Spent Nuclear Fuel Transportation Package Seals in Beyond Design Basis Temperature Excursions

Christopher S. Bajwa, Earl P. Easton, Robert Einziger, Felix Gonzalez
U.S. Nuclear Regulatory Commission, Washington, DC

Jiann Yang, Edward Hnetkovsky
National Institute of Standards and Technology, Gaithersburg, MD
Background

- Spent Nuclear Fuel Cask Transportation Regulation Design Requirements:
 - Impact (free drop and puncture),
 - Fire,
 - Water-immersion

- Fire performance is evaluated with computer models

- Limited experimental data is available for performance of seal materials at high temperatures (fires)
Background

• Studies sponsored by the NRC

• These studies evaluate historical transportation industry fires and the effects of the fire conditions in a nuclear transportation cask.
Purpose

Obtain experimental data on the performance of seals during extreme temperature exposures, beyond the seal manufacturer specified rated/design temperatures.
Test Vessel and Seals

- SS 304 Vessel
 - Cylindrical shell
 - Flange in conformity to ASME Standard B16.5-(2009)
 - Internal cavity of 100mL
 - Four SS304 bolts (torque to seal vendor specifications)

- Metallic O-ring seal
 - Inconel 718 with silver coating (rated at 427°C [800°F] maximum operating temperature by manufacturer)

- Polymeric O-ring seals:
 - Ethylene-propylene seal (rated at 149°C [300°F] maximum operating temperature by manufacturer)
 - TFE seal (rated at 260°C [500°F] maximum operating temperature by manufacturer)
Test Furnace and Data Acquisition System (DAQ)

• Programmable temperature-controlled electrical furnace (internal capacity of 25.4 cm x 25.4 cm x 40.64 cm)

• Lab VIEW-based 16-bit DAQ

• Four Type K thermocouples (TCs) used to monitor transient temperature distribution
 – inside vessel cavity
 – inside of furnace
 – 2 TCs close to seal location
Test Apparatus
Test Conditions and Parameters

<table>
<thead>
<tr>
<th>Test #</th>
<th>Vessel #</th>
<th>Nominal initial vessel conditions</th>
<th>Exposure duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>1</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Heat-up + 30 min at 800 °C (1427°F) + cool-down</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Heat-up + 9 h at 800 °C (1427°F) + cool-down</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Heat-up + 9 h at 800 °C (1427°F) + cool-down</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Heat-up + 9 h at 800 °C (1427°F) + cool-down</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Heat-up + 9 h at 427 °C (800°F) + cool-down</td>
</tr>
<tr>
<td>6</td>
<td>2**</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Heat-up + 9 h at 427 °C (800°F) + cool-down</td>
</tr>
<tr>
<td>7</td>
<td>1**</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Heat-up + 9 h at 427 °C (800°F) + cool-down</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Heat-up + 9 h at 800 °C (1427°F) + cool-down</td>
</tr>
<tr>
<td>9</td>
<td>1***</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Heat-up to 427 °C (800°F) and then to 800°C (1427°F) for about 4 h + cool-down</td>
</tr>
</tbody>
</table>
Test Conditions and Parameters

<table>
<thead>
<tr>
<th>Test #</th>
<th>Vessel #</th>
<th>Nominal initial vessel conditions</th>
<th>Exposure duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Incremental heating from 427°C (800°F) to 627°C (1160°F) with 100°C increment§ + cool-down</td>
</tr>
<tr>
<td>11</td>
<td>3**</td>
<td>24°C (75°F) at 2 bar (72.5 psi) (Ethylene-propylene Seal)</td>
<td>Incremental heating from 150°C (302°F) to 300°C (572°F) with 50°C increment§§ + cool-down</td>
</tr>
<tr>
<td>12</td>
<td>3**</td>
<td>24°C (75°F) at 2 bar (72.5 psi) (TFE Seal)</td>
<td>Incremental heating from 150°C (302°F) to 300°C (572°F) with 50°C increment§§ + cool-down</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Incremental heating from 427°C (800°F) to 727°C (1341°F) with 100°C increment§ + cool-down</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>24°C (75°F) at 5 bar (72.5 psi) (Metallic Seal)</td>
<td>Heat-up + 9 h at 800 °C (1427°F) + cool-down</td>
</tr>
<tr>
<td>15</td>
<td>3**</td>
<td>24°C (75°F) at 2 bar (72.5 psi) (Ethylene-propylene Seal)</td>
<td>Heat-up + more than 24 h at 450 °C (842°F) + cool-down</td>
</tr>
</tbody>
</table>

*Shakedown test; during this test DAQ malfunctioned and no temporal data was collected.

**Flange and groove surfaces refurbished

***Flange and groove surfaces refurbished again

§Vessel was heated at each set temperature for 9 hours or more

§§Vessel was heated 150°C (302°F) for 1 hour, 200°C (392°F) for 1 hour, 250°C (482°F) for 1 hour and 300°C (572°F) for more than 20 hours
Test Procedure

• With seal in place the flange was torque to Manufacturer’s specifications

• Vessel was evacuated and filled with Helium at room temperature to nominal pressure of 5 bar

• Tested for leaks
 – Soap water
 – 48 hrs to monitor leaks

• Vessel placed in electrical furnace and heated to seal manufacturer design temperatures (300°C, 427°C, 800°C), or step increases

• The vessel was allowed to cool down inside after ending the test
Test Descriptions and Results

• Test #2:
 – Metallic seal
 – Heat-up + 9 hrs at 800°C + cool-down

• Results:
 – Very Small leak shortly after reaching 800°C
Test Descriptions and Results

- **Test #3:**
 - Metallic seal
 - Heat-up + 9 hrs at 800°C + cool-down

- **Results:**
 - Slow leak initially
 - Significant leak at around 7 hrs at 800°C
Test Descriptions and Results

• Test #4:
 – Metallic seal
 – Heat-up + 9 hrs at 800°C + cool-down

• Results:
 – Significant leak at around 5.5hrs at 800°C
Test Descriptions and Results

• Test #6:
 – Metallic seal
 – Heat-up + 9 hrs at 427°C + cool-down
 – Refurbished vessel

• Results:
 – Very small leak shortly after reaching 427°C
Test Descriptions and Results

- **Test #8:**
 - Metallic Seal
 - Heat-up + 9 h at 800 C (1427 F) + cool-down

- **Results:**
 - Rapid pressure decrease at about 6 hrs
 - Gradual pressure decrease after 7 hrs
Test Descriptions and Results

• Test #12:
 – TFE Seal
 – Incremental heating from 150°C (302°F) to 300°C (572°F) with 50°C increment + cool-down

• Results:
 – Slight drop in vessel pressure at the end of heating increase
Test Descriptions and Results

• Test #15:
 – Ethylene-propylene seal
 – Heat-up + 24+ h at 450° C (848° F) + cool-down

• Results:
 – Leak occurred soon after the vessel had attained the nominal target temperature
Test Descriptions and Results

The following tests recovered the original pressure:

- Test #5: Metallic Seal
 • Maximum test temperature: 427°C (800°F)

- Test #7: Metallic Seal
 • Maximum test temperature: 427°C (800°F)

- Test #9: Verification of the pressure transducer performance (picture in slide)

- Test #10: Metallic Seal
 • Maximum test temperature: 627°C (1160°F)

- Test #11: Ethylene-propylene Seal
 • Maximum test temperature: 300°C (572°F)

- Test #13: Metallic Seal
 • Maximum test temperature: 727°C (1341°F)

- Test #14: Metallic Seal
 • Maximum test temperature: 800°C (1427°F)
Summary and Conclusions

- 15 tests of metallic and polymeric seals were performed to determine its performance in beyond-design-basis fire exposures.

- In general, the seals tested exhibit little to no leakage for multiple hours (5 or more hours) at temperatures approaching twice their rated temperatures.

- No catastrophic failure (e.g. lose all pressure) were detected.

- The data obtained in tests was used to estimate the leakage rate of the system when a seal failure was detected.

- NUREG/CR – 7115 Published April 2012

- Next Steps:
 - Further characterization of Polymeric Seals
 - Perform Tests on Double O-Ring Seal configuration
Questions?