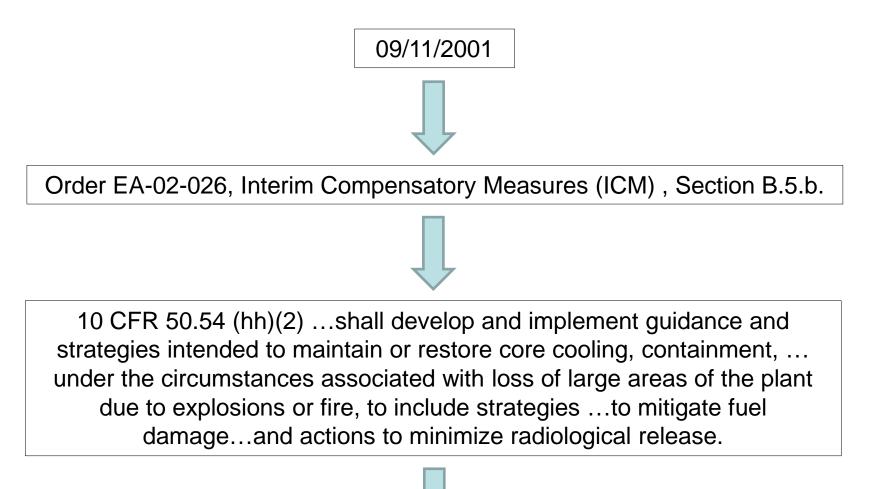
IMI – PSI AMI System – Wet Filter with Nozzles and Impactor/Baffle Plates



Protecting People and the Environment

Earlier Vintage Wet Filter with venturi nozzles and NaOH for enhanced iodine retention.

Protecting People and the Environment


Protecting People and the Environment

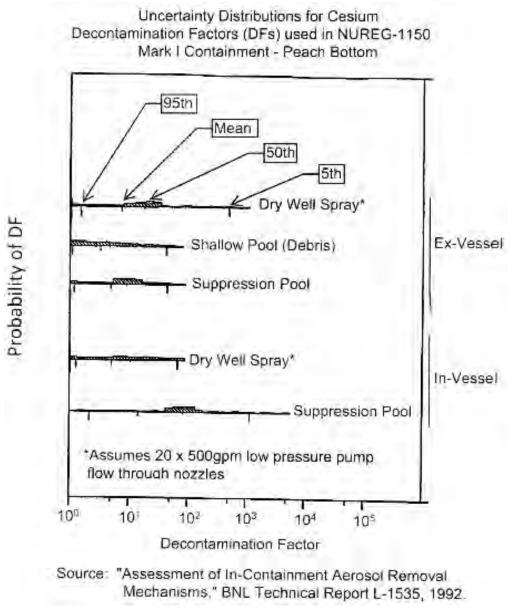
^{03/26/2012}

Injecting Water Into the Drywell to Ensure Vent Benefit

50.54(hh)(2) currently requires capability for injecting water into the DW as well as into the RPV in BWRs, although for a minimum of 12 hours. Order EA-12-049 requires the capability for injecting water into the RPV, but not explicitly for injecting into the drywell. However, at the moment of RPV breach, RPV injection is drywell injection. The EA-12-049 capability requirement extends for an indefinite period, that is until the capability is no longer needed. Order EA-12-050, similar to EA-12-049, was developed for pre-severe accident (pre-core damage) conditions and thus without core breach of the RPV.

License Conditions and Licensee Commitments to NEI 06-12, B.5.b Phase 2 & 3 Submittal Guideline, Rev 2 dated December 2006

NEI 06-12, Rev 2, Section/Strategy 3.4.9, Provide cooling of the core debris and scrubbing of fission products...an AC-power-independent means to inject at least 300 gpm of water to the drywell for a period of 12 hours. The water injection can be directly to the drywell, or through lines connected to the RPV. This could utilize the Phase 2 portable pump or other existing sources.



03/11/2011

EA-12-049, Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events. NEI 06-12, Rev 2 continues to provide an acceptable means of meeting the requirement to develop, implement and maintain guidance and strategies for that subset of beyond-design-basis external events. NEI 12-06, Rev 0, provides for development and implementation of mitigating strategies for beyond-design-basis external events to address those events not covered within the requirements of 10 CFR 50.54(hh)(2).

NEI 12-06, DIVERSE AND FLEXIBLE COPING STRATEGIES (FLEX) IMPLEMENTATION GUIDE, provides for RPV injection capability by portable pump. Equipment required for compliance with 50.54(hh)(2) may be used to support FLEX implementation. FLEX strategies are focused on the prevention of fuel damage and **would be** available to support accident mitigation efforts following fuel damage, but coordination of the FLEX equipment with Severe Accident Management Guidelines (SAMGs) is not addressed.

U.S.NRC United States Nuclear Regulatory Commission Protecting People and the Environment

Conditions	Decontamination Factor (DF)			
	5th Percentile	Median	Mean	95th Percentile
During In-vessel Release Phase (through T-Quenchers)				
Peach Bottom	2.3	81	14.5	1200
LaSalle & Grand Gulf	1.8	56	10.5	2500
During Ex-vessel Release Phase (through Vent Pipes)				
Peach Bottom	1.2	9.5	5.1	50
LaSalle & Grand Gulf	1.2	6.8	4.	72

Table 2.1 Distributions for Suppression Pool Decontamination

SIZING A HARDENED VENT: Five Questions

- 1. What is the range of **compositions of the gases** that will be vented?
- 2. What is the range of **quantities of gases** that will be vented?
- 3. What is the range of **absolute pressures** at which the gases will be vented?
- 4. What is the range of the **rates** at which the gases will be vented?
- 5. What is the **minimum area** of a vent that will accommodate the most demanding combination of the above conditions?

A quote from the March 14, 2012, ACRS letter (ML12072A197):

Discussions with stakeholders regarding near-term actions for additional hydrogen control and mitigation measures in plants with Mark I and Mark II containments should be included in the staff's Tier 1 actions.