Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Power Uprates Subcommittee - Open Session
Docket Number:	N/A
Location:	Rockville, Maryland

Date: June 22, 2012

Work Order No.: NRC-1701

Pages 1-235

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + + +
7	POWER UPRATES SUBCOMMITTEE
8	+ + + + +
9	OPEN SESSION
10	+ + + + +
11	FRIDAY
12	JUNE 22, 2012
13	+ + + + +
14	ROCKVILLE, MARYLAND
15	+ + + + +
16	The Subcommittee met at the Nuclear Regulatory
17	Commission, Two White Flint North, Room T2B1, 11545
18	Rockville Pike, at 8:30 a.m., Joy Rempe, Chair,
19	presiding.
20	
I	NEAL R. GROSS
	(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 (202) 234-4433

1	
2	SUBCOMMITTEE MEMBERS PRESENT:
3	JOY REMPE, Chair
4	SANJOY BANERJEE
5	CHARLES H. BROWN
6	STEPHEN P. SCHULTZ
7	GORDON R. SKILLMAN
8	
9	NRC STAFF PRESENT:
10	WEIDONG WANG, Designated Federal
11	Official
12	TRACY ORF
13	MICHELE EVANS
14	DOUG BROADDUS
15	SAM MIRANDA
16	BENJAMIN PARKS
17	TIM MOSSMAN
18	NORBERT CARTE
19	
20	ALSO PRESENT:
21	JOE JENSEN
22	JACK HOFFMAN
23	STEVE HALE
24	TODD HORTON
25	JAY KABADI
I	

			3
1		DAVE BROWN	
2		RUDY GIL	
3		JESSICA TATARCZUK	
4		DOUG ATKINS	
5		KIM JONES	
6		JEFF BROWN (via telephone)	
7			
8	TERRY JONES		
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

		5
1	AGENDA	
2	(Open)	
3		
4		
5		<u>Page</u>
6		
7	Opening Remarks	
8	5	
9	Introduction	
10	7	
11	EPU Overview	
12	12	
13	Fuel and Core Design	
14	78	
15	Safety Analyses117	
16	Public Comments211	
17	Committee Comments	
18		
19		
20		
21		
22		
23		
24		
25		
	1	

1 2

3

	7
1	PROCEEDINGS
2	8:30 a.m.
3	Opening Remarks
4	CHAIR REMPE: Good morning. This meeting
5	will now come to order. This is a meeting of the
6	Power Uprates Subcommittee, a standing subcommittee of
7	the Advisory Committee on Reactor Safeguards. I'm Joy
8	Rempe, the Chairman of the Subcommittee.
9	ACRS members in attendance include Dick
10	Skillman, Stephen Schultz, Sanjoy Banerjee and Charlie
11	Brown. Our ACRS consultants, Graham Wallis and Mario
12	Bonaca are also present, and Weidong Wang of the ACRS
13	staff is the Designated Federal Official for this
14	meeting.
15	In this meeting, the Subcommittee will
16	review the St. Lucie Unit 2 license amendment request
17	for an extended power uprate. We'll hear
18	presentations from the NRC and the representatives
19	from the licensee, Florida Power and Light Company.
20	We've received no written comments or
21	requests for time to make oral statements from members
22	of the public regarding today's meeting. For the
23	agenda items on Safety Analyses and Thermal
24	Conductivity Degradation, the presentations will be
25	closed, in order to discuss information that's
I	

(202) 234-4433

	8
1	proprietary to the licensee and its contractors,
2	pursuant to 5 U.S.C. 552(b)(C)(4).
3	Attendance at this portion of the meeting
4	that deals with such information will be limited to
5	the NRC staff and its consultants, Florida Power and
6	Light Company, and those individuals and organizations
7	who have entered into an appropriate confidentiality
8	agreement with them.
9	Consequently, we need to confirm that we
10	have only eligible observers and participants in the
11	room for the closed portion.
12	Today, the Subcommittee will gather
13	information, analyze relevant issues and facts and
14	formulate proposed positions and actions as
15	appropriate, for deliberation by the full Committee.
16	The rules for participation in today's meeting have
17	been announced as part of the notice of this meeting,
18	previously published in the Federal Register.
19	A transcript of the meeting is being kept
20	and will be made available, as stated in the Federal
21	Register notice. Therefore, we request that
22	participants in this meeting use the microphones
23	located throughout the meeting room when addressing
24	the Subcommittee. The participants should first
25	identify themselves and speak with sufficient clarity
ļ	I

(202) 234-4433

	9
1	and volume so that they may be readily heard.
2	We'll now proceed with the meeting, and
3	I'd like to start by calling upon Mr. Trace Orf from
4	the staff.
5	MR. ORF: I'd like to introduce Michelle
6	Evans.
7	Introduction
8	MS. EVANS: Good morning, thank you. My
9	name is Michelle Evans. I'm the Director of the
10	Division of Operating Reactor Licensing in the Office
11	of Nuclear Reactor Regulation. I appreciate the
12	opportunity to brief the ACRS Power Uprate
13	Subcommittee this morning.
14	In the interest of time, my opening
15	remarks will be brief. At this meeting, the NRC staff
16	will present to you the results of our safety and
17	technical review of the licensee's application. Our
18	review was supported by pre-application meetings and
19	other meetings, audits and several conference calls
20	with the licensee.
21	Through these numerous interactions,
22	technical concerns were identified, discussed and
23	resolved in a timely manner. Some of the more
24	challenging review areas that you will hear about
25	today include safety analyses of inadvertent opening
I	1

(202) 234-4433

	10
1	of a PORV, and CFCS malfunctions.
2	As was discussed during recent ACRS
3	meeting, the staff became aware of an emerging issue
4	regarding the fuel thermal conductivity under-
5	prediction that may affect the best estimate upper
6	tolerance limit of the peak climbing temperature for
7	PWR, large-break loss of cooling accidents.
8	The licensee will provide a presentation
9	on how this issue impacted the ECCS evaluation for the
10	St. Lucie for the St. Lucie EPU, and its resolution
11	for this issue. The staff will be available to
12	address any questions.
13	A draft safety evaluation was provided to
14	the ACRS on May 31st. We'd like to thank the ACRS
15	staff who assisted us with the preparations for this
16	meeting, especially Weidong Wang. At this point, I'd
17	like to turn over our discussion to our NRR project
18	manager, Trace Orf, who will introduce the
19	discussions. Thank you.
20	
21	MR. ORF: Good morning. As Michelle said,
22	my name is Trace Orf. I'm the NRR project manager for
23	St. Lucie. Today, you will hear presentations from
24	Florida Power and Light and the NRC staff, and the
25	objective of those presentations is to provide you
I	I

(202) 234-4433

	11
1	sufficient information related to the details of the
2	EPU application, and the evaluation supporting the
3	staff's reasonable assurance determination that the
4	health and safety of the public will not be endangered
5	by operation of the proposed EPU.
6	Before I continue with the discussion of
7	today's agenda, I would like to present some
8	background information related to the staff's review
9	of the St. Lucie Unit 2 EPU.
10	On February 25th, 2011, the licensee
11	submitted its license amendment request for the St.
12	Lucie Unit 2 EPU. The proposed amendment will
13	increase the unit's licensed core power level from
14	2,700 megawatts thermal to 3,020 megawatts thermal.
15	This represents a net increase in license
16	core thermal power of approximately 12 percent,
17	including a ten percent power uprate and a 1.7
18	percent measurement uncertainty recapture. This is an
19	18 percent increase from the original licensed thermal
20	power.
21	The staff's method of review was based on
22	Review Standard RS001, which is NRC's review plan for
23	EPUs. As you know, it provides the safety evaluation
24	template, as well as matrices that cover the multiple
25	technical areas that the staff is to review.
I	I

(202) 234-4433

	12
1	While there were no linked licensing
2	actions associated with the EPU application, the spent
3	fuel pool and new fuel storage evaluations and
4	analyses were separated out for scheduling purposes.
5	There were numerous supplements to the application,
6	responding to multiple staff RAIs.
7	Overall, there were approximately 80-
8	supplemental responses that supported our draft safety
9	evaluation. Also, the staff completed several audits
10	to complete its review and resolve open items.
11	CHAIR REMPE: What's the estimated date on
12	completing the fuel storage pool evaluation?
13	MR. ORF: It will be completed concurrent
14	with the EPU.
15	CHAIR REMPE: Which date is?
16	MR. ORF: Oh, I'm sorry. Let's see. The
17	full committee is scheduled for
18	CHAIR REMPE: July?
19	MR. ORF:for July. So it generally
20	takes about 60 days afterwards to complete the EPU
21	amendment. So that would be around the end of August.
22	CHAIR REMPE: Okay.
23	MEMBER SKILLMAN: Trace, you mentioned
24	that there were about 80 supplemental items. Is that
25	a large number or a small number for an EPU?
	I

(202) 234-4433

	13
1	MR. ORF: That's approximately there's
2	generally between 40 and 100.
3	MEMBER SKILLMAN: Thank you, thank you.
4	MR. ORF: You're welcome. Okay. Part of
5	the large number was in order to expedite the review
6	of the review, instead of sending out RAI sets in
7	batches. As the questions arose during the review,
8	each item was sent separately to the licensee, so the
9	licensee could begin a response.
10	MEMBER SKILLMAN: Thank you.
11	MR. ORF: You're welcome. The current
12	slide lists the topics for today's discussion.
13	Florida Power and Light will begin by providing an
14	overview of the EPU, and the NRC staff will then each
15	make the presentation. FP&L and the NRC staff will
16	each make their presentations on fuel and core and
17	safety analyses. Lastly, Florida Power and Light will
18	present information on steam generators.
19	Finally, at the conclusion of the meeting,
20	as needed, we can discuss any additional questions in
21	preparation for a full committee meeting. Also to
22	note, the majority of the afternoon sessions will be
23	closed. If there is any proprietary information that
24	needs to be discussed, it can be deferred to the
25	designated closed session.
ļ	I

(202) 234-4433

	14
1	This concludes my presentation as far as
2	the introduction, and unless there are any further
3	questions, I would like to turn over the presentation
4	to Mr. Joe Jensen and FP&L. Mr. Joe Jensen is the
5	Site Vice President for the St. Lucie nuclear power
6	plant.
7	(Pause.)
8	<u>EPU Overview</u>
9	MR. JENSEN: Okay. Now that we've
10	overcome that technical difficulty, I'll get started.
11	Good morning. My name is Joe Jensen. I am the Site
12	Vice President for the St. Lucie nuclear power plant.
13	I want to thank the Subcommittee for the opportunity
14	to speak on behalf of Florida Power and Light
15	regarding the extended power uprate of St. Lucie Unit
16	2.
17	Here today to share information about the
18	St. Lucie Unit 2 EPU or Jack Hoffman, our licensee
19	manager for the St. Lucie EPU; Rudy Gil, who will be
20	presenting towards the end of the day on the steam
21	generators, who is the manager of our major components
22	inspection group; Jay Kabadi, manager of Nuclear Fuels
23	Group for St. Lucie; and Chris Wasik, licensing
24	manager.
25	This is a significant undertaking for our
ļ	I

(202) 234-4433

	15
1	company, that will not only license, that will not
2	only increase the output of the plant, but will also
3	provide equipment upgrades to improve plant
4	reliability and availability, without cutting into any
5	of our margins, and improving overall performance of
6	the plant, and Jack Hoffman will discuss that later.
7	A little bit about the plant. St. Lucie
8	is located on Hutchinson Island, southeast of Fort
9	Pierce, Florida, and is the primary electrical
10	generation source for St. Lucie County. It's a
11	Combustion Engineering plant with Westinghouse turbine
12	generators. The original architect engineer was
13	Ebasco, and the nuclear fuel supplier is Westinghouse.
14	The gross electrical output of the plant
15	is 907 megawatts electric prior to the EPU
16	modifications. However, note that since we replaced
17	the LP turbines during the last refueling outage,
18	we've gained another 31 megawatts electric, and our
19	current gross electrical output is 938 megawatts
20	electric.
21	With regard to some of our key milestones
22	and major equipment replacements for the St. Lucie
23	Unit 2 plant, the original operating license was
24	issued in 1983. In 2003, a renewed operating license
25	was issued for Unit 2, extending operation of the

(202) 234-4433

(202) 234-4433

	16
1	plant until 2043.
2	Also in 2003, a new single failure-proof
3	crane was installed to support our spent fuel storage
4	operations, and steam generators were replaced in
5	2007. Additionally in 2007, the reactor vessel head
6	was replaced to address Alloy 600 issues.
7	Finally, we replaced two of the four
8	reactor coolant pumps in 2007, excuse me, reactor
9	coolant pump motors in 2007 and 2011, and we intend to
10	replace the other two in 2012 and 2014.
11	The original licensed power for Unit 2 was
12	2,560 megawatts thermal. An approximately six percent
13	stretch power uprate was implemented in 1985,
14	increasing the licensed core power to 2,700 megawatts.
15	This was accomplished with relatively few hardware
16	modifications to the plant.
17	The extended power uprate we're discussing
18	today will increase the licensed core power of Unit 2
19	to 3,020 megawatts thermal, which represents an
20	additional 100 megawatts of clean nuclear energy.
21	This completes what I intended to cover as far as my
22	introduction, and what I'd like to do now is turn some
23	time over to Jack Hoffman, who will summarize the
24	changes to the plant. Thank you.
25	MR. HOFFMAN: Thank you, Joe. Good
ļ	I

(202) 234-4433

	17
1	morning. My name is Jack Hoffman and I'm the
2	licensing manager for the St. Lucie Unit 2 extended
3	power uprate project. As stated earlier, FPL has
4	submitted a license amendment request for an
5	approximate 12 percent license core power increase for
6	St. Lucie Unit 2.
7	This proposed power increase is consistent
8	with that recently approved for St. Lucie Unit 1, and
9	consists of a ten percent uprate from the current
10	power level of 2,700 megawatts thermal to a power
11	level of 2,970 megawatts thermal. In addition, the
12	amendment request includes a 1.7 percent core power
13	increase as a result of a measurement uncertainty
14	recapture.
15	Together, these power increases raise the
16	license core power level to 3,020 megawatts thermal.
17	Also for the EPU, for St. Lucie Unit 2, the emergency
18	core cooling pump net positive suction head or NPSH
19	was analyzed using classic analytical methods.
20	Sufficient pump NPSH margin exists at EPU conditions
21	without taking credit for containment overpressure.
22	A grid stability impact study was
23	performed to evaluate the impact of the EPU on the
24	reliability of the electric power grid. The study was
25	performed for the most limiting configuration of both
I	I

(202) 234-4433

	18
1	St. Lucie units at the proposed EPU power level, and
2	results of the grid simulations indicate acceptable
3	grid performance for the most extreme event.
4	Finally, the remaining modifications to
5	support operation of St. Lucie Unit 2 at the uprated
6	power level will be implemented in 2012.
7	CHAIR REMPE: Have you started? Go ahead.
8	Okay. Have you started the implementation? Are you
9	putting modifications into the plant now or where are
10	you, because
11	MR. HOFFMAN: Currently, the plant's
12	operating. Our next outage will be in August of this
13	year. But the last St. Lucie Unit 2 outage we took
14	the advantage of that outage to implement a number of
15	required EPU modifications, such as the electrical
16	generator modifications and the lower pressure
17	turbines.
18	That was the required inspection outage
19	for those components. So it just made sense to we
20	had to perform the inspections. We had to take that
21	hardware apart. So it just made sense to make those
22	major modifications at that point in time. So we have
23	been operating almost the whole cycle with the main
24	generator upgrades, and also, as Joe mentioned, with
25	the low pressure turbine changeout.
ļ	I

(202) 234-4433

	19
1	So for St. Lucie Unit 2, it's a two outage
2	implementation, with the remainder being implemented
3	in the fall of this year.
4	CHAIR REMPE: Okay, thank you.
5	MEMBER SKILLMAN: An NPSH question, Jack.
6	MR. HOFFMAN: Yes.
7	MEMBER SKILLMAN: I read in the RAI "The
8	methodology for adjusting the NPSH required values is
9	based on an article in Pumps and Systems magazine,
10	August 2009, by Terry Henshaw, P.E., Do pumps require
11	less NPSH on Hydrocarbons Stepping NPSH or to
12	different speeds."
13	Can you explain why your team used a
14	magazine article for NPSH requirement, versus
15	Hydraulics Standards Institute, guidelines or other
16	ASME-type guidance?
17	MR. HOFFMAN: Sure. Let me explain what
18	we did with NPSH. When we did first, the base NPSH
19	analyses were the analyses we performed as a
20	requirement for generic Safety Issue 191, GSI 191, the
21	sump issue.
22	For EPU, we took those analyses and we
23	actually added additional conservatism to determine
24	what our actual limiting margin was for our two most
25	limiting pumps, which are containment spray and high
ļ	I

(202) 234-4433

	20
1	pressure safety injection.
2	What we did is for the NPSH required,
3	which is typically off of a vendor curve, performance
4	curve that's done in the shop, we wanted to adjust
5	that curve for NPSH required, again conservatively,
6	based on what our technical specification allowable
7	diesel generator frequency tolerance is. We're
8	allowed a plus or minute one percent tolerance on
9	diesel frequency, which affects pump speed, which will
10	affect pump performance.
11	So we conservatively adjusted the NPSH
12	required, which typically comes off a manufacturer's
13	curve. The actual NPSH analyses, where you determine
14	NPSH available, were done using classical ASME or
15	Hydraulic Institute standard NPSH analyses.
16	We just simply adjusted the required NPSH
17	an additional amount, to see what that margin would
18	be, and the only available source we could find within
19	the industry on how to adjust an NPSH-required curve
20	was in that article. And at the end of the day, with
21	all the conservatism that we had factored into the
22	analyses, we still have approximately 28 percent
23	margin, NPSH margin for our high pressure safety
24	injection pumps, and about 36 percent margin for our
25	containment spray pump.
I	I

(202) 234-4433

(202) 234-4433

	21
1	MEMBER SKILLMAN: Okay, and that would be
2	at the run-out conditions?
3	MR. HOFFMAN: That is correct. Actually,
4	extreme run-out conditions. Again, diesel over
5	frequency, IST margin instrument uncertainty, and we
6	used those extreme flows to calculate the actual head
7	loss, which is factored into the NPSH available.
8	So we robbed on both ends. We minimized
9	NPSH available; we adjusted NPSH required to minimize
10	that margin, and at the end of the day, we still had
11	in excess of 27 percent for our limiting pump.
12	MEMBER SKILLMAN: Thank you, Jack.
13	MR. HOFFMAN: Okay, next slide. The St.
14	Lucie EPU license amendment request was developed
15	using guidance contained within RS001. The amendment
16	addressed lessons learned from previous pressurized
17	water reactor EPU submittals, including Ginnae, Beaver
18	Valley, Comanche Peak, Point Beach and Turkey Point.
19	In accordance with RS001, the St. Lucie
20	EPU analyses and evaluations were performed consistent
21	with the St. Lucie Unit 2 current licensing basis.
22	Also, the impact of EPU on license renewal was
23	evaluated in each licensing report section. These
24	analyses and evaluations address system structures and
25	components or SSCs, subject to new aging effects due
I	I

(202) 234-4433

	22
1	to changes in operating environment, SSCs that have
2	been added or modified to support EPU operating
3	conditions, and also the impact of EPU on license
4	renewal time-limited aging analyses was also
5	evaluated.
6	As mentioned previously, the proposed
7	uprate includes the measurement uncertainty recapture.
8	The MUR submittal follows the guidance of NRC
9	Regulatory Issue Summary or RIS 2002-03, and the St.
10	Lucie Unit 2 MUR methodology is identical to the
11	uprates recently approved for Turkey Points Units 3
12	and 4, and St. Lucie Unit 1.
13	MEMBER BROWN: Before you go on, are you
14	going to have any discussion on your architectural
15	installation or how LEFM is installed, what it feeds,
16	how it is to be used? I guess I have a few questions
17	
18	MR. HOFFMAN: Sure.
19	MEMBER BROWN:relative to that. But
20	let me make sure I understand its use first.
21	MR. HOFFMAN: Sure.
22	MEMBER BROWN: Obviously, you have to do
23	a calorimetric at some point
24	MR. HOFFMAN: That's correct.
25	MEMBER BROWN:to get your reactor power
I	

(202) 234-4433

	23
1	and your actual plant power, thermal power
2	coordinated.
3	MR. HOFFMAN: Correct.
4	MEMBER BROWN: Is this system used to
5	automatically correct the NIs on a continuous basis?
6	MR. HOFFMAN: No.
7	MEMBER BROWN: So how is it I mean from
8	what I read, just to make sure I get this stated
9	correctly here, I'm going to read it out of the LAR.
10	It says "The LEFM checklist system communicates with
11	the DCS, which is a distributed control system"?
12	MR. HOFFMAN: That is correct.
13	MEMBER BROWN: Via a digital
14	communications interface. There's two CPUs involved
15	with the system. The data is sent. It's limited to
16	values actually used in the calorimetric calibrations,
17	fine, the calculations rather. It goes on to say that
18	the mass flow rate temperature is to be integrated
19	into appropriate DCS calorimetric display screens.
20	I presume somewhere there's algorithms
21	that work on all this stuff to get you the answers you
22	want
23	MR. HOFFMAN: Absolutely.
24	MEMBER BROWN:processing in the DCS
25	system, as opposed to the LEFM system; is that
ļ	1

(202) 234-4433

	24
1	correct?
2	MR. HOFFMAN: Right, right.
3	MEMBER BROWN: Okay, and then it said
4	"hard wire alarms go to the main control enunciators,"
5	which it's installed in the main control room." It
6	then goes on to say "the LEFM checklist system will
7	also communicate with the PI system," which has no
8	discussion, no definition and not even a definition of
9	the acronym in the LAR. What is the PI system?
10	MR. HOFFMAN: We call that the "pie
11	system," and it's simply a display of various
12	parameters within the power plant. There's a number
13	
14	MEMBER BROWN: It's the main control room?
15	MR. HOFFMAN: It's in the main control
16	room, and it's actually on engineering work stations,
17	and it's just a useful tool for operators and
18	engineers to pick out whatever parameter they want to
19	see, and they can pick the time, time span, you know,
20	whether it's a day, the last month. It's just a
21	historian for data and a display for data.
22	MEMBER BROWN: All right, I got that.
23	Then it says let's see, "will communicate via a
24	digital communications interface with appropriate
25	cybersecurity safeguards."
	I

(202) 234-4433

	25
1	MR. HOFFMAN: That's correct.
2	MEMBER BROWN: Okay, and that's all that's
3	stated relative to cybersecurity safeguards.
4	MR. HOFFMAN: Right, right.
5	MEMBER BROWN: These PI system
6	communication links will provide the same high level
7	data to the DCS, the DCS as well as LEFM performance
8	and diagnostics, you know, for performance monitoring.
9	I guess my question is okay, now it's in the DCS. Is
10	it at some point, does the DCS communicate with the
11	outside world via, because you talk about Ethernet
12	connections throughout those discussions.
13	You never say where they go or who they
14	talk to, or what the level of communication is, one
15	way, bi-directional. Ethernet is typically bi-
16	directional, and can be controlled from outside, by
17	outside sources who hack in.
18	MR. HOFFMAN: Right, right.
19	MEMBER BROWN: So in the absence of
20	diagrams and some architectural representation of
21	where this information goes to, it gives the clear
22	impression it just disappears out of the plant and
23	gets siphoned off via some Ethernet connection to
24	outside world, the Internet, corporate world,
25	whatever.
	1

(202) 234-4433

1 There was no mention, relative to the 2 cybersecurity, what type of reg guides or what 3 interfaces govern, for instance, RG 5.71, which lays 4 out a level of isolation for critical plant data, 5 which this is. It also leaves open the question about whether somebody could get in and modify that data as 6 7 it is being presented to the operators, if you've got an Ethernet connection coming into the DCS. 8 9 I don't know how you're going to So 10 explain all that in this particular meeting, but I did want to make you aware that somewhere along the line, 11 I would like to get a clear understanding of why 12 nobody is ever going to be able to get in. 13 RG 5.71 14 it fairly clear that if you're going makes to 15 communicate outside the main plant, it should be a one 16 way only communication link. 17 MR. HOFFMAN: That's correct, that's 18 correct. 19 MEMBER BROWN: And Ethernet does not -and ideally, as it's stated, although it's not 20 required because it's a Req Guide, ideally it should 21 be what I would call -- it's not necessarily analog, 22 but a digital surreal data link of some type that is 23 24 only one way, for instance, LEDs and an optocouplertype arrangement where it can go one way but it can't 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	27
1	come in the other way.
2	MR. HOFFMAN: Sure, sure.
3	MEMBER BROWN: So anyway, those are
4	that's kind of the high level point, in order to try
5	to understand why this system is not compromisable by
6	outside forces, where even though it's not
7	automatically updating, and I'll get to that question
8	here in a minute. I'm kind of verbose at some points.
9	You can't, in other words, provide
10	misleading information, which would lead the operators
11	to take some action, which is not consistent with the
12	actual power level in the plant.
13	MR. HOFFMAN: Right.
14	MR. HALE: This is Steve Hale, Florida
15	Power and Light.
16	MEMBER BROWN: I was waiting for you to
17	stand up.
18	MR. HALE: I just, I think the point we
19	need to make clear is that, you know, these are
20	existing systems in the plant.
21	MEMBER BROWN: I got that. I'm not living
22	and dying by existing systems. Right now, we're going
23	and jacking up the plant tower. We're, how you're
24	using better instrumentation to utilize it, which I
25	have no problem with. It still says now, and

(202) 234-4433

1 fundamentally we're operating at higher power levels with the same design core, utilizing the information 2 3 we have. 4 So it doesn't mean we should just 5 grandfather everything without an understanding, without an understanding of how that is being taken 6 7 care of. It's not encompassed in the LER in any 8 place, and not addressed by the staff in the SER as well. 9 10 MR. HALE: But I think that, you know, in terms of cybersecurity, there's certain activities 11 ongoing right now with regards to improving overall 12 cybersecurity plant-wide. You know, the point I was 13 14 just trying to make here is that, you know, we really 15 didn't change the availability of data and the 16 communication of data as a result of this, you know. 17 It's really the interface with the plant computer system, and that's -- which exists today. 18 That's fine. I haven't had 19 MEMBER BROWN: a chance to look at this stuff ever until these last 20 few and cyber becoming a more interesting issue as we 21 move forward, as we try to define how that function is 22 going to be satisfied for all the plants, one way or 23 24 another. So no, I understand. I appreciate your 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	29
1	point. So don't, I'm not denigrating your point.
2	Don't take it that way.
3	MR. HALE: All right, thank you.
4	MR. HOFFMAN: Yeah. Let me just add on to
5	what Steve has said. Several years back, going from
6	analog to digital technology, we implemented a
7	distributed control system is what we call it or DCS
8	in the control room, that provides the operator
9	there's a number of different systems that communicate
10	with the Distributed Control System in the control
11	room, to provide operators with much better
12	information, touch screens and what-not, and that is
13	isolated from the outside world.
14	That is a system that is specific and does
15	not communicate outside the control room. The way we
16	implemented the Leading Edge Flow Meter modification
17	is we simply, using the DCS as the what I'll call the
18	brains to do the calorimetric calculation, the outputs
19	of the LEFM provides the inputs into the DCS to do the
20	calorimetric calculation.
21	The calorimetric information is displayed
22	in the control room. The calculated calorimetric
23	information is displayed in the control room, and
24	that's not communicated with the outside. That
25	information, correct me if I'm wrong Todd, is used by
Į	1

(202) 234-4433

	30
1	the operators to validate power, NI power.
2	MR. HORTON: Yes. Good morning. Todd
3	Horton, Florida Power and Light. I oversee the
4	operating crews. The PI system in which we were
5	talking about earlier, that is not a system that the
6	operating crews utilize to operate the power plant.
7	They utilize the Distributed Control System and our
8	normal, in this case power, would be our normal wide
9	range nuclear instrumentation and safety channel,
10	linear range safety nuclear instrumentation.
11	The PI system is more of a tool for the
12	Engineering Group and management outside the control
13	system, to look at those same-type indication is that
14	the operators would use, and it gives us the ability
15	to trend that information.
16	MEMBER BROWN: Okay. Let me, let me
17	continue from page 2.4 dash .8, where it says "Each
18	LEFM CPU will communicate with a dedicated DCN front-
19	end Ethernet interface module. The active CPU data
20	source for the DCS calorimetric calculations will be
21	automatically swapped by the DCS when necessary, based
22	on quality status flags originating from the LEFM, and
23	from the Ethernet interface module," whatever that
24	means, wherever that's coming from, whoever has access
25	to it.
I	I

(202) 234-4433

	31
1	I'm not interested in saying DCS is not
2	okay. I'm not interested in saying it can't be used.
3	That's not my point is that Ethernet interface,
4	where does it go and who has access to it?
5	MR. HOFFMAN: That Ethernet connection is
6	strictly between the LEFM hardware in the turbine
7	building, and the CPUs in the control room, all within
8	the power block. There's no external communication.
9	That's simply the internal Ethernet connection between
10	field hardware and
11	MEMBER BROWN: Does the DCS connect out to
12	the outside world via any communication at all?
13	MR. HOFFMAN: I'm not aware of that. We
14	can validate that.
15	MEMBER BROWN: If you could do that, that
16	would be a nice
17	MR. HOFFMAN: That's part of we can
18	take that action. Steve will just validate. What
19	does communicate with the outside is what Todd said,
20	it's the PI system, which is
21	MEMBER BROWN: How does the DCS and other
22	stuff communicate with the PI system?
23	MR. HOFFMAN: That I don't know, but
24	MEMBER BROWN: Well, that would be the
25	other point of vulnerability, because that's a

(202) 234-4433

	32
1	potential external
2	MR. HOFFMAN: Yeah, and as Steve said,
3	that's existing, and you know, we've had the PI system
4	and DCS
5	(Simultaneous speaking.)
6	MEMBER BROWN: Existing or not, I would
7	like to know whether that's truly a one-way
8	MR. HOFFMAN: I understand.
9	MEMBER BROWN: Or whether it has access,
10	people can actually access it and tell the PI system
11	to do things or provide information to them. Because
12	if you're connecting with that via the Ethernet system
13	as well, then you're just daisy-chaining the dual bi-
14	directional communications all the way into the plant.
15	MR. HOFFMAN: Well, I know that's not the
16	case with LEFM.
17	MEMBER BROWN: So if that could be shown.
18	MR. HOFFMAN: Sure.
19	MEMBER BROWN: Or something provided that
20	illustrates that, figuratively, functionally or what
21	have you, that would be appreciated.
22	MR. HOFFMAN: Yeah. That scheme again is
23	all part of the bigger cybersecurity issue that's
24	germane to everything. You know, LEFM is a small
25	piece that's been added on to that platform. I

(202) 234-4433

	33
1	understand the question. We'll have that information
2	for you later today.
3	MEMBER BROWN: Okay. Thank you very much.
4	MR. HOFFMAN: Sure.
5	MEMBER BROWN: Thank you, Joy. I didn't
6	see any other place to bring this up, and I did see
7	all the rest of the slides.
8	MR. HOFFMAN: No, this is the right place.
9	(Simultaneous speaking.)
10	MR. HOFFMAN: You picked the right spot.
11	MEMBER BROWN: Okay, thank you.
12	MR. HOFFMAN: Yeah, okay. Next slide,
13	Chris. Okay. Moving on. Comprehensive engineering
14	analyses were
15	MEMBER BROWN: I take that back. I did
16	have one other comment.
17	MR. HOFFMAN: Sure.
18	MEMBER BROWN: Because I didn't see this
19	addressed either, and maybe the staff will address
20	this later. But utilizing this system allows you to
21	pick up an extra 1.7 percent, based on your earlier
22	slides and based on the LARs.
23	MR. HOFFMAN: That's correct.
24	MEMBER BROWN: You then go through a
25	discussion, and the staff did in their SER also, of
ļ	I

```
(202) 234-4433
```

	34
1	when it's out of service.
2	MR. HOFFMAN: That's correct.
3	MEMBER BROWN: However, there's 48 hours
4	allowed. So it can go out of service, and you can
5	continue to operate for some period of time, even
6	though now you don't have this ability to "normalize"
7	the old system, the old alternate venturi DP cell
8	temperature system that feeds the calorimetric
9	calibrations. You can't normalize it anymore.
10	And then in addition to that, you go
11	through a chain, which says well, if we just got a
12	little piece of this is out, then we can do this and
13	a little piece of that then it's this, and a little
14	piece of that.
15	I guess I have a hard maybe the staff
16	is going to have to convince me later, but I have a
17	hard time figuring out that if my main calibration of
18	saying I'm okay for this higher power is out of
19	service for two days, that it's okay to just, from my
20	background, at least in the Naval nuclear program, if
21	I had this go out, we would have been down to the
22	lower power in a heartbeat, without saying well gee,
23	we know it was okay when it broke and everything was
24	all right.
25	But we're just going to trust the will of

(202) 234-4433

	35
1	electronics and all the goodness of physics, to say
2	that we're okay for a couple of days, and then we'll
3	do some incremental downgrades or what I just, that
4	may, it may even fall within the 48 hours. I don't
5	know, don't remember that detail.
6	MR. HOFFMAN: Right, right.
7	MEMBER BROWN: So anyway I'd like at some
8	point, if people are going to talk about that, that
9	would be useful also. Or if the staff would like to
10	answer that later when they're talking, that's
11	MR. HOFFMAN: Well, I'll take a stab at
12	it. Now would be the time. The out of service or
13	AOT, Allowed Out of Service Time scheme that is being
14	proposed for St. Lucie in a two, is basically
15	consistent I don't want to say basically. It is
16	consistent with the manufacturer's recommendations.
17	If you look back at previous MURs
18	MEMBER BROWN: Well, but manufacturers
19	love their stuff.
20	MR. HOFFMAN: But if you look back at
21	previous licenses that put in MURs, the out of service
22	time, the AOT for the recently-approved St. Lucie Unit
23	2; for the Turkey Point EPU, they put in an MUR also.
24	The strategy was looked at extensively by the staff
25	and by our INC group, to come up with the AOT times
ļ	I

(202) 234-4433

	36
1	that you see in the final draft SE.
2	So St. Lucie isn't an outlier. We're
3	consistent with what's, you know, come ahead of us
4	that may not be sufficient to satisfy you. But we're
5	not doing anything different.
6	MEMBER BROWN: Well of course, I was not,
7	I'm not a member of the Uprate Subcommittee. If I'd
8	seen this in St. Lucie 1, I would have asked the same
9	questions.
10	MR. HOFFMAN: Sure. But those, it did get
11	a lot of scrutiny, and the staff maybe, you know,
12	Trace can lean in, because actually we had proposed
13	something a little bit different. The staff came back
14	and tightened up
15	(Simultaneous speaking.)
16	MEMBER BROWN: Well, they changed. Yeah,
17	I felt they changed it a little bit.
18	MR. HOFFMAN: Right.
19	MEMBER BROWN: But I didn't see a clear
20	basis, I didn't understand their basis for the change.
21	MR. HOFFMAN: And you have to understand
22	too, without knowing the hardware, it's not like the
23	entire Leading Edge Flow Meter system is out for a 48-
24	hour period and you're flying blind. It's not that.
25	It's just a very small subset of the system, and you
I	I

(202) 234-4433

	37
1	have 48 hours, similar to what you do with a technical
2	specification LCO. Yes, Todd.
3	MR. HORTON: Yeah, Jack. If I could add
4	to it. Todd Horton, Florida Power and Light. I
5	oversee the crews. One additional piece that wasn't
6	mentioned by Jack is each night on the mid-shift, the
7	operating crew in the control room will check the
8	output of the older system, the feed water flow
9	venturis, and make adjustments on those to keep the
10	output aligned with the higher sensitivity of the
11	LEFM.
12	So if the LEFM was to go out of service,
13	the feed water flow venturis will have just been
14	recently calibrated within that 24 hour window with
15	the LEFM.
16	MEMBER BROWN: Okay, and that brings me
17	back, which following back to the initial question
18	that I asked, which I forgot to come back to. I asked
19	if it was continuously upgraded, and you're saying
20	based on your comment, it sounds like the LEFM system,
21	through whatever displays you have, then is used to do
22	your gain adjusts or whatever tweaking you to do the
23	reactor power system, in order to bring those into a
24	normalized or conforming
25	MR. HORTON: The older feedwater flow
I	1

(202) 234-4433

	38
1	venturis, the output of those is calibrated each night
2	by the operating crews.
3	MEMBER BROWN: Again the LEFM?
4	MR. HORTON: That's correct.
5	MEMBER BROWN: Okay, and does the old
6	system also feed into the DCS system to do
7	calorimetrics?
8	MR. HORTON: It will feed
9	MEMBER BROWN: Or display to the operator?
10	MR. HORTON: The output is available to
11	the operators, that is correct.
12	MEMBER BROWN: Okay. Now does that how
13	is that connected into your nuclear instrument system,
14	or whatever generates your reactor trips?
15	MR. HOFFMAN: It's not.
16	MR. HORTON: It is not. That is the wide
17	range nuclear instrumentation and the linear arranged
18	nuclear instrumentation that is not impacted by this,
19	that actually feeds into those trips.
20	MEMBER BROWN: Okay. So you don't
21	calibrate those against you don't calibrate those
22	against your thermal calorimetric calibration?
23	MR. HORTON: That is not something the
24	operating crew would be doing shiftly with the output
25	of the LEFM. The nuclear instrumentation is
Į	I

(202) 234-4433

	39
1	calibrated by the Instrument Controls Division with
2	Reactor Engineering, that's done on a different
3	frequency with a different set of parameters.
4	MEMBER BROWN: Okay. I guess I'm a little
5	confused. Let me hearken back to my old days, and you
6	tell me where I lack understanding. In the plants I
7	was familiar with, we would go to a secondary system
8	calorimetric, determine the actual power being
9	generated by the plant.
10	Then we would adjust nuclear instrument
11	gain, so that they corresponded to a calibrated point
12	of operation thermally at various, you know, within a
13	pressure, temperature and flow configurations. Then
14	all your trips were then generated from that, and you
15	calibrated the NIs power to the thermal power that's
16	being generated.
17	MR. HORTON: That's right, you're correct.
18	Those gain adjustments we do do on a nightly basis
19	(Simultaneous speaking.)
20	MEMBER BROWN: Okay. That's what I was
21	asking. So you do those against the calorimetric
22	calculations that were done by the DCS.
23	MR. HORTON: Right. You're absolutely
24	right.
25	MEMBER BROWN: So that's how you keep the
I	

(202) 234-4433

	40
1	plant normalized, not only between alternate and the
2	LEFM, but you also calibrate the NIs every night?
3	MR. HOFFMAN: Right.
4	MR. HORTON: That's correct.
5	MEMBER BROWN: Okay. Thank you very much.
6	MR. HOFFMAN: And again, now we have two
7	diverse means of measuring feedwater flow. Primary
8	will be the continuous DCS calorimetric count by a
9	Leading Edge Flow Meter. We will still have the
10	calibrated venturis as a backup. They're part of that
11	allowed out of service time in the coordination with
12	the NIs.
13	MEMBER BROWN: Yeah, I got that. Okay,
14	thank you.
15	MR. HOFFMAN: Okay.
16	CHAIR REMPE: But for follow-up action
17	items on that, I think I heard you wanting to know
18	more information about the allowed outage time
19	MEMBER BROWN: Yeah. Well, they proposed
20	one thing, and then the staff came through with a
21	brief discussion of no, we don't you went too far.
22	So they toned it down a little bit, from what I could
23	
24	(Simultaneous speaking.)
25	MR. HOFFMAN:tighten it up.
ļ	I

(202) 234-4433

	41
1	MEMBER BROWN: From what I could see.
2	CHAIR REMPE: That's another basis
3	MEMBER BROWN: I'd like to know the basis
4	for tightening it up and why, if it was needed to be
5	tightened a little bit, why didn't it need to be
6	tightened all the way?
7	CHAIR REMPE: Sure, okay.
8	MEMBER BROWN: Even though it's already
9	been done before. Kind of what's the basis for that?
10	So the staff could address that
11	MR. BROADDUS: This is Doug Broaddus.
12	We're looking to see if we can, if the reviewer is
13	available to come down and discuss that, and so we'll
14	find some time a little bit later.
15	MEMBER BROWN: Okay. That would be
16	helpful. Thank you very much.
17	MR. HOFFMAN: We have the action for the
18	
19	MEMBER BROWN: Yeah. I'd still like to
20	see a confirmation of, you know, a functional diagram
21	at some sort that shows that there are no connections
22	anywhere, and that there's no what I would call back
23	door path via whatever the PI system feeds externally,
24	that can work its way back in.
25	It would just be nice to see a nice knife-
ļ	I

(202) 234-4433

	42
1	edge break between that and what gets to the
2	operator's desk, as to what they're doing when they're
3	tweaking the NIs all the time, every night.
4	MR. HOFFMAN: Okay.
5	MEMBER BROWN: Thank you for your
6	patience, Joy.
7	CHAIR REMPE: No problem.
8	MR. HOFFMAN: Okay, moving along.
9	Comprehensive engineering analyses were performed on
10	all affected primary side and secondary side systems,
11	structures and components that are impacted by the
12	proposed EPU. The analyses were performed at the most
13	limiting EPU design conditions.
14	Secondary side heat balances were
15	developed assuming a bounding NSSS power level of
16	3,050 megawatts thermal, which is consistent with the
17	power level assumed in the EPU fuel-related safety
18	analyses. Detailed hydraulic analyses were performed
19	for the feedwater condensate and heater drain systems
20	at this bounding NSSS power level.
21	A thorough review of the secondary side
22	dynamic response to events such as fast valve closures
23	was also performed as part of EPU. An analytical
24	model of the St. Lucie primary and secondary control
25	systems was developed for EPU. This model was used to
I	1

(202) 234-4433

	43
1	evaluate the plant's response to EPU normal, off-
2	normal and transient conditions. EPU control system
3	changes are based on the model results.
4	The licensing process used by St. Lucie
5	included a detailed review of the operating experience
6	for each license application section, including a
7	review of other uprate license applications, the
8	industry RAI database, industry operating experience
9	and INPO guidance.
10	Next slide. This table provides a
11	comparison of the primary and secondary plant
12	parameters for St. Lucie Unit 2. As Joe Jensen
13	mentioned, St. Lucie Unit 2 was originally licensed in
14	1983 at a core power level of 2,560 megawatts thermal.
15	An approximate five and a half percent stretch power
16	uprate to 2,700 megawatts thermal was approved and
17	implemented in 1985.
18	The proposed EPU is identical to that
19	recently approved for St. Lucie Unit 1, and consists
20	of a 320 megawatt thermal core power increase above
21	the current power level of 2,700 megawatts thermal.
22	The EPU thermal design flow remains unchanged from the
23	current value of 187
24	CONSULTANT WALLIS: Can you explain that
25	to me?
ļ	I

(202) 234-4433

	44
1	MR. HOFFMAN: I'm sorry?
2	CONSULTANT WALLIS: You give this in gpm?
3	MR. HOFFMAN: Yes.
4	CONSULTANT WALLIS: At what temperature is
5	that gallon?
6	MR. KABADI: That's based on the cold leg
7	temperature.
8	CONSULTANT WALLIS: So there has been a
9	change, because the temperature's changed? It's the
10	same volume, but it's a different mass?
11	MR. KABADI: Right. From the analysis
12	point of view, as far as you are right. In terms
13	of mass, it will change. The cold leg, this value is
14	based on the cold leg temperature in the safety
15	analysis. That's is correct.
16	MR. HOFFMAN: Okay. 178,000 gallons per
17	minute per reactor coolant loop, and the Combustion
18	Engineering St. Lucie unit does have two loops. I
19	will note that this reactor coolant system design flow
20	is identical to that being implemented for EPU on Unit
21	1.
22	The proposed EPU cold leg temperature is
23	being increased by two degrees Fahrenheit, from a
24	current value of 549 degrees F, to a value of 551 F.
25	This temperature increase results in an
ļ	I

(202) 234-4433

1 EPU predicted steam generator pressure close to that experienced at today's power level. A bounding hot 2 3 leq temperature of 606 degrees Fahrenheit is predicted 4 for the EPU. This EPU hot leg temperature is 5 identical to the St. Lucie Unit 1 EPU value, and is well below the industry experience for similar PWR 6 7 uprates. The EPU analyses have concluded that the 8 9 existing Alloy 600 program is sufficient to manage potential aging effects 10 at these increased EPU temperature conditions. 11 12 CHAIR REMPE: Just to make sure, because I saw differences between the LAR and the SE, you have 13 14 no net change and you still have 47 degrees across the 15 I think I have the right number on that. core, right? 16 At the core, there's still no net change in the LAR 17 across the core? The inlet temperature went up, the core 18 19 outlet temperature went up to 607.9 degree F still, and you guys are holding with those numbers, right? 20 MR. HOFFMAN: Where is that? 21 22 (Simultaneous speaking.) Okay, but it's still inlet 23 CHAIR REMPE: 24 temperature is 551 F; outlet is 607.9, and those are the numbers you're going with, because I saw different 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

45

	46
1	numbers in the staff's SE.
2	MR. HOFFMAN: Right, and just to clarify,
3	these numbers that you see here are Westinghouse,
4	what's called PCWG, which is Performance Capability
5	Working Group, consistent methodology that was used in
6	Seabrook, Turkey Point, Point Beach. That's what
7	these numbers represent.
8	Now for fuel-related analyses, there was
9	an additional margin added, an uncertainty added to
10	those numbers. So the 607.9 is actually what you'd
11	see in the Chapter 15 safety analyses, adding
12	additional uncertainty to the PCWG numbers.
13	CHAIR REMPE: So when I saw core,
14	different temperatures across the core, perhaps the
15	staff could use some different values?
16	MR. HOFFMAN: They were really looking at
17	I don't know what context that is. That may be in
18	context of Chapter 15, which made the delta even
19	bigger, based on uncertainties that they used in the
20	Chapter 15 safety analyses.
21	CHAIR REMPE: And again, I'm talking core
22	vessel and vessel inlet and outlet is what I was
23	talking about. Okay, thank you.
24	MR. HOFFMAN: Correct, yeah. I just want
25	to make one clarification. You know, these are all
I	I

(202) 234-4433

	47
1	analytical numbers. The reality is our best estimate
2	flow is approximately 200,000 gallons per minute per
3	loop currently. That number is not changing. That's
4	reality. That number's not changing for EPU, and when
5	you look
6	We call that the best estimate prediction,
7	and when you look at that flow rate, the actual flow
8	rate, the hot leg temperature, the predicted hot leg
9	temperature is 602.6. So that's what we physically
10	expect to see in the field when we implement the
11	uprate, and these analytical values are simply
12	conservative numbers for use in the appropriate
13	analyses.
14	CHAIR REMPE: Okay.
15	CONSULTANT WALLIS: These are not
16	realistic numbers here?
17	MR. HOFFMAN: These are what I'd call,
18	these numbers define the engineering box that we used
19	to do our analyses. That's
20	CONSULTANT WALLIS: It would make more
21	sense to me if you said the reality was this, but you
22	know, this may be something else.
23	MR. HOFFMAN: Yeah. This is just
24	consistent with the way the material is presented in
25	previous EPU license amendments requests, and again,
I	1

(202) 234-4433

	48
1	these are the bounding numbers
2	CONSULTANT WALLIS: Well, it gets
3	confusing when you have sort of three sets of numbers.
4	MR. HOFFMAN: Sure, sure.
5	MEMBER SKILLMAN: Jack, let me push back
6	a little bit. You say the bogus number for flows, the
7	mass flow rate associated with T-cold at 187,500
8	gallons a minute. You're thinking flow; I'm thinking
9	reactor coolant pump motor horsepower, and I'm
10	thinking fuel temperatures.
11	Then you say that number is really not
12	187-5. It's 12,500 gallons a minute more than that,
13	with a density of T-cold. That tells me that what we
14	might be talking about thermal conductivity
15	degradation might be different than what we're really
16	going to talk about.
17	So if you're telling me that it's really
18	200,000 gallons a minute per loop and it's not 187-5,
19	I say to myself what are we looking at here? I'm with
20	Dr. Wallis. Is this a comic book number or is this
21	the real deal?
22	MR. HOFFMAN: If you look at our technical
23	specifications, thermal design flow is defined in the
24	technical specifications, and the thermal design flow,
25	minimum thermal design flow in the technical
	I

(202) 234-4433

49 1 specifications that we have to use to meet all of our safety analyses, that number is 187,500. 2 3 That's the number today in the tech specs. 4 That's the number for EPU in the tech specs. There's 5 margin obviously. You want to take what your best estimate flow is, and you want to ensure that you have 6 7 flow margin in your analyses for uncertainty and what-8 not, measurement uncertainty. 9 And again, these numbers are the PCWG 10 numbers that define what I would call the engineering envelope for subsequent 11 or design engineering analyses. Jay, maybe you can talk about the impact on 12 TCD. 13 14 MR. KABADI: Yeah, right. I'm Jay Kabadi Our actual major flow for St. Lucie 2 is 15 for FPL. 16 actually in the range of about 405,000 for both loops. 17 So per loop is coming about 202. When you said these flow for the analysis, we account for the amount of 18 19 plugging we allow, because right now we have two plugging, which is close to probably very, very low 20 number. 21 22 MR. HOFFMAN: Zero. MR. KABADI: And all these analyses are 23 24 done with ten percent two plugging. So we look at what the floor would be with the ten percent plugging, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	and then allow margin for uncertainty and some
2	additional margin, and that's how this flow of 187,500
3	is set up.
4	So real flow is much higher, but all the
5	safety analyses which are conservative, if you use the
6	lower flow, we bounded with these numbers. So as long
7	as we measured the flow for each cycle, as long as
8	they are a bounded flow, we meet all the safety
9	analysis requirement.
10	In the real sense, exactly as you said,
11	for the field performance and all, really get much
12	better numbers. So thermal conductivity by the
13	reactor temperatures will be lower than what is
14	analyzed. So then exactly there is some original
15	margin. But since we do these analyses for DCD, LOCA
16	and other things one time, we take the worse
17	conditions and analyze that.
18	So as long as our flow remains about this
19	value, we meet the requirement of the effects of the
20	LOCA.
21	MEMBER SKILLMAN: Thank you, understand.
22	CONSULTANT WALLIS: So if I wanted to make
23	an independent calculation of something, to satisfy
24	myself that something is okay, which number should I
25	use?
Į	I

(202) 234-4433

	51
1	MR. KABADI: When we look for our actual
2	operating parameters, we can look at the reactor
3	measured flow, which is done every cycle. We measure
4	that at the beginning of every cycle of the actual
5	reactor cooling system flow.
6	So if you use that flow and fit into all
7	the thermohydraulic equations, you will get the actual
8	conditions of what the T-cold, I mean what the T-hot
9	temperatures are.
10	So although, for example, for one specific
11	cycle, you want to do the best estimate of analysis,
12	those numbers are available, based on are available
13	in the sense of could be easily generated
14	CONSULTANT WALLIS: What would help me in
15	the future or maybe not, if you had a different table
16	which said these are best estimate values.
17	MR. HOFFMAN: We certainly have those, and
18	again, we just wanted to establish, for example, with
19	this slide
20	MEMBER BANERJEE: Can you just supply
21	that, what the 187,500, you know, best estimates.
22	MR. HOFFMAN: Sure. Steve, do you want to
23	take that? We'll just provide a table of the I
24	think we actually have a calculation, and it's a best
25	estimate calculation.
	I

(202) 234-4433

	52
1	CONSULTANT WALLIS: That would be good.
2	MEMBER BANERJEE: So if you were looking
3	at the stored energy in the fuel for LOCA, based on
4	187,500 is what you're doing. That's ten percent
5	MR. KABADI: Right, that's correct. So
6	the analysis is done conservatively.
7	MEMBER BANERJEE: Yeah, conservatively.
8	So what is the difference compared to what your best
9	estimate would be?
10	MR. KABADI: Yeah. I think actual numbers
11	we'll provide.
12	MEMBER BANERJEE: Yeah. If you can
13	provide
14	MR. KABADI: There will be a few degrees
15	loss.
16	(Simultaneous speaking.)
17	MEMBER BANERJEE: percent, right?
18	MR. KABADI: Temperatures will be in the
19	range of at least 600 instead of 606, whatever
20	mentioned here. But actual numbers we will provide.
21	MEMBER BANERJEE: Okay.
22	MR. HOFFMAN: I actually have the
23	calculations.
24	MEMBER BANERJEE: I think that's where I'm
25	
	I

	53
1	(Simultaneous speaking.)
2	MR. HOFFMAN: I'll talk to you on break.
3	MR. HALE: Jay, this is Steve Hale,
4	Florida Power and Light. I think it's also important
5	to point out when we do safety analysis, we not only
6	use the minimum flow number, but we use a range of
7	temperatures to make sure that we bound the low end
8	and the high end.
9	And if it's more conservative to run at
10	low temperature, that's the analysis we run, and if
11	it's more conservative to run at a higher temperature,
12	we run it at that.
13	MEMBER BANERJEE: So we are going to visit
14	this TCD issue later, and the effect on LOCA?
15	MR. KABADI: That's correct. That's in
16	the afternoon closed session.
17	MEMBER SKILLMAN: I accept your answer and
18	I appreciate what you have said. Had this slide been
19	titled "Analytical Assumptions," perhaps neither Dr.
20	Wallis nor I would have asked the question.
21	MR. KABADI: Understood.
22	MEMBER SKILLMAN: But when they're
23	presented as the actual it sounded like they were
24	presented as the actual.
25	MR. HOFFMAN: Yeah. They're design
ļ	

(202) 234-4433

	54
1	parameters.
2	MEMBER SKILLMAN: We have a tendency to
3	stumble. So thank you.
4	MR. HOFFMAN: It confuses the operators,
5	because they look and this is not what I see in the
6	plant. But they're numbers that we in Engineering
7	need to use, to make sure we do bounding conservative
8	analyses.
9	MEMBER SKILLMAN: For analyses?
10	MR. HOFFMAN: Correct.
11	CONSULTANT WALLIS: But the trouble is
12	that what's conservative for one thing may not be
13	conservative for another?
14	MR. HOFFMAN: For another. It makes it,
15	that's the challenge we have, is to make sure we're
16	picking
17	MR. KABADI: And we look at it as part of
18	the analysis, like some, for example, fuel liftoff and
19	we use max flow. We cannot use this minimum flow to
20	calculate the liftoff of the fuel.
21	MEMBER SKILLMAN: We're looking at the
22	same thing. So yep. Thank you.
23	MR. HOFFMAN: Okay. Any other questions
24	on the parameter slide? If not, we'll move forward.
25	Several EPU modifications shown on this slide have a
ļ	I

(202) 234-4433

	55
1	beneficial safety impact. For example, the second
2	modification on the list resolves a long-standing low
3	margin issue for St. Lucie Unit 2.
4	Unlike Unit 1, the control room air
5	conditioning condensing units are cooled by the
6	safety-related closed cooling water system. This
7	design limits the maximum allowable ultimate heat sink
8	temperature, and becomes challenging during the summer
9	months.
10	The proposed EPU modification upgrades the
11	air conditioning skid to accommodate elevated heat
12	sink temperatures well above that expected during
13	normal plant operation. The last modification on the
14	slide increases the reactor protection system steam
15	generator low level trip setpoint to improve the
16	unit's plant risk profile for beyond design basis
17	events.
18	The risk impact of EPU was calculated
19	using the St. Lucie Unit 2 internal events, PRA model
20	and the results concluded that the EPU results in a
21	slight decrease in risk or a risk benefit.
22	MEMBER BANERJEE: So if you go and look at
23	this, install Leading Edge, you're already taking
24	advantage of that by getting your uncertainty down.
25	So in some way, you can double-count it, because
Į	

(202) 234-4433

	56
1	you've already taken that advantage. It's not like if
2	you didn't take the advantage, that would enhance
3	safety?
4	MR. HOFFMAN: Correct.
5	MEMBER BANERJEE: But in this case, that's
6	really pushing it too far, to say it supports safety.
7	You're doing what you can to get the benefits of it.
8	MR. HOFFMAN: Sure.
9	MEMBER BANERJEE: Right, okay.
10	MR. HOFFMAN: We believe it's a more
11	accurate way of calculating
12	MEMBER BANERJEE: Sure, but you're also
13	getting
14	MR. HOFFMAN:which ultimately gets to
15	NIs and
16	MEMBER BANERJEE: Yeah, but you're also
17	taking advantage of it.
18	MEMBER SKILLMAN: At one point you're
19	jacking the power up by 1.7 percent.
20	MR. HOFFMAN: No question. It is far more
21	accurate then
22	(Simultaneous speaking.)
23	MEMBER SKILLMAN: It just allows you to
24	maintain an equivalent safety posture, not
25	improvement.
Į	1

(202) 234-4433

	57
1	MEMBER BANERJEE: And you know, this
2	committee has had continuing debates on the accuracy
3	of these things, because it's very, very tricky and
4	we've sort of finally, after many go-arounds, agreed
5	to this in some sense.
6	But there are concerns, because it has to
7	be installed precisely. You can't do the calibrations
8	of these, you know, <i>in situ</i> very easily. So it's a
9	difficult problem. The staff has taken a certain
10	position. We've agreed to it, but let's not push it
11	too far.
12	MR. HOFFMAN: Understand.
13	MEMBER BROWN: Just my reading of the
14	installation and the basis was that you were not
15	doing, using this based on analytical extrapolations,
16	that what you actually tested with the appropriate
17	number of pipe diameters or whatever it is from the
18	terminology is upstream and downstream and where the
19	thing is located, and you actually did a calculation.
20	MR. HOFFMAN: That's right.
21	MEMBER BROWN: It was fairly
22	(Simultaneous speaking.)
23	MEMBER BANERJEE: Yeah. Let's not go
24	there. This is a
25	MEMBER BROWN: Well, I know. That's why
	I

(202) 234-4433

	58
1	I didn't, since I figured you had already caved
2	somewhere along the line.
3	MEMBER BANERJEE: I didn't cave. Graham
4	Wallis caved.
5	MEMBER BROWN: Okay.
6	(Laughter.)
7	MEMBER BANERJEE: This goes back
8	historically.
9	MEMBER BROWN: But at least it was not an
10	extrapolation. They were doing it based on actually
11	testing their
12	MR. HOFFMAN: The actual spools that we
13	put in the field were tested
14	MEMBER BROWN: They were testing those in
15	a calibrated facility, to make sure they've got the
16	right data. So
17	MEMBER BANERJEE: The Reynolds numbers
18	effects, all sorts of things.
19	MEMBER BROWN: All that good stuff, yeah,
20	yeah.
21	(Simultaneous speaking.)
22	MEMBER BANERJEE: Over and done with.
23	MEMBER BROWN: Yes.
24	MEMBER SKILLMAN: I'd like to drop out of
25	the stratosphere for a second and ask one or two
ļ	

	59
1	questions.
2	MR. HOFFMAN: Absolutely.
3	MEMBER SKILLMAN: When we talked a little
4	bit earlier about NPSH, part of that answer is we've
5	tightened up the tolerances on the emergency diesel
6	generators for the tolerance on frequency and on
7	voltage.
8	MR. HOFFMAN: That's correct.
9	MEMBER SKILLMAN: And from my experience,
10	that is a big deal, because it affects every 4160
11	component in the plant, your ECCS buses. How did you
12	do that? Did you change your governors, or did you
13	just credit what you know is the real experience at
14	load for your EDGs?
15	MR. HOFFMAN: Actually, those actually
16	numbers, and this came out of a previous NRC
17	inspection, component design basis inspection, and we
18	ultimately corrected we had the long-term
19	corrective action to fix the problem from that
20	previous NRC inspection.
21	If you looked at our original technical
22	specifications, and they're consistent with the rest
23	of the industry, the original frequency, allowed
24	frequency on the diesel was plus or minus two. We've
25	gone to plus or minus one.
I	I

(202) 234-4433

So we've tightened up on that and, more importantly, we've done an extensive amount of analyses as part of the EPU project, to look at all the components that are speed-dependent, pumps, valves, and ensuring that in all the safety analyses we can support again plus or minus, depending on which is conservative.

So all that analytical work was done as 8 9 part of the EPU and I'll call them hydraulic or system 10 analyses. The voltage was tightened up from plus or minus 10 to plus or minus 5, and a similar electrical 11 evaluation was done at all of the bus level, whether 12 it was 41.60, 480, 120, to show that, you know, the 13 14 pumps actually can operate at minus 25 percent. They're spec'd out and designed to voltage. 15

16 MEMBER SKILLMAN: Thank you. Let me just little this further. 17 pursue а bit Have the surveillances been changed in your tech spec for the 18 19 so that the acceptance criteria for the engines, output reflects the tightened tolerances for voltage 20 and for frequency? 21

22 MR. HOFFMAN: As part of the technical 23 specification change package for EPU, those new 24 tightened requirements are in our surveillance 25 requirements.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	61
1	MEMBER SKILLMAN: Thank you. Let me ask
2	one more. While the spent fuel pool criticality work
3	has been pushed off as a supplement, there is a set of
4	words I would like to ask, because I don't see another
5	place to ask the question.
6	The wording is the tech spec 561 Alpha 3
7	is changed from a nominal 8.96 center to center
8	between fuel assembles, to a nominal of 8.965 inches,
9	a five thousandths of an inch change. To those that
10	have handled fuel, you have a hard time finding five
11	thousandths of an inch. If you put them in the racks,
12	you'll never find five thousandths of an inch.
13	What's with that, please? What is this
14	change?
15	MR. KABADI: Yeah, I think at this point
16	I can answer. That was the number which was in the
17	current tech spec. Actually, this is a correction.
18	This should have been the correct number in the tech
19	specs. Now whether you could get the tolerance to
20	that, what you mentioned, I cannot answer now.
21	But the correction to tech spec was
22	changed, mainly because to correct what was in the
23	previous tech spec. Actually, they're not changing
24	MEMBER SKILLMAN: So this is an admin
25	change in the tech spec?
I	

(202) 234-4433

	62
1	MR. KABADI: Yeah. When we, since we were
2	at the time doing EPU analysis, when we found that
3	they actually, I think previous, the current tech spec
4	had a number which is slightly different. So this is
5	right time, and we're redoing all the criticality
6	analyses, and when this number was identified as being
7	this, this will change.
8	MEMBER SKILLMAN: Thank you.
9	MR. KABADI: So it is not a real change at
10	the plant.
11	CONSULTANT WALLIS: Well, is there any
12	point in having a tech spec which you cannot verify,
13	because you can't measure it, because it's too, you
14	know, it's too fine? It doesn't seem to make sense.
15	MR. KABADI: No. I think what I said, I
16	can answer it now. Whenever this configuration was
17	done, they looked at all the specs to see the racks
18	are laid out and what tolerances it should be. That's
19	the real number that should have been in the tech
20	specs.
21	CONSULTANT WALLIS: But it's something
22	that you can't verify?
23	MR. KABADI: Right. Those are the numbers
24	used in the analysis.
25	CONSULTANT WALLIS: It's used in an
I	I

(202) 234-4433

	63
1	analysis, but you can't verify that it's a reality.
2	MR. KABADI: No. Well, I did not say
3	that. I did not know how that, when the racks were
4	put in the system, I right now do not have knowledge
5	how those were verified, that are within that spec.
6	CONSULTANT WALLIS: You have Leading Edge
7	measurement system in your spent fuel pool, which
8	enables you to measure within five thousandths of an
9	inch.
10	MR. KABADI: We can look at that and see
11	what the spec is. But this is we are not changing
12	the actual rack configuration in this criticality
13	analysis. That number was just a correction, and
14	criticality analysis has been done with the same
15	numbers as before. Only changes we did in the
16	criticality analysis were putting slightly higher
17	enrichment and putting more margin in terms of
18	MEMBER SKILLMAN: Well, I think we'll get
19	another chance to look at this on the spent fuel
20	analyses.
21	MR. HOFFMAN: Right.
22	MEMBER SKILLMAN: But I just want to put
23	a signal in the air that the change from a change
24	of 5 mils is a very tight tolerance.
25	MR. HOFFMAN: I think if you look at the
	1

(202) 234-4433

1 actual tech specs, it's in the section called "Design Features." So it's not -- it's just a design feature 2 3 number in the tech specs. It's not a number that we 4 go out and have to verify or validate. It's simply a 5 design feature number in the specs, and again, that's that's additional 6 number carried on with а 7 uncertainties in the criticality analyses. 8 MEMBER SKILLMAN: Okay, thank you. 9 MEMBER SCHULTZ: Jack, before we leave 10 this slide, you were in the process of looking at the last bullet with regard to the steam generator low 11 level trip setpoint change, and its impact on the 12 plant risk profile. 13 14 I wanted to clarify whether you were 15 saying that this was a major change that with the EPU affected the plant risk profile in a positive way. 16 EPU alone would have affected this in a negative way. 17 So then you made a change. 18 19 MR. HOFFMAN: Right. MEMBER SCHULTZ: And is what you're saying 20 the change that was implemented more than compensates 21 for the EPU change? 22 When you look at 23 MR. HOFFMAN: Yeah. 24 classical safety analyses, Chapter 15 analyses for EPU, there was no need to change the setpoint. 25 It's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

64

	65
1	currently 20.5 percent, an error range greater than
2	equal to, and that number could have been defended as
3	part of the EPU.
4	However, when our PRA folks did their
5	analyses and they were concerned about events such as
6	total loss of feedwater and the amount of inventory
7	that's in the generator for a beyond design basis
8	event and operator timing to initiate once-through
9	cooling, we were able to in PRA space we changed an
10	RPS setpoint primarily for PRA, not for safety
11	analyses. We could have kept it as is. But it was a
12	risk benefit, so we made that change, and the new
13	number is 35 percent error range.
14	MEMBER SCHULTZ: Oh, and that's important.
15	The operator timing changes are real.
16	MR. HOFFMAN: That's right.
17	MEMBER SCHULTZ: And so you may be able to
18	support it in safety analysis in some fashion, but the
19	arguments are tougher to make and therefore this
20	change is a good one to employ.
21	MR. HOFFMAN: And it was risk-driven, not
22	safety analysis driven.
23	MEMBER SCHULTZ: Understood.
24	MEMBER BANERJEE: Yu did this with St.
25	Lucie 1 as well?
I	1

	66
1	MR. HOFFMAN: Correct. Same change,
2	consistency between the units. It's actually more
3	critical for Unit 1 than Unit 2 because of PORV
4	sizing.
5	MEMBER BANERJEE: Right.
6	MR. HOFFMAN: But again, for operators
7	it's human factors. We want to keep the same numbers.
8	MEMBER SCHULTZ: And on the point related
9	to environmental qualification, the radiation
10	shielding changes, what is the magnitude of those. Is
11	that a change in program?
12	MR. HOFFMAN: Well ultimately it affects
13	the programs, because the components are in the
14	program, and what initially happened with the EPU is
15	there was one area in the plant in the auxiliary
16	building that went from a current mild environmental
17	to a harsh environment.
18	We initially thought that the components,
19	the EPU components in that now had to be evaluated for
20	the harsh environment, and we did detail we
21	initially were going to shield those component for
22	more detailed analysis based on distance. Those
23	components still remained in a mild environment.
24	However, the changes for EQ that we had to
25	make for EPU are the temperature indicators inside

(202) 234-4433

	67
1	containment. There's an IEEE 323 margin. You want to
2	have at least ten percent margin on dose, radiation
3	dose, and we fell within the ten percent margin. So
4	for EPU, we're replacing two of our safety-related
5	containment, air temperature RTDs as part of the EPU.
6	
7	So that's the modification. Everything
8	else was shown by analysis to still be within the
9	existing qualification of the components.
10	MEMBER SCHULTZ: Thanks for the additional
11	information.
12	MR. HOFFMAN: Okay, yep. Let's go to the
13	next one. For the balance of plant, a number of
14	changes are being implemented in the steam path. The
15	low pressure steam path was replaced during the Unit
16	2 refueling outage. It was replaced during the last
17	Unit 2 refueling outage, I'm sorry, and the high
18	pressure steam path will be replaced during the
19	upcoming 2012 EPU refueling outage.
20	A modernized turbine control system,
21	similar to that recently implemented on Unit 1, will
22	also be implemented to replace the existing obsolete
23	system. The main feedwater and condensate pumps will
24	be replaced, and additional modifications to the main
25	feedwater system include replacement of the
	I

(202) 234-4433

	68
1	CONSULTANT WALLIS: Can you ask you about
2	this steam bypass?
3	MR. HOFFMAN: Sure.
4	CONSULTANT WALLIS: It says that you
5	increased the control system capacity. You mean
6	you've increased the bypass capacity?
7	MR. HOFFMAN: Yeah, that's correct, and
8	actually we did well, we increased the speed too.
9	CONSULTANT WALLIS: There's no bypass
10	capacity.
11	MR. HOFFMAN: Absolutely.
12	CONSULTANT WALLIS: The way it reads, it's
13	as if
14	MR. HOFFMAN: Yeah, yeah, yeah. There was
15	both. We actually made a speed change to make the
16	valves respond faster, and we also made a capacity
17	change.
18	CONSULTANT WALLIS: So you made something
19	bigger in capacity change?
20	MR. HOFFMAN: Bigger valves, bigger
21	valves.
22	CONSULTANT WALLIS: Bigger valves, okay.
23	I thought that was it. Thank you.
24	MR. HOFFMAN: As I mentioned, the main
25	feedwater reg valve internals and actuators are being
I	I

```
(202) 234-4433
```

	69
1	replaced with EPU in addition to the number five high
2	pressure and number four low pressure feedwater
3	heaters. Next slide.
4	CONSULTANT WALLIS: How did you upgrade
5	the condenser?
6	MR. HOFFMAN: Actually, we did a lot of
7	work on the condenser. We had a lot of experts,
8	subject matter experts come in and do walkdowns,
9	material condition walkdowns of the condenser during
10	past outages. On paper analytically, there's enough
11	design capacity to handle the additional duty.
12	But the changes we made, we put in tube
13	stakes for vibration concerns due to the higher steam
14	flow, and we also made improvements to the air removal
15	system, which has been an existing ongoing problem.
16	You know, we expect to have more non-
17	condensables. It was an existing problem, so we just
18	improved that system. So fairly benign.
19	CONSULTANT WALLIS: You didn't change the
20	tubing at all?
21	MR. HOFFMAN: No.
22	CONSULTANT WALLIS: I mean it's the same
23	
24	MR. HOFFMAN: Titanium tubes that were
25	replaced many years ago, good performance.
I	

MEMBER SKILLMAN: Getting rid of the additional non-condensables, did you change your air ejectors or change your blend condenser or anything like that?

5 MR. HOFFMAN: No. The capacity, we had a design problem internal to the condenser, where the 6 7 pickup points for the non-condensables were not 8 necessarily optimized, and we also had some leakage 9 problems and we -- the capacity of the system was 10 adequate. It was more, you know, the internal configuration of the system, and eliminating flanges, 11 because we had some air and leakage problems. 12 So I hear you actually 13 MEMBER SKILLMAN: 14 made physical modifications on the condenser including 15 staking? 16 MR. HOFFMAN: And staking. 17 MEMBER SKILLMAN: Changing location of suction of air ejector? 18 19 MR. HOFFMAN: I'm not -- I'll have to I know we definitely made piping 20 double-check that. changes outside the condenser on the -- maybe Dave, 21 I know we made piping changes 22 you can -- I'm not. 23 outside the condenser on the air removal piping. 24 MR. D. BROWN: Yeah. What we were looking at is -- this is Dave Brown, Florida Power and Light. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

70

	71
1	The problems that we were having is where the steam
2	was coming in, where the air ejector pickoff was
3	coming up. What we did is change some of the tray
4	arrangements around that, so that we don't actually
5	pick up steam instead of the air, so that we can
6	actually get a collection of the non-condensables.
7	So it's not really a major change. It's
8	really just kind of a tray-type change to change what
9	the flow looks like inside the condenser going into
10	the air ejector pickups.
11	MEMBER SKILLMAN: Okay, thank you.
12	MR. HOFFMAN: Thanks Dave. Okay, next
13	slide. The heater drain pump internals are also being
14	replaced for EPU and selected heater drain valves, and
15	heater drain valve controls are being upgraded.
16	Similar to St. Lucie Unit 1, the EPU project will also
17	resolve another long-standing low margin issue for
18	Unit 2.
19	The existing turbine cooling water heat
20	exchangers have marginal heat removal capability at
21	the current plant power level during the summer
22	months, when the ultimate heat sink temperature is
23	elevated.
24	To resolve the margin issue, the EPU
25	project is replacing these heat exchangers with heat
ļ	I

(202) 234-4433

72 1 exchangers having approximately 50 percent more heat transfer capability. Improved materials of 2 3 construction are also being included as part of this 4 modification. 5 MEMBER SKILLMAN: Before you jump into electrical, 6 one more plumbing question please. 7 Sentence one is a pair of PORVs and both arms during St. Lucie 2 has two PORVs. 8 operation. I don't know 9 whether they are the same size or different sizes, but 10 one is disarmed during normal operation. That's correct, correct. 11 MR. HOFFMAN: Is this a modification MEMBER SKILLMAN: 12 for the EPU, or is this original hardware for this 13 14 plant? 15 Yeah. A design difference MR. HOFFMAN: between St. Lucie Unit 1 and 2, again looking at the 16 17 vintage, Unit 1 was pre-TMI, Unit 2 post-TMI. The PORVs on Unit 2 are much larger than the PORVs on Unit 18 19 1, and there was -- this goes back to original 20 design. There was a concern that if both PORVs 21 opened on Unit 2, due to their size it could become a 22 challenging overcooling event. So we actually have a 23 24 technical specification requirement on Unit 2 to keep one of the two valves blocked, and that's been carried 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	on since Day 1.
2	MEMBER SKILLMAN: Okay, thank you. The
3	real question I had was whether this was an EPU
4	feature or an original design feature. So it's a
5	post-TMI design feature?
6	MR. HOFFMAN: That's correct.
7	MEMBER SKILLMAN: Got it. Thank you.
8	MR. HOFFMAN: Yep, okay.
9	CONSULTANT BONACA: Is the auxiliary
10	feedwater system a redundant system?
11	MR. HOFFMAN: Yeah. Similar to St. Lucie
12	Unit 1, the Unit 2 auxiliary feedwater system has two
13	100 percent motor-driven pumps. That's a current
14	the way we characterize the system currently is it's
15	two 100 percent motor-driven pumps and one greater
16	than 100 percent steam-driven pump, and for EPU, that
17	same design logic has been validated.
18	The motor-driven pumps remain 100 percent
19	each, and the turbine-driven pump is a greater than
20	100 percent capacity pump. Did a lot of analyses on
21	Unit 2 in particular regarding aux feedwater
22	performance, decay heat removal capability and again,
23	just because of the design and the diversity of the
24	system, you know, it was not an issue for either Unit
25	1 or Unit 2.
	I

(202) 234-4433

	74
1	CONSULTANT BONACA: Okay, thank you.
2	CONSULTANT WALLIS: Did you make changes
3	in piping in response to FAC, flow-assisted corrosion?
4	MR. HOFFMAN: Yes, we did.
5	CONSULTANT WALLIS: Did you change the
6	materials for some pipes?
7	MR. HOFFMAN: Oh absolutely. Yeah, yeah.
8	We did, just a handful of what I'll call in the
9	heater drains primarily on both Unit 1 and Unit 2, and
10	whenever we make a piping change for FAC, we will
11	upgrade to the chrome moly piping. So we minimize the
12	inspections and potential for future replacements. So
13	there were physical FAC modifications.
14	CONSULTANT WALLIS: Then you extrapolate
15	behavior in the future with EPU?
16	MR. HOFFMAN: Absolutely. It's already
17	been done and factored into the new program.
18	CONSULTANT BONACA: Since you made so many
19	changes in the system, do you use the PRA in any way
20	as a means of providing insights on the design of
21	changes?
22	MR. HOFFMAN: Yes, every modification.
23	Early on when the PRA work was initiated, each
24	modification was looked at, as whether it provided
25	whether it was risk-neutral, risk-beneficial or a
I	

(202) 234-4433

75 detriment to risk, in all aspects, whether it was an 1 2 internal or an external event. 3 So that was all, you know, what I'll call 4 baked into the original PRA, and it was subsequently 5 validated based on, you know, when we started, some other little mods came out of the woodwork, and that 6 7 PRA work was validated again once our modification list was finalized. 8 9 CONSULTANT BONACA: Thank you. 10 MR. HOFFMAN: Okay. On the electrical side, the main generator stater was rewound and the 11 rotor was replaced during the last Unit 2 refueling 12 outage. During the upcoming EPU outage, the main 13 14 generator hydrogen pressure will be increased to 75 These modifications will allow the main 15 psi. 16 generator rating to be increased to a value suitable 17 for the uprate. An additional EPU electrical modification 18 19 is being implemented to resolve another low margin issue. Currently, there is limited margin between the 20 degraded voltage relay setpoints and the calculated 21 bus voltage during the limiting electrical loading 22 23 event. 24 For EPU, а number of electrical modifications are being implemented to increase this 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

76 1 voltage margin, and this is similar to what we did on Unit 1 also. So unless there are any questions for me 2 3 4 MEMBER BROWN: I have a question of 5 understanding. MR. HOFFMAN: 6 Sure. 7 MEMBER BROWN: Station blackout, the 8 coping time that you all advertise, what you calculated and the staff evaluated remains at four 9 This is a two unit site. Since I'm not 10 hours. familiar, I don't remember the St. Lucie 1 set-up. 11 But do each of the units have their own switchyard, or 12 do they share a common switchyard? I don't remember 13 14 from the earlier St. Lucie. 15 It is a common switchyard MR. HOFFMAN: 16 with bays. 17 MEMBER BROWN: So the multiple, the two, the independent feeds, off-site feeds come into the 18 19 common switchyard setup? MR. HOFFMAN: That's correct. But the 20 diesels between both units, you know, irrespective of 21 the station blackout coping requirements --22 MEMBER BROWN: They have independent 23 It's not a shared diesel? 24 diesels. MR. HOFFMAN: Two diesels on each unit, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	and we do have cross-connect capability.
2	MEMBER BROWN: You talked about a cross-
3	tie.
4	MR. HOFFMAN: Right.
5	MEMBER BROWN: Now one of the reasons,
6	again this is an understanding; I just want to make
7	sure I understand this, okay, is that one of the bases
8	for you all's SBO is that you have natural circulation
9	that will allow you to maintain decay heat removal
10	capability for that four hour coping period.
11	I'm assuming, then, that that's dependent.
12	You still have to operate certain equipment, but
13	that's dependent upon your battery DC power sources
14	via whatever inverters you have. So you're still,
15	whether it's that's just your method, but you're
16	still fundamentally limited by the battery capacity,
17	if you exceeded the four hour coping period.
18	MR. HOFFMAN: That's correct.
19	MEMBER BROWN: And then you would be, have
20	to fall into the ability to do the cross-tie, and
21	assume that the diesels from the other side, assuming
22	the other side is shut down, that you then, and you
23	haven't got off-site power back, you'd have to do
24	that.
25	MR. HOFFMAN: That is the SBO.
I	I

(202) 234-4433

	78
1	MEMBER BROWN: Is my understanding
2	MR. HOFFMAN: That's correct. That's the
3	SBO licensing basis for St. Lucie Unit 2, and we did
4	a detailed Chapter 15-type analysis for EPU, to show
5	that again, for that four hour coping time, we could
6	maintain the
7	MEMBER BROWN: Yeah. No, I read it. I
8	just wanted to make sure I understood the other
9	connections, since I didn't have any of that
10	information.
11	MR. HOFFMAN: Okay.
12	MEMBER BROWN: Thank you.
13	MR. HALE: Before we leave Jack's
14	presentation, we do have an answer on your
15	cybersecurity question, with regards to information
16	flow.
17	MEMBER BROWN: Do you have a picture?
18	MR. HALE: Huh?
19	MEMBER BROWN: Do you have a picture?
20	MR. HALE: Don't have a picture, but
21	MEMBER BROWN: So the thousand words will
22	replace a simple diagram, right?
23	MR. HALE: Well, the DCS is classified in
24	our system as a high level security computer system,
25	and the interface between the DCS and PI, as a wall
Į	I

(202) 234-4433

	79
1	basically, a one-way diode. They call it the dama-
2	diode (ph). It's a deterministic device that does not
3	allow communication to flow from the PI system back to
4	the DCS.
5	MEMBER BROWN: Okay. So when you say a
6	one-way diode, let me make sure I understand one
7	thing. There are one-way diodes and then there are
8	one-way diodes. Some one-way diodes are devices which
9	are reconfigurable to be two-way if you so desire.
10	Several methods to do that. Some can be
11	done externally via remote mains; some have to be
12	executed at the device itself by manual means. So my
13	question is what kind of one-way diode? Even if it's
14	deterministic, it can still be executed either way.
15	MR. HALE: It's the latter, the one that
16	would require you would require to go physically to
17	the hardware to make changes to a diode such as that.
18	MEMBER BROWN: Okay. So somebody
19	externally cannot do that via remote access to some
20	software package somewhere?
21	MR. HALE: Exactly.
22	MEMBER BROWN: Okay. Let it be written
23	and let it be recorded. Thank you.
24	MR. HALE: All right, and then we do have
25	some of the best estimate data.
I	I

(202) 234-4433

	80
1	MR. HOFFMAN: I've got the calcs, Steve.
2	I'll share the calcs.
3	MR. HALE: Okay, thank you.
4	MR. HOFFMAN: Yeah. Okay. Unless there
5	are any other questions for me, I'd like to turn the
6	presentation over to Jay Kabadi, who will discuss the
7	EPU fuel-related analyses.
8	CHAIR REMPE: So we're running about 20
9	minutes behind, just so everyone's aware. So go
10	ahead.
11	Fuel and Core Design
12	MR. KABADI: Okay. My name is Jay Kabadi.
13	I'm manager of Nuclear Fuel for Florida Power and
14	Light. In the next few slides, I'm going to present
15	what the EPU considerations are for fuel design and
16	cooling towers. This slide presents for EPU, we did
17	not have to make any changes to the fuel design.
18	We will continue to use the Combustion
19	Engineering 16 by 16 fuel design, which we have been
20	using for past several cycles. It has an Incanel Top
21	Grid design, which we implemented mainly to provide
22	additional margin to grid-to-rod fretting. Our pin
23	burnup and assembly burnup limits remain unchanged.
24	MEMBER SCHULTZ: Jay, what are those
25	limits for the rods?
l	I

(202) 234-4433

	81
1	MR. KABADI: I think we have real limit is
2	on the pin burnup, and that is 60,000. Assembly
3	burnup is mainly we maintain to ensure that pin burnup
4	is not limited; there is no real hard limit
5	MEMBER SCHULTZ: There's not an assembly
6	burnup limit
7	MR. KABADI: That is correct.
8	MEMBER SCHULTZ:that's designated.
9	Thank you.
10	MEMBER BANERJEE: Is this fuel being
11	tested? This is a sort of a question which is related
12	to GSI-191. Just for informational purposes, it is
13	being tested for downstream effects?
14	MR. KABADI: My understanding is when
15	there's a downstream effect, the testing is set up so
16	that it covers all the fuel assembly types. I cannot,
17	I do not know exactly how this product is designed,
18	but the intent of the testing was to make, with the
19	final results, applicable to all the fuel
20	MEMBER BANERJEE: Because as you know,
21	there are tests which have been done with Westinghouse
22	and AREVA fuel.
23	MR. KABADI: Right, right, right.
24	(Simultaneous speaking.)
25	MR. KABADI: Right, and this is
	I

(202) 234-4433

	82
1	Westinghouse. This is the Westinghouse fuel.
2	MEMBER BANERJEE: Oh, this is the
3	Westinghouse fuel.
4	MR. KABADI: Right. This is the
5	Westinghouse fuel. Now there were changes because of
6	regional Combustion Engineering. So this is covered
7	under Westinghouse program.
8	MEMBER BANERJEE: So it's substantially
9	the same design?
10	MR. KABADI: Right. This is a period of
11	design by the licensee, and not the one which is at
12	Turkey Point and all. Right now, it is Westinghouse,
13	because they put it together, but the design is the
14	regional CE design.
15	MEMBER BANERJEE: I'm so confused by all
16	this.
17	MR. KABADI: Westinghouse actually right
18	now is like what you call old or traditional
19	Westinghouse, this 16 by 16 design is not one of the
20	original Westinghouse designs. This was the CE plants
21	16 by 16 design. When they merged, the same design is
22	carried over. So there is no change to the fuel
23	design before and after CE or Combustion Engineering
24	
25	MEMBER BANERJEE: Let's be more direct.
I	I

(202) 234-4433

	83
1	What is the design that's being tested under this
2	program right now?
3	MR. KABADI: GSI-191? Well, I cannot
4	detail. Only thing what we were
5	MEMBER BANERJEE: It's not this, right?
6	MR. KABADI: It should be included as part
7	of the overall program, the final results to be
8	applicable to all the designs.
9	MR. HOFFMAN: We'll validate that.
10	MR. KABADI: Right. We can validate what
11	is exactly
12	MEMBER BANERJEE: Yeah. Just give me this
13	
14	(Simultaneous speaking.)
15	MEMBER BANERJEE: I know it doesn't impact
16	you for this EPU, but
17	MR. KABADI: That's okay. We can look and
18	see whether this particular design is included in the
19	testing.
20	CHAIR REMPE: But isn't the argument that
21	was responded to in RAI is that the EPU doesn't affect
22	
23	MEMBER BANERJEE: Thermal decay heats,
24	right.
25	CHAIR REMPE: They're basically saying
ļ	I

	84
1	that it didn't affect the zone of influence that they
2	were calculating.
3	MEMBER BANERJEE: It's not the zone of
4	influence. You've got to push most coolant through
5	the core to keep it cool.
6	CHAIR REMPE: Yeah, okay. That was what
7	the staff
8	MEMBER BANERJEE: Does that mean the
9	ultimate if you start to block with downstream
10	effects.
11	CHAIR REMPE: Okay.
12	MEMBER BANERJEE: You're having 12 percent
13	more power, right?
14	CHAIR REMPE: Yeah, okay. But I was just
15	going to take it what's been reported in the SER, so
16	I was just kind of wondering.
17	MEMBER BANERJEE: They can be, let's say
18	in the GSI-191 evaluations, you take EPU into account.
19	That's the idea, right, and that's what every
20	applicant is saying, before going for an EPU. But to
21	say it doesn't make a difference is pretty hard to
22	defend, I would say. You've got 12 percent more decay
23	heat or something to deal with, right? Does that make
24	any sense?
25	CHAIR REMPE: It makes sense, but it's
I	I

(202) 234-4433

	85
1	just the reporting that they had in their RAI.
2	MEMBER BANERJEE: Go ahead.
3	MR. HALE: This is Steve Hale, Florida
4	Power and Light. Yes. If you'll remember, Dr.
5	Banerjee, at both Point Beach and Turkey Point, we
6	essentially followed the same approach with GSI-191.
7	It was being handled as a separate, you
8	know, generic licensing action. But we've made sure
9	that anything we're doing, any EPU falls within the
10	bounds of what we're doing under GSI-191.
11	MEMBER BANERJEE: Well, you have to take
12	into account the higher decay heats.
13	MR. HALE: That's true.
14	MEMBER BANERJEE: Sure, okay.
15	MR. HALE: But all of our efforts related
16	to GSI-191 have already taken the EPU into account.
17	MEMBER BANERJEE: Right. I was really
18	asking if the fuel designs are encompassed by the
19	downstream effects testing going on. So
20	MR. HALE: I can't answer that. We'll
21	have to find somebody to respond to that question.
22	MEMBER BANERJEE: Okay.
23	MR. KABADI: From fuel design perspective,
24	we have, we developed several transmission cycles for
25	EPU to come up with the parameters that we can use in
	I

(202) 234-4433

	86
1	the safety analysis.
2	But in general, core design limits do not
3	change much for EPU, which is a total integrated
4	radial peaking factor, we reduce from 1.7 to 1.6,
5	again moderating some of the analysis to offset some
6	of the impacts of higher power.
7	We will remit this reduced limit and the
8	extra energy demand to higher power by changing our
9	peak size number of assemblies, along with some
10	arrangement placing the absorber rods in the
11	locations. But our general loading pattern
12	configuration remains similar. So there is no major
13	change to the core loading plan.
14	MEMBER SCHULTZ: With the radial peaking
15	factor affected not only by the EPU power change, but
16	also by the thermal conductivity degradation, which
17	we'll discuss later?
18	MR. KABADI: Actually, when we started
19	this EPU analysis, thermal conductivity degradation
20	was actually not where it is right now. There was not
21	too much consideration directly given. But in
22	general, any time your peaking was down and the power
23	was down, it helps thermal conductivity.
24	But it was not the initial decision on
25	making this lower; it was strictly based on fuel
l	I

(202) 234-4433

	87
1	performance and the DNB considerations.
2	MEMBER SCHULTZ: So this change was done
3	and not affected by the thermal conductivity
4	degradation impact?
5	MR. KABADI: That is correct.
6	MEMBER SCHULTZ: Thank you.
7	MEMBER SKILLMAN: Jay, did you change the
8	cycle length in this application, 18 months to 24
9	months?
10	MR. KABADI: No. We are still following
11	18 month cycles.
12	MEMBER SKILLMAN: I understand you're on
13	18 month cycles. Thank you.
14	MEMBER BROWN: Let me ask, it's a simple-
15	minded question. I'm not if I'm completely off the
16	wall, just tell me. So you wanted to maintain margins
17	to fuel design limits, and in order to do that, you
18	reduced one of your peaking factors.
19	But I mean so previously your analysis
20	said okay, if I'm at a certain point, I've got
21	peaking, radial peaking factors of 1.7. Now we said
22	oh, now we're going to assume a lower number.
23	Therefore now, I will calculate that I don't get any
24	closer to my fuel design limits than I did before. Is
25	there a basis for saying I can reduce my radial
Į	I

(202) 234-4433

	88
1	peaking factor? Is that
2	MR. KABADI: No, I think this is when we
3	did the code design on the analysis, this was actually
4	evaluated.
5	MEMBER BROWN: It's a similar core. I
6	mean did you all change the core in this case? I
7	didn't get that out of the reading.
8	MR. KABADI: No, I think that so when
9	we designed the core, that's when we had to put the
10	assemblies, and the number of assemblies that reduces
11	the peaking factor, which is
12	MEMBER BROWN: But you made a change in
13	the arrangement or the setup
14	MR. KABADI: I think that remains similar,
15	in the sense that number of assemblies, fresh
16	assemblies will go up. But we typically follow for
17	St. Lucie 1, in-out-in type configurations. So we put
18	all the peripheral assemblies in as, and the fresh
19	and whatever turbine go inside.
20	So that pattern remained the same. But
21	how many fresh we used slightly increased because of
22	this, to reduce the peaking. So we are using
23	currently in the range of 72 to 76 assemblies.
24	CONSULTANT WALLIS: So you are flattening
25	the
Į	I

(202) 234-4433

	89
1	MR. KABADI: That's correct. So for EPU
2	
3	MEMBER BROWN: And so you did something
4	physically
5	MR. KABADI: Correct, correct. So we'll
6	be using
7	(Simultaneous speaking.)
8	MEMBER BROWN:but where you laid out
9	the
10	MR. KABADI: That's exactly right. We are
11	using
12	MEMBER BROWN: For whatever you did. So
13	you would flatten the power sum and reduce the radial
14	
15	MR. KABADI: That's correct.
16	MEMBER BROWN: So there's a basis for
17	saying I can go to a reduced number?
18	MR. KABADI: That's correct.
19	MEMBER BROWN: That's what I was asking.
20	MR. KABADI: That's right, exactly right.
21	We did some
22	CONSULTANT WALLIS: We're not saying that
23	they actually will go to a reduce peaking
24	(Simultaneous speaking.)
25	CONSULTANT WALLIS: That's just an
	I

(202) 234-4433

	90
1	assumption.
2	MEMBER BROWN: I understand. That's just,
3	I mean.
4	MR. KABADI: And we did design with these,
5	to see that we can meet those
6	MEMBER BROWN: I just want to make sure
7	you just didn't reduce it because it was fun to reduce
8	it for convenience sake, that's all.
9	MEMBER SCHULTZ: It was required to be
10	reduced, and you spoke to it here, Jay, but it's not
11	in the slide. But the feedback size goes up.
12	MR. KABADI: Yeah, right.
13	MEMBER BROWN: Okay.
14	MEMBER SCHULTZ: In order to accommodate
15	and achieve the high power.
16	MR. KABADI: And as I mentioned, from 72
17	to 76 right now you get
18	MEMBER SCHULTZ: Jay, one more thing. You
19	had burnable absorb replacement here. With regard to
20	that, is that a dramatic change that's been
21	implemented by Westinghouse?
22	MR. KABADI: No. It's really for burnable
23	absorber we had following the same type of strategy.
24	We go anywhere from 8 to 20. We had gad rods and
25	eight percent of that is very similar, around eight
I	I

(202) 234-4433

	91
1	percent.
2	MEMBER SCHULTZ: That's not a change.
3	That's under the normal approaches that have been used
4	with regard to the placement of
5	MR. KABADI: That's correct. Only change
6	would be number of feeds to go out.
7	MEMBER SCHULTZ: And you're not
8	implementing any additional changes with respect to
9	gad loading, changes from what you have done in the
10	past?
11	MR. KABADI: Exactly. No changes to the
12	gad rod
13	MEMBER SCHULTZ: The same choices you've
14	used in the past, that you have available in
15	MR. KABADI: Exactly. That is correct.
16	MEMBER SCHULTZ: Thank you.
17	MR. KABADI: Other limits which are
18	important from core design perspective, mainly the
19	shutdown margin and MTC (ph). Those limits also are
20	met for EPU. So we don't have, we did not have to
21	make any changes to those. Now as far as gadding
22	shutdown margin and improving the boron delivery
23	capability, we are, however, increasing the boron
24	concentrations in all the tanks, RWD.
25	Also the safety injection tanks and also
I	I

(202) 234-4433

	92
1	in the boric acid make-up tanks, and those are tech
2	specs changes which are covered in the EPU LAR.
3	Going to the safety analysis, there are no
4	major changes done in terms of what methodology we
5	have used for the analysis. We continue to use the
6	same methods for small-break and large-break LOCA.
7	RETRAN is used for non-LOCA, which is what we
8	currently use.
9	Only change is we have in the current
10	analysis for tube rupture, we have not transitioned to
11	RETRAN, but as a part of the EPU, even the tube
12	rupture analysis was done with RETRAN. But all these
13	codes and the VIPRE was used in the current V&V $$
14	analysis.
15	MEMBER BANERJEE: So these are, some of
16	these are very old codes, right?
17	MR. KABADI: Those are actually old, but
18	the current
19	MEMBER BANERJEE: They're still approved,
20	that's what you're saying?
21	MR. KABADI: Approved, plus the latest in
22	the sense of the current from the CE plants for these.
23	For example, RETRAN is Westinghouse's current method
24	for non-LOCA.
25	MEMBER BANERJEE: No. But let's look at
	I

(202) 234-4433

	93
1	CEFLASH.
2	MR. KABADI: Right. So that is the
3	Westinghouse Appendix K small-break and large break
4	current method for CE plants.
5	MEMBER BANERJEE: So your in this case,
6	unlike St. Lucie 1, you're going to use Appendix K
7	methods?
8	MR. KABADI: That is correct. We did not
9	transition to realistic or best estimate for large
10	break. So right now, Westinghouse, ASTRUM and other
11	methods have not been applied to any CE plants. So we
12	may in future take that on.
13	But right now, based on these if you're
14	engaged in a big project event and are using Appendix
15	K, we found that we can meet all the limits with
16	Appendix K. So we did not transition, because that
17	would require a lot of benchmarking and all that stuff
18	to be done.
19	MEMBER BANERJEE: Okay, and you took TCD
20	into account?
21	MR. KABADI: Right, and that's something
22	where we have a discussion later in the EPU, when this
23	project started. As I mentioned, we started without
24	DCD like it is right now, but we later on did include
25	and evaluate and see what the impact is, and we'll
	I

(202) 234-4433

	94
1	talk this afternoon on that DCD impact.
2	Okay. Some of the key changes which are
3	done for the safety analysis is from the code design
4	point of view actually, which is reduced from 1.7 to
5	1.6, and the way we do the safety analysis is we try
6	to hold a conservative assumptions, so that planned
7	operations don't get restricted by some of these
8	inputs.
9	For example, we use all the plant bounding
10	operator parameters, include the uncertainties, and
11	going all the way to the limits of that operation.
12	CONSULTANT WALLIS: Have these changed as
13	a result of the EPU, or are these the same
14	conservative assumptions as before?
15	MR. KABADI: Assumptions are same. Only
16	the values will be changing.
17	CONSULTANT WALLIS: So you did change the
18	values as a result of the EPU?
19	MR. KABADI: Like the inlet temperature we
20	mentioned. It goes up from 549 to 551.
21	CONSULTANT WALLIS: Okay.
22	MR. KABADI: So that is one thing. Other
23	thing will go on the next slide that we show, some of
24	the tolerances on the valves will increase. But the
25	method, in terms of putting, is about the same.
Į	I

(202) 234-4433

	95
1	Yeah. These are some of the changes that
2	help and the same time consistent with our EPU, tech
3	spec changes and other changes we are doing as part of
4	the EPU analysis. Uncertainty goes down from 2
5	percent to .3 percent, and we talk about that.
6	Tube plugging, several analyses in the
7	past have 30 percent tube plugging. Not all, but some
8	of the analyses are 30 percent. We are making it all
9	ten percent across the board for all the safety
10	analyses. Tolerances on both
11	CONSULTANT WALLIS: What's the basis for
12	ten percent? Is this just a guess of some sort?
13	MR. KABADI: Ten percent, the way we
14	decided ten percent is we looked at the current flow,
15	what we have, and now we saw how much margin we have,
16	and we generated flows for different tube plugging
17	levels, and we assume that is what is the value that
18	most appropriate to go with.
19	CONSULTANT WALLIS: What's the reality?
20	I mean you say you're assuming ten percent?
21	MR. KABADI: Yeah. Right now
22	CONSULTANT WALLIS: The reality is what
23	one or two percent or something? What's the reality?
24	MR. KABADI: Much less than that.
25	MR. GIL: This is Rudy Gill, Florida Power
I	I

(202) 234-4433

	96
1	and Light. Yeah. Our current number is for the
2	generator that has the most, is a quarter of one
3	percent.
4	CONSULTANT WALLIS: And the experience
5	with other plants with similar steam generators?
6	MR. GIL: Typically, the ones that I'm
7	familiar with, that are the replacement type steam
8	generators are also at the very low numbers. I think
9	the only ones I know that have higher percentages are
10	the once-through steam generators that we know have
11	had some issues.
12	CONSULTANT WALLIS: So this is a number
13	which is convenient, which is much larger than all the
14	experience? There's no real basis other than that?
15	MR. KABADI: Yeah. I think other than
16	like Rudy mentioned, about similar but like St.
17	Lucie 1. We replaced the generators in 1999 time
18	frame, and we have still less than, much less than one
19	percent plugging there.
20	CONSULTANT WALLIS: So you could have
21	assumed five percent or something like that, maybe
22	wished
23	MALE PARTICIPANT: Had to pick a number.
24	MR. KABADI: Right, and that's why we did
25	some studies to see how much flow, minimum flow we
I	1

(202) 234-4433

	97
1	need for meeting the safety analysis and what we can
2	accommodate in terms of plugging and decided ten
3	percent is the
4	CONSULTANT WALLIS: It could accommodate
5	ten percent.
6	MR. KABADI: Yes. There were other
7	changes to the boron concentrations in the three tanks
8	that are included in all the analyses, where they are
9	important.
10	CHAIR REMPE: On the steam generator tube
11	plugging, if you for whatever reason were at ten
12	percent, how much margin is I mean are you, is that
13	the most you can accommodate based on your analysis,
14	or is there still more margin?
15	MR. KABADI: Yeah, I think on the next few
16	slides when I present some of the analyses, you will
17	see that analyses has some margins and all the
18	analyses support ten percent plugging. So there is a
19	we didn't want to go all the way to the actual
20	limit of all the accident analyses. So there is some
21	margin to the accident analyses.
22	CHAIR REMPE: Okay.
23	MEMBER BROWN: Before you leave that one,
24	go backwards, please. The main steam stop safety
25	valve relief tolerances you've now moved from values
I	I

(202) 234-4433

you show in here, and I guess I walked away from the one justification for it was that the vendor says his valve is designed to a plus or minute three percent tolerance to hold that, as opposed to your previous tolerance of plus, what you were using on an as-found evaluation basis or check basis, of plus one/minus three.

8 So now if you go out and you find, if you 9 walk out and you find it's a plus three, you say fine, 10 we're good to go, and away we go. So it may have 11 changed from the last time, but there's no -- I mean 12 it sounds like it's a convenience thing just to 13 minimize adjustments to the steam safety valve.

MR. KABADI: No. I think our tech specs as left setpoint doesn't change. That is still plus one percent. So even if you find, as found three percent, when we start the plant --

MEMBER BROWN: I understand what you find. But if you find it at three, that's an acceptable asfound condition. So you don't have to do anything. MR. HOFFMAN: Right, and just a couple of clarifications. The plus or minus three percent is the classic ASME --

24 MEMBER BROWN: I got that out of your 25 write-up.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

1 MR. HOFFMAN: Right, and these numbers that Dave's referring to are really driven by the 2 accident analyses, the over-pressure analyses. 3 That's 4 what dictates, you know, how high you can qo primarily, and one thing again. This is a chance for 5 6 us to get --7 MEMBER BROWN: Okay. You're saying that three percent is only used in the analyses. Now when 8 9 you go out and you do your calibration checks or you do your safety valve trip check, if it was at plus two 10 percent you would reset it, because the tech spec 11 still says plus one percent when you get to the as-12 found? 13 14 MR. HOFFMAN: That's right. That's not what the LAR 15 MEMBER BROWN: It says "as-found value was changed from" --16 savs. one of the documents. 17 MR. KABADI: Right. I think that is the 18 19 value when the valve got tested. 20 MEMBER BROWN: So if you go out and if you do a test to verify the operation of your steam safety 21 valves, if it comes in at plus 2.999, you can walk 22 away and say we'll wait until the next time we test 23 24 it. We're happy as a pig in a mud wallow here. That will tell them, 25 MR. KABADI: Yeah.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	the 2.9 or whatever you find that is covered by the
2	accident. But when they're as-left values, it still
3	has to be plus one. So I'll have to be brought back
4	to within plus one. This is the during the, there
5	is some during the cycle when they test the valve,
6	and if we analyze with one percent, and the value is
7	found two percent, then it will be outside the
8	analyses.
9	So we have to do some operability
10	assessment for those. So this one allows that
11	flexibility, that if the value is found outside that,
12	then that is in the analyzed event.
13	MEMBER BROWN: All right. Your LAR says
14	MSVs with a nominal setpoint of 1,000 psi, the as-
15	found setpoint tolerances are being changed to plus or
16	minus three percent, the as-found value.
17	MR. KABADI: Right.
18	MEMBER BROWN: Which to me means that if
19	I find the value within that range, I don't have to do
20	anything until I go run that test the next time and
21	find out that it exceeds that value.
22	MR. KABADI: I think below that, there is
23	a surveillance requirement that says the valve has to
24	no, not
25	MEMBER BROWN: No, not tech specs.

(202) 234-4433

	101
1	MR. HOFFMAN: It's in the technical
2	specifications, not in the text of the LAR. We can
3	show you the tech spec page.
4	MR. KABADI: Tech spec mentions that, that
5	you have to set it within one percent. I don't know
6	whether that page
7	MEMBER BROWN: When you reset it, but as
8	okay, I'm really not understanding.
9	MR. HOFFMAN: We can't walk away from it.
10	The plus three percent allows us to accept the as-
11	found test in analytical space, but our technical
12	specification will not allow us to walk away from the
13	valve at plus three percent. We have to reset it
14	before we walk away and leave it as left at plus one
15	percent for the next operating cycle.
16	MEMBER BROWN: Okay. Let me be very, make
17	sure I understand this now. I'm operating along, and
18	I come up to whatever your periodicity is for checking
19	the setpoint of your steam safety valves. You run
20	your tests and it comes out two and a half. Do you
21	have to reset it based on that, and go back because of
22	some other document in the tech spec, or is that the
23	as-found value, and it's within plus or minus three
24	and you don't have to do anything?
25	MR. KABADI: No, we have a
Į	1

(202) 234-4433

	102
1	(Simultaneous speaking.)
2	MR. KABADI:during the outage time,
3	once you have that, and then the next time it starts,
4	we have to make them. All that will be brought back
5	into one percent.
6	MEMBER BROWN: If they exceed one percent
7	on the plus side, they will be brought back to one
8	percent?
9	MR. KABADI: That's correct.
10	MEMBER BROWN: Then I don't really
11	understand why the words "as found" are used.
12	MR. HALE: Hi. This is Steve Hale,
13	Florida Power and Light. That's fairly standard
14	nomenclature like for instrumentation and that sort of
15	thing. The as-found condition is when you go out and
16	test it, you know, you want to make sure that the
17	valve is within those bounds when you go out and test
18	it, okay.
19	As-left is where you leave it. So if you
20	found it above one percent, the as-left tech spec says
21	you've got to bring it within one percent. So as
22	found says that hey, it's within the range that we
23	expected it to be in, okay, and you certainly want to
24	make sure that at that as-left condition you're within
25	your safety analysis. But we're also required by tech
	I

(202) 234-4433

	103
1	specs to reset it.
2	MR. HOFFMAN: Steve, maybe on a break we
3	can pull that tech spec page.
4	MEMBER BROWN: Oh no. I believe you.
5	CHAIR REMPE: You're okay?
6	MEMBER BROWN: Yeah. I believe what
7	you're I'm not questioning the fact that that's
8	set. It's the terminology that I all I'm trying to
9	establish is when I first read it, it sounded like now
10	I should walk out and see the valves at a value
11	greater than one percent, and say I passed my test
12	now, because I'm at less than three.
13	If you're required by some other thing to
14	go reset it to the one percent, and all you're saying
15	is I don't have to submit a report to the NRC because
16	I didn't exceed the plus three percent, I don't know
17	who you have to submit anything to.
18	MR. KABADI: No, that's right.
19	MEMBER BROWN: I guess before you would
20	have had to submit something if you found it at two
21	and now you don't. You just go reset it to one is my
22	understanding.
23	CHAIR REMPE: Is everybody okay?
24	MEMBER BROWN: I'm fine.
25	CHAIR REMPE: Okay. Let's go.
I	1

(202) 234-4433

	104
1	MEMBER BROWN: Thank you. Sorry.
2	Unfortunately, I read this stuff and
3	CHAIR REMPE: Okay, good. Okay.
4	MR. KABADI: Next slide. Yeah. We talked
5	about this before. As I said, there are no changes to
6	the methodology we use except in tube ruptures we just
7	RETRAN.
8	This slide, next we will present some of
9	the reasons for the EPU. Now in the RCS flow,
10	decreased category. The limiting events are loss of
11	flow and the locked rotor, and one of the things to
12	note here is the criteria which is mentioned here,
13	like loss of flow 1.42, that is actually a safety
14	analysis limit. We actually have margin built into
15	that, roughly about eight to ten percent.
16	So when our diesels show 1.444, it is
17	actually beyond what we set as a safety analysis
18	limit. The actual core relation limit is something in
19	the range of 1.33, and that's our actual design limit.
20	So the way the Westinghouse methodology works is they
21	embed some margin and say okay, although the design
22	limit is 1.33, we'll put a safety analysis limit as
23	1.42, and unless needed for some events, then we'll
24	lower that.
25	So there is some margin built in in all

(202) 234-4433

	105
1	these MDNBR limits. So for both locked rotor and loss
2	of flow, we meet all the acceptance criteria for
3	locked rotor. For example, we'll use 19.7 percent
4	fuel failures in our dose calculations. We have no
5	failures in the actual analysis done.
6	In the peak pressure, our limiting event
7	is the loss of condenser vacuum, and the peak pressure
8	is .69 psia, which has significant margin to the
9	limit. In the new event analyses that we did as part
10	of the EPU, was both in feed line break and loss of
11	feedwater, for the longer term AFW adequacy type
12	analyses, we did like Chapter 15-type assumption to
13	confirm that AFW has enough capacity to have RCS not
14	do subcooling.
15	So this is a new subset of the regional
16	analysis, what we did as part of the EPU. This is
17	based on some of the staff review and there's a part
18	of some of the request of information we requested.
19	Next slide. Yeah. Feed line break for
20	St. Lucie 2 is also analyzed in the shorter term, for
21	break sizes, to see the peak pressure in both in the
22	larger breaks and the smaller breaks meet the
23	acceptance criteria with sufficient margin in there.
24	Steam line break is the other limiting
25	event from cooldown considerations, and as shown on
ļ	

(202) 234-4433

	106
1	this slide for both, and V&V and the fuel melt, we
2	have no fuel failures. So the dose consequence
3	analyses remain well-bounded.
4	CEA withdrawal, this is one of the place
5	where that limit, 1.26 which is mentioned, that has a
6	margin built in significantly in there. The real
7	design limit is in the range of 1.14. So we have
8	sufficient margin in there, and the final result shows
9	that the V&V margin is something like ten percent or
10	so.
11	For CEA ejection, we analyzed the event
12	for a more restrictive 200 calories per gram criteria.
13	Our analysis shows margin to that, with more than 40
14	calories per gram, and other limits suggest V&V and
15	field melt for CEA ejection as not limiting and we
16	meet the criteria for EPU.
17	CONSULTANT WALLIS: And with all these,
18	you do something about conductivity degradation in the
19	fuel?
20	MR. KABADI: Well, we'll talk a little bit
21	about that later. But yes
22	CONSULTANT WALLIS: In that analysis, you
23	take account of that?
24	MR. KABADI: Right. But a lot of these
25	analyses were like the center-line melt and always
I	

(202) 234-4433

	107
1	considered, and we'll talk this afternoon how
2	CONSULTANT WALLIS: That's included in
3	this table here somewhere, that how it's
4	MR. KABADI: Right. How that, why that
5	limit is acceptable. We'll talk this afternoon, that
6	with the thermal conductivity degradation, that's
7	okay. Those limits we'll talk a little bit this
8	afternoon.
9	MEMBER SCHULTZ: Jay, could you go back
10	one slide?
11	MR. KABADI: Uh-huh.
12	MEMBER SCHULTZ: On the CEA ejection, just
13	can you give more information related to the rods in
14	DNB and what you're showing here, or will we discuss
15	that in more detail this afternoon?
16	MR. KABADI: No. Rods in DNB,
17	Westinghouse, the way the Westinghouse methodology
18	right now works is that they have done some generic
19	calculations, put in some bounding parameters in terms
20	of ejector rod failure, and the coordination they use
21	for all that. St. Lucie 2 specific EPU parameters
22	were compared to that and found to be significantly
23	lower.
24	The generic analyses has shown that the
25	amount of rods or number of rods in failure are much
ļ	1

(202) 234-4433

	108
1	less than ten percent. So by doing a comparative-type
2	evaluation, that was concluded that the number of rods
3	in the NBR well below what is used in the
4	MEMBER SCHULTZ: So it was comparative
5	parameter evaluation, parametric?
6	MR. KABADI: That is correct.
7	MEMBER SCHULTZ: To demonstrate that the
8	analyses essentially didn't need to be repeated
9	MR. KABADI: Right, that is correct.
10	MEMBER SCHULTZ:you know, with the
11	conditions of EPU.
12	MR. KABADI: Right, particularly since the
13	generic analysis covers the limits of all those
14	analyses.
15	MEMBER SCHULTZ: But specifically was
16	there an evaluation related to was there an
17	analysis related to fuel melt, or was that an
18	evaluation also?
19	MR. KABADI: Fuel melt? I think I wrote
20	this specific analysis and Jessica, are you
21	responsible?
22	MS. TATARCZUK: For our CA ejection event,
23	the rods and DNB parameter of less than 9.5 percent.
24	That was the generic analysis that Jim was speaking
25	to, that we had our data for the EPU, and it was
	I

(202) 234-4433

	109
1	actually vastly bounded by the WCAP that was done, the
2	generic analysis.
3	So we did that. But we did use that as
4	input our state points, which come back. For the
5	other parameters, actually they did actual data
6	evaluation for, the rods and DNB was the portion that
7	was the portion that was bounded by the generic
8	analysis.
9	MEMBER SCHULTZ: Thank you.
10	MS. TATARCZUK: Sorry, just one other
11	thing. I'm Jessica Tatarczuk from Westinghouse. I
12	didn't introduce myself.
13	CHAIR REMPE: Yes, thank you.
14	MR. KABADI: Next slide. Yeah. You have
15	the difference between EPU and non-EPU on that, but
16	certain margins don't change and there is not too
17	change to the plant configuration. One event which
18	was done in two subevents, which was inadvertent
19	opening of the PORV. Typically, that event was
20	analyzed only for DNB, and that has significant margin
21	for EPU.
22	CONSULTANT WALLIS: Now on this slide, the
23	pressurizer volume is 1519, is that right?
24	MR. KABADI: Right.
25	CONSULTANT WALLIS: It doesn't say so.
I	I

(202) 234-4433

	110
1	MR. KABADI: Oh, okay. Yes. Pressurizer
2	full volume 1519, and that inadvertent
3	CONSULTANT WALLIS: So you're saying that
4	the pressurizer does fill if no one does something, is
5	that right?
6	MR. KABADI: In 20 minutes, the operators
7	
8	CONSULTANT WALLIS: At the bottom.
9	MR. KABADI: Right, and that is the same
10	as what our current analysis is done then. But now
11	for the inadvertent opening of PORV, that's where we
12	analyze again for the pressurizer fill, and that
13	pressurizer fill event for St. Lucie 2 comes out about
14	three minutes, and that is what the operators have to
15	take action to close the block valve or to
16	CONSULTANT WALLIS: The operator has about
17	three minutes to close the block valve?
18	MR. KABADI: For the inadvertent opening
19	of PORV, and that is a new, what I call a new event
20	which builds on the staff review. We have to also do
21	for St. Lucie 1 and
22	CONSULTANT WALLIS: Is time significantly
23	less than it was before the EPU?
24	MR. KABADI: No. This event was not
25	analyzed
ļ	I

(202) 234-4433

	111
1	CONSULTANT WALLIS: Was not analyzed
2	before.
3	MR. KABADI: Yeah. This is a new, it came
4	as a part of the staff review and now, for those of
5	you who were here for St. Lucie 1, that was also
6	talked about as being redone for St. Lucie 1 also, and
7	St. Lucie 1 gets larger time because the PORVs are
8	smaller compared to St. Lucie 2.
9	Yeah. We'll do small-break LOCA. Small-
10	break LOCA, we use the same methodology, what we
11	currently have, and that is called small-break LOCA
12	SM-2, SPM (ph) methodology, which was approved by the
13	staff.
14	Only real change here is the tube
15	plugging. The current analysis we have 30 percent; we
16	ran to ten percent, and the other inputs here are
17	related to the power, which we discussed earlier.
18	As seen on this slide, the PCT (ph) for
19	the EPU is 1903, with Appendix K and all the other
20	acceptance criteria are met.
21	MEMBER SCHULTZ: Jay, you've changed the
22	steam generator tube plugging, and then you have PPU
23	conditions, and the limiting break size doesn't change
24	for the analyses? Where does this break size, where
25	does it sit in the spectrum?

(202) 234-4433

	112
1	MR. KABADI: Yeah. I think the spectrum
2	is run and Bob, why don't you
3	MR. ATKINSON: Yeah. Limiting break size
4	is a .05 square feet, and the next larger break size
5	that was analyzed was at .06 square foot, and that had
6	SITs injecting. So the zero-five was the break size,
7	the largest break size within the spectrum for when
8	SITs would not inject.
9	MR. KABADI: And then what we did, based
10	on the staff's request for information, we did some
11	sensitivity around that theme to show that PCT doesn't
12	vary much around that.
13	MEMBER SCHULTZ: Okay, and the other, the
14	other data that at least raises a question is that
15	your maximum local oxidation has gone down. The
16	maximum core-wide oxidation has increased limit and
17	MR. KABADI: Yeah. I think
18	MEMBER SCHULTZ: Have you looked at that
19	to evaluate it?
20	MR. KABADI: Yes. I think we internally
21	looked also on that. As you see here, one of the
22	things to mention here, the reason PCT goes down is
23	also because we were not taking credit for charging
24	flow in the previous analysis on lower tech spec.
25	Hence, charging is a part of ECCS. So we did take
	1

(202) 234-4433

	113
1	credit for the charging flow, and that's why one of
2	the reasons why the PCT is lower.
3	But as far as the oxidation, that's a part
4	of the methodology, based on where you are rupturing
5	and how you calculate. That's a conservative way of
6	calculating the total oxidation and Doug, can you add
7	
8	MR. ATKINSON: That's correct. This is
9	Doug Atkinson. Yes. The MACCS local oxidation
10	follows with the PCT decreased. There is a change in
11	the compression of the power. It's toward the center,
12	and the integral effect of all the local oxidation
13	values, you end up with a larger value for EPU.
14	MEMBER SCHULTZ: And then looking at core-
15	wide oxidation?
16	CONSULTANT WALLIS: That goes up because
17	of the flattening of the flux
18	MR. KABADI: Correct, if you use yeah.
19	That's where you calculate the flux, and again what we
20	used was very bounding to that cycle, the cycle. We
21	don't have to change anything, but meet the criteria.
22	CHAIR REMPE: So are there any additional
23	questions? Brian?
24	CONSULTANT BONACA: I need to go back to
25	page 24. I had a question about the CEA injection.
I	

(202) 234-4433

	114
1	I just couldn't hear the conversation there, and the
2	question that I had was how were these boundings
3	calculated and how; that is, statistical results?
4	MR. KABADI: Any particular number?
5	CONSULTANT BONACA: Well
6	MR. KABADI: Like CEA injection was
7	specifically around the calculations are done for
8	EPU from the neutronics point of view. Now in terms
9	of DNB we just talking about, how it was done, but in
10	terms of calories per gram, it was done following the
11	approved methodology, which is currently Westinghouse
12	methodology what we used.
13	CONSULTANT BONACA: Okay. So this was a
14	3D model that was used?
15	MR. KABADI: Kim can answer rather than
16	MR. JONES: Kim Jones here, and that was
17	a 1D BACTRAN model. They do a pin census or a 1D-2D
18	FQ to come up with that.
19	CONSULTANT BONACA: Okay.
20	MR. KABADI: Yes. I think the current
21	approved methodology has a 1D-2D synthesis, and that
22	provides effects which are generally found to be
23	actually more bounding than the 3D analysis. That's
24	how the current analysis is done here.
25	CONSULTANT BONACA: Okay. All right,
Į	I

(202) 234-4433

	115
1	thank you.
2	CHAIR REMPE: Are there any Charlie?
3	MEMBER BROWN: Yeah. I just wanted to get
4	one follow-up on that that I forgot to ask on the SBO
5	question. You talked about you've got two sites,
6	you've got two diesels at each site. If one plant's
7	affected, will the two diesels at the unaffected plant
8	really be able to support both itself and the other
9	plant? So the capacity is begin enough to do that.
10	Okay. I didn't ask that. I just wanted to make sure.
11	Thank you.
12	MR. HORTON: Todd Horton, FPL. Just a
13	point of clarification. It is two diesel generators
14	per unit, four per site, and on the loss off-site, all
15	four emergency diesel generators would start. One
16	thing that I think, maybe just to clarify, it is on
17	the station blackout the operating crews are trained
18	to immediately take action to start cross-tying power.
19	They don't wait until the batteries start
20	reaching their four hour depletion period. It's
21	immediate response for the operating crew.
22	MEMBER BROWN: Well, when I think
23	"station" I think everybody loses, that both plants
24	lose it at the same time. I'm just canoodling a way
25	here, thinking well, what's the likelihood of being
I	I

(202) 234-4433

	116
1	able to get a couple of diesels back, because you are
2	limited by that four hour period to get AC back before
3	you start depleting your batteries in a bad manner.
4	So I'm not particularly happy with that.
5	It's just a matter of where do you draw the line with
6	your previous licensing condition.
7	MR. HORTON: Any one of the four diesels
8	can provide adequate power for both units in station
9	blackout.
10	MEMBER BROWN: Well, that means if they
11	can recover it within the four hour period, at the no
12	later than four hours.
13	MR. HORTON: Sure.
14	MEMBER BROWN: I just wanted to know what
15	the
16	MR. HORTON: The loads did go up slightly
17	for EPU, some of the loads for the components, and
18	that was evaluated.
19	MEMBER BROWN: Got it, okay.
20	MR. HORTON: And we have adequate diesel
21	capacity.
22	CONSULTANT WALLIS: Let me just make sure
23	that I heard it right. When you have SBO, it affects
24	both units?
25	MEMBER BROWN: It's a common switchyard.
I	I

(202) 234-4433

	117
1	(Simultaneous speaking.)
2	CONSULTANT WALLIS: Well, someone said
3	something about one unit. That's what worried me.
4	But it is both units?
5	MR. HORTON: That's correct.
6	CONSULTANT WALLIS: Yeah, thank you.
7	CHAIR REMPE: Okay.
8	MR. HORTON: Todd Horton, FPL. Point of
9	clarification. The loss of offsite power and the
10	station blackout are two different events. The
11	station blackout would be loss of offsite power
12	coincident with the diesel generators not being
13	available.
14	MEMBER BROWN: No, I understand. Yeah.
15	MEMBER SKILLMAN: I would like to ask
16	Todd, when you have this event and the operators go to
17	cross-tie all four engines, haven't you increased the
18	vulnerability that a bus fault kills all four engines
19	for both plants? Would it not be more prudent to keep
20	the units separated until you know how the
21	vulnerability is proceeding?
22	MR. HORTON: Actually, on a station
23	blackout, we don't cross-tie all four engines. We
24	identify a specific train of the unaffected unit and
25	utilize its single diesel generator to supply power to

(202) 234-4433

118 1 the affected unit. So let's say, for instance, Unit 1 is the unaffected unit. It has either one or two 2 emergency diesel generators available. 3 We would not cross-tie those diesels and 4 5 then supply Unit 2 with that power. You're right. Ιt would make the condition vulnerable for some sort of 6 7 event thereafter. So we do ensure that that's part of 8 the emergency operating procedures, is we identify 9 which train and which emergency diesel generator is best suited to supply the affected unit, so we can 10 reduce those vulnerabilities. 11 MEMBER SKILLMAN: Thank you, Todd. 12 Okay. We need to take a 13 CHAIR REMPE: 14 break. But we've talked to the staff and we're a 15 little ahead of schedule. But they're prepared to come back and do their open session part between break 16 17 and lunch. If you have any of the requests, like the table that we've mentioned and other items that you 18 19 can talk about too that's open session that we could do before lunch, that would be great, although we can 20 accommodate it later. 21 But then we're hoping after lunch and do 22 all the closed session information, okay? Okay. 23 24 Break time. Let's come back in about 15 minutes, 25 okay. So 10 til. How about 10 til, okay?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	(Whereupon, a short recess was taken.)
2	CHAIR REMPE: Okay, Trace are you up, or
3	is Sam or who's up first?
4	MR. ORF: Sam and Ben will present the
5	safety analysis review.
6	Safety Analysis Review
7	MR. MIRANDA: Good morning. My name is
8	Sam Miranda. I'm a technical reviewer in the Reactor
9	Systems Branch, and I'll be presenting the long LOCA
10	accident analyses evaluation of the St. Lucie Unit 2
11	EPU. This was performed by another technical reviewer
12	in the Reactor Systems Branch, Summer Sun, but he's
13	unable to be here today, so I'm filling in for him.
14	Ben Parks, sitting to my right, will talk
15	about the LOCA analyses and the evaluation of those
16	accidents. Just as an introduction, having been
17	through the St. Lucie Unit 1 EPU evaluation, I thought
18	that would be a good place to start. We have the two
19	units, the one, one was licensed in 1976, the other in
20	1993, and they both came in for the same EPU power
21	rating.
22	After the EPU is limited, they'll be rated
23	at 3,020 megawatt thermal core power. The principle
24	difference is that fuel supplier was AREVA for Unit 1,
25	and Westinghouse for Unit 2, which means we were
I	1

(202) 234-4433

	120
1	looking at accident analysis supplied by AREVA and
2	Westinghouse using their methods.
3	The Unit 2 fuel is CE-designed fuel
4	fabricated by Westinghouse, and Westinghouse has used
5	their analysis methodology for the EPU analyses. Both
6	EPUs were audited by the Reactor Systems staff just
7	about two weeks apart, January and February of this
8	year.
9	Next slide. I selected a few events to
10	look at in detail, because this is where we had some
11	challenging issues, and it's the same with the EPU for
12	St. Lucie 1. We had to look mass-addition events
13	because these events are most likely to violate the
14	anticipated operation recurrence/acceptance criteria
15	and specifically the criterion that doesn't allow an
16	Anticipated Operational Occurrence or AOO from
17	escalating into a more serious event.
18	This typically happens when you pressurize
19	the fills, and causes a PORV to open and discharge
20	water. Well, since the PORVs are not qualified for
21	water relief, we have to assume that any PORV that
22	discharges water will remain open, and then this would
23	create a small-break LOCA at the top of the
24	pressurizer, which is an event of a more serious
25	class, and it's a violation of the acceptance
ļ	I

(202) 234-4433

	121
1	criteria.
2	CONSULTANT WALLIS: But it can be closed.
3	There's a block valve.
4	MR. MIRANDA: Yes.
5	CONSULTANT WALLIS: With most LOCAs, you
6	don't have the valve.
7	MR. MIRANDA: That's right. It can be
8	closed. In real life it can be closed, but in
9	licensing, in the licensing world, the acceptance
10	criterion has been violated. So that's what we need
11	to follow when we do the evaluation.
12	This is what I described earlier. The
13	charging pumps control the pressurizer. St. Lucie
14	Unit 2, as St. Lucie Unit 1, has safety ejection pumps
15	that are not capable of pumping against the nominal
16	RCS pressure. But they do have charging pumps that
17	are actuated by safety injection actuation signal.
18	They're positive displacement pumps. They're small
19	pumps about 49 GPM each.
20	St. Lucie 1 had three pumps. St. Lucie
21	Unit 2 also has three pumps, but one of them is set to
22	manual, so it's not actually actuated by the safety
23	injection actuation signal. It's a small amount of
24	flow, but it's sufficient to open the PORV, if allowed
25	to go on long enough.
	1

(202) 234-4433

	122
1	Next slide, please. This is the criterion
2	that presents a lot of difficulty for Florida Power
3	and Light and a lot of other licensees. The properly-
4	designed plant would not allow a Condition 2 incident
5	or an AOO from becoming a more serious event. If it's
6	properly designed, there will be features that will
7	present this, and typically this is demonstrated in
8	accident analyses by showing that an AOO does not
9	result in failing the pressurizer, and therefore it
10	would not be possible for a PORV to open and discharge
11	water.
12	Now the inadvertent opening of a PORV,
13	this is a relatively new issue that's come up in the
14	past three EPUs, and this was mentioned this morning
15	by FP&L. The inadvertent opening of a PORV is
16	classified a depressurization event or a decrease in
17	RCS inventory. As a depressurization event occurring
18	at full power, you do reduce thermal margin.
19	This event is analyzed to show that there
20	is adequate protection provided in the automatic
21	reactor protection system to prevent an occurrence of
22	DNB. For a CE plant, we expect a trip would occur
23	from the thermal margin low pressure trip logic, in
24	time to prevent DNB from occurring. This event has
25	been provided by the licensee, and has demonstrated
ļ	I

(202) 234-4433

	123
1	that DNB will not occur.
2	This event is analyzed typically for a
3	short period of time until the reactor trip occurs,
4	and after that, there's no danger of DNB. However, if
5	we allow this event to continue after the trip. As
6	the depressurization continues, it eventually causes
7	the safety injection system to be actuated on
8	pressurized or to low pressure, and once actuated, the
9	ECCS is capable of filling the pressurizer, especially
10	with an open PORV. It fills the pressurizer and could
11	eventually pass water through the PORV, and now we
12	have a situation where this Condition 2 event could
13	become a Condition 3 event.
14	CONSULTANT WALLIS: It sounds like a recap
15	of TMI to some extent.
16	MR. MIRANDA: Except well, in TMI, the
17	PORV was supposed to open. It needed to open. The
18	trouble is it didn't close.
19	CONSULTANT WALLIS: Well, it's the same
20	effect, though.
21	MR. MIRANDA: Yeah, yeah.
22	CONSULTANT WALLIS: And then the
23	pressurizer filling is the same sort of thing.
24	MR. MIRANDA: Well, the pressurizer no.
25	Actually, in TMI the pressurizer didn't fill.
	I

(202) 234-4433

	124
1	CONSULTANT WALLIS: The alarm wasn't in
2	right, that's why.
3	MR. MIRANDA: It looked it filled. It
4	looked like it filled, because of voids in the
5	pressurizer. So the operators made a mistake and they
6	thought they could turn off the safety injection with
7	
8	CONSULTANT WALLIS: They won't do that
9	this time.
10	MR. MIRANDA: This time we have truly a
11	fill to pressurizer.
12	CONSULTANT WALLIS: That's even more
13	incentive to turn off the ECCS.
14	MR. MIRANDA: Yes, yes.
15	MEMBER SKILLMAN: Sam, I'm confused. TMI
16	was an under-cooling event that led to an over-
17	pressurization, that led to both a reactor trip and an
18	opening of a PORV, and as you mentioned, the problem
19	is the PORV did not close and the operators failed to
20	diagnose that and didn't close the block valve, okay.
21	In this particular case, when I get the
22	charging pumps running, I'm pushing up the pressurizer
23	level, and if that continues, that level will threaten
24	and push open a PORV, and they're not qualified for
25	water. So I understand the logic.

(202) 234-4433

	125
1	MR. MIRANDA: Right, right.
2	MEMBER SKILLMAN: What is the first trip
3	out? Do I go out on high pressure on the reactor
4	cooling system?
5	MR. MIRANDA: You go out on low pressure.
6	Well actually you go out you go out on low
7	pressure. But before that, if the reactor protection
8	system is properly designed, the first trip should be
9	from a thermal low margin protection, and we verified
10	that in the accident analyses. So the reactor trips
11	at low thermal margin; later on, defense indepth, you
12	get a low pressurizer pressure trip. It doesn't
13	matter, because you've already tripped.
14	MEMBER SKILLMAN: I see, okay.
15	MR. MIRANDA: And then the continuing
16	depressurization causes the SI.
17	MEMBER SKILLMAN: SI. Thank you, Sam.
18	MR. MIRANDA: Okay. We've seen from
19	simulator tests that operators are trained to respond
20	to this very quickly. They can close the PORV in less
21	than ten seconds, and if the PORV doesn't close, there
22	is also the block valve available. Again, this is the
23	real world, and we have to, we need to consider this
24	at
25	CONSULTANT WALLIS: And what is the
I	

(202) 234-4433

	126
1	operator's indication. Is it the temperature in the
2	line from the PORV? Is that the indication that the
3	PORV is open?
4	MR. MIRANDA: That's one indication.
5	CONSULTANT WALLIS: One, and there's also
6	a signal supposedly that it's open?
7	MR. MIRANDA: Yeah. There's an indication
8	that it's open. There's also, you can also check the
9	pressurizer pressure and determine hey, at this
10	pressure should a PORV be open or should it have been
11	opened? Do you want to
12	MR. HORTON: Yes. Todd Horton, FPL. I
13	did appreciate the Subcommittee's discussion on the
14	operator's response at the Unit 1 Subcommittee. One
15	of the things that I had communicated at that time is
16	this is one of the events that is a high priority for
17	the operating crews to train on.
18	So I did go back to this station to
19	identify exactly when was the next sequence of
20	training that we were going to pull this performance
21	training on the crews, and we did pull it back in
22	cycles so I could complete that just prior to coming
23	here. The idea was I could come here with detailed
24	information.
25	So we validated. In fact, the operating

(202) 234-4433

crews did identify the inadvertent opening the pilot operator relief valve in less than ten seconds. 2 The things that help facilitate that is we have alarms specifically tied on the position indication of the PORV itself. Almost 99 percent of the alarms in the control room have a white background.

7 We have approximately a dozen that have a This is one of those alarms that has a red 8 red. 9 condition, so it immediately draws the attention of 10 the operating crew. Another thing that draws the attention of the operating crew is we have acoustic 11 monitoring downstream of the PORV. So when the PORV 12 opens, the acoustic monitoring also goes to alarm. 13

14 The third thing that really facilitates 15 the quick identification of the event is the reactor 16 coolant system and pressurizer pressure are right 17 there at the PORV. So the way the event unfolds is the red alarm enunciates; the acoustic monitoring 18 19 alarms; the operator sees that and looks at reactor coolant system pressure, and validates that in fact 20 that is not a real --21 22 CONSULTANT WALLIS: But the pressure

doesn't really respond instantly, does it? 23

> MR. HORTON: I'm sorry?

> > **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

CONSULTANT WALLIS: Does the pressure

(202) 234-4433

24

25

1

3

4

5

6

	128
1	respond instantly or it takes a while?
2	MR. HORTON: The pressure starts coming
3	down and stops, but the operator validates that
4	pressure is still in its normal operating band. They
5	inform the unit supervisor. They take the PORV to
6	override, and then we actually instilled a second
7	fault is when you go to override, the PORV should have
8	closed, as Sam mentioned.
9	The second fault that we instilled was
10	okay, that didn't work. Then the second action is for
11	the operator to manually close the motor-operated
12	valve to isolate that penetration, and we validated
13	all crews were doing that in less than 43 seconds.
14	The lowest pressure that we saw across the
15	crews was 2,030 pounds. Normal operating pressure is
16	2,250. Safety injection is at 1,736 pounds, so we had
17	quite a bit of margin.
18	So what we saw was manual action to
19	isolate the PORV in less than ten; we mechanically
20	isolated it in less than 45 seconds, and then we got
21	below 2,000 pounds.
22	CHAIR REMPE: Was this standard the
23	current in plant conditions and would you expect them
24	to change if you dialed it up on the simulator to the
25	EPU?
I	I

(202) 234-4433

	129
1	MR. HORTON: Actually, the simulator is
2	modeled precisely with Unit 2.
3	CHAIR REMPE: The EPU though, or with the
4	current?
5	MR. HORTON: The pressure post-EPU
6	conditions will be the same, and there are no design
7	modifications to the PORV.
8	MR. MIRANDA: So we have we looked at
9	the licensee's analysis of this event, and basically
10	we were interested in what would happen if the
11	operator does nothing, and this slide indicates that
12	if the operator fails to close that PORV, eventually
13	the pressurizer will fill in very short time.
14	This is where we look at the difference
15	between the real world. In the real world, the
16	operator will close the PORV in less than ten seconds.
17	But in the licensing world, we need to consider just
18	how much time is available for the operator and what
19	can reasonably be done following procedures and so
20	forth.
21	So we pay attention to the time it takes
22	for the pressurizer to fill, because that defines the
23	time available.
24	(Off record comment.)
25	MR. MIRANDA: Okay. So to finish up on
I	I

(202) 234-4433

1 that, the time that we're concerned with in this case is the time that the safety injection occurs, which 2 3 will occur before the pressurizer fills. This is the 4 time between the PORV opens and the time safety 5 injection occurs. If the operator acts within that time, then and closes the PORV, the accident is over. 6 7 However, if the operator is a little bit 8 late and safety injection is actuated, now we have an 9 inadvertent SI actuation, a variation of that, and now 10 the operator, in order to end the transient, has a lot more things to do to turn off the safety injection. 11 It turns out that if the operator closes the PORV at 12 any time after the safety injection has been actuated, 13 14 that doesn't end the transient, but it does reduce it 15 inadvertent variety of safety injection to а actuations, and it does gain more time for operator 16 17 action. In this case, operator action involves 18 following procedures to turn off the safety injection,

19 and that's going to take a lot more than ten seconds. 20 So the staff is evaluating this event on a generic 21 basis, and we expect to come up with a position 22 because we expect to see more analyses like these. 23 24 This St. Lucie 2 is not unique. Pressurizer fill times of three and four minutes seem 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	to be pretty common. So we need to take a closer look
2	at this.
3	MEMBER SKILLMAN: Sam, you used the words
4	"inadvertent SI injection." Would it be accurate to
5	communicate SI did what it was supposed to do at the
6	pressure that it was supposed to do it?
7	MR. MIRANDA: Exactly.
8	MEMBER SKILLMAN: Thus reducing the time
9	that the operators have to take any real significant
10	action. Once SI starts, they have an inventory issue
11	that they now have to deal with, a significantly
12	greater inventory issue.
13	MR. MIRANDA: Once SI starts, and it does
14	start. It's supposed to start. Once it starts, the
15	operator has a real complicated situation. Simply
16	closing the PORV will not end the transient, and
17	that's going to take a lot more than ten seconds.
18	MEMBER SKILLMAN: My point is it is not an
19	inadvertent actuation of SI. It is an appropriate
20	action of SI for which there are consequences.
21	MR. MIRANDA: Right. That's why we asked
22	for this analysis, because this is not, you know, a
23	failure upon failure. This is what the system is
24	supposed to do.
25	MEMBER SKILLMAN: Okay. Thank you, Sam.
I	1

(202) 234-4433

	132
1	CONSULTANT BONACA: I have a question for
2	the licensee. Just for information, do you have one
3	single simulator for both units?
4	MR. HORTON: Todd Horton, FPL. Yes, we
5	do. One simulator for both units. It's primarily
6	modeled for Unit 2.
7	CONSULTANT BONACA: But you do have
8	setpoints different for Unit 1 and Unit 2. How do you
9	manage that?
10	MR. HORTON: We do have some setpoints
11	different between the units. As you mentioned, that
12	is a key training piece with the operating crews that
13	we focus on quite a bit. Now there are things that we
14	perform in the simulator to enhance training in the
15	simulator, to get operators familiar with changes on
16	Unit 1.
17	Most notably is we've made some early
18	modifications on the simulator in response to the Unit
19	1 EPU. But as you mentioned, when operating crews go
20	into the simulator, it is modeled after Unit 1. So
21	the setpoints are corrected for Unit 2. So when they
22	go in there and they perform their training on
23	specific events, they're Unit 2 events.
24	CONSULTANT BONACA: But is there any
25	possibility of confusing the operators of Unit 1, for
ļ	I

(202) 234-4433

	133
1	example?
2	MR. HORTON: I think what the operating
3	crews see that do license operators is the systems
4	respond the same between the two units. Like for
5	instance, the safety injection actuation signal on
6	Unit 1 actuates at 1,600 pounds. On Unit 2, it
7	actuates at 1,736 pounds. That is a unit difference
8	between the two.
9	Now that is something that the operating
10	crews discuss, they're trained to discuss during their
11	briefs in those events. That is something we focus on
12	quite a bit during our training. But the system
13	still responds the same between the two units.
14	CONSULTANT BONACA: And one last question.
15	Are the crews dedicated to a specific unit, or are
16	they covering both units?
17	MR. HORTON: Their license allows them to
18	operate on both units.
19	CONSULTANT WALLIS: You said this was a
20	new event you're considering?
21	MR. MIRANDA: It's actually an old event.
22	We're considering it a new way.
23	CONSULTANT WALLIS: Because it seems to me
24	that it reminds me a lot of TMI. I mean you have a
25	PORV open for some reason, right, and then if the
I	I

(202) 234-4433

	134
1	operator doesn't shut it, what happens? You've got
2	various branches, depending on whether you turn off
3	the safety injection or whether you close the block
4	valve, and you've got different ways you can go and so
5	on.
6	Now this seems to me an obvious thing to
7	do 33 years. Say look at TMI, in say post-TMI action.
8	What happens if a PORV opens and they don't show that?
9	That's the obvious thing to do. We seem to be looking
10	at it. So the half hour you desire you have now if
11	this thing happened, and you're taking all that time
12	to do something about it.
13	MR. MIRANDA: Well, it was considered. It
14	was considered, but there's a small-break LOCA aspect,
15	okay. A PORV open sticks open. It's considered as a
16	well, it doesn't need to be a PORV. It could be a
17	safety valve, some opening at the top of the
18	pressurizer. But that's not considered as an AOO.
19	That's considered in 15.6 as a small-break LOCA.
20	This particular event is considered in
21	15.2 as an AOO and is considered to be sure that we
22	have DNB protection. But then recently we noticed
23	well okay. We see that there's no problem with DNB.
24	The reactor hasn't tripped. The AOO has been
25	satisfied. But has it really, because if we continue
ļ	I

(202) 234-4433

	135
1	the event and we continue the depressurization, we'll
2	eventually get safety injection.
3	That's going to in this case, it's not
4	needed. It's going to be causing problems. One more
5	point I'd like to make
6	CONSULTANT WALLIS: I understand that.
7	I'd just wonder why it takes 30 minutes to do this.
8	MR. MIRANDA: It's a good point. Yes. We
9	just discovered this aspect of this event, yes. One
10	thing that was mentioned earlier
11	CONSULTANT WALLIS: Well maybe these are
12	the events which are most likely, the ones you didn't
13	think about until now.
14	MR. MIRANDA: We didn't think about it
15	enough. It's always been in there.
16	MALE PARTICIPANT: You finished beating
17	him up yet?
18	CONSULTANT WALLIS: You're still here, so
19	you can do it.
20	MR. MIRANDA: We did notice, by the way,
21	quite a big difference between the two units, St.
22	Lucie 1 and St. Lucie 2, in terms of filling the
23	pressurizer. Pressurizer fill time in St. Lucie 2 is
24	much, much faster than St. Lucie 1, and the difference
25	is that St. Lucie has much larger PORVs.
I	I

(202) 234-4433

	136
1	So we have a PORV with a capacity of
2	something like 400,000 pounds per hour in St. Lucie
3	Unit 2, filling the pressurizer in about three
4	minutes; and St. Lucie Unit 1, with a PORV of about
5	153,000 pounds per hour, it takes about seven minutes.
6	We asked the licensee about this, and
7	they, at our request, they performed another analysis
8	of the St. Lucie 2 event, using the St. Lucie Unit 1
9	PORV capacity, and they reproduced the St. Lucie Unit
10	1 results. So that the cause is the PORV capacity.
11	MEMBER SKILLMAN: Sam, isn't there another
12	piece of information that is important, and that is
13	that the charging pumps were not originally part of
14	ECCS, and in the course of time on this pair of
15	plants, the charging pumps became part of ECCS?
16	MR. MIRANDA: We got a clarification on
17	that at the last
18	MR. D. BROWN: This is Dave Brown with
19	Florida Power and Light. It has to do with taking
20	credit for the charging pumps in the analysis. The
21	charging pumps have always started at St. Lucie on a
22	safety injection actuation, okay. The functional
23	difference between the units is on Unit 1, three pumps
24	start; on Unit 2, two pumps start. That's always been
25	the actual true plant condition. It was whether we
	I

(202) 234-4433

	137
1	were taking credit for them in accident analysis or
2	not that's changed.
3	MEMBER SKILLMAN: I see, thank you.
4	MR. MIRANDA: And yes, this came up at the
5	last EPU for St. Lucie 1, and my position on that is
6	that was a mistake.
7	MEMBER SKILLMAN: An oversight.
8	MR. MIRANDA: They didn't include the
9	charging pumps because they didn't want to take credit
10	for the flow, okay. I would understand that if you're
11	doing a LOCA analysis. But when you're doing an
12	inadvertent ECCS analysis, you need to take credit for
13	those pumps. They need to be in there, and they
14	weren't.
15	As a result, the EPU application we
16	received dismissed the inadvertent ECCS analysis,
17	because as they were modeling the ECCS without the
18	charging pumps, it wasn't necessary to do that
19	analysis, since the safety injection pumps just didn't
20	have a head to pump into the RCS at nominal pressure.
21	So we asked for the analysis, and we got
22	the results. It's the same situation with St. Lucie
23	2. The ECCS does include the charging pumps. They
24	are actuated by a safety injection signal, and
25	therefore this type of analysis needs to be performed.
	I

(202) 234-4433

	138
1	MEMBER SKILLMAN: Thank you.
2	CONSULTANT WALLIS: It's a very nice
3	example of what is conservative from one aspect is not
4	conservative from another, and you always have to be
5	careful about that.
6	MR. MIRANDA: Yes, yes.
7	MEMBER SCHULTZ: Sam, let me make sure I
8	understand. Then we heard the discussions from the
9	licensee's viewpoint associated with the operator
10	action and the simulator's response, the operator's
11	response to the event on the simulator, and the timing
12	of the operator's actions.
13	That would take care of the
14	event, if there is operator action. All right, and
15	you're saying then in addition, the staff is
16	continuing to consider the event with respect to no
17	operator action. But this is a generic issue that is
18	being treated separately from this amendment request?
19	MR. MIRANDA: Yes, it is, and the concern
20	I have when I look at this is that the shortening
21	interval between closing the PORV or the block valve
22	and the time safety injection occurs, because it's
23	like a two-phase event. Once safety injection occurs,
24	now it's more difficult to terminate the event.
25	Closing the block valve is not enough; closing the
I	I

(202) 234-4433

	139
1	PORV is not enough.
2	So you see in some plant designs this
3	pressurizer fill time is much shorter than what we're
4	used to seeing.
5	CONSULTANT WALLIS: So what is the status
6	of this? This is an ongoing, evolving issue?
7	MR. MIRANDA: Yeah. I've written a draft
8	of a generic communication that it's being reviewed.
9	We're trying to find the proper path for the
10	bureaucracy to get this out.
11	CONSULTANT BONACA: I want to go back a
12	moment to the issue of training, and having the same
13	plant training, the operators on the behavior of two
14	different plants, and I'm not saying there is anything
15	wrong about it. I'm just saying that I would have
16	liked to have had evaluation of the impact, potential
17	impact on performance of this issue.
18	It just troubles me, I mean as I talk
19	here, I'm thinking about so many different
20	possibilities of confusion for the operators or
21	whatever. I don't want to blow that out of proportion
22	right now, but certainly I would like to have the
23	Subcommittee considers a conversation today, at close
24	of the meeting, for what you think about that.
25	CHAIR REMPE: So you would like us to
I	I

(202) 234-4433

	140
1	consider it in our comments, but there's nothing you
2	would like to see from the licensee or the staff?
3	CONSULTANT BONACA: Yeah. I mean it may
4	very well be that simply it was the surprise of not
5	knowing that, that created this concern in my mind.
6	There may not be a concern in the back of my mind.
7	But I certainly would appreciate your thoughts.
8	MEMBER SKILLMAN: I would like to join the
9	concern, but I would like to respond to Todd's
10	comment. Dr. Rempe asked about the St. Lucie 2
11	simulator and underlying theme of Dr. Rempe's question
12	was fidelity with regard to the current plant design,
13	versus the upgraded plant design.
14	So in my very practical thinking, I say
15	I've got a simulator. It's a four loop, Combustion,
16	2,700 megawatt plant, and I would think that the crews
17	are doing just in time training and their normal
18	training on that simulator for St. Lucie 2, as the
19	plant is presently licensed and configured.
20	MR. HORTON: If I can speak, Todd Horton,
21	FPL.
22	MEMBER SKILLMAN: Yeah. Let me go one
23	more step further.
24	MR. HORTON: Okay.
25	MEMBER SKILLMAN: Or one step further.
l	

(202) 234-4433

	141
1	The time's going to come, presuming the Subcommittee
2	and the full Committee are in agreement, that you will
3	have a 3,200 megawatt plant that's really at 3,050
4	thermal, including pumping. So back to Dr. Rempe's
5	question.
6	For these simulator runs, were the
7	simulator runs done with the higher power level and
8	the higher core decay heat, or are these simulator
9	runs, and we're talking about here today back in the
10	2,700 megawatt configuration?
11	MR. HORTON: The core model right now
12	utilized in the simulator is the 2,700 megawatt
13	thermal. To add a few talking points as to our
14	discussion, the training piece is a huge piece of the
15	EPU project. Obviously, addressing the operator needs
16	and putting them in the best position possible, as we
17	go through these EPU outages, has always been right at
18	the forefront of implementing EPU.
19	Just in time training. Coming out of the
20	last Unit 1 outage, even though we haven't gone to the
21	higher power rate on Unit 1, a lot of the systems that
22	support the EPU are in place. So we had very
23	extensive just in time training for the operating
24	crews as those systems came back to them, during
25	coming out of the outage.
I	I

(202) 234-4433

	142
1	We did a very extensive evaluation of the
2	simulator itself, to see which systems in the
3	simulator did we need in place prior to implementing
4	EPU. So things like the digital turbine control
5	system that we talked about when you were here for
6	Unit 1. We put that in place on the simulator, even
7	though it wasn't in place on Unit 2, so the operating
8	crews would really understand how that system works
9	and responds on Unit 1 coming out of the outage.
10	One key piece that maybe we could discuss
11	is the training program for the licensed operator, as
12	we know, is an accredited training program. At St.
13	Lucie, like a number of other stations, there are
14	distinct differences between the units. That is
15	something that is a key piece of the licensed
16	operator's initial and continuing training.
17	We have shown high performance in those
18	areas, but there's always gaps that we're always
19	looking for and attempting to address. One of the
20	things that's been a that was one of the things
21	that the station put forward as a goal as we go
22	through into EPU, is the goal is to not take the units
23	farther apart, but to get the units closer together.
24	As I mentioned, functionally the systems
25	to the operators, they appear almost identical. There
I	I

(202) 234-4433

1 are a few distinct differences with the set points 2 that we talk about, that we find ways to challenge the understand 3 operators, make sure they the to 4 differences between the units. But the way the 5 systems respond and the way they look to them in a simulator is almost identical. 6

But as I said, the accredited training program takes that into account, and makes sure that those specific items we have definitely training requirements, to ensure that the operators understand the differences, what that means to them in the impact of operating the plant, and then we test them on a basis to make sure that they can demonstrate that.

14 MR. HALE: Yeah, and if I could, yes, our 15 training program, our license operator training 16 programs come under a lot of scrutiny from the NRC and 17 INPO, and these guys can tell you what they go through to get that accreditation. It includes explaining how 18 19 accommodate and ensure that we the operators understand the differences between the units. 20

Now with regards to the inadvertent opening of the PORV done at EPU versus the current power condition, it's very insensitive to power level, an overfill event. If we're looking at DNB like we typically look at this event, then yes, the decay heat

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

143

	144
1	comes into play. But when you're really looking at it
2	strictly from an overfill event, the power levels, the
3	event's fairly insensitive in terms of fill time to
4	power level, okay.
5	Really, we did that just to show, you
6	know, how quickly we can confirm, because we didn't
7	have that data the last time we were here for Unit 1,
8	okay.
9	MR. HORTON: And just to add, as we've
10	gone through this EPU process, one of the things that
11	I am real pleased with, as I think most of us who are
12	familiar know, that there's no tougher customer than
13	an operator in a training program, and they've really
14	challenged this site, to make sure that the EPU
15	modifications are presented in a way that puts the
16	operating crews' ability to be able to operate those
17	systems, understand them and implement them, prior to
18	actually them being in place and turned over to the
19	operating crews.
20	CHAIR REMPE: With respect to Mario's
21	question, is St. Lucie unique, that they have one
22	simulator for two different units and training
23	operators for both units, or is that standard across
24	the commercial fleet? I just would like a
25	MR. HORTON: We're not unique. I wouldn't

(202) 234-4433

	145
1	go as to say I wouldn't be able to speak to the
2	standard, but I know we're not using
3	MR. HORTON: It's common.
4	CHAIR REMPE: It's fairly common?
5	MR. HORTON: It's fairly common.
6	MR. JENSEN: Joe Jensen, Site Vice
7	President. Having worked in the industry for 35 years
8	and at various plants around the country, there's
9	virtually no two unit facility where the plants are
10	100 percent identical. In virtually every case, there
11	are deltas between the two units, and in virtually
12	every case, they train on a single simulator.
13	I think the only exception I can think of
14	probably is Beaver Valley, where they have two
15	separate operating licenses, and so they have two
16	simulators. But it is standard practice. We do delta
17	training between the unit that is modeled on a
18	simulator and the unit that is not.
19	We have to remember that there's a number
20	of other training venues that we use to make sure our
21	operators are well-trained. That includes our
22	classroom training, that includes job performance
23	measures where we physically take the operators into
24	the plant on the operating unit, and they step through
25	those activities that are necessary, in order to
	I

(202) 234-4433

	146
1	respond to the various events. In addition to that,
2	the on-shift training takes place in both units. So
3	the operators are exposed and have to run through a
4	number of reactivity manipulations and other events
5	and activities on both units.
6	So the simulator, while important, isn't
7	the only tool that we use to ensure that the operator
8	are well-trained and can respond to those events.
9	CHAIR REMPE: Thank you.
10	CONSULTANT WALLIS: Now it seems to me
11	that the Committee has to say something about this in
12	its letter. It's not a trivial matter. Now the
13	question is is it a matter of the EPU, or is it sort
14	of a generic thing around the fleet? I'm not quite
15	sure how you know whether it's a matter for the EPU,
16	and we're told it's very insensitive to the power
17	level. But until we see some numbers, we can't tell
18	what that means.
19	MR. MIRANDA: I agree that it is
20	insensitive. With respect to overfill, it's
21	CONSULTANT WALLIS: Makes no difference to
22	your arguments at all?
23	MR. MIRANDA: Not with overfill.
24	CONSULTANT WALLIS: Okay. So if some of
25	that can be very clearly shown, then I think we're
I	I

(202) 234-4433

	147
1	okay. Otherwise, we have to figure out or maybe wait
2	for what the staff position is going to be on how do
3	you satisfy the regulations
4	MEMBER BANERJEE: Well, I think there are
5	two separate issues. This came up, of course, before.
6	CONSULTANT WALLIS: But this is a bigger
7	PORV and all sorts of things.
8	MEMBER BANERJEE: So one issue is how does
9	is it affected by the EPU. My understanding was that
10	it's not greatly affecting the EPU, right.
11	MR. MIRANDA: I agree.
12	MEMBER BANERJEE: So the real issue is
13	what should you do about it, and that's more of a
14	generic issue.
15	(Simultaneous speaking.)
16	CONSULTANT WALLIS:affecting EPU be
17	quantified in some very discrete way?
18	MEMBER BANERJEE: Well, because of the
19	times available yeah, you can I think have you
20	got it quantified or not, Sam, in the how much the
21	times are affected for various actions. It wasn't
22	very much, if I remember, right?
23	MR. MIRANDA: We're talking about the
24	period of time until reactor trip, which you know,
25	might be ten seconds, and the difference in power
I	1

(202) 234-4433

148 1 level would be, you know, 300 megawatts for a period of ten seconds, and then after that it's strictly 2 3 mass-in and mass-out. MEMBER BANERJEE: Right. 4 5 MR. MIRANDA: So I don't see a significant effect due to the EPU. 6 7 CONSULTANT WALLIS: So this mass is being 8 heated, isn't it? It's not just mass-in/mass-out. 9 It's also volume. 10 MR. MIRANDA: Well yes, yes of course. The SI water's coming in at about 70 degrees, and it 11 goes up to 600 degrees. 12 13 CONSULTANT WALLIS: But a greater power 14 level heats it and swells it up more, so that it rises 15 So it's not just mass-in and mass-out. more. 16 MR. MIRANDA: Right. 17 CONSULTANT WALLIS: It's a response of the whole system. 18 19 Yes, yes. But if we're MR. MIRANDA: talking about differences, the differences is about --20 is the period of time before the reactor trip occurs. 21 The difference is the amount of the EPU, approximately 22 ten seconds. We're talking about a fill time here 23 24 that's on the order of three to seven minutes. CONSULTANT WALLIS: So it's, how much does 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	it change, does the fill time change with the EPU? It
2	goes from three minutes to something else?
3	MR. MIRANDA: Well, I haven't done that
4	case.
5	CONSULTANT WALLIS: If it went from three
6	minutes to two minutes, would that concern you?
7	MR. MIRANDA: I don't think we'd be even
8	I don't think it would be even 30 seconds.
9	CONSULTANT WALLIS: Well, it would be
10	useful to have some numbers there, I think.
11	CHAIR REMPE: One of the changes for the
12	EPU are changes in the NSSS setpoints. Would any of
13	those changes affect the timing for this event, or
14	have you already implemented those changes into the
15	simulator?
16	MR. HORTON: Todd Horton, FPL. The
17	changes would not impact. I think what Sam and his
18	group has looked at is from the time you get the
19	safety injection signal and the ECCS pumps started at
20	about 1,200 pounds, the high pressure safety injection
21	pumps start injecting.
22	That's really your primary driver for
23	filling the pressurizer. Nothing associated with
24	those systems are going to change post-EPU. What's in
25	place now will be in place then. Now one thing, just
I	I

(202) 234-4433

	150
1	to clarify, one of the things that we talked about was
2	okay, well what's the differences between this and
3	TMI?
4	It's kind of like I believe the point that
5	was brought up, and I don't know if it was, you know,
6	discussed enough, but one of the things that was
7	mentioned is once you had the safety injection signal,
8	it's not an inadvertent safety injection. It's a real
9	safety injection. At that point, the ECCS pumps start
10	and start injecting, as needed, as a result of the
11	safety injection signal.
12	The operating crew wouldn't just
13	immediately turn the pumps off. At that point, you
14	would have a real safety injection. You'd enter the
15	emergency operating procedures, and you've got very
16	distinct actions to take, to validate proper inventory
17	before taking manual control of those pumps. That's
18	the difference between this condition and TMI.
19	MR. KABADI: Yeah, and this is Jay Kabadi,
20	FPL. I just want to verify that the three-way timing
21	which is presented, that is for EPU. That analysis
22	done is the EPU analysis.
23	(Off record comment.)
24	MR. MIRANDA: We've seen from this
25	analysis for St. Lucie 2 the important factors
I	1

(202) 234-4433

1 determining the fill time. It is of course the rate 2 of safety injection, and the rate of safety injection is largely determined by the depressurization rate or 3 4 the back pressure the safety injection system is 5 seeing. That is highly dependent upon the PORV capacities. We saw that in the difference between the 6 7 St. Lucie Units 1 and 2, the difference in the PORV 8 capacities. 9 So the EPU or power level in general has 10 a very small effect on the pressurizer fill time. The power level is important in the beginning of the 11 transient, when we're looking at DNB. Any more 12 questions? 13 14 CONSULTANT WALLIS: Less than three 15 minutes isn't very specific, is it? I think you need to be more specific, and say that there is at least 16 three minutes for them to act, because less than three 17 minutes could mean ten seconds. 18 19 MR. MIRANDA: That's right, and I think that yeah, that is not specific. 20 21 CONSULTANT WALLIS: That's not very reassuring as it stands. 22 MR. MIRANDA: It conveys our concern that 23 24 this time is short. CONSULTANT WALLIS: I think you need to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

151

	152
1	say the pressurizer fills in greater than something.
2	MR. KABADI: This is Jay Kabadi from FPL.
3	FPL time in the analysis was 174 seconds.
4	CONSULTANT WALLIS: That's less than three
5	minutes. I think you've got to show that there's
6	enough time.
7	MR. MIRANDA: Well, we're not sure that
8	there's enough time.
9	CONSULTANT WALLIS: Okay, you're not sure.
10	MR. MIRANDA: That's way, you know, it
11	conveys our concern, and we have a very small time,
12	less than three minutes. Less than four minutes would
13	also be a concern. That's why we're looking at this
14	generically.
15	MEMBER SCHULTZ: So in presenting the
16	concern, it's approximately three minutes, which your
17	concern is that's not a big number.
18	MEMBER BANERJEE: I think it's a generic.
19	I mean it's not EPU-related. That's all we're saying.
20	MR. MIRANDA: Yeah. We need to take a
21	closer look at it, because these times are getting
22	shorter and shorter.
23	MEMBER BANERJEE: So what is I mean
24	maybe this is not the venue to address this, but what
25	do the staff plan to do about this? You're dealing
	I

(202) 234-4433

	153
1	with this on several EPUs, right? So what are the
2	plans?
3	MR. MIRANDA: I've written a generic
4	communication. It's pointing out that this is an
5	issue, and for certain plants.
6	MEMBER BANERJEE: Right.
7	MR. MIRANDA: Other plants it's not a
8	concern, but it 's an issue for certain plants and as
9	a regulator, I'm not going to tell people how they
10	need to fix it, just that they need to pay attention
11	to this and present to the NRC staff a credible
12	rationale for dealing with this, something that will
13	hold up to licensing standards.
14	MEMBER BANERJEE: So what is the state we
15	are at right now? Have letters gone out to operators
16	or licensees?
17	MR. MIRANDA: The stage we're at now is
18	that I've written a draft of a communication, which it
19	needs to be reviewed and issued, and we have written,
20	I think so far, three safety evaluations, Turkey
21	Point, St. Lucie Units 1 and 2
22	MEMBER BANERJEE: Right.
23	MR. MIRANDA:where this is an issue,
24	and we have come up with an argument as to why it's
25	acceptable for the EPU, but we reserve the right to
I	

(202) 234-4433

	154
1	revisit this on a generic basis.
2	MEMBER BANERJEE: Who is this draft letter
3	with, your branch head or something right now?
4	MR. MIRANDA: No.
5	MEMBER BANERJEE: Where is the review
6	process? What point is it at?
7	MR. MIRANDA: Well, at this point, I sent
8	it to my branch chief for his review.
9	MEMBER BANERJEE: Now he's taken off for
10	some
11	MR. MIRANDA: Yeah. I don't think he's
12	going to be reviewing it.
13	MEMBER BANERJEE: Right.
14	MR. MIRANDA: So I'm acting for him, so I
15	guess I'm reviewing it.
16	(Laughter.)
17	CONSULTANT WALLIS: Would it help you if
18	ACRS said something about this issue?
19	MEMBER BANERJEE: I mean all we can say at
20	the moment is that we recognize this should be treated
21	on a generic basis or something, right?
22	MR. MIRANDA: Yeah. Basically, where we
23	are is we don't think this is a reason to hold up an
24	EPU. We have written a safety evaluation that says
25	it's well, at this point it's good enough, but we
I	I

(202) 234-4433

	155
1	want to look at it generically and come up with a
2	better solution.
3	CONSULTANT WALLIS: It's an issue for not
4	in EPU. It was an issue before EPU.
5	MR. MIRANDA: Yes, yes, that's right. I
6	would say this is not
7	MEMBER BANERJEE: EPU has very little to
8	do with it.
9	MR. MIRANDA: That's right.
10	CONSULTANT WALLIS: The interesting thing
11	will be to see how quickly the agency can respond.
12	MR. MIRANDA: So yeah. If you can raise
13	the
14	MEMBER BANERJEE: We've done this in some
15	letters in the past, where we know that this is not a
16	specific issue for this EPU, but we mention it in some
17	generic sense, whether it be methods related to
18	whatever, you know. We've done it. We've made
19	comments on reactor physics codes, that sort of thing,
20	in past letters.
21	However, with this aspect, if you've
22	already got something underway and there's no issue
23	with your going forward with it, then ACRS has not
24	much of a role to play, I would think, you know. If
25	you encounter resistance, that's a different matter.
	1

(202) 234-4433

	156
1	This is the last EPU for a while.
2	MR. MIRANDA: Well we intend to continue
3	with this, because it goes beyond EPUs.
4	MEMBER BANERJEE: Right. It goes well
5	beyond, like the TCD issue. It goes beyond EPUs,
6	right? So you're going to take some action on it.
7	MR. MIRANDA: Yes.
8	MR. PARKS: If I may in the interim, the
9	staff's review activities consider this event even
10	when it's not an EPU. I had a license action request
11	on my desk a couple of months ago, and I know while we
12	have to ask about this, the licensee showed that its
13	safety margins were significantly reduced, and the
14	staff's decision-making in that matter was following
15	the licensee's awareness of the issue, appropriate.
16	The key message there being the staff
17	considers this I was awfully vague. You know, we
18	consider this
19	MEMBER BANERJEE: That was a lot of
20	legalese, Ben.
21	MR. PARKS: The staff's aware. We
22	consider it in other things, not just EPUs, bottom
23	line.
24	MEMBER SCHULTZ: And again, it goes to the
25	importance of the operator actions as they are being
l	I

(202) 234-4433

	157
1	proposed and taken and demonstrated that they can be
2	achieved, but then also the success of those operator
3	actions, being effective.
4	MR. MIRANDA: And I think this is where
5	Dr. Bonaca's comments come into play, because whatever
6	solution is arrived at for this event, and also the
7	inadvertent ECCS actuation. The protection against
8	these events is not an automatic reactive protection
9	system. It's in operator actions.
10	MEMBER SCHULTZ: Yes.
11	CONSULTANT WALLIS: This is where you
12	might be reminded about TMI. I mean it was the
13	operator actions that seemed to have led to the
14	progression of the event the way it did.
15	MR. MIRANDA: Yes. They thought they were
16	doing the right thing, but they weren't.
17	CONSULTANT WALLIS: Well, here they've got
18	two things to balance. That's where they get in
19	trouble. They do the right thing for one and then
20	later on, you know, they fix the other one.
21	MR. MIRANDA: Yeah. They need to undo the
22	automatic reactor protection system.
23	CONSULTANT WALLIS: It's not taboo to do
24	that.
25	MR. MIRANDA: Not if you've followed all
I	I

(202) 234-4433

	158
1	the procedures.
2	MEMBER SKILLMAN: Let me make sure I've
3	got this straight. What I think this, I think very
4	valuable discussion has created in my mind is the
5	recognition that the SI actuation of the charging
6	pumps has always been part of this design, but the
7	mass flow rate contributed by those pumps was not
8	previously credited, and when it is credited, that
9	mass volume has the capability to take an AOO to a
10	small-break LOCA.
11	MR. MIRANDA: I would agree with that,
12	yes.
13	MEMBER SKILLMAN: And that is an event
14	that is entirely independent from the power uprate
15	discussion. That is a basic design issue for this
16	plant that we are talking about today, independent of
17	what other plants it may be part of.
18	MR. MIRANDA: Yes.
19	MEMBER SKILLMAN: Thank you. I got it.
20	Thank you.
21	MR. MIRANDA: Any more questions?
22	(No response.)
23	MR. MIRANDA: If we can move on to LOCA.
24	Ben?
25	Large-Break LOCA Safety Analysis

(202) 234-4433

	159
1	MR. PARKS: I'm Ben Parks. I was not the
2	reviewer for lost coolant accidents. That reviewer
3	was Jennifer Gall. She is not able to be here today.
4	She had long-standing prior obligations. So I'll
5	present the results of her review.
6	I reviewed her safety evaluation and
7	provided some feedback, so I am familiar with her
8	review activities. This slide is the summary of the
9	licensee's approach for ECCS evaluation. The
10	licensee's methods for St. Lucie Unit 2 are based on
11	and conformant to Appendix K of 10 C.F.R. Part 50. So
12	the results are going to be quite a bit different,
13	especially for the large-break loss of coolant
14	accident analysis than they were for St. Lucie Unit 1.
15	Here's a list of the methods that the
16	licensee used, and a note becomes important a little
17	bit later in the presentation. The limiting PCT is
18	calculated to occur during the late reflood. For the
19	limiting large-break case, it's around 300 seconds.
20	MEMBER BANERJEE: So this is quite
21	different?
22	MR. PARKS: Yes, yes sir.
23	MEMBER BANERJEE: Because of the methods.
24	MR. PARKS: In essence
25	MEMBER BANERJEE: It's not due to the
I	I

(202) 234-4433

	160
1	plant.
2	MR. PARKS: That is correct. It's
3	basically the most significant driver here, I think,
4	or one of the most significant drivers is a very
5	conservative decay heat model. For the next
6	MEMBER SCHULTZ: Conservative, in that
7	oh, there it is. 20 percent above, okay.
8	MR. PARKS: We use a 20 percent multiplier
9	well, the staff doesn't use. The licensee uses a
10	20 percent multiplier and applies that to the ANS 1971
11	standard, as required by Appendix K.
12	CONSULTANT WALLIS: You mean 120 percent
13	multiplier?
14	MR. PARKS: I apologize. Yes, I do. The
15	licensee made the point in its application or in the
16	first layer of RAI correspondence that thermal
17	conductivity degradation is not important because our
18	analysis methods are conservative, and it turns out
19	there's a regulatory reason to make that argument.
20	When we promulgated the realistic rule in
21	1988, the Commission said, you know, significant
22	public comment was made, as to whether Appendix K
23	methods remain valid, and the Commission came back and
24	said Appendix K is conservative, and so many features
25	of its requirements are going to be retained, and
	I

(202) 234-4433

161 1 licensees may continue to use Appendix K. 2 The staff did, however, question a little bit deeper regarding the effect that TCD could have on 3 4 this particular limiting transient. It was shown, 5 through some sensitivity studies, that a substantial increase in fuel-stored energy would be required to 6 7 drive blowdown peak higher than the reflood peak that we had seen in the results. 8 The reason that that study was done that 9 10 way is because it's a system of codes that are used in various phases of the transient. So we ask for a 11 sensitivity study on the first code. 12 I believe CEFLASH is the blowdown code. We asked for the 13 14 sensitivity studies in CEFLASH and we chose to leave alone the COMPERC results. 15 I believe that there is a 30 percent 16 17 increase required in the stored energy, in order to get the blowdown peak to approach the reflood peak. 18 19 It was quite a difference, and quite a bit of an increase in the stored energy. 20 CONSULTANT WALLIS: That's strange, to 21 tweak the energy, because it's really the conductivity 22 which matters. 23 MEMBER BANERJEE: Which is of course 24 25 ultimately --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	(Simultaneous speaking.)
2	CONSULTANT WALLIS: It also determines how
3	quickly it comes out, doesn't it? So it's probably
4	also, yeah.
5	MEMBER BANERJEE: But let me ask you this.
6	This plant filled a lot of emergency core cooling
7	available, right? So why, is it purely an artifact of
8	the method, that you're getting a reflood peak rather
9	than a blowdown peak? If you did a realistic
10	calculation, you'd expect that you'd get a blowdown
11	peak on this plant, right?
12	MR. PARKS: The best information I have
13	available to me is obviously the St. Lucie Unit 1
14	results.
15	MEMBER BANERJEE: Right.
16	MR. PARKS: They have similar emergency
17	core cooling systems and yes, I think if you applied
18	more realistic assumptions, you would find that the
19	limiting peak is either in the blowdown or in the
20	early reflood.
21	MEMBER BANERJEE: Okay, yeah. So what is
22	it about this methodology that is physically or not
23	physically, because it's not a physical methodology,
24	but why are you getting the reflood peak? What's
25	happening there?
I	

(202) 234-4433

	163
1	MR. PARKS: I believe in this case it's a
2	difference in the decay heat modeling.
3	CONSULTANT WALLIS: Only the decay heat.
4	MR. PARKS: I can't say it's only the
5	decay heat model. But I think that that's a
6	significant driver.
7	CONSULTANT WALLIS: It's not that you're
8	throwing away a lot of the available emergency water
9	coming in
10	MR. PARKS: Well yes. This method
11	requires that the accumulator flow be largely
12	bypassed.
13	MEMBER BANERJEE: right.
14	MR. PARKS: ECC bypass is a difficult
15	thing to model, and I don't know that the realistic
16	model is a whole lot more realistic with respect to
17	ECC bypass. Those methods tend to throw a lot of
18	cooling or yeah, accumulator cooling out the break
19	also.
20	MEMBER BANERJEE: So it's not that which
21	is causing the
22	MR. PARKS: I can't say for certain. I
23	truly don't know.
24	MR. KABADI: This is Jay Kabadi from
25	Florida Power and Light. I think for the Appendix K
I	1

```
(202) 234-4433
```

	164
1	models, also there are very conservative, the transfer
2	correlations used in the reflood phase. That's what
3	drives the PCT during reflood much higher than what
4	the realistic LOCAs would do.
5	MEMBER BANERJEE: Is this to do with the
6	heat transfer to the dispersed, during the dispersed
7	
8	MR. KABADI: Yeah, I think that's correct.
9	I think there requirements that once your flooding
10	rate is below something, you cannot get ready for a
11	lot of correlations that could be used in a best
12	estimate test analysis.
13	MEMBER BANERJEE: So this is sort of an
14	unusual result, because the reason we sort of fought
15	the St. Lucie 1 situation and why we got such low PCTs
16	compared to Turkey Point was due to the fact that it
17	was dominated by the blowdown piece. I mean in Turkey
18	Point if you recall, it was the reflood piece
19	MR. PARKS: Early reflood, about 30
20	MEMBER BANERJEE: Oh maybe early, yeah.
21	But whatever it was, the mechanisms was somewhat
22	different, which is why you had a sort of 400 degree
23	margin or maybe even larger in the best estimate
24	calculations for St. Lucie compared to Turkey Point,
25	which is much closer to the 2,200.
ļ	I

(202) 234-4433

	165
1	MR. PARKS: There were also some other
2	fundamental design differences as well. I don't know,
3	I'm not terribly familiar with the types of
4	containment design, but the containment design any
5	differences there could have been attributable to
6	differences in the predicted PCTs and also the
7	accumulators are much different.
8	MEMBER BANERJEE: Yes, of course.
9	MR. PARKS: At Turkey Point, they're a
10	higher pressure.
11	MEMBER BANERJEE: Right, and that's more
12	or less what we attributed. We were trying to make
13	sense of why St. Lucie 1 came in so much lower than
14	Turkey Point, you know, in the best estimate
15	calculations. I think we rationalized that. Now we
16	see a plant which is essentially identical in terms of
17	this emergency cooling and so on to St. Lucie 1,
18	coming in with a result which is showing, you know,
19	completely different behavior due to the methods
20	primarily.
21	So and we're trying to understand what it
22	is about the methods which is causing this. So I can
23	understand that the correlations that you're using are
24	much more conservative. You're probably throwing away
25	more water. I'm not sure of that. You're using a
ļ	

(202) 234-4433

	166
1	much higher decay heat than a realistic calculation.
2	Are there any other factors that we should be aware
3	of?
4	MR. PARKS: I believe there's a difference
5	in the accumulator pressure. I think that St. Lucie
6	Unit 2 has higher accumulated pressure
7	(Simultaneous speaking.)
8	MR. KABADI: This is Jay Kabadi of FPL.
9	Yes. At St. Lucie 2, accumulator pressure is 500 psia
10	and psig, which is much higher than St. Lucie 1.
11	MEMBER BANERJEE: What was St. Lucie 1?
12	MR. KABADI: St. Lucie 1 was originally
13	200 and they raised that to 230 as part of this EPU.
14	One of the reasons the PCTs in Appendix K model that
15	PCT in heat flux is so-called artificially driven so
16	high, dictated by decay heat, that other changes will
17	change that. That is like photo slide that was grid
18	and stored and feed down to blowdown PCT, much, much
19	higher than what this PCT was.
20	That still is below the reflood PCT
21	because reflood PCT is calculated very high in the
22	Appendix K model because of the decay heat and the
23	correlations.
24	MR. PARKS: The other important piece of
25	information that you might get, you kind of glean from
ļ	I

(202) 234-4433

	167
1	the ECCS research is the significance of these
2	mechanism at a given phase in the transient. Decay
3	heat's more significant. I think in the NRC's part,
4	I think it's rated at about an eight in late reflood,
5	and it's much less significant earlier.
6	The stored energy is rated very highly,
7	and in early reflood it comes down to about a two, and
8	then it's insignificant. So there's a combination of
9	the way these phenomena are being treated
10	analytically, and their significance at the given time
11	in the transient.
12	MEMBER BANERJEE: Yes.
13	So it's an artifact of the calculational
14	methodology here, and you can explain this. You've
15	satisfied yourself, your colleague has.
16	MR. PARKS: I watched as my colleague
17	satisfied herself.
18	MEMBER BANERJEE: Right, right, that you
19	can explain this behavior.
20	MR. PARKS: In my opinion, I think that
21	justified the staff's review approach here, where
22	rather than sort of, for lack of a better word,
23	require the licensee to do a complete reanalysis or
24	explicitly address thermal conductivity degradation in
25	this event, to ask instead that they do sensitivity

(202) 234-4433

	168
1	studies to show us what are we missing by leaving this
2	out?
3	I think that that ties back. That's why
4	I mentioned the rulemaking and the history there,
5	because I think that that follows the Appendix K
6	regulatory approach.
7	MEMBER BANERJEE: So you're saying you
8	bumped up the stored energy by about 30 percent, and
9	you still had the reflood peak?
10	MR. PARKS: That is correct. I think the
11	results were, and I would have to confirm this, it
12	increased the blowdown peak by about 250 degrees, and
13	I have a picture of the limiting transient provided by
14	the licensee. Do you have that slide?
15	MR. ORF: Is that part of this afternoon?
16	MR. PARKS: Yeah, probably this afternoon.
17	I'm not sure.
18	MEMBER BANERJEE: If you like, you can
19	defer this, yeah. You can defer the discussion.
20	(Simultaneous speaking.)
21	MR. PARKS: That's a closed session
22	discussion, so let's don't go there.
23	MEMBER BANERJEE: Yeah. We can defer the
24	discussion.
25	CHAIR REMPE: Yeah, and in fact
	I

(202) 234-4433

	169
1	MR. PARKS: Okay. Well, the slide was
2	publicly available. It wasn't proprietary.
3	MEMBER BANERJEE: Okay.
4	CHAIR REMPE: Well, do you think you can
5	go through the rest of this presentation in 15
6	minutes, or do you want take a break and come back
7	after lunch?
8	MR. PARKS: I think I'll push it in 15
9	minutes or less. There's not much more information to
10	provide.
11	CHAIR REMPE: Okay.
12	MR. PARKS: We don't have the slide. It
13	shows a blowdown or a reflood peak.
14	MEMBER BANERJEE: Well, we can look at
15	them later.
16	CHAIR REMPE: Let's see if we can finish,
17	okay.
18	MEMBER BANERJEE: Yeah, later.
19	MR. PARKS: Okay. So this is the large-
20	break LOCA. Let's see. There are a couple of other
21	things the staff addressed. The staff asked some
22	questions about downcomer boiling, the downcomer model
23	for CEFLASH was pretty simple, and so the staff asked
24	for some sensitivity studies to
25	CONSULTANT WALLIS: SITs or the tanks or
Į	I

(202) 234-4433

	170
1	the
2	MR. PARKS: The accumulators.
3	CONSULTANT WALLIS: Accumulators, right.
4	How does the downcomer get filled in a cold-like
5	break? There's steam going up there, isn't there?
6	MR. PARKS: At some point, there's enough
7	liquid, and I'm thinking through. I'm not working
8	from memory, Dr. Wallis. It seems that you have to
9	inject enough liquid that you get some sort of
10	countercurrent flow limitation. You have enough heavy
11	liquid that's not boiling.
12	CONSULTANT WALLIS: How does the steam get
13	out then?
14	MR. PARKS: The steam is going to entrain
15	the liquid from the safety injection tanks for a
16	while. It's going to go out the break, as the break
17	flow reduces and you have easier lower plenum steam
18	conversion, lower plenum flashing, I suppose.
19	CONSULTANT WALLIS: The steam has to get
20	to the break somehow, as in I'm not quite sure how
21	the downcomer fills with water?
22	MEMBER BANERJEE: Eventually, the steam
23	has to go the other way.
24	MR. KABADI: Yeah, this is Jay Kabadi.
25	MEMBER BANERJEE: It's got to come out
Į	

	171
1	somehow, eventually.
2	MR. KABADI: Yeah, this is Jay Kabadi for
3	Florida Power and Light. I think that Appendix K
4	model, that's one of the things, that is one of the
5	ways.
6	You go through the blowdown period, and
7	that's why 900 water injector goes in other core.
8	That's assumed to all go out. Once the pressure,
9	that's the end of blowdown, where the pressure in the
10	containment gets higher than the pressure in the RCS.
11	That's when you want to start setting into
12	CONSULTANT WALLIS: Well, it gets down
13	there all right, but it doesn't fill downcome does it?
14	I mean there's stuff steaming in the downcomer, isn't
15	it?
16	MR. PARKS: Yeah.
17	CONSULTANT WALLIS: It can't get to the
18	break without going through the downcomer, unless I've
19	got it all mixed up.
20	MEMBER BANERJEE: No. I think it has to
21	go down the downcomer.
22	CONSULTANT WALLIS: Well, there has to be
23	counter-current flow. So there's no way the downcomer
24	can be filled with water. I don't understand this
25	rationale.
ļ	I

(202) 234-4433

	172
1	MR. PARKS: I see what you're saying. I
2	think the staff may have characterized the
3	phenomenology a bit out of order.
4	CONSULTANT WALLIS: Well maybe if you get
5	to the full Committee, you can give a better
6	explanation?
7	MR. PARKS: Absolutely.
8	MEMBER BANERJEE: Maybe filled is too
9	strong a word?
10	CONSULTANT WALLIS: Yeah, it would be
11	enough to suppress boiling somehow.
12	MR. KABADI: This is Jay Kabadi, FPL. Let
13	me just I think what happens is once the pressure
14	in RCS gets lower, the volume which goes through the
15	loops, and that is what is balanced by the containment
16	pressures. There is only the driving force coming
17	from the containment side, and as the water gets in,
18	whatever volume that goes inside the core gets through
19	the loops and it goes through the loops.
20	CONSULTANT WALLIS: It doesn't go out the
21	cold leg break, does it?
22	MR. KABADI: That is correct. Once the
23	vessel
24	CONSULTANT WALLIS: That's what's
25	happened, that's what's happened.
11	

(202) 234-4433

MR. PARKS: Okay. So here are the EPU results and compared to the pre-EPU. During the staff's review, we considered the fact that the PCT decrease, we asked about that. In the license report, I think there is a very vague statement regarding credit, not fully crediting the improved features of the new steam generator.

8 The reviewer asked questions about that 9 and then obtained sort of a rack-up list, if you will, 10 of all the different changes they had made in their 11 assumptions from the prior analysis to the current, to 12 show what's the PCT effect of each bit and piece. 13 Looked over that and they add up to this result. So 14 the staff reviewed this difference.

MEMBER BANERJEE: What was the main reason that it decreased, which is so slightly strange? MR. PARKS: I don't recall the exact rackup. I intended to bring it with me and I don't have

19

it.

1

2

3

4

5

6

7

20 MR. KABADI: Yeah. This is Jay Kabadi 21 from Florida Power and Light. I think the back-up 22 slides, the impact of the EPU by itself was in the 23 range of 50, something in 50's, the temperature going 24 up. Then the benefit came from the higher flow, which 25 we increased in the reactor coolant system.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	Their own analysis did use 335,000. We're
2	using this one, 375,000, which is one of the changes
3	we talked about, and the reduction in the peaking
4	factor. The two together provide balance, and the
5	actual number came out slightly lower in report.
6	MEMBER BANERJEE: But you've got a higher
7	decay heat, right, and now your peak temperature is in
8	the reflood peak, where decay heat matters. And, you
9	know, the fact that you have a higher flow affects the
10	stored energy, and you're saying the stored energy
11	doesn't really matter as much as the decay heat. So
12	I find that rationale pretty hard to understand. Do
13	you follow what I'm saying?
14	MR. KABADI: Right, right. But I think
15	the 54 degrees or so that came out strictly what they
16	ventured about the EPU.
17	MEMBER BANERJEE: So the EPU gives you 10
18	percent or 12 percent or whatever more decay heat,
19	right, than you had assumed?
20	MR. KABADI: Right, and that raised the
21	PCT. That's correct.
22	MEMBER BANERJEE: That has to raise the
23	PCT?
24	MR. KABADI: That is correct.
25	MEMBER BANERJEE: Because this is a
	I

(202) 234-4433

	175
1	reflood peak, right?
2	MR. KABADI: Right.
3	MEMBER BANERJEE: And if you didn't change
4	any methods between the pre-EPU and the EPU, you'd get
5	an increase in that temperature. Now your higher flow
6	
7	CONSULTANT WALLIS: In some ways, he said
8	he's injecting more water. I think he said he's
9	injecting more water.
10	MEMBER BANERJEE: How is he injecting more
11	water?
12	CONSULTANT WALLIS: Ask him.
13	MEMBER BANERJEE: Are you changing
14	something else?
15	CHAIR REMPE: Radial peaking.
16	MEMBER BANERJEE: The peaking factor I can
17	see has an effect.
18	MR. KABADI: Right. Yeah, I think a
19	little like well, we've had some sensitivities on
20	these, and those are the reasons what I presented,
21	like you mentioned that why you mentioned like why are
22	such slow decreases to PCT and that sort of thing.
23	I'm just looking at the Westinghouse
24	MEMBER BANERJEE: Well, increasing the RCS
25	flow will reduce the stored energy, and but on the
I	I

(202) 234-4433

	176
1	other hand, you're also increasing the amount of
2	power. So I mean the two things will sort of balance,
3	to some extent. You know, I think we need a rationale
4	for this, where you say the stored energy is affected
5	by that much, by increasing the RCS flow, and the
6	effect of the decay heat is this much.
7	So we understand. I'm sure that your
8	colleague looked through this. It's a startling
9	result.
10	MR. PARKS: It is, although this is fairly
11	minor, I think it looks like about 25 degrees.
12	MEMBER BANERJEE: Yeah.
13	MR. PARKS: Fahrenheit. We'll look. Over
14	lunch, we'll get the rack-up list. We'll have a look
15	at it. You know, the original statement from the
16	licensee was changes in the steam generator modeling,
17	full credit, which implies that there be some primary
18	to secondary heat transfer in play here. That makes
19	sense for later in a greater stage of decay heat.
20	MEMBER BANERJEE: That makes more sense.
21	That makes more sense because your decay heat is going
22	up, and if you get the heat out through the steam
23	generator, it makes more sense, okay.
24	MR. PARKS: So these are the results, and
25	onto the small-break LOCA. We got a fairly coarse

(202) 234-4433

	177
1	break spectrum initially from the licensee, and the
2	staff requested a more detailed one. I don't believe
3	that the detailed break spectrum changed the limiting
4	result. I think it was .05, or yes05 square feet
5	was the limiting result.
6	The staff also requested and obtained an
7	analysis of a severed injection line. The dynamics of
8	the transient are a bit different, and it also affects
9	how much ECCS you can get. On the next slide, we have
10	
11	MEMBER BANERJEE: What about the loop seal
12	clearing? Did you ask for that as well?
13	MR. PARKS: I would have to check with the
14	reviewer to see how it was addressed, and we can
15	certainly do that.
16	MEMBER BANERJEE: Okay.
17	CHAIR REMPE: So we'll get answers to
18	these questions today after lunch you think?
19	MR. KABADI: I think I have loop-seal
20	clearing the at the approved methodology which we
21	use for here, requires doing some sensitivities on the
22	loop sealant, take the worst reasons.
23	MEMBER BANERJEE: And also making sure
24	that ultimately only one of them clear, right?
25	MR. KABADI: We can check how many clear,
I	I

(202) 234-4433

	178
1	but there is some sensitivity in the different
2	configurations, and the worst result is reported. So
3	we can check and see how many cleared and
4	MEMBER BANERJEE: Yeah. Just let me know
5	what the worst cases are.
6	MR. KABADI: Right. We can check on that,
7	yeah.
8	CONSULTANT WALLIS: St. Lucie 1 used a
9	very complicated loop seal clearing model, which I
10	didn't understand.
11	MEMBER BANERJEE: Well, it was a very,
12	eventually a very conservative one, yeah. Nobody can
13	understand it, but nobody knows anything about loop
14	seal clearing.
15	CONSULTANT WALLIS: But they know that
16	they can make a difference.
17	(Simultaneous speaking.)
18	MR. PARKS: These are the results for the
19	small-break LOCA, and with that, we hope the
20	presentation's concluded.
21	MEMBER BANERJEE: Again, you've got a
22	lower peak clad temperature, with a higher decay heat.
23	That's a remarkable result.
24	MR. PARKS: If the key driver is the same
25	as for the large break, this transient has a large, a
I	I

(202) 234-4433

	179
1	boildown. It would make sense.
2	MEMBER BANERJEE: So if it's a steam
3	generator, it does make some sense, yeah.
4	MALE PARTICIPANT: Yeah, I'd like to see
5	that
6	MR. KABADI: This is Jay Kabadi from FPL.
7	Really, the main driver was a built-in credit for the
8	charging flow. It was not written up by any model
9	without getting early into transient health
10	significantly. In the previous analyses under the
11	CCS, charging flow pumps were part of the CCS. They
12	have not credited charging pumps in this model.
13	CONSULTANT WALLIS: You're putting more
14	water in, the same as large-break LOCA, I think.
15	MR. KABADI: Right. But the charging
16	flow, again constant flow (mouth close to mic). Once
17	the SI signal comes in, they start injecting into the
18	small break, and that (mouth close to mic).
19	MEMBER BANERJEE: Okay. You have to
20	rationalize it for us.
21	CHAIR REMPE: You want more then?
22	MEMBER BANERJEE: Yeah. We want to
23	understand why.
24	CHAIR REMPE: Okay. So the staff will
25	help address this today or the licensee?
I	I

(202) 234-4433

	180
1	MEMBER BANERJEE: Staff and the licensee
2	together.
3	MR. PARKS: The staff will make its best
4	attempt to provide clearest rationalization. Without
5	the actual reviewer present, we may not be able to
6	fully address the concerns. So I would say what we
7	can't get done today we'll absolutely do early next
8	week, when you're owed some materials, and definitely
9	plan to talk about it at the full Committee meeting.
10	CHAIR REMPE: That sounds great.
11	MEMBER BANERJEE: When is the full
12	Committee
13	CHAIR REMPE: The week after the week of
14	the 4th, like
15	MR. PARKS: 10, 11, 12, 13.
16	CHAIR REMPE: Yeah.
17	CONSULTANT WALLIS: It seems to me when
18	your staff member expert isn't here, then you need to
19	anticipate the questions that we will ask, and get
20	answers ahead of time.
21	MEMBER BANERJEE: He's just giving you a
22	hot time, Ben. I apologize.
23	CHAIR REMPE: I know we all want to go to
24	lunch and take a break, but there is a staff member
25	who can answer Charlie's question, and so we're going
I	

(202) 234-4433

	181
1	to get Charlie, and it will be a brief answer, and so
2	if we'll just have that response, it will help. This
3	is the anticipated outage time response; correct, is
4	the question of Charlie's?
5	MR. BROADDUS: Actually, we were hoping he
6	would be here to make sure he can clarify the question
7	for the gentleman.
8	CHAIR REMPE: Okay. Charlie is in the
9	other room, and Weidong is getting him, so just be
10	patient.
11	MR. BROADDUS: Okay, thank you.
12	CHAIR REMPE: Okay. Your name is?
13	MR. MOSSMAN: I'm Tim Mossman. I work in
14	the Instrumentation and Control Branch. Dr. Chung,
15	who did the review of the measurement uncertain
16	recapture on Unit 2 is unfortunately not here today.
17	But I was his peer reviewer on his safety evaluation
18	input, so I am familiar with the measure uncertainty
19	recapture, and I will do my best to answer whatever
20	questions.
21	CHAIR REMPE: Okay. I believe the
22	question of interest is the allowable outage time, the
23	daily FM, which may be beyond just this EPU. It may
24	be something that the staff has agreed upon in prior
25	reviews or
I	1

(202) 234-4433

	182
1	MR. MOSSMAN: In fact, I just looked at
2	the safety evaluation before coming over here.
3	CHAIR REMPE: And here he comes.
4	MR. MOSSMAN: Oh.
5	MEMBER BROWN: I thought you were doing
6	this after lunch.
7	CHAIR REMPE: Well, the gentleman who's
8	responding can't be here after lunch.
9	MEMBER BROWN: Well, that's a good answer.
10	CHAIR REMPE: Okay. So thank you.
11	MEMBER BROWN: Who's the gentleman
12	responding?
13	MR. MOSSMAN: Tim Mossman.
14	MEMBER BROWN: Hi. I recognize you.
15	MR. MOSSMAN: Yeah. I've been here
16	before.
17	MEMBER BROWN: Either good or bad, one of
18	them.
19	MR. MOSSMAN: I was told the question was
20	about the allowable outage time for the OEFM?
21	MEMBER BROWN: Yeah. I'm trying to recall
22	what I said now.
23	CONSULTANT WALLIS: Two days, but no
24	MEMBER BROWN: Oh yeah. No, I understand
25	the two days. They had made a proposal on the AOT,
I	I

(202) 234-4433

183 1 and the rationalization was that going for two days was based on the normalization they do every day at 2 3 midnight or whatever the witching hour is, and 4 therefore the ability of the thing to change over a 5 two-day period of the alternate system was small. There were some other words relative to 6 7 that, in that they had evaluated and reviewed data to 8 show that the change in that system was small. I'm 9 forgetting the time frame, but it was a long, it was 10 like 18 months of data they said. I don't know how many data sets of 18 months they took to say that 11 yeah, that's a consistent set of data, and I'm not a 12 statistics person. 13 14 So I had no idea how much data they used 15 within period to that 18 month come to that conclusion. So I had two questions. 16 Number one, did 17 you all look at that, the data, how they came to the conclusion that it didn't change much. They claimed 18 19 it was less than a .025 percent change over an 18 month period. 20 21 Ι just wanted to make sure somebody confirmed analysis 22 that their of that data independently was .025 percent over that 18 month 23 24 period. Did you all look at that? I would have to ask Dr. 25 MR. MOSSMAN:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	184
1	Chung specifically what he looked at with that regard.
2	But I know we've historically asked licensees. They
3	generally, like you said, they generally hyper
4	calibrate their venturis to the LEFM readings, and
5	then they're using their venturi for that 48 hour or
6	72 hour period is generally what we've approved.
7	MEMBER BROWN: No. My concern was they
8	keep recalibrating it all the time, and therefore how
9	do you get 18 months' worth of data that says it
10	doesn't change.
11	MR. MOSSMAN: I have seen other I've
12	seen other licensees' values that they presented. In
13	fact, we have one now, where they did the similar
14	thing. They collected on multiple units for a year,
15	ten-day drift times on all their transmitters
16	associated with their venturis, and the number, I
17	don't want to quote the exact number, they found is
18	bounding, but it's very consistent with the .025
19	percent you quoted. It's a very small value on the
20	transmitter drift.
21	MEMBER BROWN: Now but is that on
22	transmitters, or is that the results of
23	MR. MOSSMAN: It's the whole, yeah.
24	MEMBER BROWN: The results of the whole
25	calculation, or just the flow information that's
I	1

(202) 234-4433

	185
1	going?
2	MR. MOSSMAN: It should be the signal
3	coming from the venture. It's the air you're focused
4	on.
5	MEMBER BROWN: So where does the
6	normalization take place? Is that downstream or yeah,
7	downstream where it all goes, so they can go get that
8	data? They're not recali okay, let me go
9	backwards.
10	I've got DP cells, all kinds of stuff on
11	venturis. So you run a calibration, pop up little
12	devices and you make sure that the readouts come out
13	and the right voltages are where they're supposed to
14	be, and they feed out to the converters, etcetera.
15	Now when they normalize, they're not fiddling with
16	that data?
17	MR. MOSSMAN: Not the raw feed.
18	MEMBER BROWN: Not the raw feed.
19	MR. MOSSMAN: My understanding
20	MEMBER BROWN: Is that's the data that
21	they take to make this determination, that the venturi
22	and its detectors are not going to vary over 18
23	months? Which data are they using?
24	MR. MOSSMAN: Oh, for the 18 month data?
25	MEMBER BROWN: The output of the
ļ	I

(202) 234-4433

	186
1	MR. MOSSMAN: Oh, yeah.
2	MEMBER BROWN: The output of the venturi
3	downstream, you know, when it's coming out of lots of
4	amplifiers and all the gain adjustments have been made
5	and they're normalized or whatever they are, or is it
6	the actual raw data off the venturi, or the RTDs
7	themselves?
8	MR. MOSSMAN: I would have unless
9	somebody from St. Lucie has that off the top of their
10	head, I have to check on that. That was something
11	that Dr. Chang looked at.
12	MEMBER BROWN: That was my question.
13	MR. MOSSMAN: Okay.
14	MEMBER BROWN: If you're taking normalized
15	data every day, and you then do your 18 month review
16	based on normalized information somewhere downstream,
17	that doesn't seem to I'm not a statistician, and
18	I'm not an analyst, but that doesn't seem to make
19	sense to me, if they're taking the raw data over the
20	
21	MR. BROADDUS: Yeah, excuse me. Maybe
22	this will help. This is Dave Brown from Florida Power
23	and Light. When we talk about normalizing the
24	venturis to the LEFM, that's not something that has
25	occurred yet. We don't have an LEFM that's in service
I	I

(202) 234-4433

	187
1	that we're going through this process on. So what we
2	did is we went and we looked at what was the venturis
3	giving us over a period of time, to look at how acute
4	is there a change or is it a chronic long-term effect
5	that's occurring over a period of time, and use that
6	fact that they're not changing as a justification for
7	the time frame of being able to run with it at a
8	steady state power level, with an LEFM out of service,
9	and use the venturis as an accurate power indicator.
10	CONSULTANT WALLIS: How do you know if the
11	venturis are changing if you don't have anything to
12	compare them with? How do you know if the venturis
13	are changing in the way they operate, if you have
14	nothing to compare them with?
15	MEMBER BROWN: You do a calibration or
16	when you took this 18 months' worth, how often do you
17	recalibrate the venturis?
18	CONSULTANT WALLIS: How often?
19	MEMBER BROWN: Well, you've got a venturi
20	
21	MR. MOSSMAN: How often? I don't have
22	that answer off the top of my head. That's an I&C
23	activity, so I'd have to take, I'd have to look that
24	up.
25	MEMBER BROWN: I guess

(202) 234-4433

	188
1	CONSULTANT WALLIS: That's what I'm
2	saying. How can you calibrate with nothing to
3	calibrate them against?
4	MEMBER BROWN: At some point, you have to
5	go, in order to get this data, you have to go check
6	your calibration of your venturi instrumentation. The
7	only way to do that is to go, you make two
8	assumptions. Number one, the venturi itself doesn't
9	change internally. That's kind of hard to do.
10	The second thing is to make sure your
11	detectors, which are measuring the differential
12	pressure across your venturis, those have not changed.
13	In other words, your detector data hasn't changed, and
14	you've got to figure out well gee, did the detector
15	data change because the venturi changed? You can
16	argue about that all you want to.
17	But in other words, how did you get the
18	data, and who looked at it?
19	MR. MOSSMAN: I don't have an answer for
20	what that frequency is, so I can't give you that
21	answer.
22	MEMBER BROWN: That's kind of that
23	question. Okay, that's one question. Okay, all
24	right. The second question was nibbling, they gave
25	you a multiple set of degradations. I think there
I	

(202) 234-4433

	189
1	were three lines?
2	MR. MOSSMAN: They had two LEFMs installed
3	
4	MEMBER BROWN: Yeah, but one and then a
5	couple of them and then something else, and I don't
6	want to get into what they were. But they had three
7	numbers, and you all came back and said umm gee, we
8	think you ought to have those numbers ought not be
9	as big as you're using. We want you to decrease power
10	a little bit more, if I remember.
11	MR. MOSSMAN: It was yeah, and I took
12	a quick look at this. It was very similar to one. We
13	had, we first saw this, I think it was in Shearon
14	Harris, where depending on the number of LEFMs
15	installed, they constitute two different they have
16	
17	MEMBER BROWN: They've got two.
18	MR. MOSSMAN: Yeah, they have two, but
19	each LEFM has two planes of detectors where they
20	collect data from. Each LEFM, if one plane of
21	detectors drops out of service for some reason, it can
22	go into what they would now term a degraded mode for
23	the LEFM check plus, which would be very analogous to
24	the original system that they submitted and got
25	approval for, which was the LEFM check.
	I

(202) 234-4433

	190
1	MEMBER BROWN: And these were used?
2	(Simultaneous speaking.)
3	MEMBER BROWN: They said they haven't done
4	
5	MR. MOSSMAN: Yeah. If there was any
6	checks, they would have been very early ones quite a
7	number of years ago. The check plus represented an
8	increase in accuracy, by adding additional detectors.
9	But they actually had analysis and data that staff
10	looked at in ER Norbert help me ER-80P, which
11	was the original topical report on the one-plane
12	system.
13	I believe for both Shearon Harris and I
14	believe for St. Lucie, that Alden Labs, that did their
15	specific testing of the LEFMs and the typing
16	configurations that were supposed to go into the
17	plant, looked at both fully functional and degraded
18	modes, where you lose one plane of operation. So they
19	do have reasonable data to make accuracy claims, as to
20	how good the instrument is, if you do lose essentially
21	your right or left hand of the instrument.
22	In this case, and in Shearon Harris, they
23	had more than two. They had multiple, and we got an
24	application that listed six or seven different
25	degraded modes you could go into, depending on which
I	

(202) 234-4433

planes --.

1

2 As a branch we had significant discussions 3 about how much credit you wanted to give somebody for 4 degraded modes of operation like this, and the feeling 5 was that given how highly reliable the instrument was, the odds of you getting into one of these kind of 6 7 corner cases, where the right hand over here has failed, the left hand over here has failed, the left 8 9 hand over here has failed, should be an extremely 10 remote case for operation.

The value was probably not worth the additional complexity to their procedures, to grant that many tiers of operation. That being said, if I was the system engineer, I'd still ask for it, and I don't know specifically what Dr. Chung, if that was the same logic he used here.

But my guess is that was looking at the Shearon Harris precedent that we had approved previously, one tier of degradation, at the point in time where you have two systems degraded, that should be a fairly remote mode of operation.

22 MEMBER BROWN: Yeah, that's kind of what 23 you did. You went from instead of having that third 24 two megawatt list, you went full to the 2968 as soon 25 as you hit the third category. So that was your

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

192 1 thought process, qualitative thought process in other words. 2 That it should, 3 MR. MOSSMAN: Yeah, yeah. 4 erring on the side of conservatism, at the point of 5 time where you have both your instruments partially degraded in this case, it's probably a lot easier to 6 operate and a lot safer, a lot more conservative to go 7 8 back to your old power rate. 9 Okay. Now your SER states MEMBER BROWN: 10 that "there are two CPUs. They are physically separate and redundant, each capable of processing all 11 the data from both tool pieces." 12 MR. MOSSMAN: That sounds correct. 13 14 MEMBER BROWN: I'm just reading right from 15 your SER, so I'm not making this up as I go here. I've been known to do that, so be careful. 16 "The active CPU data source will be automatic for the DCS 17 calorimetric calibrations, for where the analysis and 18 19 the algorithms are, "will be automatically all swapped, "swapped, swapped, S-W-A-P-P-E-D, "by the DCS 20 when necessary, based on quality status flags of the 21 LEFM and the Ethernet interface module between the 22 two, LEFM and DCS." 23 24 Now if they automatically get swapped, does that automatically qualify as a degradation, and 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	is somebody going to move 3,020 megawatts down to
2	3,015? That just sounds like gee, if one loses if
3	we can get something that says gee, that one's not
4	working right. I'm going to swap to the other one.
5	MR. MOSSMAN: Yeah. I will
6	MEMBER BROWN: Are there alarms that go
7	off and somebody says now I have to run down and
8	reduce my power by five megawatts? There's nothing
9	that addresses
10	MR. MOSSMAN: We typically get, yeah. I
11	did not see it in the safety evaluation, but I know we
12	typically do ask and we do get usually details as to
13	what constitutes going into those degraded modes. I
14	would have to check the original license amendment
15	material to see what was described. I don't have that
16	handy.
17	MEMBER BROWN: Well, I would, okay. So
18	then my two questions, I guess it's still kind of
19	hanging around, is how did they get this 18 months'
20	worth of data, where did it come from?
21	MR. MOSSMAN: Okay.
22	MEMBER BROWN: Okay, which is how do you,
23	you know, what did they compare it to? I presume it
24	was within a prime standard alignment check of some
25	sort, and how many data points did they have over the
I	

(202) 234-4433

	194
1	18 month period, because you don't normally go in and
2	pump these things up, take them out of service and
3	pump it up and down every week. It's kind of a pain
4	to do that.
5	Then the next would be okay, how do they
6	know if these things were being swapped? Is that one
7	every time something goes out, like you lose one
8	section of the plane, does it automatically get
9	swapped out and nobody has a choice? And then an
10	alarm goes off and somebody knows that they're
11	supposed to reduce power by five megawatts.
12	That's kind of the open questions, two
13	open questions.
14	MR. MOSSMAN: Okay.
15	MEMBER BROWN: Now hopefully I'll be able
16	to remember those for the next time.
17	MR. MOSSMAN: I will track those down
18	ASAP.
19	MEMBER BROWN: Okay. Are you the one
20	that's not going to be there afternoon?
21	MR. CARTE: No. I'm the one who's
22	supposed to be here this afternoon. Norbert Carte.
23	I think the underlining criteria for the swapping is
24	whether you have one or two planes active, I mean for
25	the degraded mode. So as long as you have two planes
	I

(202) 234-4433

	195
1	of sensors active, you have heightened accuracy of the
2	LEFM check plus system.
3	MEMBER BROWN: Full functionality.
4	MR. CARTE: Full functionality. So
5	whatever failure causes you to have only one plane is
6	when you degrade your level of acceptable power
7	operations.
8	MEMBER BROWN: But does it also get
9	swapped to the other CPU? How does somebody know
10	that, and know it in time, in a timely manner?
11	MR. CARTE: Well, I think the typical
12	case, I'm not sure about the swapping case. But the
13	typical case is a sense failure. That's what
14	typically causes you to lose a plane of operation. If
15	you have redundancy views and they're swapping, I'm
16	not sure about the answer. But the criteria is if you
17	swap and you still have all your planes, then there's
18	no problem.
19	MEMBER BROWN: How could you swap if it
20	MR. CARTE: Well, if you have redundancy
21	
22	MEMBER BROWN: This says "quality status
23	flags," which sounds like something's not operating
24	right. So
25	MR. CARTE: Right. So the processors

(202) 234-4433

	196
1	I'm speculating, so I have to stop. But in essence,
2	if you have redundant processors, that's their
3	function, to detect when one is misoperating and
4	switch to the other one.
5	MEMBER BROWN: I've tried to do that
6	before with redundant processors, and it is very
7	difficult to get it right, particularly if it's an
8	automatic control system. We made it work, but it
9	MEMBER BANERJEE: These aren't completely
10	redundant either, because what they're doing, it's a
11	very simple instrument. They have the speed of sound
12	in this thing and they
13	MEMBER BROWN: It's an ultrasonic flow
14	detector.
15	MEMBER BANERJEE: So but they're sort of
16	shooting across. But in order to get the velocity
17	profile effects in, they shoot across at various
18	locations. So even if you lose one of those sensors,
19	it degrades your signal substantially. So you've got
20	to do something about that.
21	MEMBER BROWN: You talked about angles in
22	some of these also.
23	MEMBER BANERJEE: Yeah, there's also some
24	-
25	(Simultaneous speaking.)
Į	

(202) 234-4433

	197
1	MEMBER BROWN:from what I understand.
2	But I don't want to get into the details
3	MEMBER BANERJEE: So all you have to do is
4	degrade one of those signals, and then that whole
5	plane is not going to give you accurate results.
6	MEMBER BROWN: Okay. I guess two
7	questions are still open, where did we get the data,
8	okay, in order to verify that the venturi variations
9	are small, or the detectors, whatever it is that
10	causes it. Quite frankly the venturi, based on I
11	actually took venturis and flow nozzles out of a plant
12	after 25 years and found that their calibration in a
13	calibrated facility varied so little we could barely
14	measure it.
15	But that was 1975. So it was pretty good.
16	The detectors on the other hand though, differential
17	pressure. Those are different, and they will vary.
18	MEMBER BANERJEE: Well, the venturis tend
19	to roughen slightly
20	MEMBER BROWN: I understand, absolutely.
21	Your nozzle coefficients and everything else will
22	become slightly different. Anyway, those are the two
23	questions. And then how do they know that they've go
24	into the degraded mode?
25	MR. MOSSMAN: Yes.
ļ	I

(202) 234-4433

	198
1	MEMBER BROWN: It is an alarm that goes
2	ringing because they swapped, or because something
3	else. That's all.
4	MR. MOSSMAN: We typically have seen a
5	fairly conservative approach to what constitutes
6	degraded. So any kind of failure
7	MEMBER BANERJEE: Did you consider any one
8	sensor not operating properly as a failure of the
9	whole plane?
10	MR. MOSSMAN: That's typically the way
11	it's been interpreted, and as soon as one sensor in
12	the plane, they fail the plane.
13	MEMBER BANERJEE: That's correct, good.
14	CHAIR REMPE: Okay. So we have one quick
15	comment, and then I want to make a couple of comments.
16	MR. HOFFMAN: All right. This is Jack
17	Hoffman, Florida Power and Light. Just one
18	suggestion. We can make our lead I&C engineer
19	available this afternoon. I know he is very familiar
20	with the St. Lucie installation. Can answer all the
21	questions he just had on factory acceptance testing
22	today. We'll track him down and we can set up a time
23	to get all these questions answered. He's the subject
24	matter expert.
25	CHAIR REMPE: Great. That sounds great.
I	

(202) 234-4433

	199
1	MEMBER BROWN: Will he have the how you
2	get the data to say it's okay for 18 months?
3	MR. HOFFMAN: Knowing the individual, I
4	would be shocked if he doesn't have it. He should.
5	He is the subject matter expert that's been involved
6	with this device since its conception.
7	MR. JENSEN: Well let's make sure he has
8	the questions before we get him to the table.
9	MR. HOFFMAN: Of course.
10	CHAIR REMPE: And whatever we can't get
11	this afternoon, we'll hit in the near week or so, we
12	hope.
13	MR. HOFFMAN: We'll track down.
14	MEMBER BROWN: Yeah. I'll be in town. I
15	live here.
16	CHAIR REMPE: We'll send it to everyone on
17	disk or whatever, okay. So I'd like to close for
18	lunch and restart at 1:30. Thanks.
19	(Whereupon, the above-entitled meeting
20	went off the record at 12:31 p.m., and resumed at 1:36
21	p.m.)
22	CHAIR REMPE: Okay. At this point I'm
23	going to reopen the meeting, and we're going to start
24	off with some answers to questions from the licensee.
25	And then we'll close the meeting, and proceed with the
	I

(202) 234-4433

	200
1	scheduled sessions. Okay?
2	MR. HOFFMAN: Very good.
3	CHAIR REMPE: And we have an individual on
4	the line. Will you state your name, please, and start
5	answering are you aware of the questions, or do we
6	have to repeat them?
7	MR. J. BROWN: No, I'm generally aware of
8	the questions, and my name is Jeff Brown. I'm the I&C
9	supervisor for the EPU project.
10	CHAIR REMPE: Okay. Go ahead and start
11	answering the questions.
12	MR. J. BROWN: Okay. As I understand it,
13	the first question pertains to the justification for
14	the 48 hour AOT. Is that correct?
15	CHAIR REMPE: Yes.
16	MEMBER BROWN: Yes. In other words, how
17	did you generate the data to determine that the
18	venturi is stable or the data from that alternate
19	system is stable for at least 48 hours, based on your
20	18 months of data collection? I just want to know
21	what data you got, and what was the source of it, what
22	were the devices, whatever.
23	MR. J. BROWN: Okay. So each venturi
24	the two-headers, the venturi on each side is monitored
25	by three Rosemont differential pressure transmitters

(202) 234-4433

that develop the input signal directly into our DCS system. So what I did was, I looked at the last five calibration cycles, 18-month calibration frequencies on each of those transmitters, and looked at the drift that we'd see on each of those channels over an 18month surveillance.

7 Typically with the Rosemont transmitters, 8 they were within our quarter percent calculation 9 tolerance, even with an 18-month frequency. So over 10 a two-day period of time, 48 hours, the drift is very, 11 very minimal.

In addition to that, the thing that could case significant drift would be a significant change in plant power, which could change the venturi fouling that is seen at that point in time. And under those circumstances, we have a requirement to down-power, enter the LCO.

MEMBER BROWN: Okay. Before you go any 18 19 further, there's enough snaps, crackles and pops that I'm not sure I caught all of the data, 18-month data. 20 You said something about five calibration cycles? 21 MR. J. BROWN: I reviewed data on over 22 five calibration cycles. 23 24 MEMBER BROWN: And how long is a calibration -- is that the time between calibrations? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	202
1	MR. J. BROWN: The calibration frequency
2	is 18 months.
3	MEMBER BROWN: Okay. So once every 18
4	months, you recalibrate the detectors.
5	MR. J. BROWN: That's correct. Yes.
6	MEMBER BROWN: I'm writing. Okay. So you
7	took five calibration cycles, or seven and a half
8	years, worth of data.
9	MR. J. BROWN: That's correct. Yes.
10	MEMBER BROWN: So five data points,
11	effectively, over seven and a half years.
12	MR. J. BROWN: On each channel.
13	MEMBER BROWN: Each a channel being one
14	venturi's worth?
15	MR. J. BROWN: Right. So statistically,
16	there's a lot more data than would be implied with a
17	population of only five points.
18	MEMBER BROWN: I guess I'm not quite sure
19	I understand that. A venturi this is not the LEFM.
20	This is the old Rosemont detectors, and the venturi
21	feeding them. Correct?
22	MR. D. BROWN: I think the key here is,
23	there are three of these on each of the two venturis.
24	So when you're collecting the data for an 18-month
25	cycle, you're actually getting six data points over
I	

(202) 234-4433

	203
1	five sampling periods, so a total of 30 data points.
2	MEMBER BROWN: Your math is too fast for
3	my old brain. I've got three detectors per venturi,
4	I've got that.
5	MR. D. BROWN: Well, I've got two headers,
6	three detectors on each.
7	MEMBER BROWN: Okay.
8	MR. D. BROWN: And he sampled that five
9	times, so we've really got 30 data points.
10	MEMBER BROWN: Fifteen times two, with two
11	venturis. Right?
12	MR. D. BROWN: Correct.
13	MEMBER BROWN: Okay. I got that. So
14	you're okay.
15	MR. HOFFMAN: And Jeff, this is Jack
16	Hoffman with FPL. Just to clarify, for each one of
17	those I don't want to put words in your mouth, but
18	I believe I heard for each of those 30 data points,
19	you were within the quarter percent?
20	MR. J. BROWN: I think what's accurate to
21	say is that our general site experience with the
22	Rosemont transmitters is that we very frequently find
23	them within tolerance at an 18-month calibration
24	frequency. And in this particular case, with these DP
25	channels off the venturis, that was generally true
	I

(202) 234-4433

	204
1	also.
2	MEMBER BROWN: What do you mean by
3	generally?
4	MR. J. BROWN: I can't say that every
5	single one of these 30 data points was found within
6	tolerance, but a large majority were.
7	MEMBER BROWN: Well, what does that mean?
8	How many were out of tolerance?
9	MR. J. BROWN: Well, and then for values
10	that are found out, they are just slightly out.
11	Generally speaking, the performance, drift-wise, on
12	the Rosemont transmitters, is extremely good.
13	MEMBER BROWN: So how did you come up with
14	0.25 percent variation? You discounted the ones that
15	were out of spec, or did you add them all up and
16	average them, or did you take the boundary of the
17	worst-case ones?
18	MR. J. BROWN: No, when we're looking at
19	the transmitters being within spec at an 18-month
20	frequency, we're saying that they're drifting a
21	quarter-percent in 18 months. So over a two-day
22	period, the drift is negligible.
23	MEMBER BROWN: Okay, but you also said
24	some of them were outside the spec, also, though. The
25	data says they were only a little bit outside. Does
I	I

(202) 234-4433

	205
1	that mean a little bit is a little bit? I'm being
2	picky, but this is kind of a qualitative assessment,
3	as opposed to a quantitative assessment.
4	MR. J. BROWN: They are found to be very
5	slightly out of tolerance when they are out of
6	tolerance.
7	CHAIR REMPE: So, can you put a number on
8	it? Is it less than a percent?
9	MR. J. BROWN: It's certainly less than a
10	percent. I's less than a half a percent.
11	CHAIR REMPE: Okay.
12	MR. HOFFMAN: Over 18 months.
13	CHAIR REMPE: Yes.
14	MEMBER BROWN: Okay. He's answered that
15	question.
16	MR. HOFFMAN: Okay.
17	MEMBER BROWN: I'm not saying I agree or
18	disagree. I'm just saying he answered the question.
19	MR. HOFFMAN: Sure. Jeff, I believe the
20	next question revolves around out of service time, and
21	the design features of the system, and what's required
22	for the system to go from the nominal 3020 to the
23	3015, and then to the ultimate down-power scenario?
24	MEMBER BROWN: No, that's a table. You
25	gave that table, and the NRC modified it. The table's
	I

(202) 234-4433

	206
1	a table. I guess what I was interested in is, how
2	does the operator know he's supposed to do something?
3	When I read the see if I can find it again. When
4	I read the LAR
5	MR. D. BROWN: That's probably best
6	illustrated by looking at the this is Dave Brown,
7	FPL by looking at the diagram here, the simplified
8	diagram, looking at the two feedwater lines coming up
9	to the LEFM transmitter boxes off of each one, and
10	then going to the two CPUs.
11	Now, there'd been a question earlier, and
12	I want to make sure we address that, about the auto-
13	swap. The auto-swap that was being discussed up there
14	was actually an auto-swap between the two CPUs, so
15	you'll have
16	MEMBER BROWN: What does that mean?
17	MR. D. BROWN: Well, what it means is,
18	you've got all the data coming from both LEFM, from
19	all four boxes, that's going to both CPUs. If there's
20	a problem with one of the CPUs or an input to one of
21	the CPUs, it will swap and just use the data on the
22	other CPU and give us an alarm to tell us that it has
23	done that. Okay?
24	So it's not anything that has degraded the
25	system. These are two 100 percent redundant systems,
I	I

(202) 234-4433

	207
1	both getting all the inputs. And you can see that by
2	the multiple lines going into each one of those two
3	boxes.
4	MEMBER BROWN: All four transmitters go to
5	both boxes?
6	MR. D. BROWN: That's correct.
7	MEMBER BROWN: Where's the digital to
8	analogue conversion done? Is that in the CPU inputs?
9	MR. J. BROWN: No, the D to A is in the
10	transmitter boxes. I mean, A to D.
11	MEMBER BROWN: So it's a serial data
12	stream that goes out to the CPUs?
13	MR. J. BROWN: That's correct. It's RS485
14	communication link between the transmitter boxes and
15	the CPUs.
16	MR. D. BROWN: So if we lose any one of
17	the four inputs going into the process, which is our
18	first step of degradation, recognizing there's two on
19	the Alpha leg and there's two on the Bravo leg, not
20	only will that give me an alarm inside the DCS system,
21	but that will give me a control room annunciator. The
22	control room annunciator response procedure will drive
23	me to the off-normal.
24	I start a 48-hour clock, and if at the end
25	of 48 hours I have not gotten myself back into a four
ļ	1

(202) 234-4433

	208
1	out of four availability and operable, then I have to
2	down-power by five megawatts.
3	MEMBER BROWN: So when it does a swap, it
4	gets annunciated.
5	MR. D. BROWN: This is not a swap.
6	Remember, all four of these are feeding into both
7	CPUs, okay? So they're actually kind of separate
8	issues. If one of these four is no longer good, when
9	you come down here your two planes, you've got one,
10	two, three, four
11	MEMBER BROWN: You don't have to go that
12	deep, I just
13	MR. D. BROWN: Okay. Any one of these
14	four fail, okay, then I get an alarm in the control
15	room that says you're in what's called a check,
16	instead of a check-plus, on one, and you're still in
17	check-plus on the other. I start a 48-hour clock. At
18	the end of 48 hours, if I have not got both of them
19	into a check-plus, i.e. two, both redundant
20	transmitters in service, then I reduce power by five
21	megawatts.
22	Any loss of the system beyond that,
23	whether it's one out of two here and one out of two
24	here, or two out of two here, failures, goes to the
25	full 48 hours reduce the two percent power, or the 1.7
I	I

(202) 234-4433

	209
1	percent, to get myself down inside the criteria.
2	MEMBER BROWN: What happens if one of the
3	CPUs locks up? Like if you move the mouse, and your
4	pointer doesn't move on your computer?
5	MR. D. BROWN: So the CPU is no longer
6	processing?
7	MEMBER BROWN: Yes, if you no longer it
8	locks up.
9	MR. D. BROWN: Jeff, do you want to speak
10	to that?
11	MR. J. BROWN: Yes. Let me first of all
12	say that each CPU has hard-wired outputs to the plant
13	annunciator system, so the operators are notified of
14	something wrong with the CPU independent of our
15	communications to the DCS system. And then, within
16	the DCS graphics that's used for the power metric,
17	which we call our thermal power trend display, our
18	analogue point is presented there for feedwater flow
19	and temperature off of each header, those analogues
20	out have built-in quality flags associated with them
21	that drive color schemes, which are our human factors,
22	to be consistent with the rest of DCS.
23	So the operators are notified in numerous
24	ways of different failures in the system.
25	MEMBER BROWN: What's a quality flag?
I	

(202) 234-4433

	210
1	MR. J. BROWN: Okay. So, out of each CPU,
2	there are four possible quality statuses being
3	transmitted to DCS. Four discrete values, zero
4	through three. Zero means that the CPU is recognizing
5	the LEFMs as completely normal. One means that there
6	is a low level failure of some sort in the LEFM that
7	doesn't reduce the accuracy of the system at all, but
8	there's some minor maintenance item. Two would
9	indicate that the LEFM is operating in a check mode.
10	And three means that side LEFM is in a fail status.
11	So those quality flags, or the points that
12	can take on those four discrete values, are also
13	depicted on that calorimetric graphic.
14	MEMBER BROWN: Is that what swaps I
15	still don't understand what the swap means, then.
16	Swapped by the DCS.
17	MR. J. BROWN: Okay. Let me address that
18	question by kind of presenting a failure mode to
19	illustrate that. If I lose a transducer on one of the
20	meters, what that would do is, within the Cameron
21	system, because of the way they integrate the four
22	measurement points in each plane worth of data, that
23	would put that meter into a check mode. Effectively,
24	the system is saying all of the data from that plane
25	is no longer valid, so the system is then only using
Į	

(202) 234-4433

the other four measurements of velocity of sound upstream and downstream to calculate a flow value. So a failure at that level of the system would be equally realized by both CPUs, and both CPUs would sense that and say "That meter, on that header, is operating in the check mode."

7 Now, if Ι had а different failure 8 scenario, where Ι lost one of those RS485 9 communication links from an individual transmitter 10 back through an individual CPU, then that type of failure would only be sensed by one CPU, the one 11 that's affected by that comm link. So the other CPU 12 would be a better source of data for DCS than the one 13 14 with the failed RS485 comm link, and the system would 15 automatically transfer over to that preferred source, 16 And all of the data that's then being used, the then. 17 flow and temperature data into the calorimetric, would remain completely valid, because it's being processed 18 19 by the good CPU. And that is the automatic fail-over 20 that you're talking about. 21 MEMBER BROWN: Okay. 22 CHAIR REMPE: Okay? MEMBER BROWN: I didn't say it was okay, 23

24 I said I'm done.

25

1

2

3

4

5

6

CHAIR REMPE: Okay. We're going to say,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

211

	212
1	then let's go to the other, real quick,
2	presentation that goes with this response to the best
3	estimate values. Thank you, Jeff. I think we're done
4	with you from the phone.
5	MEMBER BROWN: Oh, yes. We're done for
6	now.
7	MR. HOFFMAN: This is the best estimate.
8	CHAIR REMPE: Right.
9	MR. HOFFMAN: The question was asked
10	earlier again, this is Jack Hoffman. And what
11	we've passed out it was shared with Dr. Wallis
12	earlier this morning is the actual calculation that
13	Westinghouse performed to determine what the best
14	estimate, or the way the plant is actually predicted
15	to perform with the actual power level, no additional
16	uncertainty or conservatism, actual flow. And what
17	you have in front of you is a simplified output of
18	that calculation for Unit 2 that has the actual
19	expected megawatt for the plant, the 3020 megawatt in
20	the core, plus the 14 additional megawatts of the
21	reactor coolant pumps. You see our best estimate flow
22	that was measured via RCS calorimetrics, and then you
23	simply do the math in the computers, the thermodynamic
24	math, to come up with the actual, what we can tell the
25	operators that these are the numbers. That if they

(202) 234-4433

	213
1	have 551, if they program 551 T-cold, then they can
2	expect to see an approximate I don't have the page
3	in front of me, 602?
4	CHAIR REMPE: Point six.
5	MR. HOFFMAN: Which is a nominal number.
6	It's not a bounding number that we would use in
7	engineering analyses to ensure we have added
8	conservatism.
9	CHAIR REMPE: Okay. With that, let's go
10	on, if there aren't any questions, into the closed
11	portion of this meeting. And we're unfortunately a
12	little behind now, so let's all try and be mindful of
13	the time a bit more, if it's possible.
14	(Whereupon, the above-entitled meeting
15	went into closed session at 1:55 p.m., and resumed in
16	open session at 5:52 p.m.)
17	CHAIR REMPE: Okay, is anyone still out
18	there that's from the public that would like to make
19	any comments? And just to verify, we do have an open
20	phone line with someone out there that can verify that
21	they're there. Maybe there's no one watching it. Is
22	someone out there that can speak up and so we just
23	know that there's someone out there?
24	Okay. Is there anyone left in the
25	building that wants to make any comments?
I	

(202) 234-4433

	214
1	Okay, I think we probably should go around
2	the table, and this time I'll get someone to start
3	with the consultants. And Mario, do you have some
4	closing comments that you would like to share with us
5	here?
6	CONSULTANT BONACA: I mean generally the
7	application was well put together. I didn't see any
8	issues except we expect that this to be an issue. And
9	after you look at all the information, clearly there
10	is a problem there, but the fortunate thing is that
11	the results of the third assessment is coming close,
12	and it may support the view that you have presented.
13	So I think you have a plan that you're
14	using to monitor and assess and may be adequate in and
15	of itself, but this is a big issue, of course, and I
16	don't need to tell you that.
17	MR. GIL: It's really driven by the, you
18	know, the operational assessment is obviously we want
19	to get an understanding of what's going on with these
20	generators, but it is driven by the data that we're
21	seeing. So that is very important. If the data for
22	the third inspection tells us differently
23	CONSULTANT BONACA: Looking at a day that
24	you may be able to go through a cycle maybe and, but
25	you'll exceed 40 percent. But anyway that's
	1

(202) 234-4433

	215
1	speculation.
2	Another issue I raised this morning was
3	about the training simulator representing one plant or
4	the other. I don't think it's a measure issue. I
5	think it's more of an information issue for the
6	Committee. I think that one way it could be handled
7	is by the licensee presenting briefly what they do to
8	the full committee as far as the documentation, just
9	because information is important and you don't want to
10	have people surprised as I was this morning.
11	So I think I have some other thoughts but
12	I'll send it to you in a letter.
13	CHAIR REMPE: Okay.
14	Graham?
15	CONSULTANT WALLIS: Yes, I will send a
16	letter too. I thought we were doing well until we got
17	to the steam generator. It took a little while but
18	most of the questions that we had eventually got
19	answered and the new evidence that was behind the
20	claims emerged. So I felt pretty good until I got to
21	the steam generator.
22	Steam generator, I think is a significant
23	issue. I agree with Sanjoy that we need, you almost
24	need a whole day to look at the issue by itself and
25	what the evidence is and then you need to weigh it,
I	I

(202) 234-4433

	216
1	instead of is it really appropriate to move ahead with
2	an EPU when there are some uncertainties about this
3	wear? Root cause analysis is all very well but it's
4	a very unusual event, and so you don't just accept the
5	first root cause analysis, you see, without a lot of
6	thorough investigation of it. So I would think that
7	you need to have another meeting on the steam
8	generator issues before you go to the full committee
9	with the EPU.
10	CHAIR REMPE: That's a valid point.
11	Charlie?
12	MEMBER BROWN: First of all, they answered
13	all my questions satisfactorily from your earlier part
14	so you can put those aside relative to concerns in
15	anything to deal with otherwise.
16	I'm not a thermal hydraulics guy as is
17	Sanjoy and some of these other learned individuals,
18	but I'm going to give you my thoughts unabashed from
19	what I would call a pedestrian electrical engineer guy
20	that has dealt with plants for a long, long time and
21	also listened to the steam generator guys in my
22	program for a long, long time, vibrations.
23	Number one, all the initial analyses
24	and I'm just going to say what I got out of the
25	presentations and the discussions which were pretty
I	

(202) 234-4433

extensive. None of the initial analyses predicted anything of what you observed in the initial round. You made that statement. And not only did they not predict it, the indications were extensively more than expected, almost in the zero or close to zero you would have expected.

The wear after the second cycle was less 7 8 but it was still a lot. You did your root cause 9 analysis and assessed the issue as a nonuniform or 10 nonhomogeneous, whatever the proper terminology is, gap and with between the tubes and the tubes support 11 12 antivibration bars. There was some, I guess, modifications to the analysis. I'm not quite sure of 13 14 all the details -- don't ask me -- where you said, oh 15 okay, now we've taken this into consideration and 16 looked at this nonuniformity and we can now predict 17 that to some, what we saw and kind of duplicated the pattern or the distribution somewhat. 18

And therefore the conclusion is that based on our ability to take that modification, we can then take it and apply that to the EPU conditions and come to the conclusion that our wear rates will be within the boundaries which are deemed acceptable in the design and operational world. That's an extrapolation though without basis of any empirical results.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	218
1	And if you had only had a few indications
2	I would have maybe come to a different conclusion, but
3	because of the thousands of indications, I guess I
4	wouldn't really be convinced that it would be okay to
5	go to the EPU conditions. And if these gentlemen can
6	convince me of that, that would be fine. Okay.
7	Without completing, number one, the third inspection
8	to see how far it's come, that's under the pre-EPU
9	conditions, and then if a decision is made to go on
10	and allow the EPU to proceed, I don't think I would
11	agree with at least today that it would be okay to go
12	for a full 18 months or whatever, two-year, I don't
13	know what you all's refueling cycle is.
14	MR. HALE: Eighteen.
15	MEMBER BROWN: Okay. Without another
16	inspection or two mid-cycle or at third cycles,
17	whatever it is, no matter how aggravating those are,
18	where you could now take your EPU condition analyses
19	and predict what additional wear you should possibly
20	see and then see what you get in either a mid-cycle
21	and end-of-cycle inspection or some other combination
22	in between, as onerous as that sounds, so that's a
23	path forward relative to the technical aspects.
24	The other, being a non-steam generator
25	guy, it blows my mind that the number of indications
I	1

(202) 234-4433

219 1 were thousands on the first cycle. That just seems to be out of bounds for the most part. I have a hard 2 3 time coming to grips with why that is okay under any 4 circumstances. 5 And I find it difficult from a qualitative standpoint to think it's okay to kind of wear myself 6 7 into acceptable additional later wear rates as we 8 continue to operate. 9 Now, it may be okay. It's just when you 10 look at, you know, the numbers that you were given and the fact that you had to go and that's a qualitative, 11 strictly visceral, qualitative look at 12 what you 13 presented. 14 I thought you did a good job of presenting the information you had and you were straightforward 15 16 and open about it. I thought that was very, very useful and that that's kind of the way my non-initiate 17 thought process goes on this. 18 19 Again, I would be open. Now, there's other folks sit here and pound me into submission. 20 There's an outside chance that I might agree. 21 GIL: No, I appreciate the input 22 MR. because that gives us the things that we think we need 23 24 to --25 MEMBER BROWN: And I tend to agree, that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	220
1	I don't think a full committee meeting in July is
2	going to be very useful. You'll have an hour and a
3	half or two hours. You can do it and make an initial
4	presentation. I think that's been done before where
5	there was a full committee meeting.
6	I'm thinking process right now, and you're
7	familiar with one of them, where you got through what
8	I would call 95 percent of the things and you came
9	back with the last 5 percent at a second meeting and
10	that may be an acceptable approach.
11	I don't have any problem with that, but it
12	ought to be understood what the basis is and we ought
13	not get wrapped around the axle on this issue because
14	this issue could take up the entire meeting or a whole
15	morning alone.
16	So you wouldn't be able to get through the
17	rest of the things. That's my concern to you, Joy,
18	when you make your recommendation so, anyway, I'll
19	stop there.
20	CHAIR REMPE: Okay, thank you. Dick, I
21	want to ask for your comments but also I know there
22	were a lot of issues you had.
23	There are some requests for things we've
24	asked for, but let us know if there's any outstanding
25	issues and other things besides this last issue coming
I	I

(202) 234-4433

	221
1	up a lot with various members.
2	MEMBER SKILLMAN: At this point no
3	additional issues.
4	CHAIR REMPE: Good, okay.
5	MEMBER SKILLMAN: But let me make my
6	comments. I would like to thank the FPL team and the
7	NRC staff for a very comprehensive presentation. This
8	has not been easy and you stayed on the watch and
9	thank you for doing that.
10	I concur with Dr. Wallis and Dr. Banerjee.
11	I think we need more information on the steam
12	generator phenomenon and that's how I would like to
13	describe it.
14	It seems to me that there is an additional
15	mechanism or phenomenon at work that's beyond the
16	secondary side flow energy, beyond rarefaction, beyond
17	vibration and manufacturing. It seems to me that
18	there is another issue that we haven't discovered.
19	And I think it's been easy to point to the
20	thermal hydraulics when there may be another very
21	reasonable explanation for why this wear is occurring
22	and I would like that to be explored.
23	With regard to the small-break LOCA and
24	the large-break LOCA, I recognize that what FPL has
25	done is taken credit for built-in conservatisms in the
	I

(202) 234-4433

222
basic plant design and in your tech specs.
But I believe that when one looks at the
EPU peak clad temperature for large-break LOCA and the
EPU analysis peak clad for small-break LOCA and learns
that they are, in fact, lower in absolute value than
the pre-EPU values and the oxidation is also lower,
that that is counterintuitive.
One would say more heat, more decay heat
generation rate, those numbers should have gone up.
Why did they go down?
I believe that needs a more thorough
explanation, perhaps as simple as a table that shows
the increments that were used to end up with a final
result under EPU conditions that are, in fact, cooler
fuel, lower temperatures and less oxidation. So those
are my comments and I thank you for letting me speak.
CHAIR REMPE: Actually what I wish I'd
done before I started our comments was ask the staff
in light of what they've heard about all the steam
generator discussion today if they have any last-
minute comment that they wanted to say.
MR. ORF: I don't have anything.
MALE PARTICIPANT: Use your mic.
MR. ORF: Oh, I'm sorry.

CHAIR REMPE: You can come up here.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	223
1	MR. ORF: This is Trace Orf. I don't have
2	any additional comments but we do have other
3	(Off microphone discussion)
4	MR. ORF: No. I guess none of our
5	reviewers have any other comments as well.
6	CHAIR REMPE: Okay. I have a process
7	question too for you. With this August inspection,
8	the staff should be involved in any decision with
9	respect to the data too and that is part of the plan
10	which I hadn't seen discussed anywhere, right?
11	MR. ORF: Typically whenever these
12	inspections are done we have steam generator experts
13	on the staff who do
14	CHAIR REMPE: Because, see, but there
15	could be some midway data where you see something may
16	be close but a bit more and would you still go forward
17	with the EPU? I mean, you know, the cart's before the
18	horse is, I guess, an issue that I think I'm wondering
19	about.
20	You know, it may not continue to go down.
21	What if it stays level? Would you still say that's
22	the one with the EPU? I mean, there's some midway
23	kind of data that might come out of it and I'm just
24	kind of wondering how that data would be treated too.
25	MR. GIL: We will, but it really is at the
I	I

(202) 234-4433

request of the staff. We'll have conference calls. 2 Especially if we have something that's out of the 3 ordinary, we'll have conference calls with the staff and go over with them what the results are. And we wouldn't want to do that before the end of the outage where they can determine whether --6

7 CHAIR REMPE: A question I had for you too 8 is that if you were to come in July and you see the 9 whole committee behave similarly to the subcommittee in their comments, and they say we'd like you to come 10 back, we don't have a full committee meeting in August 11 so we're talking September and so that's something 12 that might want to influence your decision too but --13

Steve Hale, Florida Power & 14 MR. HALE: 15 What we found is, you know, if we can be Light. successful at subcommittee, you know, our biggest 16 17 issue is that we're shutting down in August and we're going to be implementing all our EPU modifications. 18

19 But if we feel comfortable getting through subcommittee, you know, we'll proceed with all those 20 modifications and implementation, that sort of thing, 21 so, you know, we kind of figured that would be a 22 23 potential.

24 So a September full committee meeting I think would work for us but, you know, I guess we 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

4

5

225 1 would be looking for a subcommittee in July, maybe just focused on steam generators I guess. Would that 2 3 be --CHAIR REMPE: Well, you won't have data by 4 5 July. 6 MR. HALE: Right. 7 CHAIR REMPE: And so you may not get what 8 you want is what I'm kind of saying. 9 MEMBER BROWN: There are subcommittee 10 meetings in August. CHAIR REMPE: There are subcommittee 11 meetings in August but, again, is it worth even going 12 to full committee to present some information because 13 14 if I were a betting person I'd say you're going to 15 have some issues with the steam generators and --16 MR. HALE: I need to bring out something. 17 First off, the inspection, steam generator inspection was never tied to the EPU. The one that we're doing 18 19 in August. 20 CHAIR REMPE: Right. MR. HALE: Okay. Not that it can't be, 21 but the current plan going forward was that would just 22 be a follow-up inspection. We'd factor it into the 23 24 operational assessment and that sort of thing. You know, that's certainly something we 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	226
1	could say, hey, we would not go to EPU until we
2	complete or we make a license condition. We wouldn't
3	go to EPU until we confirm the data from that
4	inspection.
5	In the absence of data, I've heard a
6	couple of folks mention a possible mid-cycle outage as
7	a potential way to resolve it.
8	CHAIR REMPE: Yes, and that would be a way
9	to resolve it.
10	MR. HALE: Certainly we would have to go
11	back and discuss that internally, but I guess my
12	question would be would that be an alternative to
13	resolving this issue with full committee?
14	CHAIR REMPE: I can't answer for the full
15	committee but I think that's a way that it seems
16	reasonable to go ahead and go forward with the full
17	committee meeting, that you would get a letter.
18	And, again, if you were to offer up the
19	mid-cycle inspection in full committee, I bet things
20	would go easier but that's up to you guys. But then
21	I would say, well, let's go ahead and go forward with
22	the meeting as we planned.
23	Otherwise I think things could really,
24	but, you know, it's worth going ahead. It sounds like
25	you realize the risks and we'll see you in July.
Į	1

(202) 234-4433

	227
1	MR. HALE: Terry, would you like to weigh
2	in at all on it?
3	MR. JONES: Terry Jones, FPL. First and
4	foremost we want to make sure that, you know, we're
5	nuclear safe and I think there's been a
6	mischaracterization that there's not data. There is
7	lots of data.
8	So maybe our approach here was when we
9	decided to present our conclusions, maybe we'd been
10	better off starting with here's the root cause of why
11	we have indications in the steam generators and here's
12	what we know and here's what we understand and here's
13	where we are and here's what supported our data.
14	So it doesn't look like we got all the
15	data on the table in the time to thoroughly, you know,
16	vet that data as an observer watching this proceeding.
17	So what I'm very much concerned about from
18	my perspective and my role in this is I'm happy to be
19	the guy in charge of all the EPUs, Point Beach, Turkey
20	Point, and St. Lucie, that is. I happen to know we
21	have thousands of people on site and what we have
22	invested up to this point.
23	And so I also, having been in this
24	business for 30 years, based on the data that I've
25	been presented with and involved in the root cause, I
I	

(202) 234-4433

	228
1	don't have any nuclear safety concerns. We obviously
2	did not successfully address those here so I
3	understand your position.
4	I'd like to be able to have an opportunity
5	to present and get the data on the table and get it
6	thoroughly vetted and reviewed. We had a hard time
7	getting to what the actual root cause was here today.
8	So at the same time, given what we have at
9	risk as a company, I can't go into an outage, not at
10	least having been through a successful ACRS, whether
11	it be subcommittee or full committee.
12	And so like having a subcommittee some
13	time in August for us would kill the project, just
14	that's the logistics that we have. So if we can get,
15	whether it be full committee or some sort of
16	subcommittee review dedicated to the steam generators
17	so that everybody could be satisfied, that would be
18	good.
19	License conditions are good too. The
20	scientific methods that everybody in the world uses to
21	know if it's safe to operate their steam generators
22	from one cycle to the next, whether they have one
23	indication or a thousand indications, is the same in
24	a well-vetted and proven process.
25	And so whether it be a mid-cycle

(202) 234-4433

229 1 inspection or a license condition that says if our 2 data is not borne out on the third inspection no 3 review. We certainly would entertain those kind of 4 things. 5 So I would respectfully request that we look for when we can come back and, you know, 6 7 thoroughly vet the root cause and the data that backs 8 up the root cause including the data from our two 9 inspections. 10 MEMBER BROWN: So you would want that in July then? You said August was kind of a non-starter. 11 12 I'm just trying to make sure I understood your 13 comment. 14 MR. JONES: Yes, the reactor runs out of 15 fuel August the 5th and so there's, you know --CHAIR REMPE: Well, you can always refuel 16 17 and continue going on the way you are, right? JONES: Not without hundreds of MR. 18 19 millions of dollars of impact on the company. 20 CHAIR REMPE: I know. I'm quessing what we should probably do is go ahead and have the full 21 committee meeting in July and there'll be less time. 22 You're not going to go through all the steam generator 23 24 information obviously then. I'm not sure. I don't make the decisions 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	230
1	on the scheduling for the next subcommittee meeting
2	but, you know, what you will probably end up with will
3	be what you end up with with the full committee and,
4	you know, we'll just have to see what happens but
5	MR. JONES: Well, for one of our other
6	plants, we came back to a subcommittee.
7	CHAIR REMPE: Yes, I know we did that with
8	Turkey Point with thermal conductivity degradation and
9	
10	MR. JONES: Right, with the thermal
11	conductivity there was no way that anyone had enough
12	time to vet that and so none of us were comfortable
13	going forward.
14	And so we came back to a full committee in
15	September even though I'm in the outage and even
16	though I've chopped up the plant, to put it quite
17	bluntly, and there's no way to restart, you know,
18	without that approval.
19	If we're through a successful subcommittee
20	that's what we did with Turkey Point. We got
21	through subcommittee. The full committee didn't occur
22	until we were already in the outage. Same was the
23	case for Point Beach.
24	I think it's undue pressure, unreasonable
25	and if the full committee needs to happen at a
ļ	

(202) 234-4433

	231
1	different date in September that still gives us
2	adequate time on the back end to receive the LAR in
3	time to start the unit up.
4	I just think that, you know, if an all-day
5	subcommittee is what's right and appropriate for the
6	steam generator, I just would respectfully request
7	that we be given an opportunity to do that in July.
8	(Off microphone discussion)
9	CHAIR REMPE: In light of the discussion,
10	do you want to come to the full committee in July?
11	MR. HALE: Well, I think the problem with
12	that is that you have such limited time, you know?
13	CHAIR REMPE: Absolutely.
14	MR. HALE: And, you know, I feel, based
15	on, you know, the feedback here, we probably need to
16	vet out some of the details of what we found, you
17	know, in terms of inspection data similar to what
18	Terry has said, you know, because we did go to full
19	committee at Turkey Point and, you know
20	CHAIR REMPE: Yes, it's going to be more
21	money for you, more trips and everything.
22	MR. HALE: Right, and it quickly, you
23	know, it was obvious that we needed to go back to
24	subcommittee. I know that Sanjoy was really
25	interested in it. We might want to make sure that we
ļ	I

(202) 234-4433

	232
1	resolve his concerns as well.
2	And I think it would be worthwhile if,
3	indeed, I mean, we need to go back and we need to look
4	at what other options there may be there and I think
5	that we would like to discuss those options with the
6	subcommittee as well so that when you do go to the
7	full committee we have a direction.
8	CHAIR REMPE: That would be a better
9	approach.
10	MR. HALE: Yes.
11	CHAIR REMPE: Where did Tanny go?
12	MR. WANG: Tanny went to check for the
13	schedule I believe.
14	CHAIR REMPE: Okay.
15	MEMBER BROWN: Something's going to have
16	to be moved probably so
17	CHAIR REMPE: July, I'm guessing is going
18	to be tough because of the schedule. August, I know
19	there's a Monday that actually is available but that's
20	subcommittee in August and then you'd be at September
21	before
22	MEMBER BROWN: Full committee week in July
23	is locked up Monday through Friday but the second
24	round, if my memory serves me right, is thinner on the
25	second week.
I	I

(202) 234-4433

	233
1	CHAIR REMPE: It is except that I have
2	another commitment and I don't know about other folks.
3	MEMBER BROWN: Outrageous.
4	CHAIR REMPE: And so I can't come in until
5	the naval reactors thing on the Wednesday.
6	MEMBER SKILLMAN: We've got naval reactors
7	and that
8	MEMBER BROWN: Yes, well, that's what I'm
9	saying. That week it's naval reactors and then if you
10	look at the other, there's another meeting.
11	CHAIR REMPE: I think APWR is later in the
12	week, isn't that what it is?
13	MEMBER BROWN: It's APWR, yes.
14	CHAIR REMPE: I think that's what it was.
15	MEMBER SKILLMAN: In August we're into
16	Recommendation 1 in Fukushima again.
17	MEMBER BROWN: That's at the end of August
18	though, isn't it?
19	MR. HALE: Couldn't we replace the full
20	well, I guess that wouldn't work either.
21	MR. JONES: Maybe one of the options is to
22	package the information appropriately, distribute the
23	information early next week and stick with the full
24	committee since that date's already there.
25	And if all we get through is steam
I	1

(202) 234-4433

ĺ	234
1	generator, then all we get through is steam generator
2	but at least we know what the September full committee
3	would be like.
4	CHAIR REMPE: Generally speaking, there
5	doesn't seem to be many issues other than the steam
6	generator issue.
7	MR. HALE: I think we've answered all the
8	questions. I know Bonaca wanted us to talk a little
9	bit about training.
10	CHAIR REMPE: I think it actually would be
11	
12	MR. JONES: That may be the best plan, is
13	for us just to take the feedback here, put a package
14	together, distribute it next week to the members of
15	the full committee and let's start with that issue on
16	the full committee on July the 11th.
17	CHAIR REMPE: Yes, I actually do and then
18	keep in mind, please, that you won't have data for EPU
19	and so, frankly, offering up a mid-cycle inspection
20	might be a way that you could actually even have a
21	letter from the full committee in July.
22	MEMBER BROWN: That's why I brought that
23	up.
24	CHAIR REMPE: I think a lot of people have
25	brought that up. You heard Sanjoy say it too.
I	I

	235
1	MR. HALE: Yes, Sanjoy, I know.
2	CHAIR REMPE: And so, again, it's kind of
3	your decision but I think that would be good. This is
4	a little different, kind of jointly talking about what
5	the path forward is.
6	But I'd rather have everybody's buy-in
7	that it is worthwhile to spend the money to come back
8	for full committee in July and to think about the
9	options and
10	MEMBER SKILLMAN: I think packaging the
11	LOCA information, getting clarity between present
12	condition, what will be for upright and how you got
13	there so that we really don't have to retread how in
14	the world could those temperatures be different?
15	MR. HALE: Yes, I thought we had the
16	rackups, didn't we? Jay, didn't we? I thought we
17	responded to that question.
18	MEMBER SKILLMAN: Not incrementally. You
19	just said EPU and not EPU.
20	MR. HALE: Yes, but I thought we
21	CHAIR REMPE: They actually did for the
22	large-break LOCA and the small-break LOCA.
23	MR. JONES: Yes, we did provide
24	CHAIR REMPE: You were the person who
25	read, no. You were the person who read off the
I	1

(202) 234-4433

	236
1	numbers, yes.
2	MEMBER SKILLMAN: The question isn't us.
3	It's the full committee.
4	CHAIR REMPE: Right.
5	(Simultaneous speaking.)
6	MEMBER SKILLMAN: And we're going to bring
7	that in front of people who have not seen that.
8	MR. HALE: Okay, understood.
9	MEMBER SKILLMAN: And so the question is
10	how to get through the full committee swiftly and
11	focus on the steam generators, and it's by having that
12	information as smooth as it can be and then either
13	having a license condition or a commitment for the
14	steam generator inspection, something like that.
15	I think that that might get us into that
16	full committee meeting with the capability for our
17	colleagues to be able to say got it, understand and
18	I'm almost there or I'm there.
19	MR. HALE: We could provide that in
20	advance as well to Weidong so he could distribute that
21	to the members, the rackup.
22	CHAIR REMPE: I'd minimize the early
23	discussion. And with Grand Gulf, didn't the staff
24	give most of the information other than a couple of
25	issues?
l	I

(202) 234-4433

	237
1	And you might want to work together on how
2	to make sure we get through the information and have
3	enough time for steam generator tube ruptures. Yes,
4	sir.
5	MR. HOFFMAN: Dr. Rempe, I'm not sure if
6	there were any comments from the other member who left
7	early, just for completeness.
8	CHAIR REMPE: Stephen Schultz, is he who
9	we're discussing?
10	(No response.)
11	CHAIR REMPE: I talked to him informally
12	and so I don't know if second-hand information is
13	worthwhile repeating, but the steam generator issue
14	was the same thing that he had. He had -
15	MR. HOFFMAN: I was just curious if he had
16	an open issue that we responded to.
17	CHAIR REMPE: He was fine with the way you
18	responded to the field performance and so he
19	appreciated that.
20	MR. HOFFMAN: Okay. So we have no open
21	issues to go.
22	CHAIR REMPE: With that, I appreciate
23	everybody who stuck around till the bitter end and
24	have a good night and I'll close the meeting.
25	(Whereupon, the meeting in the above-
ļ	I

(202) 234-4433

St. Lucie Unit 2 Extended Power Uprate (EPU) ACRS Subcommittee

June 22, 2012

Agenda

EPU Overview

	IntroductionPlant Changes	Joe Jensen Jack Hoffman
•	Analyses	
	 Fuel and Core 	Jay Kabadi
	 Safety Analysis 	Jay Kabadi
	– TCD / LBLOCA (Proprietary)	Jay Kabadi
•	Materials	

- Steam Generators (Proprietary)Rudy Gil

• Acronyms

St. Lucie Unit 2

- Located on Hutchinson Island, southeast of Fort Pierce, Florida
- Pressurized Water Reactor (PWR)
- Combustion Engineering Nuclear Steam Supply System (NSSS)
- Westinghouse Turbine Generator
- Architect Engineer Ebasco
- Fuel supplier Westinghouse
- Unit output 907 MWe gross

- Original operating license issued in 1983
- Renewed operating license issued in 2003
- Installation of a new single-failure proof crane to support spent fuel dry storage operations in 2003
- Steam Generators (SGs) replaced in 2007
- Reactor Vessel Head was replaced in 2007
- Replaced 2 of 4 Reactor Coolant Pump motors in 2007 and 2011
 - The remaining motor replacements planned for 2012 and 2014

- Licensed Core Power
 - Original Licensed Core Power
 - Current Licensed Core Power
 -5.5 % Stretch Uprate (1985)
 - EPU Core Power
 - -- Implement 2012

2560 MWt 2700 MWt

3020 MWt

FPL is requesting approval for a 12% power level increase for St. Lucie Unit 2

- 12% increase in licensed core power level (3020 MWt)
 - 10% Power Uprate
 - 1.7% Measurement Uncertainty Recapture
 - (2700 x 1.10) x 1.017 ~ 3020 MWt
- Classic NPSH requirements for ECCS pumps are met without credit for containment overpressure
- Grid stability studies have been completed and approved for the EPU full power output
- Final modifications to support EPU operation are being implemented in 2012

EPU License Amendment Request (LAR) was prepared utilizing the guidance of *RS-001, Review Standard for Extended Power Uprates*

- Addressed lessons learned from previous PWR EPU reviews
- Evaluations consistent with the St. Lucie Unit 2 Current Licensing Basis (CLB) per RS-001
- License Renewal evaluated in each License Report section consistent with RS-001 requirements
- Measurement Uncertainty Recapture evaluated the proposed Leading Edge Flow Meter (LEFM) system using the Staff's criteria contained in *RIS 2002-03, Guidance on the Content of Measurement Uncertainty Recapture Uprate Applications*

Engineering studies were performed to evaluate systems, structures and components to determine the ability to operate at EPU conditions

- Analyzed the effects of increases in Reactor Coolant System temperature and power, and increases in steam flow, feedwater flow and electrical output
- Heat balances developed for current power level and EPU NSSS power level of 3050 MWt (core + pump heat)
- Changes in major parameters addressed for Balance of Plant (BOP) systems and components
- Hydraulic analyses performed on feedwater, condensate and heater drain systems
- Plant normal, off-normal and transient conditions
 evaluated
- Operating experience was evaluated and applied

Analyses were performed to evaluate the changes in design parameters

Parameter	Original	Current	EPU	EPU Change
Core Power (MWt)	2560	2700	3020	+320
RCS Pressure (psia)	2250	2250	2250	0
Taverage (°F)	571.6	573.5	578.5	+5.0
Vessel Inlet (°F)	548.0	549.0	551.0	+2.0
Vessel Outlet (°F)	595.2	598.0	606.0	+8.0
Delta T (°F)	47.2	49.0	55.0	+6.0
Thermal Design Flow (gpm/loop)	185,000	187,500	187,500	0
Core Bypass (%)	3.7	3.7	3.7	0
Steam Pressure (psia)	893	896	895	-1
Moisture Carryover (maximum, %)	0.20	0.10	0.10	0
Steam Mass Flow (10 ⁶ lb/hr)	11.19	11.80	13.42	+1.62

Modifications will be made in support of safety

- Nuclear Steam Supply System (NSSS) setpoints
- Control room air conditioning margin improvement
- Charging pump control circuit modification
- Chemical and Volume Control System (CVCS) vents
- Add neutron absorption material to Spent Fuel Pool storage racks
- Install Leading Edge Flow Measurement (LEFM) System
- Environmental Qualification (EQ) radiation shielding changes for electrical equipment
- Component Cooling Water piping support modifications
- Raise Reactor Protection System (RPS) Steam Generator low-level trip setpoint (plant risk profile enhancement)

Modifications will be made in support of power generation at the EPU power level

- Steam Path
 - Replace High and Low Pressure Turbine steam paths
 - Replace main turbine Electro Hydraulic Control (EHC) System
 - Replace Moisture Separator Reheaters (MSRs) and upgrade level controls
 - Increase Steam Bypass Control System capacity
 - Upgrade steam and power conversion system instrumentation
 - Modify Main Steam piping supports

Condensate and Feedwater

- Replace Main Feedwater and Condensate Pumps
- Upgrade Main Feedwater Regulating Valves and controls
- Replace #5 High Pressure Feedwater Heaters
- Replace #4 Low Pressure Feedwater Heaters
- Upgrade Main Condenser
- Modify Main Feedwater and Condensate piping supports

Modifications will be made in support of power generation at the EPU power level (continued)

Heater Drains

- Replace Heater Drain pumps
- Upgrade Heater Drain valves
- Auxiliary Support Systems
 - Replace Turbine Cooling Water heat exchangers

Other Balance of Plant items

- Balance of Plant (BOP) setpoints

Modifications will be made in support of power generation at the EPU power level (continued)

Electrical Modifications

- Generator upgrades including
 - -- Stator rewind
 - -- Rotor replacement
 - -- Replace bushings and current transformers
 - -- Replace hydrogen coolers
 - -- Increase hydrogen pressure
 - -- Replace exciter air coolers
- Install Power System Stabilizer
- Upgrade Iso-Phase Bus Duct cooling system
- Increase margin on AC electrical buses
- Replace Main Transformers
- Switchyard modifications

Agenda

EPU Overview	
– Introduction	Joe Jensen
 Plant Changes 	Jack Hoffman
Analyses	
 Fuel and Core 	Jay Kabadi
 Safety Analysis 	Jay Kabadi
– TCD / LBLOCA (Proprietary)	Jay Kabadi
Materials	
 Steam Generators (Proprietary) 	Rudy Gil
Acronyms	

Fuel design maintains margin to limits

Fuel Design

- 16x16 CE Standard Fuel Design same as in previous cycles
 - Includes Inconel Top Grid design which was implemented to increase grid-to-rod fretting margin
- Peak rod and assembly burnup will be maintained within current limits

Margins to key safety parameters are maintained

Core Design

- Representative core designs were used for EPU analyses
- Core design limits are reduced to offset effect of EPU and maintain margins to fuel design limits
 - Total integrated Radial Peaking Factor (F_r^T) COLR limit reduced from 1.70 to 1.60
 - Linear heat rate COLR limit remains at 12.5 kW/ft
- Normal incore fuel management methods utilized to meet reduced limits with increased energy needs
 - Feed batch size and enrichment
 - -- Maximum planar average enrichment increased from 4.5 wt% to 4.6 wt% U-235
 - Burnable absorber placement
 - Core loading pattern

Margins to key safety parameters are maintained (continued)

Core Design Changes (continued)

- Moderator Temperature Coefficient limits are unchanged
- Shutdown Margin requirement is unchanged for at-power operation
 - Larger doppler power defect at EPU conditions, but Shutdown Margin (SDM) remains acceptable
- Boron requirements met
 - Boron delivery capability improved by changes to boron requirements for the Boric Acid Makeup Tank (BAMT), Refueling Water Tank (RWT) and Safety Injection Tanks (SITs)
 - Minimum refueling boron increased to 1900 ppm

Approved methods used for safety analysis as supplemented by subsequent RAI responses

- Codes and methodologies
 - CEFLASH-4A/CEFLASH-4AS: large & small break LOCA
 - RETRAN: Non-LOCA transients
 - VIPRE-W: DNB analysis of the nuclear fuel

Safety analyses demonstrate acceptable results

- Key changes beneficial to safety analysis
 - Reduction of Radial Peaking Factor (F_r^T)
- Conservative inputs/assumptions
 - Conservative physics parameters
 - Bounding plant operating parameters include measurement uncertainties and operating bands
 - Conservative trip setpoints and delays
 - No credit for non-safety grade equipment to mitigate events
 - Input parameters biased in the conservative direction for limiting events; e.g.:
 - -- RCS pressure, temperature
 - -- Pressurizer level (nominal ± uncertainty)

Safety analyses include appropriate input changes

- Power measurement uncertainty at Rated Thermal Power (RTP) reduced from 2% to 0.3%
- Maximum steam generator tube plugging reduced from 30% to 10%
- Main Steam Safety Valve setpoint tolerance revised from +1%/-3% (Banks 1 and 2) to +3%/-3% (Bank 1) and +2%/-3% (Bank 2)
- Pressurizer Safety Valve setpoint tolerance increased from ±2% to ±3%
- SIT and Refueling Water Tank (RWT) boron concentration requirement revised from between 1720ppm and 2100ppm to between 1900ppm and 2200ppm

Analysis Methodologies

Method	Pre- EPU	EPU
Non-LOCA System Transient Analysis	RETRAN, CESEC, & TWINKLE/FACTRAN Computer Codes	RETRAN & TWINKLE/FACTRAN Computer Codes
Thermal-Hydraulic Core	VIPRE-W	VIPRE-W
Analyses	ABB-NV CHF correlation W-3 CHF Correlation (SLB)	ABB-NV CHF correlation W-3 CHF Correlation (SLB)

	Event	Criteria	Result
Decrease in RCS	Loss of Flow (AOO)	MDNBR ≥ 1.42	1.44
Flow	Locked Rotor (PA)	Rods-in-DNB ≤ 19.7%	0%
	Loss of Condenser Vacuum	RCS Press. ≤ 2750 psia	2669 psia
	(AOO)	MSS Press. ≤ 1100 psia	1094 psia
RCS Overheating (Decrease in Secondary Heat Removal)	Loss of Load to one SG (Asymmetric Steam Generator Transient) (AOO)	MDNBR ≥ 1.42	2.22
	Loss of Feedwater (AOO)	Liq. Vol. ≤ Pressurizer Vol. (1519 ft ³)	1263 ft ³
		RCS Subcooling ≥ 0°F	85°F
	FW Line Break (PA)	RCS Subcooling ≥ 0°F @ time when AFW heat removal matches core decay heat	9°F

	Event	Criteria	Result
		MDNBR ≥ 1.42	2.21
		RCS Pressure <u><</u> 3000 psia (Large Breaks)	2704 psia
RCS Overheating	FW Line Break (PA)	RCS Pressure <u><</u> 2750 psia (Small Breaks)	2700 psia
		MSS Pressure <u><</u> 1100 psia	1094 psia
	Feedwater Malfunction (AOO)	Increased FW Flow MDNBR ≥ 1.42	1.96
		Decreased FW Temperature MDNBR ≥ 1.42	1.97
RCS Overcooling (Increase in	HFP Pre-scram MSLB (PA)	Rods-in-DNB ≤ 1.2% (OC) & ≤ 21% (IC)	0%
Secondary Heat Removal)		Fuel Melt ≤ 0.29% (OC) & ≤ 4.5% (IC)	0%
	HZP Post-scram MSLB	Rods-in-DNB ≤ 1.2% (OC) & ≤ 21% (IC)	0%
	(PA)	Fuel Melt ≤ 0.29% (OC) & ≤ 4.5% (IC)	0%

	Event	Criteria	Result
	CEA Withdrawal @ HZP	MDNBR ≥ 1.26	1.284
	(AOO)	Fuel CL Temp. ≤ 4717°F	3432 °F
	CEA Withdrawal @ Power	MDNBR ≥ 1.42	1.74
	(AOO)	RCS Press. ≤ 2750 psia	2485 psia
Reactivity Addition	CEA Malfunction (AOO)	MDNBR ≥ 1.42	> 1.42
		Peak LHR ≤ 22 kW/ft	13.76 kW/ft
		RCS Press. ≤ 3000 psia	< 2800 psia
		Fuel Enthalpy ≤ 200 cal/g	151.5 cal/g
	CEA Ejection (PA)	Rods-in-DNB ≤ 9.5%	< 9.5%
		Fuel Melt ≤ 0.5%	0%

	Event	Criteria	Result
Reactivity	Deres Dilution (AQQ)	Time-to-Criticality \ge 15 min. (Modes 1 – 5)	> 15 min.
Addition	Boron Dilution (AOO)	Time-to-Criticality ≥ 30 min. (Mode 6)	> 30 min.
RCS Mass Addition	Inadvertent ECCS/CVCS (AOO)	Liq. Vol. ≤ Pressurizer Vol.	~1512 ft ³ @ 20 min. after High Level Alarm
		MDNBR ≥ 1.42	1.73
RCS Depressurization	Inadvertent Opening of a Pressurizer PORV (AOO)	Liq. Vol. ≤ Pressurizer Vol.	1519 ft ³ @ ~3 min. after PORV opens

Small Break LOCA safety margin is assured by key changes

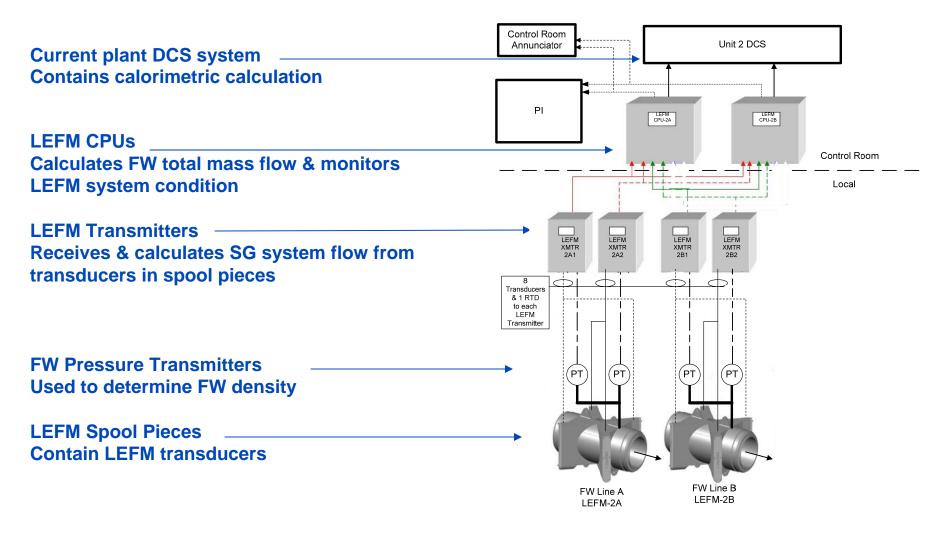
Parameter	SBLOCA Pre-EPU Value	SBLOCA EPU Value
Licensed Core Power (MWt)	2700	3020
Power Measurement Uncertainty (%)	2.0	0.3
Analyzed Core Power Level (MWt)	2754.0	3030.0
Peak Linear Heat Rate (kW/ft)	13.0	13.0
Steam Generator Tube Plugging (%)	30	10
Minimum SIT Pressure (psig)	485	485

Small break LOCA analysis demonstrates acceptable results and is not impacted by thermal conductivity degradation

	Pre – EPU (Appendix K)	EPU (Appendix K)	Limit
Limiting Break Size (ft ²)	0.05	0.05	-
PCT (°F)	1943	1903	2200
Maximum Transient Local Oxidation (%)	9.80	9.21	17.0
Maximum Core-Wide Oxidation (%)	0.64	0.94	1.0

Agenda

EPU Overview – Introduction..... Joe Jensen – Plant Changes..... Jack Hoffman Analyses - Fuel and Core Jay Kabadi - Safety Analysis Jay Kabadi - TCD / LBLOCA (Proprietary) Jay Kabadi **Materials** - Steam Generators (Proprietary)Rudy Gil



Acronyms

AC	Alternating Current	MDNBR	Minimum Departure From Nucleate Boiling
AOO	Anticipated Operational Occurrences	MSLB	Main Steam Line Break
AVB	Anti-Vibration Bar	MSR	Moisture Separator Reheater
BAMT	Boric Acid Makeup Tank	MSS	Main Steam System
BOP	Balance of plant	MWe	Megawatts electric
CHF	Critical Heat Flux	MWt	Megawatts thermal
CLB	Current Licensing Basis	NPSH	Net Positive Suction Head
COLR	Core Operating Limits Report	NSSS	Nuclear Steam Supply System
CVCS	Chemical and Volume Control System	OC	Outside Containment
DNB	Departure From Nucleate Boiling	OD	Outside Dimension
ECCS	Emergency Core Cooling System	PA	Postulated Accident
EHC	Electro Hydraulic Control	PLHR	Peak Linear Heat Rate
EPU	Extended Power Uprate	PORV	Power Operated Relief Valve
EQ	Environmental Qualification	PPM	Parts per Million
F	Fahrenheit	PSIA	Pounds per square inch - absolute
Fr	Total Radial Peaking Factor	PWR	Pressurized Water Reactor
ft	Feet	PZR	Pressurizer
FW	Feed Water	RCS	Reactor Coolant System
GPM	Gallons per minute	RIS	Regulatory Issue Summary
HFP	Hot Full Power	RPS	Reactor Protection System
HTP	High Thermal Performance	RTP	Rated Thermal Power
HZP	Hot Zero Power	RWT	Refueling Water Tank
IC	Inside Containment	SIT	Safety Injection Tank
Keff	K-effective	SDM	Shutdown Margin
lb/hr	Pounds per hour	Sec	Second
KW	Kilowatt	SLB	Steam Line Break
LEFM	Leading Edge Flow Meter	SG	Steam Generator
LHGR	Linear Heat Generation Rate	V	Velocity
Liq	Liquid	ρ	Density
LOCA	Loss of Coolant Accident		

LEFM ✓+ System Overview

ACRS Subcommittee on Power Uprates

NRC Staff Review St. Lucie, Unit 2 Extended Power Uprate June 22, 2012

Opening Remarks

Michele G. Evans Division Director Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation

Opening Remarks

- NRC staff effort
 - Pre-application review and public meetings
 - Requests for additional information
 - Audits
- Challenging review areas included:
 - Inadvertent Opening of a PORV analysis
 - Inadvertent ECCS actuation
 - CVCS malfunction

Introduction

Tracy J. Orf Project Manager Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation

Introduction

Background

St. Lucie 2 EPU Application – February 25, 2011

- ✤ 2700 to 3020 MWt, 12 % increase (320 MWt)
 - Includes a 10 % power uprate and a 1.7 % MUR
 - 18 % increase above original licensed thermal power

• EPU Review Schedule

- Followed RS-001
- Supplemental responses to NRC staff RAIs and Audits
- EPU Implementation
- Fuel storage criticality analysis separated into separate license amendment for scheduling purposes

Topics for Subcommittee

- EPU Overview
- Fuel and Core
- Safety Analyses
- Materials Steam Generators

St. Lucie Unit 2 EPU Accident Analyses

Samuel Miranda and Benjamin Parks Reactor Systems Branch Office of Nuclear Reactor Regulation

EPUs for St. Lucie Units 1 and 2

	Unit 1	Unit 2
Operating license	1976	1983
Current licensed core power (MWt)	2700	2700
EPU core power (MWt)	3020	3020
Fuel Supplier	AREVA	Westinghouse
Audited by NRC staff	Jan 2012	Feb 2012

Review of Mass Addition Event Analyses

- Inadvertent ECCS actuation
- CVCS Malfunction
- Inadvertent pressurizer PORV opening

Inadvertent Actuation of ECCS and CVCS Malfunction

- Charging pumps can fill the pressurizer, and pass water through the PORVs.
- A small break LOCA is created if a PORV sticks open.
- AOOs are not permitted to develop into events of a more serious class.

Inadvertent Actuation of ECCS

- Charging pumps (PDPs) are in the ECCS and started by the SIAS
- Charging pumps can fill the pressurizer and can cause the PORVs to open and discharge water
- PORVs that relieve water are assumed to stick open

Non-Escalation Criterion

- "By itself, a Condition II incident cannot generate a more serious incident of the Condition III or IV type without other incidents occurring independently."
- NRC reminded licensees that this criterion is in the plant licensing bases, and therefore must be met (RIS 2005-29).

Inadvertent Opening of a PORV

- RG 1.70 classifies this AOO as a decrease in RCS inventory event
- RCS depressurization reduces thermal margin, which leads to trip
- RCS continues to depressurize and reaches low pressure SI setpoint
- Lower RCS pressure boosts ECCS delivery rate. Pressurizer can fill.

Inadvertent Opening of a PORV

- Operator can close the PORV very quickly after it opens (< 10 sec)
- With no operator action:
 - SI signal is generated in < 1 min
 - Pressurizer fills in < 3 min
 - Charging pumps can cause PORVs to open and relieve water
 - A PORV can stick open (SBLOCA)

Review of LOCA

- Appendix K Large Break
 - Analysis accordant with CENPD-132, Supplement 4-P-A, "Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model"
 - Limiting PCT occurs during late reflood
- Small Break
 - Licensee implemented CENPD-137, Supplement 2-P-A (S2M), "Calculative Methods for the ABB CE Small Break LOCA Evaluation Model"

Appendix K Large Break LOCA

- PCT occurs during late reflood
 - 1.2 multiplier applied to ANS 1971 standard for decay heat
 - Decay heat is more significant than fuel initial stored energy for later PCT
 - Sensitivity study to see how TCD affected blowdown PCT
 - Substantial increase in stored energy required to drive blowdown peak higher than the reflood peak

Appendix K Large Break LOCA

- Downcomer Boiling
 - CE design of large SITs ensure downcomer is filled when the SITs inject
 - Sensitivity studies were provided to demonstrate that downcomer boiling is not a concern

Appendix K Large Break LOCA

- Conclusions
 - Results demonstrate compliance with
 - 10 CFR 50.46 requirements

Parameters	Pre- EPU	EPU	10 CFR 50.46 Limits
Peak Clad Temperature	2104 °F	2087 °F	2200 °F
Maximum Local Oxidation	16.06	14.48	17.0%
Maximum Total Core-Wide Oxidation (All Fuel)	0.789	0.954	1.0%

Small Break LOCA

- Break Spectrum
 - Supplemental analysis with more refined break spectrum provided
 - analysis of a severed injection line break provided

Small Break LOCA

- Conclusions
 - Results demonstrate compliance with 50.46 requirements

Parameters	Pre-EPU Analysis	EPU Analysis	10 CFR 50.46 Limits
Limiting Break Size	0.05 ft ²	0.05 ft ²	NA
Peak Clad Temperature	1943 °F	1903 °F	2200 °F
Maximum Local Oxidation	9.80 %	9. 21%	17.0%
Maximum Total Core-Wide Oxidation (All Fuel)	0.64%	0.94%	1.0%