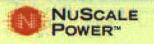
NuScale Power, LLC

Severe Accident Analysis

Nonproprietary

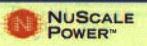
Severe Accident Analysis


Jason Pottorf

July 19, 2012

Agenda

- · Purpose of the meeting
- Background
- Severe accident analysis approach
- Preliminary analysis results
- Feedback and next steps



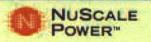
Purpose

- Provide the U.S. Nuclear Regulatory Commission (NRC) with an understanding of NuScale's approach to severe accident event selection and analysis approach
- Provide early severe accident scenario results
- Obtain NRC feedback
 - Event selection approach
 - Analysis tools
 - Severe accident phenomena/issues

- Previous interactions
 - September 2009, Severe Accident Presentation in Rockville
 - June 2010, Probabilistic Risk Assessment (PRA) Overview in Rockville
 - March 2011, PRA and Severe Accidents Overview in Corvallis


Regulatory Guidance

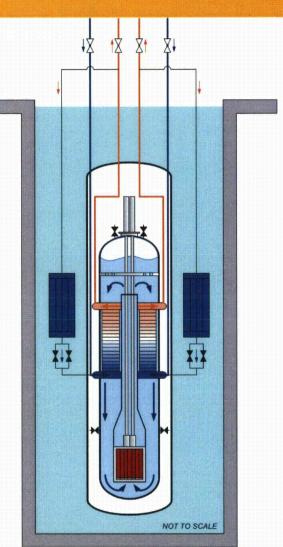
- 10 CFR 52.47(a)(23)
- NUREG-0800, Chapter 19
- SECY-90-016
- SECY-93-087 identifies the following:
 - Hydrogen control
 - Core debris coolability
 - High pressure melt ejection
 - Containment bypass and performance
 - Equipment survivability



Probabilistic risk assessment standards

- Level-1 internal and external events: ASME/ANS RA-Sa-2009 "Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications," February 2009.
 - PRA Standard will be followed to the extent feasible
- Regulatory Guide 1.200, "An Approach for Determining the Technical Adequacy of Probabilistic Risk Assessment Results for Risk-Informed Activities," Rev. 2, March 2009.
- Low power and shutdown (ANS-58.22-200x)

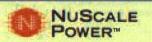
- NRC State-of-the-art Reactor Consequence Analysis (SOARCA)
 - Best-estimate offsite consequences for potential severe accidents
 - State-of-the-art computational analysis tools
 - Current best modeling practices
 - Core damage frequency (CDF) used as a surrogate selection criterion for risk

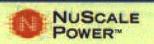

Design Features for Severe Accident Prevention and Mitigation

Primary System

- Robust system depressurization
- Passive, natural circulation, decay heat removal systems
- Chemical and volume control system (CVCS) charging capability
- Steam generator tubes under compression
- No reactor pressure vessel (RPV) insulation
- Small core and source term

Containment


- Strong vacuum during normal operations
- High pressure steel containment
- Passive containment heat removal
- Large reactor cooling pool/ultimate heat sink


Severe Accident Analysis Approach

- Conceptual design PRA developed
- Severe accident phenomena identification and ranking table (PIRT)
- Expert review of identified phenomena
- Scoping analysis of key phenomena
- Deterministic analysis of severe accidents
- Inform the design process and update as the design changes

Probabilistic Risk Assessment

- Probabilistic risk assessment identified accident scenarios that lead to core damage:
 - Based on conceptual design
 - Identified dominant contributors to CDF
 - Rationale applied to select set of severe accidents for closer examination
- Severe accident scenarios selected:
 - Significantly contributed to total core damage frequency
 - Address NRC policy issues
 - Provide additional challenging behavior

Probabilistic Risk Assessment

]]

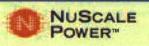
Severe Accident PIRT

Severe accident PIRT provided early identification of key phenomena on which to focus.

- PIRT developed in February 2009
 - Dr. Mike Corradini, Chair (Professor, University of Wisconsin)
 - Dr. Joy Rempe (Fellow, Idaho National Laboratory)
 - Dr. Vijay Dhir (Dean of Engineering, UCLA)
 - Dr. Jose Reyes (CTO, NuScale Power)

[[

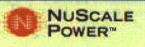
]] 3(a)-(b)


 Preliminary RELAP5 scoping calculations presented to panel

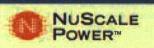
Severe Accident PIRT

PIRT results

[[



Severe Accident PIRT


Risk-Informed Design Insights

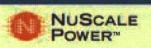
[[

 $]]^{3(a)-(b)}$

Expert Review of Phenomena

Preliminary Scoping Results for Key Phenomena

]]

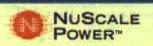

Deterministic Severe Accident Analysis

- Deterministic calculations
 - Performed using MELCOR 1.8.6
 - Level of detail and general modeling consistent with current best practices
- Code and model benchmarking and qualification
 - Benchmark results against safety analysis code results
 - Expert peer review
 - Evaluate applicability of existing data
 - Uncertainty analysis

MELCOR Analysis Model

[[

Preliminary SA Analysis


Three scenarios identified by severe accident PIRT panel analyzed

[[

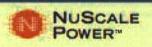
High Pressure Transient

[[

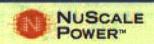
High Pressure Transient

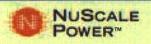
]]

High Pressure Transient

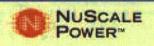

]]

 $]]^{3(a)-(b)}$

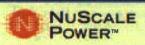



]]

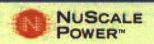
[[



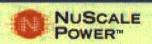
[[



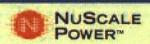
[[


]]3(a)-(b)

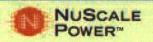
]]



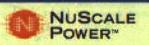
]]



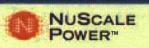
]]

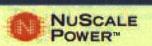


[[

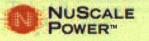


[[


]]


Preliminary Analysis Observations

[[


Preliminary Analysis Observations

[[

Summary and Next Steps

- Systematic approach to selecting severe accident scenarios
- State-of-the-art computational analysis tools
- Continuing to update models and analysis and inform the design process
- Severe Accident Mitigation Guidelines
- Future NRC engagement

