TABLE 3.1.1-1 SOURCES OF INITIATING EVENT INFORMATION - 1. LERs for North Anna Unit 1 and 2 for 1986 1990. - NUREG/CR-3862, "Development of Transient Initiating Event Frequencies for use in PRA, May 1988". - 3. NUREG/CR-4550, Volume 3. - 4. Review of Support System Drawings for North Anna Units 1 and 2. - 5. North Anna monthly operating reports 1980 1990. - 6. Review of past PRAs on Westinghouse PWRs. ## TABLE 3.1.1-2 LIST OF INITIATING EVENTS | Abbreviations | <u>Descriptions</u> | |---------------|---| | Tl | Loss of Offsite Power | | Т2 | Transients with non-recoverable Loss of Main Feedwater | | T2A | Transients with recoverable loss of Main Feedwater following FW Isolation | | ТЗ | Transients with Main Feedwater initially available | | Т4 | Loss of RC Pump Seal Injection and Thermal Barrier Cooling | | T5A | Non-recoverable Loss of DC Bus 1-I | | T 5B | Non-recoverable Loss of DC Bus 1-III | | T 6 | Loss of Service Water System | | T 7 | Steam Generator Tube Rupture | | T 8 | Loss of Emergency Switchgear Room Cooling | | T9A | Loss of 4160 V Bus 1H | | T9B | Loss of 4160 V Bus 1J | | A | Large LOCA 6" - 31" | | S1 | Medium LOCA 2" - 6" | | S2 | Small LOCA 3/8" - 2" | | vx | Interfacing System LOCA | | RX | Reactor Vessel Rupture | # TABLE 3.1.1-7 TRANSIENT INITIATING EVENT T2 SUB-GROUP | Initiating Event Group | Representative Initiators | <u>Comments</u> | |---|---|---| | T2
Non-recoverable
Loss of Main
FW | Failure of Main Feedwater. Loss of Instrument Air (IA) system. Main Feed- water Line Break. | Includes MFW failures (i.e., disabled pumps), failure in hotwell FW flow pach, and insufficient condensate inventory, loss of IA. | | T2A
Recoverable
Loss of MFW | Steam Generator Hi Hi
Level. Inadvertent SI.
Main Steamline Break. | FW recovered by start of 1 MFW pump and flow through 1 FRV or bypass valve. | | | Lo Tavg coincident with Reactor Trip. | FW recovered by flow through 1 FW bypass valve and 1 MFW pump maintained on recirculation. | | North Anna
IE Group(s) | EPRI
Category | Title and Definition | |---------------------------|------------------|---| | T2A, T3 | 1 | Loss of RCS Flow (1 loop) - An inadvertent hardware or human error interrupts the flow in one loop of the reactor coolant system. SI* | | Т3 | 2 | <pre>Uncontrolled Rod Withdrawal - One or more control rods are withdrawn inadvertently.</pre> | | T3 [*] | 3 | crow Problems and/or Rod Drop - Failures in the control rod drive mechanism (CRDM) occur that lead to out-of-tolerance conditions in the primary system. The transient may include dropping of one or more control rods into the core as part of the CRDM failure. [Assumes no turbine runback-use category 33 with turbine runback]. | | T3* | 4 | Leakage from Control Rods - Primary system leakage around the control rod drive mechanism is excessive and reactor shutdown is required. | | T3° | 5 | Leakage in Primary System - Primary system leakage through various piping components is excessive and reactor shutdown is required. This transient does not include: | | | - | No. 4 - Leakage from control rods
No. 7 - Pressurizer leakage
No. 26 - Steam generator leakage | | Т3 | 6 | Low Pressurizer Pressure - Pressurizer pressure falls below the lower operating limit. | | T3 [*] | 7 | Pressurizer Leakage - Pressurizer components allow excessive primary system leakage and reactor shutdown is required. | | North Anna <pre>IE Group(s)</pre> | EPRI
Category | Title and Definition | |-----------------------------------|------------------|---| | T3 | 8 | High Pressurizer Pressure - Pressurizer pressure climbs above the upper operating limit. | | T2A | 9 | Inadvertent Safety Injection Signal - Hardware or operator error initiates a safety injection. | | Т3 | 10 | Containment Pressure Problems - Hardware or operator error results in containment pressure exceeding limits. | | ТЗ | 11 | cvcs Malfunction - Boron Dilution - Hardware or operator error results in a CVCS malfunctions such that reactor power is affected. | | тз | 12 | Pressure/Temperature/Power Imbalance - Rod Position Error - Poor control rod positioning from mechanical or operator error causes a scram based on a pressure, temperature, or power imbalance. | | Not
Applicable | 13 | Startup of Inactive Coolant Pump - An inactive coolant pump is started at an improper power and flow condition. [Unit operation with inactive coolant loop is precluded by Technical specifications.] | | Т3 | 14 | Total Loss of RCS Flow - A hardware or operator error causes a loss of reactor coolant system flow. | | T3° | 15 | Loss or Reduction in Feedwater Flow (1 loop) - One feedwater pump trips or another occurrence results in an overall decrease in feedwater flow. | | North Anna
IE Group(s) | EPRI
Category | Title and Definition | |---------------------------|------------------|--| | T2, T2A | 16 | Total Loss of Feedwater Flow (all loops) - A simultaneous loss of all main feedwater occurs, excluding that due to loss of all offsite power (Category 35). | | T2A | 17 | Full or Partial Closure of MSIV (1 loop) -One main steam isolation valve (MSIV) closes, the rest remaining open, or partial closure of one or more MSIV occurs. [Can result in Steam Generator Lo-Lo Level reactor trip.] | | T3 | 18 | closure of all MSIV - One of various steam line or nuclear system malfunctions requires termination of steam flow from the vessel. The closure of one MSIV may cause an immediate closure of all other MSIVs; this occurrence is also included in this transient definition. However, any closure that is the result of another initiator is not included. [Can result in Steam Generator Lo-Lo Level reactor trip.] | | T3 [*] | 19 | Increase in Feedwater Flow (1 loop) - An increase in feedwater flow occurs in one loop. [Steam Generator Hi-Hi Level Turbine Trip/Reactor Trip causes Feedwater Isolation.] | | T3 [*] | 20 | Increase in Feedwater Flow (All Loops) - An increase in feedwater flow occurs in one loop.[Steam Generator Hi-Hi Level Turbine Trip/Reactor Trip causes Feedwater Isolation.] | | North Anna
IE Group(s) | EPRI
Category | Title and Definition | |---------------------------|------------------|---| | T2A*, T3*, | 21 | Feedwater Flow Instability - Operator Error - Feedwater is being controlled manually, usually during startup or shutdown, and excessive or insufficient feedwater flow occurs. | | T2A, T3* | 22 | Feedwater Flow Instability - Miscellaneous Mechanical Cluses - Excessive or insufficient feedwater flow results form hardware failures in the feedwater system. | | Т2, Т3 | 23 | Loss of Condensate Pumps (1 loop) - One condensate pump fails, reducing feedwater flow. [Can result in Feedwater pump trip on low suction pressure] | | Т2 | 24 | Loss of Condensate Pumps (all loops) - All condensate pumps fail, causing a loss of feedwater flow. | | T3 | 25 | Loss of Condenser Vacuum - Either a complete loss or decrease in condenser vacuum results from hardware or human error. Can use atmospheric steam dump without condenser, Feedwater pumps will not trip as long as hotwell inventory lasts. | | T3 ⁺ , T7 | 2.6 | Steam Generator Leakage - Excessive primary system to secondary leakage occurs in the steam generator. | | Т3 | 27 | <pre>condenser Leakage - Excessive secondary system leakage occurs in the condenser. [Feedwater heater level Turbine Trip].</pre> | | North Anna
IE Group(s) | EPRI
Category | Title and Definition | |---------------------------|------------------|--| | Т3 | 28 | Miscellaneous Leakage in Secondary System - Excessive leakage occurs in the secondary system other than in the condenser (see Category 27). | | T2A, T3 ⁺ | 29 | sudden Opening of Steam Relief Valves - A secondary system steam relief valve opens inadvertently, causing an unacceptably low pressure in the secondary system. [Can result in Feedwater Isolation from SI or Steam Generator Hi-Hi Level Turbine Trip/Reactor Trip.] | | T2A*, T3* | 30 | Loss of Circulating Water - Circulating water is not available to the plant. [Can result in loss of condenser vacuum - see Category 25.] | | Т3 | 31 | Loss of Component Cooling - Excessive temperature of critical components is a result of a loss or decrease in component cooling water flow. | | T3 | 32 | Loss of Service Water System - The service water system fails to perform its function. | | T2A°, T3° | 33 | Turbine Trip, Throttle Valve Closure, EHC Problems - A turbine trip occurs; or turbine problems occur which in effect decrease steam flow to the turbine, causing a rapid change in the amount of energy removed from the primary system. [Turbine runback can result in Steam Generator Hi-Hi Level or Steam Generator Lo-Lo Level, causing Feedwater Isolation.] | | North Anna
IE Group(s) | EPRI
Category | Title and Definition | |---------------------------|------------------|---| | T3 [*] | 34 | Generator Trip or Generator Caused Faults - The generator is tripped due to electrical grid disturbances or generator faults. | | T1 | 35 | Loss of All Offsite Power - All power to
the plant from external sources (the grid
or a dedicated transmission line to
another plant) is lost. | | Т3 | 36 | Pressurizer Spray Failure - The pressurizer spray system spuriously actuates or fails upon demand. | | T 3 | 37 | Loss of Power to Necessary Plant Systems -Power is lost to a component or group of components such that plant shutdown is necessary. It does not include loss of power to those components whose failure causes another defined transient to occur. | | ТЗ | 38 | Spurious Trips - Cause Unknown - A scram occurs and no out-of-tolerance condition can be detected; the cause of the scram cannot be determined. [Use Category 9 if scram by SI reactor trip (and SI is spurious).] | | T3* | 39 | Automatic Trip - No Transient Condition - An auto scram is initiated by a hardware failure in instrumentation or logic circuits and no out-of-tolerance condition exists. | | North Anna
IE Group(s) | EPRI
Category | Title and Definition | |---------------------------|------------------|---| | Т3 | 40 | Manual Trip - No Transient Condition - The operator initiates a scram for any reason when no our-of-tolerance condition exists. | | Т3 | 41 | Fire Within Plant - A plant shutdown is necessitated by a fire in some part of the plant. | ^{*} Evidenced in North Anna data ⁺ Manual reactor trip only [] North Anna specific ### TABLE 3.1.1-9 SOURCES OF DATA FOR PLANT-SPECIFIC INITIATORS - North Anna Licensee Event Reports (LERs) for the period 1986 -1990, - North Anna Power Station "Monthly Operating Report" for the period 1986 - 1990, - 3. NUREG/CR-3862 for reactor trips within the interval 1978 through 1981, and for the power level of some reactor trip events over the interval 1982 through 1983. Note that North Anna "Monthly Operating Reports" were scanned to identify any unusual initiating events for the interval 1980 through 1990. North Anna LERs were reviewed for the policid 1984-1990 for the T9-related precursors involving loss of feeder power to the 4160 V buses 1H and 1J. TABLE 3.1.1-10 LIST OF NORTH ANNA REACTOR TRIP EVENTS, 1986-1990 | VaP
Unit | EPRI
Cat | ۲r | Date | 10 | 1E
Group | Pwr
Lev | Bkr
Cls | Description | Cause | SI | References | |-------------|-------------|----|----------|----|-------------|------------|------------|---|---|----|------------------| | N1 | 15 | 90 | 01/23/90 | 1 | т3 | 100 | Y | RT ON STEAM/FEEDWATER FLOW MISMATCH
DUE TO A FAILED DRIVER CARD ON A
FRV. | NA 1 EXPERIENCED AN AUTO RX TRIP FROM 100% POWER DUE TO LOW LEVEL IN THE C SG WITH STEAM FLOW/FW FLOW MISMATCH. THE MISMATCH RESULTED FROM THE CLOSURE OF THE C MF REG. VLV DUE TO A FA LED PCB DRIVER CARD IN THE VALVE CONTROLLER | N | LER
90-001-00 | | N1 | 21 | 89 | 12/05/89 | 2 | TZA | 90 | Y | AUTO REACTOR TRIP RESULTING FROM EHC SYSTEM TRANSIENT. REACTOR WAS INITIALLY AT 90% POWER AND RAMPED DOWN UNTIL TRIP. | UNIT 1 EXPERIENCED AN AUTO REACTOR TRIP FROM 7% POWER DUE TO A LO LO LEVEL IN THE B SG CAUSED BY FW ISOLATION. PRIOR TO THE REACTOR TRIP, THE POWER WAS BEING REDUCED DUE TO EHC SYSTEM PRESSURE TRANSIENTS WHICH WAS CAUSED BY LEAKING TURBINE OPC VLVS. | N | LER
89-017-00 | | N1 | 33 | 89 | 07/19/89 | 3 | 13 | 90 | Υ. | REACTOR TRIP DUE TO A LOSS OF EHC
SYSTEM PRESSURE. | UNIT 1 EXPERIENCED AN AUTO RX TRIP FROM 90% POWER DUE TO A LOSS OF EHC SYSTEM PRESSURE WHICH WAS CAUSED BY A FAILED O- RING ON THE TURBINE TRIP SOV 20-ET, RESULTING IN THE CLOSURE OF THE TURBINE STOP VALVES GENERATING THE TURBINE TRIP SIGNAL. | N | LER
89-014-00 | | N1 | 15 | 89 | 02/25/89 | 4 | 13 | 76 | Y | REACTOR TRIP DUE TO A MAIN FEEDWATER REGULATING VALVE CLOSURE AND SUBSEQUENT SG TUBE LEAK. | UNIT 1 EXPERIENCED AN AUTO RX TRIP FROM 76% POWER DUE TO 'C'. SG STEAM FLOW/FW FLOW MISMATCH COINCIDENT WITH A LOW SG LEVEL. THE MISMATCH WAS CAUSED BY THE CLOSURE OF THE C MF REG. VALVE, ON THE LOSS OF AIR. | N | LER
89-005-00 | TABLE 3.1.1-10 (Continued) LIST OF NORTH ANNA REACTOR TRIP EVENTS, 1986-1990 | VaP
Unit | EPR I
Cat | ٧r | Date | 10 | I E
Group | Pwr
Lev | Bkr
Cls | Description | Cause | SI | References | |-------------|--------------|----|----------|----|--------------|------------|------------|--|--|----|------------------| | N1 | 15 | 88 | 08/06/88 | 5 | 19 | 100 | Y | REACTOR TRIP ON STEAM FLOW/FEED
FLOW MISMATCH COINCIDENT WITH A LOW
LEVEL DUE TO MFRV CLOSURE. | AUTO RX TRIP FROM 100% POWER DUE TO THE MISMATCH OF SG FEED FLOW/SG COINCIDING WITH A LOW LEVEL. THE MISMATCH RESULTED FROM A CLOSURE OF THE 'B' MF REG VLV WHICH WAS CAUSED BY A DEGRADED VOLTAGE CONDITION ON THE 1J EMERGENCY BUS, CAUSED BY AN RSST (RESERVE STATION SERVICE TRANSFORMER) FAULT. | N | LER
88-020-00 | | N1 | 33 | 88 | 03/19/88 | 6 | т3 | 004 | N | TURBINE TRIP/REACTOR TRIP-EHC
SYSTEM MALFUNCTION. NOT INCLUDED
BECAUSE OF LOWER POWER LEVEL. | UNIT 1 EXPERIENCED AN AUTO RX TRIP FROM 3.5% POWER DUE TO SPIKE IN THE TURBINE IMPULSE PRESSURE WHICH CAUSED A TURBINE TRIP & ENABLED THE LOGIC FOR A REACTOR TRIP WHEN A TURBINE TRIP CONDITION EXISTED. | N | LER
88-013-00 | | N1 | 33 | 88 | 01/13/88 | 7 | T2A | 015 | Y | AUTOMATIC REACTOR TRIP DUE TO HI-HI
STEAM GENERATOR LEVEL. | AUTO TURBINE TRIP/Rx TRIP FROM 15% POWER DUE TO A TURBINE SOLENOID TRIP WHICH RESULTED WHEN A HI-HI LEVEL (>75%) WAS DETECTED ON 2/3 LEVEL CHANNELS IN THE B SG. THE HI-HI LEVEL CAUSED FW ISOLATION AND WAS THE RESULT OF SG LEVEL OSCILLATIONS. | N | LER
88-005-00 | | N1 | 30 | 88 | 01/08/88 | 8 | T2A | 100 | Y | MANUAL REACTOR TRIP IN ANTICIPATION OF LOSS OF THE MAIN CONDENSER. | RX WAS MANUALLY TRIPPED FROM 100% POWER IN ANTICIPATION OF LOSS OF THE MAIN CONDENSER AFTER THE THREE RUNNING CW PUMPS TRIPPED SIMULTANEOUSLY & CONDENSER VACUUM WAS OBSERVED TO BE DECREASING RAPIDLY. CAUSE OF PUMPS FAILURE COULD NOT BE FOUND. | N | LER
88-002-00 | TABLE 3.1.1-10 (Continued) LIST OF NORTH ANNA REACTOR TRIP EVENTS, 1986-1990 | VaP
Unit | EPRI
Cat | ۲۲ | Date | 10 | 1E
Group | Pwr
Lev | Bkr
Cls | Description | Cause | 12 | References | |-------------|-------------|----|----------|----|-------------|------------|------------|---|---|----|------------------| | N1 | 22 | 87 | 11/23/87 | 9 | 13 | 100 | 4 | REACTOR TRIP GENERATED FROM 5A FEEDWATER HI-HI LEVEL SIGNAL. | REACTOR TRIPPED FROM 100% POWER DUE TO A TURBINE SOLENOID TRIP WHICH RESULTED FROM A 5A FEEDWATER HEATER HI-HI LEVEL SIGNAL WHICH WAS GENERATED WHEN A LEVEL SWITCH FAILED. | 2 | LER
87-020-00 | | N1 | 26 | 87 | 07/15/87 | 10 | TZA | 100 | Y | MANUAL REACTOR TRIP DUE TO INDICATIONS OF EXCESSIVE RCS LEAKAGE THROUGH STEAM GENERATOR TUBE. | REACTOR WAS MANUALLY TRIPPED FROM 100% POWER DUE TO INDICATIONS OF A SG TUBE LEAKAGE IN THE C SG20 MIN. LATER SAFETY INJECTION SYSTEM WAS AUTOMATICALLY INITIATED. THE ROOT CAUSE HAS BEEN LABELED A SG TUBE RUPTURE; HOWEVER, CONSIDERING SG REPLACEMENT, THIS EVENT WAS CATEGORIZED T3 AS A SG TUBE LEAK REQUIRING MANUAL REACTOR TRIP. | Y | LER
87-017-01 | | N1 | 33 | 87 | 06/29/87 | 11 | т3 | 018 | Y | REACTOR TRIP DUE TO SA FEEDWATER HEATER HI-HI LEVEL. | RX TRIPPED FROM 18% POWER DUE TO A TURBINE SOLENOID TRIP WHICH RESULTED FROM A 5A FW HEATER HI-HI LEVEL SIGNAL. THE HI-HI LEVEL IN THE 5A FW HEATER WAS CAUSED BY AN IMPROPER VLV LINE-UP FOLLOWING A REFUELING OUTAGE. | N | LER
87-015-01 | | N1 | | 87 | 04/19/87 | 12 | т3 | 067 | Y | REACTOR TRIP CAUSED BY DROPPED CONTROL ROD. | REACTOR TRIPPED FROM 67% POWER DURING A CONTROLLED RAMPDOWN INTO A REFUELING OUTAGE DUE TO NUCLEAR INSTRUMENTATION SYSTEM POWER RANGE HIGH NEGATIVE FLUX RATE CAUSED BY A SINGLE DROPPED ROD. | N | LER
87-004-00 | TABLE 3.1.1-10 (Continued) LIST OF NORTH ANNA REACTOR TRIP EVENTS, 1986-1990 | VaP
Unit | EPRI
Cat | ٧r | Date | ID | 1E
Group | Pwr
Lev | Bkr
Cls | Description | Cause | SI | References | |-------------|-------------|----|----------|----|-------------|------------|------------|---|---|----|------------------| | N1 | 33 | 86 | 08/27/86 | 13 | 13 | 100 | Y | MANUAL TURBINE/REACTOR TRIP DUE TO
HIGH TURBINE/GENERATOR VIBRATION. | TURBINE/REACTOR WERE MANUALLY TRIPPED WHEN NA1 WAS AT 100% POWER DUE TO HIGH VIBRATION OF TURBINE/GENERATOR BEARING VIBRATION. VIBRATION CAUSE WAS BREAKAGE OF A 13 INCH PIECE OF TURBINE BLADE FROM THE LAST STAGE OF THE 'A' LOW PRESSURE TURBINE. | N | LER
86-015-00 | | N1 | 16 | 86 | 05/20/86 | 14 | 13 | 100 | Y | REACTOR TRIP FROM STEAM FLOW/FEED MISMATCH COINCIDENT WITH LOW STEAM GENERATOR LEVEL. | RX TRIP OCCURRED FROM 100% POWER DUE TO A TRIP SIGNAL GENERATED FROM A STEAM FLOW/FEED FLOW MISMATCH (ALL 3 FW REG VLVS CLOSED BY SPURIOUS FW ISOLATION SIGNAL TO FRVS ONLY) CONCURRENT WITH A LOW LEVEL (2/3 LESS THAN/EQUAL TO 25% N.R. LEVEL) IN THE SG. | N | LER
86-008-00 | | N1 | 17 | 86 | 03/26/86 | 15 | 12A | 100 | Y | REACTOR TRIP DUE TO A SAFETY INJECTION TRIP SIGNAL. | RX TRIPPED FROM 100% POWER DUE TO A SI CAUSED BY THE CLOSURE OF THE B MAIN STEAM LINE TRIP VALVE. THIS RESULTED IN REACTOR AND TURBINE TRIP. THE SI WAS INITIATED DUE TO HIGH STEAM FLOW COINCIDENT WITH LOW STEAM LINE PRESSURE IN 'A' & 'C' SGS. | Y | LER
86-006-00 | | N1 | 39 | 86 | 05/31/86 | 16 | 13 | 100 | Y | REACTOR TRIP DUE TO LOSS OF A POWER TO 120 VAC VITAL BUS. | RX TRIPPED FROM 100% POWER DUE TO FAILURE OF VITAL BUS WHICH POWERS THE RELAY THAT SENSES THE BREAKER POSITION OF 'A' RCP. DE-ENERGIZED RELAY, LEAD TO RX TRIP SIGNAL BECAUSE THE RPS SENSED THE 'A' RCP BREAKER OPEN COINCIDENT WITH REACTOR POWER >30%. | N | LER
86-009-00 | TABLE 3.1.1-10 (Continued) LIST OF NORTH ANNA REACTOR TRIP EVENTS, 1986-1990 | VaP
Unit | EPR1
Cat | ۲r | Date | 1D | IE
Group | Pwr
Lev | Bkr
Cls | Description | Cause | SI | References | |-------------|-------------|----|----------|----|-------------|------------|------------|---|---|----|------------------| | N1 | 33 | 86 | 02/23/86 | 17 | 13 | 100 | Υ . | REACTOR/TURBINE TRIP - TURBINE CONTROL SYSTEM MALFUNCTION. | Rx TRIP/TURBINE TRIP OCCURRED FROM 100% POWER. THE REACTOR TRIP SIGNAL WAS GENERATED BY A LO-LO LEVEL IN 'B' SG, DUE TO CLOSURE OF THE TURBINE GOVERNOR VALVES, CAUSING SHRINKAGE IN ALL SG WITH 'B' SG REACHING THE Rx TRIP SET, OINT FIRST. | N | LER
86-002-00 | | N1 | 33 | 86 | 01/19/86 | 18 | 13 | 004 | Y | REACTOR/TURBINE TRIP DUE TO A
TURBINE FIRST-STAGE IMPULSE
PRESSURE SPIKE. NOT INCLUDED
BECAUSE OF LOW POWER LEVEL. | TURBINE TRIP/REACTOR TRIP OCCURRED FROM 4% POWER DUE TO A TURBINE FIRST-STAGE IMPULSE PRESSURE SPIKE AS PLANT PERSONNEL WERE SETTING UP FOR A TURBINE-GENERATOR OVERSPEED TRIP TEST. | N | LER
86-001-00 | | N2 | 21 | 90 | 11/02/90 | 19 | 13 | 15 | Y | REACTOR TRIP FROM 9% POWER DUE TO
LOSS OF NORMAL FEEDWATER. REACTOR
WAS INITIALLY AT 15 % POWER. | AUTO REACTOR TRIP OCCURRED FROM 9% POWER DUE TO A LO-LO LEVEL IN 'A' SG WHILE RETURNING TO POWER OPER. THE REACTOR TRIP OCCURRED -8 MIN. FOLLOWING AN AUTO TURBINE TRIP FROM -15% POWER. THE CAUSE OF EVENT WAS PERSONNEL ERROR TO RESET FW BYPASS VALVE. | N | LER
90-010-00 | | N2 | 15 | 86 | 06/29/86 | 20 | т9 | 100 | Y | REACTOR TRIP DUE TO LOW STEAM GENERATOR LEVEL COINCIDENT WITH A STEAM FLOW/FEED FLOW MISMATCH. | RX TRIP OCCURRED FROM 100% POWER DUE TO LOW SG LEVEL COINCIDENT WITH A STEAM FLOW/FEED FLOW MISMATCH DURING EMERGENCY RAMPDOWN, DUE TO LOSS OF 2/3 MFW PUMPS CAUSED BY A LOSS OF POWER TO 1 OF 2 500kV SWITCHYARD BUSSES. | N | LER
86-009-00 | TABLE 3.1.1-10 (Continued) LIST OF NORTH ANNA REACTOR TRIP EVENTS, 1986-1990 | VaP
Unit | EPR1
Cat | ۲r | Date | 10 | IE
Group | Pwr
Lev | Bkr
Cls | Description | Cause | 12 | References | |-------------|-------------|----|----------|----|-------------|------------|------------|--|---|----|------------------| | N2 | 34 | 86 | 04/11/86 | 21 | 13 | 071 | Y | UNIT 2 REACTOR TRIP DUE TO A TURBINE TRIP CAUSED BY A MAIN ELECTRICAL GENERATOR TRIP. | REACTOR TRIP OCCURRED FROM 71% POWER DUE TO A TURBINE TRIP CAUSED BY A MAIN ELECTRICAL GENERATOR TRIP, DUE TO ACTUATION OF A GENERATOR DIFFERENTIAL LOCKOUT RELAY UPON LOSS OF EXCITATION FIELD SIGNAL CAUSED BY FAILURE OF THE PERMANENT MAGNET GENERATOR. | N | LER
86-008-00 | | N2 | 33 | 86 | 04/16/86 | 22 | т3 | 004 | Y | REACTOR TRIP CAUSED BY TURBINE
FIRST STAGE PRESSURE SPIKE. NOT
INCLUDED BECAUSE OF LOW POWER
LEVEL. | REACTOR TRIPPED FROM 4% POWER DUE TO TURBINE 1ST STAGE PRESS. SPIKE, CAUSED BY PERFORMING A THROTTLE VALVE/GOVERNOR VALVE TRANSFER WITH TURBINE IN AUTO CONTROL. THE PRESS. SPIKE CLEARED THE P-7 Rx TRIP BLOCKS CAUSING Rx TRIP DUE TO TURBINE TRIP. | N | LER
86-007-00 | | N2 | 3 | 86 | 05/29/86 | 23 | 13 | 100 | Y | UNIT 2 REACTOR TRIP OCCURRED FROM A NEGATIVE FLUX RATE TRIP. | RX TRIP OCCURRED FROM 100% POWER DUE TO A NEGATIVE FLUX RATE CAUSED BY THE OPENING OF THE STATIONARY COIL POWER SUPPLY DISCONNECTED TO ROD CONTROL POWER DISTRIBUTION CABINET 1AC, CAUSING 12 RODS TO DROP INTO THE CORE. PERSONNEL ERROR CAUSED THE EVENT. | N | LER
86-005-00 | | | | | | | | | | | | | | TABLE 3.1.1-11 SUMMARY OF NORTH ANNA SYSTEM REVIEW FOR INITIATING EVENTS | System | System
Symbol | Front line or Support | Detailed
Analysis | |--|------------------|-----------------------|----------------------| | Ambient Air Monitoring | AM | Neither | No | | ATWS Mitigation System | | | | | Actuation & Control | | | N.o. | | (AMSAC) | | Front line | No
No | | Auxiliary Boilers | AB | Neither | Yes | | Auxiliary Feedwater | AFW | Front Line
Neither | No * | | Auxiliary Steam | AS | | Yes | | Batteries, 125VDC | BY
BC | Support
Support | Yes | | Bearing Cooling | BL | Neither | No | | Bearing Lube | BD | Neither | No | | Blowdown | BR | Neither | No | | Boron Recovery | BLD | Neither | No | | Building Structure Chemical & Volume Control | CH | Front line | Yes | | Chilled Water | CD | Neither | No | | Circulating Water | CW | Support | Yes | | Communications | CO | Neither | No | | Component Cooling | CC | Support | Yes | | Compressed Air | CA | Neither | No | | Computer | CM | Neither | No | | Condensate | CN | Support | Yes | | Condensate Polishing | CP | Neither | No | | Containment Access | CE | Neither | No | | Containment Vacuum | CV | Neither | No | | Control Rod Drive Power Supply | ED | Neither | No | | Decay Heat Release | DHR | Neither | No | | Decontamination | DC | Neither | No | | Demineralizer Drain | WDR | Neither | No | | Diesel Air | EB | Support | No | | Drains (Aerated) | DA | Neither | No | | Drains (Building Services) | DB | Neither | No | | Drains (Gaseous) | DG | Neither | No | | Domestic Water | DW | Neither | No | | Early Warning | EW | Neither | No | | Earthquake Reporting | ER | Neither | No
No | | Electrical Calibration | EC | Neither | | | Electrical Equipment | PHP | Neither | No | | Electrical Equipment (4KV | DII | Cupport | Yes | | & Above) | PH | Support | 165 | | Electrical Equipment (600V | DI | Cupport | Yes | | & Below) | PL | Support
Neither | No | | Electrical Hydraulic Control | EH
EI | Neither | No | | Electrical Instrumentation | EP | Support | Yes | | Electrical Power | LP | auphor c | 100 | 12-15-92 TABLE 3.1.1-12 SUMMARY OF LOSS OF SUPPORT SYSTEMS AS INITIATORS | Support System Loss Considered | Impact on Normal Operation | Attendant Important System Failures | Initiating Event Group | |--------------------------------|---|--|--| | 4160 V Bus 1H | IRPI loss with total 4160 1H Bus loss could result in manual Reactor Trip or Shutdown | Charging Pump A
ECCS Train A
480 V 1H
480 V 1H1
480 V 1H1-1
480 V 1H1-2S
480 V 1H1-4 | Represented by the T9A Initiator. Impact on ESGR cooling also considered in the T8 Initiator. | | 4160 V Bus 1J | Isolation of RCP CC cooling could result in manual Reactor Trip or Shutdown | Charging Pump B
ECCS Train B
480 V 1J
480 V 1J1
480 V 1J1-1
480 V 1J1-2S | Represented by the T9B Initiator. Impact on ESGR cooling also considered in the T8 Initiator. | | 480 V Bus 1H | IRPI loss with total 480 1H bus loss could result in manual Reactor Trip or Shutdown | Some ECCS Train A
480 V 1H1-1
480 V 1H1-4 | Included within the T9A
Initiator. | | 480 V Bus 1H1 | No direct
impact | Some ECCS Train A
480 V 1H1-2S | Not included as an 'nitiator. Disables some tandby ECCS equipment, but doesn't cause transient or direct reactor trip. | | Support System Loss Considered | Impact on Normal Operation | Attendant Important System Failures | Initiating Event Group | |--------------------------------|--|--|--| | 480 V Bus
1H1-1 | IRPI loss with
total 480 1H1-1
Bus loss could
result in
manual Reactor | ESGR Chiller Trains
A & C | Included within the T9A Initiator. | | 480 V Bus
1H1-2S | No direct
impact | Some ECCS Train A
Same as 480 V Bus
1H1. | | | 480 V Bus
1H1-4 | No direct impact | ESGR AHU 6
ESGR Chiller Train C | Included within the T9A Initiator. Impact on ESGR cooling also considered in the T8 Initiator. | | 480 V Bus 1J | Isolation of RCP cooling could result in manual Reactor Trip or Shutdown | Some ECCS Train B
480 V 1J1-1
480 V 1J1-2S | Included within the T9B Initiator. | | 480 V Bus 1J1 | No direct
impact | Some ECCS Train B | Same as 480 V Bus 1H1. | | Support System Loss Considered | Impact on Normal Operation | Attendant Important System Failures | Initiating
Event Group | |--------------------------------|--|--|------------------------------------| | 480 V Bus
1J1-1 | Isolation of RCP cooling could result in manual Reactor Trip or Shutdown | ESGR AHU 7
ESGR Chiller Train B | Included within the T9B Initiator. | | 480 V Bus
1J1-2S | No direct
impact | Some ECCS Train B | Same as 480 V Bus 1H1. | | 120 VAC Vital
Bus 1-I | Manual Reactor
Trip on loss of
RCP Cooling | MS Atmospheric
Dump Valve A
CC to RCP Thermal
Barriers isolated | Included within the T3 Initiator. | | 120 VAC Vital
Bus 1-II | No direct
impact | MS Atmospheric
Dump Valve B | None | | 120 VAC Vital
Bus 1-III | Manual Reactor
Trip on loss of
RCP Cooling | MS Atmospheric Dump Valve C CC to RCP Thermal Barriers isolated | Included within the T3 Initiator. | | 125 VDC Bus
1-I | Reactor Trip on
loss of MFW | ECCS Train A 4160
V switchgear
MS Condenser Dump
Valves | Represented by the T5A Initiator. | | Support System Loss Considered | Impact on Normal Operation | Attendant Important System Failures | Initiating <u>Event Group</u> | |--------------------------------|--|--|---| | 125 VDC Bus
1-II | No direct impact | MFW Pump B
Condensate Pump B | Not included as an
Initiator. Standby MFW &
Condensate Pumps
available with autostart. | | 125 VDC Bus
1-III | Reactor Trip on
loss of MFW | ECCS Train B 4160
V switchgear
MS Condenser Dump
Valves | Represented by the T5B Initiator. | | Service Water | Manual Reactor
Trip or
Shutdown on
loss of CC to
RCPs, loss of
Instrument Air
or loss of ESGR
cooling | Charging Pumps A/B/C CC Heat Exchangers ESGR Chillers A/B/C Instrument Air Compressors Recirculation Spray Heat Exchangers RCP Thermal Barriers RHR Pumps and Heat Exchangers cooling for SGTR | Represented by the T6 Initiator. | | Component
Cooling Water | Manual Reactor
Trip or
Shutdown on
loss of RCP
cooling | RCP Thermal Barriers
RHR Pumps and Heat
Exchangers cooling
for SGTR | Impact on RCP Thermal Barriers considered in the T4 Initiator. | | Support System Loss Considered | Impact on Normal Operation | Attendant Important
System Failures | Initiating Event Group | |--|--|--|--| | Emergency
Switchgear Room
Cooling | Manual Reactor Trip or Shutdown due to switchgear thermal overload | All AC ECCS
switchgear in ESGR | Represented by the T8 Initiator. | | Contairment
Instrument Air | Manual Reactor
Trip or
Shutdown on
loss of RCP
cooling | Pressurizer PORV
(backup nitrogen
supply)
RCP Thermal Barriers | Impact on RCP Thermal Barriers considered in the T4 Initiator. | | Instrument Air
Outside
Containment | Reactor Trip on
loss of MFW or
MS isolation | RCP Thermal Barriers RHR Pump and Heat Exchanger cooling for SGTR MS Condenser Dump Valves MS Atmospheric Dump Valves (backup air (supply) | Included within the T2 Initiator. Impact on RCP Thermal Barriers considered in the T4 Initiator. | | Bearing Cooling
Water | Reactor Trip on
loss of MFW | MFW Pumps
Condensate Pumps | Included within the T2 nitiator. | # TABLE 3.1.1-15 TRANSIENT SUCCESS CRITERIA | Reactivity
Control | Core Heat Re
<u>Early</u> | moval
<u>Late</u> | Secondary
<u>Heat Removal</u> | RCS
(Integrity) | Containment
Condition | |---|---|--|---|-------------------------------|---| | RPS Scram with < 2 rod failure to insert ^a | RCS - Natural | Circ. | 1/3 MFW pumps ^{b,f} OR 1/3 AFW pumps to 1/3 SGs ^c | RCS PORV
Closure
Note 1 | Not
Required | | RPS Scram | 1/3 Charg-
ing Pumps
AND
1 RCS PORV
(Feed &
Bleed) | Recirc. through 1/3 charging pumps - AND 1/2 Lo Head SI Pumps (Note 3) | Not Required | Note 2 | Recircula-
tion
through
1/2 IRS
OR
1/2 ORS | #### Notes: - 1. Failure of RCS Integrity by failure of RCS PORV to close transfers to S2 event tree. - 2. Feed & Bleed operation fails RCS Integrity through continued RCS PORV use. - 3. For Transients, RCS depressurization before recirculation is not certain, so only high head safety recirculation is modeled. Also, ORS can be manually aligned to act as a backup for Lo Head Recirc for NAPS Unit 1. #### References: | _ | WCAP-9691 | n. | A-11 | d. | WCAP-9744 | |---|-----------|----------|------|-----|-----------| | • | WONE JUJE | \sim . | ** | ••• | | b. WCAP-9691 p. A-12 e. Surry Analysis File 321MAF.1 c. WCAP-9691 p. A-15 f. NAPS UFSAR ## TABLE 3.1.2-1 (Continued) LIST OF INITIATING EVENT CLASSES | INITIATING EVENT GROUP | DESCRIPTIONS | EVENT TREE | |------------------------|--|------------| | A | Large LOCA 6" - 20" | A | | S1 | Medium LOCA 2" - 6" | S1 | | S 2 | Small LOCA 3/8" - 2" | S2 | | v | Interfacing System LOCA | Vx | | R , | Reactor Vessel Rupture | Rx | | TL | Transient with failure to
Scram at Power < 40 percent | TL | | ТН | Transient with failure to
Scram at Power > 40 percent | ТН | ^{*} These event trees are discussed in one section of the report, as they are very similar. ^{**} T1A is not a true initiating event, but is a consequential event from T1. ### TABLE 3.1.2-2 EVENT TREE HEADINGS | Abbreviation | <u>Headings</u> | Description of Event | |--------------|-----------------------------|--| | A | Large LOCA | Initiating Event-large LOCA | | В | Offsite Power
Recovery | Failure to recover an ESF bus following station black-out by recovering offsite power. | | Ch | Containment
Heat Removal | Failure of Service Water to an operable Recirculation Spray heat exchanger. | | DG | EDG 1H or 1J
Available | Failure of at least one diesel generator to start and run following loss of offsite power leading to station blackout. | | Dh | Hot Leg Recirculation | Failure of the operator to switch to hot leg recirculation following a large LOCA. | | D1 | High Pressure
Injection | Failure of Charging Pumps to inject in the appropriate mode. | | D2 | Accumulators
Inject | Failure of Accumulators to inject in the appropriate mode. | | D3 | Low Head
SI | Failure of low head SI pumps to inject. | | D4 | Emergency
Boration | Failure to shutdown following ATWS by boron addition. | | Fm | Break Size
Partition | Percentage of small breaks not causing a CDA Hi Hi signal. | | HV | ESGR Cooling | Failure to provide HVAC to the ESGR using 1/2 AHUs and 1/3 chillers. | | Н1 | Low Head
Recirculation | Failure of low head pumps in the recirculation mode. | | Abbreviation | <u>Headings</u> | Description of Event | |--------------|--|---| | Н2 | High Head
Recirculation | Failure of low head and charg-
ing pumps in the high pressure
recirculation mode. | | K | Reactor
Subcritical | Failure of control rods to insert as result of Reactor Protection System failure. | | L | Auxiliary
Feedwater System
Available | Failure of Auxiliary Feedwater
System for transients or small
or medium LOCAs with reactor
trip. | | Lt | Turbine-Driven AFW available | Failure of the Turbine-Driven Auxiliary Feedwater Pump to start and run following station blackout. | | М | Main Feedwater
System Available | Failure of Main Feedwater. | | MS1 | Manual Scram | Failure of the operator to remove power from the control rod drive mechanisms. | | 0 | Cooldown and
Depressurize | Operator fails to cooldown and depressurize the reactor after a small break or in response to a loss of RCP seal cooling. | | 02 | Late Cooldown | Failure of operator to cooldown and depressurize in response to a ruptured steam generator. | | P | Pressurizer
PORVs | Failure of the operator to open 1/2 pressurizer PORVs to cause RCS feed and bleed. | | Pr | Pressure
Relief | Failure of adequate pressure relief following an ATWS event. | | Abbreviation | <u>Headings</u> | Description of Event | |--------------|-----------------------------------|---| | Q | RCS Boundary
Intact | Failure of pressurizer PORV to close after opening during a transient. | | Qs | Quench Spray | Failure of 1/2 trains of Quench Spray. | | Rc | Room Cooling
Restored | Recovery of ESGR cooling or SW (resulting in reactor trip and loss of emergency power) prior to core uncovery and vessel failure, or containment failure. | | Rs | Recirculation
Sprays Operable | Failure of at least one train of Recirculation Sprays to remove heat from Containment. | | Rv | Reactor Vessel
Integrity | Consideration of PTS following a rapid RCS cooldown. | | RX | Reactor Vessel
Rupture | Initiating event is a Reactor Vessel rupture. | | SGI | Steam Generator
Isolation | Failure to isolate the ruptured Steam Generator. | | Slc | No Potential for RCP Seal Failure | Failure to establish seal cooling from operable Unit 2 CC pumps. | | S1 | Medium
LOCA | Initiating event is a medium LOCA (2" to 6"). | | S2 | Small
LOCA | Initiating event is a small LOCA (3/8" to 2"). | | T | Transients | Representative initiating event for general transient event tree. | | Tt | Turbine Trip | Turbine fails to trip. | | Abbreviation | Headings | Description of Event | |--------------|--|--| | T1 | Loss of Offsite
Power | Initiating event is Loss of of all Offsite Power. | | T1A | Station Blackout | Loss of diesel generators 1H and 1J leading to station blackout at Unit 1. | | T1Tr | Loss of ESGR
Cooling Transfer
from T1 Event
Tree | Transfer of T1Hv sequence, Loss of Offsite Power with consequential loss of Emergency Switchgear Room Cooling. | | Т2 | Loss of MFW | Initiating event is non-
recoverable loss of Main Feed-
water. | | T2A | Recoverable
Loss of MFW | Initiating event is recoverable loss of Main Feedwater following Feedwater isolation. | | T2ATr | Loss of ESGR
Cooling Transfer
from T2A Event
Tree | Transfer of T2AHv sequence, recoverable loss of Main Feedwater with coincidental loss of Emergency Switchgear Room Cooling. | | T2Tr | Loss of ESGR
Cooling Transfer
from T2 Event
Tree | Transfer of T2Hv sequence, non-recoverable loss of Main Feedwater with coincidental loss of Emergency Switchgear Room Cooling. | | T3 | Transient with MFW Available | Initiating event is Transient with Main Feedwater available. | | T3Tr | Loss of ESGR
Cooling Transfer
from T3 Event
Tree | Transfer of T3Hv sequence, transient with Main Feedwater available, with coincidental loss of Emergency Switchgear Room Cooling. | | T4 | Loss of RC
Pump Seal
Cooling | Initiating event is loss of RCP seal injection and thermal Partier cooling. | | Abbreviation | <u>Headings</u> | Description of Event | |--------------|--|--| | T5A | Loss of
DC Bus I | Initiating event is loss of DC Bus 1-I. | | T 5B | Loss of
DC Bus III | Initiating event is loss of DC Bus 1-III. | | Т6 | Loss of Service
Water | Service Water is lost from both the reservoir and Lake Anna. | | T 7 | Steam Generator
Tube Rupture | Initiating event is a steam generator tube rupture. | | Т8 | Loss of
Emergency Switch-
gear Room
Cooling | Loss of HVAC to the Emergency
Switchgear Room. | | T9A | Loss of Power from
4160 V Emergency
Bus 1H | Loss of feeder power to or failure of 4160 V emergency bus 1H. | | T9ATr | Loss of ESGR
Cooling Transfer
from T9A Event
Tree | Transfer of T9AHv sequence, loss of feeder power to or failure of 4160 V Emergency Bus 1H, with consequential loss of Emergency Switchgear Room Cooling. | | T9B | Loss of Power from
4160 V Emergency
Bus 1J | Loss of feeder power to or failure of 4160V emergency bus 1J. | | T9BTr | Loss of ESGR
Cooling Transfer
from T9B Event
Tree | Transfer of T9BHv sequence, loss of feeder power to or failure of 4160 V Emergency Bus 1J, with consequential loss of Emergency Switchgear Room Cooling. | | TL | Low power
transients
(for ATWS) | Initiating event is all transients at power lower than or equal to 40 percent. | | тн | High power
transients
(for ATWS) | Initiating event is all transients at power greater than or equal to 40 percent. | | Abbreviation | <u>Headings</u> | Description of Event | |--------------|----------------------------|---| | VX | Interfacing
System LOCA | Initiating event is an Interfacing System LOCA. | | Vi | Isolation of LOCA | Failure to isolate interfacing LOCA. | | W | RHR Cooling | Failure of 1/2 Residual Heat Removal Trains. | | Y | Core Cooling
Recovery | Failure of the operator to use steam to rapidly cooldown and depressurize the RCS as directed by 1-FR-C.1 or C.2. | # TABLE 3.3.1-1 DEFINITION OF PROBABILITY MODELS AND THEIR PARAMETERS #### Basic Event #### Probability Models ### Data Required Initiating Event Poisson Model Number of events r in time t $$P(r) = \frac{ft}{e} - ft$$ f: frequency Standby component fails on demand Standby component fails in time, or component changes state between tests (faults revealed on functional test only) 1) Constant probability failure on demand, or $$U = \frac{n}{N}$$ 2) Constant standby failure rate 1) Number of events n in total number of demands N 2) Number of events n in total time in standby T_c $$U = 1 - \frac{-\lambda_s T_I}{\lambda_s T_I}$$ T_1 : Time between tests λ_s : Standby failure rate Component in operation fails to run, or component changes state during mission (state of component continuously monitored) Constant failure rate $U = 1 - \exp(-\lambda_{o} T_{m})$ $\approx \lambda_{o} T_{m}$ T_m : Mission time λ_o : Operating failure rate Number of events n in total exposure time T_e (Time standby component is operating, or time the component is on line)