Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards 597th Meeting
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Thursday, September 6, 2012

Work Order No.: NRC-1865

Pages 1-186

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	597^{TH} MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	+ + + +
8	THURSDAY
9	SEPTEMBER 6, 2012
10	+ + + + +
11	ROCKVILLE, MARYLAND
12	+ + + + +
13	The Advisory Committee met at the Nuclear
14	Regulatory Commission, Two White Flint North, Room
15	T2B3, 11545 Rockville Pike, at 8:30 a.m., J. Sam
16	Armijo, Chairman, presiding.
17	COMMITTEE MEMBERS:
18	J. SAM ARMIJO, Chairman
19	JOHN W. STETKAR, Vice Chairman
20	HAROLD B. RAY, Member-at-Large
21	DENNIS C. BLEY, Member
22	CHARLES H. BROWN, JR. Member
23	DANA A. POWERS, Member
24	JOY REMPE, Member
25	MICHAEL T. RYAN, Member
	I

	2
1	STEPHEN P. SCHULTZ, Member
2	WILLIAM J. SHACK, Member
3	JOHN D. SIEBER, Member
4	GORDON R. SKILLMAN, Member
5	
6	NRC STAFF PRESENT:
7	DEREK WIDMAYER, DFO for Draft Reg Guide 1290
8	Discussion
9	CHRISTOPHER L. BROWN, DFO for ISG-8 Discussion
10	GIRIJA SHUKLA, DFO for US APWR DCD Discussion
11	DREW BARTO, NMSS/SFST
12	JEFFREY CIOCCO, NRO/DNRL
13	NATE JORDAN, NMSS/SFST
14	JOSEPH KANNEY, RES/DRA/ETB
15	TANIA MARTINEZ NAVEDO, NRR/DE/EEEB
16	EILEEN MCKENNA, NRO
17	STEPHEN MONARQUE, NRO
18	MERAJ RAHIMI, NMSS/SFST
19	LARRY WHEELER, NRO/DSRA/BPTS
20	
21	
22	
23	
24	
25	

		3
1	ALSO PRESENT:	
2	JOHN CONLY, Luminant	
3	JAMES CURRY, MNES	
4	KEVIN LYNN, MNES	
5	ALBERT MACHIELS, EPRI	
6	MARCUS NICHOL, NEI	
7	HIROKI NISHIO, MHI	
8	HIDEKI TANAKA, MHI	
9	DON WOODLAN, Luminant	
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
1	11	

	4
1	T-A-B-L-E O-F C-O-N-T-E-N-T-S
2	Opening remarks by Chairman Armijo 5
3	1.1) Opening statement
4	1.2) Items of current interest 6
5	Draft Regulatory Guide 1290
6	(Proposed Revision to Regulatory Guide (RG) 1.59),
7	"Design-Basis Floods for Nuclear Power Plants"
8	2.1) Remarks by Subcommittee Chairman 7
9	2.2) Briefings and discussions with 7
10	NRC staff regarding proposed
11	Revision to RG 1.59
12	Interim Staff Guidance 8 (ISG-8), Revision 3, "Burnup
13	Credit in the Criticality Safety Analyses
14	of PWR Spent Fuel in Transport and Storage Casks"
15	3.1) Remarks by Subcommittee Chairman 65
16	3.2) Briefing by and remarks NRC Staff 66
17	Selected Chapters of the SERs with Open Items
18	Associated with the US-APWR Design Certification and
19	the Comanche Peak Combined License Application (COLA)
20	4.1) Remarks by 153
21	4.2) Briefings and discussions with 154
22	representatives of NRC staff, Mitsubishi
23	Heavy Industries and Luminant Generation
24	Company
25	

5

	6
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:29 a.m.)
3	CHAIR ARMIJO: Good morning. The meeting
4	will now come to order. This is the first day of the
5	597th meeting of the Advisory Committee on Reactor
6	Safeguards. During today's meeting the Committee will
7	consider the following.
8	First, Draft Regulatory Guide 1290,
9	Proposed Revision to Regulatory Guide 1.59, Design
10	Basis Floods for Nuclear Plants.
11	Two, Interim Staff Guidance 8, Revision 3,
12	Burnup Credit in the Criticality Safety Analysis of
13	PWR Spent Fuel in Transport and Storage Casks.
14	Three, Selected chapters of the Safety
15	Evaluation Reports with open items associated with the
16	U.S. Advanced Pressurized Water Reactor Design
17	Certification and Comanche Peak Combined License
18	Application.
19	Four, Assessment of the Quality of NRC
20	Research Projects.
21	And Five, Preparation of ACRS Reports.
22	This meeting is being conducting in
23	accordance with the provisions of the Federal Advisory
24	Committee Act. Mr. Derek Widmayer is the designated
25	federal official for the initial portion of this

(202) 234-4433

	7
1	meeting.
2	We have received no written comments or
3	requests to make oral statements from the members of
4	the public regarding today's sessions. There will be
5	a phone bridge line. To preclude interruption of the
6	meeting the phone will be placed in a listen-in mode
7	during the presentations and Committee discussions.
8	A transcript of portions of the meeting is
9	being kept and it is requested that the speakers use
10	one of the microphones, identify themselves and speak
11	with sufficient clarity and volume so that they can be
12	readily heard.
13	So at this point I'd like to turn over the
14	meeting to John Stetkar who will lead us through the
15	briefing.
16	MEMBER STETKAR: Thank you, Mr. Chairman.
17	This morning we're going to hear about an update to
18	Reg Guide 1.59, which is Design Basis Floods for
19	Nuclear Power Plants. The draft, I think this is
20	still true, has not yet been issued for public
21	comments.
22	DR. KANNEY: That's correct.
23	MEMBER STETKAR: So we're getting an
24	opportunity to give the staff some feedback prior to
25	the Reg Guide being issued for public comments. We
I	I Contraction of the second seco

(202) 234-4433

	8
1	felt that that was important for a couple of reasons.
2	One is the current revision of this Regulatory Guide
3	was issued in August of 1977 and a couple of errata,
4	they're called, were added in 1980. But it's
5	basically 30 plus years old, so it's one of the older
6	one.
7	And because of the visibility of flooding,
8	both in the context of licensing of new reactors and
9	the response to the lessons learned from Fukushima, we
10	felt that it was probably worthwhile for the Committee
11	to take up
12	MEMBER BLEY: Fort Calhoun.
13	MEMBER STETKAR: Fort Calhoun and other
14	sites that have come to our attention, we felt that it
15	was probably pertinent for the Committee to take a
16	look at this earlier than we normally do.
17	So with that introduction I'll turn it
18	over to Joe Kanney and we'll hear about what's up.
19	DR. KANNEY: Okay. Thank you, Dr.
20	Stetkar. Thanks for inviting me to come in today and
21	talk to you about Draft Guide 1290. At any point
22	during the presentation if you have any questions
23	please just stop me.
24	MEMBER POWERS: Don't provoke them, Joe.
25	DR. KANNEY: I've prepared a bunch of
l	1

(202) 234-4433

1 slides so that we can talk about anything that you find interesting. You know, there's a lot of material 2 3 but I just wanted to sort of be comprehensive so you have a good idea of what's in the guide. It doesn't 4 5 mean that we need to go through each slide in detail, if it's something that you don't have any questions or 6 7 don't want to have further discussions on. 8 Quick outline. After just a very brief 9 outline, or background discussion, I'm going to go into sort of two main chunks of the presentation. 10 One, I'm going to talk about several topics which are 11 overarching and common to all the different flooding 12 mechanisms that would just come up over and over again 13 14 for each mechanism. So the idea is to sort of hit 15 them at the top. And then I'll talk about key aspects of 16 17 individual flooding mechanisms and go through the flooding mechanisms that we touch on in the guide. 18 19 Talk a little bit about combined events and give you a quick status on where the concurrence reviews are. 20 In terms of background I guess the most 21 important thing to touch on immediately is why are we 22 here, why do we want to update this guide? 23 Dr.

24 Stetkar mentioned the age of the guide and he 25 correctly pointed out that it was issued in 1977.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

9

10 1 There are a few errata over the several years after that. 2 3 There's one important piece that should be 4 mentioned, that is shortly after the guide was issued 5 the Appendix A, in the original guide, was taken out and replaced with an industry standard ANS-2.8 on 6 7 Design Basis Flooding for Nuclear Power Plants. Now 8 that particular standard has been updated since the 9 late 70s, it was last updated in 1992. So that's 10 maybe a little bit more fine-grained detail on the quidance. 11 But essentially we have a lot more data in 12 terms of storms that have caused floods, actual floods 13 14 at various types of facilities, dams, things that are 15 of high hazard that have to withstand large floods 16 similar to nuclear power plants. We have a lot of 17 information that has been collected and analyzed in the intervening period since the guide was last 18 19 revised. In addition, a lot of this data is much 20 higher resolution than was available at the time. 21 You know, we didn't have digital elevation maps, LiDAR 22 surveys were not common back in those days. So the 23

very high resolution data. I didn't put it on here,

combination of a lot more data and in some cases some

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

	11
1	but things like radar observations of rain storms,
2	things like that would fit into this rubric.
3	There have also been advances in the
4	analytical methods and the tools. Higher dimensional
5	and distributed hydrologic models. In terms of things
6	like storm surge the models in use back in the late
7	70s didn't couple on the various physical processes
8	that we know are very important to getting an accurate
9	estimate of surge. Now we can do coupled multi-
10	physics type surge models that put wind and wave
11	together, for example.
12	And then there's also, these models can be
13	driven by, and incorporated in, GIS systems so the
14	entire modeling process, you know, a problem that was
15	extremely hard or tedious or maybe even intractable in
16	the late 70s is something that you could do on a
17	desktop computer today.
18	And leading into that the computational
19	resources have allowed us to just solve problems which
20	were not very tractable in the past. So those are the
21	main reasons the guide should be updated we think.
22	MEMBER RAY: What about the evolution of
23	more quantitative ways of deciding what maximum
24	credible means, for example. That has certainly
25	evolved in seismology for example. Is that not a
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	12
1	reason to want to do the same thing here?
2	DR. KANNEY: I would have to say that in
3	the area of hydrology and hydrometeorology, with the
4	exception of some of the things that I mentioned
5	previously in terms of the new data and the better
6	models, the actual idea of how you postulate the very
7	large rainstorm or the very large flood, those
8	concepts really have not advanced very much.
9	You know, the idea of the probable maximum
10	precipitation. The basic methodology that people use
11	to come up with those estimates has actually been very
12	static. The weather service in conjunction with some
13	of the other federal agencies, like the Corps of
14	Engineers and Bureau of Reclamation, worked on these
15	methods during the 80s and during the 90s, but the
16	methodology itself was remarkably static. Especially
17	for the estimates for much of the Eastern U.S.
18	There were some developments on how you
19	treat orographic uplift in areas of the Mountain West.
20	But predominantly on the East Coast, where most of our
21	plants are located, these methodologies have not
22	changed very much.
23	CHAIR ARMIJO: Okay, well maybe I'll ask
24	my question along the same lines. With the newest
25	tools that you have, would the not only the magnitude
	1

(202) 234-4433

	13
1	of the flooding around Fort Calhoun but the duration,
2	would that have been predictable, or not necessarily
3	predictable, but anticipated if one used the newest
4	technology and tools on that site as far as flooding
5	probability and the severity of the flooding?
6	DR. KANNEY: Well actually it's an
7	interesting point that for the Missouri Basin, the
8	Missouri Basin is so large that these probable maximum
9	precipitation estimates didn't go up to, the estimates
10	are basically
11	CHAIR ARMIJO: Too low.
12	DR. KANNEY: the PMP you get a certain
13	depth of precipitation over a certain area for a
14	certain duration. That's how these estimates are put
15	together. But the Missouri River Basin is so large
16	that an estimate for basins that large actually was
17	never developed at that time.
18	CHAIR ARMIJO: Can we do that now?
19	DR. KANNEY: You could. You could do it,
20	but it was not done in these. What happened is there
21	was a series of what are called hydrometeorological
22	reports that were put out over the years and these
23	have been, I'll talk about them later, but these have
24	basically served as sort of the design documents for
25	things like power plants, high-hazard dams, where
	I contraction of the second seco

(202) 234-4433

	14
1	people go in, they have maps and for your particular
2	location, then for the drainage basin that you're
3	interested in. And the duration you're interested in
4	and you can pick off what is the probable maximum
5	precipitation. The largest depth of rainfall in that
6	area in the time interval that's thought to be
7	credible.
8	CHAIR ARMIJO: Yes, the last part of my
9	question is should we analyze on a big area basis?
10	DR. KANNEY: We should be doing it for the
11	area size that makes sense for the drainage basin
12	we're interested in, certainly.
13	CHAIR ARMIJO: Okay.
14	MEMBER SHACK: I just want to make an
15	interesting quote from one of your NUREGs. "There are
16	readily available probabilistic alternatives to PMP
17	for assessments and designs of critical
18	infrastructure."
19	DR. KANNEY: Yes.
20	MEMBER SHACK: I thought you said before
21	there wasn't?
22	DR. KANNEY: No, no, no. I said that the
23	methods, you know, the probable maximum event type
24	methods have been static. What's being referred to
25	there is actually a probabilistic method, which is
	1

(202) 234-4433

	15
1	not, you know, there's a really unfortunate
2	MEMBER SHACK: That was the point of Dr.
3	Ray's question.
4	DR. KANNEY: Yes, I mean there's a very
5	unfortunate terminology that has crept into this
6	particular discipline. The probable maximum event is
7	it's a deterministic concept. Although the word
8	probable is in there it is not developed from a
9	probabilistic analysis, there is no return period or
10	probability associated with it. It's very unfortunate
11	terminology. I think it causes an awful lot of
12	confusion.
13	But when someone talks about the probable
14	maximum event, probable maximum flood, probable
15	maximum precipitation in hydrology it's a
16	deterministic number.
17	MEMBER RAY: Yes, well I appreciate that
18	and I did have occasion to be deeply involved in that
19	subject many years ago. And you're right, it hasn't
20	changed until now. My real question has to deal with
21	shouldn't it change and perhaps we should do something
22	to try and make it change.
23	But let me go to something other than
24	precipitation, because this flooding isn't just a
25	result of a precipitation event, right? I was a
1	I contract of the second se

(202) 234-4433

subcommittee chair not long ago for a COLA where the flood was driven by a landslide. So the issue of --2 And of course we all know that seismic events can create a flood hazard.

5 So the real question then that I think Dr. Shack and I are trying to stimulate, and the Chairman 6 7 as well, is you listed reasons to change the quide. None of which had to do with introducing or using or 8 9 providing some incentive to develop applications in 10 which this vaque term of probable, as you say, undefined, what you mean by probable maximum and you 11 get into great debates over that. But to make it more 12 quantitatively determinable. Less deterministic, more 13 14 probabilistic, okay?

15 And like I say although flooding is perhaps most commonly a result of precipitation, it's 16 17 not the only reason. You can have dam failures, you can have tsunamis, you can have other things that we 18 19 need to be concerned with. And so it just seems to me that that's a reason also to at least include in 20 considering the update of this Reg Guide. 21

DR. KANNEY: As far back as 1992, ANS 2.8, 22 last revision, in doing the probabilistic analysis 23 24 it's not ruled out in the quide, it's been stated in our guidance that there are probabilistic methods that 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

1 can be used. The feeling, the judgement at that time, was that the methods were not, I don't want to say 2 3 they weren't mature, but a widely accepted set of 4 methodologies for the various flood producing 5 mechanisms, or combinations of those, just wasn't readily at hand. So that providing guidance was 6 7 probably an immature idea at that time. 8 It wasn't ruled out. The statement in the 9 guide basically says they'll be looked at on a case-10 by-case basis. But that our guide was not going to provide specific guidance on the probabilistic methods 11 themselves. 12 Now, the thing to remember is that even, 13 14 this guide, the update that you're looking at now on all of the different deterministic models in terms of 15 the higher resolution, some of the models that have 16 17 better coupling between physical processes, you know, you can take these same models and with probabilistic 18 19 treatment of key parameters you can do a probabilistic analysis using the same tools. 20 And none of this is ruled out. It's just 21 that we felt it was more important to get an update 22 out as quickly as possible, given the basis we have 23 24 And in the meantime we are, you know, the now. research in conjunction with the New Reactor Office 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

17

	18
1	and NRR we are actively looking at over the next
2	several years putting together probabilistic guidance.
3	We're not there yet, but we didn't feel
4	that it would be appropriate to hold all of this up
5	while we did all of that, because everything that's
6	here can be used.
7	MEMBER RAY: Okay, well.
8	MEMBER STETKAR: Gentlemen, let me ask you
9	something. It's still related to this notion of
10	probable maximum, but I'm going to try to stay away
11	from real probabilistic analysis and think about it
12	just in the context of the Regulatory Guide.
13	We had some discussion of this in the
14	subcommittee meeting, but as I read through the
15	Regulatory Guide the terms probable maximum, maximum
16	credible and so forth appear in many different places.
17	And yet it's, I think, very difficult, for me anyway,
18	to understand what that concept really means.
19	In other words how does a regulator, or a
20	member of the public for that matter, or a member of
21	the industry, treat that concept. Because I see that
22	concept presented in terms of the most severe hazards.
23	I see terms like, well they're the hazards
24	that are the most severe that can be reasonably
25	expected. I see terms that say, I've lost the quote
	1

(202) 234-4433

	19
1	here, but essentially no risk of being exceeded.
2	Those are very different concepts. The essentially no
3	chance of ever being exceeded or the worst possible
4	means that it can't be any worse than this.
5	What we're evaluating is something that is
6	some physical limit to the severity or the
7	consequences of a flood that can happen at a
8	particular site. The water can't get any deeper than
9	this.
10	In the other sense, it says can reasonably
11	be expected to occur based on some evaluation of
12	historical data. Well if that historical data goes
13	back for a century it says well this might be what we
14	expect to occur once in every 100 years or so. Or
15	maybe once in every 1,000 years if we do some minor
16	extrapolation.
17	What does that real sense mean in terms of
18	a design-basis event. Is it something that we really
19	expect cannot be any worse than that? Design-basis
20	LOCA for example, is the rupture of the large,
21	traditionally, has been the rupture of the largest
22	pipe in the plant. I can understand what that largest
23	pipe in the plant is, I don't have a bigger pipe.
24	Design-basis earthquake is something
25	that's negotiated. It's something that has sort of a
	•

(202) 234-4433

	20
1	frequency of on the order of once in every 10,000 to
2	100,000 years, depending on the site and specific
3	parameters.
4	How does one interpret the flood that
5	results from these design-basis calculations in terms
6	of magnitude or frequency? Because I can't understand
7	that just looking at the words in there.
8	DR. KANNEY: Well the magnitude is what
9	you get by going through the analysis.
10	MEMBER STETKAR: I got that.
11	DR. KANNEY: It's interesting you say
12	that, because there is actually, if you go to the
13	World Meteorological Organization's manual on probable
14	maximum precipitation it provides two definitions of
15	the concept. And this is actually as far as I know,
16	these two definitions were both developed by folks at
17	the weather service.
18	One definition is what you quoted, the
19	rainfall for a given area and duration that is thought
20	to be the maximum physically possible. The other
21	definition is it is a number provided by the
22	meteorologists to satisfy the engineers.
23	MEMBER STETKAR: I'm glad you had that,
24	because one of our members dredged up the exact quote.
25	MEMBER SHACK: It's in HMR-51.
	I

	21
1	DR. KANNEY: Yes, they quote it there as
2	well.
3	MEMBER SHACK: That's the best definition
4	I can find.
5	DR. KANNEY: It's I think a very accurate
6	definition. Now, there is meteorological reasoning
7	behind the probable maximum precipitation.
8	MEMBER SHACK: But I mean, couldn't you
9	steal the sentence from HR-51 that qualifies that
10	first definition that says, in consideration of our
11	limited knowledge of the complicated processes and
12	interrelationships in storms, PMP values are
13	identified as estimates?
14	DR. KANNEY: Yes, they are estimates.
15	MEMBER SHACK: I know, but
16	CHAIR ARMIJO: Throughout the rest of the
17	document
18	MEMBER SHACK: I don't see a sentence
19	equivalent to that anywhere in the Reg Guide. You
20	know, you get more definitions, like John quoted, it
21	is the greatest possible. Well it is our wild-ass
22	guess of what is the greatest possible.
23	MEMBER STETKAR: Well the reason I bring
24	it up is because you are issuing this draft guide for
25	public comments and it conceivably will be issued

(202) 234-4433

	22
1	sometime in probably the next year or so I would
2	suspect. With the visibility of flooding, both
3	domestically and because of Fukushima and the response
4	to Fukushima.
5	I think that it's really, really important
6	that the staff, in a regulatory guide that's published
7	in 2013 let's say, pretty clearly identifies what is
8	being calculated and what is not being calculated and
9	how people should interpret that. Because I think
10	otherwise it's too easy to misinterpret selected
11	phrases in here and say, we've calculated the worst
12	thing that could ever possibly happen.
13	Which is not true, and if something worse
14	does happen it's not good for anybody.
15	DR. KANNEY: Point well taken. These are
16	estimates. No one should ever be confused that these
17	are estimates. All estimates depend upon exactly how
18	you produce them. And estimates can be exceeded.
19	There's one section in the guide where I talk
20	specifically about that we have these design manuals,
21	the HMRs, there are other, NWS-23 for probable maximum
22	hurricane.
23	You know, these documents are compendiums
24	of these estimates. They're produced at a certain
25	point in time. And we point out that these things can

(202) 234-4433

	23
1	be exceeded. And the, let's say for example the HMRs,
2	these are the ones we have today. There were ones in
3	the past, for example HMR-51 the previous HMR for this
4	region was HMR-33, and if you compare the estimates
5	the estimates changed. And in some cases they went
6	up.
7	MEMBER SHACK: But there's a bigger
8	conceptual problem, because then you tell the guy,
9	after he gets him PMP and PMF, that he's supposed to
10	look at combined flooding things that sorted together
11	have a frequency of 1 X 10^{-6} . Well what's the
12	connection between that and the 1 X 10^{-6} if you really
13	don't know what the probable is on the PMF?
14	MEMBER BLEY: That's right. They're
15	estimates, but estimates of what? How do you
16	interpret that?
17	MEMBER SHACK: And you're supposed to
18	combine them with other events to get a 1 X 10 $^{-6}$
19	thing, and so you
20	MEMBER SKILLMAN: Joe, I'd like to add a
21	comment here. May I ask you to go back to Slide 3?
22	You've identified the reasons to update this Reg
23	Guide.
24	DR. KANNEY: Yes.
25	MEMBER SKILLMAN: And they basically deal

(202) 234-4433

	24
1	with, guess what, we have a lot of new data. We have
2	a lot of new techniques. We've got some really neat
3	computational capability. I think there's another
4	piece of why to update the guide, and I believe we're
5	touching on it here, at least one of us.
6	And that is because the way we use it has
7	become more important. Based on what we witnessed at
8	Fukushima, and a growing body of concern about
9	waterways, dam failures, natural phenomenon that can
10	inundate a plant.
11	I think what's missing is, why update this
12	guide? Number one, there's new data. Number two,
13	it's importance for use has been elevated. And there
14	as some issues in how to deal with the type of thing
15	Dr. Shack just mentioned. How you combine events.
16	How you view terminology from historical, like the
17	NOAA meteorological hydrological data. How you use
18	those terms.
19	And it may be quite simple to add a
20	paragraph or two or three that kind of puts that in
21	context. So that the bulk of the update remains
22	unchanged. But there's basically a description of the
23	importance, given the new information that we have.
24	But also a couple of how-to's.
25	When looking at the PMP, which is either
	1

(202) 234-4433

ĺ	25
1	ACE, Army Corps of Engineers, or NOAA information,
2	these are estimates. And when we use the word
3	probability what we really mean is probability in
4	terms of the plant's probabilistic risk assessment,
5	not the legacy terms probable that comes from the
6	legacy references.
7	It seems to me that that type of addition
8	to why update the guide may address the types of
9	issues that my colleagues and I are pointing to
10	without undoing everything you've done.
11	MEMBER SCHULTZ: It also sets up the
12	understanding of what needs to be done, as you
13	indicated already. The plan is to issue this and then
14	further develop other methodologies that really would
15	lead us to be able to solve some of the problems that
16	we've outlined just shortly.
17	But without, what's been suggested by Mr.
18	Skillman, without that you don't set yourself up
19	appropriately for the attention that needs to be
20	placed on this guide as well as the follow-on work.
21	So it would be helpful from that context.
22	DR. KANNEY: Okay.
23	MEMBER STETKAR: You asked us to ask
24	questions.
25	CHAIR ARMIJO: You know this train is on
	I contract of the second se

(202) 234-4433

	26
1	the track and it's going to hit us that the
2	probabilistic flooding, probabilistic seismic, coming
3	together to analyze things properly.
4	I just saw, Bill Shack sent me a
5	Nucleonics Week, a recent one, in which in Japan now
6	their experts in seismology are now predicting that at
7	one particular site in Japan that the tsunami could
8	reach as high as 34 meters above sea level.
9	This is at a site where they're building
10	a sea wall 18 meters rising above sea level. It seems
11	that those are bizarre numbers to me, but these are
12	expert seismologists. And pretty soon people are
13	going to be asking us in the United States, are we off
14	track. Do we know how to do this kind of work? Are
15	they doing it right? Shouldn't we be doing it the
16	same way? And we're just saying hey, we've improved
17	our deterministic methods to make estimates.
18	That may be fine. I don't know, I'm not
19	a PRA person, but it's the same data and how do you
20	use that same data in a way that's a more modern way
21	to, so you can do things like combine the effects of
22	probabilistic seismic with probabilistic flooding.
23	It seems like we're behind the curve as
24	far as the methods that we use for this work. I don't
25	know how to do this myself. Somebody must know how to
1	I Contraction of the second

(202) 234-4433

	27
1	do that.
2	DR. KANNEY: I think it's a fair statement
3	that in this area of hydrology with respect to the
4	extremes. Now if we were talking about something, of
5	floods of much lower magnitude, say the 100-year
6	flood, ten-year flood, 20-year flood. You know,
7	things that are of interest to designing culverts for
8	highways, bridges and things like that, probabilistic
9	methods are used quite routinely.
10	It's when we get out to these very large,
11	very extreme events that a sort of widely accepted,
12	very well widely applied set of methods that, okay, we
13	all do it this way, we all understand it. That's
14	lacking when you get to the extremes.
15	And traditionally the way of handling
16	these extremes has been this probable maximum event
17	type concept. You look at the historical information
18	that you have. You look for the most intense storm or
19	the largest flood that you've seen in the historical
20	record.
21	Now the historical record can include
22	paleo records. I think that's a lesson that has
23	probably been learned in the last couple decades, how
24	valuable that kind of information is. When the guide
25	was last revised that whole field of paleohydrology
	I contract of the second se

(202) 234-4433

	28
1	was just in its infancy.
2	MEMBER SIEBER: To what extent are the
3	real far back records really considered? For example,
4	my house is in a valley and if you look up on the
5	hillside you can 17 shorelines due to ice-age effects.
6	And the very top one is about 500 feet above the
7	valley floor, which is difficult for me to imagine
8	that that would occur in modern times.
9	On the other hand the evidence is there
10	that there was this huge flood that went all the way
11	up into Canada. And so if you find geologic evidence
12	that massive floods can occur to what extent does that
13	extend to construction of a facility that will have a
14	lifetime of 60 years in a more moderate and temperate
15	climate?
16	DR. KANNEY: Well you wouldn't necessarily
17	apply that knowledge to today if you thought the
18	climate was different. The major use of the
19	peleohydrologic studies is to put into what are called
20	flood frequency analysis. Okay?
21	That's basically having information on
22	these paleo floods allows you to put in not
23	necessarily a data point, but an interval. You know
24	that in a certain timeframe you either did not see a
25	flood of a certain magnitude or you saw a flood of at
l	1

(202) 234-4433

	29
1	least a certain magnitude in a certain time interval.
2	And there are methodologies for including
3	that information into a flood frequency analysis to
4	get average annual exceedances to get put that
5	information in. But all of those methods are based
6	upon the idea that there is stantionarity in the
7	process.
8	So if you had reason to believe that that
9	very large flood you saw was in a different climatic
10	regime, you wouldn't put that into a flood frequency
11	analysis that you think represents the current
12	climatic regime.
13	But if you think that it falls within the
14	current climatic regime, say the last 10,000 years or
15	so, then certainly you would put it in.
16	MEMBER SIEBER: Well one of these
17	shorelines is 17,000 years and it wasn't just the
18	flood it was the fact that it got an ice dam that
19	blocked it. And those kinds of things can happen more
20	frequently than the large-scale climate change that
21	occurs over a period of 100,000 years or so.
22	You know, it's unique and it's local, but
23	it's severe. So to me it's difficult when you look at
24	probabilities and decide at what level you're going to
25	build something. That probability never goes to zero.

(202) 234-4433

	30
1	DR. KANNEY: Right.
2	MEMBER STETKAR: So in the interest of
3	time, I think we've had a pretty good exchange about
4	probable maximums and PRA and things like that. But
5	there's a lot of material in this draft guide and I
6	think it would be really useful to try to get through
7	basically its treatment of the different flood causing
8	mechanisms and combined events, if we can do that.
9	DR. KANNEY: All right. I'll spin through
10	this first part fairly quickly. There's several
11	topics which are common to most of the flooding
12	mechanisms that are addressed in the guide. One
13	obviously is you have to have certain criteria and
14	pieces of the site hydrologic description.
15	And the guide goes through for various
16	settings, you know, riverine settings, coastal
17	settings, what sorts of things you need to include in
18	the hydrologic description of your site. We also
19	point to data sources for this type of information and
20	things of that nature.
21	One thing that sort is overarching, we've
22	touched on this, and that is in the past designers
23	have used what I called these design documents. You
24	know, the hydrometeorological reports, the probable
25	maximum hurricane wind field reports, in order to

(202) 234-4433

	31
1	develop these estimates for the maximum credible
2	floods.
3	And all of these documents that are out
4	there are quite dated. There's more recent storms
5	that have happened since these documents have been
6	developed. It doesn't say that these documents are
7	useless. It really depends upon where you are.
8	And so what we've put into the guide is
9	bottom-line is there's due diligence required if
10	you're going to use these types of documents. You
11	need to ascertain whether, for the particular region
12	you're interested in, whether the assumptions or the
13	data that these reports are based upon is still valid.
14	Or whether you need to go in and redevelop some of
15	these basic ideas.
16	We've touched a little bit on non-
17	stationarity. There's several non-stationary aspects
18	with regard to flooding. The ones that we address in
19	the guide, because we think they're tractable to
20	address, are things like sea level rise and certain
21	climate change impacts. Basically how climate change
22	may impact sea level rise and how that may factor into
23	estimates of coastal flooding.
24	For other aspects, in terms of increases
25	in storm intensity, increases in precipitation,

(202) 234-4433

increases in stream discharge, we look through what is available in terms of the climate modeling that's done and compare that to what people have been observing. And it's really a very confused stated of affairs right now.

You know, if you look at different climate models some of the climate models don't even agree on the sign of the change in some of these processes once you get down to a specific location. If you're talking about global averages there's a lot of consistency.

But you don't build a plant or a dam using 12 You've got a site and you need 13 qlobal averages. 14 information about the site and the surrounding region. 15 When you get down to that scale there's really not a lot of good information that you could extract from 16 say climate models and plug into a hydrology model and 17 thing that you have reduced uncertainties. I mean you 18 19 can do that process, but we don't think that you've actually reduced the uncertainties in your estimate by 20 doing that. 21 I think we've hit deterministic versus 22

22 I think we've hit deterministic versus23 probabilistic well enough.

24 Okay so let's shift into, I'll quickly go 25 through the individual flooding mechanisms that we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	33
1	cover in the guide. Okay, local intense
2	precipitation. What we're talking about here is a
3	very intense rainstorm that happens right at the plant
4	site. Regardless of where the plant is located with
5	respect to the normal water level of the ocean or the
6	river or wherever. The plant can be on top of a
7	mountain and you still would have to worry about this
8	flooding method.
9	It's basically this is the analysis you go
10	through to ensure to yourself that the way that the
11	plant is graded and that the drainage system that has
12	been designed can handle this local intense
13	precipitation. And that needs to be done at each
14	site.
15	The other, and this basically in theory
16	this could be the only thing you have to do. In
17	theory. But this is one that you could never argue
18	that it's not applicable. All of the other mechanisms
19	individually might not be applicable to a site. And
20	by looking at the data and simplified engineering
21	analysis of a particular region one could make the
22	case that no, this particular mechanism is not
23	applicable.
24	Riverine flooding is, as you well know,
25	many plants are located very on or near rivers. So

(202) 234-4433

(202) 234-4433

34

examined for many, be traditional way that this has been looked at is to look at the most extreme flood that's considered credible.

Typically you have a river basin and you 6 7 apply your estimate for the probable maximum 8 precipitation to that river basin. You estimate the 9 runoff that's going to hit the stream or river from 10 that rainfall. You route that discharge down to the plant site using very conservative assumptions along 11 For example, in the rainfall runoff you cold 12 the way. assume that there's basically no losses. 13

14 You know, that the ground acts like a rubber sheet. All of that water that falls in the 15 16 basin gets to the stream and you route that down. 17 That would be one example of how these probable maximum flooding estimates are some derived, 18 by 19 applying those types of conservatisms with a rainfall 20 that you think is the largest credible, or your estimate. 21

Now also with riverine flooding one has to 22 several different mechanisms which 23 look at mav 24 combine. It's not just the rainfall necessarily. In some regions you have melting of snow pack combined 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	35
1	with rainfall. I guess the most recent poster child
2	for that would be the Fort Calhoun, the flooding on
3	the Missouri River in 2011. That was a combination of
4	much higher than normal snow pack combined with very
5	large and long duration storms.
6	And so the timing and the sequencing of
7	snow fall, snow melt with storms need to be looked at,
8	if that's a credible mechanism for the region you're
9	in. Also rainfall and the extreme discharge might be
10	the cause for dam failure on a particular river. So
11	combinations where you have a dam failure caused by a
12	hydrologic event, like very large flows. Things like
13	that need to be considered in riverine flooding.
14	Also it may not be immediately obvious to
15	everyone. But also wind waves are typically
16	superimposed upon the flooding that you calculate.
17	You know, the discharge in the stream that you
18	calculate. For the simple reason that many large
19	storms are accompanied by very large winds. And you
20	can have wind waves on the body of water that may add
21	to the water level.
22	I guess I probably should have started
23	with this slide first. The key pieces of the riverine
24	flooding. You know you're going to have a design
25	rainfall, you're going to apply it to your basin.
	I Contraction of the second

(202) 234-4433
You'll do some sort of rainfall runoff analysis. That gives you your effective precipitation, what actually 2 gets to the stream channel. And then that would be routed to the site.

5 Now in all these cases there are models which you will apply. For the flood routing we say 6 7 that you should look at whether 1D or 2D models are 8 appropriate. In the past 1D models were typically 9 used for this type of analysis. I think the 10 conventional wisdom is а 1D would be more Once you start populating a river basin 11 conservative. more detail in a 2D model sometimes you find out with 12 that the 1D is not necessarily the most conservative. 13

14 So that we suggest that you should look at 15 whether 2D models are appropriate, they sometimes can 16 And typically what we advise in the guide is that be. 17 dynamic flood routing should be used unless one can show that the water level profiles are shallow enough 18 19 that a steady state analysis might work.

I guess a good example would be say if you 20 were in a area with very high relief in a relatively 21 steep drainage basin versus the Mississippi River. 22 Basically is the storm producing a flood wave or is it 23 24 a much more gradual increase in the hydro graph. In the latter case you might be able to use s steady 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

(202) 234-4433

36

37 1 state analysis. In the former case you would not. CHAIR ARMIJO: I had a question. 2 To what 3 extent are the actions of, let's say the Corps of 4 Engineers, in deciding to open floodgates? In other 5 words create a situation that you hadn't analyzed? In order to protect a certain area they just basically 6 7 flood another. Is that built into this deterministic 8 analysis? Because it depends on what they decide to 9 do, so how are you going to analyze for that? 10 DR. KANNEY: You know the assumptions that you put into this model have to reasonable based upon 11 12 how, if there's a reservoir upstream, you do need to understand how this reservoir is going to be operated. 13 14 However, you can't take credit for it. To say we 15 always know say, for example, the Corps has a dam 16 upstream, we always know what they will do. CHAIR ARMIJO: I don't think so. 17 DR. KANNEY: We don't. We don't always 18 19 know what they will do. CHAIR ARMIJO: Okay so you deal with that 20 and they have to assume that they may do something 21 harmful to the plant as far as flooding? 22 DR. KANNEY: That eventuality has to be 23 24 considered. Because what can, my understanding is that what does happen in practice is that there may be 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	a memorandum of understanding. Some durable agreement
2	between an upstream dam owner to give notice of what
3	they're going to do. But that's about as far as it
4	goes. That's my understanding.
5	MEMBER SIEBER: In the case of Fort
6	Calhoun it was downstream dams that limited the height
7	of the water at the plant, because they did open those
8	up but I don't know that they opened them up to
9	protect that power plant or just all of the upstream
10	residents and I don't think I want to know.
11	MEMBER STETKAR: This is an interesting
12	topic. It isn't quite germane I don't think to this
13	particular Reg Guide, but we did have a little
14	discussion of it. And it's analogous to guidance that
15	the NRC has in place for communications between a
16	nuclear power plant owner/operator and electrical grid
17	operators. There's guidance in place that says there
18	shall be those lines of communication both ways so
19	that people know how to manage loads.
20	To my knowledge there's no such guidance
21	in place for managers of riverine systems, dam
22	systems, and owners/operators of nuclear power plants.
23	There may be ad hoc local agreements or memoranda of
24	understanding.
25	But to my knowledge I haven't been able to

(202) 234-4433

	39
1	find any NRC guidance that says if you're on a large
2	river system, Mississippi, Tennessee Valley or
3	something like that, that you as a nuclear power plant
4	operator need to have some formal lines of
5	communications with the people who operate those dams
6	so that you know how they're going to manage a
7	particular flooding even or other types of things that
8	happen.
9	As I said, it's not germane particularly
10	to this Reg Guide because it's not sort of design-
11	basis flooding. But it does address, Sam, your
12	concern. And I think it is, it's sort of, you know,
13	I don't look at managing a river any different than I
14	look at managing an interconnected electrical grid.
15	MEMBER SIEBER: Well I think you're right
16	in your characterization of that. There are ad hoc
17	agreements and in my experience we use them. But
18	there is no formal mechanism between power plants or
19	the system operator and the Corps of Engineers, for
20	example.
21	DR. KANNEY: I'm not aware of anything
22	either.
23	MEMBER STETKAR: We've asked a couple
24	times in different venues and have received sort of
25	the same feedback, that nobody seems to be aware of

(202) 234-4433

(202) 234-4433

	40
1	any formal mechanism or requirements. Dam failures.
2	DR. KANNEY: Okay. One of the other
3	flooding mechanisms for power plants located in river
4	basins is potential dam failures. And when the guide
5	talks about dam failure we'll make it very clear we're
6	talking about basically anything that's going to store
7	water. Obviously dams upstream of the site.
8	But there could be dams downstream whose
9	failure could cause backwater effects that might
10	effect your plant. There could be other water control
11	or water storage structures. Auxiliary reservoirs,
12	cooling ponds, levees, things like that. And we make
13	it very clear in the guide that all of these are
14	included, it's not just what the common concept of a
15	dam is.
16	MEMBER STETKAR: Before you get to the
17	second major bullet there.
18	DR. KANNEY: Yes.
19	MEMBER STETKAR: We did have some
20	discussion, you mentioned downstream dams in terms of
21	backwater effects for inundation flooding at a
22	particular site. We had some discussion in the
23	subcommittee about the effects of flood-causing
24	mechanisms, precipitation or seismic events or
25	something like that, that effect the whole water
1	I contract of the second se

(202) 234-4433

	41
1	system and remove a downstream dam or other water
2	control structure that serves as an impoundment for
3	the plant's safety related cooling water supply.
4	So that, for example, you could have a
5	flood that perhaps by itself results in fairly modest
6	inundation levels at the site. But in combination
7	with that takes out the downstream dam and you've lost
8	your safety related cooling water supply. Right now
9	the guidance, as I understand it, does not address
10	those types of failures, is that correct?
11	DR. KANNEY: The guide talks about the
12	systems and structures and components that need to be
13	designed to withstand floods. And those are the same
14	components that are identified as in Reg Guide 1.29 as
15	needing to be designed to withstand seismic events.
16	My understanding is that say the downstream dam that
17	provides the water for your ultimate heat sink would
18	be included in that.
19	CHAIR ARMIJO: The vulnerability of that?
20	DR. KANNEY: It would be a
21	MEMBER STETKAR: It doesn't seem clear
22	from, I mean that certainly doesn't seem clear, at
23	least from my reading of the Reg Guide. In principle
24	I guess that's true. But it seems to focus on
25	inundation flooding of structures, systems and

(202) 234-4433

42 1 components on the site grade because it talks an awful 2 lot, everything is related to upstream and elevations 3 higher than site grade. 4 And I'm just curious whether somebody 5 applying this guidance would not recognize the need to examine the effects of simultaneous, coincident, 6 dependent, whatever you want to call it, mechanisms 7 that could also effect that downstream, I call it 8 9 downstream, but a water impoundment structure that 10 holds the safety related cooling water supply. BROWN: Didn't you ask this 11 MEMBER 12 question once before on, was it Watts Bar or another project? 13 14 MEMBER STETKAR: I've asked it two or 15 three times. Yes, you're --MEMBER BROWN: On a downstream dam, and I 16 17 thought the answer that came back was that they hadn't looked at that. That's a bad memory maybe, but I --18 19 MEMBER STETKAR: No, that's --20 MEMBER BROWN: -- remember we've talked about it in regard to at least one or two projects. 21 MEMBER STETKAR: That's an excellent 22 That's a precisely correct memory. 23 memory. 24 MEMBER BROWN: It's better than I thought 25 it was.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	MEMBER STETKAR: That's one of the reasons
2	it prompted my questions. We had spoken on a
3	particular licensing issue on this. And the answer
4	was no we haven't looked at that. The response at
5	that time was, well that's not a source of flooding.
6	MEMBER BROWN: Exactly.
7	MEMBER SCHULTZ: Here it's addressed in
8	many indirect ways, but not directly.
9	DR. KANNEY: You're suggestion is it needs
10	to be clarified?
11	CHAIR ARMIJO: Maybe a few words to make
12	that clear.
13	MEMBER STETKAR: In the, I've forgotten
14	which Appendix it is, but in the appendix on dams,
15	indeed it says to characterize the site you have to
16	describe dams that impound the site safety related
17	water supply. But then immediately it talks about
18	everything in your first bullet there, which is
19	basically upstream flood waters invading the plant
20	site, plant grade basically.
21	DR. KANNEY: Okay, point well taken.
22	MEMBER SHACK: Even in the Fukushima Phase
23	I analysis of the flooding hazard, you know, that's a
24	debate that goes on as to whether
25	MEMBER STETKAR: There is another place
	I

(202) 234-4433

	44
1	for example the question has been asked. The last
2	Commission meeting was full of that.
3	MEMBER SCHULTZ: There's a lot of
4	discussion and attention paid to debris that can
5	effect the ultimate heat sink. But this very direct
6	impact is not described with the clarity we think it
7	needs to be.
8	DR. KANNEY: The last bullet here then
9	just mentions that some dams might be screened out.
10	I mean because if you go to a lot of river basins, it
11	may be not widely recognized among the public, but you
12	can go to large river basins there are hundreds of
13	dams. Many of them are quite small, they impound very
14	little water. They have low differential head.
15	They're very far from the plant.
16	And one can go through a fairly simplified
17	analysis to screen those out and get down to the
18	larger dams, the ones that do have an ability to
19	impact the plant. And those are the ones that really
20	should be, the impact of their failure are the ones
21	that really need to be analyzed. That's really what
22	this bullet is trying to take into account.
23	There are different modes or categories of
24	what I call predominant mode of failure for dams.
25	Because quite often it's not really clear why some

(202) 234-4433

	45
1	dams fail. And there may be several mechanisms that
2	contribute to a failure. I mean as engineers and
3	scientists we always like to kind of categorize and
4	chunk things, but in the guide we sort of point out
5	that
6	CHAIR ARMIJO: I had to ask. What's a
7	sunny-day failure?
8	MEMBER STETKAR: That's exactly what he's
9	talking about.
10	CHAIR ARMIJO: Just you don't know why it
11	failed but it did fail?
12	DR. KANNEY: Well for the classic example
13	of a sunny-day failure is say for example you have an
14	earthen dam. And I guess the thing to make sure
15	everybody's aware of, dams don't stop water. Dams
16	slow water down. There is flow of water through dams,
17	okay? A good dam is designed such that the water
18	flows through the dam in such a way that it doesn't
19	impact the structural integrity of the dam.
20	However, things like piping where, due to
21	internal erosion, you basically create a pipe that
22	water goes though. Once that preferential flow path
23	has been established then you get more erosion. And
24	that starts to eat away. And then you literally get
25	a pipe and you can fail an earthen dam or a rock fill

(202) 234-4433

	46
1	dam in that way. That would be a classic example of
2	a sunny-day failure.
3	And really it's pretty much it's things
4	that are hydrologic, not related to a flood either
5	overtopping some portion of the dam or being too large
6	for the spillway, dam spillway to handle. And not due
7	to a seismic failure. They get the name sunny-day
8	failure because they can happen at any time.
9	If you look through the history of dam
10	failures you will find that these sunny-day failures,
11	a good portion of them, happen very early in the life
12	of the dam. Some on first filling. But they can
13	happen anytime.
14	MEMBER BLEY: I'm just curious. Over the
15	years have folks come up with ways to monitor for the
16	developing pathways?
17	DR. KANNEY: Yes, there are a variety of
18	ways that you can monitor a dam such that you at least
19	have some forewarning that there is some structural
20	problem with the dam. Some of them are very simple
21	and very crude, you go out and walk the dam face and
22	you look for places where the grass or vegetation is
23	well watered, growing really well. It's an indication
24	that there may be some excessive seepage in that area.
25	Or you look for water seeping through itself.
1	

(202) 234-4433

You can install piezometers in the
-
embankment and monitor those. You can use geophysical
techniques. You can actually do things like
electrical resistivity surveys.
MEMBER BLEY: But do we, or does the Corps
of Engineer have requirements for this sort of thing?
DR. KANNEY: Well the dams are regulated
by a variety of entities. The Corps owns and
regulates their own dams. The Bureau of Reclamation
owns and regulates their own dams. A few of the
Bureau of Reclamations dams are actually operated by
local irrigation districts. They would be the people
that would probably be implementing a Bureau of
Reclamation established program. In a lot of cases
with the smaller dams they're regulated by the states.
MEMBER BLEY: I guess what I was getting
at is if we have a plant for which such a failure
would be a crucial problem do we have any way to make
sure it's being monitored? Such that the likelihood
of its failure isn't getting worse year-by-year?
DR. KANNEY: The answer is yes, but it's
not a uniform regulatory framework. In some cases
there will be a federal entity. The Federal Energy
Regulatory Commission, FERC, has regulations for dams
owned by utilities that are producing power. So

(202) 234-4433

	48
1	there's several different federal agencies. A lot of
2	dams are regulated at the state level.
3	In general there are requirements for
4	monitoring and inspection. Typically on the order of
5	annual inspection for most dams. But it is a
6	patchwork.
7	MEMBER STETKAR: I don't think we have
8	anybody from NRR here, I'm not sure. We've had some
9	discussion about this. I know the Agency does have,
10	and I've forgotten the name of the
11	DR. KANNEY: Oh, we have a Dam Safety
12	Officer.
13	MEMBER STETKAR: Thank you. That the
14	Agency does, I believe, coordinate at that level with
15	these various and sundry regulatory groups.
16	DR. KANNEY: My understanding is at the
17	federal level where we coordinate, there is a federal
18	dam safety body and I believe it's the director of
19	FEMA is actually the titular head of that body. But
20	we have a representative on that body as well as the
21	Corps, the Bureau of Reclamation and other federal
22	agencies. To my knowledge we don't do a similar level
23	of coordination with states on a routine basis. I'm
24	not aware of it if we do.
25	This slide was just meant to cover the
	1

(202) 234-4433

	49
1	idea that in the guide we talk about different modes
2	of dam failure. And that the different modes needs to
3	be addressed.
4	Unless, as a practical matter, what often
5	happens for design-basis calculations the easier
6	things to do, in terms of analysis, is you just assume
7	the dam vaporizes. It goes away. And if that severe
8	of an incident doesn't impact the plant well, you're
9	done.
10	If that's not the case then more in-depth
11	modeling of credible failure modes and the resulting
12	flood wave needs to be addressed. But in many cases
13	it's much simpler just to assume the dam fails and
14	route the flood wave to the plant and see whether that
15	has an impact. Whether that winds up being a design
16	flood or not.
17	And then in all cases in dam failure, as
18	with the riverine flooding, sediment transport and
19	debris flows need to be taken into account.
20	Coastal flooding
21	MEMBER SKILLMAN: Can we go back for a
22	second?
23	DR. KANNEY: Sure.
24	MEMBER SKILLMAN: On dam failure, one of
25	the things I've witnessed when really over top in

	50
1	river, there's such a huge flow, particularly in
2	spring runoff in a narrow channel like the Allegheny
3	River, which is what I'm particularly familiar with,
4	is the debris transport, but it's just not logs and
5	sticks and that kinds of things. It's boats and
6	automobiles and houses. Travel trailers, upside down
7	tanks, septic tanks that have come out of the ground.
8	Portions of graveyards that have come out of the
9	ground.
10	So when one talks about sediment and
11	debris I just wonder what caution you have in the Reg
12	Guide for stunning quantities and stunning sizes.
13	I've seen it happen.
14	MEMBER SIEBER: You're thinking of the
15	Johnstown flood.
16	MEMBER SKILLMAN: I'm talking railroad
17	cars, empty railroad cars. Or railroad cars that are
18	filled with wood. Things like that, that are maritime
19	missiles is what they are.
20	DR. KANNEY: For wind generated missiles
21	we have a very stylized way that we actually postulate
22	various sizes and types of missiles. We don't do that
23	in the flooding arena. But your point is well taken
24	and I think it's well understood that debris is not
25	just trees and logs. You know in order to make some
1	1

(202) 234-4433

	51
1	assessment of what sort of debris would be credible
2	you would need to look at the river basin itself.
3	What's in that flood plane, you know what can be
4	there.
5	MEMBER SKILLMAN: Does the Reg Guide
6	communicate that?
7	DR. KANNEY: The fact that you asked the
8	question means that it may not communicate that as
9	well as it could.
10	MEMBER SKILLMAN: Thank you. I made my
11	point.
12	DR. KANNEY: I mean the Reg Guide itself
13	really just talks about debris and doesn't get into
14	the
15	MEMBER SKILLMAN: I just think and
16	exclamation point. The type of debris can be larger
17	and more dangerous than one might have considered.
18	For example, it could be propane tanks. They're
19	buoyant and they're mighty dangerous.
20	DR. KANNEY: Yes, it's not really that
21	well recognized that one of the things that happens in
22	a lot of floods is there are fires due to the natural
23	gas and propane infrastructure.
24	MEMBER BLEY: Fukushima, there was fires
25	all over.

(202) 234-4433

	52
1	MEMBER SKILLMAN: Thank you.
2	DR. KANNEY: Thank you. Okay. Moving on
3	to coastal flooding. We point out in the guide, we
4	sort of define what we mean by coast. Again, because
5	a lot of people may think coast, oh that means your
6	near the ocean. Coastal, we take it to a very broad
7	definition in the guide so it's clear that we're not
8	just talking about ocean side regions.
9	And there are a variety of mechanisms that
10	can happen in the coastal regions. Obviously storm
11	surges, seiche, tsunami and along with wind waves due
12	to storms themselves. All of these things need to be
13	taken into account. Or possibly may need to be taken
14	into account in the coastal regions.
15	And then with any of these mechanisms the
16	interplay between the astronomic tides needs to be
17	taken into account. And in the case of storms we also
18	have the attendant wave setup and runoff mechanisms
19	that need to be considered when looking at these sorts
20	of mechanisms.
21	Storm surge. There are different types of
22	storms that will generate surge in particular regions.
23	I think, when people talk about storm surge we
24	typically think about hurricanes. But depending upon,
25	you know, the hurricanes only strike a fairly limited
	1

(202) 234-4433

53 1 area of the coast. There are other areas of the coast where extra-tropical cyclones, including hurricanes 2 3 that have transitioned. You know, the post-tropical 4 storm portion of a hurricane. Essentially they can 5 transition into extra-tropical cyclones. And then even in inland bodies, such as 6 7 lakes, you can have squall lines. I think the derecho 8 that moved from the Midwest all the way to this region 9 of the country really focused people's attention on 10 the wind speeds that can be generated by these types of storms. And the squall line that I have there, 11 that's another name for the derecho in the 12 meteorological literature. 13 14 Once thing I wanted to mention here is 15 that in the old Req Guide, the previous revision of 16 the Reg Guide, there are maps that are proposed for 17 use as screening. To screen out whether, or to get sort of a rough conservative estimate what a storm 18 19 surge might be along the coast of the U.S. And we're specifically saying in this guide you shouldn't be 20 using those maps. 21 One, as with the For several reasons. 22 older design documents we talked about before, the 23 information, the data, the storms that it was all 24 based upon are 30 to 40 years old. 25 We've seen more

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

recent storms. The analysis was done using very, very crude storm surge models that were available at the time.

And we point out that recent work that was sponsored by NRC has proposed an updated screening method that realized much more on, tries to account for uncertainties in the mechanism as well as using updated models. I don't think we have time to go into that screening method itself now, unless you want to.

But unless you can clearly rule out that storm surge might affect the site, then a detailed analysis needs to be done. And that detailed analysis should include, obviously, a detailed analysis of any historical storm events that occurred in the region.

15 This is very critical because even though 16 we have these more modern models for predicting surge, 17 you know, that couple various physical mechanism like the winds, the waves and account for the near-shore 18 19 bathymetry and topography that the surge is going over, these models still have to be essentially 20 calibrated and validated and 21 usinq historical, detailed evaluation of historical events in the region 22 are the still the best way to do that. 23

And we sort of lay out what we feel is the current state-of-the-art in storm surge model. And

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

that is to а coupled hydrodynamic ocean use 2 circulation and wave model and drive those models with a wind field either from, I call it here planetary layer model in the case of the hurricane that would be your hurricane wind field. In the case of an extratropical cyclone it would still be planetary boundary layer model but it wouldn't be that very classical 8 hurricane vortex type model.

The models are still coming from the same 9 10 sorts of numerical weather forecasting type tools. But the model is not as simple as a hurricane vortex. 11 And we have available to us very high resolution 12 bathymetric and topographic data that needs to be put 13 into these models, because the near-shore bathymetry 14 15 can have a dramatic impact on the surge that you 16 actually see at a specific location.

17 And this, in terms of the digital elevation maps are available, things like LiDAR, you 18 19 really get a good handle on this sort of can information these days. 20

Seiche, there's not really much new in the 21 Req Guide with reqard to seiche. Basically seiche is 22 the phenomenon where you basically have some forcing 23 24 from a variety of mechanisms that is close enough to the resonate frequency of a enclosed or semi enclosed 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

5

6

7

(202) 234-4433

55

	56
1	body of water that you set up this sloshing action.
2	And depending on where you are and the
3	shape of the water body of interest, say for example
4	if you're on a nice, you know, the cooling pond is the
5	body of water you're interested in, and it's got a
6	nice regular geometry, that there's some simple
7	formulas for calculating the modes of excitation for
8	bodies like that.
9	For more complicated bodies of water with
10	very complex boundaries or bathymetry you'd have to go
11	to more complex hydrodynamic models to figure that
12	out. We also stress that you need to really consider
13	what the forcing functions could be for your
14	particular area. And they could be local or regional,
15	you know, things like a storm coming in, the derecho
16	phenomenon for example.
17	Strong winds are very, you know, on the
18	Great Lakes in particular the seiche that's set up by
19	storms over the Great Lakes is a very well known
20	phenomenon as you get very dramatic changes in water

phenomenon as you get very dramatic changes in water level where the storm is coming in and the winds are blowing and then all of a sudden they change direction or it stalls and all that water comes back the other way.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

So you can get flooding where the water is

(202) 234-4433

21

22

23

24

25

1 being piled up on one side but when the wind changes direction the water level can go back the other way in 2 3 a hurry. MEMBER STETKAR: I don't want to interrupt 4 5 you, but we have a few more slides to get through and 6 we have about 12 minutes. And there are a couple of 7 topics I think we may have a little bit of а 8 discussion on. 9 Okay. Tsunami. For the DR. KANNEY: 10 tsunami this is based on a NUREG that PNNL did for the Office of New Reactors in 2009. And they went out and 11 looked at the current research on tsunami and laid out 12 a methodology for looking at tsunami for nuclear 13 14 plants, in terms of identifying the hazard zones like the coastal inland sites, laying out the different 15 16 effects that one would need to look at for tsunami, 17 both the runoff and the rundown and proposed a screening method that looks for possible tsunamigenic 18 19 sources in the region. And if it couldn't be ruled out that there 20 were none then basically some sort of postulated or 21 hypothetical source would have to be developed and 22 then the impact of the tsunami from that source model. 23 24 Ice effects. Here again you can look at data for the region to see whether ice jam formation 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

57

	58
1	is a potential hazard. There are several areas to
2	look at for data in terms of just the weather data
3	NOAA collect all this information. And there's also
4	an ice jam database on actual ice jam formation that's
5	maintained by the Army Corps of Engineers and these
6	would sort of be your first source to decide whether
7	or not there's potential for ice jam formation in the
8	region that you're looking at.
9	Once you've decided that there is that
10	potential again you're in the situation where you sort
11	of have to postulate that one forms, you know, look at
12	upstream/downstream effects of a dam forming and
13	through backwater effects flooding your site. Or a
14	ice dam upstream that then fails and there is a flood
15	wave coming towards your site from it.
16	But these things basically there's no
17	methodology for predicting exactly where an ice jam is
18	going to form and what shape and how big it might get.
19	You know, you really have to postulate something.
20	MEMBER SKILLMAN: Have you considered ice
21	effects from the perspective of the ice itself as a
22	mechanical projectile? I'll give you three examples,
23	on the Ohio at Beaver Valley. The Prairie Island on
24	the Mississippi. TMI on the Susquehanna.
25	When the ice begins to break up there can
	I contraction of the second seco

(202) 234-4433

	59
1	be chunks of ice that are big as this building, four
2	feet thick. And they're moving. And if they move in
3	the wrong geometry they can getting into the circ
4	water pump valves or into the raw water intake, or the
5	essential raw water intake portion.
6	They are in fact part of the flood,
7	they're a flood of solid water. And their mass is
8	immense. And so while it is flooding it's not
9	flooding but it is certainly a water-borne element
10	that poses a very large potential risk.
11	DR. KANNEY: Yes, there is, it's not on
12	this slide but there is a section in the guide where
13	we discuss it. The forces due to the ice need to be
14	considered as well. Not just, you know, in terms of
15	ice effects, one of the ice effects that's listed
16	there is the impact of the ice force.
17	MEMBER SKILLMAN: Thank you.
18	DR. KANNEY: Combined events. I think
19	it's well understood by most hydrologists that, if
20	you're trying to postulate a very large flooding
21	event, you need to consider combined events. In our
22	common experience on certain river basins, say for
23	example on the Missouri recently where you have a
24	combination of snow melt and large storms, it's well
25	known that that combination is something you should
I	I contract of the second se

(202) 234-4433

	60
1	look at.
2	But on other river basins, and other
3	combinations of mechanisms need to be considered as
4	well. It's true that when you're looking at
5	hydrometeorological events they don't necessarily
6	occur independently. Large rainstorms have high
7	winds, so these effects need to be considered in
8	combination.
9	And then there are also some combinations
10	you want to look at just because it's possible that
11	things may coincide. For example, you have a storm
12	surge, it may or may not coincide with high tide but
13	you certainly better analyze the fact that it could
14	occur at high tide.
15	So in some cases the events are considered
16	independent you're looking at this sort of
17	qualitative, probabilistic assessment of putting some
18	things together. In other cases there are events
19	which you ought to consider that happen together. So
20	both variety of combined events here.
21	And the 10^{-6} average annual exceedance as
22	a target or a goal is something that was first, to my
23	knowledge, first proposed in the ANS-2.8, which is
24	Appendix A of the Guide. And it's proposed as a
25	target, as a goal. Something that the folks that put
l	I contract of the second se

(202) 234-4433

	61
1	that standard together considered reasonable.
2	MEMBER STETKAR: Joe, in the interest of
3	time, I have to be really careful here, but to bring
4	up something that the other members who weren't at the
5	subcommittee meeting didn't hear. Appendix H of the
6	Reg Guide includes guidance on the treatment of
7	combined events. And there's a laundry list of what
8	I'll call stylized scenarios and we had some
9	discussion about that.
10	And I'll just read the first one to give
11	the rest of the members some of the concern.
12	"Alternative 1 from precipitation is mean monthly base
13	flow with median soil moisture and antecedent or
14	subsequent rain, the lesser of one rainfall equal to
15	40 percent of probable maximum precipitation or a 500
16	year rainfall. The probable maximum precipitation and
17	waves induced by two-year wind speed applied along the
18	critical direction."
19	It seems that those are very stylized and
20	prescriptive. And despite the caution to not use them
21	as a cookbook, I fear they will be used as a cookbook.
22	And people will somehow infer that they some
23	relationship to this 10 ⁻⁶ , which is not at all clear
24	to me. We had some discussion about this that perhaps
25	they ought not to be so prescriptive.

(202) 234-4433

	62
1	That's not just a single example, there
2	are 19 of them for example. And they kind of read
3	like a cookbook. If you do all of these then indeed
4	you're good. And reviewers who will look will force
5	you to look at all 19 of those and nothing else.
6	And I think there's a danger there that
7	you might be forced as an applicant to look at
8	something that is irrelevant for the site and justify
9	why it's irrelevant. And not look at something that
10	indeed that might far exceed this 10 $^{-6}$ goal. So you
11	may want to think about softening the kind of
12	prescriptiveness of that list.
13	DR. KANNEY: Yes, as mentioned we had a
14	discussion about this at the subcommittee and I
15	mentioned at that time that we would certainly take
16	that onboard and go back and look to see what we could
17	do in that regard.
18	MEMBER STETKAR: Thanks.
19	DR. KANNEY: Your observation is, I mean,
20	it's accurate. I've seen it happen. Say for example
21	the update to this Reg Guide in many places relies on
22	work that PNNL did in NUREG 7046. And in that NUREG
23	CR they have example calculations to sort of
24	illustrate the methods and things.
25	And I was, I guess initially I was

(202) 234-4433

	63
1	surprised, I'm not sure why I was surprised looking
2	back on it. But I was talking to one of the licensees
3	and they took a set of examples out of the Appendixes,
4	oh okay, these are the things we must do. I'm like
5	wait a second, those are illustrative examples. That
6	wasn't a command.
7	MEMBER SCHULTZ: And that should be stated
8	very clearly as part of the text as well as the
9	appendix, because for all of the stakeholders that can
10	become the assumption of how the analysis is to be
11	performed, or reviewed.
12	DR. KANNEY: Quickly, I just wanted to
13	throw this slide up here just to sort of show the
14	breadth of interest in the Agency in the guide and the
15	number of different entities that we have talked to in
16	the course of developing the guide and then have
17	involved in the concurrence reviews.
18	And to tell you the truth there are a few
19	folks that popped up after the guide was written and
20	they said, hey we use it for this and this thing over
21	here. And I'm like oh, wow, I didn't know you used it
22	for that. So I learned some things about who actually
23	uses the guide that I wasn't aware of when I first
24	waded into this.
25	MEMBER STETKAR: I think, Joe, that in the

(202) 234-4433

interest of time, I know you had a few slides on probabilistic flooding hazard analysis and from our 2 first discussion you know that the Committee's quite interested in that.

But in the interest of time unless there's one or two very quick points that you'd like to make 6 from those slides, we just don't have time to go 8 through all of them. So if you have one or two very, 9 very quick ones I think we'd like to hear it.

10 DR. KANNEY: Right. I don't even need to put those slides up to talk about them. One is just 11 that we are, in research we are actively discussing 12 with the licensing office how we can put the flooding 13 14 hazard analysis. Incorporate more probabilistic 15 methodologies and concepts into this area. Research 16 is sponsoring some outside research right now. We 17 have one project started on probabilistic rainfall modeling. 18

19 We have a couple other projects that we're that address 20 just getting started on riverine flooding. And these are sort of, you know, these 21 projects are not going to answer all the questions. 22 They're getting us started on some key mechanisms that 23 24 we know will feature in a more broadly constructed 25 probabilistic flood hazard assessment approach.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

5

7

65

which we think need more work or are mature and the research the NRR and NRO are jointly sponsoring a workshop in January on probabilistic flood hazard assessment. It's also going to be cosponsored by several other federal agencies, Bureau of Reclamation, Corps of Engineers and the U.S. Geological Survey. And we're also talking to some other folks as well.

10 The point of this workshop, at least from NRC's point of view, what NRC hopes to get out of it, 11 is to bring in people who are using some of these 12 13 methods now. Look at what areas are ready to go and 14 can be used right now, identify areas which may need 15 further research in order to be applied to the type of 16 extreme floods that we are interested in. And then 17 use that information to really formalize a research plan going forward to provide a good technical basis 18 19 for developing quidance in this area.

I'm done.

21 MEMBER STETKAR: Thank you. Do any of the 22 members have any questions or comments? If not are 23 there any members of the public that would like to 24 make any comments or statements. If not I owe you 25 three minutes, Mr. Chairman, it's back to you.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

20

out.

	66
1	CHAIR ARMIJO: How about bridge line? Do
2	we have anybody?
3	MEMBER STETKAR: I wasn't aware. We
4	didn't have any requests for statements.
5	CHAIR ARMIJO: All right. What I'd like
6	to do is take a break now and reconvene at 10:20.
7	(Whereupon, the meeting in the above-
8	mentioned matter went off the record at 10:01 a.m. and
9	went back on the record at 10:19 a.m.)
10	CHAIRMAN ARMIJO: All right, we would like
11	to reconvene and Dr. Mike Ryan will lead us through
12	this briefing.
13	MEMBER RYAN: Thank you, Mr. Chairman. On
14	July 10th, 2012 the Radiation Protection and Nuclear
15	Materials Subcommittee heard presentations and held
16	discussions with representatives of the NRC staff,
17	EPRI, and NEI on ISG-8, Revision 3, Burnup Credit to
18	the Criticality Safety Analysis of PWR Spent Fuel and
19	Transportation and Storage Casks.
20	The version that the Subcommittee reviewed
21	was the draft prior to public comments. The entire
22	committee recently received the final draft that
23	incorporates the Subcommittee and public's comments.
24	And with that, I'll proceed and turn it over to Meraj.
25	You want to lead us off?
	1

(202) 234-4433

	67
1	MR. RAHIMI: Yes.
2	MEMBER RYAN: Okay, great, thank you.
3	MR. RAHIMI: Well, thank you very much,
4	Dr. Ryan. Good morning. My name is Meraj Rahimi, I'm
5	the branch chief for Criticality, Shielding and Dose
6	Assessment Branch in the Division of Spent Fuel
7	Storage and Transportation in NMSS.
8	This morning we're going to go over an
9	overview of the Interim Staff Guidance 8, Revision 3
10	that we are about to issue the final version. And
11	I'll provide some backgrounds and I'll have Drew, the
12	lead technical person, to present the main changes
13	that were made to the guidance, the ISG-8, Rev. 3.
14	And Nate Jordan, from my staff, he'll
15	cover the misload analysis. So with that, let's go to
16	the next slide, please. Just a little bit of
17	background, maybe I'm going way far too back with this
18	slide.
19	MEMBER SHACK: Radiation and heat, all
20	right.
21	MR. RAHIMI: So just to bring it into
22	context really, why burnup credits now, on the reactor
23	side and the pool sides, melted using burnup credit
24	for a long time, what has happened with the storage
25	and transportation cask designs.
	1

(202) 234-4433

	68
1	But the older generations of these casks
2	that were designed for really younger and cooler fuel
3	because the anticipation was that maybe another fuel
4	was going to pooled for a few years, then it's going
5	to be shipped off to reprocessing facility.
6	And so you look at the older generation of
7	the cask, it was designed for like a one-year-old
8	cooled fuel. So it was high heat, high radiation, and
9	those were the drivers for the design. Criticality
10	safety wasn't a driver because they had to separate
11	out these fuel assembly anyway in order to meet the
12	peak clad temperature.
13	So having a separation between fuel
14	assembly, they even made a conservative assumption the
15	fuel is fresh. That way they didn't really have to go
16	to trouble analyzing. So it was a very conservative
17	assumption.
18	But then over the years, I think in the
19	late 80s, in the 90s, then it was realized yes, these
20	fuels are going to stay in the pool for a long period
21	of time. And we have to go into apply storage and
22	subsequent transfer, maybe a number of years from now.
23	Payload became a criteria, going to a high
24	payload capacity casks. And as a result these fuels
25	were older fuel and colder. So subcriticality came
l	1

(202) 234-4433

	69
1	into the scene becoming a design driver. Because they
2	wanted to increase the payload.
3	How did they increase the payload? Next
4	slide, please. They basically bringing assembly
5	closer together because these are the longer and
6	colder fuel. So they couldn't no longer afford their
7	fresh fuel assumptions. It was too conservative.
8	The vendors wanted to take credit for the
9	fact that the fuel is burned. Because once you bring
10	the, it became more like core now, that they had the
11	assemblies in there. But they still had a design with
12	poise in place in between fuel assembly and they got
13	rid of these, what we called the flux traps. And it
14	was spacing in the fuel assemblies.
15	So just started asking, submitting
16	application with burnup credit. So the staff and
17	that's basically, a burnup credit in really taking
18	credit for the depletion of the fissile isotopes in
19	the fuel, and the production of neutron absorbing
20	isotopes, which include some actinides and fission
21	products.
22	And that's really the burnup credit, the
23	term burnup credit is referred to, is taking credit
24	for the depletion of the fissile isotope reduction of
25	neutron absorbing isotopes.
1	I contract of the second se

(202) 234-4433

	70
1	So the staff had to, in the early 2000,
2	provide some guidance to our reviewers, that when you
3	get an application you have to review this. Because
4	it is no longer fresh fuel assumption.
5	And the staff had to now look at the
6	operating history, the radiation exposure, the fuel
7	being in the core, so we have to go on the reactor
8	side now, how this fuel is less reactive. Because the
9	reactor operating conditions have a lot of affect on
10	how the reactive that discharge fuel assemblies are
11	and what are the assumptions that are made.
12	So in early 2000 the staff issued a
13	guidance based on available data at that time, which
14	said that at this point that there is an update for
15	the vendors and the designers to take credit for the
16	actinides, the reduction in the fissile isotopes, and
17	the production of the neutron absorbing actinides,
18	like Pu-240, Pu-242.
19	Because there was enough chemical assay
20	data from the program that was done at PNNL. Although
21	the purpose of the chemical assay was really for more
22	disposal. But there was enough data about the
23	chemical assay and we had enough critical experiments
24	with these isotopes that we knew very well.
25	These isotopes were started for many

(202) 234-4433

	71
1	years, U-235, Pu-239, these are the important
2	isotopes, so we really had enough data, were
3	comfortable putting out a guidance and yes, there is
4	enough data. We believe that you can take credit for
5	actinides provided you follow this procedure.
6	And then as we got more applications in
7	early to mid-2000 about going beyond actinide, because
8	actually the actinides credit really didn't buy the
9	fuel vendors much, still there were a majority of the
10	fuel assemblies that they couldn't fully load, full
11	capacity in a cask.
12	You could always transport fuels, check a
13	vort pattern, no burnup credit, can always trap or
14	store. Again, the idea was to increase the payload
15	and fill up these casks because dry storage, due to
16	these fuel in a dry storage.
17	And these are expensive systems and you
18	don't want to half-load it, or you don't want to half-
19	load transport and have too many shipments. So there
20	was an SRM that came from the Commission, and kind of
21	directed the staff that they should focus on efforts
22	on using burnup credit.
23	And recognize that yes, that is going the
24	right direction. But we need to go further in burnup
25	credit. And especially, there was a letter from this
1	I Contraction of the second

(202) 234-4433
72
Committee that was sent in 2008 Chairman Klein and it
recommended that the staff should take a more risk-
informed approach for evaluating burnup credits.
And really the focus was, at that time,
our position was there was an update on actinides
only, but not an update on fission products that the
liquids give credit to.
But the recommendation from the Committee
was, we should take a more risk-informed approach.
And although, you might not have all the data that you
need but take a risk-informed approach.
In pursuit of this approach, and the staff
did follow these recommendations. And for the past
several years, past three, four years, the staff, with
the help of the National Labs we embarked on really
looking at the going beyond actinides only.
Okay, what does it take for the vendors to
take credit for the presence of these fission product
isotopes? Although, we might not have the critical
experiment, all the critical experiments we want, all
the chemical assay that we want But is there a method
or a technique that they could use in order for them
to take credit in the presence of these neutron
absorbing isotopes.
So in May 2012 we, with the help of Oak

(202) 234-4433

	73
1	Ridge, we issued NUREGs on the techniques, on the
2	methods. And we're in a position to revise ISG-8,
3	Revision 2, which was actinide only, now provide
4	guidance going beyond actinides only, now you can take
5	credit for fission products.
6	So that's basically the scope of these
7	ISG-8, Revision 3, that now is going beyond actinide
8	only, and plus other changes that are based on the
9	experience on the applications that we received, we
10	deemed it necessary to make some other changes.
11	So Drew, now, will highlight what are the
12	major changes that were made to the ISG-8, Revision 2.
13	Drew?
14	MR. BARTO: Okay. And I am Drew Barto out
15	of Division of Spent Fuel Storage and Transportation
16	at NMSS and I work directly for Meraj. And we have
17	worked on this issue together for some time. And as
18	he said, I want to walk you through the major changes
19	to the ISG in this revision, since the last time we
20	revised it in 2002.
21	We've done a great deal of research
22	through our National Labs, particularly Oak Ridge
23	National Lab, in coming up with new data and new
24	methodologies for co-validation to support credit for
25	minor actinides and fission products.
	I contract of the second se

(202) 234-4433

	74
1	So this version of the ISG recommends
2	taking credit for 20 additional minor actinides and
3	fission products. And I'll talk about that in some
4	detail later.
5	There was also sufficient data to allow
6	credit to be extended up to 60 gigawatt days per
7	metric ton. It was previously 50. And the main
8	driver for that was in the radiochemical assay data.
9	And I'll show where we've got more data in that range
10	to support this level of burnup credit.
11	We have also looked at misloads in casks.
12	Our previous version of the ISG had a recommendation
13	that measurement be performed to confirm the burnup
14	value of that assembly. And this was primarily to
15	prevent misloads in casks. We've looked at that issue
16	some.
17	And this revision of the ISG provides an
18	option to perform a misload analysis and it will
19	incorporate additional administrative loading
20	procedures in lieu of a direct burnup measurement.
21	So as I said, we've had a great deal of
22	work done since 2002 looking at the burnup credit
23	issue. And this is really just a sampling of the
24	NUREGs that have been put together by Oak Ridge
25	National Lab.

(202) 234-4433

	75
1	The first bullet there, NUREG/CR-6979
2	discusses a set of data that we were able to purchase
3	from the French, that consists of high quality
4	actinide critical experiments.
5	And these were critical experiments
6	designed to look like the uranium and plutonium
7	composition of 37 ½ gigawatt a day fuel. And this was
8	evaluated by Oak Ridge National Lab, and found to be
9	very applicable to burnt fuel compositions in a spent
10	fuel cask.
11	And we didn't have any of this data
12	before. We were relying almost entirely on fresh U-02
13	critical experiments and mixed oxide critical
14	experiments. So this was a great improvement in the
15	validation set for criticality.
16	There was also a good deal of work done
17	since 2002 on the depletion code validation side,
18	particularly in generating radiochemical assay data
19	from destructive spent fuel measurements. And this is
20	primarily what we used to validate the depletion
21	codes.
22	And this NUREG-7012 here is a summary
23	NUREG of four or five other NUREGs that detail
24	specific programs to generate this data, that are far
25	more recent.
	I

(202) 234-4433

	76
1	The last two NUREGs on this list, I'll
2	talk about in a little more detail but basically we
3	consulted with Oak Ridge National Lab. They found a
4	way basically to use all of the data that was at our
5	disposal to develop new code validation methodologies,
6	both for depletion and criticality. And they actually
7	provided some reference bias and bias uncertainty
8	values that can be used under certain conditions
9	directly by applicants.
10	So we felt that the availability of this
11	French actinide criticality data gave us a much
12	greater degree of confidence in the criticality
13	validation that existed when we issued the previous
14	revision.
15	And the actinides, those major actinides,
16	that are represented in the newest experiments account
17	for roughly 75 percent of the reduction in K effective
18	due to burnup. So that's an important part to
19	validate properly.
20	And we felt that since you can now do
21	that, it's appropriate to move forward with fission
22	product credit. There is a much better database of
23	radiochemical assay data that supports burnup credit
24	to higher burnups.
25	All of this available data was used in
	1

(202) 234-4433

Í	77
1	these two NUREGs to develop alternative depletion
2	criticality code validation methodologies, and
3	reference bias and bias uncertainty numbers. So we
4	revised the ISG to recommend crediting both actinides
5	and fission products up to 60 gigawatt days.
6	MEMBER SHACK: As a matter of curiosity,
7	is this the longest lasting Interim Staff Guidance
8	available?
9	MR. BARTO: I don't believe so. It's
10	number 8. There is several others that I think are
11	going for more -
12	MEMBER SHACK: It's still active?
13	MR. RAHIMI: ISG-01, do we have ISG-01
14	too?
15	MALE PARTICIPANT: Yes.
16	MR. BARTO: And some of them have been
17	incorporated into, there is one SRP that went final
18	that incorporated a large number of them. And there
19	is one that is under revision right now.
20	MEMBER SHACK: What would it take to turn
21	this into an SRP? I'm just sort of wondering where
22	you're at here.
23	MR. RAHIMI: Yes, actually, when we were
24	revising the SRP, our storages were about to
25	incorporate all the things that we had in ISG-8, Rev.
	I Contraction of the second

(202) 234-4433

	78
1	2 into this. I think we present it to the
2	Subcommittee.
3	And the recommendation was well, you're
4	still changing that ISG, your position, so why don't
5	you wait until your position is final. And the new
6	revision, and wait, then incorporate. So that's the
7	reason, about three, four years ago we didn't
8	incorporate that one.
9	And the plan is, right now, we believe
10	kind of this is complete on the burnup critical PWRs.
11	And the plan is, I think within the next couple years,
12	we're going to revise our transportation SRP, so that
13	with the Palisades we're going to incorporate all of
14	this stuff into the SRP. And that's the final.
15	MR. BARTO: Yes, and the ISG has evolved
16	since the last time we did this. This particular ISG,
17	I was looking back when we started this process and
18	trying to figure out what the process was when we
19	issued Rev. 2.
20	And the process was basically, we
21	developed it internally. And SFST director signed it
22	out and it was done. So there is a lot more steps now
23	and it's -
24	MEMBER RYAN: I'm going to suggest we
25	press on.

(202) 234-4433

79 1 MR. BARTO: Yes. Okay, we coordinated 2 with NRR and NRO, since they also have burnup credit 3 issues in the spent fuel pools, to have this work 4 performed by Oak Ridge National Lab to develop these 5 new depletion and criticality code validation methodologies. 6 7 As Ι said before, they provided the methodologies and they also provided reference bias 8 9 and bias uncertainty values for a, it's a fictional 10 storage and transportation system. But it's one designed to look very much like what we're seeing. 11 And they also did the same for the 12 criticality code and came up with a reference bias 13 14 value. And they provide recommendations on how to use these reference values and what the criteria are for 15 16 being able to use those values. And then also, if an applicant doesn't 17 meet the criteria for using those values directly, 18

then there are methodologies described in detail on those NUREGs that can be used to develop those values on their own.

These next few slides I took from a presentation at the subcommittee meeting that was done by Oak Ridge National Lab. And I'm going to attempt to summarize the validation methodologies that were

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	developed. But this is a much shorter presentation
2	about validation in general.
3	So we can talk about this as much as you
4	want. But the validation methodology that was
5	developed for the isotopic completion code is knows as
6	the Monte Carlo uncertainty sampling method.
7	It uses all of the available and
8	applicable radiochemical assay data to develop, for
9	each nuclide, a composition bias and bias uncertainty.
10	In other words, the code calculates that you have X
11	amount of U-235. Based on the measurements that you
12	have, what's the bias on that code calculated value?
13	And then what's the uncertainty on that bias?
14	So using that for each nuclide, you can
15	define a distribution of values. So what this
16	methodology does is you basically develop a model of
17	you cask system, or your pool system, and calculate
18	the composition for a particular burnup and enrichment
19	value.
20	And then use this methodology to randomly,
21	but according to the normal distribution, adjust that
22	value. So it's based on the uncertainty of the
23	composition bias for each particular nuclide.
24	So there is 28 nuclides that you're
25	modeling in this system. Each of them are
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

81 1 independently varied. So you do this for one K 2 effective calculation and then you repeat that process 3 for hundreds of criticality calculations. 4 And then what you get is that example on 5 the right there, where it converges to a K effective value, which determines what is the depletion code 6 bias in terms of a delta K effective. 7 And then the upper and lower bounds there 8 9 represent the standard deviation of that bias, in terms of delta K effective. So this is a way of 10 estimating what the bias is in terms of K effective. 11 And again, the basis for this is this 12 database of measured radiochemical assay data. 13 These 14 are the 28 isotopes that are recommended for burnup credit and it gives you an idea of what the number of 15 16 samples are that you have. 17 So you can see for the major actinides, you have a lot more measurements. Basically, every 18 19 sample that is used has U-235, 238, and most of the plutoniums, since they are very important to reactor 20 operation and to any other operations with spent fuel. 21 Some of the other minor actinides and 22 fission products however, we didn't really start 23 24 measuring until later. Many of them aren't really important for reactor operation and, in fact, aren't 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	even there as the distribution of the nuclides changes
2	as the fuel cools. And things that are important at
3	five years are overwhelmed by other more important
4	things that quickly decay away.
5	So it's a limited set that we're using but
6	the sampling methodology will work for these lower
7	numbers of samples. What it does is it expands where
8	you sample from and it drives out basically the tails
9	of that distribution.
10	And there was a question at the
11	subcommittee meeting that I wanted to address here.
12	And that was specifically about the measurement
13	techniques, and when that sample was dissolved, how do
14	they ensure that they've gotten -
15	MALE PARTICIPANT: Got it all.
16	MR. BARTO: everything. So there is an
17	OECD report that details best practices for doing
18	these dissolutions and measurements. And there is a
19	good amount of detail about ensuring that you've
20	gotten everything that you think you have.
21	Basically, they cut a section of a fuel
22	assembly out and they dissolved the whole thing, clad
23	and all. And then any undissolved clad, they do an
24	analysis to ensure that it's clean material and that
25	they didn't leave anything behind.
	1

(202) 234-4433

	83
1	CHAIRMAN ARMIJO: Yes, that was my
2	question. I didn't know that they dissolved the
3	cladding, so I thought it might be missing what was
4	deposited on the ID of the cladding, could be
5	important.
6	MR. BARTO: Sure, no it would be for the
7	isotopes that that would happen with are important.
8	So it's very important that you get everything that
9	you think you have.
10	There is also an issue any time one of
11	these measurements is done with the metallic residues
12	and I think this was said at the meeting before. But
13	basically, some of them are retained in the dissolved
14	sample but some of them are left over a solid. So you
15	have to basically analyze both sets and combine the
16	answer to get the correct concentration.
17	And then this is an example of the results
18	that were provided by Oak Ridge National Lab in
19	NUREG/CR-7108, and this is a isotopic K effective bias
20	uncertainty using ENDF/B-VII data.
21	And what they found is, for a cask system
22	the bias, in terms of K effective, is zero. And what
23	that really means is that the code basically over-
24	predicts K effective in terms of how it handles
25	depletion. So when you over-predict you don't get
	1

(202) 234-4433

	84
1	credit for a negative bias. It's always set to zero
2	to be conservative. And that's what they found. It
3	was a small over-prediction.
4	But what really is important here is this
5	bias uncertainty is reasonably large. And it varies
6	as a function of burnup. And you can see that they've
7	reported it for actinides only and for actinides and
8	fission products.
9	And in terms of delta K, you're varying
10	anywhere from one and a half to three percent, in
11	terms of K effective. And a lot of that is driven by
12	the measurement uncertainties themselves. And the
13	kind of limited set that we have to work with.
14	CHAIRMAN ARMIJO: Drew, I want to just ask
15	a question for curiosities. Do the fission gases
16	contribute significantly to the, do you treat them or
17	is it -
18	MR. BARTO: We don't credit them.
19	CHAIRMAN ARMIJO: You don't credit them -
20	MR. BARTO: We assume that they're gone.
21	CHAIRMAN ARMIJO: Okay. But they are
22	there? You had lots of fuel that has leaked.
23	MR. BARTO: Potentially, for
24	transportation, we have to consider that there is
25	transportation loads that, even if it was intact when
	•

(202) 234-4433

	85
1	it goes into the package, it may, through either
2	normal conditions or an accident condition, we have
3	certain assumptions about how much of that additional
4	fuel would fail and release those gases.
5	CHAIRMAN ARMIJO: But let me ask my
6	question in a way, if these noble gases were still
7	there and were credited, would it make any significant
8	difference?
9	MR. RAHIMI: Well, yes, the answer to your
10	question, if they were there. But due to pinholes,
11	hairline cracks, inherently on the cladding, our
12	assumption is you can not rely on these gases to be
13	within the rod, to stay within the rod.
14	CHAIRMAN ARMIJO: But you do know if you
15	have a failed fuel element.
16	MR. RAHIMI: Pinholes and hairline crack
17	is not considered failed.
18	CHAIRMAN ARMIJO: They leak.
19	MR. RAHIMI: Right. But we don't define
20	in our definition of the failed fuel assembly, you
21	know, does not -
22	CHAIRMAN ARMIJO: That means you have some
23	assumption whether the fuel rod is sound or not, we
24	will not credit the fission gases.
25	MR. RAHIMI: Right. We do not credit
	I

(202) 234-4433

	86
1	fission gases. Again, because we believe that,
2	generally, you have hairline cracks and pinholes -
3	CHAIRMAN ARMIJO: That's absolutely wrong.
4	You don't generally have hairline cracks and pinholes
5	in spent fuel, that you don't know, it may be a very
6	rare situation where you have a failed fuel that's not
7	leaking somehow. But that's extremely rare. But the
8	reality is -
9	MR. RAHIMI: Right.
10	CHAIRMAN ARMIJO: most spent fuel is
11	sound and the fission gases are in the fuel rod there
12	some place.
13	MR. RAHIMI: And also, there are three
14	criterias that we really, how we come up with these 28
15	isotopes. And also, you have to be stable, you know,
16	stabilized topes.
17	CHAIRMAN ARMIJO: Sure.
18	MR. RAHIMI: And non-soluble, so there is
19	a set of criteria that we run these isotopes through,
20	that you know for tens of years, or 100 years, you
21	know these isotopes are going to be here.
22	CHAIRMAN ARMIJO: Yes, that's what I was
23	asking. I don't know the physics enough, that if
24	these things decayed away so they would
25	MR. RAHIMI: That's really give you any
	1

(202) 234-4433

	87
1	bad gases in 20 years, not stable
2	MEMBER RYAN: Due to decay.
3	MR. RAHIMI: Yes, due to decay, that some
4	of those fission gases, krypton gases.
5	CHAIRMAN ARMIJO: So maybe the answer I'm
6	looking for is yes, they're there initially but they
7	decay away
8	MEMBER RYAN: As I recall a comment
9	Meraj, correct me if I'm calling this wrong that
10	while they're there and as they decay away mainly, the
11	point was made that they're not going to be around
12	long enough to do a lot of good. It's really chasing
13	a really small incremental
14	MR. RAHIMI: That's right.
15	MEMBER RYAN: contribution, so I think
16	that's where it ended.
17	CHAIRMAN ARMIJO: That was, I think, were
18	they significant or not, while they might be, but not
19	very long.
20	MR. RAHIMI: Right. Yes, and we had
21	actually some application that we saw that the
22	applicant was taking credit for krypton, for example.
23	CHAIRMAN ARMIJO: He didn't last very
24	long.
25	MR. RAHIMI: Look at the half-life, you
l	1

(202) 234-4433

	88
1	know, it's not there.
2	CHAIRMAN ARMIJO: Okay, thank you. I
3	won't -
4	MR. BARTO: Yes, it's not clear how
5	important that would be, either it's another fission
6	product, it would probably be kind of down in the
7	weeds, so to speak -
8	CHAIRMAN ARMIJO: Okay.
9	MR. BARTO: as far as contribution of
10	delta K.
11	MEMBER SCHULTZ: It's been a matter of
12	choosing a reasonable set that will have an impact,
13	but cause no question -
14	CHAIRMAN ARMIJO: Right.
15	MEMBER SCHULTZ: associated with
16	protecting the reactivity of the gas.
17	CHAIRMAN ARMIJO: Okay.
18	MR. BARTO: Okay.
19	MEMBER RYAN: Tempus fugit.
20	MR. BARTO: So the second NUREG that Oak
21	Ridge National Lab developed was about estimating
22	criticality bias due to the additional minor actinides
23	and fission products that we wish to credit.
24	As we've stated before, we've got a good
25	set of critical experiments for the major actinides.
1	I Contraction of the second

(202) 234-4433

	89
1	But there really isn't sufficient data, in terms of
2	critical experiments, that involve the minor actinides
3	and fission products. At least not what we would
4	typically expect for criticality validation.
5	So what Oak Ridge did in their NUREG is
6	develop a methodology for estimating what this bias
7	could be based on the cross-section uncertainty. So
8	in the ENDF file there are estimates of what the
9	cross-section uncertainty is as a function of energy.
10	And what Oak Ridge has done is they have
11	used sensitivity data, basically, for every
12	criticality model you can generate this sensitivity
13	data. And what it tells you is, what is the change in
14	K effective due to a change in the cross-section data,
15	as a function of energy.
16	So when you multiply the cross-section
17	uncertainty by this sensitivity data, you can get an
18	estimate of K effective uncertainty. And the basis
19	for this approach is that code biases are primarily
20	caused by nuclear data uncertainties.
21	And the NUREG has a large section about
22	verifying that this is actually true. And it is true
23	in almost all cases. And this therefore, gives you an
24	upper bounder for what the magnitude of the bias could
25	be, since we don't have any critical experiment data

(202) 234-4433

	90
1	to actually determine a bias.
2	So they determined this uncertainty in K
3	effective for a variety of systems and they did a
4	large sensitivity study on this. And what they found
5	was that the uncertainty is never larger than one and
6	a half percent of the reactivity worth of the minor
7	actinides and fission products.
8	So then this is a, using this one and a
9	half percent value, gives you an estimate of the bias
10	as a function, essentially as a function of burnup.
11	And then for each NUREG, Oak Ridge offered
12	recommendations for how we were to use this.
13	And we've essentially taken their
14	recommendations that applicants can use the reference
15	bias uncertainty numbers in lieu of performing an
16	explicit validation, provided that they are using the
17	same code and cross-section data. And that their
18	storage or transportation system is similar to what
19	was evaluated in the NUREG/CRs.
20	And they chose the systems in the
21	NUREG/CRs to be representative of what we're typically
22	seeing. And then for the major actinides, the
23	applicant should perform a traditional criticality
24	code validation using that HTC data.
25	So for code validation in ISG-8, this is
	1

(202) 234-4433

	91
1	a summary of what we're recommending. Again, they
2	performed the major actinide criticality validation
3	in, more or less, the traditional way validation is
4	done. But for minor actinides and fission products,
5	for the criticality bias, they are to use the Oak
6	Ridge supplied bias number.
7	And for isotopic depletion analysis for
8	both major actinides and minor actinides in fission
9	products, they can either use the Oak Ridge supplied
10	bias and bias uncertainty numbers or use those
11	methodologies that were developed in the NUREG to
12	determine their own estimate. So that covers
13	validation in the ISG.
14	We also made some changes in the burnup
15	confirmation section of the ISG, done a good deal of
16	work looking into the misload issue in casks. We have
17	a NUREG developed that looked at well, what are the
18	potential consequences of a misload.
19	So this NUREG evaluated from under-burned
20	all the way to fresh fuel assemblies loaded in the
21	worst case position in a burnup credit cask. And the
22	key result out of that was that for a single fresh
23	assembly, can give you as much as a five and a half
24	percent increase in K effective.
25	Now there is obvious physical differences

(202) 234-4433

Another NUREG that looked at basically how burnup information is determined normally in reactor operations. And then compared those methodologies to the out of core measurement techniques that had been performed to-date, such as the fork detector that's used in pools sometimes to determine burnup.

And we also had research look into this issue and they have a report that they have developed for us that estimates the probability of a misload in a spent fuel cask. That was out just last year.

15 And the key conclusion from that report is 16 that these are credible events that we have to 17 consider. So what we've done in ISG-8 is, we've recognized that fact but we've allowed an alternative 18 19 to the measurement. And that alternative consists of with additional 20 misload analysis combined а administrative procedures for burnup credit casks. 21

So the ISG goes into detail about what kinds of misloads are to be evaluated. In looking at the events that have happened, it became clear that we should think about more than just a single misload, as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	93
1	Nate will get into in a moment. Most of them have
2	involved multiple assemblies within a cask.
3	But there is still the oddest assembly out
4	there, that is severely under-burned and that means a
5	higher enriched assembly that has gone through
6	typically less than a full cycle of burnup, an
7	assembly that was pulled out for whatever reason early
8	in the cycle.
9	So we've developed a criteria that the
10	applicant should evaluate a single severely under-
11	burned misload. And that misload should be chosen,
12	such that the fuel reactivity bounds 95 percent of the
13	under-burned fuel population with 95 percent
14	confidence. And by under-burned I mean fuel that does
15	not meet the cask loading curve.
16	For the multiple moderately under-burned
17	misload, the assemblies should be chosen such that
18	half the cask is filled with a fuel assembly that
19	bounds the reactivity 90 percent of the total
20	discharged fuel population.
21	So that's out of all of the discharge
22	assemblies that can be loaded in the cask. And I've
23	got a graphic in a moment that I will show that will
24	kind of illustrate this.
25	And we're also accepting a reduced
	I

(202) 234-4433

ĺ	94
1	administrative margin for this analysis since it is an
2	upset condition. And I'll talk about that a little
3	bit later when we get into the public comments.
4	And then we recommended additional
5	administrative procedures that we would believe would
6	reduce the likelihood or the consequences of a
7	misload, such as identifying the location of high
8	reactivity fuel in the pool prior to and after
9	loading, before hand, to recognize where it is.
10	And then afterwards to make sure it's
11	still there and not in the cask or independent reviews
12	of the cask loading process. And there is a set of
13	procedures that we recommend and this is just a
14	sample.
15	So with this single misload and the
16	multiple assembly misloads, this is to illustrate kind
17	of what we're talking about here. The green line,
18	it's not a real loading curve but it's sort of what
19	you might expect would be typical of a spent fuel cask
20	loading curve, meaning that fuel above that line is
21	acceptable for loading. And this cloud of numbers
22	represents the entire discharged PWR fuel population
23	as of 2002.
24	So the red line at the bottom is what you
25	might expect of a fuel assembly that bounds 95 percent
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

1 of the under-burned population. And that's a line of equal reactivity. And as you can see, in reality, 2 3 there is only a handful of assemblies that are under 4 that line. 5 CHAIRMAN ARMIJO: Wouldn't those normally be damaged fuel that was -6 7 MR. BARTO: Probably. 8 CHAIRMAN ARMIJO: -- either leaking or 9 something was wrong because there is -10 MR. BARTO: Probably. CHAIRMAN ARMIJO: -- not much incentive to 11 leave -12 MR. BARTO: Well, what you find when you 13 14 get in and actually look at this data, is a lot, you kind of can't really see those numbers but there is 15 more than one in each of those -16 CHAIRMAN ARMIJO: I know there's -17 MR. BARTO: -- boxes. 18 19 MEMBER SKILLMAN: I think I know that eight of these are lead test assemblies that were in 20 for one cycle instead of three -21 Right, that -22 MR. BARTO: MEMBER SKILLMAN: -- fuel cycle said that 23 24 if they're five weight percent, that only got consumed 25 for -

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

95

	96
1	MR. BARTO: That may be the case but below
2	that line, at that enrichment, is well less of what
3	you would typically expect for even one cycle.
4	CHAIRMAN ARMIJO: There has to be
5	something strange, in that people would know -
6	MR. BARTO: Right.
7	CHAIRMAN ARMIJO: about those.
8	MR. BARTO: Right. And that's the idea.
9	And when you look at these, more often than not, you
10	find that a grouping of assemblies is all at one site.
11	So there are many sites that might not have any
12	assemblies below this line. And they have the option
13	of doing a site-specific type analysis that would be
14	much less penalizing, I think, in terms of K
15	effective.
16	So the blue line represents what you might
17	expect for assemblies that bound 90 percent of the
18	total population. Key point about that line is it's
19	conceivable that a cask loading curve would already be
20	below that line, in which case this evaluation
21	wouldn't have to be done. So unless there is any
22	CHAIRMAN ARMIJO: Just a quick question.
23	MR. BARTO: Sure.
24	CHAIRMAN ARMIJO: Are MOX assemblies,
25	they're not many of them, but I know there were some

(202) 234-4433

	97
1	MOX assemblies that were recently discharged a little
2	prematurely, after only one cycle or two cycles?
3	MR. BARTO: If it was discharged before
4	2002, it's reflected in this database.
5	MEMBER SCHULTZ: It is in the database.
6	CHAIRMAN ARMIJO: It is?
7	MEMBER SCHULTZ: Yes, two cycles versus
8	three.
9	CHAIRMAN ARMIJO: Yes.
10	MR. BARTO: And just a word about this
11	database, it's an energy and information
12	administration fuel survey, which they have done a
13	number of times in the past and they keep, as early as
14	2006, they were supposed to redo this and they have
15	not done this. So we're looking for an update to this
16	data whenever we can get it.
17	CHAIRMAN ARMIJO: Yes, I would be curious
18	to see this same plot for BWR fuel.
19	MR. BARTO: And that's in the database
20	too, up to 2002. And we can get that. And we'll talk
21	a little bit about BWR fuel later on. But unless
22	there is any other questions about this material, I'll
23	-
24	MEMBER RYAN: Drew, we're about half way
25	there and we've got a lot of ground to cover.

(202) 234-4433

	98
1	MR. BARTO: Okay, I'll turn it over to
2	Nate. And Nate is going to talk about the misload
3	report.
4	MEMBER SCHULTZ: Thank you.
5	MR. JORDAN: Good morning, sirs, ma'am.
6	My name is Nate Jordan. And just like Drew Barto, I
7	work directly for Meraj Rahimi. And I've been
8	involved sometime with them, as well as other staff in
9	SFST in Research on this effort.
10	Just wanted to talk to you briefly about
11	the misload report that was generated by Research.
12	And due to a collaborative effort between both, the
13	report was generated which looked at the probability
14	of having single and multiple misloads.
15	Other objectives of that report also
16	included identifying causes, possible causes of
17	misloads, as well as any common mode failure.
18	Two approaches were used in the and if
19	I'm talking too fast, please but two approaches
20	were used in the report. One of which involved the
21	empirical approach, which used real-time data
22	involving a misloads in the industry just to give some
23	idea to the extent to which misloads do occur.
24	The secondary approach that was used in
25	the report involved a theoretical approach, which used
	1

(202) 234-4433

	99
1	a topping event tree model. The event tree model is
2	beneficial in identifying areas in the loading process
3	where misloads can occur.
4	And also, providing some idea of potential
5	checks and reviews in the loading process that could
6	help to avoid those misloads. The report also looked
7	at the impact of a burnup credit, the impact of
8	assembly burnup on the probability of having a
9	misload.
10	From the briefing given to the
11	Subcommittee, there were five events that were
12	discussed as part of the probability report.
13	The first event, Palisades, involved
14	misloading 11 assemblies in five casts. This was
15	really due to cooling times that were used that were
16	based on planned loading dates as opposed to the
17	actual loading dates.
18	In North Anna and Surry, that was actually
19	dealing with a cask design that was based on
20	asymmetrical loading patterns, based on decay heat
21	limits. Those loading patterns, those cask designs
22	weren't adequately implemented into the procedures
23	that were used in the loading selection process. And
24	that, as a result of that repeated errors, 19
25	assemblies in 11 casks.
	I Contraction of the second seco

(202) 234-4433

	100
1	Where Grand Gulf, they improperly used the
2	database that contained incomplete information
3	regarding fuel cycle dates. So as part of that, the
4	result of that was 34 assemblies that were misloaded
5	into four casks during that time.
6	McGuire was included in the report, only
7	from the standpoint of just showing that it was
8	considered a near-misload, in the fact that an
9	incorrect assembly was picked up that was right next
10	to the correct assembly. But it was caught as part of
11	a check before lowering it down into the cask.
12	And as you see at the bottom, the results
13	of the empirical calculation in the report, it gives
14	you a misload probability on the order of 10^{-2} if you
15	consider 20 casks are being misloaded out of a total
16	of 1,200.
17	MEMBER BROWN: Before you go on, what -
18	MR. JORDAN: Yes, sir?
19	MEMBER BROWN: as a result of the
20	misloads, what was the real K effective that you ended
21	up with? And what's the limit that you would normally
22	shoot for? I saw the other curves and what the burnup
23	thing is trying, I'm trying to understand what is the
24	basic limit in a cask storage cask. Is it .9? Or is
25	it .8? Or is it .99?
l	1

(202) 234-4433

	101
1	Obviously, the object here is to try to
2	squeeze as many as you can and reduce the number of
3	storage casks that you've got sitting around. Is that
4	the purpose of this?
5	MR. JORDAN: Well, one of the things you
6	want to consider is that you actually want to keep it
7	subcritical dealing with -
8	MEMBER BROWN: I understand that.
9	MR. JORDAN: and that's going to be
10	dealing with a number of different issues dealing with
11	the subcritical margin and so forth. One of the
12	things to keep in mind with these misloads is that
13	they didn't challenge criticality safety at all. They
14	were mainly based on challenging decay heat issues.
15	I don't know if I answered your question correctly.
16	MEMBER BROWN: Oh, no.
17	MR. JORDAN: Oh, I apologize.
18	MEMBER BROWN: What is the K effective
19	that you want relative to one I guess. Obviously, you
20	have decay heat limits, and you have the K effective
21	limits.
22	MEMBER RYAN: What's the typical K
23	effective in a loaded cask, is the question you might
24	want to ask.
25	MEMBER BROWN: Yes, thank you.
	I Contraction of the second

(202) 234-4433

	102
1	MR. JORDAN: I know in some cases you have
2	a .95. But based on the USL, the upper subcritical
3	limit, you could have certain cases depending on the
4	minimum subcritical margins, the bias that's included
5	as well. And so typically you shoot for around .95 in
6	a criticality cask.
7	MR. RAHIMI: Yes, that's the design, .95.
8	And typically, what you see in criticality analysis
9	that they present, the numbers, they're right up
10	there. Because what they're loading, high enriched,
11	five percent enriched fuel under the flooded
12	conditions, they're right up there.
13	And that's why the loading curve, you see
14	it goes right smack in the middle of the fuel
15	populations. So that is a .95 K effective line, what
16	Drew put out. So typically, the bounding case
17	analysis that they present, it is up to that point.
18	But, of course, the actual loading date,
19	they load, yes, often times they are far away from
20	that. But in the certificates that we issue, they
21	can't -
22	MEMBER BROWN: They're allowed to go that
23	far.
24	MR. RAHIMI: They can go up to that far,
25	that's right.
	I contract of the second se

(202) 234-4433

	103
1	MEMBER BROWN: So if they did and you had
2	these types of errors, what would the real K effective
3	be in those circumstances? Did anybody look at that?
4	MR. RAHIMI: In this specific misload,
5	you're saying, did we look at the -
6	MEMBER BROWN: If they were at .95 and
7	they made these, based on their calculations, and they
8	made these errors, where would they be when they
9	loaded them? That's all.
10	MR. RAHIMI: Fortunately, see these casks,
11	these are not the burnup credit casks that were loaded
12	on the storage side. They assume during the loading
13	in the pool, they rely on the boron in the pool. So
14	it is a boron credit that they're using. But if these
15	casks were to be used -
16	MEMBER BROWN: No, I'm trying, let me,
17	they made errors.
18	MR. RAHIMI: Yes.
19	MEMBER BROWN: So now if they made these
20	errors, regardless of the other thing, if they made
21	these errors and they had done their calculation based
22	on .95, what would it have been if they had made those
23	errors?
24	MEMBER RYAN: Let's turn the question
25	around, try and make it simple.

(202) 234-4433

	104
1	CHAIRMAN ARMIJO: He answered it earlier.
2	MEMBER RYAN: If anybody exceeded .95 -
3	CHAIRMAN ARMIJO: Less.
4	MEMBER RYAN: K effective in a real
5	pool's misload. What's the highest number that
6	anybody has figured out, after the fact, that a
7	misload costs. Is it .94 or .99 or what? That's the
8	question.
9	MEMBER BROWN: Yes.
10	MEMBER RYAN: Okay, so now -
11	MEMBER BROWN: We know they've made
12	errors. And they've got big errors in some of these
13	cases, 34 assemblies.
14	MEMBER RYAN: What's the question? We're
15	running short of time, Charlie.
16	CHAIRMAN ARMIJO: Yes.
17	(Simultaneous speaking)
18	MEMBER BROWN: I'm trying to figure out
19	why we pushed the limits.
20	CHAIRMAN ARMIJO: Nate answered the
21	question earlier.
22	(Simultaneous speaking)
23	MEMBER RYAN: That's my point.
24	CHAIRMAN ARMIJO: Charlie, if the question
25	was addressed, he said in these particular misload

	105
1	events, the criticality does not above, it was lower
2	actually.
3	MEMBER BROWN: They were low in terms of
4	the, I mean, I presume they were low enough that they
5	didn't. If they were right up against the .95 limit,
6	that he says they can go to, and they made these
7	errors, would they have been much higher?
8	MEMBER RYAN: But science doesn't support
9	your supposition.
10	CHAIRMAN ARMIJO: No.
11	MEMBER BROWN: What, pardon?
12	MEMBER RYAN: There is a large body of
13	experience that says they're not at that margin.
14	MR. BARTO: I think what you can take away
15	from this is, that these were all for decay heat,
16	which means in some sense they exceeded the burnup
17	that they were supposed to because there was no
18	minimum burnup for criticality. Because these were
19	all licensed on a fresh fuel assumption.
20	So from a criticality perspective, these
21	misloads probably resulted in a lower actual K
22	effective.
23	CHAIRMAN ARMIJO: Yes.
24	MEMBER BROWN: But when you change in the
25	basis, right? You're trying to take more credit.
	1

(202) 234-4433

	106
1	These were done on fresh fuel. And so you have a lot
2	of margin.
3	MR. BARTO: Right.
4	MEMBER BROWN: And you're changing the
5	rule so that you have less margin.
6	MR. BARTO: Right. Well, we have done a
7	report that shows consequences of misloads in terms of
8	putting an assembly in that's under-burned by -
9	MALE PARTICIPANT: 75 percent.
10	MR. BARTO: ten percent, 25 percent, 50
11	percent, so we can get estimates of what's kind of the
12	worst case that could happen with a misload? And it's
13	significant. For one, if we go back to, that's for
14	one of those in the lower right hand corner, it can be
15	three, four percent in terms of -
16	MR. JORDAN: I know in one of the ones
17	that Drew is mentioning, talking about the
18	consequences of a misload, they looked at one scenario
19	involving an under-burned by 75 percent.
20	And it resulted in a change of about three
21	and a half to four and a half percent increase in
22	reactivity, so for a GBC cask. And this misload, in
23	that particular situation, they misloaded into the
24	most reactive part of the cask as well.
25	MEMBER BROWN: That's even better.

(202) 234-4433

	107
1	MR. JORDAN: Right.
2	MEMBER SCHULTZ: And these events it
3	demonstrates that all the assemblies that were
4	intended to go into the casks -
5	MR. JORDAN: Yes, sir.
6	MEMBER SCHULTZ: were loaded into the
7	casks.
8	MR. JORDAN: Yes, sir.
9	MEMBER SCHULTZ: But what was the -
10	MR. JORDAN: Some of these were incorrect
11	assemblies based on the decay heat limit. So you had
12	a lot of assemblies in here that were misloaded. They
13	weren't initially intended to go into the casks, based
14	on the certificate of compliance in exceeding the
15	decay heat limits.
16	CHAIRMAN ARMIJO: What I got out of it, at
17	the Subcommittee meeting, was that the errors are in
18	the front end, in the planning -
19	MR. JORDAN: Exactly.
20	CHAIRMAN ARMIJO: and analysis.
21	MR. JORDAN: Yes, sir.
22	CHAIRMAN ARMIJO: They're not at the back
23	end where I thought, guy picks up the wrong thing. So
24	it's the front end planning, a better job there and
25	better job in review is where you get a -
1	

```
(202) 234-4433
```
108 1 MEMBER SCHULTZ: That's what I wanted to 2 get to. 3 MR. RAHIMI: That's right and most of the 4 5 MEMBER SCHULTZ: It's a mismatch between the analysis and the assembly. 6 7 MR. RAHIMI: And most of the errors you 8 see, these are first of all, it was revealed to us 9 that it was a multiple assembly, that misload. And it 10 wasn't, as Dr. Armijo described, is not the quy picking up the wrong assembly. 11 12 MEMBER SCHULTZ: Right. MR. RAHIMI: It was the load sheet was 13 14 wrong. 15 That's right. MEMBER SCHULTZ: 16 MR. RAHIMI: The database was wrong. The 17 guy did what the load sheet told him to do. MEMBER SCHULTZ: Right. 18 19 MR. JORDAN: And you were correct in a earlier version, when you talked about crediting the 20 robustness of the Hatfield Hanley procedure itself. 21 But like you said, we found out that a lot of these, 22 especially the ones that cause a multiple assemblies, 23 24 are based on the selection process. 25 CHAIRMAN ARMIJO: Right.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	MEMBER RYAN: Nate, I guess the data that
2	you're working from is relatively old in terms of this
3	misload.
4	MALE PARTICIPANT: That is right.
5	MEMBER RYAN: What's current practice
6	like, can you speak to that at all? Have people
7	addressed this, improved procedures so that this isn't
8	a more probability event, that kind of thing?
9	MR. JORDAN: Well, we still, believe it or
10	not, and that was one of the points I was going to
11	make later in the presentation. But we, even the day
12	after we presented back in July, we received
13	information on a misload, although a pulled misload,
14	at Indian Point that happened earlier in the year. So
15	misloads do happen.
16	MEMBER RYAN: I guess what I'm reaching
17	for is what is the frequency of it? Is it getting
18	better? Is it about the same?
19	MR. JORDAN: Since this data has been
20	included, I'm not sure we really substantiate enough -
21	MEMBER RYAN: It's kind of hard to tell.
22	MR. JORDAN: Yes, sir.
23	MEMBER RYAN: Okay, all right. That's
24	fine.
25	MR. BARTO: This data isn't all, North
1	1

(202) 234-4433

	110
1	Anna and Surry was what, last year?
2	MR. JORDAN: Yes, sir.
3	MR. RAHIMI: Yes, these are -
4	MR. BARTO: 2011.
5	CHAIRMAN ARMIJO: So this isn't ancient
6	history.
7	MR. BARTO: Right.
8	MEMBER BLEY: Nate?
9	MR. JORDAN: Yes, sir?
10	MEMBER BLEY: Just before you got into
11	these events, I looked ahead and I don't see anything
12	on this. You said you were considering the impact of
13	burnup on misload probability. And yet, when I look
14	through this, I don't see anything coming up about
15	that. Can you tell us about that?
16	MR. JORDAN: Yes, sir. What we were
17	trying to say is that the report looks at the impact
18	of a burnup on probability. And the result is that,
19	the probability is independent of the actual burnup of
20	the assembly itself, but rather the population at
21	particular burnup values.
22	MEMBER BLEY: Okay. I was just trying to
23	figure out what in the world -
24	MALE PARTICIPANT: We just mentioned it to
25	break this up.

	111
1	MR. JORDAN: Any other questions before?
2	All right, one of things we looked at, I know as part
3	of the last briefing to the Subcommittee, the
4	Committee seemed to be interested in information
5	regarding any corrective actions that were implemented
6	as a result of these misload events.
7	In the case of Palisades, one of the
8	things they did is they added procedures that actually
9	governed or provided guidance on fuel handling
10	selection, as well as they updated the fuel database
11	to include a more up-to-date fuel information. That's
12	one of the things they did as a start.
13	For North Anna and Surry, they implemented
14	a revise to procedure to include an explanation of the
15	asymmetrical design and how it impacted, or the
16	asymmetrical design based on the decay heat limits,
17	and how it should be implemented into the procedures
18	that were used in the loading selection process.
19	For Grand Gulf, they added a procedure for
20	developing a database because if you recall, from the
21	earlier slides, the database that they used contained
22	incomplete information. So they added a procedure,
23	which governed how to, or development of the database
24	to contain more up-to-date information.
25	All right, as part of the report, the

(202) 234-4433

	112
1	conclusion of the report, we find that misloads are
2	deemed credible based on both approaches, the
3	empirical and the theoretical approach.
4	As far as the event tree model, one of the
5	things we take away from this is that a lot of the
6	errors seem to be based on systematic or planned,
7	errors in the planning process.
8	And a lot of the errors, also a lot of the
9	misloads, if you are going to have a misload, more
10	than likely it will include or involve multiple
11	assemblies.
12	Right now, currently, we're coordinating
13	with other program offices within the Agency, NRR,
14	NRO, and the Office of Research in working with
15	industry to try to minimize the likelihood and the
16	consequence of having misloads, both in the spent fuel
17	pool and the spent fuel storage cask.
18	CHAIRMAN ARMIJO: I wonder how this
19	compares, misloads and cask loading compares, with
20	misloads to core loading. I think people are really
21	careful loading at core. I don't have numbers but the
22	procedures they would use to make sure that they load
23	the core properly could readily be applied to planning
24	the loading of a cask.
25	MR. JORDAN: Right.
I	I

(202) 234-4433

	113
1	CHAIRMAN ARMIJO: Assuming that the core
2	loading is more reliable than cask loading.
3	MR. JORDAN: Yes, sir.
4	CHAIRMAN ARMIJO: So I was just curious
5	about that, and if you've ever looked into it?
6	MR. BARTO: I think that's a good takeaway
7	for something we should look at when we're developing
8	this IN.
9	CHAIRMAN ARMIJO: Yes.
10	MEMBER SKILLMAN: I'd like to add to that.
11	Very often the IN is not well absorbed in the site
12	culture. Very often the IN is reviewed by the
13	licensee. It could be in the corporate office. But
14	it doesn't find it's way down to the, either the STA
15	or the nukes at the site, that actually are
16	responsible for developing the basis of the planning
17	for the fuel moves.
18	So I'm wondering, for your first two
19	bullets, if there might not be some benefit to the IN
20	being distributed to a different group of personnel.
21	I spent 23 years at one site and it was rare that the
22	IN found it's way down into the operating floor.
23	I'm wondering if the better way might be
24	to get it to the reactor inspector for a brief
25	inspection before any fuel moves. If you go back to

(202) 234-4433

	114
1	the list of errors, each one of those is a preventable
2	human performance error. Each one of those could be
3	prevented.
4	MR. JORDAN: Yes, sir.
5	MEMBER SKILLMAN: And I would offer that
6	most of the site people would say gee, we don't want
7	to do that again.
8	MEMBER RYAN: Dick, I'm jumping ahead a
9	little bit but I think some of this we're going to
10	hear from EPRI?
11	CHAIRMAN ARMIJO: Yes.
12	MEMBER RYAN: So a little more detail. So
13	if we could hold those -
14	MEMBER SKILLMAN: Okay.
15	MEMBER RYAN: follow-up questions for
16	that briefing, I think that would -
17	MEMBER SKILLMAN: But I would offer this,
18	at some level, in the course of time, the inspectors
19	have become so familiar that they are not always as
20	challenging as they could be.
21	MEMBER RYAN: Yes.
22	MEMBER SKILLMAN: And this might be a
23	place where the reactor inspectors at the site get an
24	aggressive path and everybody knows, they are really
25	digging into this. And the site culture would
1	

(202) 234-4433

115 1 probably say we accept this. This is a good challenge. 2 3 MR. RAHIMI: Yes, that's a very good 4 point. Actually we just, we in the Division, were 5 just finishing a training course for inspectors. And one part of it is the loading. And we're bringing our 6 7 designers actually, sort of walking our inspectors through these loading patterns. 8 9 Because all the designs we're receiving is 10 getting more complicated. Is a loading pattern with inspector heat, thermal, now criticality safety, so 11 you've got three -12 But it also goes to Dr. 13 MEMBER SKILLMAN: 14 Armijo's question about loading the core itself. 15 MR. RAHIMI: Right. MEMBER SKILLMAN: Placing the expended 16 17 fuel into the spent fuel pool, into the racks, and then moving from racks over to the storage locations. 18 19 MR. RAHIMI: Right. MEMBER RYAN: I don't want to halt a good 20 discussion but we need to move on. 21 CHAIRMAN ARMIJO: 22 Yes. MR. JORDAN: All right, just to finish up, 23 24 like you said, we are looking at developing an IN to look at misloads in the spent fuel pool and the casks. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	Going into this, a couple of things to
2	consider. The fact that number one, we want to
3	communicate that misloads are credible. And the
4	result from systematic failures can involve multiple
5	assemblies.
6	One of the things we also wanted to look
7	at now, with the advent of burnup credit, along with
8	decay heat and shielding considerations, loading
9	patterns that are already, by some, considered to be
10	complex can become even more complex, which could
11	increase the likelihood of misload events.
12	And we just want to drive home the fact
13	that efforts to reduce misloads should provide more
14	focus, should have a stronger focus on the planning
15	phase, as well as making sure that your inventory data
16	is correct. And actually, if there's no other
17	questions, I'll turn it back over to Drew.
18	MR. BARTO: Okay. I'm going to talk about
19	the public comments we have received on the draft.
20	MEMBER RYAN: Drew, I'm going to have to
21	ask you to either skip a couple slides or move quickly
22	through them because we really are running short on
23	time.
24	MR. BARTO: Sure. I'll just go ahead and
25	go right into them. We had a number of comments about
	1

(202) 234-4433

	117
1	providing flexibility for other validation
2	methodologies. EPRI has spent a good deal of time and
3	effort coordinating with the industry on an
4	alternative validation technique that we have not
5	reviewed yet.
6	So what we've done with the ISG is
7	reinforce the idea that this ISG represents one method
8	that has been reviewed in detail and found to be
9	acceptable. And that we're not going to explicitly
10	exclude alternative methodologies and that we'll
11	review them on a case by case basis.
12	There was a request to remove the burnup
13	measurement, since we've now offered an alternative to
14	it. We have decided to leave it in as an alternative.
15	This would allow applicants flexibility in case,
16	either that can't meet the misload analysis criteria
17	or for some other reason, they can't verify the
18	burnup, in case they couldn't read the assembly ID
19	number or whatever.
20	Additionally, we want to leave open the
21	idea that there might be better measurement
22	technologies in the future that would make that option
23	more appealing.
24	We have a large number of comments about
25	the proposed administrative loading procedures that we

(202) 234-4433

	118
1	recommended to a company, burnup credit cask loading.
2	There was an alternative set proposed by industry.
3	And there are a couple of examples there.
4	We looked at that list and felt like those
5	were things that should already be done for cask
6	loading, regardless of whether or not it's a burnup
7	credit cask, and that our procedures were intended to
8	be specific for burnup credit casks and geared towards
9	preventing misloads.
10	So we've reinforced this in the ISG, that
11	these are additional procedures for burnup credit cask
12	loading. And you can see there is a sampling there on
13	this slide. And we've revised the ISG to remind the
14	reader that these are recommended procedures. We
15	will, obviously, consider alternatives. And this list
16	is not intended to be all inclusive.
17	We also had a large number of comments on
18	our misload analysis recommendations. We had some
19	words with regards to the reduced administrative
20	margin for the misload analysis. It's typically .05
21	from a criticality analyses.
22	But there are other regulations, in other
23	parts of the Agency, for other criticality safety
24	regulations that talk about how you can justify a
25	reduced administrative margin.
I	

(202) 234-4433

	119
1	And our draft ISG asked for justification
2	for whatever margin is used. So we've simply
3	clarified what that justification should consist of
4	and we've pointed to a much larger, more detailed
5	document as issued by the Division of Fuel Cycle
6	Safety and Safeguards out of NMSS.
7	For our single fresh fuel assembly
8	misload, we had a recommendation to simplify this and
9	just make it a fresh fuel assembly, which I think that
10	we would find acceptable, if somebody were to submit
11	such an application.
12	But the fact is we know what to expect
13	from, in terms of a delta K from, fresh fuel assembly
14	misloads. And we don't believe that most systems,
15	that we are licensing today, could meet that criteria.
16	So what we've developed is what we
17	consider a reasonably bounding single misload,
18	recognizing that there is significant physical
19	differences between fresh and burned assemblies.
20	For the multiple assembly misload, there
21	was a recommendation that we simplify it to just make
22	it 25 percent under-burned. And that's based entirely
23	on the license loading curve. This could potentially
24	be less restrictive than what we've proposed,
25	depending on where that loading curve sits.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	120
1	It also could be more restrictive. It
2	depends. But we've decided to keep our 90 percent of
3	the total inventory recommendation, which also allows
4	a licensee or applicant to omit this analysis, if
5	their loading curve already encompasses more than 90
6	percent of the fuel population.
7	These are some other assorted comments
8	that we got. We've identified 28 isotopes that we
9	think should be credited. However, we've modified the
10	ISG to state that additional isotopes can be credited
11	if the estimate of the bias and bias uncertainty
12	associated with those isotopes can be provided.
13	BWR burnup credit, the ISG, as it's
14	conditioned, deals only with PWR burnup credit. We
15	simply have not looked into BWR burnup credit that
16	much. It hasn't really been needed for dry storage
17	casks or transportation.
18	The reason for this is it's, primarily
19	that it's a smaller cross-section assembly. So if you
20	look at a cross-section in a cask, there is more
21	plates essentially. There is more neutron absorber
22	per volume of fuel. But you generally just need
23	burnup credit less.
24	However, we have had some applicants
25	express interest in BWR burnup credit. And we have

(202) 234-4433

	121
1	initiated a research project with the Office of
2	Research in Oak Ridge National Lab to look into this.
3	In the meantime, we've revised the ISG to state that
4	we will look at proposed BWR burnup credit
5	methodologies if they are submitted to us.
6	We previously limited the recommendations
7	of the ISG to intact fuel only. And that was the
8	Revision 2 recommendation and we had left that
9	recommendation intact for this revision. And we
10	received several comments suggesting that we revise
11	that.
12	And we have revised it to say that this
13	could be applicable to undamaged in damaged fuel and
14	there is, things have specific definitions in ISG-01,
15	provided that potential fuel reconfiguration and any
16	additional uncertainty is associated with the
17	condition of the fuel are addressed.
18	We had a number of comments on how we
19	treated bias and bias uncertainty for both depletion
20	and criticality in the draft ISG. For depletion, we
21	had combined bias and bias uncertainty, simply adding
22	them together into one number.
23	And this is not how these values are
24	typically treated in criticality safety analyses, as
25	was pointed out by several commenters, so we split
1	I contract of the second se

(202) 234-4433

them out.

1

2

3

4

5

6

7

The bias can be added directly to K effective again, with ENDF-VII data this doesn't matter since the biases is zero. But the bias uncertainty that delta case of I is an uncertainty that can be physically combined with other independent uncertainties.

8 The criticality bias however, it's 9 officially an uncertainty in K effective due to the 10 uncertainty in the cross-section data. However, the ISG recommends that we treat this as a bias, since 11 this number is an indication of how large the bias 12 could be. And we believe it's conservative to treat 13 14 it that way. So we're leaving that recommendation as is. 15

We also received a number of comments 16 about the recommendation of how to use that value. 17 We recommend that that estimate of the criticality bias 18 19 should be one and a half percent of the minor actinide and fission product worth, for the scale code system, 20 using these three sets of data that were evaluated, 21 and that this should be doubled for other codes that 22 used the same data. 23

24 We believe it is based primarily on the 25 data but we simply haven't done any investigation of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	123
1	how other codes would compare. We talk about other
2	codes. We primarily mean MCMP. It's really the only
3	other major code that uses the ENDF data.
4	And the recommendations that we got in the
5	comments was basically to, we think that we can use
6	this one and a half percent value for other codes. So
7	we investigated this and we've got some additional
8	research underway with Oak Ridge National Lab.
9	And we may provide some other guidance on
10	this. But for now, we're saying either use this three
11	percent value or provide a demonstration that the one
12	and a half is acceptable.
13	So in conclusion, we've extended the
14	technical basis for burnup credit to include fission
15	products and minor actinides. We've provided an
16	alternative to the confirmatory burnup measurement in
17	the form of a misload analysis in additional
18	administrative procedures.
19	This has been generally well received, got
20	a large number of comments but we feel we have
21	appropriately addressed them. And we plan to publish
22	this final ISG by the end of September. And as I said
23	earlier, our next big topic is BWR burnup credit. And
24	we will pursue that next.
25	MEMBER RYAN: Thank you very much. I

(202) 234-4433

	124
1	think we'll hold questions to the end. Albert, you
2	ready? Now, Albert, I'm going to rely on you to help
3	us through your slides with some time left for our
4	third presenter from Nuclear Energy Institute. So
5	we'll need to be mindful. You have more slides than
6	the staff did.
7	MR. MACHIELS: No I don't.
8	MEMBER RYAN: No, okay.
9	MR. MACHIELS: No, no. Good morning.
10	First of all, I want to thank the SEIs and the NRC for
11	the opportunity to give this talk on some work that
12	was sponsored by the EPRI members.
13	I would like to talk with you about the
14	full burnup credit validation, the topic which is
15	obviously of interest today. And I will talk about a
16	alternate methodology. This is not to detract from
17	the work that has been presented by the NRC here. We
18	very much support the progress which have been done in
19	the Rev. 3.
20	But I think it will provide another view
21	of what can be done in this area. And obviously, what
22	I would like to do is come back on talking about the
23	risk information and the probability of criticality in
24	transportation. There has been a number of questions,
25	comments related to this discussion with misload
1	

(202) 234-4433

	125
1	analyses.
2	So let's begin to a brief introduction.
3	Criticality safety is obviously a key public concern.
4	One thing I want to emphasize is that criticality
5	safety came about and was developed originally for
6	shipping material such as enriched uranium, plutonium,
7	and this type of things.
8	And in all those cases, what you are
9	shipping was fairly simple. Enriched uranium,
10	uranium-235, uranium-238. And in your criticality
11	analysis you have to account for what nuclide you
12	have, as well as the uncertainties associated with the
13	content, what percentage of uranium-235, and also the
14	uncertainty associated with the cross-section with the
15	work.
16	And that was possible for this type of
17	material. However, when we talk about spent fuel, the
18	same methodology is a little more complex to apply
19	because now we don't have shipments which involve a
20	handful or maybe a dozen of different nuclides.
21	But we have a shipment which involves a
22	very large number of components. And as you know,
23	ORIGEN follows more or less 2,000 nuclides. But after
24	a short time there is only 400 left or so.

That means if you want to account for

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	126
1	those 400 isotopes the way it is done, typically by
2	looking up each nuclide individually, come up with an
3	isotopic content. Looking at the uncertainty, how
4	will you know the content?
5	And then looking at the uncertainty of the
6	cross-section associated with that material, and then
7	when you associate all those uncertainty in the
8	conservative manner, then obviously, you end up with
9	very large uncertainties.
10	So spent fuel, which is something which is
11	much less reactive than, obviously, something like
12	enriched uranium. Also, this has to carry a much
13	larger uncertainty if you want to follow the classic
14	methodology, including basically, taking into account
15	as many nuclides as possible.
16	MEMBER POWERS: I guess I didn't follow
17	that. You have uncertainties in the cross-section,
18	and you have uncertainties in the content of the
19	radionuclides, so you have numerous uncertainties -
20	MR. MACHIELS: Yes.
21	MEMBER POWERS: but that doesn't mean
22	that you end up with very large uncertainties.
23	MR. MACHIELS: Well, you typically do
24	because -
25	MEMBER POWERS: Separate issue, not
	I contract of the second s

(202) 234-4433

	127
1	because the number of uncertainties, but the
2	magnitudes of those.
3	MR. MACHIELS: Yes. And you have to
4	average it -
5	MEMBER POWERS: I could have one
6	uncertainty, and it was very large, that dominates
7	everything.
8	MR. MACHIELS: Of course. But what I'm
9	saying is that more species you introduce, basically,
10	you accumulate more uncertainties. And then you can
11	basically come up with a fairly large number that way.
12	The easiest way, obviously, to do that, as
13	I explained earlier, was first of all, to refer to the
14	fresh fuel assumptions. I mean if you can live with
15	it, that was the penalty associated with living with
16	a fresh fuel small assumption, it was small enough,
17	simplification basically was justifiable.
18	But as explained, we are no longer in that
19	situation. First of all, we are working with much
20	higher enrichment. And that means that if you keep
21	the fresh fuel assumptions, you end up with a low
22	capacity storage and transportation systems.
23	And more systems means more operations,
24	increased costs. If you need more systems, that
25	results usually in the higher dose. And when you talk

(202) 234-4433

	128
1	about transportation, if you talk about low capacity
2	system, that means you will have a lot more shipments
3	involved.
4	And that means that you have to include
5	also, the non-radiological risk, which you have the
6	classical accidents on the road, which tend to
7	dominate clearly over the radiological one.
8	MEMBER BROWN: What do you mean by a lot
9	more shipments, just calibration, is that twice as
10	many?
11	MR. MACHIELS: For PWR, the classic
12	example, instead of having a cask which contains 24
13	PWR sound base would be something that contains 32.
14	So in the same envelope, in the same volume, you can
15	fit 32 PWR instead of 24. And so you reduce your
16	shipment by a factor of one-third probably.
17	MEMBER BROWN: Okay, thank you.
18	MR. MACHIELS: So burnup credit then was
19	introduced and accepted. And it's basically trying to
20	get upgraded for the reduced reactivity of the spent
21	fuel compared to fresh fuel. And as you've heard, it
22	comes in several flavors.
23	Actinide only, where basically you focus
24	on the major actinides. And then the next step is the
25	actinide was a subset of fission products, and
	I contract of the second se

(202) 234-4433

	129
1	including some minor actinides, which is what was much
2	talked about in the context of this Rev. 3.
3	And then there is the full burnup credit,
4	where you leave nothing on the table there. You take
5	credit for everything. But then it requires maybe a
6	different approach.
7	In the transportation area we have
8	followed the classic safety criticality method, which
9	is using individual components in the shipment and
10	associating uncertainties with those.
11	When you go to full burnup credits, then
12	a different approach is required. And full burnup
13	credit has been used, for example, in the management
14	of spent fuel pools of the reactors.
15	So we did some work some five years ago in
16	terms of assigning a probability of a critical event
17	during transportation. And as you know, that relies
18	on a number of activities which are going to happen at
19	the power plant.
20	And we took, as a reference, we worked
21	with a power plant which is located very close to
22	where our contractor is located, which is in Southern
23	California. And we basically follow the plant
24	procedures of that plant.
25	We started with the very beginning, when

(202) 234-4433

	130
1	the plants receive fresh fuel and is going to use that
2	fresh fuel to fuel the reactor as well, subsequently
3	following the life of a fuel assemblies throughout
4	it's life until its discharge.
5	And obviously, during that time there is
6	activities which are tracking and recording the burnup
7	by fuel assembly seal numbers. Then we talk about now
8	the operation involved in loading a cask. And that
9	involves a number of operations. And finally, there
10	is a number of verifications when it is time to ship
11	that fuel.
12	So all those activities excuse me
13	all those activities, the last two, are happening on
14	the plant. I'm going to focus on those two activities
15	here.
16	This is basically what's happening on the
17	plant when you talk about loading a cask. You select
18	fuel assemblies which are in compliance with the
19	certificate of compliance.
20	You prepare a fuel movement sequence sheet
21	for loading your cask. There is some verification
22	involved. Then you have the actual transfer of the
23	fuel assembly from the pool to the cask. There is
24	some verification involved.
25	And then if you have, this is something
	1

(202) 234-4433

	131
1	which is not universally applied, but you can do a
2	video of all the operation. And you have a way to
3	independently verify what has happened before.
4	And then before shipping, you can also do
5	some independent verification in terms of relating the
6	records back to information which was in the core
7	management systems.
8	And so in all those sequence here, you
9	basically have a potential, obviously, for error of
10	commissions. And what we are trying to capture that,
11	the main thing that I want to emphasize in this is
12	that when we talk about misload here, we are talking
13	about misload assemblies during shipment, which is
14	different from what we have talked in the context of
15	the previous discussion.
16	Because obviously, in the context of what
17	we discussed, the 10^{-2} , this is a very high number
18	obviously. But there were a number of activities of
19	the power plant that detected that there was actually,
20	the assemblies should not have been in the cask.
21	And so prior to shipment an assessment
22	would be made whether those assemblies make a
23	difference from a point of view of criticality or not.
24	And in all the cases that we have seen, there would be
25	no inference on the criticality.
	1

(202) 234-4433

	132
1	On the contrary, in one of them in the
2	Grand Gulf, instead of loading two cycles, they loaded
3	three cycles. So obviously, the criticality would be
4	with having much lower.
5	So there is, through this process, a
6	number of recovery which is possible. And obviously,
7	what you're trying to quantify is what has escaped,
8	obviously, all the attention and all the verification
9	steps, which are included.
10	And so from that point of view, when we
11	look at what we assume, based on misloading of reactor
12	operation and base of actual experience, we see about
13	a factor of ten. In the reactor operation we, both
14	the NRC and our study, used basically a study that was
15	performed by AREVA, in terms of reviewing information.
16	And then we look in reality, it's
17	basically a factor of ten difference. The advantage
18	of a reactor is that as you go up in power, you will
19	notice that if there is an error, this will be noticed
20	by the reactor area.
21	So what we are trying to capture is
22	obviously a misload which will have escaped all the
23	detection pattern and eventually, will find its way
24	when it is being shipped.
25	And from that point of view, the largest
	1

(202) 234-4433

	133
1	probability that we see is at the very bottom line
2	here, is that when throughout the life of the fuel
3	assembly, since the receipt until the discharge, there
4	has been basically a disconnect between the fuel
5	assembly and its record.
6	And this, the only way to recover from
7	that is really at the very end here. And if you don't
8	do that systematic verification, it will go through.
9	If you do that systematic verification you have a good
10	chance to catch it.
11	And so from that point of view, depending
12	on the exact procedure applied at the plant, you will
13	see those probabilities obviously being modified on
14	that. But this is what we did.
15	Now this is what is happening at the plant
16	here, the blue, the highlighted area in blue.
17	Obviously, there will be other things, obviously, now
18	there will be what is a probability of an accident
19	during the transport itself, assuming a nominal
20	mileage.
21	And this assumes that it's transportation
22	by railroad. So there is an extensive database from
23	the Federal Railroad Administration, which gives you
24	all kinds of data in terms of probability of
25	derailments. And it talks about the passenger car,
	1

(202) 234-4433

	134
1	freight car, hazmat cars, and so on.
2	And you can, more or less, define to some
3	extent the probability they're going to pick because
4	you basically have, for example, the flexibility of
5	limiting the speed of the train, for example, that
6	will influence the probability of derailment.
7	The next step, obviously, is that if you
8	have an accident and include that probability, then is
9	the accident severe enough, and what is the
10	probability of having an accident which is severe
11	enough that you actually punch some kind of a defect
12	into the cask. And at the same time, there is
13	presence of water. So that basically now, you are
14	getting to introducing mud or water into your gas.
15	And so when you assume, when you multiply
16	all those probabilities together, you typically get a
17	very low number, which is of the area 10 ⁻¹⁶ per
18	shipment. Obviously, we will do more than one
19	shipment, but per shipment it's a very low
20	probability. And the result of it is that accident
21	during transport is a very low number to start with.
22	MEMBER STETKAR: Albert?
23	MR. MACHIELS: Yes?
24	MEMBER STETKAR: What's the likelihood of
25	that train being hit by a meteorite? I know what it

(202) 234-4433

	135
1	is. It might be right about the size of a bowling
2	ball, traveling at 15 kilometers per second.
3	MR. MACHIELS: I have no idea.
4	MEMBER STETKAR: It's probably about nine
5	orders of magnitude, at least, higher than that little
6	number that you have calculated there. So what
7	confidence do I have in this number?
8	MR. MACHIELS: I think that if you look at
9	16, you should not have any confidence in that number.
10	MEMBER STETKAR: Okay. How about ten
11	orders of magnitude higher than that, that -
12	MR. MACHIELS: Oh, yes.
13	MEMBER STETKAR: your uncertainty might
14	be a factor of oh, 100 billion.
15	MR. MACHIELS: No, if I work with a note
16	of confidence, I would be thinking about the property
17	of the order of three orders magnitude, you know,
18	between -
19	MEMBER STETKAR: Oh, so it might be as
20	high as 10^{-13} ?
21	MR. MACHIELS: Yes.
22	MEMBER STETKAR: Which is six orders of
23	magnitude smaller than being hit by a meteorite?
24	MR. MACHIELS: Yes.
25	MEMBER STETKAR: So how do I interpret
	I

```
(202) 234-4433
```

	136
1	this silly little number?
2	MR. MACHIELS: Well, essentially with a -
3	MEMBER STETKAR: That's a small number.
4	CHAIRMAN ARMIJO: I don't know about the
5	silly part.
6	MEMBER STETKAR: Well, it's a silly small
7	number.
8	MR. MACHIELS: That means that -
9	MEMBER POWERS: Yes, I mean that's the
10	whole point. We're trying to reduce uncertainties and
11	these numbers up here, they're in their single
12	uncertainty up there. And the uncertainties are huge.
13	MEMBER STETKAR: Much huger than three
14	orders of magnitude.
15	MEMBER POWERS: Yes.
16	MR. MACHIELS: You really have to look at
17	it, well, handling first of all with the material
18	which doesn't go critical very easily. It's spent
19	fuel and so from that point of view it takes work to
20	make it critical. And at the same time, then you have
21	a number of steps which make the fuel very -
22	CHAIRMAN ARMIJO: If you just specified
23	that this was a spent fuel cask, loaded the way we
24	load them and you just filled it with water, you know,
25	can it go critical.
1	

(202) 234-4433

	137
1	MR. MACHIELS: No.
2	CHAIRMAN ARMIJO: The answer is no.
3	MR. MACHIELS: Let me give you -
4	CHAIRMAN ARMIJO: If all this other stuff
5	-
6	MR. MACHIELS: a typical example, but
7	not example, but a true story. I went to Idaho once
8	with an NRC guy. And we were looking at a project
9	basically to look at a cask going critical, spent fuel
10	cask critical.
11	And during the discussion then, it came
12	about that the INL guide said that if we want to have
13	something become critical, you will have to push some
14	fresh fuel. So without putting a lot more
15	criticality, and without putting a lot of misloading,
16	those basically are essentially not going to be
17	critical.
18	CHAIRMAN ARMIJO: But you really don't
19	have to go through all these intermediate steps, where
20	everybody can get all upset, to come to the conclusion
21	that if you follow this ISG, and you just simply fill
22	a cask with water, you're still in good shape.
23	MR. MACHIELS: That's not because you
24	don't put some fresh fuel in it.
25	CHAIRMAN ARMIJO: That's what I say,

(202) 234-4433

	138
1	follow the ISG, don't put fresh fuel in the cask.
2	MEMBER POWERS: So what you're saying is
3	the total uncertainty here is the probability that you
4	put some fresh fuel in there, which, as a rough
5	estimate, 10^{-3} , because it's a human error. So it's
6	not 10^{-16} , it's 10^{-3} .
7	MR. MACHIELS: No, but you would never
8	ship something with a fresh unit. Even if the
9	incredible -
10	MEMBER POWERS: If I was dumb enough to
11	put some fresh fuel in it, I'm dumb enough to ship it.
12	MR. MACHIELS: Okay.
13	CHAIRMAN ARMIJO: But then you know what
14	the problem you have to address, right? Don't ship
15	fresh fuel. Put fresh fuel in a spent fuel cask.
16	MEMBER POWERS: I already know that. I
17	didn't need to do this analysis not to do that.
18	CHAIRMAN ARMIJO: Exactly. But we're in
19	agreement, so that that's where you focus your
20	administrative controls.
21	MEMBER RYAN: This is an interesting
22	calculational exercise and all. But I tend to agree
23	that if there are probabilities of errors that could
24	really cause a problem, to be, let's see, 13 orders of
25	magnitude higher than this, we're done with that. And

(202) 234-4433

	139
1	let's focus on managing the risks where there is a
2	higher probability of something going wrong.
3	CHAIRMAN ARMIJO: Yes.
4	MEMBER RYAN: So we're done with that part
5	is what you're saying -
6	MR. MACHIELS: Can I move on?
7	CHAIRMAN ARMIJO: Yes.
8	MR. MACHIELS: Okay. All right so coming
9	_
10	MEMBER RYAN: And finishing up fairly
11	quickly -
12	MR. MACHIELS: Yes, right.
13	MEMBER RYAN: for the next speaker.
14	MR. MACHIELS: Coming back to burnup
15	credit validation now, we have developed an
16	alternative approach which is based on inner reactor
17	measurements, those are basically required as part of
18	running a power plant.
19	It was a cooperative effort involving Duke
20	Energy, Studsvik Scandpower, and Dr. Dale Lancaster
21	was here. The principle investigator was Professor
22	Kord Smith. What we did is we looked at the four
23	reactors, about 44 cycles of reactors. And about
24	over, close to 700 of those flux map is to present the
25	core of a PWR.
	1

(202) 234-4433

And we are looking at roughly a million measurements of miniature efficient chambers which are inserted in the central part of an assembly to basically measure the flux distribution throughout the core.

And basically, when you have a reactor, it contains, at the beginning of a cycle, from fresh fuel to something which has been once burned, to at the end of the cycle, something which is basically once burned to discharge. So you have a range of burnup in the reactor from about zero to something, which is close to your discharge burnup.

And by looking at that information and extracting the information which is available from that, you basically come up with a number of benchmark here. And what you get is basically the definition of 13 different benchmark which is based on those measurements.

19 And if you take an example, this is like a standard problem. You look at something which is 20 described in details in term of geometry correctness 21 And then basically the benchmark 22 and SO on. calculates that if you start from fresh, going to 23 24 burnup, to ten, 20, 30, 40, 50 and so on, it will give you basically what your code is supposed to calculate 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	141
1	in terms of depletion in reactivity.
2	And that gives you basically the
3	benchmark, which allows to use your tools in order to
4	verify whether you have systematic bias as a function
5	of burnup of some other statistics.
6	And this is an example of the differences
7	that, when you look at the draft, ISG-8, Rev. 3, and
8	you look at the end response of depletion benchmark,
9	you see, just for a point of view on uncertainty, when
10	you look at the discharge burnup, 40 to 50, there is
11	about a difference of three in the uncertainty, which
12	is lower for the end response on methodology.
13	And on top of that you get more credit
14	using that approach because you don't disregard any
15	nuclides. You basically take everything which is
16	included in the spent fuel.
17	The difference is fairly easy to explain.
18	The reactor measurements are highly accurate
19	measurements. While the value, which are basically in
20	the draft ISG, on which you rely on basic chemical
21	assay, that the uncertainties associated with a
22	chemical assay is much larger, that is really the
23	simple reason for that.
24	So in summary, I just presented very
25	briefly, an alternate approach. I think that it's

(202) 234-4433

142 1 reactor-based, based on the operation. It's applicable to any application, storage, transportation 2 or disposal. 3 4 And the beauty of it is that it's a normal 5 sequencing from reactor operation. We seem to have a disconnect sometimes, when we talk about storage and 6 7 transportation compared to the reactor operation. We seem of suffering from amnesia, that 8 9 certainly all the careful work that we do in terms of running our reactor, and power distribution, and so 10 on, suddenly now, once we talk about storage and 11 transportation, this is an entirely new animal. 12 And from a mutated point of view, there is 13 14 certainly an interest in basically having continuity 15 in handling the information which is coming from the 16 reactors. 17 And for transportation burnup credits is higher priority topic, as mentioned increased 18 а 19 capacity, loading a greater percentage of the spent fuel population. And as we see in basically in terms 20 potential critical 21 of the for event during This is a very low probability event 22 transportation. which basically is essentially zero. 23 24 And so from that point of view, removal of conservatism result in improvement in safety 25 by

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	balancing criticality risk and operation of risk.
2	This is something which is coded here.
3	And I will certainly say that ISG, Rev. 3
4	is not only an example of extreme conservatism, I
5	think it has been moved in the right direction. But
6	any improvement that we can do has some potential
7	benefit from a risk point of view. Because as I
8	mentioned, we have balancing, radiological risks,
9	which are such nonexistent, with some more real risks
10	which are, with the transportation which are.
11	None radiological which are, this is the
12	one we experience every day when we are under worked.
13	Thank you.
14	MEMBER RYAN: Thank you very much.
15	CHAIRMAN ARMIJO: Just one quick question,
16	just assuming that you could use the depletion
17	benchmark-type approach, the reactor approach.
18	MR. MACHIELS: Yes.
19	CHAIRMAN ARMIJO: What would it do as far
20	as cask capacity?
21	MR. MACHIELS: Well, it will change, you
22	are limited by the volume, okay. So when you go to
23	32, that's all you can put is 32. But what you
24	increase is the percentage of the population which is
25	in storage, into a cask. So that means -
	1

(202) 234-4433
	144
1	CHAIRMAN ARMIJO: Why not a lower burnup
2	fuel into the cask?
3	MR. MACHIELS: Yes, right, yes. You see
4	the different curve that we are showing by the NRC
5	staff, you basically lower the curve. So you are able
6	to put a greater percentage of the existing inventory
7	into a cask.
8	MEMBER SCHULTZ: Albert, to that point
9	again, on your last slide, the slide previous to this,
10	the difference that you've shown here for the 32
11	versus 24. That's not the difference between full
12	burnup credit in the ISG-8.
13	MR. MACHIELS: No, that's right, yes. The
14	ISG-8 should allow you to load the 32 casks.
15	MEMBER SCHULTZ: That's the point I wanted
16	to hear.
17	MR. MACHIELS: The main difference is
18	basically the percentage of the population which would
19	be in place.
20	MEMBER SCHULTZ: So it would be more
21	important, if the industry goes forward with loading
22	more assemblies from the spent fuel pools to casks, it
23	could become more and more complicated to load full
24	casks.
25	MR. MACHIELS: Right, yes.
	I contract of the second s

(202) 234-4433

	145
1	MEMBER SCHULTZ: And we may need to take
2	credit for full burnup then.
3	MR. MACHIELS: It would be a percentage of
4	the population which is higher, that would not be
5	going full capacity in the casks, no.
6	MEMBER SCHULTZ: Thank you.
7	MEMBER RYAN: Thanks again. One more
8	speaker, are you ready, Mark?
9	CHAIRMAN ARMIJO: I guess I'm still
10	missing the benefit. If that's the cask capacity,
11	what's the benefit of being able to use your approach?
12	MR. MACHIELS: The difference is that
13	there will be, the more conservative you become
14	basically, the tail of the assembly is to kind of put
15	in a cask increase. So those casks will not be able
16	to take full benefits of the capacity of the cask.
17	Because you will not be able to justify that they will
18	not go critical.
19	CHAIRMAN ARMIJO: But you would still be
20	limited by heat.
21	MR. MACHIELS: No, heat is a different -
22	MEMBER SCHULTZ: Sam, it's more likely to
23	be those assemblies that were discharged a long time
24	ago at low burnup.
25	CHAIRMAN ARMIJO: Ah, got it. Okay,

(202) 234-4433

	146
1	thanks.
2	MEMBER RYAN: Marc?
3	MR. NICHOL: Yes, morning. Welcome and
4	thank you for allowing me to speak. I'm Marc Nichol
5	from Nuclear Energy Institute. I appreciate the
6	opportunity to provide industry's perspective on the
7	draft ISG-8, Revision 3.
8	I'll go through here rather quickly. I do
9	want to voice our general feedback on the guidance,
10	that it's an overall improvement over Revision 2. We
11	believe this will gain greater utilization of burnup
12	credit in transportation and in storage.
13	One of the points that wasn't made prior
14	to this, but there is a different approach in
15	criticality analyses between the storage cask and the
16	transportation cask, even for ones that are dual
17	licensed for both storage and transportation.
18	Storage relies heavily on soluble boron in
19	the pool. Transportation, sometimes, maybe often,
20	will still use the fresh fuel assumptions. That can
21	result in different allowable contents between the
22	storage and transportation. So this helps bring those
23	two worlds together.
24	We did have a few suggestions for
25	improvements, five categories in total. The one I

(202) 234-4433

	147
1	would like to speak a little bit more about today is
2	burnup verification. Although, there were a couple
3	others.
4	One of our major points on burnup
5	verification is that if the guidance or user is going
6	to develop strategies to prevent or mitigate misloads,
7	that the root cause for misloads needs to be
8	identified and well understood. That way you can make
9	sure that the mitigating strategies are effective.
10	In this area we identified three major
11	categories for potential misloads. Each of these
12	might have some subcategories. The ones we typically
13	think of is loading the wrong fuel assembly. You
14	meant to load assembly X, you obviously loaded
15	assembly Y.
16	The other two, one is calculating a burnup
17	higher than actual. This would typically be an error
18	in calculation, something like that. Or the one that
19	we heard earlier is more likely, is assigning the
20	wrong burnup value. And this would happen earlier in
21	your planning stages. So we think that identifying
22	these is important to evaluate the effectiveness of
23	the strategies.
24	MEMBER RYAN: So just to be clear, Marc,
25	number three is the most important one in your mind?
	1

(202) 234-4433

	148
1	MR. NICHOL: That's correct. Number three
2	is the one that leads to the 10^{-2} probability that
3	we've heard today. So that is the one that would be
4	the most important to address.
5	And in that respect, we evaluated in-pool
6	burnup measurements as not being very effective at
7	accomplishing these. Because its ability to prevent
8	the misload is very limited. While it can provide a
9	burnup value, it's typically not very accurate.
10	In fact, reactor records are much more
11	accurate. While it could confirm that your burnup is
12	higher than what would be allowed in that cell, there
13	would still need to be administrative controls around
14	that. And, of course, taking the burnup measurement
15	is problematic, difficult to do.
16	So we believe that there are other more
17	effective means to doing that. We've recommended, and
18	it's the alternative presented in the ISG-8, is a
19	combination method doing two things.
20	One, attempt to preclude the misload from
21	occurring. And two, if a misload occurs, ensure that
22	it remains subcritical. So you're covered in both
23	areas. We identified this as being defense and depth.
24	To preclude a misload from happening, this
25	would fall on administrative controls. And we believe
	I contract of the second se

(202) 234-4433

	149
1	focusing on well accepted QA practices is appropriate,
2	learning from other areas such as loading of the cores
3	is very important.
4	And because it has a defined role as
5	precluding the misload, the administrative control
6	should focus on that function. The administrative
7	controls are not very effective at mitigating the
8	consequences, and so to make sure that the
9	administrative controls are properly aligned with
10	their intended function.
11	And, of course, they can be improved over
12	time if you have some OE. And certainly industry
13	agrees that 10^{-2} is not an acceptable number for
14	misloads. So there is plenty of OE out there for us
15	to learn from.
16	The second, ensuring that if a misload
17	occurs it remains subcritical. This is the by-design
18	type of approach that I referred to before. And this
19	is through your misload analyses. We believe that
20	one, if you evaluate the misloads and can confirm
21	that, if you have that credible misload, that it is
22	subcritical by design, then it's inherently safe that
23	way.
24	But it depends on a couple of factors.
25	One, you have to use appropriate assumptions and

(202) 234-4433

	150
1	certainly those need to be developed considering what
2	fuel you might have in your pool.
3	The second is that we believe it's
4	important to keep these administratively simple. If
5	the misload analyses are quite complex, you could add
6	additional complexity into the administrative control
7	of that. And that's exactly where we want to reduce
8	complexity. So we think we need to keep it simple.
9	Thank you for your time.
10	MEMBER RYAN: Thanks very much, Marc. Any
11	questions or comments?
12	MEMBER SCHULTZ: I have a question, Marc.
13	It would seem that item one is, to the industry, would
14	be much more, and to the regulator, much more
15	important than item two. Item two, we've talked about
16	a number of features of the Guidance that's being
17	provided, that would assure that that would be the
18	case if there were a misload.
19	Based on what we've heard, and what the OE
20	is here, it seems like most the experiences associated
21	with an administrative issue associated with a
22	disconnect between what should have been the paperwork
23	for the assembly, the calculations associated with the
24	assembly, and the assembly itself. So it's really an
25	administrative feature.
	1

(202) 234-4433

	151
1	MR. NICHOL: Right.
2	MEMBER SCHULTZ: And the two features that
3	are being emphasized are QA and also, third party
4	check at the right time in the process.
5	MR. NICHOL: Right.
6	MEMBER SCHULTZ: So has NEI bought the
7	second set of controls that have been recommended
8	within the guidance?
9	MR. NICHOL: Not all of them. We, of
10	course, recommended our own list of administrative
11	procedures that should be in the guidance. Now we
12	recognize that industry goes beyond that.
13	And the reason we recommended a limited
14	subset is we thought it was appropriate that industry
15	goes beyond what's generally in the Guidance. And
16	much of industry, if not all, does do an independent
17	third party check.
18	MEMBER POWERS: But the essential point
19	that you make that, as in hardware, administratively
20	simple is inherently safer and complex, I think is an
21	extraordinarily important point to make.
22	MR. NICHOL: Yes.
23	MEMBER POWERS: Administrative simplicity,
24	you got check after check after check coming along
25	here, you're just going to get -
1	I contract of the second se

(202) 234-4433

	152
1	MR. NICHOL: Right.
2	MEMBER POWERS: confused on where you
3	are.
4	MR. NICHOL: And that was part of the
5	basis for our recommendation on the assumptions behind
6	misload analyses. We recognized they were overly
7	conservative. But with the limited time we had, that
8	was the best we could come up with that was a
9	compromise between simplicity and conservatism.
10	MEMBER SKILLMAN: Thank you.
11	MEMBER RYAN: Thanks very much. I'm going
12	to return the three minutes that John Stetkar used
13	yesterday. So we're even.
14	MEMBER STETKAR: It only seemed like
15	yesterday. It was this morning.
16	MEMBER RYAN: Well, it seemed like
17	yesterday.
18	CHAIRMAN ARMIJO: Okay, you're ahead of
19	schedule, Mr. Ryan. Well, look, I think first of all,
20	I would like to thank the presenters, the staff, and
21	the EPRI, and the industry. I think an excellent
22	piece of work. That from my opinion, it's really nice
23	work putting this together, a lot of progress.
24	I don't know if other members want to make
25	any additional comments. But I thought it was really
	1

(202) 234-4433

	153
1	enlightening and on the right track. So with that
2	MEMBER RYAN: Yes, I'd like to second
3	that. I think the staff has done a nice job. And I
4	particularly appreciate the fact that they
5	collaborated and coordinated with industry on this
6	effort.
7	So it's a true effort across all lines.
8	So I really appreciate the fact that everybody has put
9	a lot of work into it. Thank you.
10	CHAIRMAN ARMIJO: And we're really right
11	on schedule. So what we're going to do is take a
12	break for lunch. And we'll reconvene at 1:15.
13	MEMBER RYAN: Done.
14	(Whereupon, the meeting in the foregoing
15	matter went off the record at 12:11 p.m. and went back
16	on the record at 1:13 p.m.)
17	
18	
19	
20	
21	
22	
23	
24	
25	
1	1 I I I I I I I I I I I I I I I I I I I

	154
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	(1:13 p.m.)
3	CHAIR ARMIJO: Good afternoon, we're ready
4	to reconvene and our next briefing will be lead by Mr.
5	John Stetkar, John.
6	MEMBER STETKAR: Thank you, Mr. Chairman.
7	For the benefit of the members we're going to be
8	hearing presentations on US-APWR Design Certification
9	Chapter 9 and the Comanche Peak Combined License
10	Chapters 5, 8, 10, 11 and 12.
11	And the reason we're doing this is in
12	preparation for an interim letter from the Committee,
13	on progress on both the Design Certification and
14	Combined License application. As we've been doing
15	periodically, to let both the staff and the applicant
16	know if we have any particular areas of concern,
17	primarily to give them a little bit of forewarning and
18	also to make sure the Commission knows that we're
19	still carrying on with this effort.
20	And we have quite a bit of material to
21	cover today, as I said it's both Design Certification
22	and Combined License. Jeff, do you want to say
23	something?
24	MR. CIOCCO: Yes, thank you. My name is
25	Jeff Ciocco, I'm the lead project manager for the US-
	1

(202) 234-4433

	155
1	APWR Design Certification Licensing review. Thank you
2	to the Full Committee for having us here today to
3	present Chapter 9, the auxiliary systems.
4	Along with myself representing NRC staff,
5	we have a lot of our technical staff in the audience
6	here to answer questions that you may have and I'll be
7	giving a brief presentation on Chapter 9, kind of a
8	high level overview following Mitsubishi's
9	presentation. Thank you.
10	MEMBER STETKAR: Thank you very much, and
11	we'll turn it over to Jim, I don't who, up front,
12	Kevin?
13	MR. LYNN: Good afternoon, my name is
14	Kevin Lynn, I'm the Licensing Engineer for Chapter 9
15	of the DCD. And today we are here representing MHI,
16	Mitsubishi Heavy Industries. And we'll be discussing
17	Chapter 9, which is the auxiliary systems.
18	So as I said, my name is Kevin Lynn, and
19	seated with me here is Hiroki Nishio of MHI and Dr.
20	James Curry, will be assisting me. And we also have
21	technical experts in the crowd to answer any questions
22	as necessary. So I'll start with a general
23	introduction.
24	The US-APWR DCD was submitted by MHI in
25	December of 2007. Chapter 9, we're discussing today
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	156
1	in particular, is about the auxiliary systems. And
2	Chapter 9 was previously presented to the US-APWR,
3	ACRS subcommittee on March 22 and 23 of this year.
4	The basic design concept of the US-APWR is
5	very similar to a conventual four-loop plant. There
6	are some unique and specific features of the US-APWR
7	that are relevant to Chapter 9, and those are the ones
8	that we will mainly be discussing and summarizing
9	today.
10	This is a general outline of Chapter 9 of
11	the DCD. It's divided into five major sections, fuel
12	storage and handling, water systems, process
13	auxiliaries, air conditioning, heating, cooling and
14	ventilation systems and other auxiliary systems.
15	And for each of these five major sections,
16	it goes through the systems that make-up that and
17	they're all listed here. I won't go through each of
18	them, but they all follow the SRP and so they're
19	similar to what you've been use to seeing in other
20	designs.
21	The spent fuel pit or the SFP, is
22	described in the Section 9.1 of the DCD. During our
23	previous meeting in March with the ACRS, we received
24	several questions about the SFP and so we want to
25	provide a little bit of a followup on those today.
	1

(202) 234-4433

One of the questions we were asked about is about the SFP lines, which are safety related and the RWSP clean up system, which is non-safety and how those are separated from each other. Another question was about the, if cooling of the spent fuel pool was lost, how long would it take to start boiling, if you started at a hypothetical lower lever or minimum level of the weir gate.

9 So we have, this slide says that we will 10 provide a response, but this is actually been updated 11 and MHI has now officially submitted a response to 12 those two questions to the NRC recently. So the NRC 13 and ACRS will have those formal written responses to 14 be able to review.

15 MEMBER STETKAR: Okay wait. By the way, 16 we seldom say nice things about people. We've had 17 very good experience with MHI and MNES throughout our 18 efforts. They've been very, very responsive.

Anytime we've asked comments, we get either oral responses in a timely fashion during the meetings or, in this case, written responses and we really do appreciate that, so I wanted to thank you for the, hope we keep that kind of exchange going in the future.

MR. LYNN: Well thank you. These two

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

8

	158
1	particular questions, we reviewed the previous meeting
2	with the transcript and all the other questions during
3	the meeting, we either provided an oral response
4	during the meeting and these particular two we took as
5	actions to follow up. So we've now submitted those
6	written responses.
7	MEMBER STETKAR: Thank you.
8	MEMBER POWERS: You realize of course
9	we've exhausted your quota with him and
10	CHAIR ARMIJO: And that's the last
11	compliment you'll get.
12	MEMBER STETKAR: That's right, you got the
13	one.
14	MR. LYNN: Hopefully this is on the
15	biggest topic.
16	MEMBER STETKAR: We're about half way
17	through, I thought that was about the right time.
18	MR. LYNN: We also received some questions
19	about the SFP as it related to Fukushima issues. And
20	at the time there was some discussion about when the
21	Fukushima related issues would be discussed.
22	And as part of an RAI we received from the
23	NRC, MHI has committed to make a technical report to
24	address the Fukushima topic as a whole and that
25	technical report will be submitted in February of next
1	

(202) 234-4433

	159
1	year, at the end of the month. And in that we have
2	you know, made sure that the SFP related issues are
3	part of that, are part of the scope of that. So those
4	will be addressed at that time.
5	MEMBER STETKAR: Jeff, we'll see that as,
6	in the next phase of the re-do?
7	MR. CIOCCO: Yes, that's correct.
8	MEMBER STETKAR: Okay, thanks.
9	MR. LYNN: Next we'll talk about the
10	component cooling water system, which is discussed in
11	Section 9.2. The CCW system for the US-APWR is a
12	four-train system. And each train consists of one
13	pump, CCW pump and one CCW heat exchanger.
14	The four trains are separated into two
15	subsystems as shown in this figure here. Where each
16	subsystem has a CCW surge tank and each surge tank is
17	divided into two, with an internal partition plate.
18	The CCW supplies water to safety
19	components as well as non-safety components. The
20	connections are the supply headers to the non-safety
21	components can be automatically isolated on ESF
22	signals.
23	MEMBER SKILLMAN: Is each pair independent
24	subsystems, 100 percent capability? Are these four 50
25	percentors or four 25 percentors?
	1

(202) 234-4433

MR. NISHIO: Fifty percent. MEMBER SKILLMAN: Four 50 percent, okay thank you. MEMBER STETKAR: Kevin, you said that the,
MEMBER SKILLMAN: Four 50 percent, okay thank you. Thank you. MEMBER STETKAR: Kevin, you said that the,
thank you. Thank you. MEMBER STETKAR: Kevin, you said that the,
MEMBER STETKAR: Kevin, you said that the,
I think I misheard you or miss-remembered something,
that the supplies to the non-safety loads are isolated
automatically? I thought that, we had some discussion
about automatic and manual isolation of
MR. LYNN: I believe the discussion you're
referring to is the separation between the trains,
which is the safety related portion. And that there
was discussion about whether or not that was automatic
or manual.
But the connection between the safety and
non-safety side, because those are non-safety
components, that isolation is done manually. Because
in an accidental scenario, those components do not
need TWF.
MEMBER STETKAR: How do you classify the
cooling water through this spent fuel pit heat
exchanger and the reactor coolant pumps and the
charging pumps? Those are not isolated automatically,
or are they?
MR. LYNN: No the, well the charging pumps
would be a non-safety component because MHI does not,

(202) 234-4433

	161
1	the US-APWR design does not need them
2	MEMBER STETKAR: That's correct.
3	MR. LYNN: during an accident scenario.
4	But the water, the cooling water to the RCP thermal
5	barriers is necessary to prevent an RCP seal LOCA.
6	MEMBER STETKAR: Okay this is getting a
7	bit detailed for a Full Committee meeting, but I think
8	we're okay on time. I thought that we saw in Interim
9	Rev 4, of the DCD, that the line, the cross tie valves
10	that are motor operated valves?
11	MR. LYNN: These valves?
12	MEMBER STETKAR: Those two. Do not
13	receive automatic isolation signals, is that correct?
14	MR. LYNN: That is correct in Interim Rev
15	4.
16	MEMBER STETKAR: In Interim Rev 4. In Rev
17	3 they did?
18	MR. LYNN: Yes.
19	MEMBER STETKAR: Okay. And that line
20	supplies one set of non-safety related, that vertical
21	line there between those valves, supplies safety
22	related, safety grade equipments as you call it, and
23	non-safety components. One partial header indeed has
24	automatic isolation signals, those air-operated
25	valves.
	I contract of the second se

(202) 234-4433

	162
1	MR. LYNN: These two, yes.
2	MEMBER STETKAR: The other part of the
3	header I thought supplies the charging pump, the
4	reactor coolant pump coolers and the spent fuel pit
5	cooler or at least my recollection was
6	MR. LYNN: Yes, gated here in this box,
7	this would be like the RCP thermal barriers and the
8	SFP components.
9	MEMBER STETKAR: Okay. And those are not
10	isolated automatically?
11	MR. LYNN: No. The automatic isolation is
12	this right here, which goes to the charging pumps.
13	MEMBER STETKAR: The reason I bring that
14	up, for information for the other committee members
15	who weren't there is I believe MHI has done an
16	analysis to show that under certain design basis
17	accidents, assuming a single failure of loss of AC
18	power coincident with the accident.
19	That leaving that line open still provides
20	50 percent, at least two 50 percent trains, depending
21	on how you do all of the combinatorics. However I
22	think that in the subcommittee meeting we discussed
23	possible other scenarios.
24	For example, if you have a loss of power
25	after safety related valves open up on, let's call it
I	1

(202) 234-4433

	163
1	train B, you can leave one pump supplying both trains
2	of safety related equipment and what you're calling
3	here, safety grade loads. And it wasn't clear whether
4	the flow from that pump, or the heat removal from the
5	heat exchanger that's associated with that pump,
6	actually has enough capacity to remove that amount of
7	heat.
8	So that in a sense, that kind of
9	configuration, assuming a different timing of your
10	single failure, might leave you vulnerable?
11	MR. LYNN: Yes. And we remember that
12	discussion, and after that ACRS meeting the NRC
13	actually asked that as a formal RAI to us, as a
14	followup to your question, so they postulated the same
15	scenario. We answered that RAI, we responded
16	recently.
17	MEMBER STETKAR: Okay.
18	MR. LYNN: And the staff reviewed our
19	response and they had some additional followup
20	questions and clarifications that were currently in
21	the process
22	MEMBER STETKAR: Okay, but that's in the
23	formal RAI process right now?
24	MR. LYNN: Yes.
25	MEMBER STETKAR: Good, thanks. That
	1

(202) 234-4433

	164
1	helps.
2	MR. LYNN: The essential service water
3	system is also discussed in Section 9.2 and the ESW
4	system is separated into four trains, where each train
5	has its own pump and this is a simplified schematic
6	showing it. But each train provides cooling water to
7	the CCW heat exchanger that was discussed, shown on
8	the previous slide. So this heat exchanger.
9	As you may know, the US-APWR uses gas
10	serving generators, or GTGs, instead of diesel
11	generators. This one notable difference. The GTGs
12	themselves are described in Chapter 8 of the DCD and
13	that has already gone to the ACRS.
14	But Section 9.5 of the DCD describes the
15	support systems for the GTGs, so it is somewhat
16	relevant to this meeting here. This right here, I
17	list the support systems that the GTG uses.
18	One notable difference between GTGs and
19	diesel is that the GTGs are air cooled and so
20	therefore there's no cooling water system, so that
21	section of the DCD, or that subsection, is omitted
22	because it's not applicable for the, our design.
23	MEMBER SKILLMAN: How is the lubrication
24	cooled, please?
25	MR. LYNN: How is the lubrication cooled?
	I

(202) 234-4433

	165
1	Yes, I'll differ to one of the experts on the GTG
2	system for this question.
3	MR. TANAKA: This is Hiroki Tanaka, MNES.
4	Lubrication is also cooled by air.
5	MEMBER SKILLMAN: Thank you. Okay.
6	MR. LYNN: So now I'd like to discuss the
7	resolution of open items from the safety evaluation
8	report. The SER from the NRC was issued in February
9	of this year, just prior to the ACRS meeting. And
10	that SER identified 20 open items for Chapter 9.
11	Since the ACRS meeting we've been working
12	with the staff to try and resolve those open items.
13	And as of now we have resolved 12 of the 20 open
14	items. There are eight open items that are still in
15	progress, but of those eight there's no, MHI believes
16	there's no significant issues.
17	In some cases we've submitted response and
18	the staff is still reviewing it and other cases we're
19	still preparing our response. So we believe there's
20	no significant issues and I think the staff's
21	presentation will address some of the specific open
22	items remaining.
23	MEMBER STETKAR: Thank you. Members have
24	any other questions or comments for MHI and MNES? If
25	not, thank you very much. As usual very efficient.
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	166
1	This is, Chapter 9 is one of those chapters that
2	covers a lot of systems and in some designs raises a
3	lot of questions. Not so many this time.
4	(Off the record comments)
5	MR. CIOCCO: Shall I begin?
6	MEMBER STETKAR: Yes.
7	MR. CIOCCO: Thank you. My name is Jeff
8	Ciocco, I'm the lead project manager for the US-APWR
9	Design Certification.
10	I'll go through just a couple of high-
11	level slides here for Chapter 9. As MHI stated
12	there's very few issues remaining on Chapter 9. So
13	I'm just going to kind of give you the overall
14	licensing review of where we're at for the overall
15	design certification and then just touch on a couple
16	of the open items that we presented at the
17	subcommittee meeting.
18	What this slide has is the six phases of
19	our six phases of our Design Certification Licensing
20	Review. This is our publicly available schedule
21	through the six phases and through the rulemaking.
22	Phase 1 is completed.
23	We're currently progressing through Phases
24	2, 3 and 4 simultaneously. In Phase 2, as the ACRS
25	knows, we've completed ten chapters. Of those ten,
	I contraction of the second

(202) 234-4433

	167
1	eight have been through the subcommittee and the Full
2	Committee and there was letter generated September
3	22nd of 2011 on those eight chapters. That's Chapters
4	2, 5, 8, 10, 11, 12, 13 and 16.
5	The two other chapters that we've issued
6	to the ACRS are Chapter 15, we presented that a couple
7	of months ago to the subcommittee. And Chapter 9
8	we're here today to present to the Full Committee.
9	The critical path item right now is Phase
10	2 is the Seismic and Structural Analysis, Sections 3.7
11	and 3.8. As you can see, same as MHI talked about,
12	these are the sections in Chapter 9, Sections 9.1
13	through 9.5, the fuel storage and handling systems.
14	The water systems. The process systems, air
15	conditioning, heating in the main control room, as
16	well as other systems, the GTG and fire protection
17	systems.
18	So whenever the staff was here back in
19	March we presented the overall 20 open items where
20	they were in the particular sections. And then we
21	presented five that we thought were particularly
22	challenging at the time. We've come to resolution on
23	most of these open items. And I'll just kind of run
24	through them today where we're at currently. Not in
25	the SE that you have, but as we work through these in
1	I contract of the second se

(202) 234-4433

	168
1	Phase 4.
2	The first one is the essential service
3	water. It's now a confirmatory item and we are just
4	waiting a change to the DCD in Rev 4, which we expect
5	next year. And this one had to do about a boundary
6	valve between the safety related and non-safety
7	related systems. MHI provided us the necessary design
8	information. And we just need to see that in Rev 4 of
9	the DCD.
10	Next was an RAI in the component cooling
11	water, which there was a brief discussion about. I
12	think this is a different RAI.
13	MEMBER STETKAR: This is a different one.
14	MR. CIOCCO: Yes, this is a different one.
15	And this about a postulated piping leaks in the
16	component cooling water system which could drain the
17	CCW surge tank. MHI showed us that they've met the
18	Regs and there's a particular Branch Technical
19	Position 3-4, which was met and MHI has agreed to add
20	explanation to the Rev 4 of the DCD. So we've already
21	seen the markups and we're just waiting now, it is
22	confirmatory until we see the next change in Rev 4 of
23	the DCD.
24	The next open item is in the Condensate
25	Storage Facilities, this is Section 9.26. This is
	1

(202) 234-4433

1 also confirmatory item that the response is а And this was about a dike surrounding the 2 acceptable. condensate storage tank and how they applied GDC 2 and 3 4 GDC 60. MHI showed that the CST, that the particular 5 issue here was non-safety related. They've modified their CST description in the DCD and it's now a 6 7 confirmatory item in Rev 4 of the DCD. 8 And the last two that we have are in the 9 main control room area ventilation. And these are 10 still open items at this time. The first one is about the underlying issue about the reliability of AAC, the 11 alternate AC gas turbine generator. And we actually 12 just received MHI's response on this issue on August 13 2nd, so it's currently under staff review. So we may 14 15 be nearing resolution on this one soon. 16 And then the last RAI that we presented 17 back in March is still an open item. We're waiting for MHI's response. This is about the main control 18 19 room, about the air handling unit cooling coils and whether leaks from the cooling coils can occur. 20 MHI has its draft response and will soon be submitting a 21 22 final response to the NRC. So I would agree with MHI that we've made 23 24 significant progress in Chapter 9 and we're closing up a lot of the confirmatory items and just have a few 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

169

	170
1	open items left in Chapter 9.
2	MEMBER STETKAR: Jeff, this is, it's a
3	question that we discussed to some extent during the
4	subcommittee meeting. And it's at that interface
5	between Chapter 9 and Chapter 16, it's really more of
6	a Chapter 16 tech spec question.
7	But we noticed that the essential chilled
8	water system is actively excluded from the technical
9	specifications, which seems a bit strange. Because it
10	is a safety related chilled water system that provides
11	cooling for control room ventilation in addition to
12	several other areas. We kind of raised that question
13	during the subcommittee meeting and we'll probably
14	follow up on Chapter 16 but it is related to Chapter
15	9.
16	One of the things that we try to do as a
17	Committee is look across chapters and if we see any
18	systems interaction, or in this case it's systems and
19	administrative controls interactions, try to raise
20	those issues.
21	MR. CIOCCO: And do recall something, if
22	we had to issue a supplemental RAI on that particular
23	question or not.
24	MEMBER STETKAR: We had some discussion
25	about it. And as I said it's more of a Chapter 16,

(202) 234-4433

	171
1	but since it does relate to one of the Chapter 9
2	systems I thought it might merit at least raising it
3	in this context.
4	MR. CIOCCO: Yes, does anybody here from
5	the NRC staff know? Larry, do you want to answer it?
6	MR. WHEELER: I'm sorry. What system was
7	he talking about?
8	MEMBER STETKAR: Essential chilled water,
9	ECW. It's essential chilled water.
10	MR. CIOCCO: Yes, I think it was the
11	essential chilled water.
12	MS. MCKENNA: Good afternoon. This is
13	Eileen McKenna, I'm the Branch Chief in NRO for
14	balance of plant and tech specs. I know we did have
15	this question at the subcommittee. And we did go look
16	actually at a couple of other plants about chilled
17	water systems and whether they were in tech specs or
18	not and we saw a mixed bag. Sometimes yes, sometimes
19	no.
20	I think our answer with respect to it
21	being a support system that the operability carries
22	over to chilled water I think still stands. But
23	certainly the Committee can apply whatever it chooses.
24	MEMBER STETKAR: That's, I believe, the
25	response that we had in the subcommittee meeting. And
1	1 A State of the second s

(202) 234-4433

	172
1	I think our observation was that there are a number of
2	other support systems, essential service water,
3	component cooling water, ventilation systems, AC/DC
4	power, that are explicitly noted in the tech specs
5	that, as an ex-operator, I hated the technical
6	specifications because they were something that I had
7	to live with much more than I really thought I needed
8	to.
9	But I had to live with them. And it was
10	nice to go to a document where I didn't need to make
11	some sort of extrapolation or interpolation. It was
12	nice to know that if something was in there I really
13	needed to follow those rules. And if it wasn't there
14	there was probably some reason why it wasn't there.
15	Thanks, Eileen, that helps.
16	Any other questions for the staff on
17	Chapter 9? Got off easy, Jeff. Thank you very much.
18	MR. CIOCCO: I did. Thank you. You're
19	welcome.
20	MEMBER STETKAR: Now what we'll do is have
21	the COL applicant, Luminant, for Comanche Peak come up
22	and talk about Chapters 5, 8, 10, 11 and 12. And,
23	Stephen, you want to give an introduction? I'll turn
24	it over to Stephen Monarque from the staff who's the
25	lead.

(202) 234-4433

	173
1	MR. MONARQUE: Thank you. My name is
2	Stephen Monarque, I'm the lead project manager for the
3	staff's review of the Comanche Peak COL Application.
4	I want to thank the Committee members for giving us
5	the opportunity to present the Comanche Peak safety
6	evaluation chapters with open items today before the
7	Full Committee.
8	This is the first time we will be
9	presenting the safety evaluations before the Full
10	Committee. And today I'll be presenting Chapters 5,
11	8, 10, 11 and 12. And with that I'll go ahead and
12	turn it over to Luminant.
13	MEMBER STETKAR: Thank you. Don, as soon
14	as you get set up it's all yours.
15	(Off the microphone comments.)
16	MR. WOODLAN: Are you ready?
17	MEMBER STETKAR: Don, we're ready.
18	MR. WOODLAN: Okay. My name is Don
19	Woodlan, I'm the licensing manager for the Luminant
20	NuBuild Project. It's a pleasure to be here today.
21	The presentation today is going to be made by John
22	Conly. He's our COLA Licensing manager. And we do
23	have a group of technical people in the audience to
24	back up the licensing staff. John.
25	MR. CONLY: Thank you, Don. Luminant

(202) 234-4433

	174
1	appreciates this opportunity to discuss Comanche Peak
2	Units 3 and 4 Combined License Application, Chapters,
3	5, 8, 10, 11 and 12. We thank you for your time.
4	The agenda includes an introduction and a
5	brief discussion of the topics that were addressed
6	during the subcommittee meetings.
7	The Comanche Peak R-COLA uses the
8	incorporated by reference methodology that you're all
9	familiar with. FSAR Chapters 5, 8, 10, 11 and 12 take
10	no departures from the US-APWR DCD. There are no
11	contentions pending before ASLV. There is only one
12	outstanding issue in the SER Chapter 8 regarding GDC-
13	5.
14	During the subcommittee meetings we had
15	far ranging discussions, as was indicated earlier with
16	the Chapter 9 discussions. These were some of the
17	topics, questions that were discussed during the
18	meetings. We had no open items from the ACRS to
19	Luminant. And as you can see here we covered quite a
20	bit of information during those subcommittee meetings.
21	MEMBER STETKAR: John, we're wonderfully
22	ahead of schedule on time here, which is bad for you.
23	(Laughter)
24	MEMBER STETKAR: And you have
25	appropriately blanked the screen. This is your first
	1

(202) 234-4433

	175
1	time in front of the Full Committee, you're doing this
2	well.
3	Could you remind us what the GDC-5 issue
4	is under Chapter 8?
5	MR. WOODLAN: It has to do with whether or
6	not GDC-5 actually applies to the offsite power
7	system. Basically what we call the switching station
8	and the grid. And there's been an issue that we're
9	still trying to work out with the staff. Some of the
10	staff feels that it does apply and that we should
11	commit to it.
12	We feel it does not apply, and are willing
13	to do whatever is necessary, technically, to
14	demonstrate the adequacy of our offsite power. We've
15	already done, for example, an analysis to show that
16	the offsite power system is designed to handle and
17	accident on one unit and safe shutdown on the other
18	unit. But we just feel that GDC-5 doesn't apply and
19	we shouldn't commit to it. We're working on that.
20	MEMBER STETKAR: Okay, and that's still in
21	progress?
22	MR. WOODLAN: Still in progress, yes it
23	is.
24	MEMBER STETKAR: Okay, thank you.
25	MEMBER POWERS: What are the consequences
1	

(202) 234-4433

	176
1	if it does?
2	MR. WOODLAN: Today, probably none.
3	Because we think the questions that we've answered is
4	what today's interpretation is of GDC-5. As a
5	licensing manager I'm always careful not to commit to
6	something that's recorded. Because things could
7	change.
8	MEMBER POWERS: You don't want the camel's
9	nose under your tent? Is that what you're saying?
10	MR. WOODLAN: I'm saying interpretations
11	change with time. If it doesn't apply I shouldn't
12	commit to it, I shouldn't subject to that risk.
13	MEMBER BLEY: Can you summarize at all the
14	arguments why it would not apply? I've just looked at
15	it, because I don't remember them by number.
16	MR. WOODLAN: Yes, it probably goes back
17	to the definition of important to safety, because
18	those are the key words that are in there. And it's
19	in, really GDC-2, 4 and 5, in our mind, are all tied
20	together and those are the key words that you need to
21	look at. There has been some very clear discussions
22	on GDC-2 and 4 and the staff has finally said those do
23	not apply.
24	So one of the arguments is all three of
25	those are the same scope, why would one apply and not

(202) 234-4433

the other two when the scope is the same in the GDCs. Yes. Another argument is we actually have GDC-17 as the controlling criterion, and if you look at the wording in there it's different and it doesn't just limit it to important to safety. In fact it has very specific words to address how these support systems that are important to safety, implying that they're not important to safety.

9 We went back and looked at the operating 10 plants, and I couldn't get them all because you know they took the FSARs out of the public document room. 11 And I don't have the numbers right in front of me. 12 But we found something like 28 of the plants that have 13 14 multiple nuclear units. And of those 28 that we could 15 find information on, we only found one that committed 16 to GCD-5.

And we also researched a bunch of power upgrades. And all the power upgrades, when they evaluated Chapter 8 and offsite power, they only looked SERs, only looked at GDC-17, they did not even address GDC-5.

22 MEMBER BLEY: That's interesting, okay. 23 What strikes me that you have to be able to survive 24 the loss of offsite power that that almost meets to 25 GDC-5 by definition. Is that not true?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	178
1	MR. WOODLAN: Well it's like, I hope I get
2	the right one here
3	MEMBER BLEY: We could probably ask the
4	staff this.
5	MR. WOODLAN: They'll probably be ready to
6	address it. When you look at the other GDC for
7	earthquake for example, we know that the switching
8	yards can't handle an earthquake. So it's only common
9	sense that that GDC would apply. We feel the same way
10	about GDC-5, the grid is not make to fully comply with
11	the literal words in GDC-5.
12	And what's appropriate, just like we did
13	with respect to earthquake, we didn't just ignore the
14	GDC and the NRC didn't. They did pick out the
15	appropriate parts and said you must comply with this.
16	You must be able to show it can handle extreme weather
17	conditions, high winds, things like that. And we
18	analyzed the grid and the offsite power system and
19	show that we can handle that.
20	And we feel that GDC-5 should be handled
21	the same way. It shouldn't fully required but the
22	appropriate pieces of GDC-5 should be examined and
23	demonstrate that you can handle it. And for example,
24	that's why we did the review that shows that we can
25	handle an accident and safely shutdown another unit.
	I

(202) 234-4433

Í	179
1	So that's how we feel it should work. But, like I
2	say, we're still talking here. We're not at
3	loggerheads yet.
4	MEMBER STETKAR: Under the first sub-
5	bullet under Chapter 11 we had some discussion. We're
6	settled that that bypass valve is not a Comanche Peak
7	site-specific design feature, is that correct? That
8	that's actually part of the certified design?
9	MR. CONLY: That is correct.
10	MEMBER STETKAR: This is, for the benefit
11	of the other members, there's a bypass valve around
12	the radiation monitor and automatic isolation valves
13	from the liquid waste discharge tank, monitor tank,
14	that first appeared in a drawing that we saw for the
15	FSAR, for the site-specific FSAR. And we had some
16	questions about that. And as it turns out it's
17	apparently part of the certified design, it was just
18	not shown on the drawings for that design. But that's
19	the status, right? It is part of the certified
20	design?
21	MR. CONLY: That is correct.
22	MEMBER STETKAR: So any questions?
23	MR. CONLY: As it turns out the valve is
24	very clearly shown on PNID NOEE10156. But that PNID
25	is not duplicated in the DCD.

(202) 234-4433
	180			
1	MEMBER STETKAR: Yes, that's what we			
2	heard, that it actually appeared on a detail drawing			
3	but somebody left that			
4	MR. CONLY: It was a level of detail and			
5	somebody decided that detail wasn't important.			
6	MEMBER STETKAR: Yes, it's only a little			
7	bypass valve. Okay, I just wanted to make sure of			
8	that because we had a little bit of discussion about			
9	who owned that valve.			
10	MR. CONLY: Are there any other questions			
11	on the topics we have discussed with the subcommittee?			
12	MEMBER STETKAR: Any questions? Any			
13	members have any? This is pretty straightforward.			
14	CHAIR ARMIJO: I don't remember the issue			
15	of flow accelerated corrosion monitoring program,			
16	Chapter 10? Trying to remember whether there was an			
17	issue or not an issue or something unique here?			
18	MR. CONLY: The discussion was the words			
19	high energy systems were used in the FSAR. And the			
20	question was does the FAC program apply to all			
21	systems. And the answer is yes, we have modified the			
22	FSAR to remove the terminology, high energy systems.			
23	CHAIR ARMIJO: Okay, thank you.			
24	MEMBER STETKAR: Anything else, members?			
25	MEMBER POWERS: These guys are no fun at			
	I contract of the second se			

(202) 234-4433

	181
1	all are they?
2	MEMBER STETKAR: They'll get more fun when
3	we get other, these are easy ones. If not, thank you
4	very much. Appreciate it. And we'll ask the staff to
5	come up.
6	(Off microphone comments.)
7	MR. MONARQUE: My name is Stephen
8	Monarque, I'm going to be discussing the Safety
9	Evaluation Report with open items for Chapters 5, 8,
10	10, 11, 12 for Comanche Peak. Slide 2 please.
11	This is our Comanche Peak COL review
12	schedule. And we've completed Phase 1 and currently
13	right now, as Jeff has discussed, we're in Phases 2
14	and 3 in parallel.
15	MEMBER STETKAR: Hold on, Stephen, to
16	avoid laughter in the background we might as well go
17	through and set your slides up.
18	(Off microphone comments.)
19	MR. MONARQUE: Thank you. I already went
20	ahead and discussed the title page. And we've already
21	discussed the schedule. This is one that's a summary
22	of Chapters 5, 8, 10, 11 and 12. SER with open items.
23	To date the staff has issued SERs with open items for
24	these chapters. And we presented these chapters in
25	2011 to the APWR ACRS Subcommittee. We've identified
1	

(202) 234-4433

	182			
1	one significant technical issue, which is Chapter 8,			
2	GDC-5, which I'll discuss later.			
3	For Chapter 5. Chapter 5 deals with the			
4	integrity of the reactor coolant system pressure			
5	boundary, the system reactor vessel, steam generator,			
6	reactor coolant pumps. We presented this to the			
7	subcommittee in May of 2011. We had one open item			
8	that has been resolved. There's no technical issues			
9	to be discussed.			
10	CHAIR ARMIJO: There were some materials,			
11	pressure boundary materials open items at the time.			
12	Are they closed now?			
13	MR. MONARQUE: Yes, the open item related			
14	to EPRI water chemistry guideline has been resolved			
15	and closed.			
16	CHAIR ARMIJO: Okay.			
17	MR. MONARQUE: For Chapter 8, offsite			
18	power/onsite power systems, station blackout was			
19	addressed. We presented this to the subcommittee in			
20	August of last year. The technical issue we've			
21	identified relates to the applicability of GDC-5 as			
22	the switching station, will be shared by Units 3 and			
23	4.			
24	Luminant was requested to address how the			
25	switching station complies with GDC-5 and explain how			
	1			

(202) 234-4433

ĺ	183
1	the sharing of the switching station equipment for
2	both units will not impair the ability of equipment to
3	provide offsite power in response to an accident at
4	one unit and an orderly cool down and shutdown of the
5	remaining unit. And the staff's position is that GDC-
6	5 does apply to the Units 3 and 4 switching station.
7	For Chapter 10. Turbine generator, steam
8	power conversion, feedwater and circulated water
9	systems. We presented this to subcommittee in August
10	of last year. There's no issues to be discussed.
11	MEMBER STETKAR: And there no
12	MR. MONARQUE: No technical issues, no
13	substantial ones identified. For Chapter 11.
14	Liquid/gaseous solid waste management systems. We
15	presented Chapter 11 to the subcommittee in October
16	2011. We had two open items that have since been
17	resolved, or closed I should say. And we have not
18	identified any significant technical issues.
19	MEMBER BLEY: Can I take you back to GDC-5
20	again? I haven't heard the arguments. But as the
21	applicant stated, they feel GDC-17, which applies to
22	electric power systems in particular, for electric
23	power systems, takes the place of GDC-5. And in
24	reading the two I wonder why it doesn't.
25	GDC-17 integrates the onsite and offsite
	1

(202) 234-4433

	184			
1	electric power systems in showing that you can meet			
2	the safety requirement. Where GDC-5 just says any			
3	shared system shouldn't degrade the effect. And if			
4	you can go through the arguments a little bit we'd			
5	appreciate it.			
6	MR. MONARQUE: Okay. Let me turn it over			
7	to our tech staff, Tania Martinez. You want to come			
8	up here Tonia?			
9	MEMBER BLEY: I didn't go through the			
10	details, did you decide that they do meet GDC-17?			
11	MS. MARTINEZ: They do actually. My name			
12	is Tania Martinez, I work with the Office of Nuclear			
13	Reactor Regulation in Electrical Engineering Branch.			
14	They do comply GCD-17. But the fact that they have a			
15	sharing the switching station and we looked at the			
16	language in GDC-5 we understand that it's applicable.			
17	Even beyond the GDC-17 requirements.			
18	MEMBER BLEY: Is this unique to your			
19	looking at this plant? Have you required that for			
20	other feed unit sites?			
21	MS. MARTINEZ: No, it's not unique. Every			
22	single application is evaluated in some merit. In the			
23	case of Comanche Peak we're talking about an active			
24	plant. It depends on offsite power to feed referred			
25	power source that feeds into safety loads. And they			

(202) 234-4433

185 1 are not the only ones that have been asked the There is some precedence and language in 2 question. 3 other applications that we have looked so far in the 4 operating side of the house. 5 But as it pertains to Comanche Peak we understand it's applicable because of those sharing of 6 7 components. All the offsite comes to the plant through that switching station. And actually the 8 applicant has provided enough information for us to 9 thing that they comply with GDC-5. 10 The only point of contention is that they, the applicant, would not like 11 to use that particular language. 12 But we're still talking to the applicant, 13 14 trying to figure this one out as it pertains to the 15 compliance with GDC-5 is not resolved yet. But we're in conversations with them. 16 17 MEMBER BLEY: But you have accepted that they meet GDC-17? 18 MARTINEZ: 19 With the supporting MS. provided, which 20 information they have includes analysis, yes. 21 22 MEMBER BLEY: Okay. I quess I don't have a safety issue with this then. Okay. Thank you. 23 24 MR. MONARQUE: I'll go back to Chapter 12. Thank you, Tania. Okay, for Chapter 12 we presented 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	186			
1	this to the subcommittee last year in October.			
2	Chapter 12 discusses radiation protection design			
3	features, radiation sources, dose assessment and			
4	operational radiation program. We did not identify			
5	any technical issues to be discussed.			
6	And that concludes my presentation. So if			
7	there's any questions from the Full Committee members.			
8	MEMBER STETKAR: Any members have any			
9	questions? If not, do we have any members of the			
10	public here who would like to make a comment? If not,			
11	thank you. And I'd like to thank MHI, Luminant, the			
12	staff. Thank you very much for all your preparation.			
13	And good presentations.			
14	It obviously went a little more smoothly			
15	than otherwise. But it's important to have these			
16	types of exchanges to give us an opportunity to get at			
17	least updated and briefed on the current status			
18	because we do issue these letters.			
19	For the benefit of the staff we'll be			
20	issuing to separate letters. We were going to			
21	originally bundle these into a single letter. And			
22	administratively it just works out easier. So we'll			
23	issue one for Chapter 9 for DCD and a separate one for			
24	the COL. That's just an administrative issue.			
25	MR. MONARQUE: Thank you.			
	I			

(202) 234-4433

	187			
1	MEMBER STETKAR: And again, thank you very			
2	much. And, Mr. Chairman, I turn it back to you so			
3	that we have money in my bank. One hour and eight			
4	minutes early.			
5	CHAIR ARMIJO: Thank you, John. Just a			
6	second, before anybody leaves.			
7	(Off microphone discussion.)			
8	CHAIR ARMIJO: All right. So this is what			
9	we're going to try and do, make use of that one hour.			
10	We have some people who were coming down to sit in on			
11	our review of the selected research projects,			
12	apparently from the staff that would like to hear			
13	that. So we'll hold to that time, start that at 3:30.			
14	And we'll try and take advantage of this			
15	one hour that John's giving us to take a look at the			
16	letter writing. See what we can get out of the way.			
17	But I will plan to take the break at 3:15. So we'll			
18	be off the record from this point.			
19	(Whereupon, the meeting in the above-			
20	mentioned matter went off the record at 2:05 p.m.)			
21				
22				
23				
24				
25				

Presentation to ACRS Full Committee US-APWR Design Certification Chapter 9: Auxiliary Systems

September 6, 2012 Mitsubishi Heavy Industries, Ltd.

MITSUBISHI HEAVY INDUSTRIES, LTD.

MHI Presenters

Kevin Lynn – Lead Presenter Mitsubishi Nuclear Energy Systems, Inc.

Hiroki Nishio – Licensing Promoting Group Manager Mitsubishi Heavy Industries, Ltd.

James Curry, Ph.D., P.E., – Technical Support Mitsubishi Nuclear Energy Systems, Inc.

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-12240-1 ACRS Full Committee, September 6, 2012

Introduction

MITSUBISHI HEAVY INDUSTRIES, LTD.

- US-APWR DCD was submitted in December 2007
- DCD Chapter 9 describes auxiliary systems
- Chapter 9 was presented to US-APWR ACRS subcommittee on March 22-23, 2012
- Basic design concept of US-APWR is the same as a conventional 4 loop PWR
- Specific and unique features of US-APWR relevant to Chapter 9 will be summarized

Section No.	Description		
9.1	Fuel Storage and Handling Criticality safety of new and spent fuel storage; New and spent fuel storage; Spent fuel pit cooling and purification system; Light load handling system; and Overhead heavy load handling system		
9.2	Water Systems Essential service water system; Component cooling water system; Potable and sanitary water systems; Ultimate heat sink; Condensate storage facilities; Chilled water system; Turbine component cooling water system; and Non-essential service water system		
9.3	Process Auxiliaries Compressed air and gas systems; Process and post-accident sampling systems; Equipme and floor drain systems; Chemical and volume control system		
9.4	Air Conditioning, Heating, Cooling, and Ventilation Systems Main control room heating, ventilation and air conditioning system; Spent fuel pool area ventilation system; Auxiliary building ventilation system; Turbine building area ventilation system; Engineered safety feature ventilation system; and Containment ventilation system		
9.5	Other Auxiliary Systems Fire protection program; Communication systems; Lighting systems; GTG fuel oil storage and transfer system; GTG starting system; GTG lubrication system; and GTG combustion air intake, turbine exhaust, room air supply, and air exhaust systems		

UAP-HF-12240-3 ACRS Full Committee, September 6, 2012

MITSUBISHI HEAVY INDUSTRIES, LTD.

- Spent fuel pit (SFP) is described in DCD Section 9.1
- Several questions regarding SFP were asked during March ACRS meeting
- > To address these questions:
 - MHI to provide response describing how SFP lines (safety) are separated from RWSP cleanup lines (non-safety) with remote manual valves
 - MHI to provide response with SFP boiling times given a loss of SFP cooling starting with water level at weir gate
 - ✓ SFP issues related to Fukushima will be addressed in new Technical Report to be submitted in February 2013

Component Cooling Water System (CCWS) Design 4 safety train configuration

- (each train consists of 1 CCWP and 1 CCW Hx)
- Separated into 2 independent subsystems (each subsystem has 1 CCWT with an internal partition plate)
- Non-safety supply headers can be automatically isolated

CCWT	Component Cooling Water Surge Tank	
CCWP	Component Cooling Water Pump	
CCWHx	Component Cooling Water Heat Exchanger	
ESWS	Essential Service Water System	
SFPHx	Spent Fuel Pit Heat Exchanger	
Р	Containment Spray Signal	
S	Safety Injection Signal	•
BO	Blackout Signal	
UV	Under Voltage Signal	UAP-HF-12240-5

ACRS Full Committee, September 6, 2012

MITSUBISHI HEAVY INDUSTRIES, LTD.

Essential Service Water System (ESWS) Design
Separated into 4 train configuration (each train consists of 1 ESWP)

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-12240-6 ACRS Full Committee, September 6, 2012

- US-APWR uses GTGs instead of diesel generators
- GTGs are described in DCD Chapter 8
- DCD Section 9.5 describes the GTG support systems:
 - ✓ GTG fuel oil storage and transfer system
 - ✓ GTG starting system
 - ✓ GTG lubrication system
 - GTG combustion air intake, turbine exhaust, room air supply, and air exhaust systems
 - ✓ GTGs are air cooled and do not need cooling water system, so that subsection is omitted from Section 9.5

SER Open Item Resolution

- Chapter 9 SER (February 2012) identified 20 Open Items
- Current status is as follows:

MITSUBISHI HEAVY INDUSTRIES, LTD.

- ✓ 12 Open Items have been resolved
- ✓ 8 Open Items are still in progress

Luminant

LUMINANT GENERATION COMPANY Comanche Peak Nuclear Power Plant, Units 3 and 4

597th ACRS Meeting

FSAR Chapters 5, 8, 10, 11, 12

September 6, 2012

Agenda

Introduction

D Topics of Discussion with Subcommittee

- Chapter 8
- Chapter 10
- Chapter 11
- Chapter 12

Introduction

- □ R-COLA uses "Incorporated by Reference" methodology
- FSAR Chapters 5, 8, 10, 11, and 12 take no departures from US-APWR DCD
- □ No contentions pending before ASLB
- □ One outstanding issue in SER Chapter 8 (GDC 5)

Topics of Discussion with Subcommittee

□ Chapter 8

- Fire barriers in switchyard
- GDC-5, controls, and equipment in switching station
- Offsite power availability

□ Chapter 10

- FAC monitoring program
- Lake Granbury statistics
- Startup SG blowdown system isolation

□ Chapter 11

- Bypass around LW monitor tank RE and isolation valves
- Interim Radwaste Storage Facility design
- □ Chapter 12
 - RP Supervisor to control receipt of byproduct, source, or SNM

Probabilistic Flood Hazard Assessment (PFHA) *Current and Planned RES Activities*

Dr. Joseph Kanney Hydrogeologist RES/DRA/ETB

ADVISORY COMMITTEE ON REACTOR SAFEGUARDS Full Committee Meeting

September 9, 2012

Motivation

- Discussions among staff in RES, NRO, NRR, and Regions
 - Identified several areas that may benefit from a more riskinformed approach with respect to external flooding events
 - Review of Safety Analysis Reports for COLA and ESP Applications
 - Risk Assessment Standardization Project
 - SPAR Model Development Program
 - Significance Determination Process
 - Accident Sequence Precursor Program
- Reviews by NRC Contractors, NRC/ACRS, GAO
 - "Synthesis of Extreme Storm Rainfall and Probable Maximum Precipitation in the Southeastern U.S. Pilot Region"", Draft NUREG/CR-7133 (NRC/USBR, 2012)
 - "Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America", NUREG/CR-7046 (NRC/PNNL, 2011)
 - "NRC Natural Hazard Assessments Could Be More Risk-Informed", GAO-12-465 (GAO, 2012)
 - "Review and Evaluation of the NRC Safety Research Program", NUREG-1635, Volume 10 (ACRS, 2012)

Current Activities

- 2011 Long-term Research Plan Item "Assessing Climate Variability Contribution to Risk at Nuclear Facilities"
 - Originally scheduled for FY13 funding
 - Partially funded by NRR User Need (FY12-14)
 - Enhance treatment of external flood events in EE SPAR models
 - Probabilistic rainfall modeling
 - Flood frequency analysis
 - Continuous simulation approaches for flood frequency
 - "Data and Methodology for Probabilistic Rainfall Modeling" (Oak Ridge National Laboratory and Northeastern University)
 - Assess databases and probabilistic rainfall models

Proposed Near-Term Activities (FY13-14)

- Multi-Agency PFHA Workshop (January 29-31, 2013)
 - Joint NRO/NRR User Need Letter
 - Hosted by RES
 - Organizing Committee Co-Chairs:
 - Thomas Nicholson (RES/DRA)
 - Richard Raione (NRO/DSEA on rotation to RES/DRA)
 - Potential Co-Sponsors: NOAA, USGS, USBR, USACE, DOE
 - Proposed Topics:
 - Probabilistic modeling of local intense precipitation, riverine flooding, dam failure, storm surge, tsunami
 - Treatment of combined events
 - Interface with PRA models

Proposed Near-Term Activities (Cont.)

- Value of Paleoflood Information for Assessing Flooding Hazards at Nuclear Power Plants (USGS)
 - Assess potential for paleoflood information to improve flood risk assessment at nuclear power plant sites
- Regional Precipitation Frequency Analysis (USBR)
 - Investigate regional precipitation frequency approaches to extreme precipitation estimates (e.g., up to PMP)
- PFHA Technical Basis for Riverine Flooding (PNNL)
 - Riverine PFHA including extreme events and combined events (antecedent conditions)

Longer-Term Activities

- Coordinate with User Offices to evaluate options for addressing gaps identified by PFHA Workshop
 - User Offices draft additional User Need Letters
 - RES Develops Research Plan
- Evaluate options for PFHA Guidance
 - Develop NRC guidance
 - Adopting industry consensus standards
 - ANS-2.31 (currently under revision)
 - ANS-2.8 (currently under revision)

Interim Staff Guidance 8, Revision 3 – Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks

Presentation to the Advisory Committee on Reactor Safeguards

September 6, 2012

Agenda

Item	Торіс	Presenter(s)	Time
1	Opening Remarks and Objectives	Dr. Michael Ryan, ACRS	10:15 – 10:20 a.m.
2	Staff Opening Remarks	Meraj Rahimi, NMSS	10:20 – 10:25 a.m.
3	Changes to ISG-8	Drew Barto, NMSS	10:25 – 10:55 a.m.
4	Cask Misloads	Nate Jordan, NMSS	10:55 – 11:15 a.m.
5	Public Comments and Proposed Resolution	Drew Barto, NMSS	11:15 – 11:30 a.m.
8	Industry Efforts on Burnup Credit	Dr. Albert Machiels, EPRI	11:30 – 11:50 a.m.
9	Industry Perspective on ISG-8	Marcus Nichol, NEI	11:50 – 12:00 p.m.
10	Committee Discussion	Dr. Ryan, ACRS	12:00 – 12:15 p.m.
11	Adjourn		12:15 p.m.

Background

- Radiation and heat were the primary design drivers for older generation of transportation packages which were designed for short cooling times
- Sub-criticality became one of the primary design drivers for new generation of highcapacity casks for longer cooled fuel

Background (cont.)

- To achieve high-capacity, cask designers eliminated flux traps (i.e. spacing between fuel) which are needed for the Fresh Fuel assumption, and relied on Burnup Credit instead
- Burnup Credit is credit for reduction in reactivity that occurs with fuel burnup due to the net reduction of fissile nuclides and the production of actinide and fission-product neutron absorbers

Background (cont.)

- Based on available data in 2002, staff issued guidance on taking credit for the major actinide isotopes.
- In 2007, SRM SECY-07-0815 stated:

"... staff should focus its effort on using burnup credit as a means to insert more realism into spent fuel transportation cask criticality analyses."

Background (cont.)

- In 2008, letter from ACNWM to Chairman Klein stated:
 - "... recommends that the staff take a risk-informed approach to evaluating Burnup Credit, including consideration of realistic and credible scenarios, probabilities, and consequences."
- In May 2012, staff issued draft ISG 8, Rev.3, for public comment. This ISG provides guidance for taking credit for actinides and fission products

Major changes to ISG-8

- Credit for minor actinides and fission products
- Extend credit up to 60 GWd/MTU assembly-average
- Provide option for misload analysis with additional administrative loading procedures in lieu of burnup measurement

Expanding Technical Basis for Burnup Credit

- NUREG/CR-6979, Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data (2008)
- NUREG/CR-7012, Uncertainties in Predicted Isotopic Compositions for High Burnup PWR Spent Nuclear Fuel (2011)
- NUREG/CR-7108, An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses – Isotopic Composition Predictions (2012)
- NUREG/CR-7109, An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses – Criticality (k_{eff}) Predictions (2012)

ISG-8 Revision 3 – Code Validation

- Availability of French HTC actinide data gives greater degree of confidence in actinide criticality validation than existed at the time ISG-8, Rev. 2 was published
- New chemical assay data expands the available database for fission product depletion validation and extends the range of applicability to higher burnups
- All available data used in NUREG/CR-7108 and -7109 to develop alternative isotopic depletion and criticality code validation methodologies.
- ISG-8, Revision 3 recommends crediting both actinides and fission products for up to 60 GWd/MTU

ORNL NUREG/CRs

- Work performed under joint contract (SFST/NRR/NRO) through RES
- New isotopic depletion code validation methodologies and reference bias and bias uncertainty values
- New minor actinide and fission product criticality code validation methodology and reference bias value
- Provides recommendations regarding the use of the reference values, and the use of methodologies developed in the NUREG/CRs

USSNEC Protecting People and the Environment MC Uncertainty Sampling Method for Depletion Validation

confidence

PWR RCA Data for Depletion Validation

Isotope	No. of samples	Enrichment range (wt% ²³⁵ U)	Burnup range (GWd/MTU)	Isotope	No. of samples	Enrichment range (wt% ²³⁵ U)	Burnup range (GWd/MTU)
²³⁴ U	63	2.453-4.657	7.2–59.7	¹⁰¹ Ru	15	3.5–4.1	31.1–59.7
²³⁵ U	100	2.453-4.657	7.2–59.7	¹⁰³ Rh	16	2.453-4.1	31.1–59.7
²³⁶ U	85	2.453-4.657	12.9–59.7	¹⁰⁹ Ag	14	3.5–4.1	44.8–59.7
²³⁸ U	100	2.453-4.657	7.2–59.7	¹³³ Cs	7	3.038 – 4.1	27.4–59.7
²³⁷ Np	44	2.453–4.657	16.0–59.7	¹⁴³ Nd	44	2.453-4.657	16.0–59.7
²³⁸ Pu	85	2.453-4.657	12.9–59.7	¹⁴⁵ Nd	44	2.453-4.657	16.0–59.7
²³⁹ Pu	100	2.453–4.657	7.2–59.7	¹⁴⁷ Sm	32	2.453-4.657	23.7–59.7
²⁴⁰ Pu	100	2.453–4.657	7.2–59.7	¹⁴⁹ Sm	28	3.5-4.657	23.7–59.7
²⁴¹ Pu	100	2.453–4.657	7.2–59.7	¹⁵⁰ Sm	32	2.453-4.657	23.7–59.7
²⁴² Pu	99	2.453–4.657	7.2–59.7	¹⁵¹ Sm	32	2.453-4.657	23.7–59.7
²⁴¹ Am	47	2.453–4.657	17.1–59.7	¹⁵² Sm	32	2.453-4.657	23.7–59.7
²⁴³ Am	48	2.63-4.657	17.1–59.7	¹⁵¹ Eu	21	3.5-4.657	23.7–59.7
⁹⁵ Mo	15	3.5–4.1	31.1–59.7	¹⁵³ Eu	27	2.453-4.657	23.7–59.7
⁹⁹ Tc	25	2.453-4.1	16.0–59.7	¹⁵⁵ Gd	27	2.453-4.657	23.7–59.7

Radiochemical Isotope Assay for Depletion Validation

- Best practices in fuel radiochemistry have been developed over the past 30 years to ensure accurate measurements and representative samples
- Sampling and fuel dissolution techniques
 - Dissolve fuel with cladding for complete isotope recovery from clad
 - Verify recovery from clad using spectral analysis of cladding
 - Separately analyze insoluble metallic residues (Mo, Tc, Ru, Rh, Pd, Ag, Sb) to ensure complete isotope collection
 - Obtain representative fuel segments for analysis that include both pellets and gaps to minimize biased sampling due to inhomogeneous fuel and migration of semi volatile species (e.g., ¹³⁷Cs)
 - Perform cross check analysis (¹⁴⁸Nd vs.¹³⁷Cs burnup to confirm no significant migration of Cs)
- Best practices in analytical methods for spent fuel assay documented in OECD report:
 - NEA/NSC/WPNCS/DOC(2011)5

AEN

Isotopic k bias uncertainty (Δk_i) for the representative PWR SNF system model using ENDF/B-VII data ($\beta_i = 0$) as a function of assembly average

Depletion Validation Results

Isotopic k_{eff} bias uncertainty (Δk_i) for the representative PWR SNF system model using ENDF/B-VII data ($\beta_i = 0$) as a function of assembly average burnup

Burnup Range (GWd/MTU)	Actinides Only	Actinides and Fission Products
(errainine)		Δk_i
0-5	0.0145	0.0150
5-10	0.0143	0.0148
10-18	0.0150	0.0157
18-25	0.0150	0.0154
25-30	0.0154	0.0161
30-40	0.0170	0.0163
40-45	0.0192	0.0205
45-50	0.0192	0.0219
50-60	0.0260	0.0300

Estimating Criticality (*k*_{eff}) Bias

 Uncertainty in the system k_{eff} is propagated from the cross section uncertainty using the sensitivity coefficient:

$$\sigma_{k_{eff}}\left(\frac{\%\Delta k}{k}\right) = \sigma_{\sigma}\left(\frac{\Delta\sigma}{\sigma}\right) \times S\left(\frac{\Delta k/k}{\Delta\sigma/\sigma}\right) * 100\%$$

- Fundamental basis for this approach is that biases caused by nuclear data errors are bounded by the nuclear data uncertainties
- Uncertainty therefore gives an upper bound for the magnitude of the bias

Criticality Validation Results

 Uncertainty in k_{eff} due to nuclear data uncertainties investigated for SNF configurations as a function of burnup and a variety of other relevant parameters

 Uncertainty determined to be < 1.5% of the reactivity worth of the minor actinides and FPs in all cases considered

ORNL NUREG/CR Recommendations

- Applicant may use the reference bias and bias uncertainty numbers developed by ORNL in lieu of an explicit depletion or minor actinide and fission product criticality validation, provided:
 - the same code and cross section data are used in the applicant's analysis
 - the applicant's storage or transportation system is demonstrated to be similar to that evaluated in the NUREG/CRs
- Applicant should perform traditional criticality code validation for major actinides using MOX and HTC data

Code Validation – ISG-8, Revision 3 Recommendations

	Major Actinides	Minor Actinides and Fission Products		
Criticality Analysis	Applicant should perform analysis with Fresh UO_2 , MOX, & HTC experiments	Use ORNL-supplied bias number		
Isotopic Depletion Analysis	Use ORNL-supplied bi uncertainty numbers, o developed validation m	as and bias or use ORNL- nethodologies		

ISG-8 Revision 3 – Burnup Measurements

- NUREG/CR-6955, "Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask" (2008)
- NUREG/CR-6988, "Review of Information for Spent Nuclear Fuel Burnup Confirmation" (2009)
- RES report: Estimating the Probability of Misload in a Spent Fuel Cask (2011)
- ISG-8 modified to allow misload analysis combined with additional administrative procedures in lieu of direct measurement

Misload Analyses

- Single severely underburned misload, chosen such that reactivity bounds 95% of the underburned fuel population with 95% confidence
- Multiple moderately underburned misloads, chosen such that half the cask is filled with a fuel assembly that bounds the reactivity of 90% of the total discharged fuel population
- Reduced administrative margin ($\Delta k_m \ge 0.02$)
- Additional administrative procedures, such as identification of high reactivity fuel prior to and after loading, or independent reviews of cask loading process

Misload Analysis Fuel Population

Initial Enrichment

From the 2002 EIA RW-859 Fuel Database

Misload Report

- Purpose: determine if misloads are credible events
- Reviewed cask misload events to determine underlying causes and to identify common failure modes
- Calculated the probability of single or multiple cask misloads using two separate methods
 - Empirically from actual misload data
 - Using an event tree model
- Considered impact of burnup on misload probability

Cask Misload Events

- **Palisades**: Calculation for cooling time was based on planned loading date, was not updated when loading date changed. 5 casks, 11 assemblies misloaded.
- North Anna & Surry: Cask design allowed for asymmetrical decay heat limits. Written procedures did not adequately explain this requirement leading to repeated errors. 11 casks, ~19 assemblies misloaded.
- **Grand Gulf**: Improper use of database containing incomplete information led to loading of assemblies exceeding allowed decay heat. 4 casks, 34 assemblies misloaded
- McGuire (near misload): Crane picked up incorrect assembly adjacent to the correct assembly. Error caught while assembly was being lowered

Total of 20 casks misloaded out of $1200 \rightarrow \sim 10^{-2}$ per cask

Misload Events – Corrective Actions

- **Palisades**: Added a procedure for fuel selection and improved the fuel database to include fuel cycle date information.
- North Anna & Surry: Fixed procedure to include explanation of asymmetrical decay heat limits.
- **Grand Gulf**: Added a procedure for developing the necessary databases and calculations for selecting fuel.

Misload Conclusions

- Misload events are credible
 - Empirical probability: 20 misloads / 1200 casks loaded ≈ 10⁻² per cask
 - Event Tree Model probability ≈ 10⁻³ per cask
- Based on event tree model and empirical data, misloads are most likely caused by errors in the planning process
- Event is likely to involve multiple assemblies and casks

Information Notice on Misloads

- Coordinating with NRR, NRO, and RES
- IN to discuss both spent fuel pool and dry storage cask misloads
- Misloads are credible and most result from systematic failures that can involve multiple assemblies
- Complicated loading patterns can increase likelihood
- Efforts to reduce misloads should focus on procedures for move planning and the accuracy of inventory data

Public Comments on Draft ISG-8

- Received comments from:
 - Nuclear Energy Institute
 - Holtec International
 - Nuclear Consultants.com
- Major comments and proposed resolutions

Provide flexibility for alternative validation methodologies

- Validation methodology recommended by ISG-8 represents one method that has been reviewed in detail by the staff and found to be acceptable
- ISG does not exclude alternative methodologies
- Revised ISG text to state that alternative methodologies should be considered on a case-by-case basis

Remove burnup measurement

- Measurement recommendation maintained in ISG as an alternative to misload analysis/admin procedures
 - Allows flexibility to applicants if the misload analysis criteria is too restrictive for their specific design
 - Future measurement techniques may make measurement option more appealing

Modify administrative loading procedures

- Industry proposed procedures should already be incorporated into cask and site loading procedures; not specific to burnup credit; e.g.:
 - Verify the identity of the fuel assembly prior to loading it into the cask
 - Verify the identity of the fuel assemblies loaded into the cask prior to closing the cask
 - Verify the burn-up values of each fuel assembly to be loaded into the cask from a source QA record prior to loading the first assembly

Modify administrative loading procedures (cont'd)

- ISG procedures are intended to be additional procedures for burnup credit cask loading, targeted at reducing likelihood or consequences of high-reactivity misload, e.g.:
 - Soluble boron to offset reactivity increase of potential misload during loading and unloading
 - Verification of the location of high reactivity fuel (i.e., severely underburned or fresh fuel) in the spent fuel pool both prior to and after loading
 - Independent, third-party verification of the fuel selection process
- Recommended procedures; list not intended to be allinclusive

Revise misload analysis recommendations

- Justification of 0.02 Δk_m for misload analyses
- Single fresh fuel assembly is acceptable, however:
 - procedures should prevent fresh fuel misloads
 - ISG recommends "reasonably bounding" single misload (95/95 level)
- Multiple assemblies 25% underburned is more simple, however:
 - Depends on loading curve (could be less restrictive than proposed in ISG)
 - ISG recommendation (bounds 90% of total inventory) allows this analysis to be omitted if the loading curve already encompasses 90% of fuel

Other Comments

- Credit for additional isotopes:
 - Modified to state that additional isotopes may be credited, provided the bias and bias uncertainty is quantified
- BWR burnup credit:
 - Upcoming RES user need for BWR burnup credit
 - Revised ISG to state that BWR burnup credit analyses to be reviewed on case-by-case basis
- Applicability to non-intact fuel
 - Revised this section to include undamaged and damaged fuel (per ISG-1), provided fuel reconfiguration and any additional uncertainties are considered

Other Comments (cont'd)

- Separate bias and bias uncertainty terms:
 - β_i = bias in k_{eff} due to depletion code; added to calculated k_{eff}
 - Δk_i = uncertainty in β_i ; statistically combined with other calculation uncertainties
 - Δk_x = uncertainty in k_{eff} due to uncertainty in minor actinide and fission product cross-section data; treated as bias added to calculated k_{eff}
- k_{eff} bias for other criticality codes:
 - $\Delta k_x = 1.5\%$ of minor actinide and fission product worth for SCALE code system with ENDF/B-V, -VI, or -VII data
 - Maintain 3.0% recommendation for other criticality codes (MCNP)
 - Additional research underway to justify lower value for other codes

Conclusions and Next Steps

- ISG-8, Revision 3 extends the technical basis for burnup credit to fission products and minor actinides
- Provides alternative to confirmatory burnup measurement
- Generally well-received by industry, with some comments
- Plan to publish final ISG by the end of September
- BWR burnup credit research initiated

Backup Slides

Event Tree

RCA Data (100 PWR fuel samples)

Reactor	Measurement Laboratory	Experimental Program	Assembly Design	No. of Samples/ Fuel Rods	Enrichment (wt % ²³⁵ U)	Burnup (GWd/MTU)
Trino Vercellese	Ispra, Karlsruhe	JRC	15 × 15	15/5	2.72, 3.13, 3.897	7.2–17.5
	Ispra, Karlsruhe	JRC	15 × 15	16/5	3.13	12.9–25.3
Obrigheim	Ispra, Karlsruhe	JRC	14 × 14	10/6	3.00	17.1–37.5
	ITU, IRCh, WAK, IAEA	ICE	14 × 14	5/5	3.13	27.0–29.4
H. B. Robinson-2	PNNL	ATM-101	15 × 15	4/1	2.561	16.0–31.7
Turkey Point-3	Battelle-Columbus	NWTS	15 × 15	5/1	2.556	30.5–31.6
Calvert Cliffs-1	PNNL, KRI	ATM-104	14 × 14	3/1	3.038	27.4–44.3
	PNNL	ATM-103	14 × 14	3/1	2.72	18.7–33.2
	PNNL, KRI	ATM-106	14 × 14	3/1	2.453	31.4–46.5
Takahama-3	JAERI	JAERI	17 × 17	13/3	2.63, 4.11	17.4–46.2
TMI-1	ANL	DOE YMP	15 × 15	11/1	4.013	44.8–55.7
	GE-VNC	DOE YMP	15 × 15	8/3	4.657	22.8–29.9
Gösgen	SCK•CEN, ITU	ARIANE	15 × 15	3/2	3.5, 4.1	29.1–59.7
GKN II	SCK•CEN	REBUS	18 × 18	1/1	3.8	54.1

Examples confirming that computational bias is generally bounded by cross-section uncertainty

Computational Bias
Experimental Uncertainty
Cross-section Uncertainty

Spent fuel pool and GBC-32 cask, fuel burned to 40 GWd/MTU

Uncertainty in k_{eff} due to uncertainty in nuclear data

Uncertainty (%Δk/k)

Uncertainty Source	<u>GBC-32</u>	<u>SFP</u>
All nuclides	0.512	0.491
Actinides-only	0.496	0.480
Structural Materials	0.111	0.073
Primary 6 FP	0.049	0.047
Next 10 FP	0.024	0.023
All Other FP & Actinides	0.037	0.044

Uncertainty Analysis

Covariance Data $[(\Delta\sigma/\sigma)^2]$

Sensitivity Data {($\Delta k/k$) / ($\Delta \sigma/\sigma$)}

combined using appropriate matrix algebra to yield uncertainty in k_{eff} due to nuclear data uncertainties

Burn-up Credit for Spent Nuclear Fuel Storage Casks and Transport Packages Industry Perspective

Marc Nichol Nuclear Energy Institute

ACRS Meeting September 6, 2012

Industry feedback on ISG-8 Revision 3

- Generally a large improvement from revision 2
 - Greater utilization of burn-up credit
 - Some use of risk insights
 - Improved flexibility
- Opportunity for further improvements
 - Burn-up verification
 - Depletion validation alternative methods
 - Depletion validation additional isotopes
 - Burn-up credit applicability to BWR
 - Dual uses of guidance

Burn-up verification method should most effectively address the situations that could lead to a misload

General categories of potential misload

- **1.** Loading the wrong fuel assembly
- 2. Calculating a burn-up value higher than actual
- **3.** Assigning the wrong burn-up value to a fuel assembly

In-pool burn-up measurements would not be effective in preventing misloads

- Ability to prevent misload is limited
- Mitigate consequence of misload
 - Less effective than "by design"
- Inaccurate and problematic to implement
- Provide burn-up "value"
 - Less accurate/reliable than reactor records

Most effective burn-up verification method is a "combination" approach (defense-in-depth)

- **1.** Preclude misload from occurring
 - Administrative controls
 - Follow well-accepted QA practices
 - Focus on preventing misload, not on mitigating consequences
 - Improve based upon OE
- **2.** Ensure if a misload occurs, remains sub-critical
 - Misload analyses
 - Safety is inherent in the design
 - Use appropriate assumptions
 - Ensure it is administratively simple

Draft Regulatory Guide 1290, "Design-Basis Floods for Nuclear Power Plants"

Dr. Joseph Kanney Hydrogeologist RES/DRA/ETB

ADVISORY COMMITTEE ON REACTOR SAFEGUARDS Full Committee Meeting

September 6, 2012

<u>Outline</u>

- Background
- Topics Common to Most Flooding Mechanisms
 - Site Hydrologic Description
 - Design Storm Reports
 - Nonstationarity
 - Deterministic vs. Probabilistic Analyses
- Individual Flooding Mechanisms
 - Local Intense Precipitation
 - Riverine Flooding
 - Dam Failure
 - Surge, Seiche and Tsunami
 - Ice Effects
- Combined Events
- Status of Concurrence Reviews

Why Update This Guide?

- New data
 - New storms, precipitation and flood records
 - High-resolution topographical data
 - Digital Elevation Maps (DEMs), LIDAR
- Advances in analytical methods and tools
 - 2D and distributed hydrological models
 - Coupled wind-wave surge models
 - Online databases, Geographical Information Systems (GIS)
- Advances in computational resources
 - Dramatic increases in computer memory and data storage capacities
 - Dramatic increases in computational processing speed and affordability (e.g., PC Clusters)

Topics Common to Most Flooding Mechanisms

Site Hydrologic Description

- Safety-related elevations, structures, exterior accesses, equipment and systems should be described from a <u>hydrologic perspective</u>
- Existing topography of the site as well as any proposed changes
- Location, size, and other hydrologic characteristics of water bodies that may influence flooding at the site
 - streams, lakes, estuaries, shore regions, man-made channels, etc.
- Existing or proposed water control structures
 - Dams, levees, diversions, channels, intake/discharge structures, etc.
 - Structures upstream and downstream of the plant site
- Flooding history of the site and region
 - Major historical flooding events should be described in detail
 - Water levels, discharges, duration, etc.
- Information from paleoflood studies (where available)

Dated Design Storm Reports

- Probable Maximum Precipitation (PMP)
 - NOAA/NWS Hydrometeorological Reports
 - Example: HMR-51 (1978)
 - Covers most of Eastern U.S.
 - Most recent storm analyzed: 1974
- Probable Maximum Hurricane Wind Fields
 - NOAA Technical Report NWS-23 (1979)
 - Many well-documented storms since NWS-23 PMH parameter ranges adopted
 - PMH concept replaced by more physically-based maximum potential intensity (MPI)
- Bottom line: valuable information, but dated
 - Due diligence required

Non-Stationarity

- Sea-Level Rise (Coastal Sites)
 - Historical trends
 - NOAA/NOS data
- Potential Climate Change Impacts
 - Potential for accelerated SLR rates (Coastal Sites)
 - USGCRP recommended approach
 - Potential for increases in storm intensity (Coastal Sites)
 - Ambiguous (model-predicted changes vs. observations)
 - Potential for Increased Precipitation (Inland Sites)
 - Ambiguous at region and site-scale (models differ)
 - Potential for Increases in stream discharge (Inland Sites)
 - Ambiguous (model-predicted changes vs. observations)

Deterministic vs. Probabilistic Analyses

- NRC staff has mainly relied on deterministic approaches to designbasis flood estimation: hierarchical hazard assessment (HHA)
 - progressively refined, stepwise estimation of site-specific hazards
 - most conservative plausible assumptions consistent with available data
 - NUREG/CR-7046 provides guidance and illustrative case studies for applying HHA to a variety of flooding mechanisms
- Probabilistic characterization of extreme floods by various mechanisms, or combinations of mechanisms will be accepted on a case-by-case basis
 - NRC staff does not provide specific guidance on probabilistic flood hazard analysis techniques at this time
 - NRC staff currently uses combined flooding event scenarios from ANS-2.8-1992
 - average annual probability of exceedance of less than 1E-6
 - Reasonable criterion to apply to design-basis flood estimates arrived at via probabilistic methods assuming that reasonable confidence limits can be established

Individual Flooding Mechanisms

Local Intense Precipitation

- Precipitation event occurring at the immediate plant site
 - Adequacy of site drainage systems (including drainage from roofs of structures) and adjacent drainage areas
 - Always examined irrespective of the plant grade elevation with respect to nearby rivers, lakes, or other water bodies
- Key elements
 - The site drainage system description
 - Design storm
 - Area, duration, and temporal distribution of rainfall intensities
 - Guidance provided by the National Weather Service (e.g. HMR-52)
 - Models and associated parameters used to estimate the generation of surface runoff from the design storm
 - Models and associated parameters used to estimate conveyance of the surface runoff away from the site
- Analysis should address potential for the site drainage system effectiveness to be compromised
 - Potential for blockage during storm events by water born-debris

Riverine Flooding

- Flooding hazards at the power plant site caused by severe hydrometeorological conditions occurring over watersheds that communicate with the site
- RG-1.59, Rev. 2, Appendix B (maps, tables from envelope curve formulas) no longer recommended for screening
- Deterministic analysis aimed at determining the most extreme credible flood, also known as the probable maximum flood (PMF)
 - Defined as the hypothetical flood (peak discharge, volume, and hydrograph shape) considered the most severe reasonably possible
 - Application of hypothetical extreme rainfall event (e.g., PMP) along with other hydrologic factors favorable for maximum flood runoff (combinations of processes occurring in the drainage basin above the site and at site)
 - Appropriate combinations to consider should be determined on a site-specific basis.
 - Sequential precipitation events
 - Timing, centering, and duration of precipitation
 - Seasonal variation of precipitation and antecedent moisture
 - Snowpack accumulation, snowmelt, and meteorological factors influencing snowmelt timing
 - Flood-caused dam failures
 - Reservoir elevations
 - Superimposed wind waves

Riverine Flooding: Key Elements (I)

- Design Rainfall Evaluate the precipitation flux over the watershed as a function of space and time
 - Developed from the hypothetical extreme rainfall event
 - Storm-centered, area-averaged PMP, in most cases
 - Optimal temporal distribution, optimal centering and orientation over the drainage basin
 - Movement of the storm along the basin axis
 - Procedures recommended by the National Weather Service
- Rainfall-Runoff Analysis Evaluate <u>effective</u> precipitation flux as a function of space and time
 - Description of the watershed (area, topography, soil types, land cover)
 - Rainfall-runoff transformation function
 - unit or synthetic hydrograph

Riverine Flooding: Key Elements (II)

- Flood Routing Route the precipitation excess to the plant site to determine flood hydrograph.
 - Description of the stream channel network
 - Reach lengths, cross sections, and cross-section locations
 - Channel roughness coefficients,
 - Flood routing method
 - 1D vs. 2D models
 - Dynamic vs. Steady
 - Initial and boundary conditions
- Validation exercises Apply the analysis to historical floods, if available

Dam Failure

- Dams to consider for potential failures
 - Dams upstream of the plant site
 - Dams not upstream of the plant, but whose failure may impact the plant because of backwater effects
 - Water-storage or water-control structures located at or above the grade of safety-related equipment
 - Onsite cooling or auxiliary water reservoirs, onsite levees
- Screening may identify some dams that can be eliminated from more detailed consideration
 - Low differential head, small water volume stored, distance from plant site, major intervening natural or reservoir detention capacity

Dam Failure (Cont.)

- Dam failure categories (predominant mode of failure)
 - Hydrologic dam failure
 - Seismic dam failure
 - Dam failure from other causes (sunny-day failures)
- Consider potential for multiple dam failures and the domino failure of a series of dams
- Dynamic hydraulic models to route the flood wave resulting from dam failure to the plant
- Examine sensitivity of flood stage and water velocity estimates
 - Reservoir levels, reservoir inflow conditions
 - Tailwater conditions before and after dam failure
- Consider transport of sediment and debris by the flood waters

Coastal Flooding

- Coastal refers to the near-shore regions of any water body (e.g., ocean, lake, bay, estuary, etc.) where surge, seiche, or tsunami phenomena may occur, not just regions adjacent to the open ocean
- In coastal regions, flooding hazards result from storm surges, seiches, and tsunamis, along with coincident wave action caused by hydrometeorological activity
- Wind-generated wave activity that can occur independently of or coincidentally with storm surge or seiche should be included in surge and seiche flood hazard analyses
- Available records should be used to characterize the wave climate near the site using measures such as significant and maximum wave heights
- Wave setup, runup, splash, or overtopping, as appropriate, should be considered
- Potential impact of tides should also be included in surge and seiche flooding estimates

Storm Surge

- Examine all storm types appropriate for region
 - tropical cyclones (hurricanes)
 - extratropical cyclones
 - squall lines and hybrid storms
- Simplified conservative methods for screening of hurricane storm surge
 - RG-1.59, Rev. 2, Appendix C maps, tables for screening are obsolete
 - Draft NUREG/CR-7134 proposes updated screening approach
- Detailed analysis required when storm-surge flooding cannot be eliminated from consideration by simplified methods

Detailed Storm Surge Analysis

- Detailed analysis of historical storm events in the region, when available
- Augment historical record with synthetic storms (modeling)
 - Models should be validated using historical storm information and data in the region of interest
 - Models parameterized to account for
 - Conditions more severe than those in the historical record, but considered to be reasonably possible on the basis of climatological and meteorological reasoning
 - Uncertainties
- Current state of the art in storm-surge modeling
 - Coupled hydrodynamic ocean circulation and wave models
 - Both models driven by a planetary boundary layer model that provides the atmospheric forcing
 - High-resolution bathymetric and topographic data

<u>Seiche</u>

- The potential for seiche to impact the site should examined for coastal locations (including lakes, semi-enclosed bays, etc)
- Consider forcing of oscillatory modes from a variety of potential sources
 - Local or regional forcing phenomena
 - Barometric pressure fluctuations
 - Strong winds, rapid changes in wind direction
 - Surge associated with passage of local storms
 - Distant but large forcing mechanisms
 - Distant storms, tsunami, or earthquake-generated seismic waves
- Estimate modes, magnitudes of oscillations in relevant waterbody
 - Waterbodies with simple geometries
 - Modes of oscillation can be predicted from the shape of the basin using analytical formulas
 - Most natural water bodies have variable bathymetry and irregular shorelines and may be driven by a combination of forcings
 - Seiche periods and water surface profiles should be determined through numerical long-wave modeling

<u>Tsunami</u>

- Tsunami hazard zones
 - Coastal sites : hazards from oceanic tsunamis
 - Inland sites: tsunami-like waves in water bodies in the region
 - Hill-slope failure or seismic sources
- Effects of tsunami or tsunami-like waves
 - Runup, flooding, erosion, and debris loads
 - Rundown or return flow of water (and debris)
- Screening
 - Regional or site specific survey of tsunamigenic sources
 - Potential near-field and far-field sources and mechanisms that could generate tsunamis
 - Relevant paleo-tsunami evidence should be assessed
- Detailed assessment
 - Postulation of probable maximum tsunami (PMT) source mechanisms
 - Location, dimensions, orientation, and maximum displacement
 - Estimation of PMT source characteristics,
 - Initiation of the PMT wave,
 - Propagation of the PMT wave from the source toward the site
 - Estimation of tsunami effects at the site

Ice Effects

- Potential for ice-jam formation should be assessed based on regional hydroclimatic conditions
 - air temperature characteristics
 - NOAA's National Climatic Data Center (NCDC)
 - Regional ice accumulation and ice jam formation history
 - U.S. Army Corps of Engineer's Ice Jam Database
- When the potential for ice formation cannot be ruled out, or is not clearly bounded by other flooding mechanisms, flooding hazards due to ice effects should be examined quantitatively
 - Ice-jam formation on nearby streams
 - Ice accumulation on site facilities
- Because of the much higher flows that usually prevail during spring breakup, breakup jamming is usually identified as the ice-related event of main concern for flood-hazard assessment
 - Flooding due to backwater effects of ice-jam formation downstream of the plant
 - Flooding due to breach of an upstream ice jam
- Predicting precise location and severity of ice jams is generally infeasible
 - Analyze impact of hypothetical ice jams at critical locations

Combined Events

- Extremely large floods of interest for design basis seldom the result of a single event or process
- Consideration of reasonable sequences and combinations of processes and events, based on regional or site-specific information
- Maximum water-surface elevation and maximum hydrostatic force may result from different combinations.
- Many hydrometeorological flood-causing phenomena can occur sequentially or concurrently because they are not truly independent mechanisms
 - Floods from precipitation events may occur concurrently with snowmelt floods
 - In coastal regions, the precipitation event may be a result of a tropical or extratropical cyclone
 - Stream flooding could coincide with a storm surge and wind-induced waves
 - In general, the effects of coincident wind-generated wave activity on the water levels should always be considered
- Credible combinations and sequences of hydrometeorological and nonhydrometeorological events
 - Astronomical high tides may combine with hydrometeorological events (e.g., storm surge) or seismic events (e.g., tsunami).
- NRC staff currently uses ANS-2.8-1992 guidance (average annual probability of exceedance of less than 1E-6) as a metric to evaluate combined event scenarios
 - Guidance on formal probabilistic flood hazard assessment approaches providing consistent treatment of combined events is lacking
 - Reasonableness of qualitative and quantitative probability estimates for combined events assessed on a case-by-case basis, based on regional or site-specific information

Concurrence Reviews

Office	Division	Status		
ACRS		In progress		
NRO	Site Safety & Environmental Analysis	In progress		
NRR	Operating Reactor Licensing	Reviewed		
	Risk Assessment	Reviewed		
	Engineering	Reviewed		
NMSS	Fuel Cycle Safety & Safeguards	Reviewed		
Region I	Reactor Safety	Reviewed		
Region II	Reactor Safety	Reviewed		
Region III	Reactor Safety	Reviewed		
Region IV	Reactor Safety	Reviewed		

Plan to issue Draft Guide for public comment in Q1FY13

Thank You!

Questions?

Back-up Slides

Regulatory Basis

- 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities", Appendix A, "General Design Criteria for Nuclear Power Plants," General Design Criterion (GDC) 2, "Design Bases for Protection Against Natural Phenomena"
- 10 CFR Part 52, "Licenses, Certifications, and Approvals for Nuclear Power Plants"
- 10 CFR 100.20, "Factors To Be Considered When Evaluating Sites"
- 10 CFR 100.23, "Geologic and Seismic Siting Criteria"

Related NRC Guidance

- RG-1.70, Rev.3 "Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants (LWR Edition)"
- RG-1.206, "Combined License Applications for Nuclear Power Plants (LWR Edition)"
- NUREG-0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants (LWR Edition)"
- RG-1.102, "Flood Protection for Nuclear Power Plants"
- RG-1.200, "An Approach for Determining the Technical Adequacy of Probabilistic Risk Assessment Results for Risk-Informed Activities"
- RG-4.7, "General Site Suitability Criteria for Nuclear Power Stations"

Related IAEA Guidance

- NS-R-1, "Safety of Nuclear Power Plants: Design"
- NS-R-3, "Site Evaluation for Nuclear Installations"
- GS-G-4.1, "Format and Content of the Safety Analysis Report for Nuclear Power Plants"
- NS-G-1.5, "External Events Excluding Earthquakes in the Design of Nuclear Power Plants"
- NS-G-3.5, "Flood Hazard for Nuclear Power Plants on Coastal and River Sites"
- NS-G-3.6, "Geotechnical Aspects of Site Evaluation and Foundations for Nuclear Power Plants"
- SSG-18, "Meteorological and Hydrological Hazards in Site Evaluation for Nuclear Installations"

Technical Basis Update Research

- NUREG/CR-6906, "Tsunami Hazard Assessment at Nuclear Power Plant Sites in the United States of America"
- NUREG/CR-7046, "Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America"
- **Draft NUREG/CR-7131**, "Review of Probable Maximum Precipitation Procedures and Databases Used to Develop Hydrometeorological Reports,"
- **Draft NUREG/CR-7132**, "Application of Radar-Rainfall Estimates to Probable Maximum Precipitation in the Carolinas"
- **Draft NUREG/CR-7133**, "Synthesis of Extreme Storm Rainfall and Probable Maximum Precipitation in the Southeastern U.S. Pilot Region"
- **Draft NUREG/CR-7134**, "The Estimation of Very-Low Probability Hurricane Storm Surges for Design and Licensing of Nuclear Power Plants in Coastal Areas"

EPRI Work Relevant to Burnup Credit

Albert Machiels Senior Technical Executive

ACRS September 6, 2012 Meeting

Contents

- Introduction
- Probability of Criticality Event During Transportation
- Full Burnup Credit Validation
- Summary
- References

Introduction – Criticality Safety and Burnup Credit

- Criticality safety: key public safety concern
 - Standards & methodologies were originally developed for the front end of the fuel cycle with pure materials
 - Applying them to spent fuel is not as straightforward
 - ORIGEN follows >2000 nuclides
- "Fresh fuel assumption"
 - Significant conservatism
 - Low-capacity storage and transport systems (more systems, more operations, increased \$)

• May result in less overall safety (radiological $\leftarrow \rightarrow$ non-radiological)

- Burnup credit (BUC): Getting credit for the reduced reactivity of spent fuel compared to fresh fuel
 - "Actinide-only", "Actinide + subset of fission products", "Full BUC"

Probability of Critical Event During Transportation EPRI Report 1016635 (December 2008)

Quantification of Human Failure Events Leading to a Misloaded Dry Spent Fuel Cask

FMS	Refueling Engineer (RE)	FMS Supervisor	Refueling Engineer an	d Crew Refueling from N	Engineer and Rep. Suclear Oversight	Third Party	Third Party	
Select F/As in compliance with Co	Prepare Fuel Moveme Sequence Data Shee	Verify FMSDS an locations against	Individually transfer 32 from SF pool to DSC	Verify F/A SN DSC Fuel Loa	against ding Pattern	Independent verification based on video	Independent verification based on audits	l _{nario} elihood
HASEL1	HAFMS1	Loading Pattern Po	ATRN1	using 3-way communication		HRDSC2	HRSEL1	—
9.998E-01	9.9E-01	NA	9.9E-01	NA		NA	NA	ок
			8.7E-03	9.97E-01		NA	NA	ок
				2.8E-03		9.3E-01	NA	ок
						7.4E-02	9.9E-01	ОК
							1.04E-02	1.9E-08
	1.3E-02	9.3E-01	9.9E-01	NA		NA	NA	ок
			8.7E-03	9.97E-01		NA	NA	ОК
				2.8E-03		9.3E-01	NA	ОК
						7.4E-02	9.9E-01	ОК
							1.04E-02	2.3E-10
	6.6E-02		9.97E-01		NA	NA	ОК	
				2.8E-03		9.3E-01	NA	ОК
						7.4E-02	9.9E-01	ОК
							1.04E-02	1.8E-09
2.50E-04							9.9E-01	OK
							1.04E-02	2.6E-06

From EPRI Report 1016635

Total likelihood of a spent fuel cask shipment with one or more misloaded F/As = 2.6E-06

Probability of Critical Event During Transportation EPRI Report 1016635 (December 2008)

Likelihood of a potential criticality event during a 2000-mile railroad shipment of a cask designed for 32 PWR assemblies: ~1x10⁻¹⁶/shipment
Burnup Credit Validation

- Main thrust: conservatively estimate loss of nuclear reactivity as a function of burnup (range: 0 to 60 GWD/MTU)
 - Including uncertainty of the estimate
- Alternate approach
 - Based on in-reactor measurements (flux maps)
 - Required as part of routine monitoring of power plant operations
 - Cooperative effort involving Duke-Energy, Studsvik
 Scandpower, and Dr. Dale Lancaster
 - Principal Investigator: Prof. Kord Smith (MIT)

Flux Maps: Individual Assembly Reaction Rates

•Miniature fission chambers are inserted in the central instrument tubes of selected assemblies

•This is a high precision (<1% statistical error) measurement of the corewide distribution of fission rates

•BOC calculations required by NRC to be within a prescribed tolerance of measurement - to assure core loading

•Required every 30 days by NRC to guarantee that the core is operating within design margins

11 Reactivity Decrement Benchmarks for 17 x 17 PWR Fuel Designs

	Table 13.1 Benchmark Lattice Cases	
1	3.25% Enrichment	
2	5.00% Enrichment	
3	4.25% Enrichment	
4	off nominal pin diameter depletion	
5	20 LBP depletion	
6	104 IFBA depletion	
7	104 IFBA plus 20 LBP depletion	
8	high boron depletion=1500 ppm	
9	branch to hot rack (150F coolant/fuel)=338.7K	
10	branch to high rack boron = 1500 ppm	
11	high power depletion*(power, coolant/fuel temp)	

	Measured Reactivity Decrement Burnup (GWd/T)						
	Case	10	20	30	40	50	60
	1	-0.1329	-0.2339	-0.3211	-0.3956	-0.4554	-0.5002
	2	-0.1146	-0.2021	-0.2806	-0.3545	-0.4238	-0.4867
	3	-0.1223	-0.2157	-0.2990	-0.3758	-0.4445	-0.5029
	4	-0.1207	-0.2176	-0.3075	-0.3931	-0.4715	-0.5385
	5	-0.2045	-0.2335	-0.2998	-0.3717	-0.4372	-0.4932
	6	-0.1736	-0.2215	-0.2968	-0.3726	-0.4418	-0.5009
	7	-0.2524	-0.2418	-0.2981	-0.3686	-0.4343	-0.4910
	8	-0.1216	-0.2129	-0.2932	-0.3662	-0.4310	-0.4860
	9	-0.1237	-0.2171	-0.2998	-0.3756	-0.4432	-0.5005
	10	-0.0967	-0.1784	-0.2530	-0.3217	-0.3826	-0.4335
	11	-0.1235	-0.2149	-0.2945	-0.3664	-0.4299	-0.4838

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Comparison between "Draft ISG-8, Rev 3" and "Depletion Benchmarks"

Bias + Uncertainty in Neutron Multiplication Factor						
Burnup	Draft ISG-8, Rev 3	Depletion Benchmarks				
10	0.015	0.008				
20	0.016	0.008				
30	0.016	0.008				
40	0.022	0.008				
50	0.030	0.008				
60	0.030	0.008				

- Both results are for SCALE and ENDF/B-VII
- <u>"Depletion Benchmarks" uncertainty includes all nuclides</u> rather than the more limited number of nuclides allowed by Draft ISG-8, Rev 3
- "Depletion Benchmarks' value is dominated by measurement uncertainties. Draft ISG-8, Rev 3 values dominated by chemical assay uncertainties

Summary

- Alternative Approach: Reactor-based full burnup credit validation
 - Applicable to storage (wet and dry), transportation, disposal
 - Normal sequencing from reactor operation
- Spent High-burnup Fuel Transportation
 - Burnup credit is a high priority topic
 - Increased cask capacity (32 vs. 24 assemblies)
 - Loading a greater percentage of spent fuel population
 - Extremely low probability for the potential of a critical event during transportation of commercial spent high-burnup fuel

"Removal of extreme conservatism can result in an overall improvement in safety by balancing criticality risks with other operational risks" [C. Parks (ORNL), Closing Review Session of 2011 International Conference on Nuclear Criticality (ICNC2011)]

References

- Transportation of High Burnup Fuel
 - Transportation of Commercial Spent Nuclear Fuel Regulatory Issues Resolution, EPRI, Palo Alto, CA: 2010. 1016637.
 http://mydocs.epri.com/docs/public/000000000001016637.pdf
 - Machiels, A. and J. Kessler, A multi-facet approach for evaluating criticality risks during transportation of commercial spent nuclear fuel, PATRAM 2010, London, United Kingdom, October 2010

- Probability of Critical Event During Transportation
 - Criticality Risks During Transportation of Spent Nuclear Fuel – Revision 1, EPRI, Palo Alto, CA: 2008. 1016635. <u>http://mydocs.epri.com/docs/public/000000000001016635.pdf</u>
 - Dykes, A. and A. Machiels, *Criticality risks during* transportation of spent nuclear fuel," Packaging, Transport, Storage & Security of Radioactive Material, Volume 21, No. 1, 2010, pp. 51-61.
 - Dykes, A. and A. Machiels, Assessment of the Likelihood of Shipping a Spent Fuel Cask Susceptible to Criticality, PSAM11 & ESREL 2012, Helsinki (Finland), June 2012.

- Misload Analyses

 - Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask, ORNL, Oak Ridge, TN: 2008. NUREG/CR-6955.

- Depletion Benchmarks

 - Smith, K., D. Lancaster, and A. Machiels, *Experimental Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty*, ICNC2011, Edinburgh (Scotland), September 2011.
 - Lancaster, D., K. Smith, and A. Machiels, Utilization of the EPRI Fuel Reactivity Depletion Benchmarks in PWR Spent Fuel Pool Criticality Analysis, ICNC2011, Edinburgh (Scotland), September 2011.

EPEI ELECTRIC POWER RESEARCH INSTITUTE

- Depletion Benchmarks (continued)

 - Lancaster, D., and A. Machiels, Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation, PHYSOR 2012, Oak Ridge (TN), April 2012.

Back-up Slides

Transportation of Spent High Burnup Fuel

- Key regulatory issue: maintaining sub-criticality under accident conditions
- NRC positions:
 - Burnup <45 GWD/MTU: normal assembly configuration</p>
 - Burnup >45 GWD/MTU: fuel reconfiguration cannot be ruled out → "moderator exclusion" or "analytical simulation" option
- Observations
 - High-burnup fuel burned to "design burnup" has low residual nuclear reactivity
 - Should significant reactivity remains ("under-burned"), normal configuration could be assumed
 - With burnup, as cladding properties >, nuclear reactivity >

Importance of a Centralized Accounting System

- ANSI 15-8, Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants, provides reasonable guidelines to record, track, and verify F/A burnup in a centralized accounting system
- Core follow software provides accurate information of the burnup of fuel assemblies. Each spent F/A can be directly associated with its burnup history over multiple fuel cycles
- At any time before a spent fuel cask is shipped
 - F/A burnup and SNM content can be verified against in-core detector measurements and core follow calculations for reactor controls by F/A serial number.
 - Video of F/A serial numbers during cask loading provides ability to independently verify proper loading

Train Accident Initiating Events

Case Study	Case Study Initiating Event Description	Point Estimate Frequency (Events/ Train-Mile)	
Number	From EPRI Report 1016635		
1	All Train Accidents per Train-Mile (All Accidents, All Speeds, All Track Classes), 2000 - May 2006.	4.33E-06	
2	Freight Train Accidents per Freight Train-Mile (All Accidents, All Speeds, All Track Classes), 2000 - May 2006.	2.67E-06	
3	Freight Train Accidents per Freight Train-Mile (Accidents with Primary or Secondary Derailments, All Speeds, All Track Classes), 2000 - May 2006.	2.25E-06	
4	Freight Train Accidents per Track Class 3+ Freight Train-Mile (using Table 2-4 of Ref. 8) with Speed ≥ 30 MPH, 2000 - May 2006.	6.51E-07	
5	Freight Train Accidents per Freight Train-Mile (Accidents with HAZMAT Car Damage, All Speeds, All Track Classes), 2000 - May 2006.	3.06E-07	
6	Freight Train Accidents per Freight Train-Mile (Accidents with HAZMAT Car Damage, ≥ 30 MPH, Track Class 3+), 2000 - May 2006.	8.45E-08	
7	HAZMAT Freight Train Primary and Secondary Derailment Accidents per Track Class 4+ Freight Train-Mile (using Table 2-4 of Ref. 8) with Speed ≥ 60 MPH, 2000 - May 2006.	1.05E-08	
8	Freight Train Primary and Secondary Derailment Accidents per Freight Train-Mile (Accidents with HAZMAT Car Damage, ≥ 60 MPH, Track Class 4+), 2000 - May 2006.	8.01E-09	

United States Nuclear Regulatory Commission

Protecting People and the Environment

Full Committee – 597th Meeting Presentation to the ACRS

US-APWR Design Certification Application

Safety Evaluation Report with Open Items **Chapter 9, Auxiliary Systems** for

Jeffrey Ciocco US-APWR Design Certification Lead Project Manager

September 6, 2012

Protecting People and the Environment

US-APWR Design Certification licensing overview. •

Agenda

Summary of the Chapter 9 Safety Evaluation Report (SER) with Open Items. •

Protecting People and the Environment

US-APWR Design Certification Review Schedule

TASK DESCRIPTION	COMPLETION DATE
Phase 1 – Preliminary Safety Evaluation Report (SER)	Completed
Phase 2 – SER with Open Items	November 2013
Phase 3 – ACRS Review of SER with Open Items	March 2014
Phase 4 – Advanced SER with No Open Items	August 2014
Phase 5 – ACRS Review of Advanced SER with No Open Items	October 2014
Phase 6 – Final SER with No Open Items	March 2015
Rulemaking	August 2015

US-APWR DC Chapter 9

United States Nuclear Regulatory Commission Protecting People and the Environment	the US-APWR	systems			cooling, and	uch as the fire	as Turbine	
Chapter 9 Auxiliary Systems SER with Open Items	 Chapter 9, Auxiliary Systems, of DCD, contains: 	 The fuel storage and handling 	 The water systems 	 The process auxiliary systems 	 The air conditioning, heating, ventilation systems, and 	 The other auxiliary systems, s 	protection program and the Ga	Generator (GTG)

SER with Open Items (cont³d) **Chapter 9 Auxiliary Systems**

Protecting People and the Environment

- At the Sub-Committee meeting in March 2012, Staff presented the following Open Items.
- now confirmatory pending a change to the DCD by Essential Service Water System (RAI 915-6344) is MHI.
- Component Cooling Water System (RAI 878-6200) is now confirmatory – the response is acceptable pending a DCD revision from MHI.
- Condensate Storage Facilities (RAI 863-6148) is now confirmatory - the response is acceptable pending a DCD revision from MHI.

SER with Open Items (cont³d) **Chapter 9 Auxiliary Systems**

Protecting People and the Environment

- Control Room Area Ventilation System and System (RAI 883-6063, Question 30) is still an open item – staff is reviewing a recent Engineered Safety Feature Ventilation response from MHI.
- 883-6063, Question 32) is still an open item -Control Room Area Ventilation System (RAI staff is waiting for a submittal from MHI
- Questions?