RMS Error and Correction Factors

Stephen Cumblidge
Office of Nuclear Reactor Regulations
Division of Engineering
June 19 2012
On March 16 PDI presented a statistical analysis, performed by Glenn White, on the correction factors proposed by the industry and the NRC staff.

NRC staff have studied the statistical analysis of the various correction factors.

Our goal was to reproduce their results, evaluate what has been done, and perform independent analysis of the statistics to address some of our concerns.
The Issue at Hand

• The ID inspections of large bore welds have a very high POD, and it would be beneficial for all concerned if a consensus could be reached on a correction factor.
• The NRC has not generically accepted the RMS Error - 0.125 inch factor
• Industry does not use, and has presented statistical evidence against, the 2 x RMS Error correction factor.
Corrected:

The purpose of using a correction factor in depth sizing is to provide sufficient confidence in the flaw evaluations for high RMS error examinations.

A correction factor could be tailored to that end.

Any such correction factor needs to have a well-understood and defensible technical basis.
How to Analyze the Statistics?

- A common assumption when dealing with data that contains random measurement errors is that it can be described using the normal distribution.
 - The validity of using the normal distribution will be discussed later.
- The normal distribution is defined by some center and a standard deviation “Sigma.”
- Sizing errors at PDI are scored using the Root Mean Square Error, which is similar to the standard deviation Sigma.
- The work by Glenn White uses the normal distribution.
What does the normal distribution look like?
Comparing Distributions

Probability Distribution Function (PDF)

Cumulative Distribution Function (CDF)
Correction Factors

What do Correction Factors do to the distributions?

Effects of a 0.25 Inch Offset to a 0.125 RMS Error Distribution
Glenn White presented an analysis that uses a truncated through-wall depth analysis and compared CDFs directly. The 2 x RMS Error Solution appeared to be very conservative.
As we are comparing the alternatives to a fit meeting 0.125 inch RMS error, we can subtract the CDF of the good fit from the fit being evaluated to see where they differ and by how much they differ. Also, as we are only interested in undersizing, only half of the CDF will be evaluated.
The high RMS Errors from the PDI procedure demonstrations suggest that the procedures would have a high probability of significantly undersizing flaws in the field if no correction factor is applied.

Until qualified procedures and personnel are developed, a correction factor may be useful until then.
CDFs For No Correction

Cumulative Probability Functions

Cumulative Undersizing Probability Relative to 0.125 RMS Error
The correction factors shift the centers of the distributions, reducing the fraction of the distribution that causes undersizing.

The use of the RMS Error – 0.125 inches improves the outlook, but is not conservative relative to the accepted 0.125 inch standard for larger errors.
The RMSE - 0.125 Correction factor makes all CDFs match at 16% at 0.125 Inches

CDFs Converge at 0.125 in.
The 2xRMS Error value was chosen to eliminate outliers and correct for what appeared to be a non-normal distribution in the sizing errors. If one uses the normal distribution the 2 x RMS Error correction factor is conservative relative to a fit meeting 0.125 inch RMS Error.
The 2 x RMS Error value makes corrected CDFs converge at 2.3% at 0
Comparing the two Proposed Correction Factors

RMS Error – 0.125

Increased chances of large undersizing

2 x RMS Error

Significant Oversizing Challenging for MSIP
Choosing the Correct Factor

No Correction

Probability Distribution

Sizing Error

0.125 RMS Error
0.189 RMS Error
0.245 RMS Error
0.290 RMS Error
Is the Normal Distribution Correct?

- All of the analysis have assumed a normal distribution.
- Is this assumption valid?
- Is a bimodal distribution more accurate?
- There are (at least) two distinct situations, good ultrasonic coupling and bad ultrasonic coupling
- What effects would this have on the statistics?
Bimodal Sizing Error?

Close to 0.125 inch RMS Error

Significantly Worse RMS Error
Testing Correction Factors for Bimodal Data

• The statistical analysis was performed aging using two combined standard deviations
• One distribution used a standard deviation of 0.125 inches
• The second varied between 0.3 inches and 0.5 inches
• The fractional contribution of the two distributions was allowed to vary to fine tune the RMS error of the combined distribution

73% with 0.125 inch Sigma
27% with 0.300 inch Sigma
Bimodal Distribution with 0.189 inch RMSE
Effects of Bimodal Distribution

Based on the examination, using a bimodal distribution does affect the probabilities of larger error, but not by a large amount.

The Bimodal distribution produces a lower probability for small errors when no correction factor is applied.

CDFs Relative to 0.125 RMS Error with no Correction Factor

- **Normal**
- **Bimodal**
The long tails of the bimodal distribution increases the sizes of the undersizing for the RMS Error – 0.125 inch correction.

CDFs Relative to 0.125 RMS Error with RMS – 0.125 in. Correction Factor

Normal

Bimodal
2xRMS Error

CDFs Relative to 0.125 RMS Error with 2xRMS Error Correction Factor

Normal

Bimodal
• What goals can we agree on for the statistical analysis?
 – As conservative as a fit meeting 0.125 inch RMSE?
 – Low probability of a large undersizing error?
• What should be the target for the correction factor?
 – Make all CDFs converge at 0.125 inch?
 – Make corrected CDFs converge at 0?
 – Make CDFs converge somewhere else?
• What statistical model should we use?
 – Normal?
 – Bimodal?
 – Something else?
Discussion

- The industry proposed correction factor is much better than using no correction factor, but is not as conservative as a 0.125 inch RMS Error fit.
- The 2 x RMS Error correction factor is almost always conservative, as it reduces the possibility of undersizing at all from 50% to 2.3% (assuming normal distribution).
- A bimodal distribution of sizing errors does affect the probability of gross undersizing, but appears to be mitigated by the correction factors.
Path Forward

- PDI and NRC staff will meet in late July to evaluate the sizing data at PDI.
- The sizing data will be tested to determine if it fits the normal distribution or some other distribution.
- The effect of different correction factors will be evaluated.