ENT00575H Submitted: October 2, 20 WELL ID: M	W 52 - 181
SAMPLE ID:	006

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY OVERLAS'T, 40'S	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>4122</u> 11 <u>68.5</u>
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURG	gal
SAMPLING P	ORT	PURGE METHOD:	Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0921	D	PUMP	ON					9/12	45
0925	D.05	12:50	1.195	1.74	5.71	71.3	7.14		
0430	0.20	12.93	1.123	1.41	6.02	4514	3:76		
0935	0.35	13.00	1.087	0AS	6.41	3.3	2:03		
0940	0.50	1312	1,043	0.102	6.71	18:4	4.84		
0945	0.105	13:27	1059	0.46	6.9D	-210.5	2.51		
0950	0.30	13.38	1.054	0.33	7.06	-24.3	1.77		
90+0955	1.05	13.36	1.053	0,291	7.16	-32.8	1.64		
1000	1.20	13.49	1.050	0.27	7.18	-37.7	1.53		
1005	1.30	13.48	1,049	0.23	7.22	-38.6	1.47		
1000	START	SAMPL	E LOLU	ECTION			1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -		
1022	ENDSA	MPLE 4	PLLECTI	ON:2LJ	FEC				
	Pumpo	PF							
			1		2 9				
								-	
						1		1	
				1000	1				1
									/
	2						E		
						1		1	
					C	<u></u>		18	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Well Vault Condition FAIR	
EVIDENCE OF WATER	
INFILTRATION	

WELL ID: <u>My 53</u> SAMPLE ID: <u>0 19</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

01.0017869.92 CLIENT: Entergy - IPEC PROJECT NO: DATE: SITE: Buchanan, NY SAMPLER(S): CB, 51 505 WEATHER: SUNNY ft PUMP DEPTH:

Time	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)	Ho Puzzy Notes Gal
0950	25.955	PUMP	ON	(1070)	6.50	(1/ 10)	(10,0)	5/20	38	fin
1004	25.823		6.787.	10.75	9.78	145.4	12.13		1	0.01
1014	25,834	12.105	5.9102	5.25	6.5D	147.6				0.10
1020		17.57	5.462	6.00	7.05	145.5				0.20
1028	25,812	12.51	4.971	6.78	6.64	138.6	8.40			0.25
035	25,799	12.48	4.543	7.04	6.74	12628	6.52	Land Harry		0.30
1040	23.804	12.48	4.380	7.23	10.101	127.0		10		0.35
1045	25.795	12.47	4.271	7.16	6.78	121.7	5.06		-	0.40
050	25.784	12.41	4.204	7.22	6.75	117.6	5.31			0.45
1055	25.788	12.46	4.094	7.36	6.73	115.9	5.04			0.50
1100	25,783	12.33	3.976	7.59	6.82	112.1	4 Ide			0.55
105	25:770	12.33	3.910	7.54	6.85	110.5	4.24	-	*	0.60
108	START	SAMP	LE COLIE	CTION						1
245	END SA	MPLE	COLIECT	ON:2		C				
	-			2	LPEC		· · · · · · · · · · · · · · · · · · ·			
	Pump	OFF					1			
							1			
										-
										-
					1					
					1					

Equipment Used		Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde				
turbidity meter	200701254			
Measured Well Depth (feet from top of casing)	Well Vault Condition GOOD - MISSING	BOLTS		
NOTES AND OBSERVATIONS:	Total volume purged 20070 gal			
Depth and Depth to Water (DTW) measurements are given in feet from top of casing.	0:75			
Croundwater Playation measurements are given in feet mel				

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - II Buchanan, <u>SUNN</u>						PROJECT DATE: SAMPLER		01.0017869.9 4/18/4 08,56	2	
WATER CO	LUMN HE		57.3) DTW	top of casing) = E:	62.1 Well Colur		Well Vault Well Diam ft	t Condition eter: Diameter 1 2	600D - 1 Multipliers 0.041 0.163	<u>សនេទាលថ</u> in	80075
Water Col	umn Height	62.19	x	0.04) Multiplier		2.55 Vell Volum		4 gal	0.653	I	
2.55	x	1.5	Ξ.	3. 82 Designed Pur	ge Volume	gal TOTAL V	OLUME P	URGED:	4.50	gal	
WATER QU	ALITY:	DTW = 5	7-8 GW	Elevation 12.	38						
Time	Volume Purged (gal)	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)	Notes
1110	0			PON	(10.0)	(11 012)	(1/ 10/		NA	NA	
1119	0.25	<u>د </u>	14.11	1.711	9.32	6.20	222.2	65.22			
1123	0.50		15.41	1.1037	10.64	16.27	203.1	143:5			
1120	1.00		15.50	1.707	20.12	6.36	1947	148,4			
1130	2.00		1570	1.775	32.42	6.40	1851	103.2			_
1134	2.50	· · · · · · · · · · · · · · · · · · ·	15:79	1.809	35.11	6.45	176.4	98.45			
1136	3:00		15.8	1.820	35165	4.46	172.6	100.12			
1137	3:50		13.83	1.826	3412	6.46	109.8	96.81			
1139	4.00		19.87	1.831	18.53	6.56	167.1	90.90	-	*	
1140	STAR				IUN						
1152	END	SAMPL	ECOL	ECTION!	2L IF			· · · · · · · · · · · · · · · · · · ·			
					22 DE	C					
	PUMP	OFP	1			-					
			1	1	y	1		·			And and a second se

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde	2			
turbidity meter	200701254			

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW <u>54</u> - <u>37</u>

SAMPLE ID: ______

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 58° RAIN	-	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>4/12/11</u> 5L
SAMPLING I	INTERVAL (depth in ft below top of casing) 29.0 to $42.0PORT3.7$	6	TOTAL VOLUME PURG PURGE RATE: <u>variabl</u> PURGE METHOD:	<u>,15</u> gal
WATER OUA	ALITY:			

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1120	0	PUMP	ON	(10,0)		(11 10)	(10/0)	614	20
1130	0.7	20.97	2.440	1.04	7.16	24.7	0.94	1 1	
1130	1.0	20.97	2.459	0.96	7.22	47.9	0.96		1.0
1140	1.35	20.95	2.470	0.94	7.25	57.3	0.71		
1145	1.65	20,92	2.472	0.94	7.27	61.6	0.87		
1150	2.00	20.91	2.474	0.94	7.28	64.3	1.08	V	V
1152	START	SAMPLE	ECOLEO	TTON: 2L		1.01			
1209	END	SAMPLE	COLLEC	TTON: 26	IPEC			1	Sec. 1
	PUMP	OFF						1	
			21. mar 19			PC	1		
			2						
100 mil	1								
	I Earner State		1			1			
			<			1			
								-	
Concerning of the			1						
						A			
				-					
				1	1.0.0				
	· · · · · · · · · · · · · · · · · · ·								
				-		· · · · · · · · · · · · · · · · · · ·			
			1			1			

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
turbidity meter	2007 01254

NOTES AND OBSERVATIONS: Well is in good shape, no problems

Total volume purged _______ gal

WELL ID: MW 54 - 58 SAMPLE ID: 017

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 58° RATU	PROJECT NO: 01.0017869.92 DATE: 4/12/11 SAMPLER(S): 56
SAMPLING I	INTERVAL (depth in ft below top of casing) <u>51.5</u> to <u>64.0</u> PORT <u>58</u> 55	TOTAL VOLUME PURGED: 1,40 gal PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump
WATER OUA	NUTY:	

Specific Dissolved Turbidity (SU) ORP (m/Volts) Drive/Vent Purged Volume Temp (^{0}C) Conductivity pН Drive Pressure Time Oxygen (mg/l) (NTU) Cycle (seconds) (mS/m) (gal) (psi) (3%) (3%) (10%) (+/-0.1)(+/-10) (10%) 1120 0 ON 614 20 PUMP 1130 0.25 2.037 2.034 6.53 20,76 0.83 -61,2 0,44 -64.2 1.00 0.50 20.74 1140 2.058 0.39 6,69 61.3 0.75 20,73 0.92 0.35 6.73 2.083 -60.8 1145 1 20.70 1.25 20,69 0,33 1150 2.102 6.75 - 57.8 0.87 N V COULECTION: H SAMPHE START 1154 IPEC SAMPLE 1200 END PUMP OFF

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde	2			
turbidity meter	200701254			

NOTES AND OBSERVATIONS:

Well is in good shape, no problems Total volume purged _______ gal

WELL ID: MW 54 - 123

SAMPLE ID: ______

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 58° RAIN	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>4/12/11</u> 54
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGEI PURGE RATE: variable	$\frac{1.10}{\text{gal}/\min}$
SAMPLING I	<u>123</u>	PURGE METHOD:	Double Valve Pump
WATER QUA	ALITY:		

Specific Dissolved Turbidity Drive/Vent (SU) ORP (m/Volts) Drive Pressure Purged Volume Temp (^{0}C) Conductivity pН (NTU) Oxygen (mg/l) Time Cycle (seconds) (psi) (mS/m) (gal) (10%) (3%) (3%) (10%) (+/-0.1)(+/-10) ON 614 20 PUMP 1121) 0 20.71 1,72 0.35 -106.6 1130 0.20 824 25 Oito 1135 20,76 1.825 0.26 52 61.5 0.40 61 -58,0 6.75 1.826 0.48 0.50 20,76 0.17 1140 0.60 0,15 6.86 -53,4 0.81 1.827 1145 20,75 6.92 0.12 0.70 20.74 1.827 -50,6 1.03 1150 6.96 155 20.72 -48.5 0.12 0.26 1.828 0,80 -47,1 0,36 V 1200 0.95 1.827 Oill 6.98 START SANPLE COLLECTION 1207 IPEC COLLECTION : 7L SAMPLE END 222 PUMP OFF

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde	3			
turbidity meter	200701254			

NOTES AND OBSERVATIONS:

Well is in good shape, no problems. Total volume purged ______ gal

WELL ID: MW	54 144
SAMPLE ID:	DIT

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 58° Rain	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>4/17/11</u> <u>56</u>
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGEI	2,40 gal
SAMPLING B	135.0 to 155.5	PURGE RATE: variable	(gal / min)
	<u> 144 </u>	PURGE METHOD:	Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0855	0		ON (3%)	(10%)	(+/- 0.1)	(47-10)	(1070)	7.5/6.7	36
DAW		20.99	1.869	2.02	6.15	5.3	1.01	1.1	1
0910	0.2	20.18	1.868	0.49	6.63	66.3	0.77		
0920	I	20.43	1,880	0,37	6.85	80.6	0.98		
0925	1.75	20.75	1.888	0,31	6,97	87.7	1.01		
0930	2	20.16	1.891	0.31	7.01	82.8	0.78		
0935	2.25	20.11	1.892 COLLECT	0.32	7.04	82.9	0,87	V	V
0937	START	SAMPLE	COLLECT	ION					-
0950	END OF PUMP	OFF	CONFOR	ION : JU	IPEC		1	-	
			<u>i</u> .						

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde				
turbidity meter	200701254			

NOTES AND OBSERVATIONS: Well is in good shape, no problems.

Total volume purged 2,40 gal

WELL ID: MW 54 - 173

SAMPLE ID: 017

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 58° Rain		PROJECT NO: DATE: SAMPLER(S):	01.0017869,92 4/17/11 .52
SAMPLING I	NTERVAL (depth in ft below top of casing) <u>170.5</u> to <u>182.0</u> PORT <u>173</u>	2	TOTAL VOLUME PURGE PURGE RATE: <u>variable</u> PURGE METHOD:	D:gal (gal / min) Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0855	Ô		ON	(10/07		(17 10)	(10.07	7.5/6.7	36
0900	0.2	21.07	2.321	0.95	5.48	-31,7	1.47		
Main	0.5	20.76	2.3/8	0.27	6.08	-68.8	0.35		
0930	1	20,50	2,313	0,18	6.37	-78.0	0.59		1
0925	1,4	20,31	2,312	0.14	6.52	-77.0	0.71		
0930	1.6	20.23	2,312	0.13	6.58	-78,5	0,32		
0935	1.8	20,16	2.312	0:13	6.62	-76,6	0.66	1	
0940	2.0	JO.12 SAMPLE	2.311	Qill	6.66	-77,1	0,94	V	V
0942	START	SAMPLE	CONFE	TON				1	1
0956	FUD	SAMPLE	CONE	IL: NOTI	IPEC				1
	Pump	OFF					1		
	1.					1			
				1				-	
								-	
		()							
			1						
1	-			-				-	
	-					-			
								-	
	-							-	
						-		1	
			-					-	

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde	2			
turbidity meter	200701254			

NOTES AND OBSERVATIONS:

Total volume purged 2, 15 gal

WELL ID: MW 54 - 19	0
SAMPLE ID: 017	-

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 58° Rain	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>4/17/11</u> <u>5L</u>
SAMPLING I	NTERVAL (depth in ft below top of casing) 185.0 to $203.6ORT$	TOTAL VOLUME PUR PURGE RATE: variab	
WATER OUA	<u></u>	PURGE METHOD:	Double Valve Pump

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0855	0	PUMP	ON	(10/0)		(11 10)	(1010)	7.5/6.7	36
0900	A.2	21,19	2.033	0.79	5.81	-44.1	0.82	1 1	
090	0,5	20.91	1,940	0.25	6:75	-34.4	0.95		
0970	- une	2067	1.985	0.16	7.04	-16.2	0.73		
0925	1.4	20.43	1,985	0.13	7.09	-0.1	0.80		
0930	1.5	20.36	1.984	0:13	7.11	6.8	0.88		
0935	1.75	20:29	1.985	0.13	7,12	13,0	0.54		
0940	1.9	20.23	1,985	0.12	7,13	17.8	0.52	1	1
0945	2.05	20,20	1.985	0.11	7,14	21.0	0.38	8	W
0947	START	SAMPLE	COLLECT	Inv					
1001	END	SAMPLE	COLLECT	ION: 22	IPEC				
	PUMP	OFF							
	a second s			1		1		A CONTRACTOR OF	
		1.	11						
			1		1.000				
1.00									
					1			-	
	1								
	1			4		· · · · · ·		-	-
								-	
								-	
								-	
					-				-

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Well is in good shape, no problems

Total volume purged _ 2.20_ gal

WELL ID: <u>MW-36-53</u> SAMPLE ID: <u>010</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY	DATE:	4/27/11	
WEATHER	PARTLY CLOUDY, 60'S	SAMPLER(S):	UB, SL	_
		PUMP DEPTH:		ft

WATER Q	UALITY:	DTW =	38.26 GWE	levation					_	
Time	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)	Notes Gal
1018	38.25	PumP	ON		1			7/7.5	25	D
1036	38.28	16.65	1.729	1.89	5158	-89.1	2.41		1	0.01
1046	38.27	17.40	1.831	7.09	5.70	-94.8				0.05
1056	38-23	18.09	1.871	7.78	6.03	-101.8		4		0.08
1101	38.23	18.30	1.889	7.38	6.12	-103.4	2.98	6/7		0.09
1107	38.24	18.84	1.908	7.82	6.30	-101.9	2.70			0.10
1112	38.25	19.08	1.917	7.74	6.39	-97.6	2.64			0.12
1117	38.26	19.14	1.949	7.46	6.54	-93.5				0.15
1122	38.27	18:76	1.999	7.94	6.61	-93.1	2.16			0.18
1127	38.27	18.79	2.016	8.36	6.64	-91.1	2.14		1	0.20
1132	38.28		2.023	7.99	6.67	-89.5	2.10		- 1 h	0.25
1134	START		LE COLLE							
1208			COLLEC	TION:2	LIPE	C				
	Pump	DFF							_	
								·		
-										

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200-701254
Measured Well Depth (feet from top of casing)	Well Vault Condition BAD - WELL WALLT
NOTES AND OBSERVATIONS:	Total volume purged gal
Depth and Depth to Water (DTW) measurements are given in feet from top	of casing. GBREAKING AT HINGE. EVIDENCE OF
Groundwater Elevation measurements are given in feet msl.	SUPPACE WATER INFILTRATION.
	BOTTOM OF VALLET SATURATED AND
	SURFACE TRASH AND DERIS FROM SURROUNDING AREALI.C. Cigarct

butts

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>PARTH CLAITH, COS</u>	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>4/27/11</u> <u>CB, 5L</u>
Measured Well Depth (feet from top of	of casing) Well V	ault Condition see New 56-53
WATER COLUMN HEIGHT (ft) \$3 - 43.42	Well D	iameter: / in
$\frac{10}{\text{DTB}} = \frac{15}{\text{DTW}}$	= <u>39.58</u> ft Well Column Height	Diameter Multipliers
GALLONS OF WATER PER WELL VOLUME:		1 0.041 2 0.163
Water Column Height <u>39.58</u> x <u>O</u> , Multi	$\frac{\partial \mathcal{U}}{\partial \mu} = \frac{1.1022}{\text{Well Volume}}$	gal
<u>1.622</u> x 1.5 = Des	<u>2.43</u> gal signed Purge Volume TOTAL VOLUM	ME PURGED: 2.50 gal

WATER QUALITY: DTW = **43.42** GW Elevation

Time	Volume Purged (gal)	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Notes	
1217	0		Pump	VN					Second Street	
1222	0.01		17.31	0.286	6.04	7.18	- 53.0	2323	FROM SURFACE 4	ATE
1241	0.20	-	18.71	0.604	4.71	6.47	-40.6	222.8		
1243	DISD		16.05	1.192	4.39	4.45	-39.6	120.5		
1328	Pun	P UFF.	451 F	LOW THEOR	16H CE	LICU			NOTES.	
1330	Pume	OW, YSI	FLOW TI	FROUG H CE	LL CLEM	REDO	F DEB	215		
1333	1.0		16.53	1.768	8.89	7.29	-25.2	25.31		
1337	1.5		16.54	1.783	4:73	7.09	-14.3	15.94		
1339	20	1	16.93	1.757	4.00	7.05	- 17.1	12.07		
1341	2.4		16.81	1.744	7,76	7.04	-16.8	10.57		
1342	START	SAMPL	E LOLL	ECTION						
1340	END S	AMPLE	Incié	CTION:21	TPEC		1			
	Pump	OFP								
								-		
_								1		

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	6
turbidity meter	200701254

NOTES AND OBSERVATIONS: FLOW THROUGH CELL GLOGG FRIG DUE TO SURFACE WATER DEBRIS INFILTRATION Depth and Depth to Water (DTW) measurements are given in feet from top of casing. FLOM PREVIOUS PRECIPITATION Groundwater Elevation measurements are given in feet msl.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet WELL ID: MW-57-IV SAMPLE ID: 007

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: RAIN, 60's		PROJECT NO; DATE: SAMPLER(S):	01.0017869.9 <u>5/4/11</u> <u>CB, SL</u>)2
Measured Well Depth	(feet from top of casing)		ault Condition f	AIR - BOLIS STRIPPE
WATER COLUMN HEIGHT (ft) <u> </u>	<u>3.67</u> = DTW	T.33 ft Well Column Height	Diameter M	Iultipliers
GALLONS OF WATER PER WEL Water Column Height 7.33	(h. colla	= 0.30	$\begin{array}{c} 1\\ 2\\ 4 \end{array}$	0.163 0.653
water Column Height	X <u>0.041</u> Multiplier	Well Volume	— ^{gal} Loi	ELL VAULT FLOODED
<u> </u>	$= \underbrace{0:45}_{\text{Designed Pur}}$	gal ge Volume TOTAL VOLUM	ME PURGED:	0.75 gal

WATER QUALITY: DTW = 3.67 GW Elevation

Time	Volume Purged (gal)	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Notes
1002	0	3.107	PUMP	ON 2.674	3.8	6.81	1		
1007	0.2	19.78	2.614	3:31	10.81	187.9	187.9	0.61	
10 11	0.35	19.9	19.91	2.605	3:40	7.07	214.3	0.05	
1014	0.50		19.96	2.665	3.43	7.09	210.0	0.69	
1017	STAR-	T SAMP	25 a	LECTION				1	
1028	ENDS	AMPLE	SOUG	TON: 2L	IPEC				
	Pump	OPP							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New YorkWELL ID: MW -57 - 20Modified Traditional PurgeSAMPLE ID: 00 1Sampling Data SheetSampling Data Sheet

CLIENT: Entergy - IPEC		PROJECT	NO: 01.001786	9.92
SITE: Buchanan, NY		DATE:	5/4/	
WEATHER: PAIN 100'S		SAMPLER	(S): CB, 51	
Measured Well Depth	(feet from top of cas	ing) V	Well Vault Conditio	n SEE MW-57-11
WATER COLUMN HEIGHT (ft)			Well Diameter:	<u> </u>
20 -	3.68 =	16.32 f	t	
DTB	DTW	Well Column Height	Diameter	Multipliers
			1	0.041
GALLONS OF WATER PER WE	LL VOLUME:		2	0.163
			4	0.653
Water Column Height <u>16.3</u>	2 x <u>0.04</u> Multiplier	$\frac{1}{1} = \frac{0.6}{\text{Well Volume}}$		
0.67 x 1.5	= / Designed	<u>.</u> D gal I Purge Volume		1
		TOTAL V	OLUME PURGED	: 1.15 gal

WATER QUALITY: DTW = 3.68 GW Elevation

Time	Volume Purged (gal)	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Notes
1002	0	3.08	PUMPON 19.95	2.997	4.94	6.97			
1007	0.2	19.95	2.797	4.94	6	1845	-184.5	8.97	
1011	0.35		20.09	2.731	4.24	6.85	-181.3	7.63	
1014	0.45		20.15	2.700	3.96	6.83	-177.5	7.21	
1017	0.60	•	20.13	2.683	3.92	6.82	-169.0	7.22	
1021	0:70		20.12	2.650	3.87	6.20	-172.7	6.78	
1024	0.80		20.14	2.632	3.91	6:80	-178.2	5.12	
1027	0.90		20.17	2.622	3.82	6.81	-184.3	5.14	
10291	1.00	_	20.17	2.615	3.85	6.81	-180.0	5.16	
1029	STAR-	T SAMPLO	E LOLL	ELTION					
1037	END	SAMPL	E COU	ECTION:2	LEPER	0			
	Pump	DFF							
			1						
					6.00 S. 10	· · · · · · · · ·			
	· · · · · ·	· · · · · · · · · · · · · · · · · · ·							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

CLIENT: Entergy - IPEC				PROJEC	CT NO:	01.001786	9.92	
SITE: Buchanan, NY				DATE:		_ 5/4	ht	
WEATHER: PAIN, 603		5.		SAMPL	ER(S):	CB,S		
Measured Well Depth	(feet from	n top of casing)			Well Va	ult Conditio	ISEE MW-S	7-11
WATER COLUMN HEIGHT (ft)			L.		Well Dia	ameter:	i	in
45 -	4.5	=	50	5	ft	1		
DTB	DTW		Well Col	umn Heigł	t	Diameter	Multipliers	
						1	0.041	
GALLONS OF WATER PER WEL	L VOLUM	E :				2	0.163	
						4	0.653	
Water Column Height 40.5	x	<u>D.041</u> Multiplier	-	. (Well Volu	olo Ime	_gal		
1.66 x 1.5	=	2.4 Designed Pur	9 ge Volume		VOLUM	E PURGED	. 2.45	gal

WATER QUALITY: DTW = 4,50 GW Elevation

Time	Volume Purged (gal)	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Notes
1002	0	4.50	PHIMP	ON	L			10000	
1007	0.25	19.82	19.82	2.790	4.80	6.96	-183.2	0.94	
1011	0.45		1994	2.756	2.90	10.918	7,4	0.86	
1014	0.55		19.97	2.754	2.70	7.02	2.5	1.90	
1020	0:75		20.02	2.755	2.53	7.09	-4.1	2.16	
1029	1.00		20.06	2.767	2.54	7.13	-8.9	0.61	
1032	1.25	-	20.13	2.767	2.52	7.14	-7.8	0.75	
10:37	1.50		20,13	2.769	2,52	7.16	-11.4	0.56	
1042	1.75		20.15	2.766	2.53	7.17	-13.0	0.51	
1046	2.00		20.15	2.7100	2.54	7.17	-13.9	0.50	
1049	2.25		20.15	2.766	2.51	7.18	-14.7	0.57	
1054	2.50		20.16	2.7107	2.53	7.18	-15.9	0.62	
1055	START	SAMPI	ELOU	ECTION	-				
1103	ENDS	AMPLE CO	LEET	ON:2LI	PEC		1		
	PUMP			122					

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	6
turbidity meter	300704293

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>MW-58-26</u> SAMPLE ID: <u>612</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY	DATE:	5/3/11	
WEATHER	: Partly Cloudy 503	SAMPLER(S):	SL,CB	
		PUMP DEPTH:		ft

VATER Q	UALITY:	DTW =	6.23 GW H		.000				
Time	DTW or GW Elevation	x - y	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
0907	18.925	DUN	1PON	·		171 -			
0917	18.484	14,96	3.703	1.41	7,41	-131.2	2.59		0.05
0922	18,455	15.03	3,740	0.69	7.44	-135.0	1.92	(0.14
0927	18,433	15.09	3,748	0.47	7.44	-136.8	0.61		0,24
0930	START	SAMPL	E COLLEC	TION	10.53				1
0958	PNT	A		:2	IPEO	d			
	PUND	1FF							
				1	1				
	1	1.1.1.1.1		7	1				
			1		1				
					7.			1	
			1.						
	-								
	-							-	
_				-	-	-			
_									
			-				-		
	1								
				-					
	4		1						
	1								
							()		
								· · · · · · · · · · · · · · · · · · ·	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
flow meter	2
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition Jun, helolt
NOTES AND OBSERVATIONS:	Total volume purged 0.39 gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

Groundwater Elevation measurements are given in feet msl.

Pinge water seems a little scapy (bubbles forming when exiting tubing cap)

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY	DATE:	5/3/11	
WEATHER	Partly Cloudy, 505	SAMPLER(S):	5L,CB	
	/ //	PUMP DEPTH:	f	ft

Time	DTW or GW Elevation		Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
0907	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)	the second se	gal
	63.495	PUM	P ON 1.111	1.03	7.05	-157.6	1.12		0.06
0917	63,344	15.29	1.119	0.62	7.16	-167.1	0.57	-	0.15
0972 0977	63.349	15,41	1.171	0.60	7.23	-187.0	6.13		0.75
	63.354	15,58	1,172	0.46	7.30	-187.5	1.09	1	0.40
0933	63.341	15.66	1.119	0.37	7:30	-193.3	0.60		0.50
0938 0943	63,392	15.77	1.107	0.32	7.35	-189.7	0.35		0.60
0945	START SI		COLLECTI		1.55	70114	01.55	1	Cie
1011	ENP	11	11	:32	IPEC				
1011	Pump)FF							
					-				
	1.1								

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
flow meter	3
turbidity meter	200704293
Measured Well Depth(feet from top of casing)	Well Vault Condition Jun, No botts
NOTES AND OBSERVATIONS:	Total volume purged 0.75 gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW 60 - 35	
SAMPLE ID:	

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY Hartly Cloudy 55°	_	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 4/15/11 5LyCB
SAMPLING	INTERVAL (depth in ft below top of casing)	_	TOTAL VOLUME PUR	gal
SAMPLING	25	7	PURGE METHOD:	Double Valve Pump
WATER OU	ALITY:			

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
090	0	PUMP	ON	(1070)	(17-0.1)	(11-10)	(1070)	5/7	18
0957	0.1	12.79	4.004	2.66	6.39	161.2	1.00		
1002	0,28	12.75	4,100	1.77	6.56	139.4	0.89		
1007	0.45	12.158	4,132	1.41	6.70	174,3	0.94		
1018	0.71	17.45	4.068	1.80	6.91	110.6	0,74		
1023	0,80	13.07	3.980	2.23	6.97	107.6	1.04	I and a second	
1120	0.88	13,11	3.885	2.35	4.02	105.6	OAS		1
1034	1.00	13,24	3.75	3.40	7.05	104,5	1.04	1 1 E	1
10.39	1,10	13,37	3,680	3.78	7.08	103,8	1.15	A CAL	
1044	1.20	13,63	3,562	9.15	7.07	103,9	1.16		
1049	1.30	13,74	3,489	14,44	7.10	103.3	1.26		
1055	1.40	13,83	3.390	4,80	6.97	102.0	0.04		
1100	1.48	13,96	3,280	4.91	6,95	1026	0.57	1	-
1105	1.55	14,10	3,213	TON	6.95	104,0	0.53	V	V
1106	START END	SAMPLE	- COULE	TON					
1136	END	u	"	: 31	IPEC			-	
								-	
							N		
						3		1	
_									

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
turbidity meter	700701754

NOTES AND OBSERVATIONS:

Well Vault Condition Very Poor Lid broken off at hinge, and partially sumken in. Needs to be replaced.

WELL ID: MW <u>60</u> - <u>53</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan NY Britly Cloudy 55°	PROJECT NO: 01.0017869.92 DATE: 4/15/11 SAMPLER(S): 54, CB	-
SAMPLING I		TOTAL VOLUME PURGED: <u>1,95</u> gal PURGE RATE: <u>variable</u> (gal / min) PURGE METHOD: Double Valve Pump	
	53 6	2	

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressur (psi)
0950	0		ON	(10.01	(1) 0127		(1011)	5/7	18
19957	0.1	12.77	2.728	1.38	5.95	-23.5	1,68		1
1002	0.75	12,82	2.769	1.24	6.01	-22.4	0.77		
1007	0.425	12.81	2,811	1.26	6.16	-6.6	10.54		
1018	0.85	12.86	2.846	1.35	4.46	- 21.4	0.87		
1023	0.95	12,99	2 843	1.72	6.46	31,1	0,52		
1078	1.10	13.05	2.839	1.27	6.67	38.2	0.67		1 V 1
1034	1:30	13,71	2.853	1.35	6.72	46.4	0.85		
1039	1.50	13.30	2,871	1,43	6.79	49.9	415		
1044	1.65	13.37	2,872	1,44	6.83	54.5	0,26	1	1
1049	180	13.62	2.871	1.42	6.87	57.3	0,65	V	V
1050	START	SAMPLE	COLLEC						
1137	END	11	41	1		- ROUTIUI			
	PUMP	OFF		1	26 TPEC	- DUPLICA	TE	6	
						- SPIKE			
					26 IPEC	- BLANK			
		-		-				-	
							1		
_		· · · · · · · · · · · · · · · · · · ·							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Well Vault Condition Sel MV-60-35

WELL ID: MW 60 - 72 SAMPLE ID: 017

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC	PROJECT NO: 01.0017869.92
SITE: Buchanan, NY	DATE: <u>4/15/11</u>
WEATHER: MANNIN Partly Cloudy 55°	SAMPLER(S): <u>54/2B</u>
SAMPLING INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED: <u>3,00</u> gal
66.4 to 78.2	PURGE RATE: variable (gal/min)
SAMPLING PORT	PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	(3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1730	0	STH2	PUMP	ON				6/5	35
1235	1.0	13.93	3.654	1.07	7.05	53.7	1,13		
1245	1,75	14.20	3 355	0.61	7.21	62.1	0.97	(
1250	2.00	14.73	3.294	0.56	7.22	64.0	1.21	1	
1255	2.50	14.17	3.277	0.55	7.27	64.3	1.04		
1300	2.85	14.76	3.257	0.51	7,28	65.6	1116		
1304	START	SAMPLE	COUE	IT ION			1		
1312	END.	11	10		: 2L IPE	i c			
1349	pump	NFP							
				Į				-	
				10.00					
				Li internette					2.1
				F					
				1994 - 1997 - 19					
		1							ii
									(
						1			
				1		1			
				1		E	1		
				6					
	1		2		1				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Well Vault Condition Set MW-60-35

WELL ID: MW 60 - 135 SAMPLE ID: 017

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan NY Partly Cloudy	-	PROJECT NO: $01.0017869.92$ DATE: $4/15/4$ SAMPLER(S): $5L_{1}CB$	
SAMPLING	INTERVAL (depth in ft below top of casing) <u>1749</u> to <u>141.4</u> PORT 1.35	- -	TOTAL VOLUME PURGED: 2, 30 gal PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump	
		<u> </u>		

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
12-20	0	PUMP	ON					615	35
1235	0.5	13.78	8.247	0.29	6.40	-124.6	2.34		
1245	1.0	14.00	7.261	0.18	6.59	-116.0	0.69		
1250	1.35	14.00	2,312	0.15	6.62	-102,7	0,44		
1255	1,75	14:00	2.350	0,13	6.64	-93.3	0.55		
1300	2.10	14,08	2.395	0.13	6.00	-90.5	0,69		1
1310	2.15	14.09	2.402	Dilo	6.69	-87.4	0.00	1	N
1315	START	SAMPLE	COULER	TION					
1325	END SAN	IPIE LOU	ECTION						
	Pump 0	FF							
	The second			·				1	
						· · · · · · · · · · · · · · · · · · ·			
				100 C	l				
							100000	Section and sector	
					1				
				1					
									1
					· · · · · · · · · · · · · · · · · · ·				
					6				

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde	à			
turbidity meter	200701254			

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition See MW-60-35

WELL ID: MW 60 - 154 SAMPLE ID: _______

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>Partly Cloudy</u> 55°	PROJECT NO: $01.0017869.92$ DATE: $4/15/11$ SAMPLER(S): $5L_1OB$
SAMPLING INTERVAL (depth in ft below top of casing) 	TOTAL VOLUME PURGED: <u>2,05</u> gal PURGE RATE: variable (gal / min)
SAMPLING PORT WATER QUALITY:	PURGE METHOD: Double Valve Pump

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1220	0	PUMP	ON					615	35
1235	0.5	13,98	2.047	0,44	1.98	-45.7	0.60		
1245	1.0	14.20	2,105	0.26	7.10	-42.0	0.54		
1250	1.3	14,26	2.132	0.72	7.13	-54.4	0.13	1	
1250	1.7	14,27	2.145	0.19	7.14	- 59.6	0,13		
1300	1,90	14.28	7.148	0.16	7.15	-63,3	0.35		
1304	START	SAMPL	E COLL	CTION			12-1-1		
1319	END	11	16	1.	SZL II	950		1	
	Punp	OFF		C			(
	1. 1. 1.						1-1		
				1			1		
			-				1.2		1 C
								1	
							1	-	
				1				1	1
				A					
			1						
			· · · · · · · · · · · · · · · · · · ·	1.1				1.5	
								1	
			A	0	1				
				1					
						· · · · · · · · · · · · · · · · · · ·			

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	20070 1254

NOTES AND OBSERVATIONS:

Well Vault Condition Set MW60-35

WELL ID: MW <u>60</u> - <u>176</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchangn, NY WEATHER: Bartly Cloudy	PROJECT NO: $01.0017869.92$ DATE: $4/15/4$ SAMPLER(S): $56,06$
SAMPLING INTERVAL (depth in ft below top of cas <u>1709</u> to <u>2</u> SAMPLING PORT <u>176</u>	TOTAL VOLUME PURGED: <u>1.90</u> gal PURGE RATE: <u>variable</u> (gal / min) PURGE METHOD: Double Valve Pump
WATER QUALITY:	

Time	Purged Volume (gal)	Temp (⁰ C)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	
1220	a	Punp	ON	(1011)				615	35
1235	0.25	14,12	0.74)	3,02	5.26	-110.6	1.82		
1245	0.60	14,66	0.744	0.90	5.33	-135.9	2,49		
1250	0,80	14.68	0746	0,56	5.50	-150.7	0.84		
1255	1.00	14.77	0.748	0.42	5.66	-179.9	1,38		
1300	1.10	14.75	0,749	0.32	5.85	-206,6	0.58		
1310	1.25	14.76	10,750	0.26	6.02	-221.8	0.76		
1315	1.50	14, 103	0.751	0.24	6.03	-226,6	1,0D		
320	1.75	14.50	0.750	0.22	6,10	-2312	0.87		
1322	START		COLLEC	TION			0.8		
		AMPLE	LOUEC	TION				1	
	Pump	OFF							
								1	
				1					
			-						
			-						
					-				
	-								
								-	
	1								
				· · · · · · · · · · · · · · · · · · ·			è-1		

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition Set <u>MW-60-35</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY	DATE:	4/13/11	
WEATHER	R: 45, DRIZZLE	SAMPLER(S):	OB, SL	
		PUMP DEPTH:		ft

WATER Q	UALITY:	DTW =	9.91 GWI	Elevation 2	1.90				
Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/-0.1)	(+/- 10)	(10%)		Jal
1056	6.114	Pumi					-	_	-
1004	6.045	8.77	2.340	7.51	6.21	2298			0.05
1110	6.014	8.80	2.334	1:50	6.50	219.4	1.32		0.20
1115	5.983	8182	2.338	7.52	6.67	210.6	1.15		0.30
1120	5.946	8.85	2.341	7.43	6.79	205.0	1.01		0.45
125	5.905	8.91	2.355	7:79	6.91	2020	0.92		0100
1130	5.389	8.91	3.340	7.83	6.96	200.0	0.63		0.75
1135	5.842	8.91	2.369	7.80	6.99	197.7	0.51		0.90
1134	START	Spinf	LE COLL	SCTION					
1153			WLET	100:	21 30	C.			-
12-10	Pump	077					1	1	
		· · · · · · · · · · · · · · · · · · ·							
							-		-
									c
	1								
				· · · · · · · · · · · · · · · · · · ·					
	1								
				1000			-		
	1					1.1.1			

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
flow meter	3
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition 6000
NOTES AND OBSERVATIONS:	Total volume purged gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: SITE: WEATHER	Entergy - IPEC Buchanan, NY <u>45, DR17</u>				PROJECT DATE: SAMPLEI PUMP DE	R(S):	01.0017869 4/13/1 65,50	1	ft
WATER Q	UALITY:		10.21	Elevation 2	100				
Time	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes
1056	12,151	Puinf		(1070)	(+/- 0.1)	(+/-10)	(1070)	1	gal
1050	12.009	10.11	1.5107	3.33	4.94	327.8	0.07		0.01
1110	11.973	10.53	1.548	4 मिं	4.98	174.5	0.28	<u>.</u>	0.20
1115	11.942	10.96	1.539	1.34	5,09	149.1	0.00		0.30
1120	11.912	11.31	1.535	1.05	5.19	124.1	0.00		0.40
1125	11.890	11.47	1.534	1.09	5,29	87.3	0.00		0.50
1130	11.891	11.40	1.538	0.99	5.39		0.00		10.60
1135	11.8100	11:33	1.536	0.87	5146	-16.5	0.00		D.70
1140	11.830	11.24	1.535	0.76	5.50	-51.3	0.00		0.80
1145	11.829	11.22	1.535	0.76	5160	-61.5	0.00		0.90
1150	11.812	11.15	1.535	0:77	5166	-57.1	0.00		1.05
151	START	SAMP	15 100	ECTION	1				
			2		PD-00-				
			S						
				·			10	· ·	
	1			· · · · · · · · · · · · · · · · · · ·					
				1					
0						1			
								1	
						Pa		A second second	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
flow meter	4
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition 400
NOTES AND OBSERVATIONS:	Total volume purged gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW 62 - 53

SAMPLE ID: 010

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 45° Drugzlu	PROJECT NO: 01.0017869.92 DATE: 4/13/11 SAMPLER(S): 54/08
SAMPLING I	INTERVAL (depth in ft below top of casing) 49.6 to 59.1 PORT 53 6	TOTAL VOLUME PURGED:
WATER QUA	ALITY:	

Specific Dissolved Turbidity (SU) ORP (m/Volts) Purged Volume Temp (^{0}C) Conductivity pН Drive/Vent Drive Pressure (NTU) Time Oxygen (mg/l) (mS/m)Cycle (seconds) (gal) (psi) (10%) (3%) (3%) (+/-0.1)(+/- 10) (10%) 1008 516 25 0 PUMP ON 404 13,47 10.39 -41.4 03 0.1 1.63 in17 98 -42.3 35 0.2 10.83 403 54 1022 10.69 17 -41.2 1.72 402 0.3 027 85 73 -40.5 10.43 407 0. lo. 0.4 -39.4 10.23 0,70 03-0.45 .401 6.79 1.400 50 10.19 1.64 6.82 - 39.1 1147 O. START SAMPLE COLLECTION 043 : JL IPEO 132 END 11 M

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	1		
turbidity meter	2007 01254		

NOTES AND OBSERVATIONS:

Measured Well Depth ____N/A (feet from top of casing)

Fred

WELL ID: MW 62 - 11 SAMPLE ID: 017

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>45° Augult</u>	PROJECT NO: 01.0017869.92 DATE: 4//3/11 SAMPLER(S): 51/28
SAMPLING INTERVAL (depth in ft below top of casing) (0) to 82.0	TOTAL VOLUME PURGED:gal
SAMPLING PORT	PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1008	0	PUMP	ON					516	25
1017	0.20	10.95	1.373	1.28	5,72	-88.7	0,10		
1022	0.35	11.37	1.363	0.89	5,88	-87.7	0.14		
1077	0.50	11.76	1,360	0.67	6.05	-84,4	0,27		
1032	0.30	11.39	1,360	0.60	6.15	-84.2	0,00		
1027	1.00	12.04	1,356	0.54	6.74	-84.4			
1047	1.15	12,30	1.354	0.52	6,31	-18.7			
1049	1.40	17:32	1,354	0,51	6.36	-73.2			
1054	1.60	12,51	1.352	0.47	6.43	-73,5			
1059	1.75	12.69	1,350	0.48	6.47	-63,3			
1100	START	SAMP4	Cirvia	TION					
1115	END	11	11	: 71	- IPEC				
	pump	OFF						· · · · · · · ·	
	1.0								
								-	_
				· · · · · · · · · · · · · · · · · · ·	15				
				N					1
	-								
								-	
									1

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Bood

WELL ID: MW <u>62</u> <u>92</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY <u>45° Duighte</u>	PROJECT NO: $01.0017869.92$ DATE: $4/13/11$ SAMPLER(S): $5L, CB$
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED: 1,10 gal
SAMPLING F	$\bigcirc \bigcirc $	PURGE RATE: variable (gal / min)
SAM LING I	92 4	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1008	0	PUMP	ON					516	25
1017	0.1	10,40	1,353	2.70	6.47	-32.7	0.25		
1072	0.2	in 74	1.347	1,38	6.83	-75.5	0.00		
1027	0.4	19.74	1.348	8.77	7,10	-14.0	0.00		
1022	0,6	11,34	1.209	10.52	2.6	-2.8	0.00		
1037	0.75	11.53	1:322	0.41	7.72	-0,5		(
1042	0.95	11,73	1.351	0.32	7.23	-0.1			
1045	START	SAMPU	COUE	TION		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
1103	END	et .		: 36	- IPEC				
	PUMP	OFF						-	
									-
		2	1		2				
			-	l					
1 ····································				1	110				
12.2									
	-								

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____ N/A ___ (feet from top of casing)

Dood

WELL ID: MW <u>62</u> - <u>138</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 45° Ampfu	PROJECT NO: 01.0017869.92 DATE: 4/13/14 SAMPLER(S): 56/05
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED: // 35 gal PURGE RATE: variable (gal / min)
	138 3	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressur (psi)
1336	0	Pump	ON	(10,0)		(11.10)	(10/0)	614	30
1342	0.01	10.107	1,437	4.65	10.75	-60.7	taili	1	
1350	6.20	11.38	1.4105	1.08	6.92	- 106.4	0.20		
1355	0.30	11.68	1.468	0.107	6.99	-88.2	0.14		
1400	0:55	11.82	1.471	0.48	7.05	-(do:4	0.07		
1405	0,70	11,94	1.472	0.40	7.07	-49.3	0.00	1	
1410	0.82	12.02	1.472	0.37	7.09	-39.9	0.00		
1415	1.05	12.20	1.470	0.34	7.11	-33,1	DIDD		
1420	1.20	12.23	1.470	0.32	7.13	-29.7	0,00		
1422	START	SAMPI	ECOLLE	CTIDN					
1439	END S.	AMPLE L	DUGLTI	NIZLJ	PEC				
	PUMP D	FF							
					0				
							1	C	
		1.0					1		
		·						A	
			1					1.1	
					-			11	
		A					V		
								-	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Agod

WELL ID: MW <u>62</u> - <u>182</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 45 Angle		PROJECT NO: 01.001786 DATE:	9,92 /// 26
SAMPLING II	NTERVAL (depth in ft below top of casing) 177.6 to 198	<u>. ר</u>	TOTAL VOLUME PURGED: //0 S PURGE RATE: variable (gal/min)	gal
SAMPLING P		1	PURGE METHOD: Double Va	lve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
13:30	0	Runp	DN					614	30
1342	0.01	10.46	1.247	5.23	6.18	- 8514	0.21		
1350	0.15	18.86	1.272	2.05	6129	-131.4	0.00		
1355	0.28	11.17	1.274	1.33	10.31	-143.3	0.00	1	
1400	0.40	11.36	1.276	0,96	6.46	-135.8	0.00	1	
1405	0157	11.51	11277	0.65	6,50	-126.5	0.00		
1410	0.65	11.65	1.278	0,53	6,53	-118,3	0.00	S	
1415	0.75	1176	1,279	0.48	6.56	-111.5	000	1	1
1420	0.85	11.82	1.2.80	0.42	6.57	-108:7	0.00		
1427	START	SAMPLE	E COLLEC	TION					
1444	ENDS	AMPIE	IDLECT	IDN 2L3	PEC				
	Pumpo						2		
					· · · · · · · · · · · · · · · · · · ·				
							1		
								-	
		· · · · · · · · · · · · · · · · · · ·		-					
				-					

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	201701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____N/A___ (feet from top of casing)

Dod

WELL ID: <u>______63</u>-18 SAMPLE ID: <u>_____7</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE: Buchanan, NY	DATE:	4/19/11	
WEATHER: Operant 45	SAMPLER(S):	SL, CB	
	PUMP DEPTH:		ft

VATER Q	UALITY:	DTW =	1245 GW H	Elevation 冹	1.609				_
Time	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes Gal
0905	4,850	PUMP		(1070)	(17 0.1)	(1/ 10)	(1070)	1	0
0915	4,895	9.78	2.629	3,91	6.56	-28.4	2.14		0.03
0920	4.919	9.80	2.642	7.14	6.65	-53.5	0.79	-	0.09
0925	4,950	9.86	2.617	1.21	6.72		0.37		0.19
09.20	4,996	9,84	7.5R	0.89	6,76	-67.4	0.28		0.38
0435	5.061	9,88	2,418	0.95	6.79	- 69.5	0.54		0.38
0940	5.107	9.88	2.181	0.92	6.83	- 70.8	0,48		0.50
0945	5.186	9.88	2.083	0,85	6.85	-71.4	0.47		0.58
0950	3,741	9.91	1.977	0.78	6.85	-72.3	0,88		0.65
0955	5. 286	9,82	1.939	0.74	6.88	-75.3	0.71		0.72
1000	5,318	9.81	1,894	0.68	6.87	-76.3	0.54		0.80
1008	START	SAMPL	E COLLEC	TION					
1035	END	e t	E L		SOL IP	Ð			
	PUMP	OFF							
				1					
					1.20			-	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
flow meter	j2
turbidity meter	9007 04 343
Measured Well Depth(feet from top of casing)	Well Vault Condition Mood
NOTES AND OBSERVATIONS:	Total volume purged gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID:<u>/////</u> SAMPLE ID:___ 34

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92
SITE:	Buchanan, NY	DATE:	4/19/11
WEATHER	Overcast 45°	SAMPLER(S):	SL,CB
		PUMP DEPTH:	ft

WATER QUALITY:	DTW = i2,33 GW Ele	vation 0.829
----------------	--------------------	--------------

Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/-10)	(10%)	1	Bal
0905	12.540	PUMP			1		1 1 10		0
0915	12.548	10.64	1.356	3.32	6.29	2.4	1.49		0.03
0930	12,570	10.76	1.347	2,68	6.38	-40.0	0.99	1	ODI
0925	12.597	10.81	1,340	2.74	6.46	-63,9	0.77	1	0.19
0930	12.630	10.8	1.336	2.00	6.53	-82.0	0,28		0.38
0435	12.669	11.02	1.331	1,61	6.59	-93.6	0.32		0.38
0440	12.734	11.03	1.331	1.12	6,63	-95.1	0.39		0.50
9945	12.765	10.97	1.332	0.86	6.60	-97.4	0.62		0.57
9146	START	SAMPL	E CONE						
1085	END	é f	11		: 31 IP	Ea			-
protection	pump	OFF							
				1		1			
_									
		-				1			
_	· · · · · · · · · · · · · · · · · · ·								
									-

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	2		
flow meter	2		
turbidity meter	200704293		
Measured Well Depth (feet from top of casing)	Well Vault Condition		
NOTES AND OBSERVATIONS:	Total volume purged gal		

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW <u>63</u> - <u>50</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92
SITE:	Buchanan, NY	DATE:	<u>4/19/11</u>
WEATHER:	<u>DV5RLAST, 45°, WINDY</u>	SAMPLER(S):	
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGE	D:gal
	<u>41.5</u> to <u>58.0</u>	PURGE RATE: <u>variable</u>	(gal / min)
	PORT	PURGE METHOD:	Double Valve Pump
	_507		r

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1025	0	PUMP	on					7/7.4	20
1032	0.05	11.93	1.039	5.04	5168	78.2		1	1
1040	0.15	12.67	1.069	2.20	6.13	-52.4	1.55	1	
1045	0.25	12.81	1.070	1.85	6:34	-581	1.04		1.1.1
1050	0.50	12.91	1.073	1.50	5,9Fi	-53:0	0.56		
1055	0.75	13:03	1.09	1.40	6:38	-54.3	0.89		
1100	1.00	13.11	1.087	1.30	6.42	-53.7	0.92		
1105	1.25	13.11	1.092	1.29	6.40	-52.4	0.85		
1110	1.50	13:10	1.093	1.29	6.39	-53.7	0.81		de la
1111		SAMPLE				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1125		mple co	LECTION	1:26 IP	EL				
	PUMP	OFF		1				1	
									-
					10. T				
					1			1	
					1			1.1	
	1	1						1	
Sec. 19.	-			-	()				
		L							
					1			1	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

6000

WELL ID: MW <u>63</u> - <u>93</u> SAMPLE ID: <u>018</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY OVERLAST, 45°, WI	NDY	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 4(19/11 CB, 5L
SAMPLING I	NTERVAL (depth in ft below top	of casing) 100, 5	TOTAL VOLUME PUR	<u>0,80</u> gal
SAMPLING F	93	5	PURGE METHOD:	Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1025	D	PUMP	ON					7/74	20
1034	0.01	11.20	0,825	1.58	6.73	-88.5			
1040	0.10	11.60	0.876	0.37	6.90	- 88.7	1.49		
1045	0:25	11.77	0.987	0.18	7.02	-93:7	1.53		
1050	0.35	11.35	1,043	0.15	7.10	-87.5	1.09		
1055	0.45	1200	1.050	0.13	7.16	-84.7	0.90		1.1.1
1100	0.55	12.10	1.070	0.11	7.21	-81.8	0,85	1	1.1.1
1105	0.70	12.08	1.002	0.10	7.23	-79.2	D.M.	Jr.	-
105	START	SAMPL	ELOUE	CTION			and the second s		
1127	END SP	MPLEC	DUECTI	DN: 21 I	PEC				
	PLUMPO	FF							
		· · · · · · · · · · · · · · · · · · ·							
			·					1.	
		/							
		1			14		\		
								1	
					1				
			1.1						

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	200 701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____ N/A ___ (feet from top of casing)

600D

WELL ID: MW <u>63</u> - <u>112</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

DATE: <u>4/14/14</u> SAMPLER(S): <u>CR</u> 35
TOTAL VOLUME PURGED:

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
10:25	0		ON	1				717.4	20
1032	0.01	11.29	1.210	3.12	3.07	-65.3			
1040	h.15	11.65	1.192	0.85	7,24	-88.5	2.05		
1045	0.30	11.91	1197	0,54	7.27	-95.2	1.77		
10.50	0,40	12.00	1.206	0,44	7.28	-97.7	1.31		
1055	0.50	12.17	1.214	0.36	7.29	-90.6	1.39	1	
1100	0.40	12.26	1.218	8.31	7.31	-90.7	1.29	4	-
1102	START	STAMP	LE COLL	SCTIDAL					
1125	END SI		COMED	7011:21	IPEC				
	Pump	DFF		2 1 2 2 2					-
							1	-	
			1	1. C					
		(
	1			1					-
					1 m				
		1		1					
			1						
				19 A					

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

6000

WELL ID: MW <u>63</u> - <u>121</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY DVEPCAST, 45°, WINDY	PROJECT NO: 01.0017869.92 DATE: 4/14/11 SAMPLER(S): 673/34
SAMPLING I SAMPLING F	NTERVAL (depth in ft below top of casing) <u>173</u> to <u>177,5</u> PORT <u>171</u> <u>3</u>	TOTAL VOLUME PURGED: 1.75 gal PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0901	D	PUMP		(100.11)				3/8.2	35
ma	0.01	11.54	1:290	2.23	10.58	-181.7	0.99	1	1
0915	0.40	12.34	1.292	090	5,80	-116.2	1.12		
0920	0.50	12,43	1.304	0.85	513	-101.1	1.00		
0925	0.75	12.58	1.313	0.897	5,95	-90.9	0.70		1.00
0930	1.00	12.76	1.315	0.78	5.98	-91.4	0,90		
0135	1.25	12.86	1.318	0.77	6.01	- 56.6	0.63		
0940	1.50	12.93	1.321	0.76	6.02	-82 5	0.82	12	NOT THE REAL PROPERTY OF
0941	574R7	SAMPLI	ELOLLE	CION					
0454	FUD SA	MPLEU	ULECTIO,	VIL IF	EC				
	PUMP	OFF				C2	M		1
					()	5			
				(1	
			1			1.			
									15
						I			
/						1.			
							1		
1									
					1		1	1	
						1			
			1		·				
								· · · · · · · · · · · · · · · · · · ·	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition

Gais

WELL ID: MW <u>63</u> - <u>163</u> SAMPLE ID: <u>0(7</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY OVERCAST 145° WIND Y	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>419/11</u> <u>CB, 5L</u>
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PUR	
SAMPLING I	PORT2	PURGE RATE: <u>variab</u> PURGE METHOD:	ole_ (gal / min) Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)		ve/Vent (seconds)	Drive Pressure (psi)
0901	()	PUMP	ON					8	82	35
0106	0.05	(1.14)	1.055	1.410	6.63	-95.1	2.82			1
0915	0.35	11.83	1.DOB	0.910.12	4.43	-103.0	1.52			
0920	0,650	12.01	1.009	0.15	6.94	-10.5.7	0.610			
0425	0.120	12.20	1.014	0.12	6.97	-107.8	1.04			
0930	0.75	12.35	1.018	0.10	6.99	-108.4	0.82			-
0933	START	SAMPLE	cont	CTION						
0949		NPLE LO	LIECTIC	N: 21 I	PEC			1		
	Pump	DEF								
					-					
				11						
			1							
		1.								
			1	1						
	1									
*	· · · · · · · · · · · · · · · · · · ·		D						_	
										4
	1	1	1				C			
	1.1.1									
								1		
						1				1
										1

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde	4			
turbidity meter	2007012.54			

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Gaud

WELL ID: MW <u>63</u> - <u>174</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY OVERCAST, 45	uindy		PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 4/19/11 - CB, SL
SAMPLING I	INTERVAL (depth in ft below <u>168.0</u> to PORT <u>174</u>	w top of casing)	1	TOTAL VOLUME PURGE PURGE RATE: <u>variable</u> PURGE METHOD:	<u>[.15</u> gal
WATER QUA	ALITY:				

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1001	0			(1070)	(+/- 0.1)	(+/- 10)	(1070)	8/8.2	7.2
0901	-	Pump	ON	2 - 2 - 3	7.00	100011	11.3	515.4	35
0906	0.01	11.26	1.001	3:32	7.03	68.6	6.33		
0715	0.40	12/11	0.943	0.56	7.21	-55.6	2.03		
0920	0.55	12.27	0.941	0,48	7.21	.52.7	1.73		
0925	0.75	12.47	0.942	0.40	7,21	-48.5	1.28		
0930		12.03	0 950	0.37	7.21	-48.1	1.02		
0935	1.00	12.78	0 956	0.34	7.22	-45.6	10.98	•>	4
0931	START	SAMPL	E coule	CTIONS					
0952	ENDSAN	PLE W	LECTIO	NILLE	PEC				
	Pump 0	FP	1						
					AL				
V		1	1.						
					1.		1		
1									
			-				Sector Sector		
			1	-					
	-								
	-								
							1		
		2							
		S							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition

GOOD

WELL ID: <u>MW-66-</u>21 SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC	PROJECT NO:	01.0017869.92
SITE: Buchanan, NY	DATE:	4/14/11
WEATHER: Partes Wounder 60°	SAMPLER(S):	SL, CB
	PUMP DEPTH:	ft

Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
03	9679	PUMP	ON	()				-	-
1045	07.591	12.61	1.311	2.41	5,74	-44.9			
050	STOPPED	PUMP	FLOWM	ETER	CLOCHE)	(
056	STARTED	PUMP		1		1	1		-
1100	9.538	12.37	1.260	2.6.2	5.59	-39.0	71,32	-	0.17
1105	9.474	12.44	1.191	1.96	5.81	-43.8	1.1.1		0,30
1110	9.454	13.00	1,150	1.83	5.86	-41.6			0.23
1117	9,395	14.R	1.152	1,87	6.04	-48.1	53.60		0.30
1122	9.371	13.31	1.153	2.18	6.79	-54.4	39.50		0.33
1127	9.321	13.40	(13)	1.88	6.41	-59.9	11,49		0.40
1132	9.305	13,48	1,139	1.82	16.42	-59.4	12:03		0.44
1137	9.260	13,89	1.125	1.71	6.45	-56.3	23,18		10,50
1142	9.232	14,26	1.124	1.65	6,47	-50,9	9.86		0,54
1147	9,200	14,77	1,122	1.55	6.53	-48.2	12,30		0.58
1152	9.163	15.16	1,173	1.80	6.57	-46,7	12.50		0.62
107	9.091	16,11	1.124	1.55	6.63	-5512	13.70		0.70
1207	9.057	15.41	1.140	1.59	6.76	-57.9	10,98		0.75
1212	9.026	1509	1,134	1.43	6.78	- 55.6	9.64		0.80
1213	START	SAMP	E COLLE	aTION					
345	END	11	11		ize	IPE			
		FF							
				10000		1			

Equipment Used		Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	*	5
flow meter		2
turbidity meter		200704293
Measured Well Depth (feet from top of casing)	Well Vau	t Condition _ Dead
NOTES AND OBSERVATIONS:	Total volume purged	gal
	0 1	

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>MW-66-36</u> SAMPLE ID: <u>016</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE: Buchanan, NY	DATE:	4/14/11	
WEATHER: Partly Cloudy 60°	SAMPLER(S):	SL, CB	
	PUMP DEPTH:		ft

VATER Q	UALITY:	DTW =	10.66 GW H	Elevation 🔮	2.704				
Time	DTW or GW Elevation	. ,	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	рН (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)	1	Gal
1031	13,505	PUM	ON						-
1045	13312	13,67	2.608	3.13	6.62	-24,4			
1050	STOPPED	PUMP	FROW M	ETER	CLOGGE	D	1		
1056	STARTED	pun	ρ					S	
1100	13.228	13.70	3.082	0.93	6.93	-51.1	2,80	- 2	0,34
1105	13, 240	13.89	3,100	0.79	6.97	-54,5			0.30
1110	13,205	13.88	3112	0.74	7.00	-57.9			
117	13,195	14,48	3,106	0.68	7.06	-611	1.79		0.45
1122	13,163	14.31	3.11/2	0.69	7.06	-61.1	1.51		0,50
1127	13.130	14,54	3,102	0.68	7.08	-61.9	1.05		0.58
1132	13:119	14,67	3,101	0.68	7.10	-62.6	1.15		0,60
1137	13.072	14,56	3,110	0.65	7.11	-62,2	0.93		0.68
1142	13.045	14,72	3.095	0.57	7.12	-62.5	0.44		0.73
1147	13,018	14,92	3,098	0.53	7.14	-63.0	1.21		0.78
1152	12.989	15.05	3.103	0.52	7.15	- 63.6	1.27		0.83
1153	START		E COLLE	CTION					
1953	END	- 11	11		:2L I	PEC			
10-10-	PUMP	OFF							
									1
		11							

Equipment Used	Equipment
Equipment Osed	Identification #
YSI 556 MPS Reader and 5563 Sonde	6
flow meter	13
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition 2000
NOTES AND OBSERVATIONS:	Total volume purged gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW <u>67</u> - <u>39</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PARTLY SUNNY, 50'S		PROJECT NO: 01.0017869.92 DATE: 4/14/11 SAMPLER(S): 68,54	
SAMPLING I	INTERVAL (depth in ft below top of casing) <u>JS.S</u> to <u>54.3</u> PORT <u>39</u>	7	TOTAL VOLUME PURGED: 1.75_gal PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump	

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	рН (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	
1233	D	PUMP	ON					8/8	20
1236	0.01	18:49	2.959	3125	6.40	-30.2	•		1
1250	0.75	18.61	2.800	0.35	7.42	-45.9	1.00	1 C-1	
1255	1.00	18.107	2.788	0.35	7.45	-48.8	1.66		
1300	1.25	18:71	2.777	0.32	7.46	-50.5	1.74		
305	1.45	18,102	2.779	0.31	7.47	-51.7	p.89		
1310	1.60	18.107	2.775	0.30	7.47	-54.7	0.63	-	-
1313	START	SAMPL		CTION					
1325	ENDSI		COLLECT	10N:20	IPEC				
	PUMP	DFF							
			<u> </u>						
			A						
			1						
			-						
								1	
			· · · · · · · · · · · · · · · · · · ·						

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition	FA	1 <u>R</u>
Miss	NG	MANIFOLD

WELL ID: MW <u>67</u> - <u>105</u> SAMPLE ID: <u>016</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92
SITE:	Buchanan, NY	DATE:	4/14/11
WEATHER:	PARTLY SUNNY, 5D>	SAMPLER(S):	CB15L
SAMPLING I	INTERVAL (depth in ft below top of casing) <u>90,3</u> to <u>10,8</u> PORT <u>105</u> 6	TOTAL VOLUME PUR PURGE RATE: <u>varia</u> PURGE METHOD:	gal

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressur (psi)
1233	0	Pump		(10.0)	(11 011)	(11 10)	(10,0)	8/8	20
1238	0.01	18.58	1.594	3.17	6.30	-79.2	-		
1250	0.50	18.85	1.567	0.40	10.43	-135.7	3.04		
1255	0.60	18.87	1.562	0.26	12.48	-110.7	2.34	1	
1300	0.75	18.79	1.503	D.18	6.52	-120,10	1.90		
1305	0.85	18,79	1.570	0.14	10.56	-143.1	1,67		
1310	1.00	18.72	1.575	12.12	6.60	-126.5	1.45		1
1315	1.10	18.60	1.574	0.11	10.101	-126.7	1.25		
1320	1.25	18.75	1.573	0.10	10-104	-107.8	1.35		1 da
1375	START	SAMPL	E COLLE	FLTION			2.4	S. 52	
1343	ENDSA	MPLEC	OLLECTIC	IN-ZL.	IPEC	1			
	Pumpo	FF				1			
		· · · · · · · · · · · · · · · · · · ·		1					
					(1		Designed La	
				1000	()				
							-		
								(
	k		1						
				1					
					-				
								1	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____N/A___ (feet from top of casing)

Well Vault Condition FAIR MSSINIG MAMFOLD

WELL ID: MW	67 - 173
SAMPLE ID:	017

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PARTLY SUNNY, 50'S	PROJECT NO: 01.0017869.92 DATE: 4/14/11 SAMPLER(S): CB, 51
SAMPLING I	INTERVAL (depth in ft below top of casing) 164.9 to 1993-3	TOTAL VOLUME PURGED:
SAMPLING I	PORT 5	PURGE RATE:variable(gal / min)PURGE METHOD:Double Valve Pump
WATER OUA	ALITY:	

Specific Dissolved Turbidity (SU) ORP (m/Volts) Drive/Vent pН Drive Pressure Purged Volume Temp (^{0}C) Conductivity (NTU) Oxygen (mg/l) Time Cycle (seconds) (psi) (gal) (mS/m) (10%) (3%) (3%) (10%)(+/-0.1)(+/-10)818 1233 Pump ON 20 0 -54.0 1240 0.01 1.115 4.51 10.51 18.07 0.50 10.35 4.04 250 8.43 0.53 -132.7 .166 3.09 0.38 -197.6 1255 0.60 6.45 8.52 214 -221.7 215 0.34 0.08 6.48 2.12 1300 18.55 ,200 305 0.31 2.89 6.5 -229.0 0.75 18.104 . 199 1310 0.85 18.55 0.27 10.51 -238:2 2.60 0.95 8.49 183 0.26 242.1 2-66 1315 6.50 2.31 0.23 -250. 1.00 18.44 1.170 6.08 1320 6.50 -7.55.3 2.19 1325 05 8,62 0.20 161 1330 1.19 1.15 18.79 1.153 6.58 -245. 2.07 1333 0.19 1.130 6.59 -260.2 1,89 1.202 18.72 0.21 -263.7 1240 6.62 1.75 25 18.79 1.127 1345 18.75 -205.7 1.30 1.115 0.18 6.62 1.104 1349 START SAMPL CONSCION 1409 DUECTION: 2LIPEC GND SAMPLE 1 PUMP OFF

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	1		
turbidity meter	2007 01254		

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition FAR

MISSING

MANFOLD

WELL ID: MW	67 219
SAMPLE ID:	016

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PARTLY SUNNY, 50'S	PROJECT NO: 01.0017869.92 DATE: 4/14/11 SAMPLER(S): CB15L
SAMPLING	INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:
SAMPLING I	PORT to <u>JAI</u>	PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump
	219 4	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1000	0	PUMP	DN					6/10	50
1005	0.15	14.91	1.157	0.26	10.42	-210.Z	0.78		
1015	0.25	15:72	1.194	0.07	10.50	-220.5	1.37		
1020	0.35	15.83	1.155	DiOS	10.93	-219.6	8:20		
1025	1:25	15.76	1157	0.04	6.96	-Zexe.6	0.12	1	
1030	1.45	19:74	1.157	0.05	10.98	-200.7	0.53		
1035	2.00	15/72	1.155	0.06	7,00	-204.5	0:39		
1038	STARTS	AMPLE C	OLLECTIO	N					
10407	END SA	MPLECE	UECTIM	1: 21 FPI	⁺ C			1	
1	Rump DI	7=					Y		
								1	
								1	
	1.00			1		Y			
)			
				1	1				
				-					
									10

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	4		
turbidity meter	2007 01254		

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition	FAIR
MISSING	MANI FOLD

WELL ID: MW <u>67</u>-<u>276</u> SAMPLE ID: <u>016</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PAPTLY SUNNY, SUS	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 4/14/11 CB156
SAMPLING I	NTERVAL (depth in ft below top of casing) \mathcal{H} to \mathcal{H} 3	TOTAL VOLUME PURGE	D:
SAMPLING I		PURGE RATE: variable	(gal / min)
	276 3	PURGE METHOD:	Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
(000	0	Pump	DN	1.20				616	50
1005	1.10	14.57	0.956	6.65	668	-63.2	1.10		
1015	0.25	15.61	0944	0.39	7.00	-83.5	4.97		
1020	0.25	15173	0,946	0:28	7112	-45.8	0.94		
1025	0.75	15168	0.946	0.23	7.14	-3515	0.101		
1030	1.00	151/20	0944	0120	7.110	-36,4	0.78		1
1035	1.25	15,00	0.942	018	7.16	- 34.3	0.65		-
1039	STITET	SAMPLE	COLLECT	ON					
1053	END SA	NOLE COU	ECTION 7	LIPEC					1
	Prunp or	P							
			· · · · · · · · · · · · · · · · · · ·						
	1.			L				A.	
				1					
			-	Y				1	1
	1.1.1								11
						1			
			· · · · · · · · · · · · · · · · · · ·	1					
_						Щ. — — — — — — — — — — — — — — — — — — —		1	
						1			
						1			

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	3		
turbidity meter	2007012.54		

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition FAIR MISSING MANIFRO

WELL ID: MW <u>67</u> - <u>323</u> SAMPLE ID: <u>0/6</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PARTLY SHNNY, 50:5	PROJECT NO: 01.0017869.92 DATE: 4/14/11 SAMPLER(S): CB; SL	
SAMPLING	INTERVAL (depth in ft below top of casing) <u>317.8</u> to <u>378.3</u> PORT <u>323</u> 2	TOTAL VOLUME PURGED: 2,20 2 PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pur	gal np

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
100 D	0	PHOMP	DN					616	50
100S	8.01	13:107	0.843	6.84	5.53	13.7	2.25		
1015	0.15	14.93	0.790	1:04	6.00	-62.4	1.70		
1020	0:25	15123	0.785	0.60	6.20	-81.7	3:32		
1025	0.50	15.27	0.794	0,43	6.30	-122.7	3.54		
1030	0.75	15.28	0.801	0.31	6.36	-131.0	1.00		
1035	0.95	15.40	0,802	0.22	10.41	-169.9	1.12		
1050	1,25	15:34	0.303	0.12	6:49	190.0	0.98		
1055	1.50	15,42	D1802	0.11	6.51	-164.8	0.65		
1100	1.75	15,44	D. 802	0.11	6152	-163.7	0.54		
1105	1.95	15:76	0.809	0.09	6.55	-210,1	1.20		
1110	1.98	15,78	0.811	0.08	6.50	218.9	1.07		
1115	2.05	15.86	0.809	0.06	6.59	-220.1	0.95		
1117			DLIECTION						
1133			DUECTO	W					
	Pump 0	1917							
					/		1		
								1	
	1 C								
			(

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde	2			
turbidity meter	200701254			

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition FA IR MISSING MANIFOLD

WELL ID: MW <u>67</u> - <u>340</u> SAMPLE ID: <u>016</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PARTLY SLUVINY, SD'S	PROJECT NO: DATE: SAMPLER(S): 01.0017869,92 4/14/11 CB, 5L	
	INTERVAL (depth in ft below top of casing) <u>335.3</u> to <u>347.9</u>	TOTAL VOLUME PURGED:	al
SAMPLING I	<u></u>	PURGE METHOD: Double Valve Pum	ıp
WATER QUA	ALITY:		

Time	Purged Volume (gal)	Temp (⁰ C)	Specific Conductivity (mS/m)	Dissolved Oxygen (mg/l)		ORP (m/Volts)	Turbidity (NTU)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1	0	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)	1.11.	-
1000	0	Pump	ON	11.0			1.0	616	50
1005	0.01	13.73	0.500	4.13	10.26	-72:3	1:89		
1015	0.10	15.03	0.756	0.40	6.60	-77.4			
1020	0.25	15:30	10.750	0.46	6.77	-133.5	0.54	1	
1025	0150	15:33	0.48	0.33	6.80	-128.1	0.03		
1030	0.75	15.20	01148	0.31	10.90	-149.1	0.25		
1035	1.00	15122	0.749	0.28	6.94	-151.D	0.17		
1050	1,25	15.24	0.754	0.25	6.97	-166.8	DiiZ		
1055	1.50	16.33	0.754	0123	10:97	-169.4	0.06		
1100	175	15:32	0.754	0.23	6,98	-176.2	0.00		
1102	START	SAMPLE	COLLEC	TION				1	1
in	END SA		LECTION		c				
	PLUMP D	IFP							
				7					1
								1	
							1		

Equipment Used	Equipment Identification #	
YSI 556 MPS Reader and 5563 Sonde		
turbidity meter	200701254	

NOTES AND OBSERVATIONS:

Measured Well Depth _____ N/A ___ (feet from top of casing)

Well Vault Condition FAIR MISSING MANIFULD

WELL ID: <u>Mw-107</u> SAMPLE ID: <u>DIO</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92
SITE:	Buchanan, NY	DATE:	5/2/11
WEATHER	Overaist, 50's	SAMPLER(S):	SL,CB
		PUMP DEPTH:	ft

Time	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)	Notes Jal
2824	-6.704	PUMP		(10/0)		(1, 10)	(1010)	6/8.4	22	0
2830	-6.704	10.86	4.006	0.25	6.11	118,9	2.09		ues	0.25
0835	- 6.704	10.78	3.877	0.25	6.13	109.6	0.77			0.60
0840	-6,704	10.72	3,571	0.26	6.23	105.8	1.15			0.90
0845	-6.704	10.70	3.593	0.76	6.18	103.8	0.26		-	1.20
0850	-6.704	10.71	3.681	0.30	6.18	102.0	0.51			1.50
2855	-6,704	10.73	3. 764	0.23	6.16	100.4	0.63			1.75
2900	-6.704	10.75	3,878	0.25	6.20	99.1	0.33			2,00
0905	-6.704	10.76	3.950	0.24	6.14	98,2	0,22			2.25
0910	-6,705	1279	3.989	0.71	6,15	97.2	0,11			2.50
0915	-6.705	10.78	9.016	0.19	6.19	8.6	0,36			2.80
OHIG	START	SAMPL	E COUEC	TON						
0925	END	11	10	:21	IPEC					
	PUMP	OFF			<u> </u>					
							1			

Equipment Used	Equipment Identification #	
YSI 556 MPS Reader and 5563 Sonde		1
turbidity meter		200701254
Measured Well Depth(feet from top of casing)		Stickup in Good and
NOTES AND OBSERVATIONS: (H) elevation negative even after transducy	Total volume purged	2.95 gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC	PROJECT NO:	01.0017869.92
SITE: Buchagan, NY	DATE:	5/4/11
WEATHER: Main 50'5	SAMPLER(S):	SL, CB
	PUMP DEPTH:	ft

Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
1212	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
1213	12.738	PW		101	no al. Ar	all			0.08
1223	12.577	17.66	2.245	4.86	malfunction	81.1	201		
1228	12,443	17.70	2.303			97.2	3.86		0.15
	12.348	17.71	2,360	5.02	-	124.8	2:49		0.21
1238	12,332	17,74	2.379	5.06		163.5	1.96		0.32
1243	12.296	17,76	2.384	5,10		198.8	2.29		0.42
1248	12.248	17.78	2.385	5.09		215.9	0:76		0.52
1253	12.231	17.78	2.385	5.17	1	213.6	1.00		0.62
258	12.204	17.78	2.384	5.11		211.7	0.94		0.72
258	START	SAM	PLE COL	LECTI	DN		1 and 1	· · · · · · · · · · · · · · · · · · ·	
324	ENDSA	MPLE	LOLIGC	TION:	2L IP	EC			
	PUMPO								
		1							
								2	
-		-							
-									1
			1						
		1							-
		1							
					-				
									-

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
flow meter	2
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition _ 2000 (stickup)
NOTES AND OBSERVATIONS:	Total volume purged gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - D Buchanan,	NY		-		PROJEC DATE: SAMPLE		01.001786 4/25/1 54, CL	1
Measured W	Vell Depth		(feet from	n top of casing)			Well Vau	t Condition	n Jain, lotts at
WATER CO	$\partial 7.25$	LIGHT (ft)	9.89		17.30	6	Well Dian ft	neter:	<u>4</u> . in
	DTB		DTW		Well Colum	nn Height			Multipliers
GALLONS	OF WATEI	R PER WELL						$\frac{1}{2}$	0.041 0.163 0.653
Water Col	lumn Height	17.36	. x	0.653 Multiplier	= V	11.33 Vell Volur		gal	01000
11,336	X	1.5	=	17.0 Designed Pur		gal			8 15
_						TOTAL	VOLUME	PURGED	gal
WATER QU	JALITY:	DTW =	GW	Elevation					
Time	Volume Purged	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Notes
2000.0	(gal)	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)	
1238	0	51.510	PUMP	ON					
1245	0,5	50.846	20,99	1.046	U.N	7.65	119.4	1,58	
1365	3.0	46.901	22.05	1.635	3.67	7-87	101.4	1.34	
1318	4.75	42.958	220	1.035	3.61	7.88	87.0	1.36	
1322	6.00	40.399	22:27	1.635	3.82	7.86	77,9	1.83	
B40	7.50	35,947	22.52	1.635	3.84	7.85	68.6	1,44	
1344	7.75	35.248	22.68	1.635	3.55	7.86	65.3	1.15	
1348	8.00	34.675	22.82	1.632	3.65	7.85	62.8		
1349	8.10	34,672	Pump	OFF - Well	dres; We	le out 1	vell rect	asl.	
1484	10 m	START :	SAMPLE	CONFECTI	DN'			0	
1450		END	- Ir	1 ⁱ	:21 7	EC			
		PUMP OF	F						
		1							

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	4		
turbidity meter	200701254		

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing. Groundwater Elevation measurements are given in feet msl.

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: Ourset, Was PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869,92 4/25/11 1R ft

WATER Q	UALITY:	DTW =	GW I	Elevation					
Time	DTW or GW Elevation	· · /	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes (ral)
128	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gun)
1238	9.21	PUMP		1.70	7.0	1611	1.12		0.03
1246	9.24	19.79	0.951	1.30	7.40	160.4 99.2	1.23		0,33
1305	9,25	A.50	0.906	0.76	704				
1310	9.25		0.905	0.47	6.93	71.3	0.87	-	0.43
1315	0925	19.52	0.905	0.63	6.85	56.7	0.74		0.65
1320	9.25	20.74	0.903	0.43	6.89	42-6	1.04		0.80
1325	9.25	21.18		0.44	6.88	34.7	0.69		0.88
1330	9.26	21.39	0.898	0.43	6.85	24.6	0.74		1.00
1335	9.24	21.46	0.895	0.41	6.81	15.4	0.58		1.10
1340	9.20	21.42	0.895	0.42	6.78	9.3	0.75		1.25
1345	9.20	21.40	0.894	0.46	6.75	2.6	0.83		1.38
1350	9.26	21.53	0.893	0.44	6.71	-11.8	0.59		1.55
1355	9.26	21.53	0.892	0.45	6.71	-12.1	0.45		1.68
100	9.20	21.48	0.892	0.46	6.70	-15.4	6.43		1.75
1400	START	SAMPI	E LOLLE	TION	· · · · ·				
1413	END SAM	IPIE	COLLECT	on1:20	IPEC	(1		
	Pump D	FF							
									1
							-	1	
								-	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
flow meter	2
turbidity meter	200701254
Measured Well Depth (feet from top of casing)	Well Vault Condition Jan, botts stripped

NOTES AND OBSERVATIONS:

Total volume purged 0.90 gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>13-7</u> SAMPLE ID: <u>032</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC	PROJECT NO:	01.0017869.92
SITE: Buchanan, NY	DATE:	5/6/11
WEATHER: Summy 505	SAMPLER(S):	SL,CB
	PUMP DEPTH:	ft

Time	DTW or GW Elevation	、 <i>,</i>	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
0920	3.072	PUMP	ON			10.1.0			0
0935	3.059	16.09	1.007	2.58	7.42	185.0	0.45		0,13
0940	3,058	16,55	09999	2.10	7,48	173,1	0.04		0.28
0945	3.052	16,79	0.985	1.66	7.50	166.9	0.06		0.46
2950	3.052	16.89	0.983	1.43	7.51	163.4	0.35		0.60
0955	3.048	16,97	0.984	1.12	7,52	163,2	0.05	1.	0.73
1000	3.046	17,12	0.982	0.99	7.53	165.3	0.05	1.1	0.84
1005	3.045	17.21	6.982	0.97	7,53	165.6	0,06		0.95
1000	START	SAMPL	E COLLEC	TION	1			-	
1023	END	- IL	UL.	: H	. IPEC				
	PUMP	OFF			1				
		-							
		1.1.1			ł	100000			-
									_
					1			/	
-	-	-					-		
				-					_
				-					

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
flow meter	3
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition
NOTES AND OBSERVATIONS:	Total volume purged <u>1,10</u> gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>13-T2</u> SAMPLE ID: 031

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>Junny 505</u>

WATER QUALITY:

PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92 5/6/11 aB ft

DTW = 6.31 GW Elevation DEPTH = 2864

Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
1	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
1038	2.854		PON		1				0
1047	2.811	21.21	1.395	3.06	7.33	-61.0	3.94		0.01
1052	2.810	21.30	1.393	2.49	7.60	-88.4	11.38		0.15
1057	2.815	21.60	1.384	1.94	7.72	-123,8	2.15		0.37
1102	2.819	21.77	1.389	1.77	7.77	-120.7	2.30		0,48
1107	2.818	22.01	1.384	1.68	7.82	-125.6	2.17		0.62
1112	2.817	22.14	1.383	1.06	7.85	-119.5	0.78		0.85
1117	2.813	22.22	1.381	1.04	7.86	-119.6	0:73		0.95
1122	2.810	22.27	1.384	0.98	7.87	-120.8	0.68		1.20
1124	START	SAMP	LE WILL						
1141			COLLEC		LIA	C			
	PUMPD							A 150	
							-		
1			1	1	1			1	
		1	· · · · · · · · · · · · · · · · · · ·			1	1		
			1						
			-						-
		-							-
						-	-		
-					-	÷			-
			· · · · · · · · · · · · · · · · · · ·						
		1	1						

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
flow meter	2
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition
NOTES AND OBSERVATIONS:	Total volume purged 1.35 gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

APPENDIX D: Q3-2011 SAMPLING DATA SHEETS

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - II Buchanan,	NY				PROJECT DATE: SAMPLE		01.0017869 8/12/11 56/01	/
Measured V WATER CO		IGHT (ft)	(feet from <i>37.97</i> DTW	n top of casing) =	12,16 Well Colum	nn Height	Well Dian ft		n Doal 2 in Multipliers 0.041
		2 PER WELL 1 <i>7,16</i>	х	E: <u>0.163</u> Multiplier	= v	ر ، 9۶ Vell Volur		2 4 gal	0.163 0.653
1.992	X	1.5	=	2,97 Designed Pur		gal TOTAL	VOLUME	PURGED:	ga
WATER QU	JALITY:	DTW = 3 7	47 GW	Elevation $= 5$	4.76	ACTUAL	DEPTH =	44.812	
Time	Volume Purged (gal)	DTW or GW Elevation Actual Depth (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Notes
1322	0	44.912	PUMP		(1011)		((111)	
1328	0.02	44,93	19.44	0.873	MALFUNC.	7.12	71,2	1.76	
1338	0.34	43,997	B.O	0,813		7.34	62.2	0.81	
1343	0.50	43,982	12.04	0.817		7.14	53.0	0.47	
1353	0.85	43,982	17.92	0.814		7.05	59.4	0.64	
1403	1.18	43,994	18.07	0.514	1	695	73,9	1.07	
1413	1.50	44.000	17.90	0815	L	6.95	80.5	1.68	
1423	1,84	44.00)	17.82	0.819		6,94	59.3	1.50	A
1433	2.18	44.000	17.92	0.819		7.04	41,4	1.58	
1430	2.39	44.006	17.86	0.819		7.09	32.6	1.04	
NJB	2.77	44.000	17.78	0.821		7,15		0.68	
1458	3.00	44.000	17.65			7.16	13.3	0.73	
1459	START		COLLECT						
1513	END	ĸ	"		IAEC				
	PUMP	OFF							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	AG
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

Used one penstaltic pump through all three heads.

WELL ID: MW 30 - 84

SAMPLE ID: 032

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>SUMMY</u> , 825	PROJECT NO: 01.0017869.92 DATE: SAMPLER(S): CB, SL	
SAMPLING INTERVAL (depth in ft below top of casing) 77.3 to 85.4	TOTAL VOLUME PURGED:	
SAMPLING PORT	PURGE RATE: <u>variable</u> (gal / min) PURGE METHOD: Double Valve Pump	

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1005	0	PUMP U	N	1				6/12	40
1015	0.01	28.51	1.936	2-88	6.81	50.7		l p	4
1020	0.05	28.61	1.929	2.49	6.89	57.6			N
1025	0,10	28.65	1.928	2.20	6.94	51.10		1	
1030	0.15	28.67	1.9200	2.08	6.98	50.7			
1035	0.20	28.67	1.924	1.99	7.00	50.1			
1040	0.25	28.67	1.924	1.90	7.02	49.6			-
1041	START	8Amp1	ECOU	ELTION TIDN'2L			11.		
1110		AMPLE	COLLEC	TIDN-2L	THEC				1.1
	Pump	DFF		1 A. 4. 199	1		1		
	1.000	1	1		1 - PE	1		1	
						1			
·		1	1	1	1				
					1	1			
					1				1
			1.000		1				
	1	1.	1	1					
1000							1		
		1			-				
			1						
		1.1							
L									
1.1.1.1.1.1									

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	M

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition

FAIR

WELL ID: MW <u>30</u> - <u>69</u> SAMPLE ID: <u>041</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 	25			PROJECT NO: DATE: SAMPLER(S):		01.0017869.92 89911 CB 15	Y	Ξ.
SAMPLING	INTERVAL (depth 67.3	-	o of casing) 71.3		TOTAL VOLU	ME PURGED:	075	gal	
SAMPLING 1	Contraction of the local distance of the loc	to		2	PURGE RATE	: <u>variable</u> (ga	l / min)		
	69				PURGE METH	IOD:	Double Valve	Pump	
WATER QUA	ALITY:								
Time	Purged Volume (gal)	Temp (⁰ C)	Specific Conductivity (mS/m)	Dissolved Oxygen (mg/l)		ORP (m/Volts)	Turbidity (NTU)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1005	ð	(3%) Pump	(3%) ON	(10%)	(+/- 0.1)	(+/- 10)	(10%)	6/12	40
inuo	11.05	27.72	1.390	8.80	7.52	27.7		1	1
1015	0.20	27.62	1.377	9.13	7.74	12.8	<u> </u>		
1020	0.35	27,45	1.356	9,48	7.85	8.6			
1025	0.50	17.30	1.359	9.60	7.91	7.1			1
10:30	0.65	27.20	1.360	9.51	7.93	6.1		-	+

10 m	10.55	11142	11.250	140	1100	0.0			-
1025	0.50	17.30	1.359	9.60	7.91	7.1			
10:377	0.65	27.20	1.360	9.60	7.93	6.1		-	-
1031	STADI	SAMPI	E IDILE	TIONI	1			1.000	1
1049	ENTO SA	SAMPI MPLEC	DILECTV	11:24.7	PEC	1			
	PUMP O	FE		10.000	100				
	FRANCI C	1							
					-				-
_			-						-
				-					
	· · · · · · · · · · · · · · · · · · ·	1							
	· · · · · · · · · · · · · · · · · · ·	1							-
		1							1
		1				2			
					h	(
				1					
	-								-
		-							
						-			
					4		-	_	
		1		1.1	2				
	1	2	1		1				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	NA

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition

FAIR

WELL ID: MW <u>31</u> - <u>49</u> SAMPLE ID: <u>033</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: 70-805	PROJECT NO: 01.0017869,92 DATE: 8/5/11 SAMPLER(S): 3L, CB
SAMPLING INTERVAL (depth in ft below top of casing) 34.8 to 49.3	TOTAL VOLUME PURGED:
	PURGE RATE: <u>variable</u> (gal / min)
SAMPLING PORT	PURGE METHOD: Double Valve Pump
WATER QUALITY:	

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1008	0	PUMP	ON	(10,0)		(11 10)	(6/7	29
1015	0.26	20.42	2261	2.63	6.96	13.6	5.87		
1020	0.59	20 10	2.176	2.86	7.05	21.6	1.99		
1025	0.88	10.10 19.95	7.009	4.44	7.12	27.4	1.53		
1025	1.20	19.81	1.969		7.12	31.6	1.05	A STATE OF	
1035	1.54	19.72	1.954	4.63	7.13	33.6	1.59	V	V
10.98	START	SAMPLE	Call	TION					1
1047	END	4	4	: H	IPEC		-		
1	PUUP	OFF						1	
				1			2		
				N. a.				1	
	1	1							
	1		1.1.1.1.1.1.1.1.1						
		A					1	-	-
_							-		
	A								
	· · · · · · · · · · · · · · · · · · ·						C	-	
								1	
	S								
								-	
	-								
					-				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Measured Well Depth ______ (feet from top of casing)

Well Vault Condition Dood, but heavy water intrusion above waterloo manifold, bailed out to ground. No water needed to be added to packer.

WELL ID: MW <u>31</u> - <u>63</u> SAMPLE ID: <u>033</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER: Entergy - IPEC Buchapan, NY

55.8

63

SAMPLING INTERVAL (depth in ft below top of casing)

70-803

to

63.8

PROJECT NO: DATE: SAMPLER(S):

117869.92

TOTAL VOLUME PURGED:

.16 gal

PURGE RATE: variable (gal / min)

PURGE METHOD:

Double Valve Pump

WATER QUALITY:

SAMPLING PORT

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1000	PUMP	ON						6/7	29
1015	0.01	2295	1-857	0.53	7.12	-74.8	1.22		
1020	0.03	72.23	1.807	0.39	7.22	56.2	0.86		
1025	0.18	21.86	1.7.90	1.96	7.28	-23.4	0.38		
1030	0.28	21.68	1.730	2.45	7.32	-1.5	0,18		
10.35	0.39	21.43	1.672	2.75	7.37	7.6	0.33		L
1040	0.51	21.37	1.627	2.70	7.39	11.6	0.38		<u> </u>
1045	0.64	21.54	1.604	2.69	7.41	13.1	0.73		<u></u>
1050	0.78	21.35	1.585	2.69	7.44	11.9	0.53		
1055	0.87	21.28	1.588	2.57	7.44	41.7	0,79		
11 00	0.94	21.15	1.604	2.60	7.45	45:0	0.47		
1105	1.01	26.13	1.672	2.57	7.46	39.8	0.99	•	
1107	START	SAMPLE	COLLEC	TJON					
1127	END.	((1.	: 2	IPEC				
	PUMP	OFF						·	
	- * * · · · · · · · · · · · · · · · · ·	S							
	-								

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	17.594 AG		
turbidity meter	200704293		

NOTES AND OBSERVATIONS:

Measured-Well Depth <u>N/A</u> (feet from top of casing)

WELL ID: MW <u>31</u> - <u>85</u> SAMPLE ID: <u>033</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER: Entergy - IPEC Buchanan, NY Junny 70-80

to

\$5.4

SAMPLING INTERVAL (depth in ft below top of casing)

69.

85

PROJECT NO: DATE: SAMPLER(S):

TOTAL VOLUME PURGED:

.46 gal

PURGE RATE: variable (gal / min)

PURGE METHOD:

Double Valve Pump

WATER QUALITY:

SAMPLING PORT

Time	Purged Volume (gal)	Temp (0 C)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1008	0	PUMP	OV	(1070)	(17-0.1)	(17-10)	(10/0)	6/7	29
1015	0.03	22.46	1.797	0.59	6.93	-173.8	2.47	1	1
1020	0.18	21,88	1.933	2.67	6.94	-98.2	1.03		
1025	0.31	21.58	1.992	3.12	6.97	-75.2	1.00		
1030	0.42	21.50	1.897	3.19	6.98	-63.7	0.61		
10.35	8.57	21.28	1.862	3.23	6.99	- 58,2	0.68		
1040	071	21.21	1, 834	3.33	6.99	-55.2	1.03		
1045	0.93	21.41	1.928	3.57	701	-54.7	1.50		
1050	0.93	21,28	1.978	3.36	7.03	-52.4	1.39		
1055	0.03	21.16	1.82	3.41	7.03	-48.7	1.72		
1100	7.19	A.08	1.813	3.42	7.02	-46.2	1.79	1	
1105	1.31	21,14	1.934	3.48	7.03	-43.2	1.05		¥
ilos	START	SAMPLE	CALECTI						
1129	END	11	lı	:21	THEC			v	
	PUMP	OFF							
					1				
							L.S		
_						-		-	
							(

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	200704297

NOTES AND OBSERVATIONS:

Measured Well Depth _____ (feet from top of casing)

Well Vault Condition Sec. Mul-31-49

WELL ID: MW 32 - 59 SAMPLE ID: 027

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SUMMY 80'J	PROJECT NO: 01.0017869.92 DATE: 81514 SAMPLER(S): 54,08
SAMPLING IN	NTERVAL (depth in ft below top of casing) <u>20,3</u> to <u>61.3</u>	TOTAL VOLUME PURGED:
	<u>_59</u> <u>6</u>	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1200	0	PUMP	on		1			8/11	40
1205	0.25	21.12	1.101	5.32	7:01	36.7	2:12		
1210	0.50	20.82	1.125	5.52	7.08	35.2	2.07		
1215	1.00	20.88	1.127	5144	7,12	33.2	2.48		
1220	1.25	20.79	1,130	5,54	7,15	32.6	2.51		
1222	START	SAMPLE	COLLECT	ION					kr., 1941, 19
1230	END SA	MPLE COL	LECTION:	21 JAEC					
	pump of	=P			1		· · · · · · · · · · · · · · · · · · ·		
in the second									
		1							1
							11		-
		6]]
									1
						12			
	1								
					1				
					1	1			
	(C					1			

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	6		
turbidity meter	200701.2.54		

NOTES AND OBSERVATIONS:

Measured Well Depth _____ (feet from top of casing)

Well Vault Condition SEE MW-32-19D

WELL ID: MW <u>32</u> - <u>85</u> SAMPLE ID: <u>030</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SUMMY 80'S		PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 8/5/11 54,CB
SAMPLING SAMPLING	INTERVAL (depth in ft below top of ca <u>79.3</u> to <u>9</u> PORT 85	sing) 12.8	TOTAL VOLUME PURG PURGE RATE: <u>variabl</u> PURGE METHOD:	gal
WATER OU		5		

Specific Dissolved Turbidity Purged Volume (SU) ORP (m/Volts) Drive/Vent Drive Pressure Temp (⁰C) Conductivity pН Time Oxygen (mg/l) (NTU) (mS/m)Cycle (seconds) (psi) (gal) (10%) (+/-0.1)(+/- 10) (10%) (3%) (3%) 811 1200 0 PUMP on 40 0.01 23.53 1:766 6.71 7.11 -75.6 2.34 1205 23.91 24.14 24.24 5.85 2.14 1765 6.76 -58.1 12.05 1210 1215 5,50 6.74 1.89 0.10 -50.2 1.765 6.73 -34. 1.29 0.28 1220 17105 1225 0.25 24.19 3.108 6:74 -20.1 1.33 1-105 -16.8 1230 6.75 0.30 24.34 .765 2.77 1.25 24.12 -7.2 1235 0.38 2.45 1.01 1.773 6.77 24.08 1240 .80 -4.3 0.45 .768 0.80 6.77 1245 0.50 .772 1.40 6.75 -1.0 0.87 1250 24.04 1.789 1.18 6.75 2.3 0,03 9.60 1.793 2.7 12 55 23.97 1.08 6.77 1.68 0.85 24.02 1.795 Digh 1300 0.75 1.02 6,80 17 1301 SAMPLE START COLLECTION END SAMPLE COLLECTION ! 21 TPEC PUMPOFF

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	5		
turbidity meter	2007012524		

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

WELL ID: MW 32 - 147

SAMPLE ID: 027

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SUNNY, SO'S	PROJECT NO: 01.0017869.02 DATE: \$15/11 SAMPLER(S): \$2, CB	
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED: 1.25 gal PURGE RATE: variable (gal/min)	
SAMPLING F	<u>1493</u>	PURGE METHOD: Double Valve Pump	

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1017	D	Pump	ON	(1012)				10/12	58
1024	0.10	22.34	2.617	144	6.43	-100.2	3.81	the second se	
1029	0.25	21.72	2.632	0.71	6.54	-95.6	1.83		
1034	0.38	21.34	2.648	0.53	6.57	-84.1	1.74		
1034	0.50	21.21	2.651	0.50	6.69	-80.9	1.78		
044	0.75	21.32	2.646	0.46	6.73	-76.4	1.62		
1049	0.950	21.16	2.643	0.44	673	-75.3	1.65		
1053	START	SAMPLI	E COLLEC	TION					
IIID	END SAN	PECOLE	caon. 2	THEC					

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	6
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____ (feet from top of casing)

Well Vault Condition SEEMW-32-PP

WELL ID: MW <u>32</u> - <u>173</u> SAMPLE ID: <u>025</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SUNNY, SO'S	PROJECT NO: 01.0017869.92 DATE: 81511 SAMPLER(S): 52,08
SAMPLING I SAMPLING P	VTERVAL (depth in ft below top of casing) <u>165.8</u> to <u>174.3</u> ORT <u>173</u> 2	TOTAL VOLUME PURGED:

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1017	0	Pump	on					10/12	58
1024	0.10	21.34	2,403	0.924	6.77	-143.6	1.06		
1029	0.30	20.96	2.418	10.00	6.43	-89.6	0.38		
034	0.50	20.58	2.410	0.49	6.41	-61.1	0.37		
10:39	0.68	20.55	2.414	0.46	6.45	-55.0	0.34		
1044	0.84	20.53	2.408	0.39	6144	-47.7	0.57		
1049	1.10	20.37	2.405	0.36	10.46	-43.7	0.62		
1054	1.30	20:33	2.397	0.33	6.48	-39.8	0.73		
1057	START	SAMPLE	COLLECT	ins					
()))		MPLE CI	LECTION		-				
	PUMP OF	F							
						2			
1									
	0								
		2							
		1	1				4		
						1	A		
				1		1	2		1
		4	24.000						
			1	1	· · · · · · · · · · · · · · · · · · ·			1	
			1.1.1.1.1.1.1.1						
		-							
		1	(*************************************						

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____ (feet from top of casing)

Well Vault Condition Sta MU-32-190

WELL ID: MW <u>32 - 190</u> SAMPLE ID: <u>039</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY Sunny, 80 >	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 8511 SL,CB
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:	1.25 gal
SAMPLING I			gal / min)
		PURGE METHOD:	Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1017	0	Pump	ON				1.	10/12	58
1024	0.05	22.19	1.871	1,43	6.26	-278.4	1.60		
1029	0.20	21.54	1.849	0.410	6:64	-7100-4	0.68		
1034	0.20	21.12	1.841	0.28	10.79	-240.1	0.59		
1039	0.50	21.07	1.826	6.24	6.8	-237.4	0.102		
1044	0.08	21,05	1.832	0.21	10.87	-725.8	0.01		
1049	0.82	20.91	1.830	0.21	10.82	-234.7	0.52		
1054	1.00	20:77	1.827	0.19	6.83	-234.6	0.43		
1058	START	SAMPLE	COLLECT	TION					
1115	FIND SA PUMP DE	MPIE COI PP	LE CTION	! IL TPE	¢				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____ (feet from top of casing)

Well Vault Condition VAULT PARTIALY FLOODED

ft

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:Entergy - IPECPROJECT NO:SITE:Buchanan, NYDATE:WEATHER:Mowers 705SAMPLER(S):PUMP DEPTH:PUMP DEPTH:

01.0017869.92 116/11

ATER Q	UALITY:	DTW =	3,48 GW H	Elevation =	8.118	ACTUA	-DEPTH =	21.563	
Time	DTW or GW Elevation Actual DEPTH (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes Gal
1253	21.563	PUM		(1070)	(1/ 0.1)	(1/ 10)	(1070)		D
1300	21.629	31.01	3,271	0.66	7.14	-133.0	1.21		0.11
305	\$1,643	31,40	3388	0.36	7.18	-133.8	0.51	1	0.31
1310	71.659	31.54	3.428	0.35	7.23	-136.6	1.39		0.48
1315	21.661	31.60	3,457	0.23	7.26	-140.2	1.21		0.71
1317	STARL		LE COLL						
1334	END	u		ee	:26	IPEC		()	
	PUMP	OFF							
						(*************************************			
_					-				
				7		-	1		
		12.221							
			1	1. 199					
_							· · · · · · · · · · · · · · · · · · ·		
	()	· · · · · ·			$\epsilon - \epsilon$	-			
		1					1	12	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	1
flow meter	
turbidity meter	200704293
Measured Well Depth (feet from top of casi	ng) Well Vault Condition 2001
NOTES AND OBSERVATIONS:	Total volume purged O. 86 gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York WELL ID: MW-36-41 SAMPLE ID: 017 **Modified Traditional Purge Sampling Data Sheet** CLIENT: Entergy - IPEC 01.0017869.92 PROJECT NO: Buchanan, NY SITE: DATE: 8/16/11 705 WEATHER: Showers SAMPLER(S): (feet from top of casing) Well Vault Condition Deoc **Measured Well Depth** WATER COLUMN HEIGHT (ft) Well Diameter: in 1 37.93 3.07 DTW ft Well Column Height DTB **Diameter** Multipliers 0.041 **GALLONS OF WATER PER WELL VOLUME:** 2 0.163 0.653 4 Water Column Height __ **37.93** 0.041 1.555 х = gal Multiplier Well Volume 2.33 1.555 1.5 gal Designed Purge Volume **TOTAL VOLUME PURGED:** gal DTW = 3.07 GW Elevation= 8.684 → WATER QUALITY: Specific Dissolved DTWor Temp Volume pН ORP Turbidity Conductivity Oxygen GW Elevation $({}^{0}C)$ Time Purged (SU) (m/Volts) (NTU) Notes (S/cm) (g/l) (gal) (< 0.3 ft)(3%) (3%)(10%)(+/-0.1)(+/-10)(10%)D 3.07 1253 PUMPOL 12.24 -154.1 1.85 Oll 30,54 1.646 0,94 7.32 1300 0.55 -137.4 1305 0.25 30,74 1.64) 7.20 3.31 1310 0.40 30.68 1.661 0.60 -150,5 4,75 7.26 1.704 1315 30.22 0.33 7.30 144.0 4.34 0.60 13 20 0.69 7 RECHARGE SAMD THE WELL DRV: LE BEFORE THE END terin STAR C'A FUD OF THER 1335 0.90 J9, 39 1.747 0.32 7.51 -109.6 3.63 1338 0.95 WELL DRY COLLECTION SAMPLE 1340 START IPEC 1419 END 11 : 2L PIMP OFF

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	2		
turbidity meter	200704293		

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - D Buchanan,		05			PROJECT DATE: SAMPLE		01.0017869 8/16/11 51-1 CE	
Measured W WATER CO		CIGHT (ft)	(feet from <i>3.48</i> DTW	n top of casing) =	48.5 Well Colum		Well Dian ft		Multipliers
		48.52	x VOLUM	E: <i>D.04 (</i> Multiplier) , 99 Vell Volur		2 4 gal	0.163 0.653
1.99	х	1.5	=	2.99 Designed Pur		gal TOTAL	VOLUME	PURGED:	<u>3.18 gal</u>
WATER QU	ALITY:	DTW = 3	. 48 GW	Elevation =	8,19				
Time	Volume Purged (gal)	GW Elevation	()	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU) (10%)	Notes
1253	0	(< 0.3 ft) 3,49	(3%) PUM	(3%) 0011	(10%)	(+/- 0.1)	(+/- 10)	(10%)	
1206	0.50	11.43	29.45	2.365	0.25	7.37	-195.0	1.05	
1321	1.00	12.81	27.91	2.579	0.18	7.37	-202.8	0.44	
1327	1.50	11.97	27.40	2.446	0.14	7.36	-168-0	0.66	
1354	2.00	11.37	27.50	2.263	0.17	7.33	-176.5		
1415	2.50	11.28	27.47	2.229	0.16	7.29	-107.9	0.73	
1433	3.00	11.31	27.49	2.186	0.13	7.27	-119.0	0.98	
1434	STAR			ECTION					
1452				ON:2LI	PEC				
	Pump								
		(
					1				
					1				
-			Fauinm	ont Usod				Eq	uipment

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	2007042534

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC	PROJECT NO:	01.0017869.92
SITE: Buchanan, NY	DATE:	8/16/4
WEATHER: Anowing 705	SAMPLER(S):	SL,CB
	PUMP DEPTH:	f

VATER (UALITY:	DTW =	8,55 GW H	Elevation =	6.307	ACTUAL	_ 0EPTH =	13.326	
Time	DTW or GW Elevation Actual DEPth (< 0.3 ft)	Temp (^o C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes Gal
0949	13.376	PUN		((1010)		pa
1000	13,202	30.71	2.260	0.69	6.85	-87.8	0.99		0.21
1005	13.200	30.45	2.244	0.53	6.83	-80.9	1.16		0.30
1010	13.214	30.56	2.740	0.45	6.82	-86.7	1.24		0.45
1015	13.206	30.67	2,237	0.43	6.96	-93.4	0.13		0.63
1017	START S	AMPLE	COLLEC	TION					
1035	END	"	u		2L IPE	C	· · · · · · · ·		
	PUMP O	FF							1
		1		1			1		
	1 P							· · · · · · · · · · · · · · · · · · ·	
		1							
_						1			
		1.00		r					
		1.27.27						· · · · · ·	
						-	1000		
_								1.00	1
							1	1	0-2
_	1	-			1.00.2		1	1	
_									
	1		1				1		
	1	1			1		· · · · · · · ·		

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
flow meter	
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition Dood
NOTES AND OBSERVATIONS:	Total volume purged <u>0.70</u> gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC		PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY	-	DATE:	8/16/01	
WEATHER	Thowers	705	SAMPLER(S):	SLICB	
			PUMP DEPTH:		ft

Time	DTW or GW Elevation Actual DSM (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes Jal
2949	15.967	PUMP	ON			1	/		
1000	15.939	29.02	2.114	2.60	-7.30	130.8	0.40		0.05
1005	15,956	P. 76	7.101	1.52	7.37	151.1	0.01		0.20
1010	15,937	29.57	2.097	0.87	7.40	70.0	0.12		0.30
1015	15,969	A.73	2.096	0.61	7.41	17.7	0.00		0.40
070	15.940	29.95	2.096	0.56	7.42	-120	0.71		0.56
1025	15,935	29.85	2.098	0.53	7.42	-71.7	0,46		0.72
1030	15.971	29.94	2,101	0.40)	7.43	-34.7	0,00		0.83
034	15,947	29.98	2.103	0.48	7.43	-41,8	0.15		0.95
038	15.946	29.90	2.105	0.39	7.43	-47.6	0.46		1.00
1091	15.939	29.95	2.104	0.33	7,44	-50.1	0.01		1.21
1044	15.982	29.95	2.104	0.32	7.44	-52.3	0.01		1.32
1046	START	SAMPL	ECOLE	CTION					
100	END	it	4	2-	L IPE	2			2
	pump o	2FF							
				1					

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	i		
flow meter			
turbidity meter	200704293		
Measured Well Depth(feet from top of casing) Well Vault Condition			
NOTES AND OBSERVATIONS: Total volume purged gal			

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York WELL ID: MW-37-40 SAMPLE ID: 023 **Modified Traditional Purge Sampling Data Sheet**

CLIENT: SITE: WEATHER:	e.						PROJECT NO: DATE: SAMPLER(S):		01.0017869.92 <u>&/iu/ii</u> <u>CB,SL</u>	
Measured W	Vell Depth		(feet from	n top of casing)			Well Vau	lt Conditio	n GOOD	
WATER CO	DLUMN HE	EIGHT (ft)					Well Diar		1	in
	40		6.98 DTW	.	33.02		ft			2
	DTB		DTW		Well Colur	nn Height		Diameter	Multiplier	'S
CALL ONG								1	0.041	_
GALLONS	OF WATE	R PER WELL						2 4	0.163	-
Water Co	lumn Height	33.07.	x	0.041	=	1.35		gal 4	0.653	1
Water Co.	runni Hoight		· · ·	Multiplier		Vell Volur	ne	.5 ⁴¹		
1.35	x	1.5	=	2.03		gal				
				Designed Pur	ge Volume	TOTAL			225	
-						TOTAL	VOLUME	PURGED	: 6.65	gal
WATER QU		DTW - 1	AX GW	Elevation 7.9	272					
WATER QU			78 01			r		-		_
	Volume	OTW or	Temp	Specific Conductivity	Dissolved	pH	ORP	Turbidity		
Time	Purged	GW Elevation	(⁰ C)	(S/cm)	Oxygen (g/l)	(SU)	(m/Volts)	(NTU)	Note	s
1	(gal)	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		
0959	0	6.93	Pump		(1070)	(1) 011)	(1/ 10)	(1070)		
1027	0.25	10.08	28-67		0.62	7.06	-144.3	1.82	-	-
1037	0.50	11.10	28.54	2.185	0.45	7.12	-176.4	59.69	-	
(050	1.00	10.50	28.24	2.179	0.35	7.17		154.5	-	
1104	1.60	9.24	27.06	2.170	1.40	7.17		288.9	-	
1/11	2.00	9.49	26.82	2.162	0.45	7.18		187.0		
1114	START	SAMPLE		CTION	0.13	mo	161.0			
112.4				U:2L IPE				-		
		OFF	USC (10)	V. CL SPOI	-		1	-		
	Pulle	UFF								
	-					-		-		
								-		
						-		-		
	-	-								
				k						
								E.		
]	Equipme	ent Used			100		uipment	ц
		1 4 4 4 9 7 1						-	tification	Ħ
YSI 556 MPS		1 5563 Sonde			_			0		-
turbidity met	er							20070	21254	

turbidity meter

1

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY	DATE:	8/16/11	
WEATHER	OVERLAST, DRIZZLE, 70'S	SAMPLER(S):	GB, SL	
		PUMP DEPTH:		ft

WATER Q	UALITY:	DTW =	6.83 GW I		.958	ACTUAL	DOPTH	43.732	
Time	DTW or GW Elevation	7	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
0959	(< 0.3 ft) 43.771	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gel
1007	43.492	Pum 27.95	2.128	1.41	6.94	128.3	1.17		
012	43.383	27.94	2.145	1-34	7.02	34.6	0.39		0.05
1017	43.255	27.89	2.149	1.23	7.07	16-6	0.01		0.25
1022	43.244	27.88	2.154	1.26	7.09	10.8	0.01	1	0.35
027	43.251		2.152	1.28	7.12	10.9	0.01		0.48
1030			é louéc						
1055			COLLECTION		EC				
	Pump 0								
				1		1			
					1				
					1				
									_
		1		1		1			
) — «'							
					1				
								-	
		h							
									1

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	4		
flow meter			
turbidity meter	200701254		
Measured Well Depth (feet from top of casing) NOTES AND OBSERVATIONS:	Well Vault ConditionGoodTotal volume purgedO.6 &gal		

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW-41-40 SAMPLE ID: 072

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE: WEATHER	Buchanan, NY : Porten Clouder 70-90	DATE: SAMPLER(S):	<u>8/4/11</u> 51.08	_
	- tuning (the ting to the	PUMP DEPTH:		ft
				_

WATER Q	UALITY:	DTW =	GW E	Elevation =		ACT	UAL DE	PTH =	
Time	DTW or GW Elevation Active DEPH (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes gal
1.334	70.491	PUMP					1		0
1345	70.319	21.08	1.903	3.94	7.55	46.2	39.66		0.14
1350	70.376	20.A	1.994	4.47	7.59	45.0	19.61		0.29
1400	70.399	20.33	1.886	4.39	7.59	44.6	13.24		0,42
1405	70.300	20.18	1.983	4.51	7.58	46.8	15.31		0.52
1407			E COLLE						
14.39	END	ч	L.		2L IPE	d			
					D.JSL I		TAL ME	TALS)	
				1	1.25L I		SOLVED.	METALS)	
							·		
									4
			(
		-							
							1	1.1.1	
			¥.	21					
	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1							
	3				2				
				1					
				2					
					1				

Equipment Used		Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde		17594 AG
flow meter		
turbidity meter		2007,04293
Measured Well Depth (feet from top of casing)	Well Vaul	t Condition Jun No Bolt
NOTES AND OBSERVATIONS:	Total volume purged	0.67 gal
Depth and Depth to Water (DTW) measurements are given in feet from		

GZA GeoEnvironmental of New York
Modified Traditional Purge
Sampling Data SheetWELL ID: MW-41-63
SAMPLE ID: 021

CLIENT: SITE: WEATHER:	Entergy - II Buchanan, PARTLY		su :5			PROJECT DATE: SAMPLE		01.001786 	
Measured W WATER CC	DLUMN HE			n top of casing)	202		Well Diar		n FAR-MISSING Bo
	<u>63</u> DTB		24.66 DTW	- 5	38.34 Well Colum		ft	Diameter	Multipliers
	DID		2011					1	0.041
GALLONS	OF WATEF	R PER WELL	VOLUM	E:				2	0.163
Water Co	lumn Height	38.34	x	<i>O.041</i> Multiplier	= V	1.5 ⁻ Vell Volun		gal	0.653
1.57	x	1.5	=	2.35 Designed Pur		gal		DUDCED	2.45 gal
WATER QU	JALITY:	DTW = 2	4.66 GW	Elevation 29		TOTAL	V OLUME	TERGED	
Time	Volume Purged (gal)	DTW or GW Elevation	(=)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)		Notes
		(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)	
1340	0		PUMP						
1343	0.10		20.82	2.221	0.48	7.46	-42.5		
1400	12-50	_	19.41	2.151	2.29	7.30	-37.6	59.08	
1403	1.25		18.101	2.102	1,27	7.24	-32.8	7415	
1405	1.50		18,40	2.008	1.03	7.16	-34.0	55.33	
1407	1.75		18.29	2.046	0.96	7.19	-33.7		
1409	2.00		18.21	2-036	0.90	7.18		26.76	
1411	2.25		18.24	2.032	1.02	7.19	-52.8	23.45	
1413	START			ECTION			1.000		· · · · · · · · · · · · · · · · · · ·
1420	ENDSI	MPLE	COLLEI	TION: 22	IPEC				
		1		0.25LJ					
				0.25 LJ	PEC (DI:	SOLVES	DMETA	LS)	
	PUMP 0	PP					1.226.21	S	1
								- A	
		1					The second se	A CONTRACTOR OF	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>MW-42-</u>47 SAMPLE ID: <u>027</u>

ft

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

VATER Q	UALITY:	DTW =	GW E Specific	levation Dissolved	-					-
	GW	Temp	Conductivity	Oxygen	pН	ORP	Turbidity	Drive/Vent		
Time	Elevation	(⁰ C)	(S/cm)	(g/l)	(SU)	(m/Volts)	(NTU)	Cycle	Pressure	Notes
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)	(seconds)	(psi)	aal
1220	34.71	Pump	UN					5/10	22	3al
1252	34.87	28.03	1.520	3.60	7.02	53.5	3.63		24	0.01
1257	34.91	22.99	1.441	5.82	7.19	58.8	4.63			0.05
1302	34.92	22,58	1.343	6.19	7125	65.1	10.09			0.15
307	34.94	22.43	1.309	5.81	7.31	70.7	12.30			0.25
1312	34.95	22.30	1.287	5.71	7.39	7/012	7.72			0.35
1317	34.96	22.43	1.274	5,65	7.45	79.1	7.68			0.45
1322	34.97	22.59	1.247	5,54	7.51	80.7	7.62			0.55
1327	34.98	22.68	1.246	5.64	7.57	81.6	7.58			0.60
1329	START	SAME	VE COLL	SCTION	1					1
1411			COLLECT			2				
				0.252	TOTAL	METAL	JIPEC			
				ONEL	IPEL	COISSI	LVED A	NETALS)		
				0.752					E SAMPLE)
				0.25L					ATE SAMP	
	PumPo	FF								
				-	1					
					1					
										1
						1				
				c						
										1.000

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	6
turbidity meter	200704293
Measured Well Depth (feet from top of casing) W	ell Vault Condition FAIR-BOLTS STRIPPED
NOTES AND OBSERVATIONS: To	otal volume purged 0, 75 gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

SITE:	Entergy - II Buchanan,		90'5			PROJEC DATE: SAMPLE	CR(S):	01.001786 8/1/11 56,05	3
Measured W WATER CO		IGHT (ft)	(feet from 33.34 DTW	n top of casing) =	44,6 Well Colu	do mn Height	Well Vau Well Diar ft		n <u>Live, Betts strig</u> in Multipliers 0.041
		2 PER WELL 44, <i>6</i> 6		E: 0.04 Multiplier	=	1.8 Well Volur	3 ne	2 4 gal	0.163 0.653
1.831	x	1.5	=	A , 75 Designed Pur		gal TOTAL	VOLUME	PURGED	: 2.90 gal
WATER QU	ALITY:	DTW = 33	3,34 GW	Elevation = 3	6.181				
Time	Volume Purged (gal)	DTW or GW Elevation	(0)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Notes
1779	0	(< 0.3 ft)	(3%) STARI		(10%)	(+/- 0.1)	(+/- 10)	(10%)	
1233	0.5	-	18.12	2.357	5.54	6.48	123	176.7	
1235	1.0	{	17.81	2,393	4,94	6.23	14.5	209.7	
1237	1.5		17.49	2.407	4.60	6.12	16.6	221.7	
1239	2.0	~	17.32	2.400	4.39	6.05	17.9	214.1	
1242	2.5	-	17.15	2.390	4,11	6.03	16.6	255.7	
1243	2.75		17.12	2.387	4.07	6.03	13.0	273.1	
1245	START	SAMPL	E COU	ECTION					
1250	END	Ц		11 0	2L IP	C		-	
	PUMP	OFF			0.25L	IPEC.	(TOTAL)	METALS	
	-				0.25L	IPEC		EDMETI	
								L	
							· · · · · · ·		
					-				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>//l/-43</u>-38 SAMPLE ID: <u>030</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92
SITE:	Buchanan, NY	DATE:	8/4/10
WEATHER	Partly Cloudes 70-80	SAMPLER(S):	SLICB
		PUMP DEPTH:	ft

WATER Q	UALITY:	DTW =	15.38 GW E	levation =	32.64	1				
Time	GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)	Notes gal
1016	15.38	Pun	PON	-				5.5/22	16	0
1075	15.64	22.47		2.17	6.58	-17.8	36.87			0.07
10.30	15.72	22.29	4.862	0.93	6.59	-20.9	47.11			0.12
1090	15.84	8207	4.900	0.66	6.62	-28.8	34.93			0.23
1045	15.91	22.12	4,753	0.54		-28.5	28.34		_	0.31
1047	START		E COLLEC	TION						
1115	END	P.		:2	L IPE	C				
	PUMP	OFF								
L										/

Equipment Used	Equipment		
Equipment Osed	Identification #		
YSI 556 MPS Reader and 5563 Sonde		4	
turbidity meter		200704293	
Measured Well Depth (feet from top of casing)	Well Vault Condition		
NOTES AND OBSERVATIONS:	Total volume purged	2.46 gal	
Depth and Depth to Water (DTW) measurements are given in feet from top of casing,			

WELL ID: <u>MW-43-62</u> SAMPLE ID: <u>024</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY	PROJECT NO: DATE:	01.0017869.92 8/4/1
WEATHER: Partly Cloudy 70-8	SAMPLER(S): PUMP DEPTH:	SL,CB
· · · · · · · · · · · · · · · · · · ·	FUMP DEFIN:	n

_	DTW or		16.48 GW E Specific	Dissolved				EPTH = 30		1
Time	Actual DEFIN Elevation	Temp (⁰ C)	Conductivity (S/cm)	Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)	Note
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)			gal
070	3/2214	PINM				:		6/6	30	0
1025	35.473	17.91	2724	1.27	7.10	114.0			1000	0.08
1030	35,148	17.52	2.784	0.47	7.04	82.7	357.3			0.25
1035	35.010	17.40	2780	0.30	7.04	73.4	341.7			0.42
040	34.950	17.60	2.772	0.61	7.00	105.8	293.3			0.62
045	34.911	17.07	2.764	0.48	7.07	62.7	205.5			0.80
1050	34.8110	17.52	2.752	0:30	7.08	59.8	260.1			0.95
055	34. 866	17.53	2745	0.27	7.10	100.5	201.3		1	1.20
100	34.850	17.49	2.740	0.20	7.09	59.7	176.4			1.38
1105	34.850	17.43	2.741	0.24	7.10	58.D	126.2			1.60
110	34.850	17.43	2.737	0.23	7.11	58.2	110.3			1.80
1115	34,850	17.44	2.735	0.24	7,12	58.5	111.3			1.90
120	34.809	17.46	2.734	0.25	7.13	57.2	100:7			2.10
122			ECOLLEC	TION	1		(****			
1.35	END SA	MPLE	LOLIECT	10N1:21	IPEL	-				
	PUMPO									
	1									
_		2.25.1						-		1

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	04K17594 AG
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition FAIL MISSING BOLTS
NOTES AND OBSERVATIONS:	Total volume purged 2.34 gal

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

WELL ID: <u>MW-44-66</u> SAMPLE ID: <u>077</u>

CLIENT: SITE: WEATHER	Entergy - I Buchanan, SUNN	NY		PROJECT DATE: SAMPLEF		01.0017869.9 8122/11 54.08		į			
Measured V WATER C		EIGHT (ft)	(feet from 53,48	n top of casing) =	12.5		Well Vaul Well Diam	t Condition leter:	2	in	1. U
	DTB	-	DTW		Well Colu	nn Height		Diameter	Multipliers		
			_					1	0.041		
GALLONS	OF WATE	R PER WELL	. VOLUM	E:				2 4	0.163 0.653		
Water Co	lumn Height	12.52		0.163 Multiplier	=	2.04 Well Volum		gal 4	0.033	1	
2.04	X	1.5	=	3.00 Designed Pur		gal	OI LIME D	UDCED.		gal	
-						TUTAL	OLUME P	URGED:		gal	_
WATER Q	UALITY:	DTW = 52	.48 GW	Elevation = 3	9.54	AC	TUAL DEP	DTH = 11.	108		
Time	Volume Purged	DTW or GW Elevation	Temp	Specific Conductivity	Dissolved Oxygen	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Drive/Vent Cycle	Drive Pressure	Notes
	(gal)	(< 0.3 ft)	(3%)	(S/cm) (3%)	(g/l) (10%)	(+/- 0.1)	(+/- 10)	(10%)	(seconds)	(psi)	
0948	0	11.107	Pur		(1070)	(17 0.17		(1070)	10/15	39	
0955	0.05	10.1024	19.42	1.255	3.08	6.93	-21.2	03.07	10110	012	
1000	0.20	10.309	19.09	0.698	5.20	6.93	-37.2	54.89			
1012	12.50	9.480	19.00	0.416	6.19	7.27	-26.6	42.58		1	
1022	0.75	8.963	18.96	0.378	6.48	7.35	-17.0	21.52	C	(
1030	1.00	8.464		0.359	6.75	7.41	-14.8	17.48	1.	1	
1040	1.25	8.042	19.25	0.314	6.45	7.61	-19.1	19.84	V	1	
1049	1.50	7.706	1879		6.50	7.70		16.67		1000	
1058	1.75	7.443	18:105	0.3510	6.38	7.71	.70.2	14.02		1	
1105	2.00	7.272	18.52	0.384	6.29	7.60	-19.10	10.62		1	
1110	2.30	7.030	19.32	0.438	6.34	7.80	-210.8	12.58			
1132	2.15	10.731	19.67	0.524	6.60	7.85	-24.8	13.56			
1141	3.00	6.576	K 85	0.573	6.78	7.81	-30.6	10.25			
1143	START			SETION		1 01			1000		
1208				ECTION!	71 70	EL ID:	UTINE		3		
invo	UNU	Church	e un	0011010.	OSL J	PEC 14	ADSS 6	ETA		· · · · ·	
	pump	OFF	Eq	uipment Us				se inj	Iden	uipment	
YSI 556 MPS Reader and 5563 Sonde								2			
turbidity me	ter								20070	4293	_

NOTES AND OBSERVATIONS: WATER TABLE ~ 6' HIGHER THAN LAST MONTH (7/2011). LEVEL UNUSUAL FOR Depth and Depth to Water (DTW) measurements are given in feet from top of casing. WELL. WELL NORMALLY PURSES DRY; HOW WELL Groundwater Elevation measurements are given in feet msl. THIS SAMPLING EVENT WELL RECHARGED MORE

THAN USUAL AND DID NOT PURGE DRY. INFORMED D. RUSCZYK VIA PHONE.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet WELL ID: <u>Mur-44-102</u> SAMPLE ID: <u>O23</u>

Measured W	ell Depth		(feet from	top of casing)			Well Vaul	t Condition	1
WATER CC		IGHT (ft)	61.38 DTW		40,60	2	Well Dian ft		/in
	DTB		DTW		Well Colun	nn Height		Diameter 1	Multipliers 0.041
GALLONS	OF WATER	R PER WELL	VOLUM	£.•			1	2	0.163
								4	0.653
Water Col	umn Height	40.67	х	0,041 Multiplier		1.66	,5	gal	
				Multiplier	V	Vell Volun	ne		
1.665	х	1.5	=	7.5	0	gal			
11002	X	1.5	_	Designed Pur					-
				Designed i da	Bertonenie	TOTAL	VOLUME	PURGED:	2.65 gal
		100			24				
WATER QU	ALITY:	DTW = 61	38 GW	Elevation = b	1				
	37.1	DOWN	Terre	Specific	Dissolved				
	Volume	DTW or	Temp	· ·		pH	ORP	Turbidity	
Time	Purged	GW Elevation	-	Conductivity	Oxygen	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Notes
Time		GW Elevation	(⁰ C)	Conductivity (S/cm)	Oxygen (g/l)	(SU)	(m/Volts)	(NTU)	Notes
	Purged (gal)		(⁰ C) (3%)	Conductivity (S/cm) (3%)	Oxygen	-	(m/Volts)		Notes
1014	Purged (gal)	GW Elevation	(°C) (3%) Pum	Conductivity (S/cm) (3%)	Oxygen (g/l) (10%)	(SU) (+/- 0.1)	(m/Volts)	(NTU) (10%)	Notes
1014 1070	Purged (gal) 0.5	GW Elevation (< 0.3 ft)	(°C) (3%) Pumf 20.81	Conductivity (S/cm) (3%) 0 <i>N</i> 1.3 <i>2</i> 1	Oxygen (g/l) (10%)	(SU) (+/- 0.1) 6.92	(m/Volts) (+/- 10) 20 6 , l	(NTU) (10%) 526.0	Notes
1014 1070 107 6	Purged (gal) 0.5 1.0	GW Elevation	(°C) (3%) Pumf 20.81 19.04	Conductivity (S/cm) (3%) 0 0 1.3 2 1.3 2 1.3 3 8	Oxygen (g/l) (10%) -7,74 6,90	(SU) (+/- 0.1) 6.92 6.77	(m/Volts) (+/- 10) JOB, l JB, B	(NTU) (10%) 526.0 440.6	Notes
1014 1070 107 6 1030	Purged (gal) 0.5 1.0 1.5	GW Elevation (< 0.3 ft)	(°C) (3%) Pumf 20.81	Conductivity (S/cm) (3%) 0 0 1.3 2 1.3 2 1.3 3 3	Oxygen (g/l) (10%)	(SU) (+/- 0.1) 6.92	(m/Volts) (+/- 10) 20B, l 2(B.B 22(, ((NTU) (10%) 526.0 440.6 379.3	Notes
1014 1020 102 6 1030 1033	Purged (gal) 0.5 1.0 1.5 2.0	GW Elevation (< 0.3 ft)	(°C) (3%) PUM 20.81 19.04 18.72 19.17	Conductivity (S/cm) (3%) 0 0 1.3 2 1.3 2 1.3 3 8	Oxygen (g/l) (10%) 	(SU) (+/- 0.1) 6.97 6.77 6.77	(m/Volts) (+/- 10) 206, l 208, l 28.8 28.4 230.4	(NTU) (10%) 526.0 440.6	Notes
1014 1070 107 6 1030	Purged (gal) 0.5 1.0 1.5 2.0 2.5	GW Elevation (< 0.3 ft)	(°C) (3%) PUM 20.81 19.04 18.72 19.17 19.17 19.06	Conductivity (S/cm) (3%) 0 0 1.3 2 1.3 3 1.335	Oxygen (g/l) (10%) 7.24 6.90 7.10 7.41	(SU) (+/- 0.1) 6.97- 6.77 16.94 7.01	(m/Volts) (+/- 10) 20B, l 2(B.B 22(, ((NTU) (10%) 526.0 440.6 379.3	Notes
1014 1020 102 6 1030 1033 1036	Purged (gal) 0.5 1.0 1.5 2.0	GW Elevation (< 0.3 ft)	(°C) (3%) PUM 20.81 19.04 18.72 19.17 19.17 19.06	Conductivity (S/cm) (3%) 0N 1.321 1.333 1.335 1.335 1.335	Oxygen (g/l) (10%) 7.24 6.90 7.10 7.41	(SU) (+/- 0.1) 6.97- 6.77 16.94 7.01 7.04	(m/Volts) (+/- 10) 206, l 208, l 28.8 28.4 230.4	(NTU) (10%) 526.0 440.6 379.3	Notes
1014 1020 102 6 1030 1033 1036 1038	Purged (gal) 0.5 1.0 1.5 2.0 2.5 57A-RT	GW Elevation (< 0.3 ft)	(°C) (3%) PUM 20.81 19.04 18.72 19.17 19.17 19.06	Conductivity (S/cm) (3%) 0N 1.321 1.335 1.335 1.335 ECTION	Oxygen (g/l) (10%) -7,74 6,90 7,10 7,41 7,58	(SU) (+/- 0.1) 6.92 6.77 6.77 6.77 7.01 7.01 7.04	(m/Volts) (+/- 10) 208, l 2(8,8) 23(, l 230, 4 251, 3	(NTU) (10%) 526.0 440.6 379.3 417.3	
1014 1020 102 6 1030 1033 1036 1038	Purged (gal) 0.5 1.0 1.5 2.0 2.5 57A-RT	GW Elevation (< 0.3 ft)	(°C) (3%) PUM 20.81 19.04 18.72 19.17 19.17 19.06	Conductivity (S/cm) (3%) 0N 1.321 1.335 1.335 1.335 ECTION	Oxygen (g/l) (10%) 7.24 6.90 7.10 7.10 7.41 7.58 H IPEC	(SU) (+/- 0.1) 6.92 6.77 6.77 6.77 7.01 7.01 7.04	(m/Volts) (+/- 10) 208, l 2(8,8) 23(, l 230, 4 251, 3	(NTU) (10%) 526.0 440.6 379.3 417.3	
1014 1020 102 6 1030 1033 1036 1038	Purged (gal) 0.5 1.0 1.5 2.0 2.5 57A-RT	GW Elevation (< 0.3 ft)	(°C) (3%) PUM 20.81 19.04 18.72 19.17 19.17 19.06	Conductivity (S/cm) (3%) 0N 1.321 1.335 1.335 1.335 ECTION	Oxygen (g/l) (10%) 7.24 6.90 7.10 7.10 7.41 7.58 H IPEC	(SU) (+/- 0.1) 6.92 6.77 6.77 6.77 7.01 7.01 7.04	(m/Volts) (+/- 10) 208, l 2(8,8) 23(, l 230, 4 251, 3	(NTU) (10%) 526.0 440.6 379.3 417.3	
1014 1020 102 6 1030 1033 1036 1038	Purged (gal) 0.5 1.0 1.5 2.0 2.5 57A-RT	GW Elevation (< 0.3 ft)	(°C) (3%) PUM 20.81 19.04 18.72 19.17 19.17 19.06	Conductivity (S/cm) (3%) 0N 1.321 1.335 1.335 1.335 ECTION	Oxygen (g/l) (10%) 7.24 6.90 7.10 7.10 7.41 7.58 H IPEC	(SU) (+/- 0.1) 6.92 6.77 6.77 6.77 7.01 7.01 7.04	(m/Volts) (+/- 10) 208, l 2(8,8) 23(, l 230, 4 251, 3	(NTU) (10%) 526.0 440.6 379.3 417.3	
1014 1020 102 6 1030 1033 1036 1038	Purged (gal) 0.5 1.0 1.5 2.0 2.5 57A-RT	GW Elevation (< 0.3 ft)	(°C) (3%) PUM 20.81 19.04 18.72 19.17 19.17 19.06	Conductivity (S/cm) (3%) 0N 1.321 1.335 1.335 1.335 ECTION	Oxygen (g/l) (10%) 7.24 6.90 7.10 7.10 7.41 7.58 H IPEC	(SU) (+/- 0.1) 6.92 6.77 6.77 6.77 7.01 7.01 7.04	(m/Volts) (+/- 10) 208, l 2(8,8) 23(, l 230, 4 251, 3	(NTU) (10%) 526.0 440.6 379.3 417.3	

Equipment U	sed	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde		i
turbidity meter		200704293 (malfunction
	Switched to -	

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

ł

WELL ID: <u>MU-45-42</u> SAMPLE ID: <u>076</u>

CLIENT: SITE: WEATHER:	Entergy - II Buchanan, SuNNY	NY	6:>				PROJECT DATE: SAMPLEF		01.0017869.9 8/23/11 56,08		
Measured W WATER CO			(feet from 18.28 DTW	n top of casing) =	23.7	2. mn Height	Well Vaul Well Dian ft	Diameter	ALC BOLTS	in	
		23.72	x	<u>O. 163</u> Multiplier		<u> </u>	ne	1 2 4 gal	0.041 0.163 0.653		
3.86	x	1.5	=	<u>S</u> . 90 Designed Pur	ge Volume		OLUME P			gal	
WATER QU	ALITY: Volume Purged (gal)	DTW = DTW or GW Elevation Actual Octo (< 0.3 ft)	Temp	Elevation = 3 Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)	Notes
1010	0.5		Pump 20.09	on 1.742	6.97	7.37	-65.1	8-69	6/8	26	
1033 1039 1044 1049	1.5 1.5 2.0 2.5	14.334 13.668 12.510 11.513	20.01 20.00 19.90 19.85	1.706 (.639 (.513 (.417	0.45 0.45 0.33 0.31	7.41 7.42 7.41 7.41	-58.2 -58.2 -58.8 -58.8	3.40 3.51 3.03 4.56			
1102 1109 1115	3.0	8-462 7.165 5.589	19.93 19 96 19.94	1.356 1.502 1.580	2.00 1.80 1.54	7.47 7.45 7.44	- 53.6 - 54.1 - 54.6	33.18 26.31 19.82			
1124 1305 1358	425	3.590	STAR	DRY. LE- T SAMPL AMPLE COL	ECOLLE	1:2LJ	PEC (6LOSS BE	74)	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York WELL ID: _//W_____ Modified Traditional Purge Sampling Data Sheet WELL ID: _//W______

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>Jump 70–80</u>	PROJECT NO: $01.0017869.92$ DATE: $8/23/4$ SAMPLER(S): $5/268$
Measured Well Depth (feet from top of casin	g) Well Vault Condition
WATER COLUMN HEIGHT (ft)	Well Diameter: / in
6 - 19.38 =	4162 ft
DTB DTW	Well Column Height Diameter Multipliers
	1 0.041
GALLONS OF WATER PER WELL VOLUME:	2 0.163
	4 0.653
Water Column Height <u>4(. 42</u> x <u>0, 04</u> Multiplier	= <u>.70</u> gal Well Volume
1.70 x 1.5 = 2.50 Designed P	gal Purge Volume TOTAL VOLUME PURGED: ノーア(gal

WATER QUALITY: DTW = 19.38 GW Elevation 33.837

Time	Volume Purged (gal)	DTW or GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Notes
1013	0	1							
1024		-	21.03	1-334	4.65	7.00	358.4	580.8	A
10:30	1.5		20.59	1.317	4.70	7.06	439.6	1890	
1035	2.0		20.47	1.316	4.70	7.05	462.9	1100+	
1041	2.5	1	16.06	1.309	4.80	7.07	495.4	1100+	
1042	STAR	T SAM	LEC	DILECTIO					
1048	END	ιι		u	: ALI				
	PILLP	OFF		5	:0.5L	IAEC (1	FROSS BE	TH IN	OUSE,
				-					
	-								
			-						

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing. Groundwater Elevation measurements are given in feet msl.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

VIOGGIITON VV			10.10.	4 P			XX7-11 X71	14 CL . 1941	and a second second second
WATER CO	ell Depth		(feet from	n top of casing)			Well Vaul Well Dian		TAIR-MISSING BO
WATER CO			1.02	=	28.6	8	ft	lieter .	<u> </u>
	<u>Эд.7</u> DTB		1.02 DTW		Well Colu	mn Height		Diameter	Multipliers
								1	0.041
GALLONS (OF WATE	R PER WELL	VOLUM	E:				2	0.163
Water Col	umn Height	28.68	x	0.653	=	18.73	2	4 gal	0.653
water cor	unni Height	10.00	· ^	Multiplier		Well Volun		Bai	
1.0.00				100					
18.73	х	1.5	=	28.09		_gal			
				Designed Pur	ge Volume	TOTAL		DUDCED	: 28.10 gal
						IUIAL	OLUME	FURGED	
WATER QU	ALITY:	DTW = 1	02 GW	Elevation = 13	5.96	A	cture de	PTH = 26.	741
	Volume	DTW or	Temp	Specific	Dissolved	l pH	ORP	Turbidity	
Time	Purged	GW Elevation	(⁰ C)	Conductivity	Oxygen	(SU)	(m/Volts)		Notes
	(gal)	ACTUAL DEPTH	(3%)	(S/cm) (3%)	(g/l) (10%)	(+/- 0.1)	. ,	(10%)	
0928	0	(< 0.3 ft)	Pump	-	(10%)	(+/- 0.1)	(+/- 10)	(10%)	
0942	2.5	23.205	23.05	0.828	6.49	7.42	-41.8	2.19	
0950	5.0	22.515	21.11	0.725	0.47		-44.9	1.74	
0954	7.5	22.211	21.16	0.715	0.41	7.52	-47.5	2.48	
0959	10.0	21.928	21,19	0.718	0.24	7.54	-51.2	1.29	
1015	12.5	21.312	21.34	0.755	0.21		-58.7	2.84	
10291	15.0	21.223	21.35	0.697	0.29	7.102	-61.1	4.51	
1037	17.5	21.215	21.43	0.659	0.42	7.60	-101.4	7.11	
1046	20.0	21.192	21.46	0.751	0.69	7.58	-61.6	6.87	
1059	22.5	21.264	21.51	0.900	1.25	7.59	-59.8	10.01	
1113	25.0	21.320	21.55	0.991	1-91	7.01	-593	5.48	
1124	27.5	21.700	21.54	1.019	2.20	7.63	-58.9	3.79	
1120	28.0	22.407	21.52	1.025	2.36	7.63	-59.8	3.29	
1130		SAMPLE							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

CLIENT:	Entergy - IPEC		PROJECT NO:	01.0017869.92
SITE:	Buchanan, NY	7 01	DATE:	8/10/11
WEATHER:	Cartles Seennes	10-80	SAMPLER(S):	SL,CB
	/		PUMP DEPTH:	ft

WATER Q	UALITY:	DTW =	11. 75 GW I	Elevation =	2.421	Ac	TUAL DI	EATH = 12	.989
Time	DTW or GW Elevation ACTUAL DEAL	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
0951	(< 0.3 ft) 12,989	(3%)	(3%) P <i>ON</i>	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
1005	13.084	PUM 23.55	2.225	1.29	6.93	95.0	2.26		0.1
1010	13.078	73.66	7.251	0.95	7.00	93.0	0.43	1	0,2
1015	13.069	23,7A	2.257	0.84	7.05	90,9	0.20		0.3
1020	13.059	23.83	2,260	0.75	7.09	88.9	0.44		0.4
1022	START		E COLLEC	TION				-	
1046	EUD	u (н	:2	L IPEC				
	ALMP.	OFF							
_									
		1						· · · · · · · · · · · · · · · · · · ·	
				1		-			
							()		
							-		
					-		-	-	
					-				
				-					

Eq	uipment Used		Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde			6
flow meter			
turbidity meter			2007 04293
Measured Well Depth(f	eet from top of casing)		t Condition Jan, No lot
NOTES AND OBSERVATIONS:		Total volume purged	0.55 gal
Depth and Depth to Water (DTW) measur	ements are given in feet from		

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

CLIENT:	Entergy - IPEC			PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY	1.00		DATE:	8/10/11	
WEATHER	2: Partly	Aunner	70-50	SAMPLER(S):	SL,CB	
		1.		PUMP DEPTH:	,	ft

Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
(Dec et /	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
2951	16.203	Pum				112 (1.1.7		
1005	16,188	24.00	2.219	0.89	6.97	112.6	1.03		0.17
010	16,182	73.98	9.206	0.65	7.00	925	1.20		0.27
1015	16,174	23.98	2,302	0.51	7.03	95.7	1.28		0.30
030	16.158	23.84	2.203	0.54	7.06	45.2	2.07		0.50
1025	16,139	23,78	2.201	0.57	7.09	15.5	0.72		0.65
030	16,127	73.67	2.203	0.75	TIN	0.6	1.44		0.77
1035	16,115	23,69	2.201	1.01	7,12	-8.9	1.25		0.84
1040	16.097	73,59	2.203	1.22	7.13	-20.7	1.50		1.01
1045	16,078	23,60	2.302	1,21	7.13	-72.6	1,20	1	1.09
10.50	16.069	23,46	2,203	1.12	7.14	-26.8	1.65		1.22
052	START	SAMPU	COLLEC	TON					
116	END	11	10	:21	. IPEC			(
	2000 - 100 -								
			_						

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
flow meter	
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition Jun. No. Lot
NOTES AND OBSERVATIONS:	Total volume purged <u>1.37</u> gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY	DATE:	9/10/11	
WEATHER	Partles Summer, 70-80	SAMPLER(S):	SLIPB	
		PUMP DEPTH:	f	ft

	DTW or	Temp	Specific	Dissolved	pН	AC ORP	Turbidity	PTH = 14,1	
Time	GW Elevation	(⁰ C)	Conductivity (S/cm)	Oxygen (g/l)	(SU)	(m/Volts)	(NTU)	Flow Rate (gal/hr)	Notes
-	ACTUAL DEPIH (< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
2951	14,429	Punp	ON						
205	14,283	73.bA	1.987	1.64	7.38	-23.7	1.78		0.05
010	14,274	23.52	2.001	0.57	7.41	-9.7	1.21		0.13
1015	14.261	23.57	2.005	0.54	7.43	-1,9	0.19		0.72
1020	14.228	23,44	2012	0,45		0,3	0.37		0.32
1025	14,712	23,35	2.017	0.37	7.45	1.7	0.40		0.43
1077	START		E COLLE	CLIDN			_		
1055	END	K	a		NIPE	0			
_	PUMP	OFF		1	1				
	1			Sec. 3.43					L
					1	-			
_									
								ľ	
		-							1-1-1-1
_									
			1						
									1
_						_			
	· · · · · · ·	1	· · · · · · · · · · · · · · · · · · ·	1		1.0.000		P	

Equipment Used		Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde		17594 AC
flow meter		
turbidity meter		200704293
Measured Well Depth (feet from top of casing)	Well Vaul	t Condition Juin No bolts
NOTES AND OBSERVATIONS:	Total volume purged _	0.50 gal
Depth and Depth to Water (DTW) measurements are given in feet from	n top of casing.	

Entergy - IPEC CLIENT: SITE: Buchanan, NY WEATHER: SUNNY, 705 PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92	
8/19/11	
CBISL	
	ft

-

Time	DTW or GW Elevation	< - <i>y</i>	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
1.1.1.	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		- gal
MIL	7.89	Pump		1	70-	11.			
1119	7.88	28/05	2.625	1.44	7.97	-140.5	1.25		0.05
1124	7.87	18,78	2.810	12.80	7.94	-155.4	1.32		0.20
1129	7.84	28.82	3.088	0.69	7.91	-130.9	1.37	1	0.34
134	7.84	28.77	3.082	0.60	7.91	-133.8		1	0.44
139	7.85		3.085	0.68	7.92	-1337	0.95		0.58
143			LE COME		P			P	
1210	END SA	NPLE	COLLECT	10N:26	. IPEC		TINE)		1
1.1				0.5	LIPEC	(FNH	DUSE 6	Dess BE	TA
	PUMPO	PF							
_	10								
				2					
						1			
		1			2		1	1.000	
				1		-			
		-		-			1		
		-							
									-
							1		

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
flow meter	
turbidity meter	200701254
Measured Well Depth (feet from top of casing)	Well Vault Condition No Lollo
NOTES AND OBSERVATIONS:	Total volume purged gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: S'UN NY, 70.5 PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92	
8/19/11	- 25
CB, SL	
	ft

Time	DTW or GW Elevation Actual DB774 (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes gal
it n	88.387	PUMP	on						00
1119	\$6.559	27-34	2.369	1.28	7.23	51.8	0.11		0.01
1124	86.215	27.39	2.373	0.70	7.22	42.2	0.09		0.14
1129		27.32	2.381	0.54	7.22		0.13		0.28
1134	86.196	27.19	2.386	0.55	7.22	43.8	0.15		0.36
1139	86.365	27.24	2.385	0.56	7.23	44.8	0.16		0.48
1143		AMP	ECOLLE	TION			·		
1212			COLLECTI		IPEC	CROWT	TINE)		
		/ 1		0.52		LIN-T	DUSE (GROSS BI	ETA)
	PUMP DE	f					12144		11.1.1
	PUMP DE	f							
	PUMP DF	£							
	Pump DE	F							
	Pump de	£							
	Pump DE	£							
	Pump DE	£							
	Pump de	£							
	Pump DE	£							
	Pump De	£							
	Pump de	£							
	Pump De	F							
	Pump De	£							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	10
flow meter	
turbidity meter	200701254
Measured Well Depth (feet from top of casing)	Well Vault Condition No lot
NOTES AND OBSERVATIONS:	Total volume purged _0.68_ gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW <u>57</u> - <u>40</u> SAMPLE ID: <u>030</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PHRTLY SUMWY, 80:3	PROJECT NO: 01.0017869.92 DATE: 712\$111 SAMPLER(S): 52,28
SAMPLING I	NTERVAL (depth in ft below top of casing) 29.7 to $44.2ORT40$ 7	TOTAL VOLUME PURGED: 1.25 gal PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1055	0	PUMP	ON	1.11.1.1				6.5/8.4	24
1102	0.12	10.02	2.558	6.07	6.90	-46	0.84		
1107	b.34	15.85	2.578	6.11	6 85	29.2	0.61	and the second	
1112	0.52	15.87	2.580	5.87	6.83	44.6	0.24		
1117	075	15.92	2.583	5.75	6.82	54.3	0.01	1.000	
1122	0.90	15.92	2.584	571	6.81	60.7	0.00		
1127	1.05	15.77	2.588	5178	6.81	63.9	0.00	V	V
1129	STAR-T		ECOLLE	CTION					
11:43		AMPLE	COLLEC	TON: 20	IPEC				-
1.10	PUMP	OFF							
	100 200				15				
								-	
	1								
				· · · · · · · · · · · · · · · · · · ·				1	A
				-	24				
		1	1		2			1	
	1								-
1									L

Equipment Used	Equipment Identification #	
YSI 556 MPS Reader and 5563 Sonde	6	
turbidity meter	200704293	

NOTES AND OBSERVATIONS:

Measured Well Depth ____N/A (feet from top of casing)

GOOD

WELL ID: MW <u>5(</u> - <u>79</u> SAMPLE ID: <u>0</u>20

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PARTY SUNNY, 80'S	PROJECT NO: 01.0017869.92 DATE: 7128111 SAMPLER(S): 5400 B	
SAMPLING SAMPLING	INTERVAL (depth in ft below top of casing) <u>63.2</u> to <u>81.2</u> PORT <u>79</u>	TOTAL VOLUME PURGED: 0:95 gal PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump	
WATER QU	ALITY:		

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
INCC	D	Pump	0N	(10/0)		(II IO)	(10,0)	6.5/8.4	24
1055		17.19	2.894	1.06	6.47	-71.3	2.31	0.5101	1
1102	0.05	10.95	2.947	1.24	5.95	-54.7	4.03		
1107	0.15		2.962	1.39	5.87	-39.8	3,46		
1112	0.28	16.98					4.04		
1117	0.40	17.01	2.978	1.38	5.89	-26.4	W6-06451		
1122	0.56	17.06	2.974	1.37			4.61		
1127	0.66	16.92	2.973	1.37	5.97	-9.5			
1132	0.80	16.73	2.966	1:35	10.00	-8.2	4.49		
1135	START	SAMPL	ECOLLE	LTION	-				
1155	ETVD SA	MPLEG	PLECTIC	PN:2L3	PEC				
	Pump O	PP	Y	12					
				1		1			
				100 million (1997)				1	
			1			h			
		1			1		10		
1		1			J				
	-						· · · · · · · · · · · · · · · · · · ·		
-	-	-				1	1		
	-							1.1	
	-								
1	-			-	1				
	-								
1					-	-			
				·					

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	2070704297

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

6000

WELL ID: MW	51-104
SAMPLE ID:	018

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PARTLY SUNNY, 80'S	PROJECT NO: 01.0017869.92 DATE: 7128/11 SAMPLER(S): 56,000			
SAMPLING I	INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:			
SAMPLING	<u>104</u>	PURGE METHOD: Double Valve Pump			

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0901	0	FUMP	ON					5.6 /5.6	42
0911	0.25	14.76	2.910	2.14	6,48	25.6	8.50		
0917	0.75	14.53	2.927	1.92	653	50.3	4.72		
0922	1.00	14.43	2.940	1.78	10.57	58.6	3.21		
0927	1.25	14.31	2.938	1.04	6.60	63.0	1.91		
0932	1.60	14.20	2,938	1.59	6.62	68.4	3.35		11
0937	2.00	14.18	2.935	1.51	6.64	71.6	1.06		
1942	START	SAMPLE	COLLEC	TON					
0951		MPLED	DILECTI	ON:2L	IPEC				
	PUMPC	DFF							(
								1.	
									1
1		1		1					
	1								
						-			11
1		1							
				A second se					
		/	1						
						1			
					1.				
		1	2					1	

Equipment Identification #		
6		
200704293		

NOTES AND OBSERVATIONS:

Measured Well Depth _____ (feet from top of casing)

Well Vault Condition 600 D

WELL ID: MW	51-135
SAMPLE ID:	018

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PAPTLY SUNNY, 805	PROJECT NO: 01.0017869.92 DATE: 7/28/14 SAMPLER(S): 56.000	
SAMPLING	INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:	
	130,7 to 143,7	PURGE RATE: <u>variable</u> (gal/min)	
SAMPLING	PORT	PURGE METHOD: Double Valve Pump	
	<u>_1353</u>		

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0901	7)	Pump	(3%)	(10.0)	(17-0.1)	(11 10)	(10/0)	5.6/5.6	42
0911	0.15	15.85	2.722	0.94	10.00	-81.0	0.85		
0917	0.15	15.45	2.754	0.58	5165	-56.2	0.18	-	1
	0.50	15:48	2.764	0.47	5.57	-27.8	0.12		
0972	0.75	15.24	2:710	0.41	5.50	-10.0	0.32		
0927		15.11	2.712	0.40	\$5.55	-8.3	0.17		
0932	1.15	15.10	2.772	0.40	5,59	-3.8	0.00		
0942	1.45	15.20	2.771	0.40	5.59	-3.6	0.00	1	
	START	SAMPI		ECTION	5151			1	
0044	END St	LADIE	E LOCA	1171 70	Fr				
1001	PUMPO	INIFLE G	prior no	VELUT	60				
	Pump 0	FF						1	
	-								· · · · · · · · · · · · · · · · · · ·
						-			
							-	-	
							1	1	1
							-	-	
								-	
	1							-	
1									
									<u></u>

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

WELL ID: MW <u>51</u> - <u>163</u> SAMPLE ID: _______

CLIENT:	Entergy - IPEC	PROJECT NO:	01.001/7869.92
SITE:	Buchanan, NY	DATE:	7/3/11
WEATHER:	PARTUT SUNNY, 80'S	SAMPLER(S):	54,CB
SAMPLING I	VTERVAL (depth in ft below top of casing) 154.7 to 166.2 ORT 2	TOTAL VOLUME PURGED: PURGE RATE: <u>variable</u> (g PURGE METHOD:	<u> </u>

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0901	D	Pump	ON					5.6/5.6	42
09111	0.01	18.37	2.384	1.31	6,29	-192-3	6.02	1	
0917	0.05	17.59	2.34	0.12	6:53	-190.9	1.79		1.5.5.1
09.22	0.15	17.47	2-301	D.10	10.69	-172.0	1.10		
0927	0.20	17.47	2.297	0.10	673	-17.9	0.04		
0932	0.20	17.09	2.206	0.09	6.76	-177.4	0.01		
0937	0.40	17.01	2-304	0.10	6.78	-174.8	0.03		
0940	START	SAMPLI	COLLE	LTION					
1018	END SA	MPLEC	DLECTI	ON:21:	CP EC				
	PUMPO	FF							
							1 C		
				-					
	-							A	
			-	(
1.000									
Sector sector					1				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	Alin
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

.

WELL ID: MW	51-189
SAMPLE ID:	018

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY PARTNY SUNNY, 80'S	PROJECT NO: 01.0017869.92 DATE: 712.8711 SAMPLER(S): 54.08
	NTERVAL (depth in ft below top of casing) 197.8 to	TOTAL VOLUME PURGED: <u><i>U</i>-970</u> gal PURGE RATE: <u>variable</u> (gal / min)
SAMPLING P	<u>189</u>	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	рН (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0901	D	Pump	ON					5.6 15.6	42
0911	0.05	17.05	1.042	2.00	6.60	-95.0	6.05		
0917	0.15	16.27	1.1016	1.34	1294	-110.0	3.65		
0922	0.30	16.18	1.582	0.91	6.98	-142-0	2-48		
0927	0.42	15.95	1.578	0.75	7.00	-190.7	2.27		
0932	0.55	15.80	1.570	0.70	6.99	-1804	2.89		
0937	0.70	15,100	1.569	0.05	7-21	-721.3	3.08		
0942	0.80	15:70	1.565	0.61	7.02	-240.0	2.36		
0947	0.90	1571	1.566	0.58	7.04	-249.8	1.49		
0952	1.05	15.64	1.567	0.53	7.05	-25.6	2.11		1
0957	1.20	15.66	1.568	0.50	7.06	-267.4	1.40		
1002	1.25	16.44	1.574	0.49	7.08	-272.9	1,27		
1007	1.35	16,50	1.575	0.48	7.10	-296.1	0-68		
1012	1.50	16:03	1.573	0.47	7.11	-271.0	1172	1	1
1017	1.65	16.06	1.573	0.41	7.12	-2109.9	1,68		
1022	1.75	16.10	1.575	0.39	7.12	-273:9	1.53		
1023	START	SAMPL	ECOLIE	CTION					
1042		MPLECO	LIECTIO	NILLI	Pac		d	1	
	PUMP 0	IFF						1	
1							1		
1		-		t			-		
			Sec. 1.				1-		1

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	2007 04293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

14

WELL ID: <u>MW-53-82</u> SAMPLE ID: <u>021</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY	DATE:	8/111	
WEATHER	SUNNY, 80'S	SAMPLER(S):	CBISL	
		PUMP DEPTH:		ft

Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Drive/Vent Cycle	Drive Pressure	Notes
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)	(seconds)	(psi)	gal
0901	23,097	Pump	ON					5/20	38	gal
917	22.871	22.74	2.307	1.28	6:71	84.5	7.04			0.01
922	22.1073	21.28	2.277	5.21	6.91	66.9	35.12			0.15
927	22.628	20.73	2.274	6.40	6.34	58.2	32.65			0.30
932	22.819	21.00	2.271	6.100	6.30	47.7	21.94			0.40
937	22.609	21.44	2.283	10.58	6.42	43.8	18.06			0.50
1942	22.695	21.50	2.287	6.46	10:50	40.5	14.12			0.60
5947	22.728	21.46	2.287	6.41	10.106	36.7	1.80			0.70
952	22.708	21.69	2-304	6.14	6.75	35.0	7.51			0.80
951	22.775	22.77	2.316	6.12	10.89	31.9	6.93			0.85
002	22.760	22.87	2321	6:28	6.99	28.6	6.95			0.87
007	22 799		2.322	6.24	7.13	26.7	5.80			0.90
012		23.55	2.323	6.58	7.19	27.1	5.45			0.95
017	22.857	23.64	2.325	6.52	7.23	26.1	5.62			1.00
018	START		LE COLLE							
111			COLLECT	10N:2	LIPE	C	1			
	Pump	OFF			_					
				1						
_									é .	
								· · · · · · · · · · · · · · · · · · ·		

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition FAIR, BOLTS MUSSING STR
NOTES AND OBSERVATIONS:	Total volume purged <u>1.15</u> gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet WELL ID: MW-53-120 SAMPLE ID: 025

CLIENT:	Entergy - I	PEC				PROJEC	T NO:	01.001786	9.92	
SITE:	Buchanan,					DATE:		8/1/1	(
WEATHER:	Sun	nes				SAMPLE		SUC	β	
Measured W	ell Depth		(feet from	n top of casing)			Well Vau	It Conditio	n fair, Bolts n	ulmin 1
WATER CO			(_	Well Diar	neter:	in in	string
	120		59.5	2 =	_ 60.5		tt			. 11
	DTB		DTW		Well Colur	nn Height			Multipliers	
CALLONS	OF WATEI	R PER WELL	VOLUM	F •				1 2	0.041 0.163	
GALLONS	OF WAILI	ATER WELL						4	0.653	
Water Col	umn Height	60.5	х	D.041	=	2.48	1	gal	01000	
				Multiplier	V	Vell Volur	ne			
2.481		1.5		3,72		~ 1				
0,101	- x	1.5	-	Designed Pur		gal				
				Designed I di	ge volume	TOTAL	VOLUME	PURGED	: 3.90 gal	
			-							-
WATER QU	JALITY:	$DTW = \langle$	59.50GW	Elevation $= 1/2$			_			
	Volume	DTW or	Temp	Specific	Dissolved	pH	ORP	Turbidity		
Time	Purged	GW Elevation		Conductivity	Oxygen	(SU)	(m/Volts)		Notes	
	(gal)	(< 0.3 ft)	(3%)	(S/cm) (3%)	(g/l) (10%)	(+/- 0.1)	(+/- 10)	(10%)		
0922	0	(((0.5 1())	PUMP		(1070)	(11-0.1)	(11-10)	(1070)		
0932	0.25		20.25	1.702	2.13	6.97	78.9	89.62		
0937	1		19.26	1.758	1,24	6.94	80.6	154.3		
0940	1.50		19.06	1.795	0.80	6.94	82.7	280,4		
0943	2	-	A.02	1.874	0.63	6.88	83.9	275.8		
0947	7.50		19.00	1.842	0.54	7.03	84.5	247,9		
0951	3		18.83	1.857	0.48	7.01	85.6	189.1		1
0955	3,50		18.80	1.864	0.45	7.01	86.2	196.5		
0956	3.75	-	18,77	1.866	0.43	6.96	86.6	163.3		
0957	STAR	T SAMPL	ECOU	ECTION	1					
1000	END	11		и гэг	IPEC					
	PUMP	OFF								
										-
	-		1							-
		l			1000					

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	6
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW <u>54</u> - <u>37</u> SAMPLE ID: <u>019</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY Cloudy / Showers	705	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>B/15/4</u> SL
SAMPLING		<u></u> 6	TOTAL VOLUME PURG PURGE RATE: <u>variable</u> PURGE METHOD:	
WATER QUA	ALITY:			

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	рН (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
OPRO	0	PUMP	ON	(10,0)		(17 10)	(1070)	6/4	20
0855	0.5	22,98	2.358 2.313	1.23	6.78	-68,9	1,15	1 1	I
0900	19.75	22.63	2.313	1.29	6.91	-45.5	1.77	1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 -	1.2.1
10905	1.10	22.41	2,297	1.31	6.97	-3/27	0.91		
0910	1.50	22.24	2.294	1.37	7.02	-36.6 -36.2	1.10	1	
0915	1.80	22.24 22.15	2.294	1.29	7.02	-36.2	1.43	V	V
0918	START	SAMPL	E COLLE	CTION	formed and former				1
0925	END	И	LL LL	:26	IPEC				1000
	PUMP	OFF							
	1	1						1	1
				1		1			1
	1	· · · · · · · · · · · · · · · · · · ·	-		K		1	1	1
	11			1		1			11 marshall
	11	U		1				1	A
		V							1.
	-	1							1
				1					1
		1						1	
	-					1			
								-	/
				(7

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Dood

WELL ID: MW <u>54</u> - <u>58</u> SAMPLE ID: <u>019</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY Loudy / Showers 705	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>01.1514</u> <u>5L</u>
SAMPLING E	NTERVAL (depth in ft below top of casing) 51.5 to $64.0PORT59$	TOTAL VOLUME PURGE PURGE RATE: <u>variable</u> PURGE METHOD:	D:gal (gal / min) Double Valve Pump
WATER QUA	5		

Specific Dissolved Turbidity Purged Volume ORP (m/Volts) Temp (^{0}C) Conductivity pН (SU) Drive/Vent **Drive Pressure** Time Oxygen (mg/l) (NTU) (gal) (mS/m) Cycle (seconds) (psi) (10%) (3%) (3%) (+/-0.1)(+/-10)(10%) Pump 23.25 0 OR D ON 6/4 D -34.9 のちり 0.74 0.68 10.56 803 2.97 1. 200 22.91 1.700 6.59 0.44 1.48 -14.2 3.96 0909 0.74 22.63 1.796 0.35 6.64 0.8 1.49 2.19 0910 0.93 22.41) 797 0.32 8.4 1. 6.68 808 0.31 1.17 72.20 6.72 14.1 23.9 1.93 7915 0970 22.19 1.41 930 6.75 0935 854 29.8 1.20 22.09 0.29 6.81 1.78 0.20 0930 1,94 22.01 860 Q4 35.0 2.32 0.29 0935 2.24 21.99 872 6.87 39.1 1,63 N SAMPLE 0932 START COULE TON : OL IPEC 199 47 END = 11 pump OFF

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Bood

WELL ID: MW <u>54</u> - <u>1</u>23 SAMPLE ID: <u>019</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>Cloudy/Rain Showers</u> 70'5	PROJECT NO: 01.0017869.92 DATE: 8/15/4 SAMPLER(S): 54		
SAMPLING INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:		
SAMPLING PORT	PURGE METHOD: Double Valve Pump		

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0850	0	PUMP	ON	(10,0)	(17-0.1)	(17 10)	(1070)	6/4	20
0855	10.01	24.60	1.934	2.0	6.04	28.7	2.17	1	Ĩ
1900	0.12	24.30	1.917	10.75	6.03	23.9	1,28		
0905		23.80	1,908	0.57	6.20	110.5	1.50		
0911	0.38	23.44	1.903	0.45	6.30	8.8	0,87		
1915	0.52	23.23	1.999	0.40	6.50	416	1.01		
0920	0.67	23.16	1,996	0.40	6.58	0.7 -7.5	0.97		
0935	0.50	23.00	1.897	0.35		-2.5	0.66		1
0930	0.91	22.92	1.897	0.36	6.66	-6.0	417	1	1
0935	1.10	22.86	1.895	0.31	6.74	-6.0 -8.1	1.94	V	N N
09.39	START	SAMPL	ECOLLE	TION			•		1
0956	END	4		: 21	IPEC				2
	pump	OFF							2
									1
								-	
					· · · · · · · · · · · · · · · · · · ·		1.1.1.1		
		_						-	
							2		
			-					1	-

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	6
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____ (feet from top of casing)

Dood

WELL ID: MW <u>54</u> - <u>144</u> SAMPLE ID: <u>019</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY <u>Ucrudy / Knowers</u> 705	PROJECT NO: 01.0017869.92 DATE: 8/15/11 SAMPLER(S): 54			
SAMPLING	INTERVAL (depth in ft below top of casing) 	TOTAL VOLUME PURGED:			
SAMPLING		PURGE METHOD: Double Valve Pump			
WATER OUA	ALITY:				

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1100	0	PUMP	ON	County	(11 012)	(11 10)	(10/0)	7.5/6.7	36
1110	0.4	22.59	2.171	0.57	6.47	-95.9	1.62	1.5,007	1
1115	0.60	22.59	2.107	0.76	6,80	-90,2	1.55		1.1.1.1
1120	0.60	22.07	2.085	0.20	6.88	-81.4	1.11		
1125	1.00	21,93	2,088	0.20	6,94	- 78.9	1.18		
1130	1.20	21.79	2.098	0.21	6.94	-Ha.6	1,79		V
11.32	START	SAMPLE	COULEAT.	CON		10.0			
1144	END	M	VL	:263	PEC				1
	PUMP	OFF							
				E				1	
		1			18 million 19		1.0		
1		[]			(
			1.1	1	1				
		L		(1				1
	1				· · · · · · · · · · · · · · · · · · ·				1
1. A.		1 - 1		1.0	1				5
		1		1.1.1	1			1	5
		1		1	New York				1
					1 ()	1			
1		· · · · · · · · · · · · · · · · · · ·			1 m	1			1
					1	1			-
					16	1			
1		· · · · · · · · ·			1				1.100
	11	1			1 m m				1

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	i d
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____ N/A ___ (feet from top of casing)

David

WELL ID: MW <u>54</u> - <u>173</u> SAMPLE ID: <u>019</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

	Batergy - IPEC Buchanan, NY Cloudy Showers 7	105	PROJECT NO: DATE: SAMPLER(S):	01.0017869.97 0/15/11 56	
SAMPLING INT - SAMPLING POI	TERVAL (depth in ft below top of cas <u>170,5</u> to RT <u>173</u>	ing) 187.0 2-	TOTAL VOLUME PURG PURGE RATE: <u>variable</u> PURGE METHOD:	[,55 gal	
WATER QUALI	íT Y :				

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressur (psi)
1100	0	PUMP	ON	(10,0)	11/ 0.17	(17 10)	(10/0)	7.516.7	Ho
1110	0.40	22.73	2.023	0.90	6.54	-35.4	1.62	1	1
1115	0.55	22.34	2.024		6.66	-6.9	1.31		
1120	0.75	22.33	2,019	0.40	6.71	14,9	1.33		
1125	1,00	12.05	2.018	0.76	6,77	24.6	1.22		
1130	1.20	21,90	2.015	0.21	6.82	27.8	1,40	1	
1135	1.40	21,78	2.012	0.21	6.85	33.8	1.43	V	V
1137	START	SAMPHE	COLLET.	TOU					
1150	END	И	и	:NI	PEC				
	punp	OFF			1			1	
					1			1	
		1.	1.		1				1
				1	1			-	2-1
				1				-	
								-	
			()		-			-	
								-	
			1					-	
	-	-						-	
	We and the			1					A

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

200d

WELL ID: MW	54 - 190
SAMPLE ID:	019

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>loudy</u> / <u>thowns</u>	705	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 8/15/11 56
SAMPLING INTERVAL (depth in ft below top of c	asing) 703. L	TOTAL VOLUME PURG PURGE RATE: <u>variable</u>	gal
SAMPLING PORT	l	PURGE METHOD:	Double Valve Pump
WATER QUALITY:	Specific	ad]	Turbidity

Purged Volume (gal)	Temp (⁰ C)	Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0	PUMP		15.	1			7.516.7	36
0,40		2.125	1.12	6,14	58.8	0.56		
0.55	22,90		0.58	6.35	52,3	0.28		y
0.75	22.71			6.48	50.7	0.65		
	22.53				49.6	0,99		
1.20	22.36	2.11.3			48,9	0,27		
	22.73	2.16	0.37	6.73	48.4	0.35		
			0.35		47.7	0.24		
		2.168	1.25	6.81	47.0	0.65	V	V
	SAMPLE	COLLEC	COD					15
END		"	:21	IPEC				
				1	<u>(</u>			1
							-	
					1			
1								1
								1
		10000						
1								
1. P				1				
	(gal) 0,40 0,55 0,75 1,00 1,20 1,20 1,40 1,60 1,80 5,787 EJD	(gal) (gal) (3%) (0,40) (3%) (0,75) (3%) (3) (3) (3) (3) (3) (3) (3) (3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Purged Volume Temp (°C) Conductivity (mS/m) Oxygen (mg/l) (gal) (3%) (3%) (10%) O PUMP ON (10\%) O.40 $A3,A6$ $A,IA5$ $I,I2$ $(0.555$ $22,90$ $A,I50$ 0.59 $(0.755$ $22,90$ $A,I50$ 0.59 $(0.755$ $22,71$ $2,I58$ 0.47 $I.00$ $22,53$ $2,I64$ 0.42 $I.20$ $22,36$ $2,I63$ 0.40 $I.40$ $22,04$ $2,I66$ 0.35 $I.80$ $22,04$ $2,I68$ 0.35 $I.80$ $22,04$ $2.I68$ 0.35 $I.80$ $22,04$ $2.I68$ 0.25 $I.90$	Purged Volume Temp (°C) Conductivity (mS/m) Oxygen (mg/l) PH (SU) (gal) (3%) (3%) (10%) (+/-0.1) O PUMP ON (10%) (+/-0.1) O.40 A3.36 A.185 1.12 6.14 O.55 D.97 A.150 O.58 6.255 O.75 D.71 D.158 O.47 6.48 I.00 D.2.53 D.161 O.42 6.457 I.00 D.2.53 D.163 O.40 6.48 I.00 D.2.53 D.163 O.40 6.457 I.40 D.2.36 D.163 O.40 6.457 I.40 D.2.36 D.163 O.40 6.43 I.60 D.14 D.166 O.355 L.78 I.60 D.14 D.166 O.355 L.78 I.80 D.2.04 D.168 O.355 G.81 START SAMPLE COLLECTION FEC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	6
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____ (feet from top of casing)

Pood

WELL ID: <u>MW-55-</u>24 SAMPLE ID: <u>018</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>SUNNY</u>, 80-5 PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92 12/11 , a.R ft

Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
11:07	7.436	TUMP	ON		1.1.1.1				
11:18	6.772	22.39	1.169	1.50	7.74	-113.2	0.92	1	0-1
11:24	6.648	2241	1.157	0.58	7.83	-115.0	1.03		0.25
1129	6.648	22.42	1.157	0.39	7.91	-138.2	0.55		0.42
1134	6.648	22.23	1.155	0.28	7.96	-160.0	0.44		0.60
1139	6.648	22.29	1.157	0.25	7.98	-166-3	0.74	N	0.75
1144	10.648	22.26	1.161	0. 23	8.00	-173.1	0.49		0.85
1149	6.648	22.25	1.163	0.22	8.02	-175.7	0.53		1.00
151	START	SAMP	LE LOLLE	TION		U			
1212	END SAM				PEC				
					TREC	(TOTAL A	1ETALS		
					TPEC	DISSOL			
	PUMP OF	F							
				· · · · · · ·					
_	1 V								
									-
			1	1000	10		1,000	1	
					1				
									-

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
flow meter	
turbidity meter	200701254
Measured Well Depth (feet from top of casing)	Well Vault Condition FAIR : BOLTS
NOTES AND OBSERVATIONS:	Total volume purged 1.20 gal STRIPED

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>MU 55-35</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>Summer</u>, 80's PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92 ft

Time	DTW or GW Elevation ACT WAL DEPIH (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes
1109	23.101		Pon						1
1118	22.893	22.72	1.136	0.00	7.30	-82.0	0.49		0-05
1124	22.873	22.13	1.151	0.00	7.52	-98.6	0.56		0.20
1129		21.92	1.196	-0.01	7.48	-100.3	0.62		0.36
1134	22-866	21.51	1.7.66	-0.01	7.41	-109.1	0.37		0.54
1139	22.831	21.50	1.305	-0.01	7.39	-97.8	0.28		0.66
1144	22.829	21.46	1.353	-0.02	7.36	-93.4	0.51		0.80
149	22.842	21.50	1.376	-0.01	7.35	-90.6	0.47		0.88
1153	START	SAMP	LE COLLES	TION					
1215	ENO SI	MPLE	COLLECT	UN:2L	IPEC				
				0.25L	IPEC (TOTAL	NETALS)		
				0-75L	TPEC	(DISSOLD	ED MET	iALS)	
	PUMPOF	L L							
_		1							
	L		1	P					
	1 K								
					1				
						1			
							1.2.		

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	04K17594AG
flow meter	
turbidity meter	200701254
Measured Well Depth (feet from top of casing)	Well Vault Condition FAIR BOLTS
NOTES AND OBSERVATIONS:	Total volume purged 1.10 gal STRIPPE

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>MW-55-</u>54 SAMPLE ID: <u>018</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>SUNWY</u> 80'S PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92 ft

VATER Q	UALITY:	DTW =	8.50 GW I	Elevation 😕	9.27	Actu	AL DEPTH	= 41.092	
Time	DTW or GW Elevation ACTUAL DEPTH (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes
1109	41.104	Pump	ON						
1(18	41.050	23.25		3.11	7.04	11.2	1.75		0.05
1124	41.042	23.11	2.201	2.91	7.10	.30.4	1.62		0.20
11291	41.040	22.72	2.216	2.97	7.25	-23.1	1.59		0.36
1134	41.042	22.44		2.90	7.31	-17.6	1.34		0.50
1139	41.033	22.58	2.205	2.88	7.33	-15.5	1.26		0.102
1(43	START	SAMP	Ecouari	SNO					
1209			COLIECTIO		PEC				
				0.25L		TOTAL	METAL	s)	
				D.75L	IPEL (DISSOLVE			
_	PUMPOPI	-							
			· · · · · · · · ·		1	()			
						1			
			1			1			
	1								
					1		1		
					2	1			
			A				19-19-19-19-19-19-19-19-19-19-19-19-19-1		
					1				
					1				
					Sec. 12				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
flow meter	
turbidity meter	200701254
Measured Well Depth (feet from top of casing)	Well Vault Condition FAIR: BOLTS
NOTES AND OBSERVATIONS:	Total volume purged 0. D gal STRIPPE

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW 60 - 35 SAMPLE ID: 018

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY Shawny, 80:5	PROJECT NO: 01.0017869.92 DATE: $B/10/11$ SAMPLER(S): $SL_C B$
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:
SAMPLING F	$\frac{\partial \mathbf{q} \cdot 1}{\partial \mathbf{r}}$ to $\frac{\partial 7 \cdot \mathbf{q}}{\partial \mathbf{r}}$	PURGE RATE: variable (gal / min)
Salva Ling I	<u>35</u> 7	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0909	0	PUMP	DN					517	18
0915	0.10	20.25	2.034	4.04	6.8	-9.7	4.63		
0920	0.25	20.15	1.775	1.66	7.10	0.6	0.50		
0925	2.45	20.26	1.075	1.30	7.35	8.9	0.49		
0930	0.50	20.50	1.633	1.23	7.45	11.6	0.60		
0935	0.00	20.69	1.611	1.24	7.51	10.7	0.50		
0940	0.75	20.78	1.601	1.38	7.50	9.3	0.77		
0945	0.85	20.69	1.580	1.43	7.60	11.1	0.80	1	14.
0950	0.95	20.72	1.568	1.45	7.62	12-1	0.77		
0955	1.00	20.76	1.542	1.58	7.65	12.9	1.54		
(00)	1.10	20.85	1.508	1.91	7.00	13.2	0.82		
1005	1.15	20.76	1.494	2.02	7.68	13.7	0.01		1000
1010	1.25	20.99	1.456	2.04	7.69	13.6	0.61		
1015	1.40	21.17	1.427	2.13	7.71	13.3	0.61	-	
1020	1.45	21.21	1.414	2.24	7.72	13.4	0.57		
1021	START	SAMPLEC	DLLECTIO	N			J		
1054	END SAM	IPLE COLL	ECTION 2	LIPEC	1		1		
	PUMP OF	F						1	
					6				
	11								
									_
							2		
Earn The second									1

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde	2			
turbidity meter	200701254			

NOTES AND OBSERVATIONS:

Well Vault Condition Very Poor

WELL ID: MW	6.53
SAMPLE ID: _	018

CLIENT:	Entergy - IPEC		PROJECT NO:	01.0017869.92
SITE:	Buchanan, NY		DATE:	<u>B/10/11</u>
WEATHER:	SUNN, 80.5		SAMPLER(S):	SL/CB
SAMPLING I	NTERVAL (depth in ft below top of casing) <u>45.4</u> to <u>59.4</u> ORT <u>53</u>	6	TOTAL VOLUME PURGED PURGE RATE: <u>variable</u> PURGE METHOD:	(gal / min) Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0909	0		N					5/7	18
0915	0.10	21.27	2.517	1.50	10.03	-132-7	2.39		
0920	0.25	20.45	2.284	0.70	6.48	-121.5	0.83		
0925	0.45	19.87	2.123	0.46	6.79	-87-6	0.84		
0930	0.50	19.73	2.071	0.40	6.88	-64.5	0.55		
0935	0.45	19.51	2.051	0.38	6.95	-35.5	1.43		
0940	0.80	19.34	2.040	0.38	7.02	-13.6	1.27		
6945	1.00	19.17	2.034	0.37	7.02	1.9	0.44		
0950	1.15	18.96	2.029	0.42	7.00	21.0	1.25		
0955	1.25	18.90	2.021	0.50	7.05	42-8	1.68		
1000	1.45	18.76	2.022	0.51	7.07	51.7	1.44		
1005	1.60	18.70	2.023	0.54	7.10	57.5	098		
1010	1.75	18.91	2.023	0.57	7.14	62-8	2.44		
1015	1.90	19.03	2.030	0.58	7.19	68.1	lell		
1020	2.05	18.90	2.034	0.01	7.26	78-1	1.09		
1025	2.25	18.99	2.037	0.67	7.22	88.8	0.87		
1030	2.45	18.75	2.040	0.67	7.23	107.0	1.35		
1035	2.50	18.81	2.042	0.70	7.22	119.5	0.55		
1040	2:15	18.80	2.049	0.75	7.28	159.3	0.72		
1045	2.85	18-97	2-051	0.79	7.27	145.2	0.74	l	
1050	2.95	18.99	2.052	0.78	7.27	152.3	0.76		
1055	3.10	19.04	2.055	0-79	7.29	151.1	0.78		
1054		SAMPLE							
1145	END SAM	PLE LOLLE	CTION: 21	. IPEC -RE	UTINE 12	LIPEC -D	UPULATE	21 IPER-	SPIKE
	pump of	F	21	- IPEC- E	3LANK'		and the second second		

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Well Vault Condition See M4-60-35

WELL ID: MW <u>60</u> - <u>7</u>2 SAMPLE ID: 018

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

3.50 gal 1/min) Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1236	0	Pump	on	(111)				615	35
1244	0.85	17.55	3.767	1.78	10.99	87.4	1.18		1
1249	1.25	17.23	3.607	0.84	7.03	93.6	2.51	1	
1254	1.75	17.20	3.492	0.75	7.07	94.4	1.73		
1259	2.00	17.04	3.434	6.70	7.11	94.6	1.59		
1304	2.40	16.87	3.381	0.68	7.14	92.5	2.53		
1309	2.80	16.82	3.348	0.69	7.16	89.9	1-101		
1314	3.10	10.58	3.337	0.63	7.19	87.0	1.12		
1318	START	SAMPLE	COLLECTIO	N					1
1325	END SA PUMP OF	mple coi F	LECTION:	21 IPEC				•	
	1 C			· · · · · · · · · · · · · · · · · · ·					

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde			
turbidity meter	200701254		

NOTES AND OBSERVATIONS:

Well Vault Condition Ser<u>Mul-60-3</u>5

WELL ID: MW <u>60</u> - <u>135</u> SAMPLE ID: <u>018</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY <u>5 Uww (</u> , 80'>	PROJECT NO: 01.0017869.92 DATE: 91.0011 SAMPLER(S): 91.0011			
SAMPLING INTERVAL (depth in ft below top of casing) 124.9 to 141.4		TOTAL VOLUME PURGED:			
SAMPLING P		PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump			

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1236	0		DN	5.200				615	35
1244	0.25	18.40	2.413	0.64	6.51	-103.5	1.09		
1249	0.75	17.89	2.369	0.17	677	-137.1	1.14		
1254	0.95	17.87	2.402	D.16	6.83	-1100.0	0.85		
1359	1.15	17.65	2.478	0.16	6.89	-174.2	0.73		
1304	1.25	17.44	2.494	0.16	6.93	-188.0	0.38		
1309	1.40	17.32	2.512	0.17	6.91	-196.0	0.19	1	
1314	1.85	17.04	2.527	0.23	6.94	-195.7	0.23		
1319	2.10	16.92	2.541	0.38	6.99	-205.8	0.51		
1324	2.25	17.01	2.570	0.82	6.99	209.8	0.63		
1329	2.35	17.01	2.569	1.09	7.02	-197.0	0.29		
1334	2.45	17.06	2.579	1.11	7.03	-206.3	0.19		
1339	2.55	17.13	2.612	1.05	7.04	-201.5	0.21	1	
(340	START S		OLECTIO						
1351			E CTION :						
	Pump o		<u></u>				_		
					1				

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde	4			
turbidity meter	200701254			

NOTES AND OBSERVATIONS:

Well Vault Condition Sec. MW-60-35

WELL ID: 1	MW <u>60 - 154</u>
SAMPLE ID	:OI8

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY Summ +, SU >		PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>B/10/11</u> SL, CB
SAMPLING I	NTERVAL (depth in ft below to	op of casing) 	TOTAL VOLUME PURG PURGE RATE: <u>variable</u>	_ <u></u>
SAMPLING P	ort <u>1.54</u>	2	PURGE METHOD:	Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
12.36	D	PUMP	2N		1			6/5	35
1244	0.20	18.51	2.108	0.00	6.40	-45.9	7.40		
1249	0.50	18.01	2.073	-0.01	7.04	-33.8	3.12		-
1254	0.75	17.99	2.076	0.00	7.10	-31.4	1.11		
(259	0.80	17.80	2.076	0.00	7.15	-36.8	1.40		
1304	1.05	17.54	2.074	-0.00	7.17	-31.0	1.09		
1309	START	SAMPLE							
1322	END &	IMPLE CO	LLECTO	N:2LI	PEC				
	Pumpo	FF	1. 1. 1. 1. 1. 1. <u>1. 1. 1.</u>		1				
			-	1.					
				1	1			1	
				5 (E.		1
					1				1
				1	100000000000000000000000000000000000000		1	0	1
	1								
	-				1	1			
	-				1				1
	-	-		-					
	-				1				-
_								1	
					1				
_			-	-	-			1	
								1	
		1							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	04617594 46
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition A MW-W-35

WELL ID: MW (d) - 176 SAMPLE ID: 018

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SUNNY, SD'S	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 BUOH St.CB
SAMPLING II	VTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGE PURGE RATE: <u>variable</u>	2 D: gal (gal / min)
SAMPLING P	ORT	PURGE METHOD:	Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1230	0	PUMP D	N				1	615	35
1244	0.10	23.17	0.773	1.79	6.10	-31.9	1.66	,	
1249	0.20	22.76	0.764	0.83	5.93	-49.7	1.58		1
1254	0.25	23.04	0.762	0.49	6.13	-69.9	1.11		
1259	0.40	22.71	0.71	0.38	6.40	-97.9	1.24	1	
1304	6.50	22.04	0.774	0.31	6.90	-132.1	1.10		
1309	0.40	21.73	0.773	M.31	7.02	-148.4	0.71		
1314	0.70	21.31	0.774	0.19	7.14	-159.9	1.22		
1319	0.80	21.04	0.772	0.25	7.15	-167.0	0.98		
1324	0.90	21.34	0.767	0.14	7.17	-175.4	0.44		
1329	1000	21.10	0.770	0.13	7.28	-184.1	0.88		
1334	1.10	21.16	0.768	0.16	7.22	-187.7	0.50		· · · · · · · · · · ·
1339	1.20	21.31	0.767	0.16	7.22	-194.4	0.08		1000
1340		SAMPLE (1 1 1 2 S		
1412		APLE COLL			1				
1.1.	PUMP OF					-			
								1	-
	-		-						
		· · · · · · · · ·							
					A				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	2007 01254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition See MW-W-35

WELL ID: <u>MW-63-</u>18 SAMPLE ID: <u>019</u>

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IP	EC	PROJECT NO:	01.0017869.92	
SITE: Buchanan, N		DATE:	8/3/11	
WEATHER:	nes 70-80	SAMPLER(S):	SL,CB	
	1	PUMP DEPTH:		ft

WATER Q	UALITY:	DTW =	12.16 GW B	Elevation =	0.64	ŀ	ACTUAL	DEPTH =	4.242
Time	DTW or GW Elevation Actuact DEPTH (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes gal
0905	4. 242	PMM		(1070)	(+/- 0.1)	(+/-10)	(1070)		Jul
0915	4.117	23,11	4.600	7.91	7.05	155.4	3.55		0.01
0970	4.088	23.01	U.537	5.34	7.20	66.8	1.48		0.08
0925	4,052	22,93	4,440	4.61	7.31	-16.7	1.24		0.26
0930	4.012	22,92	4.407	4.78	7.34	-27.2	1.20		0.45
0935	3,992	22,81	4,377	4.05	7.35	-31.2	0.90		0.61
0940	3.977	22,64	4,400	3.64	7.35	- 36.9	10.64	· · · · · · · · · · · · · · · · · · ·	0.81
0945	3,961	22.54	4,470	3,19	7.34	-37.7	0.36		0.98
0950	3.951	22.55	4,530	3.00	7.34	- 39.6	0.69		0.08
0955	3.941	22.62	4,587	2.75	7.34	-38.7	0.65		1.20
0957	START	SAMPL	E COLLECT.	TON					-
1018	END	n	11	:2	IPEC				
-				0.75	L IPEC		METALS		
				0.35	L IPEC	(DISSOU	ED MET	45)	
1.00.01	PUMP	OFF							
							· · · · · · · · · · · · · · · · · · ·		
			()						
_						-			
_							2		
				-					-
_					-	-			1.
	1		1						-

	Equipment Used		Equipment Identification #
YSI 556 MPS Reader and 5563	Sonde		2
flow meter			
turbidity meter			200704293
Measured Well Depth	(feet from top of casing)		t Condition Scool
NOTES AND OBSERVATIO	NS:	Total volume purged	1.35 gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>MW-62-37</u> SAMPLE ID: <u>019</u>

CLIENT: Entergy - IPEC	PROJECT NO: 01.00	17869.92
SITE: Buchanan, NY	DATE: $\underline{\delta}$	3/11
WEATHER: Summy 40-80	SAMPLER(S):	CB
	PUMP DEPTH:	ft

VATER Q	UALITY:	DTW =	GW E	Elevation 🗲					
Time	GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes
0905	11.72	Pum		(10/0)		(11 10)	(10,0)		
0915	11.85	19.79	1.501	1.34	6.A	133.3	6.84		0.08
0970	11.87	19.51	1.509	0.99	6.85	127.8	5.86		0.18
0925	11.97	19,32	1.515	0.80	6.93	117.8	3.51		0.35
9930	11.87	19,17	1.519	0.70	7.01	106.1	0.64		0.53
0935	11.87	19.06	1.522	0.68	7.04	97.9	1.00		0.63
0940	11.87	18.87	1.524	0.60	7.08	83.4	0.42		0.90
0945	11.84	18.74	1.505	0,56	7.12	68.2	0.38		1,00
0950	11.94	18.76	1.575	0.55	7.15	56.7	0.25		1.18
0955	11.83	18.71	1.576	0.52	7.16	50,5	1.00		1.28
1000	11.82	19.81	1.527	0.49	7,19	37.0	0.38		1.45
1004	11.81	18.78	1.527	0.49	7.21	24.8	0.55		1.57
1008	11.80	18.79	1.527	0.49	7.21	20.4	0.56		1.70
1011	11:80	18.78	1.577	0.49	7.02	14.8	0.35		1.80
1013	START	SAMPI	E COLLEC						
1035	END	it	11	in					
				0.7	L IPEC	(TOTAL	METAL	5)	
				0.2	L IPEC	Dasso	WED,	HETALS)	
	PUMP C)FF							
									-
10 1000									
	1							-	
	· · · · · · ·				1	_			

Equipment Used		Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde		6
flow meter		
turbidity meter		200704293
Measured Well Depth (feet from top of casing)	Well Vault Co	
NOTES AND OBSERVATIONS:	Total volume purged 🕂	<u>95</u> gal
Donth and Donth to Water (DTW) massurements are given in feet from		

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW 62 - 53 SAMPLE ID: ______

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SUNNY, 70'S	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 8/3/4 - 5L, CB
SAMPLING IN	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGE PURGE RATE: variable	D: 0.70 gal (gal / min)
SAMPLING P	ORT <u>53</u> 6	PURGE METHOD:	Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1(15	0	PUMP 0		()		((1011)	5/6	25
	0.10	20.81	1.407	0.93	6.97	-20.2	1.37		
1120	0.28	21.04	1.404	0.65	7.02	-48.9	0.45	discourse in the	
1130	0.28	21.46	1.405	0.62	7.08	-64.8	0.21		1.0
1135	0.48	21.78	1.404	0.60	7.14	-79.5	0.16		
1140	0.55	22-11	1.404	0.60	7.20	-89.5	6-24		
1145	0.65	21.19	1.408	0.59	7.22	-94.9	022		1
(150	0.70	22.40	1.406	0.58	7.20	-101.5	0.29		
1155	0.75	22.53	1.409	0.59	7.29	-103.4	0.27		
1176			LECTION			2			
1244	END SA		ECTION:	2L IPEC					
a de				0.15L IP	EC LTOTA	-L METAL	5)		
					C LDISSO				
	Pump of	F					1. 2		
		-		· · · · · · · · · · · · · · · · · · ·					
_									
	-								

Equipment Used	Equipment Identification #	
YSI 556 MPS Reader and 5563 Sonde	6	
turbidity meter	200701254	

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

WELL ID: MW 62 71 SAMPLE ID: 019

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: SUMNY, 705	PROJECT NO: 01.0017869.92 DATE: 8/3/11 SAMPLER(S): 51,008
SAMPLING INTERVAL (depth in ft below top of casing) <u>61.1</u> to <u>80.6</u> SAMPLING PORT 7 1	TOTAL VOLUME PURGED: gal PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1(15	0		ON					5/6	25
1120	0.00	20.94	1.404	0.24	7.22	-174.2	0.81	1 21 -	
1125	0.30	20.44	.405	0.20	7.24	-160.2	0.95	· · · · · · · · · · · · · · · · · · ·	14 million - 1
1125	0.50	20.00	1.403	0.15	7.28	-154.5	0.63		
1135	0.70	19.100	1.402	0.16		-156.0	0.91		
(140	090	19.52	1.401	0.15	7.31	-157.0	0.85		
1142	START S	mpto co	LECTION						
1158	END SA	MPLE CON	LECTION:	2L IPEC	1				
			100 May 19	0.75L IP	EL LTOTAL	METALS)			
				0.25L IP	EC L'OUSSON	VED META	LS)		
	PUMPOF	F							
		_						· · · · · · · · · · · · · · · · · · ·	
					1				11
	1			7				1	
					1				
	1				(((1	
	1								
					1				
									1
					1				Q
						-			
			1						
					10				1

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

WELL ID: MW	62.92
SAMPLE ID:	019

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SUNT, 70'>	PROJECT NO: 01.0017869.92 DATE: 8/3/4 SAMPLER(S): 52.7CB	
SAMPLING	INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:	
SAMPLING	PORT 97	PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump	
	_17 4		_

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	
1(15	0	PUMPO		(10/0)				5/6	25
1120	0.10	21.70	1.404	2.51	7.07	-67.7	0:72		
1125	0.25	21.13	1.403	1.19	7.23	-59.2	0.42		
1130	0.45	20.66	1.403	0-80	7.29	-57.0	0.85		
1(35	0.45	20.34	1.401	0.65	7.30	-560	1.29		
(140	0.05	20.09	1.401	0.57	7.31	-140.4	1.50		
1146	1.05	19.94	1.398	0.50	7.30	-54.8	1.58		-
1150	1.15	19.81	1.400	0.46	7.31	-58.9	1.96		
1153		SAMPLO	COLECTIO					1	
1210	END SA	MPLE COL	LECTION	126 IPC	*		1		
1610				0.25L D	EC (70TH	METALS)	1		
				0.25L I	EC (DISSO	WED META	LS)	10.000	1 L
	Pump off			12.2		2			
				1					
								1	
1	-							1	
								1	
	1								
1	-				-				
	1						12		

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	2		
turbidity meter	200701254		

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition

6000

WELL ID: MW 62 - 138 SAMPLE ID: ______

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 	PROJECT NO: 01.0017869.92 DATE: 8/3/4 SAMPLER(S): 50,005	_
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:	
SAMPLING F	<u>138</u> <u>3</u>	PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump	

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0900	D		on					6/4	Ð
0910	0.0	22.42	1.407	0.20	6.64	-193.7	0.00		
09(5	0.25	21.90	1.480	0.09	6.78	-189.9	0.00		
0920	0.42	21.45	1.482	0.10	6.87	-162.7	0.00		
0925	0.00	21.07	1.481	0.11	6.93	-146.9	0.00		
0930	0.75	20.88	1.481	0.09	6.97	-131.0	0.00		
0935	0.90	20.64	1.479	0.07	7.00	-122.8	0.00		
0940	1.05	20.42	1.480	0.08	7.03	-117.1	0.00		
0945	1.25	20.21	1.479	0.07	7.04	-118.1	0.00		
0946	START S	AMPLE U	LECTION	-			-		· · · · · · · · · · · · · · · · · · ·
1008	GND SAM	PLE COLL	ECTTON 12						
2			0.25		TOTAL MET			1	
			0.25	L IPEC I	DISSOLVED	METALS)	1		
	PUMP OF	F		1.2020					
									A
		_	· · · · · · · · · · · · · · · · · · ·				1	1	-
1 -	1.1.1		J J					1	
	1								
						1			
		-	1				-		
	-								

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

GOON

WELL ID: MW 62 - 182

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SuvNY, 70'S	PROJECT NO: 01.0017869.92 DATE: 51.3/11 SAMPLER(S): 54.0 B
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED: /.05 gal PURGE RATE: variable (gal/min)
SAMPLING P	[PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0900	0	Pump o		(1011)				6/4	30
0910	0.01	23.66	1.409	1.60	6.56	-59.2	0.01		
0915	0.00	23.25	1.383	0.28	6.56	-86.9	1.37		
0920	0.28	22.78	1.371	0.17	7.14	-51.2	0.00		
0925	0.40	22.39	1.356	0.14	7.12	-24.7	0.00		
0930	0.50	22.20	1.350	0.10	7.15	-18-2	0.00		
0935	0.65	21.81	1.346	0.12	7.31	-13.5	0.00	1	12
0940	0.80	21.57	1.344	0.10	7.30	-11.4	0.00		
0945	0.05	21.36	1.344	0.10	7.27	-9.5	0.00	1.	
0948	START	SAMPLE		on					
1020	END SA	MPLE CO	MOCTIO	N: 2L IF	EL		1	-	
				0.25 L I	PEC (TOTH	L METAL	5)		
				0.25 L I	PEC (DIS	OLVED ME	TALS)	1	
	PUMP DE	F				a strengt strengt			1
	-								
					-			-	
	1				1				-

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____ (feet from top of casing)

WELL ID: <u>MW-63-18</u> SAMPLE ID: <u>019</u>

CLIENT: SITE: WEATHER					PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:		01.0017869.92 <u>8/2-11</u> <u>54,CB</u>		ft	
WATER Q	UALITY:	DTW =	12.80 GW I	Elevation =	0.259	A	CTU AL DE	PTH= 4.3	869	
Time	DTW or GW Elevation Actual Depty (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes gal	
0912	4.369	PUMF							0	
0920	4,759	20.76	2.611	0.27	6.80	741.4	3.77	(0.15	
0925	4,267	20,71	2,599	0.23	6.86	-144.3	0.11		0.22	
0930	4,294	20.72	2.433	0.18	6.95	-149.5	0.58	L	0.34	
9935	4,323	20,55	2.401	0,20	4.00	-148.1	0.00	1	0.49	
2937			E COUEC		-05.			1		
1002	END	u	11	:26	IPEC	1				
世世 (二)							METALS			
-	PUMP	FF		0.75	I IPEN	DISSOLV	ED META	(5)		
	1 torice o		·							
	· · · · · · · · · · · · · · · · · · ·									
						· · · · ·	1			
						-				
						-				
					-					
				-						
			Equipment	TT 1				Equi	oment	

	Equipment Used		Identification #
YSI 556 MPS Reader and 5563	Sonde		4
flow meter			
turbidity meter			200704293
Measured Well Depth	(feet from top of casing)	Well Vaul	t Condition Spool
NOTES AND OBSERVATIO	NS:	Total volume purged _	0,64 gal
Dopth and Dopth to Water (DT)	W) managements are given in fast from	ton of agains	

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>MW-63-34</u> SAMPLE ID: <u>019</u>

CLIENT:	Entergy - IPEC		PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY		DATE:	8/2/11	
WEATHER:	Aunny	80-90	SAMPLER(S):	SL,CB	
	1		PUMP DEPTH:		ft

WATER Q	UALITY:	DTW =	12.83 GW E	Elevation =	0.229	Actu	AL DEPT	H = 11,896	7
Time	DTW or GW Elevation Actual DEPrint (< 0.3 ft)	Temp	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes gal
0912		(3%) PMP	(3%) ON	(10%)	(+/- 0.1)	(+/- 10)	(1070)		D
0920	11.996	19.79	1.364	1.25	6.74	-71.8	4.60		0.13
0925	11,843	19.61	1.358	0.92	6.83	-80.8	1.00		0.20
0930	11,861	19,50	1.352	0.80	6.92	-104.4	0.00		0.32
7935	11.886	19.25	1.348	0.69	6.99	-67.7	0.08		0.46
2940	11,915	19.18	1.348	0.61	7.02	-114.4	0.00		0.61
7942	START		E COLLEC						
1014	END	IL	1	:2	LIPEC				
					351 IPEC	(TOTAL	METALS)	
					SL IPE		VED MET.		
		9			75L IPE			DUPLICAT	E)
					PSL IPE	DISSO	VEDMET	ALS DUPL.	ECATE)
	PUMP (DFF	1						
			· · · · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·								1
									1
			1						
					1000				
					1 h				
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
				6.177.3					

Equipment	Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde		6
flow meter		
turbidity meter		200704293
Measured Well Depth (feet from top	of casing)	Well Vault Condition 2000
NOTES AND OBSERVATIONS:	Total vo	olume purged 0.76 gal
D I I D I I WI I (DTW)	turn in fact from ton of opping	

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW <u>63</u> - <u>50</u> SAMPLE ID: <u>019</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY <u>SUNNY, 80's - 90 s</u>	PROJECT NO: 01.0017869.92 DATE: 8/2/(1 SAMPLER(S): 68,5 L	
SAMPLING II	NTERVAL (depth in ft below top of casing) 4(.5 to 58.0	TOTAL VOLUME PURGED:	
		PURGE RATE: variable (gal / min)	
SAMPLING P	<u>_50</u> 7	PURGE METHOD: Double Valve Pump	

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1050	0	Pump	ON				(h	77.4	20
(055	0.10	20.40	1.098	0.67	6.95	-72.0	0.00		
1100	0.30	19.97	1.098	0.23	7.45	-51.8	0.00		
(105	0.50	19.72	1.101	0.24	7.50	-47.0	0.00		
1110	0.75	19.47	1.103	0.25	7.05	-40.9	0.00		-
1115	0.90	19.32	1.105	0.27	7.17	-40.9	0.00		
	1.10	19.07	1.108	0.25	7.09	-40-3	0.00		
1120	START		COLLECTIO						
1138	END	CAMPLE	COLLECTIO	N:2L IP	EC			41. The second sec	1
				0.25L I	EC LIDTAL	METALS)		1000	1
		in the second second		0.25L I	EC (DISSO)	VED MET	the)		
	PUMP OF	0				1			
		1							
	2	1							P
				1					
		1	F	1				1.2.	
			7		5				
			A						
			1						
	1		1						
					1 · · · · · · · · · · · · · · · · · · ·				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	2007 01254

NOTES AND OBSERVATIONS:

Measured Well Depth ____N/A (feet from top of casing)

6000

WELL ID: MW 63 - 93 SAMPLE ID: 020

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY <u>CUNN</u> , 80:5-90:5	PROJECT NO: 01.0017869.92 DATE: 8/2/11 SAMPLER(S): 6/5 L
SAMPLING I	NTERVAL (depth in ft below top of casing) 8, 5 to 100.5	TOTAL VOLUME PURGED: <u>0.90</u> gal PURGE RATE: variable (gal / min)
SAMPLING P	<u>93</u> 5	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	рН (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1050	0	Pump	ON			<u>(11 10)</u>	(10.07	717.4	20
(055	0.01	21.72	1.150	0.74	7.33	-79.1	3.10		- 20
1100	0.10	21.10	1.157	0.11	7.51	-69.2	1.02		
105	0.28	20.96	1.159	0.09	7.56	-47.0	0.11		
1(10	0.40	20.50	1.158	0.09	7.59	-38-2	0.02		
1115	0.52	20.40	1.155	0.14	7.60	-34.6	0.00		
1120	0.65	20.23	1.155	0.13	7.62	-36.3	0.00		
1125	0.75	20.01	1.152	0.12	7.63	-29.7	0.00		
1126	START	SAMPLE	CONTECT						
1150	END SA	mple co	LECTION	12L IPE					
				0.25L IP	GC (TOTAL	METALS			1
	-			0.25L 78	EC (DISGOL	VED META	(5)		
	PUMP OF	F							
			In the second second						
	1	in a state							
			Maria						
	A Contraction of the								
		1							
	-				13°			1	J

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	04K17594 AG
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition

6000

WELL ID: MW <u>63</u> - <u>112</u> SAMPLE ID: <u>019</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SWNY, 80:5 - 90:5	PROJECT NO: 01.0017869.92 DATE: \$2.11 SAMPLER(S): \$3.50
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED: [1.15 gal
SAMPLING	$\frac{106.5}{\text{to}} = \frac{112.0}{112.0}$	PURGE RATE: <u>variable</u> (gal / min)
	4	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Purged Volume (gal)	Temp (⁰ C)	Conductivity (mS/m)	Dissolved Oxygen (mg/l) (10%)	рН (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0			(10%)	(11 0.11)			77.4	20
			0.11	7.24	.378.8	0.77		
			0.04	7.39		0.27		
			0.02		-284.5	0.08		
						0-28		(a
						0.59		1
0.75						0.00	11.	1
						0.64		
0.95	20.55					0.35		
FNID SA				1.2.4.1.1.4.1	1			
SIS A	intros co	or o	0.25L IPE	C (TOTAL	METALG)			
			0.25L IP	E (DISSOLL	EP MOTALS	5		
BLAR DE	C	1. Sec. 1						
10004 01	-							
			1			1	1	
	1							
			1					
		1	11			1		
		11 - A				-	-	
		0.01 22.41 0.10 21.81 0.22 21.44 0.32 21.19 0.48 20.95 0.40 20.78 0.75 20.43 0.82 20.55 57APT SAMPLE	0 PUMP ON 0.01 22.41 1.267 0.10 21.81 1.267 0.12 21.46 1.215 0.32 21.19 1.267 0.48 20.95 1.301 0.48 20.95 1.301 0.40 20.78 1.307 0.75 20.43 1.300 0.82 20.43 1.303 0.95 20.55 1.302 START SAMPLE OULECTION: END SAMPLE OULECTION:	0 Pump ON 0.01 22.41 1.267 0.11 0.10 21.81 1.237 0.03 0.22 21.44 1.215 0.04 0.32 21.19 1.267 0.02 0.48 20.95 1.301 0.03 0.40 20.78 1.307 0.04 0.75 20.43 1.300 0.03 0.82 20.43 1.302 0.03 0.82 20.40 1.303 0.02 0.95 20.55 1.302 0.03 START SAMPLE COLLECTION 2L IPEC 0.25L IPE 0.25L IPE	0 Pump 0 N 0.01 22.41 1.267 0.11 7.24 0.10 21.81 1.237 0.03 7.39 0.12 21.46 1.215 0.04 7.39 0.32 21.19 1.267 0.02 7.38 0.48 20.95 1.301 1.03 7.35 0.48 20.95 1.301 1.03 7.35 0.48 20.95 1.301 0.03 7.35 0.48 20.95 1.302 0.04 7.31 0.75 10.63 1.303 7.40 0.82 20.40 1.303 0.02 7.44 0.95 20.55 1.302 0.03 7.50 START SAMPLE (DUECTION) 2L IPEC 0.15L 2PEC (TOTAL 0.95 1.302 0.03 7.50 1.302 1.05 1.50	0 Pump 0N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

6000

WELL ID: MW <u>63</u> - <u>12</u>

SAMPLE ID: 019

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>SUNNY, 805-90's</u>			PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 8/2 ((CB, 5L		
	NTERVAL (depth in ft below top of	casing) 127.5	TOTAL VOLUME PURGED PURGE RATE: <u>variable</u>	gal/min)		
SAMPLING P	<u> 2 </u>	3	PURGE METHOD:	Double Valve Pump		

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0910	0	Pump	m					8/8.2	35
0714	0.10	21.38	1.571	0.69	7.17	-112.9	0.01		
0919	0.30	20.65	1.537	0.40	7.18	-93.6	0.00	1	
0924	0.50	20.21	1.535	0.29	7.20	-86.3	0.00		
0929	0.75	19.70	1.550	0.25	7.31	-78.0	0.00		
0934	0.90	19.38	1.558	0.21	7.14	-70.0	0.00		
0939	1.10	19.20	1.556	0.22	7.17	-63.8	0.00		
0944	1.30	19.15	.555	0.21	7.15	-60.9	0.00		
0946		SAMPLE		TION					
1003	END SA	MPLE 40	LECTION	1:21 29	'EL				
	1		1.14.2	0.25 L I	PEC (TOTA	L METALS	D		
					PEC (DISSI	LUSD METT	LSS		1
	PUMP OF	F							
						1	-	-	
				1					
	-								
			-						
								_	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

WELL ID: MW <u>63</u> - <u>163</u> SAMPLE ID: <u>019</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY <u>Sawny</u> 80:3- 90	5	PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 8/2/11 68/51
SAMPLING I	NTERVAL (depth in ft below	v top of casing)	TOTAL VOLUME PURG	ED:
SAMPLING P			PURGE RATE: variable	(gal / min)
	163	2	PURGE METHOD:	Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0910	0	PUMP	ON				17	88.2	35
0914	0.08	21.29	1.067	1.21	7.17	-93.9	21.34		
0919	0.20	20.51	1.035	0.35	7.39	-99.6	2.02		1
0924	0.40	20.01	1.021	0.22	7.37	-92.0	1.90		
0929	0.60	19.51	1.017	0.19	7.37	- 84.6	2.37	1	
0934	0.75	19,15	1.018	0.30	7.39	-77.5	1.02		
0939	0:88	18.96	1.019	0.27	7.40	-70.4	1.62		
0944	1.05	18.90	1.019	0.28	7.41	-71.6	1.42		
0947	START	SAMPLE	COLLEC	TION					
1006	END SA	MPLE CO	LETION	:22 IPEC		A			
				0.25L IP		METALS)		1	
					EC (DISSOLI	50 METALS)	· · · · · · · · · · · · · · · · · · ·	
	PUMP OF	ı ۲							
									1
	1					h			
		6							
		11							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	04K17594 AG
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth _____ (feet from top of casing)

Good

WELL ID: MW <u>63</u> - <u>174</u> SAMPLE ID: <u>019</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>Sunny</u> , 80's - 90's	PROJECT NO: 01.0017869.92 DATE: 8/2/11 SAMPLER(S): 63, 5 L
SAMPLING INTERVAL (depth in ft below top of casing) <u>168.0</u> to <u>191.</u> SAMPLING PORT	TOTAL VOLUME PURGED:

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0910	D	Pump	ON					8/8.2	35
0914	0.08	21.71	1.035	0.00	7.20	- 367.6	0.19		
0919	0.20	21.04	1.005	0.06	7.14	-370.5	0.35		
0924	0.38	20.50	0.985	0.05	7.17	-305.9	0.01		
0929	0.56	20.13	0.979	0.05	7.12	.279.5	0.26		
0934	0.75	19.47	0.981	0.06	7.11	-276.0	0.08		
0939	0.90	19.45	0.986	0.05	7.14	-265.2	0.45		
0944	1.05	19.45	0.985	0.05	7.11	-259.0	0.61		
0949	1.30	19.17	0.986	0.03	7.09	-249.8	0.00		
0954	1.48	19.10	0.988	0.03	7.12	.248.3	0.00		
0959	1.65	18.79	0.988	0.04	7.15	-248-0	0.00		
0959		SAMPLE CE							
1018			LECTION:	2L IPE					
				0.251 IF	EC (TOTA	L METAL	2		
						WED MET			
	PUMP DF	F							
	1								
	-								
				1					
								-	
	1								

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

WELL ID: <u>MW-66</u>-7/ SAMPLE ID: <u>018</u>

ft

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:Entergy - IPECPROJECT NO:01.0017869.92SITE:Buchanan, NYDATE:8/8/11WEATHER:SAMPLER(S):51.08PUMP DEPTH:PUMP DEPTH:

Time	DTW or	Temp	Specific Conductivity	Dissolved Oxygen	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate	Notes
Time	GW Elevation ACTUAL DEPA (< 0.3 ft)	(⁰ C) (3%)	(S/cm) (3%)	(g/l) (10%)	(50)	(m/vons) (+/- 10)	(10%)	(gal/hr)	gal
0935	9,446	Punt		C.C.M.	(1	pos
0950	9.223	22.54	4.910	0.52	6,49	240.1	18.95		0.07
0955	9.182	22.46	4,910	0,43	6,64	-241.4	11.11		0.18
1000	9.152	82.65	4,901	0.36	6.62	-202.7	9.85		
1005	9.126	22,80	4,993	0.35	6.61	-211.9	12.34		0.33
1010	9.085	72.91	4.901	0.30	6.61	- 227.0	10.83		0.41
1015	9.053	23.09	4.998	0.77	6.63	-220.0	9.39		0.49
1020	9.021	23,41	4,877	0.79	6.61	-219.0	9,51		0.57
1022		SAMPLE	CONTECT	TON					
1055	END	И	11	:22	IPEC				
	PUMP O	FF		2			1		
			-			-	I		
					1				
					2				
				-			-		
			<u>1</u>	1					
	1	-							
				1					· · · · · · · · · · · · · · · · · · ·
_					-				
				1					
				S	· · · · · · · · · · · · · · · · · · ·			£	
	1			1	1				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
flow meter	
turbidity meter	200701254
Measured Well Depth (feet from top of casing) NOTES AND OBSERVATIONS:	Well Vault Condition

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>MW-66-36</u> SAMPLE ID: <u>017</u>

CLIENT: Entergy - IPEC		PROJECT NO:	01.0017869.92	
SITE: Buchanan, NY	71 001	DATE:	018/11	
WEATHER: Anne	10-805	SAMPLER(S):	SLICB	
1		PUMP DEPTH:		ft

Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	= 13.390 Notes
M15	(< 0.3 ft) 13.396	(3%) PUMP	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
0935	13,156	21.96	2.516	2.43	7.19	-77.3	2.19		0.03
0955	13,140	21.72	2.623	1.31	7.34	- 78,9	1.12	1	0.11
1000	13,099	21.96	2.640	0.84	7.39	-82.6	1.15		0.20
1005	13.057	21.96	7.659	0.68	7.44	-89.7	0.83	1	0.28
1010	13.059	21.76	2.682	0.67	7.47	- 45.3	0.72	1	0.37
1015	13.01	21.92	2.683	0.51	7.48	-94.9	1.04		0.42
1017		SAMPL		IN	e.w		110		
1049	END	11	(1	:21	IPEC				
		FP					l		
								(*	·
					1.				
					1			A	
				1				L	
				·					
	C	T.				1	1		
						-			
	1					-			
	-	<u></u>				-			
_						-			
								-	
-								1	
		-							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
flow meter	
turbidity meter	200701254
Measured Well Depth (feet from top of casing) NOTES AND OBSERVATIONS:	Well Vault Condition 2000

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW	67.39
SAMPLE ID:	018

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SUNNY, 81'> -90'S	PROJECT NO: 01.0017869.92 DATE: 8/8/4 SAMPLER(S): CB(SL)	
SAMPLING I	NTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED: 	
SAMPLING	<u>39</u>	PURGE METHOD: Double Valve Pump	

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1(34	0	PUMP	DN					8/8	20
1144	0.28	22.05	2.300	0.64	7.24	-80.3	1.50		
1149	0.50	21.22	2.292	0.54	7.36	-104.5	1.26		
1154	0.68	21.20	2.219	0.51	7.42	-113.9	1.04	1	
1159	0.85	21.15	2.249	0.51	7.47	-128.3	097		
1204	1.15	20.91	2.230	0.50	7.52	-134.2	0.85	1.6	
1209	1.40	21.18	2.218	0.47	7.54	-138.5	1.02	1	
1213	START SA	mple co	LECTION	1				100	
1226	END SA	NPLE COU	SCTION :	2L IPEC			1	1	
	PUMP OF	F				1.	1		1
			1				1		
						1000	1		
C	1								
							10	-	
							Martin Company		
								1	
							1		-
			1.000						4.22
		1000	1				1		100 January 100 Ja
			1			1			
			1						
				-			2		

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	6
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition FARR MISSING MANIPLD

WELL ID: MW 67 - 105 SAMPLE ID: 017

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: SUNNY, 805 - 90-5	PROJECT NO: 01.0017869.92 DATE: 3/8/14 SAMPLER(S): 3/8/14				
SAMPLING INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:				
SAMPLING PORT	PURGE RATE: <u>variable</u> (gal / min) PURGE METHOD: Double Valve Pump				

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1134	0	Pump O						818	20
1144	0.10	23.37	1.610	0.18	6.83	-187.6	2.58		-
1149	0.25	22.41	1.589	0.16	6.94	-210.7	2.18		
1154	0.35	22.43	1.588	0.22	6.96	-218.9	1.98		
1159	0.50	22.19	1.594	0.80	6.98	-229.5	6.09		
1204	0.65	22.12	1.609	0.62	7.02	-234.7	2.16	1	-
1209	0.75	22.34	1.603	0.33	7.01	-224.9	1.75		
1214	0.85	22.47	1.606	0.22	7.01	-240.9	1.71		
1219	1.05	22.32	1.609	0.14	7.03	-246.5	1.84	10	
1224	1.20	22.37	1.608	0.12	7.03	-248.0	1.51		-
1229	1.35	22.66	1.618	0.12	7.04	-250.7	1.65	· · · · · · · · · · · · · · · · · · ·	
1230		SAMPLE							
1248	ENDSA	nple col	ECTION!	21 IPEC					
	PUMP OF								
				(A	
					1.0	1		1	
				-	20170	1			
	1								
					1		-		
		37					1		
					l				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition FAIR: MISSING MANIPOLD

WELL ID: MW 67 - 173 SAMPLE ID: 018

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 	PROJECT NO: 01.0017869.92 DATE: 81814 SAMPLER(S): 63, 5L
SAMPLING I SAMPLING F	NTERVAL (depth in ft below top of casing) <u>164.8</u> to <u>188.3</u> PORT <u>173</u> 5	TOTAL VOLUME PURGED: 0.95 gal PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1134	0	PUMP	on					818	20
144	0.01	22.63	1.104	0.76	651	-78.7	3.23		
1149	Oilo	22.31	1.103	0.19	6.72	-109.8	3.91		
1154	0.20	22.46	1.170	0.13	6.78	-1487	4.35		
1159	0.30	22.25	1.229	0.16	6.84	-187.0	3.62		1
1204	0.40	22.17	1.247	0.18	688	-209.7	5.88		
1209	0.50	22.04	1.244	0.14	6.89	-2387	3.25		7
1214	0.40	22.02	1.240	0.10	6.88	-246.5	2.68		
1219	0.70	22.01	1.23)	0.09	6.90	-248.7	3.15		
1224	0.80	21.91	1.223	0.09	6.93	-248.4	2.77		
1226	START		Constant	on	PL CONTRACTOR				
1253	END SA	mple a	LECTION	12L IPE					
		FF			<				
							1.1.1.1.1.1.1		
				4					
			1		· · · · · · · · · · · · · · · · · · ·				
					· · · · · · · · · · · · · · · · · · ·				·
	.1.				1			1	
									10000
								1	
(11.0.			1		1			
					1	1			
				1	5				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	04K17594 AG
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition FAIR: MISSING MAWIPVLD

WELL ID: MW 67 - 219 SAMPLE ID: 0 17

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>SumMY</u> , 80'S - 90'S	PROJECT NO: 01.0017869.92 DATE: 81814 SAMPLER(S): 65.50
SAMPLING INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:
<u>209</u> to <u>229.8</u> SAMPLING PORT	PURGE RATE: variable (gal / min)
<u>219</u>	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0940	0		ON					616	50
0945	0.25	20.28	1.234	2.77	6.55	-25.5	1.16		
099	0.50	19.83	1.222	1.07	6.64	-19.9	0.58		
0955	0.75	19.86	1.216	0.70	6.73	-8.5	1.45		
1000	1.00	20.57	1.216	0.56	6.82	-13.0	1.13		
1005	1.25	19.62	1.223	0.51	6.82	15.2	1.18		
(010	1.50	19.14	1.217	6.48	6.88	-14.4	1.12		
1015	1.75	19.20	1.210	0.39	6.88	-17.6	1.00	1	
1020	2.00	19.30	1.214	0.34	6.92	-23.4	0.97		
1022	START		LOUECTU	N					
1033		SAMPLE	LOUGCTIO	N: 2L IPI	EC		4		
		FF							
	i i i i i i i i i i i i i i i i i i i					· · · · · · · · · · · · · · · · · · ·			
	1								
								1	
					1	· · · · · · · · · · · · · · · · · · ·			
					h				
					1			· · · · · · · · · · · · · · · · · · ·	
								1	
			/						
	1			1	0				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	6
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition FAIR - MISSING MANIFOLD

WELL ID: MW 67 - 276

SAMPLE ID: 017

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SWNNY, 20'S -90'S	PROJECT NO: 01.0017869.92 DATE: 8 5111 SAMPLER(S): 69,54
SAMPLING E	NTERVAL (depth in ft below top of casing) <u>250.8</u> to <u>281.3</u> ORT <u>276</u> <u>3</u>	TOTAL VOLUME PURGED:

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0940	0	PUMP	ON				2.20	(0/4	50
0946	0.1	20.96	1.019	1.70	6.85	-683	-68-2		
0950	0.35	20.43	0.991	0.80	6.12	-67.2	1.78		
0955	0.55	20.37	0.985	0.54	5.95	-22-2	1.42		G
(000	0.75	21.02	0.982	0.45	5.98	-6.0	1.64		
1005	0.85	20.40	0.983	0.43	6.09	-1.2	0.96		
1010	. 05	19.70	0.976	0.33	10.08	9.9	1.25		
1015	1.25	19.56	0.973	0.30	5.99	10.9	1.00		
1020	1.55	17.76	0.967	0.28	6.10	8.9	1.56		
1025	1.75	19.53	0.967	0.26	6.20	7.7	1.5		
1030	1.85	19.50	0.966	0.26	6.25	9.5	1.48		
1032	STAR7	SAMPLE							[
1045		SAMPLE		TOM: 2LI	PES				
	PUMZ OF	F							
-									
						1			
							-		
									-
1				1			1	1	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition FAIR -MISSING MATVI FULD

WELL ID: MW	67 323
SAMPLE ID:	617

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SUNNY, 80's - 90'S			PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 8/5/11 CB, SL
SAMPLING II SAMPLING P		f casing) 378.3		TOTAL VOLUME PURGE PURGE RATE: <u>variable</u> PURGE METHOD:	2D:gal (gal / min) Double Valve Pump
	323		2	TORGE METHOD:	

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0940	0	Pump	OFF					616	50
0945	0.01	21.81	6.894	1.23	6.26	-141.2	2.96	1	100
0950	0.15	21.07	0.850	0.10	6.35	-145.0	7.97		
0955	0.25	21.25	0.876	0.09	6.51	-158.4	2.84		
1000	0.45	21.97	0.828	0.00	6.59	-223.7	2.31		
1005	0.50	21.91	10.838	0.29	6.62	-243.6	1.93		
1010	0.75	20.62	0.844	0.11	6.61	-268.9	2.64		
1015	0.86	20.43	0.851	0.07	6.62	-279.4	0.70		
1020	1.00	70.63	0.852	0.08	6.65	-296.9	0.89		
1025	1.15	2057	6.853	0.10	6.60	-304.4	6.63		
1030	1.25	20.42	0.853	0.12	6.69	-304.0	0.79		
1036	1.38	20.85	0.854	0.14	6.53	-303.6	0.81		
1037	START		COLLECT	on					
1053	END SAN	NPLE LOL			-		•		1
	PUMP OF								
	-	<u> </u>							
								-	
	-						-	-	
		· · · · · · · · · · · · · · · · · · ·							
		-							
				1					

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
turbidity meter	200704293

NOTES AND OBSERVATIONS:

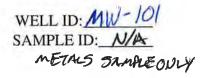
Measured Well Depth <u>N/A</u> (feet from top of casing)

WELL ID: MW <u>67</u> - <u>340</u> SAMPLE ID: <u>017</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY SUNN 1 80-9	0.2			PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 S 8/11 CB 5L
SAMPLING IN	TERVAL (depth in ft 3353	b elow top to	of casing) 347.9		TOTAL VOLUME PURGE PURGE RATE: variable	D:
SAMPLING PO	<u>340</u>			1	PURGE METHOD:	Double Valve Pump

WATER QUALITY:


Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
0940	0	Pump	ON					6/6	50
0945	0.05	21.27	0.793	1.37	6.82	-103.2	1.32		L M L
0950	0.75	20.48	0.773	0.13	7.12	-122.2	1.21		
0955	0.38	20.52	0.776	0.17	7.41	-145.8	0.51		
1000	0.50	21.05	0.761	0.33	7.45	-162.7	1.59		
1005	0.75	21.11	0.763	0.28	7.45	-179.8	0.41		
1010	1.00	19.82	0.759	0.13	7.47	-185.4	0.35		
1015	1.25	19.60	0.761	0.09	7.48	-184.9	0.00		
1020	1.38	19.92	0.742	0.07	7.47	-186-2	0.20		
1025	1.50	19.80	0.764	0.05	7.47	-190.9	0.13		
(027	STARY	SAMPLE	COLLECTI	DN					
1043	END 64	mple u	DLLECTIO	N: 2L IP	EC				
	PUMP 0	FP							
	• • • •								

Equipment Used	Equipment Identification # <u>0447594</u> AG 2004293
YSI 556 MPS Reader and 5563 Sonde	04K17594 AG
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

	ntergy - IPEC uchanan, NY	PROJECT NO: DATE:	01.0017869.92 8/18/4	
WEATHER:	Sunny 80's	SAMPLER(S): PUMP DEPTH:	SLICB Ng	ft

Time	OTW or GW Elevation	. ,	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
11000	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
423	6.50	Puni	0N 1.858	1.08	7.22	2711	11 1.9		0.30
435		82.66	1.874	0.73	7.21	-27.4 -41.9	16.69 3.78		0.60
1438	6.67	22.35	1,879	0.63	7.21	- 41.1	1.36		0.85
	6.62	22.29	1.884	0.57	7.21	- 46,1	1.42		1.10
1441 1442	START		VE COLL	ENTTO	1	-10,1	10-10-		1.60
1445	END	11	VE COUL	- i dun	: 19.25	I TRE	(TOT)	I. META	IS)
112	END				0.25	LIPE	DICO	L META	TALS)
	PUMP	ØFF			0105	12	(v+	1000000	11.25
	Then	JFF				1			1
		-	1						2
		1							
						1			
							1		
					Sec. 1				-
									1
					1				
							n	1	
		1					1		-

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
flow meter	
turbidity meter	200704293
Measured Well Depth (feet from top of casing)	Well Vault Condition No bolto
NOTES AND OBSERVATIONS:	Total volume purged gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>MW-108</u> SAMPLE ID: <u>N/A</u> METALS SAMPLE ONLY

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>Janny 70-805</u> PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH;

01.0017869.92 8/17/1 ,CB ft 8

ATERQ	UALITY:	DTW =	4.16 GW H		10.04		tual D	EPTH = 7	149
Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
6052	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
0955	7.149	PUM							•
1005	7.048	23.08	0.284	0.86	6.75	140.6	4.85		0.31
1010	7.063	22.61	0.792	0.68	6.76	109.0	5.40		0.57
1015	7.042	22.46	0.310	0.60	6.78	75.0	7,14	1	0.72
1020	7.035	22.35	0,350	0.53	6.79	24.2	7.48	1	0.90
1025	7.055	22,26		0,49	6.85	-10.9	15.00		1.16
10:30	7:074	22.59	0.575	0.45	6.83	-37.7	20.53		1.32
1035	7.082	22.43	0,680	0.47	6.86	-62,3	19,64		1.49
1040	7.070	22.49	0.747	0.47	6.89	-75,4	17.21	1	1.67
1045	7,089	72.54	0,780	0.44	6.93	-81.9	11.94	(1	1.80
1050	7.090	22.68	0.801	0.43	6.98	-85.9	9.11	1	1.93
1055	7.063	22.76	0.872	0.37	7.03	-88.0	7.80		2.10
1058	7.074	22.80	0.829	0.36	7.04	-87.9	6.44		2,20
lloa	7,075	22.81	0.838	0.34	7.06	-90.8	4.80		2.36
1103	START S	MARLE	COLLECTO	ON					
1104	END	И	"	: 0.25	L IPE	1 (TOTA	L METAL	5)	
				0,25	L IDE	e (DISS	DLVED A	ETALS)	
	PUMP	OFF							
	1				c = s			-	
	1	1772.4			1				
		1		1	10.000				
		1.		1	1				
						L			_

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	6
flow meter	
turbidity meter	200701254
Measured Well Depth (feet from top of casing)	Well Vault Condition No lotto, swde
NOTES AND OBSERVATIONS:	Total volume purged gal of surface a
Depth and Depth to Water (DTW) measurements are given in feet from	top of casing. infittration,

Groundwater Elevation measurements are given in feet msl.

Performed field blank MW-108-FB-2 prior to sampling This well.

LIENT:	Entergy - IPEC	-	A GeoEn Low-Flov			ata Sh		SAMP	. ID: <u>MW-111</u> LE ID: <u>N/A</u> (METALS C - MW-111-FB → (FIELD BLAM	011 1-1 K-
ITE: VEATHER	Buchanan, NY				DATE: SAMPLEI PUMP DE	R(S):	8/12 54,01 16:5	3	COLLECTED AT O.751 IPEC ft O.751 IPEC	TI
VATER Q	UALITY:	DTW =	7.18 GW E				ACTUM	DEPTH =	8.002	
Time	GW Elevation	x -7	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes	
(1) 11	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal	
1077	7.18	PUM 20.78	0.539	1.53	6.73	10.2	2,52		Dat	
1040	7.36	20.99	0.535	0.73	6.81	14.6	1.95		0.14	
1045	7.47	2.05	0.505	0.74	6.85	15.5	3.94		0.28	
1090	7.51	21.03	0.508	0.81	6.85	19.8	3.61		0.38	
1055	7.55	21,06	0.505	0.67	6.82	24.4	2.34		0.49	
1057	START		ECOLLEC		0.000	6319	1.21	S		
1104	END	u u	11	:0	15.L I	PEC (TOT	AL META	15)	1	
			1			PEC (DES				
	PUMP O	FF			1		and the second	and the second		
						L			·	
			11-1-1-1			· · · · · · · · · · · · · · · · · · ·			5	
								1		
(1	· · ·	· · · · ·	1		1		
		-						<u></u>		
_							1.00.43			
					-		-	2		
_										
_						_				
_										
			Equipment	Used				Equi Identifi	pment	

flow meter

turbidity meter

(feet from top of casing) Measured Well Depth NOTES AND OBSERVATIONS:

Well Vault Condition Deved, Lotts stripped Total volume purged _ gal

200701254

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

Groundwater Elevation measurements are given in feet msl. NOTE: A little evidence (smell) of electrolytic oil in punge water.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - I Buchanan,		e 80-90	75		PROJEC DATE: SAMPLE		01.001786 7/29/ 5-101	9.92 // 3
Measured W WATER CC		EIGHT (ft)	(feet from 9,86 DTW	n top of casing) =	17.3 Well Colu	9 mn Height	Well Dian	neter:	Multipliers
		R PER WELL	x VOLUM	E: <u>0.653</u> Multiplier		U, 3 Well Volur		2 4 gal	0.163 0.653
11.356	x	1.5	=	17.03 Designed Pur		- ^{gal} TOTAL	VOLUME	PURGED	8.16 gal
WATER QL	ALITY:	DTW = 9	.86 GW	Elevation =	4.659	ACTUAL	DEPTH =	51.407	
Time	Volume Purged (gal)	DTW or GW Elevation ACTUAL DEFT (< 0.3 ft)	Temp	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)		ORP (m/Volts)	Turbidity	Notes
0855	0	51.407	PUNP		(1010)		(11 10)	(1070)	
0859	1	50.270	30.45	1.264	0.36	8.24	-63.0	4.43	
0906	2	48.540	30.93	1.259	0.36	8.30	-59.7	1.04	
0911	3	47.440	31.06	1.253	0.54	8.09	-14.0	3.67	· · · · · · · · · · · · · · · · · · ·
0918	4	45.205	31.14	1.251	0.79	8,00	-11.2	1.95	
0933	5	43.853	34.16	1.251	0.94	8.07	-10.3	2.22	1. Contract (1. Contract)
0931	6	41,233	31,18	1.251	P. 18	8.08	-4.8	1.25	
0941	7	38.558	31.06	1.252	1.31	8.14	-2.8	1.29	
0150	8	35.312	30.86	1.253	1.05	8.12	-3,5	1.15	
1000	8.5	34.017	30.85	1.754	1,34	8.09	-2.9		
1001				F, WELL DRY				-	
1057			START	SAMPLE C			-	-	
1105			END PUMPO	u FF		:2	IPEC		
	L								

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: <u>*U3-45*</u> SAMPLE ID: <u>*005*</u>

CLIENT: Entergy	y - IPEC		PROJECT NO:
SITE: Buchan	an, NY		DATE:
WEATHER: CL	udy / Drizle	80-905	SAMPLER(S):
Committee of the second	11 00		PUMP DEPTH:

01.0017869.92	
7/29/11	
SL, CB	
and the second second	f

Time	GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes gal
0853	0.10	PUMP	ON						0
0859	9.10	31.19	1.207	1.10	6.88	-141.6	2.36		0.01
0904	9.08	32.98	1.193	0.48	7.11	-125.1	1.96		0.25
0909	9.00	33.30	1.192	0.33	7.16	-138.8	1.96		0.34
0914	9.05	33.50	1.190	0.25	7.21	-137.7	2.05		0.48
0919	9.04	33.53	1.190	0.20	7.24	-154.9	1.93		0.60
0924	9.00	33.68	1.188	0.16	7.26	-174.8	2.10		0.75
0929	9.07	34.36	1.188	0.19	7.29	-197.5	2.00		0.90
0934	9.03	34.81	1.185	0.22	7.31	-204.9			1.10
0939	8.97	34.87	1.184	0.17	7.31	-210.8	1.71		1,25
0944	9.00	35.09	1.181	0.18	7.32	-215.9	1.57		1.4D
0949	9.03	35.53	1.178	0.16	7.33	220.6	1.79		1.58
0950	START	SAMP	LE COLL	ECTION	1	1			
1006	END SA	NPLE	COLLECT	ON: 2L	FPEC				1
	pump of	-F							1
							1		
_									
Sec. 1									
						1			

Equipment Used	Equipment Identification #	
YSI 556 MPS Reader and 5563 Sonde		4
flow meter		
turbidity meter		200701254
Measured Well Depth (feet from top of casing)	Well Vaul	It Condition Jan, Bolts Strug
NOTES AND OBSERVATIONS:	Total volume purged	1.75 gal

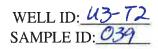
Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: U3-T1 SAMPLE ID: 033

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: SUNNY, 705 PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92	
8/22/11	
CRISL	
	f


419 3.464 20.22 1.210 1.26 7.78 -53.8 0.84 421 START SAMPLE COLLECTION	w Rate al/hr) Notes
354 3.475 26.33 1.190 4.01 7.60 467 1.18 1359 3.491 26.29 1.200 1.64 7.66 -24.5 0.72 1404 3.466 26.26 1.207 1.50 7.71 -389 0.47 1409 3.462 26.26 1.209 1.35 7.74 -460 0.71 414 3.460 26.22 1.200 1.31 7.76 -50.7 0.79 419 3.464 26.22 1.210 1.26 7.78 -53.8 0.84 421 START SAMP (E COLLECTION	gal gal
359 3.491 26.29 1.200 1.64 7.66 -24.5 0.72 404 3.466 26.26 1.207 1.50 7.71 -389 0.47 409 3.462 26.26 1.209 1.35 7.74 -460 0.71 414 3.460 26.22 1.210 1.31 7.76 -50.7 0.79 419 3.464 26.22 1.210 1.26 7.78 -53.8 0.84 421 START SAMP (E COLLECTION	
404 3.466 26.26 1.207 1.50 7.71 -389 0.47 409 3.462 26.26 1.209 1.35 7.74 -460 0.71 414 3.460 26.22 1.210 1.31 7.76 -50.7 0.79 419 3.464 26.22 1.210 1.26 7.78 -53.8 0.84 421 START SAMP (E COLLECTION	0.01
409 3.462 26.26 1.209 1.35 7.74 -460 0.71 414 3.460 26.22 1.210 1.31 7.76 -5D.7 D.79 419 3.464 26.22 1.210 1.26 7.78 -53.8 0.84 421 START SAMP (E COLLECTION	0.10
414 3.460 26.22 1.210 1.31 7.76 -50.7 0.79 419 3.464 26.22 1.210 1.26 7.78 -53.8 0.84 421 START SAMPLE COLLECTION	0.28
419 3.464 26.22 1.210 1.26 7.78 -53.8 0.84 421 START SAMPLE COLLECTION	0.40
421 START SAMPLE COLLECTION	0.50
	0.68
190 END SHITTLE DUELIND FLI LES	
PUMP DEF	
	1

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
flow meter	
turbidity meter	200701254
Measured Well Depth (feet from top of casing)	Well Vault Condition 6000

NOTES AND OBSERVATIONS:

Total volume purged 0.82 gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

CLIENT:	Entergy - IPEC	
SITE:	Buchanan, NY	- C1
WEATHER:	Cloudes/dringle	80-903
	1 10	and the second

PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92 111 ft

ATER Q	UALITY:	DTW =	3.55 GW E		4.962	A	TUAL	DEPTH = 3	1664
Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
	(< 0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		(gal)
1124	3.204	Pum	pon						0
1130	31165	30.32	1.165	2.31	7.35	-017.0	2.91	1	0.01
1135	3.166	30.09	1.140	0.83	7.30	-111.2	1.86		0.20
140	3.165	30.17	1.134	0.46	7.33	-122.7	1.20	· · · · · · · · · · · · · · · · · · ·	0.40
145	3.177	30.88	1.123	0.29	7.29	-135.8	1.37		0.58
150	3.170	30.59	1.128	0.29	7.29	-1717	0.89		0.78
1155	3.176	30.76	1.122	0.19	7.44	-163.6	2.85		0.90
200	3.179	31.74	1.121	0.15	7.69	-160.2	0.36		1.04
1205	3,179	32.07	1.120	0.14	7.36	-179.4	0.41		1.18
1210	3, 181	32,17	1.176	0.15	7.43	-174.3	0.31		1.35
1215	3,175	32.15	1.123	0.11	7.41	-179.8	0.46		1.50
1216	START	SAMI	LE COLLE						1
1232	END	11	10	ŝ	HIP	c		N	
	PUMPO	FF						1	
								1	
			[1]						
		<u> </u>			<u></u>			1 - 11	
								1	
					-				
	1								-
								1	
							1.000	1	1

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
flow meter	
turbidity meter	20070/254
Measured Well Depth (feet from top of casing)	Well Vault Condition Dood
NOTES AND OBSERVATIONS:	Total volume purged gal
Death and Death to Water (DTW) measurements are given in feet from	a top of casing

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.


APPENDIX D: Q4-2011 SAMPLING DATA SHEETS

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92	
SITE:	Buchanan, NY	DATE:	12/13/11	
WEATHER	SUNNY, 30'S	SAMPLER(S):	CB, SL	
		PUMP DEPTH:		ft

VATER Q	UALITY:	DTW =	73.2 GW H	Elevation					
Time	GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr) Devre/vour/Prose 5/14/42	Notes
0915	73.2		PON			-		5/4/42	95
0923	73.44	8.24	2.836	4.36	6.49	-20.3	0.70		0.05
0928	73.52	8.70	2.808	3.11	6.46	-IIID	0.04		0.15
0933	73.70	9.08	2.795	1.95	6.48	-6.1	0.96		0.35
0938	73.79	8.77	2.794	1.25	6.50	-310	0.23		0.56
0943	73.80	8.72	2.772	1.03	6.50	-1.6	0.57		0.100
1948	73.83	7.25	2.801	1.01	6.51	6.0	0.83		0.74
0953	73.85	6.04	2.755	0.96	6.50	10.1	0.44		0.80
0954	START SI	mple	ONECTIO	N					
09555	END SAN		DULECTION		PEC				
1031	PUMP DI	FF				1			· · · · · · · · ·
						A			
(1							
					1		and a		
					1		-		
		1							
		12000							
		1							
									-
_		1	-						
				1.00					
									-

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde		2	
flow meter			
turbidity meter		200701254	
Measured Well Depth (feet from top of casing)	Well Vaul	t Condition 600D	
NOTES AND OBSERVATIONS:	Total volume purged	0.95 gal	
Depth and Depth to Water (DTW) measurements are given in feet from	top of casing. STICK UP CF	KING	

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>SUNN</u> , 30:5 - 40:5				_			PROJECT NO: DATE: SAMPLER(S):		01.0017869.92 12/08/11 - CB1SL		
WATER CO	LUMN HEI <u>40.13</u> DTB		29.42 DTW	-	 Water Co) lumn Height	Well Dia ft	meter: Diameter	2 Multipliers	in	
Water C	F WATER olumn Heigt	PER WELL V	OLUME:	0.163 Multiplier		1.76 Well V	j /olume	 2 4 gal	0.041 0.163 0.653	3	
WATER QU	×	1.5 DTW = 2	=	2.6 Designed Pu	irge Volume	gal TOTAL VO	LUME PU	RGED: 2	80	gal	
Time	Volume Purged (gal)	OTWor Actual Deput	Temp	Specific Conductivity (S/cm)	r Actual Dept Dissolved Oxygen (g/l)		ORP	Turbidity (NTU)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)	Notes
1402	0.5 1.0 1.5	31.83 32.34	PUMP 16785 17.39 17.66	0N D.758 0.748 0.747	6.74 6.79 6.79	7.17 7.11 7.08	69.0 30.0 9.8	921.1 503.8			
1409 1411 1412	2.0 2.5 2.6	32.98 33.51 34.03	17.76 17.59 17.58	0.763 0.788 0.795	6:72	7.07 7.06 7.07	-0.3 -4.0	360.8 452.8 573.1			
1412 1415	START END SI PUMP	IMPLE O	CONEC	TION : 2LI	PEC						
									Ţ.		
'SI 556 MPS I	Reader and	5563 Sonde	Eq	uipment Use	d				Ident	uipment ification	#
urbidity meter	_			-					20070	4293	

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

SAMPLE ID: 042

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT:	Entergy - IPEC	PROJECT NO:	01.0017869.92
SITE:	Buchanan, NY	DATE:	11/30/11
WEATHER:	SUNNY, 405 - 505	SAMPLER(S):	CBISC
SAMPLING I SAMPLING P	NTERVAL (depth in ft below top of casing) <u>67.3</u> to <u>71.3</u> ORT <u>69</u>	TOTAL VOLUME PURGE PURGE RATE: <u>variable</u> PURGE METHOD:	D: <u>1.15</u> gal (gal / min) Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1016	0	PUMP 0			Sec. In Concession			6/12	40
1022	0.05	22.90	1.102	8.36	7.82	-97.4	NA		
102-1	0.15	23.43	1.132	8.62	8.01	17.6	-		
1032	0.30	23.5D	1.130	8.83	8.05	49.8			
1037	0.40	23.53	1.148	9.20	8.04	73.1	-		
10.22	0.50	23.50	1.144	9.36	8.06	65.6	-		
1047	0.00	23.47	1.141	9.57	8.05	94.1			
1052	0.80	23.49	1.142	9.19	8.10	96.1			
1057	1.00	23.54	1.143	9.83	8.07	84.9			
1100	START SA	MPLE COI							
1120	ENDSAM	PLE WILL	ECTION: 2L	IPEC					
- Contraction		and the second	0.0	5L IPE	- (TRITIL	m IW-Ha	USB)		
	PUMP DP	E				(*************************************			
									1 1
		()				· · · · · · · · ·			
				C					
						7			
		7				17			
				-	1				
		-			1				
					1		1	1	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	l
turbidity meter	NA

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition FAIR ACCUMULATION OF WATER CONDENATE-US LONDENSATE

SAMPLE ID: 033

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

PROJECT NO: 01.0017869.92 DATE: 11/30/41 SAMPLER(S): CB_5L
TOTAL VOLUME PURGED:
PURGE RATE:variable(gal / min)PURGE METHOD:Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressur (psi)
1016	0	PUMP	ON					6/12	40
1027	0.05	21.88	1.932	3.42	6.91	-66.6	ALA	1	
1032	0.10	21.89	1.932	2.45	6.96	-72.0	NA		
1037	0.15	21.46	1.933	2.26	7.00	-66.5	-		
1042	0.20	21.24	1.930	2.03	7.02	-62.3)		
1047	0.25	20.94	1.929	1.95	7.04	-61.9			
1049	START S	AMPLE CO	UECTION						
1137	END SAN	IPLE COU	ECTION: 2	LIPEC					
	PUMPO	=6							
		1							
	12	1			·				
								1	
								1ª	
1				1					
	12				1				
			£	1.1.1.1	1.				
				Y					
					[
				27		17			
				\		V		-	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	NA

NOTES AND OBSERVATIONS:

Well Vault Condition	FAL	R_	
Accumulat	ion	OF	WATER
CINDER	USAT	E	

well id: mw <u>3/</u> - <u>49</u> sample id: <u>034</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>SUMMY 40.5-50.4</u>	PROJECT NO: 01.0017869.92 DATE: 11/21/11 SAMPLER(S): CB; CG; SL
SAMPLING INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:
SAMPLING PORT	PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressur (psi)
1002	0		Oni	1				617	A
1005	0.01	17.09	1.987	4.07	6.68	-60.2	2.47		
1010	0.22	17.46	2.050	2.03	6.81	-29.1	0.93		
1015	0.50	17.57	2.074	1.91	10.89	-20.5	0.79		
1020	0.75	17.68	2.081	1.94	6.93	-15.8	0.74		
1025	1.00	17.69	2.084	1.99	10.910	-18.5	0.70		
10210	START	SAMPLE	LOULEC	TIDN					1
1032	5ND SA	MPLEG	DLIECTI	DN 213	PEC				
	PUMPO	FF		2					
					1				
	1				1	1		1	
					1				
					2			1	· · · · · · · · ·
					N			1	14
	1				2				
				A					-
			1		1				
					1	-			
								1	
	1					1			
_	1								
					1				(

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition GODD, VAULT WAS SEALED WITH LAULK NO WATER INFILTRATION

WELL ID: MW <u>31</u> - <u>63</u> SAMPLE ID: <u>034</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - SITE: Buchanan WEATHER: <u>48°.(LE</u>		PROJECT NO: 01.0017869.92 DATE: 11 SAMPLER(S): 11	
SAMPLING INTERVAL	(depth in ft below top of casing) <u>8</u> to <u>63.8</u>	TOTAL VOLUME PURGED: 0,53 gal PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump	

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)*	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1001	10	-PUMP	ON+					617	29
1009	0.01	15,58	1.677	3126	6.98	-143.4	2.08.	011	
1014	0.02	15,58	1.688	0.71	6.98	-131.9	1.63		
1019	10.1	15,27	1.660	0.53	6.98	-121,9	1,74		
1024	0,18	15,82	1.588	0,62	6.98	-110.1	1.88		
1029	0,25	15,98	155-75	0.54	6.98	-99.9	1.63		
1034	0,31	16,03	1,566	6.39	6,98	- 83.5	1.68		L CLARK
10 39	1011033	16.18	1.563	0.59	6.98	-75,3	113138	1	1
10 49	START				1.1.1.1.1.1.1			1	I
1114	BILLIPIE	ND							
1.0	PUMP	DFF	26:	IPEC.		1			1
						V			1
					1 ?				1
					1				1
1-21									1
		1						1	
	1								1
1			-			1		1	
1.					0 0 0 1				1
						1			
1					1	1			
					0				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition 6000 Condition

WELL VAULT MOIST

WELL ID: MW <u>31</u> - <u>85</u> SAMPLE ID: <u>034</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 48°, LLEAR, איגטלי, א	PROJECT NO: $01.0017869.92$ DATE: 1121717 SAMPLER(S): 1121717	÷
SAMPLING	INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED: 1,25 gal	
	-0/r to $-0.5/4$	PURGE RATE: <u>variable</u> (gal / min)	
SAMPLING	85	PURGE METHOD: Double Valve Pump	

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1001	Ø	- PUMP		(1010)	(II diti)			6/7	29
1009	0.01	16.14	2.117	0,98	7.21	-180.0	3.10		
11214	12,12	16.36	2.082	1.43	7.27	-170.2	2141		1
1019	0.2	16.51	2.055	1.90	7.27	-158,3	178		
1024	0,3	16.65	2.044	2.04	7.28	-142.5	1,44		
10.29	0.39	16.75	2,037	2.17	7,28	-133.8	1.85		
1034	0.49	16,86	2.024	2.17	7.28	117.3	1.26		
1039	0.59	16.89	2,019	2,25	7,27	-111.9	1.43		
N24441044	071	16.90	2.018	2.25	7.27	-102.5	2,26		· · · · · · · · · · · · · · · · · · ·
1049	0,80	16.80	2.017	2,20	7.26	-93.4	1.93		
1054	0.90	16,00	2014	2.24	7.26	-79.4	2,25		
1059	\$.00	16.89	2,015	2.22	7.26	-66.9	2.15		
104	1.10	16,94	2.015	2,29	7.26	- 59.2	2.17.		
LUGE		START 2	AMPLE (ELLECTIE	2.	and the second s			
1125	END			12-11-11					
	PUMPO	ff	21: in	EC.	1				
								-	1
		1		0					
	- x =)						1		
			1						

Equipment Identification #
4
200704293

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition 6000 condition WELL JAULT MOIST

SAMPLE ID: 028

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: OVERCAST, 405	PROJECT NO: 01.0017869.92 DATE: 11/17/11 SAMPLER(S): CB, CG
SAMPLING INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED: gal PURGE RATE: variable (gal/min)
SAMPLING PORT	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1342	0	PUMP	DN			1	Lange and	8/11	40
1345	0,1	18.39	1.617	9.72	7.04	-84.5	7.42		
1350	0.61	19,12	1.008	10:73	7,41	-41.2.	5,64		12.400-001
1355	0.20	19,15	1.008	11,25	7.45	-31.2	6.00		
1400	0.8	19.18	1,012	10,26	7.47	-26.0	6.00		
1405	1.3	19.82	1.015	11.30	7.48	-23.0	1.55		S
1408	1.45	STAR	+ SAMPLE	COLLECT	IPN.			in the second	9
1415	F-A	D STOP	SAMPLE	COLLECT	ION				
	PUMI	OFF			2				1
				A		1			1
			1			100000			
				S					
		1							
_				-	1				
					2	1			
			2	1					
		1	1	-			-		
		1	· · · · · · · · · · · · · · · · · · ·						
		2							
	1								
11.		1	· · · · · · · · · · · · · · · · · · ·						-
								-	

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbídity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition SEE MW-32-190

SAMPLE ID: 081

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY OVERAST, 405	PROJECT NO: 01.0017869.92 DATE: 11/17/11 SAMPLER(S): CE LC
SAMPLING I	TERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:
SAMPLING P	ORT 5	PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1342	0	Pump	ON					8/11	40
1345	0.01	17.48	1.738	9.22	6.67	-2446	3,31		
1250	012	17.48	1.753	10.09	7,09	-203,2	Lett.		G
355	0.45	17.34	1750	9.95	7,39	- 88.1	0,86	1	1
1400	0.49	17,27	1,456	6169	7.02	-189.5	0.8		
1405	0.65	17,27	1,743	6169	6.82	-188.4	0.00		
1410	0.79	17,30	1,738	5.85	6.78	-186.0	0.00		
1415	0,85	17,34	11722	5.14	6.77	-187.1	0.11	1	
14:20	0.95	17.43	1,710	4.26	6.91	-187.3	0.01		
14.25	1.15	17,44	1691	3,88	7.03	-185,1	0.03	1	
14:30	1.47	17,51	1.684	3.64	6.90	-180,2	1		
1435	16/20 000	WEAT D	RY		· · · · · · · · · · · · · · · · · · ·			1	
1443		START SI	AMPLE COL	LECTION					
1508		END SAN	NPLE COLL	ECTION			2		
		PUMP OFF			1				
		Maria Cara							1
									1
1		11.							
		1							
					1		10.2.2.2		
							1		1
						A			
	1				V				

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde				
turbidity meter	200701254			

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

1435. Well went dry. Let recharge Before taking sample Well Vault Condition SPE MW-32-190

SAMPLE ID: 028

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY OVERLAST, 405		PROJECT NO: DATE: SAMPLER(S):	01.0017869.92 <u>11/17/4</u> <u>CR</u> CC
SAMPLING I	NTERVAL (depth in ft below top of c	asing) 56•8_	TOTAL VOLUME PURGE	D: <u>0.90</u> gal (gal/min)
SAMPLING P	ORT	3	PURGE METHOD:	Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1120	0	Pump	ON					10/12	58
11 25	0.1	14.69	2.623	0.86	6.98	-217.1	1.29		
1131	0.2	17.08	2.561	0.74	6.99	-209.1	6.00		1
136	0.56	17.12	2.541	0.51	6.98	-200.3	0.37	1	
1141	0.49	17.25	2,529	0,44	6.98	- 183.9	0.00		
1146	0.59	17.12	2.529	0.40	6.98	-171.2			
1149.	0.94	START	COLLECT	1000	4				
1205	EN	D sturpis	COLLECT	TION	1.4				
				10.12	1				
							h		
	(and 1)		· · · · · · · · · · · · · · · · · · ·	/					
						1			
	· ·								
a discount of the		A	1	the second second					
					0	1			
				10	1	1			
				2		1		· · · · · · · · · · · ·	
					3				
		1			1				
					2				1
	11	F			1				
		2							

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Measured Well Depth <u>N/A</u> (feet from top of casing)

Well Vault Condition SOB MU - 32-190

SAMPLE ID: 020

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY OVERLAST , 410'S	PROJECT NO: 01.0017869.92 DATE: 11/17/11 SAMPLER(S): 08,004
SAMPLING I	INTERVAL (depth in ft below top of casing) <u>105.8</u> to <u>174.3</u> PORT <u>173</u> 2	TOTAL VOLUME PURGED: [.]0 gal PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1120	0	ZUMP	ON				1-1-1	10/12	58
1125	0.1	17.12	2.378	0.75	6.24	~222.3	173	1.1.1	
131	0.24	17.43	2.447	0.42	6.51	-220,6	1.12		
1136	0.55	17.50	2.458	0.28	6.68	-210.8	0.22		
1141	0,70	17.48	2.456	0.27	6.74	-203.6	0.32		
1146	0.80	17.44	2.449	0.21	6.78	-198.1			
1149	0.80	Sr	ART COLL	CTION					
1201	ENE		E COLLECT						
								1	
								1	1
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
		0			· · · · · · · · · · · · · · · · · · ·			1	
					-				Sec. 19
					· · · · · · · · · · · · · · · · · · ·				
					1				1

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	2007012.54

NOTES AND OBSERVATIONS:

Measured Well Depth _____ N/A ___ (feet from top of casing)

Well Vault Condition Sof MW-32-190

SAMPLE ID: 030

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>OVERLAST</u> , 40 5	PROJECT NO: 01.0017869.92 DATE: 11/17/11 SAMPLER(S): CB, CG
SAMPLING INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:
SAMPLING PORT	PURGE RATE: variable (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1120	0	PUMP	ON					10/12	58
1126	0.1	16.55	0.210	2.44	5.46	-268.3	1.57		
1131	0.19	17.43	1.419	0.90	6.51	-292,6	0.00		
136	0.35	(7.27	11626	0.49	6.93	-286.9	0.00		
191	0.99	17.20	1.644	0. 39	6.92	~278.6	0-00		
1146.	0.62	12.20	11467	0.35	6.96	-275.9			
1148	DAYSTART	SAMPL	E COLLEUT	TION				14.55	
1203	END SAM								
				1					
								1	
	1	1							
1	1				1			-	-
					1	(
	i i an an an an				A			-	
	1								
				· · · · · · · · · · · · · · · · · · ·					
			1						
						· · · · · · · · · · · · · · · · · · ·			
				L					
		-							
									5

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	1
turbidity meter	200701254

NOTES AND OBSERVATIONS:

Well Vault Cor	ıdition	FA	IR-W	EUVANE
PARTIAL	Frod	PED		

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: RAIN, 40'S

PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92	
12/07/11	
CBISL	
	ft

-

VATER (QUALITY:	DTW =	3,48 GW I	_		ACTU DEP	TH= 21.	376	
Time	DTW or GW Elevation	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
	(<0.3 ft)	(3%)	(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		sal
1012	29,1518	PUMP							0
1019	29.617	22.49	0.1042	1.28	7.65	-184.6	3.11		0.10
1024	29.681	22,58	0.495	0.22	7.53	-12.4.4	1.31		0.28
029	129.1082	23:32	0.445	D.18	7,72	-109.8	1.34		D.45
034	29.1082	22.42	0.436	0.17	7.77	-152.7	2.03		0.100
1039	29.688	22.89	0.430	0.14	7.78	-125.5	1.17		0.75
1044	29.689	22.83	0.431	10.15	7.81	-123.4	1.21		0.86
049	29.695	22.94	0.431	0.16	7.82	-130.1	1,24		1.10
051	START	SAMP	E LOUI						
1104			IDUEC			C		· · · · · · · · · · · · · · · · · · ·	
	PUMPO								
	1			1					
				i					
			*						
	-			1					
		-							
	-						-		
	-								
						-	-	-	2
	-		7			-			-
	-								

Equipment Used	Equipment Identification #			
YSI 556 MPS Reader and 5563 Sonde	4			
flow meter				
turbidity meter	200704293			
Measured Well Depth (feet from top of casing)	Well Vault Condition GUDD			
NOTES AND OBSERVATIONS:	Total volume purged <u>1.30</u> gal			

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IF Buchanan, I Plan	NY ,				PROJECT DATE: SAMPLE		01.0017869 12/7/1 5L, CE	1
	DLUMN HE	IGHT (ft) - R PER WELL	2.9 3 DTW	0.041	3 8.6 Well Colum	1.51	Well Dian ft	·	Nultipliers 0.041 0.163 0.653
1.58	- X	1.5	=	Multiplier <u>2.34</u> Designed Pur		gal TOTAL		PURGED:	0.65
WATER QU	ALITY:	DTW =	GW	Elevation					
Time	Volume Purged (gal)	GW Elevation (< 0.3 ft)	Temp	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Notes
1048	0	Pum		(570)	(1070)	(17 0.1)	(1/ 10)	(1070)	
1052	0.30	30119	22.18	1.106	061	7.68	-178.0	5.95	
1056	0.50		Well	Dres : LE	Rochar				
→産業	STAR	T SAM	LE CO	LECTION		2			
1309	END	u		11	: JL IP	E	6		
	PUM	POFF							
(_	_			uipment

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	AG
turbidity meter	2007017
NO PRODUCT OBSERVED DIW = 255	200701254

Depth and Depth to Water (DTW) measurements are given in feet from top of casing

GZA GeoEnvironmental of New York WELL ID: MW-34-52 SAMPLE ID: 023 **Modified Traditional Purge Sampling Data Sheet**

CLIENT: Entergy - IPEC			P	ROJECT NO:	01.001786	9.92	
SITE: Buchanan, NY			D	ATE:	12/7/4	/	
WEATHER: Rain 1	405		S.	AMPLER(S):	SLIC.	B	
Measured Well Depth	(feet from t	top of casing)		Well Va	ault Condition	n Dood	
WATER COLUMN HEIGHT					ameter:		in
_ 52_	- 6.45	=	45.55	ft			2
DTB	DTW		Well Column	Height	Diameter	Multipliers	
					1	0.041	
GALLONS OF WATER PER	WELL VOLUME:	•			2	0.163	
					4	0.653	
Water Column Height 45		0.041	= =	1.87	gal		
	N	Aultiplier	vve	ll Volume			
1-87 x	1.5 =	2.8	O ga	al			
	-	Designed Pur		**			
		Designed I di		OTAL VOLUM	E PURGED	: 2.95	gal
WATER QUALITY: DT	W = GW E	levation					
		Specific	Dissolvad		1 7		

Time	Volume Purged (gal)	GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Notes
1748	0	PUMP	ON						
1052	0.25	15.20	23.51	0.904	1.02	7.56	-115.2	1.96	
1059	0.75	20:04	23.88	0.905	0.67	7.68	-78.6	3.39	
1103	1,00	21.37	32.99	0.762	0.35	7.72	-117.7	2.43	
1109	1.50	72.66	23,34	0.842	0.51	7.72	-134.1	1.49	
1114	2.00	22,88	23,28	1.0.75	0.70	7.48	-152,9	1.84	
1121	2.25	25.89	22,76	1.279	0.84	7.47	764.6	1.20	
1124	2.50	26.93	22.76	1,298	1.14	7.40	- 150.6	1.28	
1127	2,80	26.90	22.96	1.381	2.07	7.36	-144.7		
1129	STAR		E COL	LECTION					
1136	END	14		11	: 2L IM	R			
	PUMP	OFF							
	1		1						
				1					
	1								

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	200701254
NOTES AND OBSERVATIONS: $DTP = 6.44' D = 6.45'$	

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW-37-22 SAMPLE ID: 024

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC Buchanan, NY Rain Showers SITE: 505 WEATHER:

PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92 111 CG ft

Time	DTW or GW Elevation ACTUAL DEP/IN (< 0.3 ft)	$\begin{array}{c} \text{Temp} \\ (^{\circ}\text{C}) \\ \\ (3\%) \end{array}$	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes Gal
071	13,248	PUMF		(10/17)		1	(1015)		0
025		PUMP		EDED A	ARTNE	BATTER	$\langle \rangle$		
033		PUMP	ON			CAN THON			
1040	13.092	25.5A	2,023	1.31	7.41	-81.4	2,89		0.01
1045	13,109	25.98	2,004	0,59	7.46	-30.8	2.52		0,11
1050	13.092	26.15	1.984	0.29	7.47	-49.8	2,48	·	0,20
1055	13,119	26,33	1.956	0.32	7.48	-78,8	3,19		0.30
1100	13,110	26,43	1.941	0.35	FRO	-131.0	3.02		0.40
1105	13.089	26.55	1.920	0.31	7.50	-127.1	7.64		0,50
1110	13,114	26,56	1.927	0.35	7.50	-185.4	3.14		0.60
11.12	START	5AMPI	ECOUL	CTION		1			
1133	END	11	E E		:>LI	PEC			
	PUMP OF	F		1					-
								-	1
			5						
					-				

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	4
flow meter	
turbidity meter	200701254
Measured Well Depth (feet from top of casing)	Well Vault Condition Hoore
NOTES AND OBSERVATIONS:	Total volume purged <u>0,75</u> gal

NOTES AND OBSERVATIONS:

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT:Entergy - IPECPROJECT NO:01.0017869.92SITE:Buchanan, NYDATE:11/23/11WEATHER:Rain Mouses 50/5SAMPLER(S):50/5PUMP DEPTH:11/23/11

WATER Q	UALITY:	DTW =	8.45 GW H	Elevation =	6.341	ACTO	UAL DEPT	4= 16,117	
Time	DTW or GW Elevation ActuAL DEPTH (< 0.3 ft)	Temp (⁰ C)	Specific Conductivity (S/cm)	Dissolved Oxygen (g/l)	pH (SU)	ORP (m/Volts)	Turbidity (NTU)	Flow Rate (gal/hr)	Notes
2 10 1			(3%)	(10%)	(+/- 0.1)	(+/- 10)	(10%)		gal
1021	16,117	PUM							0
1025		PUMP		WEI) MA	RIVED	(TTERY)			1
1033	II and	PUMP		2 . 1 1	7-7	11.2	0.17		0.00
1040	16,007	25,33	1.715	1,41	7.33	4.2	2.17		0.03
1045	16.005	25.70	1.684	0.49	7.30	2.5	1.68		0,10
1050	16.021	25.80	1.665	0.42	7.34	-2,4	1.55		0.25
1055	16,046	25,99	1.655	0.34	7.36	-3.6	1.24		0.35
1057	START	SAMP	HE COU	tor sou	37175	a a			
1119	END		LI		:21I	50			
	PUMP	OFF							
		-							
					-	_			
			-						
	-								
					-	-			
							-		-
							1		
		-							
_							1	5	
_							·		

Equipment Used		Equipment
Equipment Used		Identification #
YSI 556 MPS Reader and 5563 Sonde		3
flow meter		30701254
turbidity meter		200701254
Measured Well Depth(feet from top of casing)	Well Vault	Condition Dood
NOTES AND OBSERVATIONS:	Total volume purged	O.S. gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Modified Traditional Purge Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPE Buchanan, N RMN, 40'S	Y				DATE:	CT NO: LER(S):	01.001786 <u>11/23/14</u> <u>CB,CG,</u>	
Measured W WATER CO	Vell Depth	GHT (ft)	(feet fron	1 top of casing))		Well Var Well Dia	ult Condition meter:	n Dood 1 in
	<u>40</u> DTB	•	<u>6.40</u> DTW	- T	33. Well Col	lumn Heig	ft ht	Diameter 1	Multipliers 0.041
GALLONS	OF WATER 1	PER WELI	L VOLUM	E:				2 4	0.163
Water Col	umn Height _	83.6	- x	D.041 Multiplier		[.3 Well Vol		gal	
1.37	x	1.5	=	2.06 Designed Pu			L VOLUMI	E PURGED	: L A gal

WATER QUALITY: DTW = 0.40 GW Elevation

Time	Volume Purged (gal)	GW Elevation (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Notes
1034	0	7.420	PU	LP ON					
IDID	0.15	9.54	26.07	2,107	1,20	7.31	-229,1	3.46	
1045	0.30	9,62	26.11	2.015	0,54	7,28	- 233.7	2.26	
1050	0,50	10.01	26.11	1,996	0.39	7.29	-225,2	2.16	
1055	0,60	10,10	26.04	1.997	0.29	7,29	-220.2	1.80	1
1.00	6,75	10.28	25,99	1.964	0.31	7.29	-261.4	141.6	
1205	1.00	10,56	25.89	1.940	0,23	7.29	-252.8	140,2	
1210	1.50	10,64	25,88	1.936	0.23	7.29	- 256,4	141,9	
11-15	1.64	10.35	25.84	1,933	0,20	7.29	7261.1	143,2.	
12:20	1,60	10,15	25,80	1.926	0.20	7.29	-260.0	135.1	
1125	1.68	9.60	25,50	1922	0,19	7.29	-2563		
1230.	1,73	8,39	25.32	1,891	0.14	7.30	-265.2	113.3	
12.35.	2,21 St	ART SA	APLE	COLLELTIO	J.		1		
1146	En	D SAMA	E 60	LECTION					
		POMP OF	F						

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	ie
turbidity meter	200704293

NOTES AND OBSERVATIONS: Lots of very fine silt in purge water .

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

GZA GeoEnvironmental of New York Low-Flow Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: RAIN, 40's PROJECT NO: DATE: SAMPLER(S): PUMP DEPTH:

01.0017869.92 11/23/11 CB, CG, SI ft

ATER Q	UALITY:	DTW =	6.25 GW H		.538	ACTUAL DEPTH	= 44.32	2	
Time	DTW or GW Elevation ACTUAL DGPTH (< 0.3 ft)	Temp (⁰ C) (3%)	Specific Conductivity (S/cm) (3%)	Dissolved Oxygen (g/l) , (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Flow Rate (gal/hr)	Notes 9AL
134	44,292		PUMPON	J.					0
1140	44.019	25.94	1.872	3,79	6,68	136.6	1.40		0.03
145	44.019	25.92	1.876	1.61	6.78	67.7	0.95		0.06
1150	44.019	25,86	1.876	1.42	6.74	60,5	1,15		0.19
1155	44,019	25.70		432	6.72	58.6	1.10		0.31
1200	44.019	25.61	1.870	1.30	6.72	58.3.	lill		0.49
1204		STAR	T Stup	LE LOI	LECT 5	on.		· · · · · · · · · · · · · · · · · · ·	0.65
222		END :	AMPLE COL	LIEUTO	N				
		PUNF	OFF						
	(n	1.000	1						14
			1					L	
	L		1						
			A	-				· · · · · · · · · · · · · · · · · · ·	
_									
	(*************************************					· · · · · · · · · · · · · · · · · · ·			
					1				
_					1				
				C		1			
						_			-
	()	1				1			-
			1	1					1

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	5
flow meter	
turbidity meter	200704295
Measured Well Depth(feet from top of casing)	Well Vault Condition 2000
NOTES AND OBSERVATIONS:	Total volume purged O, 65 gal

Depth and Depth to Water (DTW) measurements are given in feet from top of casing.

WELL ID: MW <u>39</u> - <u>67</u> SAMPLE ID: <u>014</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: <u>1960 40-505</u>	PROJECT NO: 01.0017869.92 DATE: 13/11/11 SAMPLER(S): 5L, CB, CG
SAMPLING INTERVAL (depth in ft below top of casing) 65.0 to 70.5	TOTAL VOLUME PURGED:
SAMPLING PORT	PURGE RATE: <u>variable</u> (gal / min) PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1255	0	PUMPO	N		6.67		(11.1.)	616	34
1307	0.1	13.74	1.272	7.67	141.90	121.9	281		
1312	0.25	14.07	1.308	6.40	7.02	-128.3	2.42		
1317	0.40	14.14	1.319	6.10	W185	-114.2	1.92	1	*
1322	0.50	14.30	1.329	5.73	7.03	-88.7	2.11		
1327	0.05	14.40	1.334	5.73	6.92	-71.7	2.71	1	
1332	0.80	14.45	1.343	5.64	7.01	-54.5	174		
1337	1.00	14,58	1.344	5.73	7.01	-40.5	1.36		
1342	1.17	14,56	1.347	5.76	7.05	-37.3	219		
1347	1.31	14,53	1,348	5.69	7.08	-33.7	1.64		
1349	START	SAMPLE	Contect		1	1	0.182.2		
1404	END	н	и	:2	IPEC		-1	1	
	PUMP	2FF		300	L (H3	IN-HOUS.	E)	-	-
		-							
								1	
	1								

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Well Vault Condition Por broken hinge

WELL ID: MW <u>39</u> - <u>84</u> SAMPLE ID: <u>013</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

	ntergy - IPEC uchanan, NY Clim, 40-505	PROJECT NO: 01.0017869.92 DATE: 13-1114 SAMPLER(S): 51,00,00
SAMPLING INTE	ERVAL (depth in ft below top of casing) 76.5 to <i>185.0</i>	TOTAL VOLUME PURGED:
SAMPLING PORT		PURGE RATE: variable (gal / min)
	84 6	PURGE METHOD: Double Valve Pump

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1255	0	PUMP	ON			1		616	34
1307	0.01	13.10	1.641	3.25	6.52	-152.1	2.19		
1312	0.10	13:43	1056	3.54	0.63	-154.0	1.80		2
1217	0.20	13.47	1.650	3.60	6.71	-149.7	1.48		0
1322	0.30	13.65	1.032	3.78	6.81	-131.5	1.88		5
1327	0.40	13.96	11/021	3.89	6.89	-125.0	1.90		1
1337	0.50	14.11	1,618	3.93	6,94	-110.4	1.31		2
1337	0.13	14,31	1.614	4.02	6.98	-102.0	1.31		2
1342	0.73	14,35	1.613	4.04	6.99	-101.0	1.12		2
1347	0.81	14137	1.613	4.05	6.98	-93.4	1147	1	1
1352	12.99	14,39	1,1011	4,9	7,01	-863	1.91	1 · · · · · · · · · · · · · · · · · · ·	
1357	1.10	julial	1.64	4.56	7.01	- 79,5	1,44		1
1359	START	SAMPLE			14 A.				1
1417	EUD	4	11	: 2	IPEC			11	
1.00	PUMP OF	F							
						-			
							_		
	·								1
	-								
	3								

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	2
turbidity meter	700704793

NOTES AND OBSERVATIONS:

Well Vault Condition Poor, Inden hinge

WELL ID: MW <u>39</u> - <u>102</u> SAMPLE ID: <u>014</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

03.0

4

CLIENT: SITE: WEATHER: Entergy - IPEC Buchanan, NY

SAMPLING INTERVAL (depth in ft below top of casing)

to

93.0

PROJECT NO: DATE: SAMPLER(S):

01.0017869.92 ///// ,CC CB

TOTAL VOLUME PURGED:

2.95 gal

PURGE RATE: variable (gal / min)

PURGE METHOD:

Double Valve Pump

SAMPLING PORT

WATER QUALITY:

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1255	0		DU	1 1 1 1 1 1				616	.34
1312	12.01	13.31	1.585	1.62	6.98	-138.0	3,20		
1317	0.10	13.28	1.604	1.94	6.98	-148.0	2.25		
1322	0.20	13.49	1.654	238	6.98	-153.4	1.71		J
1327	0.30	13.78	1.084	2.72	0.98	-152,2	1.96		
1332	0.45	13.92	1.697	2.81	10.98	-1485	1.92		1
1337	0.00	1411	1,707	2.90	608 6,98 16.98	-138.9	213F		1
1342	0.69	14.14	1,708	2.94	6,98	-140.0	1,19	A	1
1347	0.80	14,13	1.712	2.93	16.98	-134,3	213		
1349	START	SAMPLE	COLLEC	TON			•		
1410	END	il	11	in	IPEC				
10108	pund of	FF		20m		W-HOUSE)			
			1 S	A A					
				0	No. Consel	1.27.3.1			
						1.1.1			
	1				1				-
				10N					1
_				1					
			-		1			1	
				2					
				1	1.				1

Equipment Used	Equipment Identification #
YSI 556 MPS Reader and 5563 Sonde	3
turbidity meter	200704293

NOTES AND OBSERVATIONS:

Well Vault Condition 1007 , Inden Lunge

WELL ID: MW	39-124
SAMPLE ID:	014

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: 40-505	PROJECT NO: $01.0017869.92$ DATE: $i \not \rightarrow /////$ SAMPLER(S): $j \not \rightarrow /////$
SAMPLING INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED: 0.57 gal
to	PURGE RATE: variable (gal / min)
SAMPLING PORT	PURGE METHOD: Double Valve Pump
WATER QUALITY:	

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressur (psi)
1032	0	PILMP O		(10.01	(17-0.17	(1/ 10)	(10/0)	8/10	70
1040	0.01	15,09	1.227	7.65	6.04	-259.4	1.88	1 ang	Ĩ
1045	0.12	15.04	1. 275	1.02	10.40	-271.2	2.19		
1050	0,14	14,99	1.222	0.72	7,26	-293.4	1,26		
1055	0.28	15.01	1.216	0.60	7.59	-276,3	1.97		
1100	0.34	15.09	1,213	0.51	7.59 7.63	-282.6	0.83		
1100	0.42	15.01	1,209	0.44	7.64	-294.9	1.23	V	V
1109	START	SAMPLE	CONTECT	LAN					
1142	EUD	4	11	: AL	IPEO				
	PUMD	OFF	1	100					
	1	6an (
	1	()		1	2				
	1.5	P				1			
				1					
	1			1.2	. I		and the second s		
					1				
	1							-	
						-		-	-
	1								
	1								
									-
	-								
	-								
								-	

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	1		
turbidity meter	200704293		

NOTES AND OBSERVATIONS:

Well Vault Condition Bon broken Hinge

WELL ID: MW	v <u>39</u> - <u>183</u>
SAMPLE ID: _	014

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: Entergy - IPEC SITE: Buchanan, NY WEATHER: 40-503	PROJECT NO: 01.0017869.92 DATE: IA 1111 SAMPLER(S): SAMPLER(S):
SAMPLING INTERVAL (depth in ft below top of casing)	TOTAL VOLUME PURGED:
to	PURGE RATE: variable (gal / min)
2	PURGE METHOD: Double Valve Pump
WATER QUALITY:	

Time	Purged Volume (gal)	Temp (⁰ C) (3%)	Specific Conductivity (mS/m) (3%)	Dissolved Oxygen (mg/l) (10%)	pH (SU) (+/- 0.1)	ORP (m/Volts) (+/- 10)	Turbidity (NTU) (10%)	Drive/Vent Cycle (seconds)	Drive Pressure (psi)
1032	D	PUMP	ON	(1010)	(11 011)	111 107	(10.10)	8110	TO
1040	0.40	14.85	1.137	0,98	6.78	-149,0	0,82	1 an	
1045	0.70	14,75	1,142	12.63	6.91	-138.4	0.85		
1050	0.80	14,96	1.141	0.45	6.74	-123,4	1,97		
1055	2.00	14,74	11139	0.39	6.99	-134.8	1.00	1	
1100		14.72	1.137	0.30	7.01	-134.9	1.26	1.11	V
1105	1.40	14,64	1.132	0.26	7.02	-131.6	9.21	V	V
1109	START	SAMPL	ECOU	ECTION					
1176	END PUNP	OFF		u ·	: HIP	Eé			
	FUSIF	UTP						· · · · · · · · · · · · · · · · · · ·	1
				1				-	C
								-	
_	-							1	
			1						
								-	
	-							-	
	-		-						
							1		Π
		-							

Equipment Used	Equipment Identification #		
YSI 556 MPS Reader and 5563 Sonde	2		
turbidity meter	200704293		

NOTES AND OBSERVATIONS:

Well Vault Condition Poor, boken Kinge

well id: mw <u>39</u> - <u>195</u> sample id: <u>014</u>

GZA GeoEnvironmental of New York Waterloo Sampling Data Sheet

CLIENT: SITE: WEATHER:	Entergy - IPEC Buchanan, NY 	PROJECT NO: 01.0017869.92 DATE: 12/1/11 SAMPLER(S): 5L_CB_CC-
SAMPLING	INTERVAL (depth in ft below top of casing) //5.0 to /26.5	TOTAL VOLUME PURGED: 3.65 gal
SAMPLING		PURGE RATE: <u>variable</u> (gal / min)
	174 3	PURGE METHOD: Double Valve Pump
WATER QU	ALITY:	

Specific Turbidity Dissolved Drive/Vent (SU) ORP (m/Volts) Drive Pressure pН Purged Volume Temp (^{0}C) Conductivity Time Oxygen (mg/l) (NTU) Cycle (seconds) (gal) (psi) (mS/m)(10%)(10%) (+/-0.1) (+/- 10) (3%) (3%) 70 81.10 1032 PIMP N 2.340 200, 15,33 8,45 0,90 0.40 040 5.24 2,190 0,68 98 19.2 6.35 1045 30 0.90 159,6 9,60 40 2.101 1050 6 74 6.90 7.069 21 52,3 X 5 105 7.030 :40 9.60 50 5.08 1100 2. 7.15 15,04 70 2.005 4 1112 OC 15,00 1,75 4,49 014 3.4 20 2. 1110 1094 .80 V J 6.94 3 3.51 50 29 5 30. LECTION TAR SAMPL C IPEC 4 26 Dr 11 11 (#3 N-HOUSE 20ml

Equipment Used	Equipment Identification # 3		
YSI 556 MPS Reader and 5563 Sonde			
turbidity meter	200704243		

NOTES AND OBSERVATIONS:

Well Vault Condition Por bokhing