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Course Overview

• P-502 is a follow-on to P-102
– Assumes you have had P-102 or equivalent background in 

Bayesian inference for risk assessment
• No test
• Major topics (may not cover all topics)

– Bayesian networks introduction
– Models for recovery and repair
– Models for population variability
– Uncertain or fuzzy data
– Time trends
– Mixture priors
– Model checking
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Course Overview

• Course philosophy (or lack thereof) can be summed up in two 
ways:

1. “Shut up and calculate.” – David Mermin, describing the 
Copenhagen interpretation of quantum mechanics.

2. “Stop petting the mule and load the wagon.” – Abraham 
Lincoln

• Primary tool is WinBUGS

– Implements Markov chain Monte Carlo (MCMC) sampling
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Loss of Offsite Power (LOSP) 
Example

• The “LOSP example” was used as a central example throughout 
most of the P-102 course

– We will refer to this example at times in P-502

• A system uses offsite power, but has two standby emergency 
diesel generators (EDGs)

• Occasionally offsite power is lost (an “initiating event”)

– When this happens the EDGs are demanded to start and run.

• The system

– Succeeds if either EDG starts and runs for six-hour mission 
time

– Fails otherwise
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LOSP Example

• A PRA will have an event tree representing the 
scenario

– Fault tree will represent the diesel generator failures

DG_SYSTEM

DG_A

DG-A-FTRDG-A-FTS

DG_B

DG-B-FTRDG-B-FTS

Diesel Generator
B Fails

Diesel Generator
A Fails

The Diesel Generator
System Fails

Diesel Generator
B Fails To Run

Diesel Generator
B Fails To Start

Diesel Generator
A Fails To Run

Diesel Generator
A Fails To Start

Loss of
Offsite Power

Diesel Generator 
System Failure

Diesel Generator 
System Success

LOSP

pDG
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The Minimal Cut Sets

LOSP*DG-A-FTS*DG-B-FTSor

LOSP*DG-A-FTS*DG-B-FTRor

LOSP*DG-A-FTR*DG-B-FTSor

LOSP*DG-A-FTR*DG-B-FTR
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Recovery of Offsite Power

• Core damage can be averted if offsite power is 
recovered

• Assume traditional engineering analysis shows…

– Recovery must occur by six hours to avert core 
damage

• Append nonrecovery event to minimal cut sets

– This represents probability that offsite power is not 
recovered within six hours
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Recovery of EDG

• It is possible that a failed EDG can be recovered in 
time to prevent reaching an undesired end state

• Assume recovery must occur within two hours after 
second EDG fails

• Append nonrecovery event to cut sets
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Recovered Cut Sets

LOSP*DG-A-FTS*DG-B-FTS*OSP-NONREC*EDG-NONREC or

LOSP*DG-A-FTS*DG-B-FTR*OSP-NONREC*EDG-NONREC or

LOSP*DG-A-FTR*DG-B-FTS*OSP-NONREC*EDG-NONREC or

LOSP*DG-A-FTR*DG-B-FTR*OSP-NONREC*EDG-NONREC
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Section 2:  Introduction to Bayesian 
Networks and WinBUGS
• What are Bayesian networks and why are they useful?
• Bayesian networks allow “math-free”

 

analysis of complex problems
– Formulates problem as graphical model
– Lessens mathematical burden on the analyst
– Allows easier communication with non-specialists
– Analogy from physics:  two approaches to calculating interaction

 
amplitude in quantum field theory (e.g., electron-electron 
scattering):
1.

 

Explicit path integral formulation, solved by perturbative 
expansion of integral

2.

 

Draw Feynman diagram for each term in expansion and apply 
rules to calculate amplitude

– “Feynman [diagrams] brought quantum field theory to the masses.”

 
Julian Schwinger
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Introduction to Bayesian Networks and 
WinBUGS
• Networks are new way of representing old (simple) problems 

and allow easy analysis of new (complex) problems
• Network representation of Bayes Theorem
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Why WinBUGS?

• Tool tailored for numerical analysis of Bayesian networks

• WinBUGS (OpenBUGS) is standard tool for Bayesian inference in 

wider statistical community

– "WinBUGS…has become the most popular means for numerical 

investigation of Bayesian inference.“

 

Bayesian Statistics, An 

Introduction, 3rd Edition, by Peter Lee

• WinBUGS is free, open-source software
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Why WinBUGS?

• WinBUGS is flexible, allowing new problems to be solved as they 

arise

– Some tension between flexibility and ease of use

– Batch mode operation possible for routine problems
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Prior Distributions for LOSP Example 
(from P-102 Course)
•  LOSP ~ gamma(1.58, 43.96 reactor-critical years)

– From “Reevaluation of Station Blackout Risk at Nuclear Power 
Plants:  NUREG/CR-6890, December 2005

– Above result is composite from several subtypes of LOSP event
• pFTS ~ beta(0.957, 190)

– From S. A. Eide, “Historical Perspective On Failure Rates for 
US Commercial Reactor Components,”

 

Reliability Engineering 
and System Safety, 80 (2003), pp. 123-132

•  FTR ~ gamma(1.32,1137 hrs)
– From Eide (2003)
– Above result is composite of two rates
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LOSP Example Data

• The observed number of LOSP events over a period of 
time
– 1 initiating event in 9.2 operating years

• The observed number of failures out of a number of 
demands
– 1 failure to start in 75 demands

• The observed number of failures in an observed total 
operating time
– 0 failures to run in 146 running hours
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Summary of Bayesian Estimates for 
LOSP Example

Parameter Distribution Point Est. 
(Mean)

90% Interval

LOSP Industry Prior
Posterior

3.6E-2 yr -1

4.9E-2 yr -1
(4.6E-3, 9.2E-2) yr -1

(1.1E-2, 1.1E-1) yr -1

pFTS Industry Prior
Posterior

5.0E-3
7.4E-3

(2.3E-4, 1.5E-2)
(1.3E-3, 1.8E-2)

FTR Industry Prior
Posterior

1.2E-3 hr

 

-1

1.0E-3 hr -1
(1.1E-4, 3.2E-3) hr -1

(9.6E-5, 2.8E-3) hr -1

Posterior credible intervals generally shorter than those from data alone 
(i.e., confidence interval) or prior alone (prior credible interval)
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Bayesian Network Model for LOSP Initiating 
Event

• Also referred to as directed acyclic graph (DAG)
– DAG shows relationship of nodes (what influences 

what)
– Oval represents stochastic node
– Rectangle represents constant node
– Arrows illustrate influence (“flow of information”)
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Introduction to WinBUGS Package

• BUGS = Bayesian inference Using Gibbs Sampling
• Freely available software, download from

http://mathstat.helsinki.fi/openbugs/
• Source code available in Pascal (called OpenBUGS)
• Simulates posterior distribution directly using Markov 

Chain Monte Carlo (MCMC) sampling (covered later)
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Introduction to WinBUGS

• WinBUGS script (program) has four parts:
– Model section
– Data
– Inits (initial values for model parameters)
– Comments

• Anything preceding model section or set off with #
• Script is compiled to process model and associated data
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Example WinBUGS Script (LOSP update.odc 
in BUGS folder)

• LOSP frequency from example problem
– Industry prior is gamma(1.58, 43.96 yr)
– Data: 1 event in 9.2 yr

Script to update LOSP frequency

model {
losp ~ dpois(mu) #Poisson distribution for number of LOSP events
mu <- lambda.losp*rx.yrs #Parameter of Poisson distribution
lambda.losp ~ dgamma(1.58, 43.96) #Prior distribution for LOSP frequency

}

data
list(losp=1, rx.yrs=9.2)

LOSP update.odc
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Example WinBUGS Script (LOSP update.odc 
in BUGS folder)

• Dissect the script

Script to update LOSP frequency

model {
losp ~ dpois(mu) #Poisson distribution for number of LOSP events
mu <- lambda.losp*rx.yrs #Parameter of Poisson distribution
lambda.losp ~ dgamma(1.58, 43.96) #Prior distribution for LOSP frequency

}

data
list(losp=1, rx.yrs=9.2)

LOSP update.odc

Model defined here between { }

Note observable event and model have same name
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Example WinBUGS Script (LOSP update.odc 
in BUGS folder)

• Dissect the script

Script to update LOSP frequency

model {
losp ~ dpois(mu) #Poisson distribution for number of LOSP events
mu <- lambda.losp*rx.yrs #Parameter of Poisson distribution
lambda.losp ~ dgamma(1.58, 43.96) #Prior distribution for LOSP frequency

}

data
list(losp=1, rx.yrs=9.2)

LOSP update.odc

Data defined after list keyword

WinBUGS “knows”

 

that prior needs to be “updated”
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Running the Example Script

• Double-click on “model”
• Select “Model –

 
Specification”

 
from toolbar:
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Running the Example Script

• Specification toolbox appears on screen:

• Select “Check Model”
– WinBUGS should report “model is syntactically 

correct”
 

(lower left corner of window)
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Running the Example Script

• Double-click “list”
 

in the data portion of the script, then 
select “load data”
– WinBUGS reports “data loaded”

• Select “compile”
– WinBUGS reports “model compiled”

• For such a simple model, we will let WinBUGS generate 
initial values
– Select “gen inits”

• WinBUGS reports “initial values generated, model 
initialized”
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Running the Example Script

• Close the specification toolbox
• Select “Inference –

 
Samples”

 
from the toolbar
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Running the Example Script

• Type the variable name you want to monitor in the 
“node”

 
box

• Select 1,000 burn-in samples (will discuss later)
– Type 1001 in the “beg”

 
box
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Running the Example Script

• Click “Set”
 

button
• Close Sample Monitor Tool
• Select “Model –

 
Update”

 
from the toolbar



2-20

Running the Example Script

• Update tool appears on screen

• Enter number of samples
– 100,000 is typical for simple problems

• Increase refresh from 100 to 1000 or 10000 to speed up sampling
• Select “Update”

– WinBUGS reports “model is updating”

 

and shows current 
iteration
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Running the Example Script

• Close update tool when sampling is complete
• Re-open “Inference –

 
Samples”

 
from the toolbar

• Select “lambda.losp”
 

from the list of monitored nodes
• Select the desired percentiles from box on right

– Check 5th, 50th, and 95th, by holding down Ctrl key
• Select “density”

 
to get graph of posterior density
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Running the Example Script

• Select “stats”
 

to get posterior mean and percentiles

• Compare with results from P-102

Parameter Distribution Mean 90% Interval

λLOSP Posterior 4.9E-2 yr -1 (1.1E-2, 1.1E-1) yr -1
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Bayesian Model for EDG FTS

• Recall aleatory model for number of EDG failures is 
binomial distribution
– Unknown parameter is pFTS

– DAG model
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WinBUGS Script for EDG FTS

model  {
x.fts~ dbin(p.fts, n.fts) #Binomial distribution for number of failures
p.fts ~ dbeta(alpha, beta)#Beta prior for p.fts
}

Data
list(x.fts=1, n.fts=75 alpha=0.957, beta=190)

Beta-binomial update.odc
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Conjugate Prior Exercises with BUGS

1.
 

An analyst proposes a gamma(0.1, 100 Rx-yr) prior 
distribution for small LOCA.  Using BUGS, find the 
posterior mean and 90% interval based on 0 small 
LOCAs in 2,276 Rx-yrs.

2.
 

Assume that failures to start of a diesel can be 
described by a binomial distribution with probability of 
failure on demand, p.
a)

 
What is the constrained noninformative (CNI) prior if 
we want the mean to be 0.001?

b)
 

Using the CNI prior from part (a), and 2 failures are 
observed in 500 demands, use BUGS to find the 
posterior mean and 95% credible interval for p.
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Noninformative Priors with WinBUGS

• Recall Jeffreys prior distributions from P-102
– Binomial model:  beta(0.5, 0.5)
– Poisson model:  gamma(0.5, 0)
– Exponential model:  gamma(0, 0)

• Last two are not proper distributions
• Enter in WinBUGS as dgamma(0.5, 0.0001) and 

dgamma(0.0001, 0.0001)
• Redo LOSP example problem from P-102 with Jeffreys 

priors
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Nonconjugate Priors – Lognormal 
Distribution
• Generic databases often express uncertainty in terms 

of lognormal distribution
• Experts often provide order-of-magnitude estimates, 

represented well by lognormal distribution
• For these or other reasons, we may prefer a 

nonconjugate prior
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Lognormal Distribution

• Definition of a lognormal distribution:
– X is lognormal(μ, σ2) if ln(X) is normal(μ, σ2)

• Will encounter lognormal distribution in various areas of 
risk assessment
– Often used as a prior distribution in PRA, even 

though it is not conjugate
– Sometimes used as likelihood function (e.g., LOSP 

recovery time)
– Often used to model hazard (earthquake frequency) 

and fragility (probability of seismic failure) in seismic 
PRA
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Facts About the Lognormal Distribution

• Median of X is eμ

• Mean of X is exp( + 2/2)
• Variance of X is (mean)2[exp(2) –

 

1]
• Error factor (EF) is defined as e1.645σ

• Other ways to write EF (applies only to lognormal)
• EF = 95th/50th

 

= 50th/5th

 

= (95th/5th)1/2

where Ф

 

is tabulated in HOPE, Appendix C
– Can also use =LOGNORMDIST(x, , ) in Excel







 


σ

μxxX ln
)Pr(
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Facts About the Lognormal Distribution

• Lognormal distribution is determined (in general) by
– μ

 
and σ2

 

(or  = 1/
 

σ2)
– Median and mean
– Median and variance
– Mean and variance
– Median and EF
– Mean and EF

• SAPHIRE uses mean and EF
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Example Problem with 
Nonconjugate Prior

• Interested in failure on demand for standby pump
• Generic database represents uncertainty in p via 

lognormal distribution with
– mean of 0.003
– error factor of 10

• Observe 0 failures in 36 demands
• What is posterior mean of p?
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WinBUGS Example with Nonconjugate Prior

• Generic prior is lognormal with mean = 0.003 and EF = 10
• Data is 0 failures in 36 demands

model  {
mdp.fts ~ dbin(p.fts, n.fts) #Binomial distribution for number of failures
p.fts ~ dlnorm(mu, tau) #Lognormal prior for p.fts
sigma <- log(EF)/1.645 #Solve for lognormal parameter, given EF
tau <- pow(sigma, -2) #Lognormal parameter required by WinBUGS
mu <- log(prior.mean) - pow(sigma, 2)/2 #Solve for other lognormal 
parameter, using prior mean
}

data
list(mdp.fts=0, n.fts=36, prior.mean=3.E-3, EF=10)

binomial-lognormal-update.odc
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DAG Model



2-34

WinBUGS Example with Nonconjugate 
Prior

• Run this model with 100,000 samples (1,000-sample 
burn in)
– Posterior mean of p.fts = 0.0022

• Compare with 0.0022 using Gaussian quadrature
– Posterior 90% interval is (1.1E-4, 7.9E-3)
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BUGS Exercises with Nonconjugate 
Priors
1.

 
A prior for  is taken as lognormal with a mean of 
0.04/yr and an EF of 2.
a)

 
Find the 5th

 

and 95th

 

percentiles of this prior 
distribution.

b)
 

If 2 events are seen over a 7-yr period, update the 
prior distribution to find the posterior mean of .

c)
 

What is the probability of seeing 2 or more events in 
the next 7 years? (Instructor-led)

2.
 

The prior distribution for component unreliability on 
demand is log-uniform.  That is, the logarithm (base 10) 
of the failure probability is uniformly distributed, in this 
case between -4 and -1.  If 1 failure is observed in 119 
demands, find the posterior mean and 90% interval of 
the unreliability.
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BUGS Exercises with Nonconjugate 
Priors
3.

 

A system has two redundant motor-driven pumps, each of which 
fails on demand with prior median probability 0.01 and upper 
bound probability 0.05, and a turbine-driven pump, which fails on 
demand with prior median probability 0.03, and upper bound 
probability 0.08.  The motor-driven pumps each can supply 50% of 
the system needs, and the turbine-driven pump can supply 100% 
of the system needs.  Assume that each pump fails independently 
of the others.  Assume that the epistemic uncertainty in each 
pump’s failure probability is lognormally distributed.
a)

 

Write the expression for failure of the system, in symbols.  
Caution:  think about state-of-knowledge correlation.

b)

 

What is the mean probability that the system fails on demand 
if there has been 1 turbine-driven pump failure in 28 demands 
and 0 motor-driven pump failures in 64 demands?

c)

 

What is the 95th

 

percentile (upper bound) of this probability?
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Miscellaneous BUGS Exercises

1.
 

Pipes are designed to contain pressurized fluid.  Let PF
denote the pressure at which a pipe fails.  This failure 
pressure is treated as random, corresponding to 
variability in the strength of pipes.  Assume that PF

 

is 
lognormally distributed, with median = 975 psig and  = 
0.4.  If a pipe experiences a pressure of 1200 psig, 
what is the probability that the pipe fails? Repeat the 
above problem, but now model the system pressure (to 
which the pipe is exposed) as being normally 
distributed with a mean of 1200 psig and a standard 
deviation of 100 psig.
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Miscellaneous BUGS Exercises

2.
 

A diesel generator is required to have a failure 
probability (on demand) of 0.05 or less.  The facility 
PRA has estimated the failure probability as being 
beta-distributed with a mean value of 0.027 and  = 54.  
If we observe 3 failures in 27 tests of the EDG, what is 
the probability that this criterion is met?

3.
 

A licensee is updating the initiating event frequency for 
loss of turbine-building cooling water. Their prior 
distribution is lognormal with a mean of 0.02/yr and an 
error factor of 10.  They have observed no losses in 
27.5 Rx-yrs.  Carry out the update and find the 
posterior mean and 90% interval.
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Miscellaneous BUGS Exercises

4.
 

In 60 demands of an AFW turbine-train, there were two 
failures to start.  The unknown parameter of interest is 
p = Pr(failure to start).  Assume a beta prior distribution 
for p, with  = 0.6 and  = 10.2.  What is the posterior 
mean?  Find the 5th

 

and 95th

 

percentiles of the posterior 
distribution.

5.
 

In 20 reactor-calendar years (17.3 reactor-critical 
years), there were 2 initiating events involving total loss 
of feedwater flow.  The unknown parameter of interest 
is , the frequency of events per reactor-critical year.  
Assume a gamma prior distribution for , with  = 0.8 
and  = 10.6.  Find the posterior mean and 95% 
credible interval for .
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Common-Cause Failure

• Observe N failures in component group of size k
• n1

 

involve one component, n2

 

involve 2, etc.

• In alpha-factor model, failure counts have 
multinomial distribution with (vector) parameter α


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k
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1

 k ,,, 21 
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Common-Cause Failure

• Conjugate prior for α
 

is Dirichlet(θ)

• In equation form:

 k ,,, 21 
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DAG Model
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CCF Example

• Group of size 3, n1

 

= 200, n2

 

= 5, n3

 

= 1
• Usual noninformative prior is Dirichlet(1, 1, 1)

– Multivariate analog of uniform distribution
– Mean of each alpha-factor is 0.5

• Find posterior mean and 90% interval for alpha-factors
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CCF Example

• BUGS script

model {
n[1:groupsize] ~ dmulti(alpha[1:groupsize], N)
N <- sum(n[1:groupsize])
alpha[1:groupsize] ~ ddirch(theta[])
theta[1] <- 1
theta[2] <- 1
theta[3] <- 1
}

data
list(n=c(200, 5, 1), groupsize=3)

Basic multinomial script.odc
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CCF Example

• Results
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Section 3:  Introduction to Markov Chain 
Monte Carlo Sampling (the Gee in BUGS)
• Biggest problem in Bayesian inference is denominator 

of Bayes’ Theorem
– Multidimensional integral in multiparameter problems
– Very hard to do, BCE*

– Very easy (and cheap!) to do now, but can be 
hazardous to your health!

• MCMC sampling works by generating a sample directly 
from the posterior distribution
– MCMC is not medieval mathematics!

*BCE = Before Computer Era
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Basic Premise of MCMC

• Draw samples by running Markov chain constructed so that chain 
converges to joint posterior distribution

• Markov chain

– Sequence of random variables Xo , X1 , X2 , …

– Distribution of Xn+1 depends only on Xn (Markov property)

– After enough “time” (burn-in period), samples converge to stationary 
distribution (under certain regularity conditions)

• Chain “forgets” its initial state

• Stationary distribution is posterior distribution of interest

• Can use samples taken after convergence (i.e., after “burn-in”) to 
estimate parameters of interest

– Various methods exist to construct f(xn+1 |xn )

• Called ‘transition kernel”
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Gibbs Sampling

• We want a sample from joint posterior distribution:

g(1 , 2 ,…, p |x)

• Suppose we can sample from g(i |j , x; i  j)

• Under certain conditions, these samples can be used to 
construct a sample from g(1 , 2 ,…, p |x) and from any 
marginal distribution g(i |x)
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Example of Gibbs Sampling – Two 
Variables

• Let X ~ binomial(n, p), p ~ beta(, ) (,  known)

– Familiar conjugate model for FTS

• Suppose we want Pr(X=x), not conditional upon p

• f(x|p) is binomial(p, n) – usual likelihood function

• f(p|x) is beta( + x,  + n – x) – posterior distribution

• Start with initial value po , sample xo from binomial(po , n)

• Sample p1 from beta( + xo ,  + n – xo )

• Sample x1 from binomial(p1 , n)

• Sample p2 from beta( + x1 ,  + n – x1 ), etc.

• Eventually, for large enough k, xk ~ f(x) = Pr(X = x)
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Example of Gibbs Sampling – Three 
Variables
• In previous example, can write f(x) analytically, so 

do not really need Gibbs sampling

• What if number of demands, n, is uncertain?

– Model n with Poisson distribution:  n ~ Poisson()

• Now cannot write f(x) analytically

• Can write conditional distributions

– f(x|p, n) is binomial(p, n)

– f(p|x, n) is beta( + x,  + n – x)

–
)!(

])1[(
),|( )1(

xn

p
epxnf

xn
p







 
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Example of Gibbs Sampling – Three 
Variables

• Start with initial values po and no

• Sample xo from binomial(po , no )

• Sample p1 from beta( + xo ,  + no – xo )

• Sample n1 from f(n1 |xo , po )

• Sample x1 from binomial(p1 , n1 ), etc.
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Extensions to Gibbs Sampling

• Gibbs sampling requires knowing all conditional distributions
• Adaptive rejection sampling is more general form of Gibbs 

sampling
– Only requires function proportional to conditional 

distribution
• Works when conditional density is log-concave
• Widely used in WinBUGS

• Other types of MCMC
– Metropolis-Hastings sampling
– Slice sampling
– …..
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Metropolis-Hastings Sampling

• Useful when conditional distributions are not available, 
so Gibbs sampling won’t work

• Starts with proposal distribution, which is often normal

• Proposal density, p(x, y)

– When chain is at point x, a value y is generated from 
p(x, y)

• If p(x, y) is “reversible”:  (x)p(x, y) = (y)p(y, x), then 
 is desired stationary distribution and we’re done

– Usually, this is not the case
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Metropolis-Hastings Sampling

– What we usually find is that process moves from x to 
y too often and from y to x too rarely:

• (x)p(x, y) > (y)p(y, x)

• Correct for this by introducing probability α(x, y)
– Probability of moving from x to y

0),()(
otherwise,1

1,
),()(
),()(min

),( 















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Metropolis-Hastings Sampling

• Some remarks about α(x, y):

– Don’t need to know ()
• Appears in both numerator and denominator

– Depends on proposal density (more in a second)

– If candidate value is rejected, chain stays at current 
value

– If proposal density is symmetric, probability of move 
reduces to (y)/(x)
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Metropolis-Hastings Sampling

• Summary of M-H algorithm:

1. Repeat for j = 1, 2, …, n

2. Generate y from p(x(j), ) and u from unif(0, 1)

3. If u < α
 

(x(j), y)

• Set x(j+1) = y

– Else

• Set x(j+1) = x(j)

– Return values {x(1), x(2),…, x(n)}
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Metropolis-Hastings Sampling

• Conditions for convergence (regularity conditions)
– Markov chain must be irreducible and aperiodic

• Must be able to move from x to y in finite number 
of steps with nonzero probability

• Number of moves required is not a multiple of 
some integer

– Conditions satisfied if proposal density is nonzero on 
same support as ()

– Usually also satisfied by density with restricted 
support

• Uniform distribution around current point
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Metropolis-Hastings Sampling

• Choosing proposal density
– Often use normal distribution
– Many other choices exist
– Care must be taken in “tuning” the proposal density 

location and spread as the sampling progresses
• Note that Gibbs sampling is Metropolis-Hastings 

sampling with an acceptance rate of 1.0
– Gibbs sampling is more efficient when all the 

necessary conditional distributions are available
• See paper by Chib and Greenberg in References folder 

for more details
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Slice Sampling

• Metropolis-Hastings sampling can be very inefficient if 
the rejection rate for moves is too high

• Various alternatives have been proposed

• WinBUGS makes much use of “slice sampling”

– See paper by Radford Neal in References folder for 
all the details
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Slice Sampling

• Basic idea

1. Find function f(x) proportional to desired density

2. For current point, x(0), generate uniform sample, y, 
from (0, f(x(0))

3. Define horizontal slice through this sample

• Can use f-1 to do this

4. Draw new point, x(1), uniformly from this horizontal 
slice
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Slice Sampling

• Example:  slice sampling from normal distribution

1. Choose initial x, say x = 0

2. Choose y uniformly from (0, (x))

3. Choose new x uniformly from

4. Repeat 

     2ln2,2ln2 yy
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Practical Issues for MCMC

• MCMC is both art and science

• Must choose initial values for sampling

– Best to pick value where posterior density is large

• MLEs often a good choice, if available

– Usually not an issue except for very complicated models

• Less complicated models will usually converge quickly even 
with poor estimates

• Samples values are dependent, measured by autocorrelation

– Dependence should decrease as distance between values (lag) 
increases

– High lag autocorrelation can mean chains not exploring full 
range of posterior distribution



3-18

Practical Issues for MCMC

• How to tell when Markov chain has converged

– How many samples needed for burn in?

– Has sampler obtained good coverage of posterior?

– How many samples needed for desired precision?
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How Many Samples for Burn In?

• Run multiple chains, starting at different points

• Look for good mixing of chains

– Poor mixing

– Good mixing
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Good Coverage of Posterior

• Run multiple chains, starting at widely dispersed points 
in the parameter space

• Look for good mixing of chains

• Can check to see if plot of autocorrelation vs. lag 
approaches 0 as lag increases

– Good: 

– Less good: 
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How Many Samples After 
Convergence?
• WinBUGS manual suggests running until Monte Carlo 

error is 5% or less of sample standard deviation for 
each parameter

• None of the three aspects of convergence tends to be a 
problem for typical risk assessment models

– But do not forget about it!
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Convergence Diagnostics - BGR

• Brooks-Gelman-Rubin (BGR) statistic is implemented in 
WinBUGS

– Overview

• Compares between-chain variance to within-chain 
variance

– If chains have converged, all should have 
same within-chain variance

– BGR  1 indicates convergence

• Must run at least 2 chains to calculate BGR 
statistic
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Convergence Diagnostics - BGR

• Details
– Between-chain estimate is green
– Within-chain estimate is blue
– Ratio (between/within) is red

• Ratio expected to start out > 1 and converge to 1
– Rule of thumb:  R < 1.2 for convergence

• Also want between-chain and within-chain 
estimates to be stable

• Double-click on BGR graph, then <Ctrl>-left click 
gives values of R
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Convergence Diagnostics - BGR

• Example

• Indicates convergence

p.fts

iteration
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Section 4:  Models for Recovery and 
Repair
• Recall from P-102 that simplest aleatory model for time as a 

random variable is the exponential distribution
T ~ exp()

• Unknown parameter is , which is recovery rate in present context
• MTTR = 1/

• Data is series of times for recovery or repair, assumed to be 
random sample from exp() distribution

• For Bayesian inference, need prior distribution for 
– Conjugate prior is gamma distribution
– Jeffreys prior is (improper) gamma(0, 0)
– Nonconjugate prior
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DAG Representation
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WinBUGS Script

model {

for(i in 1:N) {

time[i] ~ dexp(lambda) #Exponential distribution for each time

}

lambda ~ dgamma(0.0001, 0.0001) #Jeffreys prior for lambda

MTTR <- 1/lambda

}

data

list(time=c(105, 1, 1263, 72, 37, 814, 1.5, 211, 330, 7929, 296, 1, 120, 1),  N = 14)

inits

list(lambda=1.E-3)

list(lambda=5.E-3)

Exponential model.odc
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Results

lambda sample: 100000

lambda
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What is Distribution of New Time, Given 
Observed Times?
• The distribution for MTTR found previously describes 

the uncertainty in the mean
 

time to recovery/repair
• Distribution of new

 
time is obtained by averaging over 

the posterior distribution for :

• Called posterior predictive distribution
– Will use this extensively for model-checking
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DAG Model for Predicted Time
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Results for Predicted Time

• Note wider uncertainty interval for t.pred
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Specifying a Model

• From experience, recovery time does not tend to be 
exponential
– Recovery rate [h(t)] often decreases with time after 

the initiator
• h(t) = f(t)/[1 –

 
F(t)]

– Common models for non-constant recovery rate
• Weibull
• Gamma
• Lognormal
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Alternatives to Exponential Model

• T ~ Weibull(, )
– f(t) =   t-1 exp(- t)
– F(t) = 1 –

 
exp (- t)

– E(T) = -1/(1 + 1/)
– For  =1, reduces to exponential()
– Recovery rate is function of time

• h(t) =   t-1

•  < 1  h(t) decreasing with time
•  > 1  h(t) increasing with time
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Alternative Weibull Parameters

• Previous slide uses parameters defined for 
WinBUGS, which were convenient for Bayesian 
analysis in the days before MCMC

• Alternative parameterization uses  = λ-1/, giving
– f(t) = (/)(t/)-1exp[-(t/)]
– F(t) = 1 -

 
exp [-(t/)]

– E(T) = (1 + 1/)
– h(t) = (/)(t/)-1
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Alternatives to Exponential Model

• T ~ gamma(, )
•

• E(T) = /
• For  =1, reduces to exponential()
• Recovery rate is function of time

– Cannot be written in closed form
–  < 1  h(t) decreasing with time
–  > 1  h(t) increasing with time
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Alternatives to Exponential Model

• T ~ lognormal(, 2)

•

• F(t) = [(lnt -

 

)/] 
• E(T) = exp( + 2/2)
• Recovery rate is function of time

– Increases from 0 initially (often very fast), then 
decreases, approaching 0 asymptotically

• Approach to 0 can be very slow
– Useful when early recoveries dominate
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Alternatives to Exponential Model

• Note that all alternatives considered have two 
unknown parameters
– Weibull(α, )
– Gamma(α, )
– Lognormal(, ) or Lognormal(, )

• Need to specify joint prior distribution, e.g., g(, )
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Specifying Joint Prior via Bayesian 
Network
• Much effort was spent in the past developing 

complicated joint prior distributions that reflected 
correlation between two parameters

• With Bayesian network, we can specify independent 
priors and not worry about this
– In Bayesian network, parameters are independent 

until data is observed
– Posterior distribution will reflect proper dependence 

between parameters
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Example DAG for Lognormal Model
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Choosing Priors for 
 

and 

• Will use independent priors
• Range of  is - to 
• Range of  is 0 to 
• If prior information is available, can use this
• Noninformative priors are often used

– Do not use Jeffreys prior in this case
– Use Laplace (infinite uniform) prior or very diffuse 

normal prior for 
– Use finite uniform prior for 
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Choosing Priors for 
 

and 

• Easier to think in terms of  =  -0.5

– Recall that EF = e1.645 for the lognormal distribution
•  = 10 corresponds to EF > 107

model
{

for (i in 1 : N) {
time.rec[i] ~ dlnorm(mu, tau) #Lognormal model for recovery time

}
mu ~ dflat() #Diffuse prior for mu
sigma ~ dgamma(0.0001, 0.0001)
tau <- pow(sigma, -2)
}

LOSP durations.odc
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Running the Script

• We are interested in inference for two parameters, so 
convergence is a concern
– Will run two chains starting at different points

• Check history plots for mu and sigma
• Check BGR statistic
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Results

• History plots after 1,000 samples
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Results

• BGR plots after 1,000 samples
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Results

• Discard first 1,000 samples for burn-in, run additional 
100,000 samples to estimate  and :
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Exercises

Use the data in “times-1.txt”
 

in the BUGS folder for the 
following questions.

1.
 

Assuming an exponential aleatory
 

model, and a 
lognormal prior for  with a mean of 1 and error factor of 
3, find the posterior mean and 90% interval for .

2.
 

Assume a lognormal aleatory
 

model with independent, 
diffuse priors on the lognormal parameters.  Find the 
posterior mean and 90% interval for .
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Exercises

3.
 

The file “EDG repair times.txt”
 

in the BUGS folder  
contains 18 repair times recorded when a single EDG 
failed.
a)

 
Find the posterior means of the parameters of a 
Weibull

 
aleatory

 
model for these repair times.  Use 

independent, diffuse priors for the Weibull
 

parameters.
b)

 
Generate two, independent predicted

 
repair times from 

the posterior distribution.  What is the mean and 90% 
credible interval for each of these times?

c)
 

Define a new variable that is the minimum
 

of each of 
the two times generated in part (b).  What is the mean 
and 90% credible interval for this minimum time?
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Section 5:  Modeling Population 
Variability

• Problem:  what to do when information cannot be 
pooled
– Across components
– Across plants
– Across time
– Across experts

• Inappropriately pooling information leads to 
underestimation of uncertainty



5-2

Example:  Variability in LOSP

• Xi is number of LOSP events at Plant i in time ti
• Assume variability in LOSP from plant to plant can be 

modeled with a gamma distribution

• LOSP, i ~ gamma(, ) , i = 1, 2, …, n

• There are (n + 2) unknown parameters: LOSP, i , , 
• In past problems we specified  and , and there was 

only one LOSP

–  and  are now uncertain
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DAG Model
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Another Representation of the Problem
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Hierarchical Bayes

•• Previous approach is called Previous approach is called ““hierarchical Bayeshierarchical Bayes””

–– Bayesian approach is to specify prior in stages (hierarchies)Bayesian approach is to specify prior in stages (hierarchies)

•• First stage is gamma(First stage is gamma(, , ) prior for ) prior for 

 
LOSP, iLOSP, i

•• Second stage is joint prior Second stage is joint prior 

 
oo ((, , ))

–– Called hyperpriorCalled hyperprior

–– , ,  called hyperparameterscalled hyperparameters

–– Often use vague (noninformative) prior for Often use vague (noninformative) prior for 
hyperparametershyperparameters

•• Two stages typical, but can model three or moreTwo stages typical, but can model three or more

  dd),(),|()(
ooo

Overall prior First-stage 
prior

Second-stage 
prior 
(hyperprior)
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Example:  Variability in LOSP Frequency

• Data

Plant Failures Time (yrs)

Plant 1 2 15.986
Plant 2 1 16.878
Plant 3 1 18.146
Plant 4 1 18.636
Plant 5 2 18.792
Plant 6 0 18.976
Plant 7 12 18.522
Plant 8 5 19.04
Plant 9 0 18.784
Plant 10 3 18.868
Plant 11 0 19.232
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WinBUGS Model

model {
for (i in 1 : N) {

lambda.losp[i] ~ dgamma(alpha, beta) #Model variability in LOSP frequency
mean[i] <- lambda.losp[i] * time[i] #Poisson parameter for each plant
x[i] ~ dpois(mean[i]) #Poisson dist. for events at each plant
}

lambda.ind ~ dgamma(alpha, beta)
alpha ~ dgamma(0.0001, 0.0001) #Vague hyperprior for alpha
beta ~ dgamma(0.0001, 0.0001) #Vague hyperprior for beta
}
data
Open "LOSP frequencies.txt"

inits
list(alpha=1, beta=1)
list(alpha=0.5, beta=5)

Hierarchical LOSP frequency.odc
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Results
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Results

caterpillar plot: lambda.losp

lambda.losp
0.0 0.25 0.5 0.75 1.0

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

0.134
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Exercises

1. Analyze the pooled data using the Jeffreys prior and 
compare the results to those from the hierarchical 
model

2. Replace the gamma first-stage prior with a lognormal 
distribution.  Use a dflat() hyperprior for the first 
parameter.  For the second parameter, reparameterize 
in terms of  and place a dunif(0, 10) hyperprior on .

a) How do the mean and median of lambda.ind 
compare to the previous results?  Explain.

b) How do the 90% intervals compare.

c) Any conclusions about choosing a first-stage prior?
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Example:  Variability in EDG FTS 
Probability

• Assume Xi ~ binomial(pFTS, i , ni ) for each EDG

• Assume pFTS, i ~ beta(, )

• Assume  and  have independent, vague hyperpriors

– o (, ) = o ()o ()

– Vague hyperprior is gamma with both

parameters << 1
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Variability in EDG FTS Probability 
(cont.)
• Data
Data taken from

(Siu and Kelly, 1998)

Failures Demands

Plant 1 0 140

Plant 2 0 130

Plant 3 0 130

Plant 4 1 130

Plant 5 2 100

Plant 6 3 185

Plant 7 3 175

Plant 8 4 167

Plant 9 5 151

Plant 10 10 150
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DAG Model
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WinBUGS Model

model {
for (i in 1 : N) {

x[i] ~ dbin(p.fts[i], n[i]) #Binomial dist. for EDG failures
p.fts[i] ~ dbeta(alpha, beta) #Beta prior for FTS probability
}

p.ind ~ dbeta(alpha, beta)
alpha ~ dgamma(0.0001, 0.0001) #Vague hyperprior for alpha
beta ~ dgamma(0.0001, 0.0001) #Vague hyperprior for beta
}

inits
list(alpha=1, beta=25)
list(alpha=0.5, beta=75)

hierarchical EDG FTS probability.odc
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Results

• Results for 100,000 samples (10,000 burn in)
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Results

• Results for 100,000 samples (10,000 burn in)

caterpillar plot: p.fts

p.fts
0.0 0.025 0.05 0.075 0.1

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

0.0187
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Empirical Bayes

• Older approach but still widely used

• Data are used to estimate parameters of first-stage prior

– Prior should not depend on observed data, so this is a 
criticism

– Does not directly include uncertainty in parameters

• Approximations can be used for this

– Prior then updated, with same data used to estimate prior

• Can be viewed as approximation to hierarchical Bayes

• Widely used in analyses for NRC (e.g., NUREG/CR-6928)

• Can be used to estimate initial values for hierarchical Bayes
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Empirical Bayes

• How it works:

1. Specify first stage prior

a) Gamma(α, )
 

for Poisson data

b) Beta(α, )
 

for binomial data

2. Write down marginal likelihood

3. Find values of α,  that maximize marginal likelihood

4. Update prior with observed data (yes, data are used 
twice)
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Empirical Bayes

• Can use Excel to do empirical Bayes

– Need to get Excel to calculate natural logarithm of 
marginal likelihood

• Done via Visual Basic macro

– Use Solver to find alpha and beta that maximize 
natural logarithm of marginal likelihood

– Can also find so-called Kass-Steffey adjustments to 
address parameter uncertainty

LOSP variability.xls
Log-like.xla
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Potential Issues with Hierarchical Bayes

• Convergence can be a problem

– Especially when variability is not large

– May need to reparameterize model to speed up 
convergence

• Some results can be sensitive to choice of first-stage 
prior

– Especially when variability is very large

• See (Kelly and Atwood, 2008) for more details



5-21

Exercises

1. This example uses WinBUGS to analyze a fairly large data set.  The file 
“edg_data.txt” in the BUGS folder contains data for failure on demand for 195 
EDGs.  Recalling that the MLE of p is given by x/n, you should find that the 
MLE is > 0.05 for EDGs 183, 184, and 191-195.  There is a desire to 
demonstrate that Pr(p > 0.05) < 0.05.  In English, we want to show that we are 
95% sure that EDG reliability on demand is at least 95%.  If we analyze each 
EDG separately, using a Jeffreys prior, we will find quite a few that do not 
meet the criterion (i.e., too many false positives).  Pooling the data would also 
be inappropriate, giving a very narrow credible interval for p; all of the EDGs 
would meet the criterion by a wide margin.  We would like to get a better 
answer than either of these simple approaches gives by developing a 
hierarchical Bayes model that describes the variation in p across the 195 
EDGs in the dataset.
a) Use WinBUGS to analyze a hierarchical Bayes model for this data.  Treat 

the number of failures for each EDG as binomial, with pi ~ beta(, ).  Use 
independent diffuse hyperpriors for  and .  We want to find which EDGs 
have Pr(p > 0.05) > 0.05.

b) Re-analyze this model, using a uniform(0, 10) hyperprior for , and an 
independent uniform(0, 100) hyperprior for .  Does this change in priors 
affect your conclusions about which EDGs have Pr(p > 0.05) > 0.05?
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Section 6:  Uncertain Data

• Problem:  observed data are uncertain or “fuzzy”
– Interval-valued observations and other types of censoring
– Unclear whether failure occurred
– Number of demands not known with certainty

• Will illustrate Bayesian approach to these problems
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When Durations are Uncertain

• Consider following data 
for fire suppression time

Event Duration (mins.)
1 < 5
2 < 5
3 < 15
4 14
5 15
6 15
7 10 -

 

30
8 15
9 150
10 100 -

 

300
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When Durations are Uncertain

• Use simple model for T (fire duration)
– Tsupp ~ exp()
–  is suppression rate, units of min-1

• Data are interval-censored, meaning we only have an interval for some points
– Know duration was > lower bound time and < upper bound time

• Handled in WinBUGS by specifying
time.supp[i] ~ dexp(lambda)C(lower[i] , upper[i])

• Specifying data
– If specific duration observed, set lower[i] = upper[i] = duration for that 

point
– No fixed time observed, set time.supp[i] = NA, lower[i] and upper[i] set to 

bounds of interval
• WinBUGS imputes missing data using the likelihood function
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When Durations are Uncertain

• WinBUGS program
Suppression data, uncertain times

model
{

for (i in 1 : N) {
time.supp[i] ~ dexp(lambda)C(lower[i](, upper[i]) #Exponential distribution for suppression times
}

lambda ~ dgamma(0.0001,0.0001) #Diffuse prior for exponential parameter
}

data
list(time.supp=c(NA, NA, NA, 14, 15, 15, NA, 15, 150, NA), lower=c(0,0,0,14,15,15,10,15,150,100), upper=c(5, 
5, 15, 14, 15, 15, 30, 15, 150, 300), N = 10)

inits
list(lambda = 0.1) #initial values
list(lambda = 0.01)

Case study for uncertain times.odc
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When Durations are Uncertain

• Results
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When Durations are Uncertain

• This is sometimes referred to as likelihood-based

 

approach to 
uncertain data
– Observed time in interval [a, b] contributes e-λa

 

– e-λb

 

to the 
likelihood function in Bayes’

 

Theorem
• Caution:  cannot have too much censoring and still get sensible 

estimates
– If all durations are censored, cannot get meaningful estimate

• Frequentist estimate is 0.0265/min, very close to posterior mean
– Expect values to be close with diffuse prior on 
– Frequentists cannot easily find uncertainty in estimate
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When Demands are Uncertain

• Often a problem with components such as MOVs, where each demand 
may not be recorded

• Handle in Bayesian approach by assigning a distribution to number of 
demands, n
– Uniform(a, b)
– Poisson()

• Uniform(a, b)
– N is discrete variable, so really want discrete uniform distribution
– Can program this into WinBUGS
– Easier to sample from continuous uniform distribution and round 

sample to nearest integer
• Endpoints are under-represented, but this is not usually a problem
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When Demands are Uncertain

• Example:  Assume prior distribution for MOV FTO is 
lognormal with mean = 0.003 and EF = 10
– Assume 1 failure is seen, and demands are not 

recorded, but are known to lie between 12 and 40
– WinBUGS model

Modeling demands with uniform distribution
model  {
mov.fto ~ dbin(p, demands) #binomial model for MOV FTO
p ~ dlnorm(-6.79, 0.5102) #prior for p (mean = 0.003, EF = 10)
demands.continuous ~ dunif(lower, upper) #Models uncertainty in demands
demands <- round(demands.continuous) #Rounds to integer demands
} 

data
list(lower=12, upper=40, mov.fto=1)

Uncertain demand – uniform.odc
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When Demands are Uncertain

• DAG model
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When Demands are Uncertain

• Results

– Comparable to results with n set to mean value (26)
• Posterior mean somewhat sensitive to n, but 

uncertainty in p relatively insensitive to uncertainty 
in n
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When Demands are Uncertain

• Try same example, but with Poisson distribution for 
number of demands
– Use mean of 26 (same as previous example)
– Recall variance = mean for Poisson distribution 

 standard deviation = 5.1

Modeling demands with Poisson distribution
model  {
mov.fto ~ dbin(p, demands) #binomial model for MOV FTO
p ~ dlnorm(-6.79, 0.5102) #prior for p (mean = 0.003, EF = 10)
demands ~ dpois(mu) # Poisson distribution for number of demands
} 

data
list(mu = 26, mov.fto=1)

Uncertain demands – Poisson.odc
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When Demands are Uncertain

• DAG model
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When Demands are Uncertain

• Results

– Essentially the same as with uniform distribution for n
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When Failures Are Uncertain

• Information from LERs and other information sources 
may not be clear enough to ascertain exact number of 
failures

• Sloppy record-keeping may result in imprecise 
estimates
– Analogous to rounding of value

• Two approaches
– Posterior-averaging
– Likelihood-based
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Posterior-Averaging Approach

• Analyst must develop subjective prior distribution for 
number of observed events

• Example 1:  plugging of service water strainers
– Inspection Report (IR) describes 7 plugging events 

over time period of interest
– 3 of these may not have been complete plugging 

events from perspective of PRA model
– Therefore, actual number of events is 4, 5, 6, or 7
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Posterior-Averaging Approach

• Analyst, by poring over the IR, and applying expert 
knowledge, has come up with following distribution for 
actual number of complete plugging events:
Pr(x = 4) = 0.75
Pr(x = 5) = 0.15
Pr(x = 6) = 0.075
Pr(x = 7) = 0.025

• Note that probabilities must sum to unity!
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Posterior-Averaging Approach

• WinBUGS program for Example 1
Number of Poisson events is uncertain
model {
#Use following if data are observed with subjective probability specified by p[] vector
for(i in 1:N) {

x[i] ~ dpois(mu[i])
mu[i] <- lambda[i]*time.exp
lambda[i] ~ dgamma(0.5, 0.0001) #Jeffreys prior for lambda
}

lambda.avg <- lambda[r] #Overall composite lambda, monitor this node
r ~ dcat(p[])
}

Data
list(x=c(4,5,6,7), p=c(0.75, 0.15, 0.075, 0.025), N=4)
list(time.exp=48180)

uncertainty in Poisson event count.odc
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Posterior-Averaging Approach

• Results for Example 1

lambda.avg
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Posterior-Averaging Approach

• Example 2:  MOV failures in 381 demands
– Because of vagueness of problem reports, can’t tell if 

actual number of failures was 3, 4, 5, or 6
– Analyst develops following distribution:
Pr(x = 3) = 0.1
Pr(x = 4) = 0.7
Pr(x = 5) = 0.15
Pr(x = 6) = 0.05
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Posterior-Averaging Approach

• WinBUGS program for Example 2

Number of binomial failures is uncertain
model {
#Use following if data are observed with subjective probability specified by q[] vector
for (i in 1:N) {

x[i] ~ dbin(p[i], D)
p[i] ~ dbeta(0.5, 0.5) #Jeffreys prior
}

p.avg <- p[r] #Composite posterior, monitor this node
r ~ dcat(q[])
}

Data
list(x=c(3,4,5,6), q=c(0.1, 0.70, 0.15, 0.05), N=4)
list(D=381)

uncertainty in binomial failures.odc
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Posterior-Averaging Approach

• Results for Example 2

p.avg
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Likelihood-Based Approach

• Revisit same examples, but treat number of failures as “missing”, 
but known to be in the interval [4, 7] for Example 1 and [3, 6] for 
Example 2.

• WinBUGS program for Example 1

Number of Poisson events is uncertain
model {
#Use following for likelihood-based approach
x ~ dpois(mu)I(lower, upper)
mu <- lambda*time.exp
lambda ~ dgamma(0.5, 0.0001) #Jeffreys prior
}

data
#Load following for likelihood-based approach
list(x=NA, lower=4, upper=7)
list(time.exp=48180)
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Likelihood-Based Approach

• Results for Example 1

lambda
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Likelihood-Based Approach

• WinBUGS program for Example 2

Number of binomial failures is uncertain
model {
#Use following for likelihood-based approach
x ~ dbin(p, D)I(lower, upper)
p ~ dbeta(0.5, 0.5) #Jeffreys prior
}

data
#Load following for likelihood-based approach
list(x=NA, lower=3, upper=6)
list(D=381)
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Likelihood-Based Approach

• Results for Example 2

p
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Section 7:  Bayesian Modeling of Time 
Trends
• Problem

– What if there is a monotonic trend over time for p or ?

• Will illustrate

– Graphical methods

– Implementation of quantitative trend models in WinBUGS
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Example Data

Year Number of Events Exposure Time

1 16 14.63

2 10 14.15

3 7 15.75

4 13 17.77

5 9 17.11

6 6 17.19

7 2 17.34
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Is There a Time Trend in ?

• Graph indicates apparent decreasing trend over 
time

Plot of lambda

lambda
    0.0     0.5     1.0     1.5

year

[1]

[2]

[3]

[4]

[5]

[6]

[7]
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Example Valve Leakage Data

Year Number of Failures Demands

1 4 52

2 2 52

3 3 52

4 1 52

5 4 52

6 3 52

7 4 52

8 9 52

9 6 52
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Is There a Time Trend in p?

• Graph appears to indicate increasing trend in time

caterpillar plot: p

p
0.0 0.1 0.2 0.3

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
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Nonhomogeneous Poisson Process

• Recall that one of the assumptions leading to the 
Poisson distribution was that  is constant

• Can relax this assumption, and allow  to vary with 
time

• Leads to what is called a nonhomogeneous Poisson 
process

– Like a Poisson distribution, but with parameter


t

ds)s()t(
0


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Need Model for (t)

• Many possibilities:

– Linear:  (t) = o + at

– Loglinear:  ln[(t)] = a + bt

– Power law: (t) = o t-1

– Extended power law: (t) = o t-1 + ext

• No theoretical justification for any of these

• Will illustrate loglinear model in WinBUGS
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DAG for Loglinear Trend Model
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Loglinear Model: ln[(t)] = a + bt

• WinBUGS model

model {
for (i in 1:N) {

x[i] ~ dpois(mu[i])
mu[i] <- lambda[i]*s[i]
log(lambda[i]) <- a + b*i
}

a~dflat()
b~dflat()
}

Loglinear model for time trend.odc
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Loglinear Model:  ln[(t)] = a + bt

• Results

• Pr(b < 0) near unity (negative slope)
• Posterior distribution of b is approximately normal



7-11

Loglinear Model:  ln[(t)] = a + bt

• Results for lambda in each year:
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Loglinear Model:  ln[(t)] = a + bt

• Uncertainty in lambda for each year
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Predicted 
 

In Year 8
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Possible Models for p

• Constant p

• Logistic

• Logit(p) = ln(p/1 – p) = a + bt

• Probit

• Probit(p) = -1(p) = a + bt

• Complementary log-log

• ln(-ln(1-p) = a + bt
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Logistic Model:  Logit(p) = a + bt

• WinBUGS model

model
{
for (i in 1:N) {

x[i] ~ dbin(p[i], n[i]) #Binomial distribution for failures in each year
logit(p[i]) <- a + b*i #Use of logit() link function to simplify model
}

a~dflat() #Diffuse prior for a
b~dflat() #Diffuse prior for b
}

Logistic model for time trend.odc
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Logistic Model:  Logit(p) = a + bt

• Results

• Pr(b > 0) is > 0.95
– Strong evidence of increasing trend in p over time
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Logistic Model:  Logit(p) = a + bt

• Results for p in each year:
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Logistic Model:  Logit(p) = a + bt

• Uncertainty in p for each year
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Predicted Value of p In Year 10
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Section 8:  Mixture Priors

• Problem

– What if a single distribution is inadequate to represent prior 
knowledge?

• Will illustrate

– Implementation of mixture prior distributions in WinBUGS
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What is a Mixture Prior?

• Can specify prior distribution as a weighted 
average of distributions

where ki s are weighting factors, which sum to 1

• Can lead to multimodal prior (and posterior)





n

i
i,oio

)(k)(
1
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Example Use of Mixture Prior

• Consider case where three sets of prior information 
about p are available

• Each gives different lognormal distribution for p

– Source 1:  median = 0.03, EF = 5

– Source 2:  median = 0.001, EF = 10

– Source 3:  median = 0.003, EF = 8.1

• Our subjective weights for the three sources are 0.6, 
0.2, and 0.2

• Use this information as prior, with observed data of 1 
failure in 1,200 demands
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DAG Model
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Example Use of Mixture Prior

• Can model this in WinBUGS

Mixture prior for p in binomial distribution
model  {
for(i in 1:3) {

p[i] ~ dlnorm(mu[i], tau[i]) #Individual lognormal priors
mu[i] <- log(median[i])

sigma[i] <- log(EF[i])/1.645
tau[i] <- pow(sigma[i], -2)
}

p.avg <- p[r] #Mixture prior
r ~ dcat(k[]) #Categorical distribution
x ~ dbin(p.avg, n) #Binomial likelihood for observed data
}

data
list(median=c(3.E-2, 1.E-3, 3.E-3), EF=c(5, 10, 8.1), k=c(0.6, 0.2, 0.2))
list(x=1, n=1200)

mixture priors.odc
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Example Use of Mixture Prior

• Prior

Mixture prior density

p.avg
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Example Use of Mixture Prior

• Posterior

p.avg
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Exercises

1. In its normal state, a component has a CNI prior with a mean 
failure rate of 4.6E-5/hr.  In its degraded state, the prior 
distribution for the failure rate is a CNI prior with a mean that 
is a factor of 10 higher.  Assume there have been 3 tests 
with an average run time of 23 hours per test, and that 1 
failure to run has been observed.  Assume the prior 
probability that the component is in the degraded state is 
0.05.
a) What is the posterior mean failure rate?
b) Which is the more likely state of the component based on 

this information?
c) Repeat (a) and (b) assuming 2 failures to run have been 

observed.  Note the shape of the posterior density in this 
case.
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Section 9:  Model Validation and 
Selection
• Problem

– How to decide if model (prior + likelihood) is a “good fit”

– How to decide among competing models

• Will illustrate

– Graphical methods

– Use of predictive distributions and summary statistics

– Information criteria for model selection

– Implementation of quantitative methods in WinBUGS
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Graphical Methods

• Example:  EDG FTS data

• Is pFTS varying 
significantly among the 
plants?

– Side-by-side plots of 
Bayes credible 
intervals

• Use Jeffreys prior

• Plot posterior 
intervals

Failures Demands

Plant 1 0 140

Plant 2 0 130

Plant 3 0 130

Plant 4 1 130

Plant 5 2 100

Plant 6 3 185

Plant 7 3 175

Plant 8 4 167

Plant 9 5 151

Plant 10 10 150
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Graphical Methods
Plot of EDG FTS data

p
    0.0    0.05     0.1    0.15

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

•Graph suggests plant-to-plant variability

•Pooling of data across plants may not be justified
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Example:  LOSP frequency data

Plant Failures Time (yrs)

Plant 1 2 15.986
Plant 2 1 16.878
Plant 3 1 18.146
Plant 4 1 18.636
Plant 5 2 18.792
Plant 6 0 18.976
Plant 7 12 18.522
Plant 8 5 19.04
Plant 9 0 18.784
Plant 10 3 18.868
Plant 11 0 19.232
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LOSP frequency data

Illustrates significant variability

caterpillar plot: lambda.losp

lambda.losp
0.0 0.5 1.0 1.5

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

0.161
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Are Observed Times Exponential?

• Can use cumulative hazard plot

– For exponential data, hazard function is constant, equal to 
– Cumulative hazard function is integral of hazard function from 0 to t, 

giving

– For exponential data, we get a straight line with slope :

H(t) = t

– If plot of estimate of H(t) is curved, this suggests  not constant with 
time

• Data not exponential

• Decreasing slope (concave)  decreasing hazard

• Increasing slope (convex)  increasing hazard


t

'dt)'t()t(H
0


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Estimating H(t)

• Use a step function, which jumps by 1/nt , where nt is the number of 
items that have not failed by time t

• Example:  observed following fire suppression times, in minutes: 
1.7, 1.8, 1.9, 5.8, 10.0, 11.3, 14.3, 16.6, 19.4, 54.8, n = 10

– H(t) jumps from 0 to 0.1 at 1.7 mins., 0.1 to 0.21 at 1.8 mins., 
etc.

Cumulative Hazard Plot
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Estimating H(t)

• With only 10 points, plot is somewhat ragged
• Another chart, with n = 25 points:

– These data look exponential

Cumulative Hazard Plot
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Another Example

• Observed the following times (in hours) at which offsite 
power was recovered:  1.6, 1.8, 13.8, 17.2, 19.2, 24.4, 
30.2, 39.1, 49.1, 61.2

Cumulative Hazard Plot

0.00
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Another Example

• This plot looks fairly straight

• Are the data really exponential?

• Need quantitative tools to help answer this question

– Graphs are useful with fairly large amounts of data, 
less useful with small amounts

– Data on previous slide are actually from a Weibull 
distribution with (t) decreasing as t increases
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Use of Posterior Distribution

• Example:  can EDG data from two trains be pooled?

– Train 1:  3 failures in 75 demands

– Train 2:  5 failures in 69 demands

• Use Jeffreys prior and find posterior distribution for each 
train

• Calculate probability that p2 > p1

– Pr(p2 > p1 ) = ?
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Use of Posterior Distribution

• WinBUGS model

model{
p1 ~ dbeta(0.5,0.5) #Jeffreys prior for p1
x1 ~ dbin(p1,n1) #Binomial distribution for x1
p2 ~ dbeta(0.5,0.5) #Jeffreys prior for p2
x2 ~ dbin(p2,n2) #Binomial distribution for x2
p.value <- step(p2 - p1) #Gives Pr(p2 > p1)

}
data
list(x1 = 3, n1 = 75, x2 = 5, n2 = 69)

proportion test.odc
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Use of Posterior Distribution

• Results

• Pr(p2 > p1 ) = 0.7982

• Weak evidence that p2 > p1

• Could probably pool data from both EDGs
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Use of Predictive Distribution

• In Bayesian framework, “model” comprises

– Likelihood function

• How data were generated

– Prior distribution

• Uncertainty about parameters

• Bayesian inference sometimes criticized for sensitivity to 
prior

– In practice, likelihood function can also be in question

• Need to check both parts of our “model”
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Prior Predictive Distribution

• The prior predictive distribution is the denominator of Bayes’ Theorem

• Gives probability of observing X = x, unconditional upon any particular 
value of the parameter(s), 
– Also called the marginal distribution of X

• Before observing data, can check reasonableness of prior by calculating 
probabilities for data we expect to see

– Small probabilities  prior not consistent with expected data

– Sometimes called “preposterior analysis”

• Not defined for improper priors (e.g., Jeffreys prior for Poisson or 
exponential data)

  d)()|x(f)x(f
o



9-16

Binomial Likelihood – Beta Prior

• f(x) can be found analytically
– Called beta-binomial distribution

–  and  are parameters of beta prior distribution for p
– () is the gamma function, defined for  > 0 as

– Excel has ln[()] built in (“single parameter estimation.xls” in 
Excel folder)
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Poisson Likelihood – Gamma Prior

• f(x) can be found analytically
– Called gamma-Poisson distribution

–  and  are parameters of gamma prior distribution 
for 
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Exponential Likelihood – Gamma Prior

• It can be shown that f(ti |) is gamma(n, )

• Can then show that, for a gamma(, ) prior on 

• If X ~ beta(, ), can show that (1 – X) ~ beta(, ), therefore

• Can use these in Excel
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Posterior Predictive Distribution

• Gives conditional probability of seeing a new set of data, xrep , given 
the old set, x

• In symbols

• For beta-binomial and gamma-Poisson cases

– Use earlier formulae, but use posterior  and 
• Posterior predictive distribution is primary tool for Bayesian model 

validation

– Focuses on predictive validity of model (prior + data)

  d)x|()|x(f)x|x(f
reprep 1
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Using Posterior Predictive Distribution 
to Check Model

• Is xrep in tail of f(xrep |x)?

– No  model OK

– Yes  problem with prior and/or likelihood

• Check prior sensitivity

– Prior-dominated:  sharp prior, sparse data, 
likelihood function centered away from mode 
of prior

• Check appropriateness of likelihood

– For example, are failures independent?
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Using WinBUGS to Simulate Predictive 
Distributions

• Can handle both conjugate and nonconjugate priors
• To simulate from prior predictive distribution, compile 

program without loading data
• Example:  using industry prior for EDG FTS of 

beta(0.957, 190)
– Will 3 failures in 24 demands be an extreme value in 

the prior predictive distribution for X?
• Can use Excel (see “single parameter 

estimation.xls” in Excel folder)
• Pr(X > 3) = 0.001, so 3 failures in 24 demands is 

not consistent with the industry prior



9-22

Using WinBUGS to Simulate Predictive 
Distributions
• Use WinBUGS program below

EDG FTS
model  {
edg.fail ~ dbin(p, 24) #Binomial model for EDG FTS in 24 
demands
p ~ dbeta(0.957, 190) #Beta prior for p
prior.pred <- step(edg.fail – 3) # Prior pred. Pr(edg.fail >=3)
}

•Compile this program, monitor prior.pred
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Using WinBUGS to Simulate Predictive 
Distributions

• To simulate from posterior predictive distribution, define 
new variable and monitor it

EDG FTS
model  {
edg.fail ~ dbin(p,24) #Binomial model for EDG FTS in 24 demands
p ~ dbeta(0.957, 190) #Beta prior for p
fail.new ~ dbin(p,24) #Replicated failures from posterior predictive distribution
post.pred <- step(fail.new - 3) #Posterior pred. Pr(fail.new >= 3)
}
data
list(edg.fail=3)

•Fail.new is node for posterior predictive distribution

•Observed data is 3 failures in 24 demands
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Using WinBUGS to Simulate Predictive 
Distributions

• Posterior distribution of p is beta(3.957, 211), giving posterior mean of 0.02

• Posterior predictive distribution for X shown in Excel file “single parameter 
estimation.xls”

• WinBUGS results (remember to load data this time!)

• 3 failures in 24 demands is quite unlikely
– Prior doesn’t describe our diesel?

• Already know that prior is inconsistent with this data

– Problem with binomial model for failure, also?

• Are failures really independent?
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Use of Summary Statistics from Posterior 
Predictive Distribution

• Is data exponential (i.e., is likelihood correct)?

– Use  ti and examine posterior predictive distribution 
for Trep, i

• Where does observed  ti fall in posterior 
predictive distribution for Trep, i ?

• Use diffuse prior for  to eliminate effect of prior

– Observed  ti will always be at median, so we 
need another approach
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Are Times Exponential?

• Cramer-Von Mises test, Bayesian version

• Uses fact that F(t) ~ uniform(0, 1)

• Bayesian version in following script compares observed 
and replicated values

• Example:  fire suppression times in minutes:

1.7, 1.8, 1.9, 5.8, 10.0, 11.3, 14.3, 16.6, 19.4, 54.8  (n = 
10)
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Are Times Exponential?
model
{
for (i in 1 : N) {

time.supp[i] ~ dexp(lambda) #Exponential distribution for suppression times
time.supp.ranked[i] <- ranked(time.supp[],i)
time.rep[i] ~ dexp(lambda)
time.rep.ranked[i] <- ranked(time.rep[], i)
F.obs[i] <- 1 - exp(-lambda*time.supp.ranked[i])
F.rep[i] <- 1 - exp(-lambda*time.rep.ranked[i])
diff.obs[i] <- pow(F.obs[i] - (2*i-1)/(2*N), 2)
diff.rep[i] <- pow(F.rep[i] - (2*i-1)/(2*N), 2)
}

lambda ~ dgamma(0.0001,0.0001) #Diffuse prior for exponential parameter
CVM.obs <- sum(diff.obs[])
CVM.rep <- sum(diff.rep[])
p.value <- step(CVM.rep - CVM.obs) #Small value indicates problem with exponential likelihood
}

data
list(time.supp=c(1.7 ,1.8, 1.9, 5.8, 10.0, 11.3, 14.3, 16.6, 19.4, 54.8), N=10)

suppression rate data.odc
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Are Times Exponential?

• Run 100,000 samples with 1,000 burn-in iterations and 
monitor mean of p.value node

• Value of 0.62 indicates no significant deviation from 
exponential distribution
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Are Times Exponential?

• Example:  LOSP recovery times in hrs.

0.2, 37.3, 0.5, 4.3, 80.1, 13.3, 2.1, 3.7, 8.2, 2.8
n = 10

• Run WinBUGS again with these data

– Smaller p.value suggests exponential distribution 
may not be adequate aleatory model
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Testing for Population Variability in p

• Recall EDG FTS data 
from earlier

• Side-by-side plot of 
credible intervals 
suggested there is 
variability in p

– Simple binomial model 
then not appropriate

• Can we quantify this with 
a test?

• Yes!

Failures Demands

Plant 1 0 140

Plant 2 0 130

Plant 3 0 130

Plant 4 1 130

Plant 5 2 100

Plant 6 3 185

Plant 7 3 175

Plant 8 4 167

Plant 9 5 151

Plant 10 10 150
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Testing for Population Variability in p

• Will use Bayesian analog of chi-square statistic, along with 
posterior predictive distribution for X, via WinBUGS

1. Specify binomial model for X

2. Diffuse prior for p to eliminate prior sensitivity

3. Generate replicate values from posterior predictive distribution 
for X, with estimate of p based on pooled data

• What we would expect to see if all p’s are equal

4. Calculate observed and replicate chi-square statistics

• Compares what we see to what we would see, on 
average, if all p’s are equal

5. Is difference significantly different from 0?

• Yes  variability
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Testing for Population Variability in p

Bayesian chi-square test for EDG FTS.odc

model  {
for (i in 1 : N) {

x[i] ~ dbin(p[i], n[i]) #Binomial model for X
p[i] <- p.constant #All sources have same p
x.rep[i] ~ dbin(p[i], n[i]) #Replicate from posterior predictive distribution
diff.obs[i] <- pow(x[i] - p[i]*n[i], 2)/(n[i]*p[i]*(1-p[i])) #Difference between observed 

and expected x
diff.rep[i] <- pow(x.rep[i] - p[i]*n[i], 2)/(n[i]*p[i]*(1-p[i])) #Difference between 

replicated and expected x
}

chisq.obs <- sum(diff.obs[])
chisq.rep <- sum(diff.rep[])
p.value <- step(chisq.rep - chisq.obs) #Value should be near 0.5 for homogeneous data
p.constant ~ dbeta(0.5, 0.5) #Jeffreys prior for p
}
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Testing for Population Variability in p

• Run program with EDG FTS data

– Let WinBUGS generate initial values

• Monitor mean of p.value node

– Small value indicates data nonhomogeneous population
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Testing for Population Variability in p

• p.value is small

– Analogous with frequentist p-value

• Strong evidence of variability in p

– Simple binomial model inadequate

• p not the same for all EDGs

– Need more complex model describing variation in p

• More complex model covered in Section 5
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Testing for Population Variability in 

• Another example:  LOSP frequency

Plant Failures Time (yrs)

Plant 1 2 15.986
Plant 2 1 16.878
Plant 3 1 18.146
Plant 4 1 18.636
Plant 5 2 18.792
Plant 6 0 18.976
Plant 7 12 18.522
Plant 8 5 19.04
Plant 9 0 18.784
Plant 10 3 18.868
Plant 11 0 19.232
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Testing for Population Variability in 

• Earlier plot of credible intervals suggested variability

• Again, use Bayesian version of chi-square statistic 
based on replicates from posterior predictive distribution
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Testing for Population Variability in 

model {
for (i in 1 : N) {

mu[i] <- lambda.losp[i] * time[i] #Poisson parameter for each plant
x[i] ~ dpois(mu[i]) #Poisson dist. for events at each plant
lambda.losp[i] <- lambda.const #Constant value for lambda
x.rep[i] ~ dpois(mu[i])
diff.obs[i] <- pow(x[i] - mu[i], 2)/mu[i]
diff.rep[i] <- pow(x.rep[i] - mu[i], 2)/mu[i]
}

chisq.obs <- sum(diff.obs[])
chisq.rep <- sum(diff.rep[])
p.value <- step(chisq.rep - chisq.obs) #Value should be near 0.5 for homogeneous data
lambda.const ~ dgamma(0.5, 0.0001) #Jeffreys prior
}

Bayesian chi-square test for losp frequency.odc
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Testing for Population Variability in 

• Results

• Strong evidence of plant-to-plant variability



9-39

Model Selection via BIC and DIC

• Previous portions of this section examined goodness-of- 
fit in absolute sense, using posterior predictive 
distribution, and summary statistics derived from it

• Can also examine relative fit of candidate models

• Various information criteria have been proposed to help 
with this task

1. Bayesian Information Criterion (BIC)

2. Deviance Information Criterion (DIC)

• Both of these are based on Akaike Information Criterion 
(AIC)
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Basic Form of Information Criteria

• BIC, DIC, and AIC all have same general form:

• Choose model with smallest IC

  )(|(log2 kgtfIC  


Deviance Penalty function
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Bayesian Information Criterion (BIC)

• Uses g(k) = klog(n), where k is number of unknown 
parameters and n is number of observations (data 
points)

• Recommended by some for comparing nonhierarchical 
models

• Not calculated by WinBUGS directly, but easy to include 
in script



9-42

BIC Example

• Example:  LOSP recovery times in hrs.

0.2, 37.3, 0.5, 4.3, 80.1, 13.3, 2.1, 3.7, 8.2, 2.8

n = 10

• Earlier Bayesian goodness-of-fit test gave Bayesian p- 
value of 0.17 for exponential model

• Use BIC to compare exponential and Weibull model

– Use diffuse priors on all parameters so that focus is 
on aleatory model rather than prior distributions
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BIC Example
model {

for(i in 1:N) {

# time[i] ~ dexp(lambda) #Exponential aleatory model

#Exponential log-likelihood components

# log.like[i] <- log(lambda) - lambda*time[i]

time[i] ~ dweib(beta, lambda) #Weibull aleatory model

#Weibull log-likelihood components

log.like[i] <- log(lambda) + log(beta) + (beta-1)*log(time[i]) - lambda*pow(time[i], beta)

}

lambda ~ dgamma(0.0001, 0.0001)

beta ~ dgamma(0.0001, 0.0001)

log.like.tot <- sum(log.like[])

#Exponential model

#BIC <- -2*log.like.tot + log(N)

#Weibull model

BIC <- -2*log.like.tot + log(N)*2

}

BIC example.odc
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BIC Example

• Results

– Exponential BIC = 77.8

– Weibull BIC = 76.5

• Slight preference for Weibull model over exponential

• Caveat:  BIC measures relative model fit

– All models being considered could be poor in 
absolute sense
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Deviance Information Criterion (DIC)

• Take average deviance over posterior:

– Dbar is automatically monitored by WinBUGS node called 
“deviance”

• DIC = Dbar +pD

– pD is effective number of parameters

– pD = Dbar – Dhat

• Dhat is deviance evaluated at posterior mean of 
parameter(s)

• Recommended by some for comparing hierarchical models

– In our experience, can use DIC with simple models, too

 


dttfDbar )|()|(log[2 1
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Deviance Information Criterion (DIC)

• DIC (and even pD) can be negative in some cases

– DIC negative when density function is > 1

• Smallest DIC still indicates best fitting model

– Example:  three models with DICs of 10, -3, -9

• Third model, with DIC = -9, is best fit

– If pD is negative, cannot use DIC

• DIC is measure of relative goodness of fit

– Model with smallest DIC can still be poor fit
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Using DIC to Explore Model Fit

• Run exponential model first

• Do run of 100,000 samples to estimate  (burn in of 1,000)

• Results

• Now select “DIC” from “Inference” menu
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Using DIC to Explore Model Fit

• Set DIC, then run 100,000 more updates

• Results for exponential model:

• Repeat for other possible models
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Using DIC to Explore Model Fit

• Weibull

–  < 1  decreasing recovery rate

– DIC < DIC for exponential model
• Weibull is better fit
• Consistent with results from BIC
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Exercises

1. The table below shows successful launches/launch 
attempts for a series of launch vehicles developed after 
1980.

Vehicle Outcome

Pegasus 9/10

Percheron 0/1

AMROC 0/1

Conestoga 0/1

Ariane-1 9/11

India SLV-3 3/4

India ASLV 2/4

India PSLV 6/7

Shavit 2/4

Taepodong 0/1

Brazil VLS 0/2
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Exercises

1. Continued----
a) Using a binomial aleatory model for the number of successes 

for each vehicle, is a common success probability (i.e., no 
vehicle-to-vehicle variability) a reasonable choice?  Use 
Bayesian p-value to answer this question.

b) Let the success probability vary from vehicle to vehicle 
according to a beta distribution with parameters K and K(1 - 
), where  is the expected success probability before any data 
are observed, and K controls the dispersion of the population 
variability distribution.  Model this in BUGS using a beta(0.5, 
0.5) hyperprior for  and a gamma(5, 1) hyperprior for K.  Find 
the posterior mean and 90% credible interval for success 
probability of a future launch.  How does the Bayesian p-value 
for this model compare with the constant model above?  Has 
the marginal posterior distribution for K been affected much by 
the observed data?  What might this suggest about sensitivity 
studies for the hyperprior on K?
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Exercises

2. The following projector lamp failure times (in hours) have 
been collected:  387, 182, 244, 600, 627, 332, 418, 300, 
798, 584, 660, 39, 274, 174, 50, 34, 1895, 158, 974, 345, 
1755, 1752, 473, 81, 954, 1407, 230, 464, 380, 131, 1205.

a) The vendor has provided an estimate of the mean time to 
failure (MTTF) for the lamp.  This estimate is 1000 hours.  
Use this value to develop a prior distribution for the lamp 
failure rate, assuming the time to failure is exponentially 
distributed.

b) Compare the posterior distribution for the failure rate with 
this prior to what would have been obtained using the 
Jeffreys noninformative prior for the failure rate.
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Exercises

c) Use a Weibull aleatory model for the failure time, 
with diffuse priors on the Weibull parameters.  What 
is the posterior probability that the Weibull shape 
parameter exceeds 1?  What does this suggest 
about the viability of the Weibull model compared 
with the exponential model?

d) Use BIC and DIC to compare exponential, Weibull, 
and lognormal aleatory failure time models for the 
lamp.
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