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Course Qverview

e P-502 is a follow-on to P-102

— Assumes you have had P-102 or equivalent background in
Bayesian inference for risk assessment

* No test

Major topics (may not cover all topics)
— Bayesian networks introduction

— Models for recovery and repair

— Models for population variability

— Uncertain or fuzzy data

— Time trends

— Mixture priors

— Model checking

—e
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Course Qverview

e Course philosophy (or lack thereof) can be summed up in two
ways:

1. “Shut up and calculate.” — David Mermin, describing the
Copenhagen interpretation of qguantum mechanics.

2. “Stop petting the mule and load the wagon.” — Abraham
Lincoln

* Primary tool is WinBUGS
— Implements Markov chain Monte Carlo (MCMC) sampling

—e
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Loss of Offsite Power (LOSP)
Example

« The “LOSP example” was used as a central example throughout
most of the P-102 course

— We will refer to this example at times in P-502

* A system uses offsite power, but has two standby emergency
diesel generators (EDGS)

* QOccasionally offsite power is lost (an “initiating event”)
— When this happens the EDGs are demanded to start and run.
 The system

— Succeeds if either EDG starts and runs for six-hour mission
time

— Fails otherwise

S~
1
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LOSP Example

A PRA will have an event tree representing the

scenario

— Fault tree will represent the diesel generator failures

Diesel Generator
System Success

Loss of
Offsite Power

Diesel Generator
System Failure

7\'LOSP

Poc
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The Diesel Generator
System Fails

DG_SYSTEM

Diesel Generator

D:D
T -
1 £,
@

Diesel Generator
A Fails To Start

O)

DG-A-FTS

Diesel Generator
A Fails To Run

O

DG-A-FTR

Diesel Generator
B Fails

D

Diesel Generator
B Fails To Start

O

DG-B-FTS

Diesel Generator
B Fails To Run

“i |daho National Luboruroi ‘ i

O

DG-B-FTR




The Minimal Cut Sets

LOS
LOS
LOS
LOS

D*DG-A-F-
D*DG-A-F”
D*DG-A-F

S*DG-B-FTSor
'S*DG-B-FTRor
"R*DG-B-FTSor

D*DG-A-F”
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Recovery of Offsite Power

 Core damage can be averted if offsite power is
recovered

e Assume traditional engineering analysis shows...

— Recovery must occur by six hours to avert core
damage

 Append nonrecovery event to minimal cut sets

— This represents probability that offsite power is not
recovered within six hours

S~
1
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Recovery of EDG

e Itis possible that a failed EDG can be recovered in
time to prevent reaching an undesired end state

e Assume recovery must occur within two hours after
second EDG fails

« Append nonrecovery event to cut sets
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Recovered Cut Sets

LOSP*DG-A-FTS*DG-B-FTS*OSP-NONREC*EDG-NONREC or
LOSP*DG-A-FTS*DG-B-FTR*OSP-NONREC*EDG-NONREC or
LOSP*DG-A-FTR*DG-B-FTS*OSP-NONREC*EDG-NONREC or
LOSP*DG-A-FTR*DG-B-FTR*OSP-NONREC*EDG-NONREC

—e
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Section 2: Introduction to Bayesian
Networks and WinBUGS

 What are Bayesian networks and why are they useful?

» Bayesian networks allow “math-free” analysis of complex problems
— Formulates problem as graphical model
— Lessens mathematical burden on the analyst
— Allows easier communication with non-specialists

— Analogy from physics: two approaches to calculating interaction
amplitude in quantum field theory (e.g., electron-electron
Scattering):

1. Explicit path integral formulation, solved by perturbative
expansion of integral

2. Draw Feynman diagram for each term in expansion and apply
rules to calculate amplitude

— “Feynman [diagrams] brought quantum field theory to the masses.”
Julian Schwinger

8
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Introduction to Bayesian Networks and
WIinBUGS

* Networks are new way of representing old (simple) problems
and allow easy analysis of new (complex) problems

* Network representation of Bayes Theorem

L(E|8)P.(6)
2 — 0
ROIE) [L(E|0)P,(0)d0

L(E|0)

T T

Observed
Value of E

- Prior P,(0)
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Why WinBUGS?

» Tool tailored for numerical analysis of Bayesian networks

« WIinBUGS (OpenBUGS) is standard tool for Bayesian inference in

wider statistical community

— "WinBUGS...has become the most popular means for numerical
investigation of Bayesian inference.” Bayesian Statistics, An

Introduction, 3rd Edition, by Peter Lee

« WinBUGS is free, open-source software
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Why WinBUGS?

o WIinBUGS is flexible, allowing new problems to be solved as they

arise
— Some tension between flexibility and ease of use

— Batch mode operation possible for routine problems

-



Prior Distributions for LOSP Example
(from P-102 Course)

 A,0sp~9amma(1.58, 43.96 reactor-critical years)

— From “Reevaluation of Station Blackout Risk at Nuclear Power
Plants: NUREG/CR-6890, December 2005

— Above result is composite from several subtypes of LOSP event
* Pers~ beta(0.957, 190)

— From S. A. Eide, “Historical Perspective On Failure Rates for
US Commercial Reactor Components,” Reliability Engineering
and System Safety, 80 (2003), pp. 123-132

e Arpr~gamma(1.32,1137 hrs)
— From Eide (2003)
— Above result is composite of two rates

P |
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LOSP Example Data

The observed number of LOSP events over a period of
time

— 1 initiating event in 9.2 operating years

The observed number of failures out of a number of
demands

— 1 failure to start in 75 demands

The observed number of failures in an observed total
operating time

— O failures to run in 146 running hours

1. Idaho National Laboratory
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Summary of Bayesian Estimates for
LOSP Example

Parameter | Distribution | Point Est. 90% Interval
(Mean)

A osp Industry Prior | 3.6E-2 yr-' | (4.6E-3, 9.2E-2) yr -’
Posterior 4.96-2 yr-" | (1.1E-2, 1.1E-1) yr -7

Prrs Industry Prior | 5.0E-3 (2.3E-4, 1.5E-2)
Posterior 7.4E-3 (1.3E-3, 1.8E-2)

Aerr Industry Prior | 1.2E-3 hr-" | (1.1E-4, 3.2E-3) hr -’
Posterior 1.0E-3 hr-' | (9.6E-5, 2.8E-3) hr T

Posterior credible intervals generally shorter than those from data alone
(i.e., confidence interval) or prior alone (prior credible interval)

.
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Bayesian Network Model for LOSP Initiating
Event

» Also referred to as directed acyclic graph (DAG)

— DAG shows relationship of nodes (what influences
what)

— Oval represents stochastic node
— Rectangle represents constant node
— Arrows illustrate influence (“flow of information”)

ambda.losp

FEYTS

P |
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Introduction to WinBUGS Package

BUGS = Bayesian inference Using Gibbs Sampling
Freely available software, download from

http://mathstat.helsinki.fi/openbugs/
Source code available in Pascal (called OpenBUGS)

Simulates posterior distribution directly using Markov
Chain Monte Carlo (MCMC) sampling (covered later)

—
g
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Introduction to WinBUGS

« WinBUGS script (program) has four parts:
— Model section
— Data
— Inits (initial values for model parameters)
— Comments
» Anything preceding model section or set off with #
o Scriptis compiled to process model and associated data

i
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Example WinBUGS Script (LOSP update.odc
In BUGS folder)

 LOSP frequency from example problem

— Industry prior is gamma(1.58, 43.96 yr)

— Data: 1 eventin 9.2 yr
Script to update LOSP frequency

model {

losp ~ dpois(mu) #Poisson distribution for number of LOSP events
mu <- lambda.losp*rx.yrs #Parameter of Poisson distribution

lambda.losp ~ dgamma(1.58, 43.96) #Prior distribution for LOSP frequency
}

data
list(losp=1, rx.yrs=9.2)

P |
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Example WinBUGS Script (LOSP update.odc
In BUGS folder)

o Dissect the script

Model defined here between {}

Script to ygdate LOSP frequency

model {

losp ~ dpois(mu) #Poisson distribution for number of LOSP events

mu <- lambda.losp*rx.yrs #Parameter of Poisson distribution

lambda.losp ~ dgamma(1.58, 43.96) #Prior distribution for LOSP frequency
}

data
list(losp=1, rx.yrs=9.2)

Note observable event and model have same name

—
g
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Example WinBUGS Script (LOSP update.odc
In BUGS folder)

o Dissect the script

Script to update LOSP frequency

model {
losp ~ dpois(mu) #Poisson distribution for number of LOSP events
mu <- lambda.losp*rx.yrs #Parameter of Poisson distribution
lambda.losp ~ dgamma(1.58, 43.96) #Prior distribution for LOSP frequency

}
data \ WinBUGS “knows” that prior needs to be “updated”
list(losp=1, rx.yrs=9.2)

Data defined after list keyword

—
g
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Running the Example Script

* Double-click on “model”
o Select “Model — Specification” from toolbar:

53 winbugs
Fie Tools Edit Atfrbutes Info BissEN Nference Doodie Map  Text Window Examples Manuals  Help

Specification...
pdate..

{ Mornitor Met

= LOSP update

losp ~ dpois(mu et pution for number of LOSP events
mu <- lambda.lg RN generator.. neter of Poisson distribution
lambda.losp ~d st t 96) #Prior distribution for LOSP
frequency s G

} IMput/Cutput optons...

Compile options...
Update optons...

data -
’ Extarnalize
||St(|08p=1 , IXYT nternalize
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Running the Example Script

o Specification toolbox appears on screen:

E:ﬁ Specification Tool

[check rnodel ] load data

campile nurn of chains |

[ load init= ] for chain |-I EI

gen inits

e Select “Check Model”

— WinBUGS should report “model is syntactically
correct” (lower left corner of window)

“Ii ldaho National Lubo,rutori i‘ i



Running the Example Script

* Double-click ‘list” in the data portion of the script, then
select “load data”

— WinBUGS reports “data loaded”
o Select “compile”
— WinBUGS reports “‘model compiled”

* For such a simple model, we will let WinBUGS generate
initial values

— Select “gen inits”
 WinBUGS reports “initial values generated, model
initialized”

—
g
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Running the Example Script

» Close the specification toolbox
o Select “Inference — Samples” from the toolbar

& LOSP update

losp ~ dpois(mu) #Pois . on for number of LOSP events

mu <- lambda.losp™rx.y1 |~ er of Poisson distribution
lambda.losp ~ dgammaiT oo s 9o) #Prior distribution for LOSP
frequency

h

data
Mi(losp=1, rx.yrs=9.2)

i
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Running the Example Script

Type the variable name you want to monitor in the
‘node” box

Select 1,000 burn-in samples (will discuss later)
— Type 1001 in the “beg” box

% Sample Monitor Tool

node |

ambda.losp

percentiles

- chainsll 1J:||1
beg |1|:u:|1 end |1|:u:u:n:u:u:u:| thin |1 3

10
23
—diagnostics median
Clear set trace jurmp
stats density bgr diag history accept
coda gquaritiles auto car

i
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Running the Example Script

Click “Set” button
o Close Sample Monitor Tool

= LOSP update

o

O

D

—

. D
1 O
Lo N

)

Q

)

—

|

= C
1S
i % m
: ~
] CD\.
*

S

3

=

)

Lo 28

o

Q

o

Q

\

model { ‘ e

losp ~ dpois(mu) # —__ __ ibution for number of LOSP events
j meter of Poisson distribution

3.96) #FPrior distribution for LOSP

mu <- lambda.losp
lambda_ losp ~ dga
frequency l

H

Scripk

cata

ENlosp=1. rx.yrs=9.2)

i
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Running the Example Script

Update tool appears on screen
&4 Update Tool | KJ

updates |[QEIA] refresh (100

thir ||‘|7 iteration (|0

[ ] aver relax [ ] adapting

Enter number of samples

— 100,000 is typical for simple problems
Increase refresh from 100 to 1000 or 10000 to speed up sampling
Select “Update”

— WinBUGS reports “model is updating” and shows current
iteration

i
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Running the Example Script

» Close update tool when sampling is complete
 Re-open “Inference — Samples” from the toolbar
o Select ‘lambda.losp” from the list of monitored nodes
« Select the desired percentiles from box on right

— Check 5, 50t and 95", by holding down Ctrl key

« Select “density” to get graph of posterior density
L OX

A

T T T T
0.0 01 0.2 0.3
larnbda.losp

P(lambda.losp)
0.0 10.0

)

. Idaho National Laboratory
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Running the Example Script

o Select “stats” to get posterior mean and percentiles

Node statistics |_ ||D||X|
mean sd MC_error val5.0pc median  val95.0pc start sample b
lambdalosp 0.04838  0.0302 943E-5 001145 004228 01064 1001 59000 =

 Compare with results from P-102

Parameter | Distribution Mean 90% Interval

AL osp Posterior 4.96-2 yr-" | (1.1E-2, 1.1E-1) yr -7

I .. [daho National Laboratory 9.99




Bayesian Model for EDG FTS

* Recall aleatory model for number of EDG failures is
binomial distribution

— Unknown parameter is pgrg
— DAG model

i
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WInBUGS Script for EDG FTS

model {
x.fts~ dbin(p.fts, n.fts) #Binomial distribution for number of failures
p.fts ~ dbeta(alpha, beta)#Beta prior for p.fts

}

Data
list(x.fts=1, n.fts=75 alpha=0.957, beta=190)

Beta-binomial update.odc

i
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Conjugate Prior Exercises with BUGS

1.

2.

An analyst proposes a gamma(0.1, 100 Rx?/r) prior
distribution for small LOCA. Using BUGS, find the
posterior mean and 90% interval based on 0 small
LOCAs in 2,276 Rx-yrs.

Assume that failures to start of a diesel can be

described by a binomial distribution with probability of
failure on demand, p.

a) What is the constrained noninformative (CNI) prior if
we want the mean to be 0.0017?

b) Using the CNI prior from part (a), and 2 failures are
observed in 500 demands, use BUGS to find the
posterior mean and 95% credible interval for p.

2-25




Noninformative Priors with WinBUGS

Recall Jeffreys prior distributions from P-102
— Binomial model: beta(0.5, 0.5)

— Poisson model: gamma(0.5, 0)

— Exponential model: gamma(0, 0)

o [asttwo are not proper distributions

o Enterin WinBUGS as dgamma(0.5, 0.0001) and
dgamma(0.0001, 0.0001)

* Redo LOSP example problem from P-102 with Jeffreys
priors

—
g
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Nonconjugate Priors — Lognormal
Distribution

» (Generic databases often express uncertainty in terms
of lognormal distribution

o Experts often provide order-of-magnitude estimates,
represented well by lognormal distribution

* forthese or other reasons, we may prefer a
nonconjugate prior

P |
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Lognormal Distribution

Definition of a lognormal distribution:
— X is lognormal(u, 02) if In(X) is normal(u, 02)

Will encounter lognormal distribution in various areas of
risk assessment

— Often used as a prior distribution in PRA, even
though it is not conjugate

— Sometimes used as likelihood function (e.qg., LOSP
recovery time)

— Often used to model hazard (earthquake frequency)
%7?(?4 fragility (probability of seismic failure) in seismic

P |
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Facts About the Lognormal Distribution

 Median of X is e¥

e Mean of Xis exp(u + c%/2)

« Variance of X is (mean)?[exp(c?) — 1]

o Error factor (EF) is defined as e-6¢450

» Other ways to write EF (applies only to lognormal)
« EF = 95th/50th = 50th/5th = (95th/5th)1/2

Pr(X£x)=CD(InX_uJ
o

where @ is tabulated in HOPE, Appendix C
— Can also use =LOGNORMDIST(x, u, o) in Excel

i
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Facts About the Lognormal Distribution

 Lognormal distribution is determined (in general) by
— uand o? (or t=1/c?)
— Median and mean
— Median and variance
— Mean and variance
— Median and EF
— Mean and EF
« SAPHIRE uses mean and EF

i
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Example Problem with
Nonconjugate Prior

» Interested in failure on demand for standby pump

« (Generic database represents uncertainty in p via
lognormal distribution with

— mean of 0.003

— error factor of 10
 Observe 0 failures in 36 demands
 Whatis posterior mean of p?

P |
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WIinBUGS Example with Nonconjugate Prior

» Generic prior is lognormal with mean = 0.003 and EF = 10
» Data is O failures in 36 demands

model {

mdp.fts ~ dbin(p.fts, n.fts) #Binomial distribution for number of failures
p.fts ~ dlnorm(mu, tau) #Lognormal prior for p.fts

sigma <- log(EF)/1.645 #Solve for lognormal parameter, given EF

tau <- pow(sigma, -2) #Lognormal parameter required by WinBUGS

mu <- log(prior.mean) - pow(sigma, 2)/2 #Solve for other lognormal
parameter, using prior mean

}

data
list(mdp.fts=0, n.fts=36, prior.mean=3.E-3, EF=10)

P |

4 : : binomial-lognormal-update.odc
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DAG Model




WIinBUGS Example with Nonconjugate
Prior

* Run this model with 100,000 samples (1,000-sample
burn in)

— Posterior mean of p.fts = 0.0022
o« Compare with 0.0022 using Gaussian quadrature
— Posterior 90% interval is (1.1E-4, 7.9E-3)

i
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BUGS Exercises with Nonconjugate
Priors

1. A prior for A is taken as lognormal with a mean of
0.04/yr and an EF of 2.

a) Find the 5" and 95" percentiles of this prior
distribution.

b) If 2 events are seen over a 7-yr period, update the
prior distribution to find the posterior mean of A.

c) What is the probability of seeing 2 or more events in
the next 7 years? (InStructor-led)

2. The prior distribution for component unreliability on
demand is log-uniform. That is, the logarithm (base 1
of the failure probability is uniformly distributed, in this
case between -4 and -1. If 1 failure is observed in 119
demands, find the posterior mean and 90% interval of
the unreliability.

2-35




BUGS Exercises with Nonconjugate
Priors

3. A system has two redundant motor-driven /oumps, each of which

fails on demand with prior median probability 0.01 and upper
bound probability 0.05, and a turbine-driven pump, which fails on
demand with prior median probability 0.03, and upper bound
probability 0.08. The motor-driven pumps each can supply 50% of
the system needs, and the turbine-driven pump can supply 100%
of the system needs. Assume that each pump fails independently
of the others. Assume that the epistemic uncertainty in each

pump’s failure probability is lognormally distributed.

a) Write the expression for failure of the system, in symbols.
Caution: think about state-of-knowledge correlation.

b) What is the mean 1probagbility that the system fails on demand
if there has been 1 turbine-driven pump failure in 28 demands
and 0 motor-driven pump failures in 64 demands?

c) What is the 95" percentile (upper bound) of this probability?

2-36




Miscellaneous BUGS Exercises

1. Pipes are designed to contain pressurized fluid. Let Pr
denote the pressure at which a pipe fails. This failure
pressure is treated as random, corresponding to
variability in the strength of pipes. Assume that Pr is
lognormally distributed, with median = 975 psig and o =
0.4. If a pipe experiences a pressure of 1200 psig,
what is the probability that the pipe fails? Repeat the
above problem, but now model the system pressure (to
which the pipe is exposed) as being normally
distributed with a mean of 1200 psig and a standard
deviation of 100 psig.
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Miscellaneous BUGS Exercises

2. A diesel generator is required to have a failure
probability (on demand) of 0.05 or less. The facility
PRA has estimated the failure probability as being
beta-distributed with a mean value of 0.027 and = 54.
If we observe 3 failures in 27 tests of the EDG, what is
the probability that this criterion is met?

3. A licensee is updating the initiating event frequency for
loss of turbine-building cooling water. Their prior
distribution is lognormal with a mean of 0.02/yr and an
error factor of 10. They have observed no losses in
27.5 Rx-yrs. Carry out the update and find the
posterior mean and 90% interval.

2-38




Miscellaneous BUGS Exercises

4. In 60 demands of an AFW turbine-train, there were two
failures to start. The unknown parameter of interest is
p = Pr(failure to start). Assume a beta prior distribution
for p, with « = 0.6 and = 10.2. What is the posterior
mean? Find the 5" and 95" percentiles of the posterior
distribution.

5. In 20 reactor-calendar years (17.3 reactor-critical
years), there were 2 initiating events involving total loss
of feedwater flow. The unknown parameter of interest
is A, the frequency of events per reactor-critical year.
Assume a gamma prior distribution for A, with o = 0.8
and = 10.6. Find the posterior mean and 95%
credible interval for A.

2-39




Common-Cause Failure

e Observe N failures in component group of size k
* n, involve one component, n, involve 2, efc.

Zk:nizN

i=1

* In alpha-factor model, failure counts have
multinomial distribution with (vector) parameter a

az(al,az,...,ak)

i

“ ilduhn National Luborutorl i ii



Common-Cause Failure

» Conjugate prior for a is Dirichlet(0)

6=6,.0,,...,6,)

* In equation form:

k
(Zni)! )
f@ny,.in @) =—F—]a;
Hni! i=1
i=1
k
F(ZQZ) k
7[0(&)2 - i=1 Hafi_l
[Ir@) -
N i=1



DAG Model




CCF Example

* Group of size 3, n, =200, n, =95, n; =1
» Usual noninformative prior is Dirichlet(1, 1, 1)
— Muiltivariate analog of uniform distribution
— Mean of each alpha-factor is 0.5
» Find posterior mean and 90% interval for alpha-factors

“ ilduhn National Lubomrorl i ii



CCF Example

« BUGS script

model {

n[1l:groupsize] ~ dmulti(alpha[l:groupsize], N)
N <- sum(n[1l:groupsize])

alpha[l:groupsize] ~ ddirch(theta[])

theta[l] <- 1

theta[2] <- 1

theta[3] <- 1

}

data
list(n=c(200, 5, 1), groupsize=3)

Basic multinomial script.odc




CCF Example

e Results

Node statistics

mean sil

alphal1] 0.9618 00132

MC_error vals.0pc  median
4 22RE-5 089378 09632
alphalZ] 002865 001148  3.6958E-5% 001267 002719
alphal3] 0.009572 0.006721

2.004E-5 0001711 0.00807

val9h.0pc stant sample

0.49807
0.0446
0.0225

2
5

1001 100000
1001 100000
1001 100000

Eﬂ Posterior density

|daho National La
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alphal3] sample: 100000

AN

T T T
-002 00 002 004 006
alphal3]

Plalphal2])
0.0 200 400

alphal2] sample: 100000

AN

1
oo n.0s oA
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Section 3. Introduction to Markov Chain
Monte Carlo Sampling (the Gee in BUGS)

e Biggest problem in Bayesian inference is denominator
of Bayes’ Theorem

— Multidimensional integral in multiparameter problems
— Very hard to do, BCE’

— Very easy (and cheap!? to do now, but can be
hazardous to your health!

« MCMC sampling works by generating a sample directly
from the posterior distribution

— MCMC is not medieval mathematics!

*
BCE = Before Computer Era

8
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Basic Premise of MCMC

« Draw samples by running Markov chain constructed so that chain
converges to joint posterior distribution

Markov chain

— Sequence of random variables X, X, X,, ...
— Distribution of X_,, depends only on X (Markov property)

— After enough “time” (burn-in period), samples converge to stationary
distribution (under certain regularity conditions)

« Chain “forgets” its initial state
« Stationary distribution is posterior distribution of interest

« Can use samples taken after convergence (i.e., after “burn-in”) to
estimate parameters of interest

— Various methods exist to construct f(x,,|X,)
 Called ‘transition kernel”

. ldaho National Laboratory 3.2




Gibbs Sampling

 We want a sample from joint posterior distribution:
9(6, 6,..., 6,|x)
* Suppose we can sample from g(&4|4, x; 1 #])

* Under certain conditions, these samples can be used to

construct a sample from g(4,, 6,,..., €;|x) and from any
marginal distribution g(&|x)

i
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Example of Gibbs Sampling — Two
Variables

 Let X ~ binomial(n, p), p ~ beta(e, p) (e, S known)
— Familiar conjugate model for FTS
* Suppose we want Pr(X=x), not conditional upon p
o f(x|p) is binomial(p, n) — usual likelihood function
o f(p|x) is beta(a + x, §+ n — X) — posterior distribution
« Start with initial value p,, sample x, from binomial(p,, n)
« Sample p, from beta(a + X,, S+ N —X,)
e Sample x, from binomial(p,, n)
« Sample p, from beta(a + X, f+ n—X,), etc.
« Eventually, for large enough k, x, ~ f(x) = Pr(X = x)

. Idano National Laboratory
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Example of Gibbs Sampling — Three
Variables

* In previous example, can write f(x) analytically, so
do not really need Gibbs sampling

« What if number of demands, n, is uncertain?

— Model n with Poisson distribution: n ~ Poisson(w)
 Now cannot write f(x) analytically
o Can write conditional distributions

— f(X|p, n) is binomial(p, n)

— f(p|x, n) is beta(a + X, f+ N —X)

oo [P
(N —Xx)!

— f(n|x,p) <

—
g

. |daho National Laboratory 3.5




Example of Gibbs Sampling — Three
Variables

 Start with initial values p, and n,

e Sample x, from binomial(p,, n,)

e Sample p, from beta(a + x,, f+ n, —X,)
e Sample n; from f(ny|X,, P,)

« Sample x; from binomial(p,, n,), etc.
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Extensions to Gibbs Sampling

o Gibbs sampling requires knowing all conditional distributions

« Adaptive rejection sampling is more general form of Gibbs
sampling

— Only requires function proportional to conditional
distribution

* Works when conditional density is log-concave
e Widely used in WInBUGS
e Other types of MCMC
— Metropolis-Hastings sampling
— Slice sampling

. Idano National Laboratory 3.7




Metropolis-Hastings Sampling

o Useful when conditional distributions are not available,
so Gibbs sampling won’t work

o Starts with proposal distribution, which is often normal
* Proposal density, p(X, y)

— When chain is at point X, a value y is generated from
p(X, y)

o If p(X,Yy) Iis “reversible”. #(X)p(x,y) = ay)p(y, X), then =
IS desired stationary distribution and we’re done

— Usually, this is not the case

.
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Metropolis-Hastings Sampling

— What we usually find is that process moves from x to
y too often and from y to x too rarely:

* (X)p(X, y) > 2y)p(y, X)
e Correct for this by introducing probability a(x, y)

— Probability of moving from x to y

”mm{zmp(y,x) .
a(x,y)=-:

r(x)p(x,y)’ } 7(x)p(x,y) >0
1, otherwise

i
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Metropolis-Hastings Sampling

e Some remarks about a(X, y):
— Don’t need to know 7 )
e Appears in both numerator and denominator
— Depends on proposal density (more in a second)

— If candidate value is rejected, chain stays at current
value

— If proposal density is symmetric, probability of move
reduces to z(y)/z(x)

1. Idaho National Laboratory 3-10




Metropolis-Hastings Sampling

e Summary of M-H algorithm:
1. Repeatforj=1,2,...,n
2. Generate y from p(x%, ¢) and u from unif(0, 1)
3. fu<a((xW,y)
e Setxith =y
— Else
e Set x0+1) = x0)
— Return values {x, x®@ ... xM}

“ ilduhn National Labomiari i “



Metropolis-Hastings Sampling

Conditions for convergence (regularity conditions)
— Markov chain must be irreducible and aperiodic

« Must be able to move from x to y In finite number
of steps with nonzero probability

« Number of moves required is not a multiple of
some integer

— Conditions satisfied if proposal density is nonzero on
same support as 7(e)

— Usually also satisfied by density with restricted
support

« Uniform distribution around current point

8
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Metropolis-Hastings Sampling

 Choosing proposal density
— Often use normal distribution
— Many other choices exist

— Care must be taken in “tuning” the proposal density
location and spread as the sampling progresses

* Note that Gibbs sampling is Metropolis-Hastings
sampling with an acceptance rate of 1.0

— Gibbs sampling is more efficient when all the
necessary conditional distributions are available

« See paper by Chib and Greenberg in References folder
for more details

.
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Slice Sampling

* Metropolis-Hastings sampling can be very inefficient if
the rejection rate for moves is too high

« Various alternatives have been proposed
 WInBUGS makes much use of “slice sampling”

— See paper by Radford Neal in References folder for
all the detaills
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Slice Sampling

« Basic idea
1. Find function f(x) proportional to desired density

2. For current point, X, generate uniform sample, v,
from (O, f(x(@)

3. Define horizontal slice through this sample
e« Can use f1to do this

4. Draw new point, X, uniformly from this horizontal
slice

i
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Slice Sampling

 Example: slice sampling from normal distribution
1. Choose initial x, say x =0
2. Choose y uniformly from (0, @&(x))
3. Choose new x uniformly from [—ZIn(y\/ﬂ),ZIn(y\/ﬂ)J
4. Repeat

ﬂ“ ilduho Nationdl Lubmuioi ”i



Practical Issues for MCMC

MCMC is both art and science

Must choose initial values for sampling

— Best to pick value where posterior density is large
 MLESs often a good choice, if available

— Usually not an issue except for very complicated models

» Less complicated models will usually converge quickly even
with poor estimates

Samples values are dependent, measured by autocorrelation

— Dependence should decrease as distance between values (lag)
Increases

— High lag autocorrelation can mean chains not exploring full
range of posterior distribution

.
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Practical Issues for MCMC

 How to tell when Markov chain has converged
— How many samples needed for burn in?
— Has sampler obtained good coverage of posterior?
— How many samples needed for desired precision?

i
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How Many Samples for Burn In?

 Run multiple chains, starting at different points
* Look for good mixing of chains
— Poor mixing

alphal chains 1;2

100+
Tar
a0r
2ar
00r
-2ar

— Good mixing

nsf
oot
a5k i
1o}
st

T T T T
1M 200 400 G00
— teration

“ ilduho National Lubcmioi I “



Good Coverage of Posterior

 Run multiple chains, starting at widely dispersed points
In the parameter space

e Look for good mixing of chains

e Can check to see if plot of autocorrelation vs. lag
approaches 0 as lag increases

[<

E‘a Auto correlation

(|

— Less good:

mLl
=l
[T} L
£ _|||||||||||||||||||IIIIIII||||||||-..
8of

uto correlat
<10 00 1.0

1 1
0 a0
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How Many Samples After
Convergence?

 WInBUGS manual suggests running until Monte Carlo

error is 5% or less of sample standard deviation for
each parameter

 None of the three aspects of convergence tends to be a
problem for typical risk assessment models

— But do not forget about it!

P |

1. Idaho National Laboratory
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Convergence Diagnostics - BGR

* Brooks-Gelman-Rubin (BGR) statistic is implemented in
WIinBUGS

— Qverview

o Compares between-chain variance to within-chain
variance

— If chains have converged, all should have
same within-chain variance

— BGR ~1 indicates convergence

e Must run at least 2 chains to calculate BGR
statistic

. Idaho National Laboratory 3.92




Convergence Diagnostics - BGR

e Detalls
— Between-chain estimate Is green
— Within-chain estimate is blue
— Ratio (between/within) is red
» Ratio expected to start out > 1 and converge to 1
— Rule of thumb: R < 1.2 for convergence

 Also want between-chain and within-chain
estimates to be stable

« Double-click on BGR graph, then <Ctrl>-left click
gives values of R

. Idaho National Laboratory 3.93




Convergence Diagnostics - BGR

 Example

p.fts

B %\Y/\N’\
0 500

iteration

1.0

bgr diagnostic

0.0

* Indicates convergence

—_—y



Section 4: Models for Recovery and
Repair

* Recall from P-102 that simplest aleatory model for time as a
random variable is the exponential distribution

T ~exp(4)
 Unknown parameter is A, which is recovery rate in present context
s MTTR=1/A

» Data is series of times for recovery or repair, assumed to be
random sample from exp(A) distribution

» For Bayesian inference, need prior distribution for A
— Conjugate prior is gamma distribution
— Jeffreys prior is (improper) gamma(0, 0)
— Nonconjugate prior

. Idaho National Laboratory 4-1




DAG Representation

lambda

&>

forgi 1N 1 2 M)




WInBUGS Script

model {
for(iin 1:N) {
time[i] ~ dexp(lambda) #Exponential distribution for each time
}
lambda ~ dgamma(0.0001, 0.0001) #Jeffreys prior for lambda
MTTR <- 1/lambda
}
data
list(time=c (105, 1, 1263, 72, 37, 814, 1.5, 211, 330, 7929, 296, 1, 120, 1), N = 14)

inits
list(lambda=1.E-3)
list(lambda=5.E-3)

~e _ +.w  Exponential model.odc
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Results

E:ﬂ Mode statistics

mean s MC_error vals.0pc  median  val?5.0pc stant sample T'
MTTR g860.5 2479 0.75849 539.3 819.7 1320.0 1001 100000 El
lambida 00012582 3.35YE-4 1.018E-6 TAardE-4 000122 0001854 1001 100000 v

lambda sample: 100000

P(lambda)
500.0 1.0E+3 1500.0
0.0015
T

0.0 5.0E-4

0.0

0.0 1.0E+3 2.0E+3 3.0E+3
MTTR

T T T T
0.0 0.001 0.002 0.003 0.004
lambda
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What is Distribution of New Time, Given
Observed Times?

» The distribution for MTTR found previously describes
the uncertainty in the mean time to recovery/repair

» Distribution of new time is obtained by averaging over
the posterior distribution for A:

S [ ity) = jf new g(ty 1y )dA

o Called posterior predictive distribution
— Will use this extensively for model-checking
b .. Idaho National Laboratory 4.5



DAG Model for Predicted Time

farg 1M 1 M)




Results for Predicted Time

Eﬁ Mode statistics

mean si MC_error vals.0pc median  val95.0pc stan sample ;
MTTR 8597 247 4 0.78a7 540.0 818.2 1318.0 1001 100000 =
tpred 8594 §28.48 2728 4081 5698 26640 1001 100000 v

» Note wider uncertainty interval for t.pred

i
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Specifying a Model

 From experience, recovery time does not tend to be
exponential

— Recovery rate [h(t)] often decreases with time after
the initiator

o h(t) = f(t)/[1 - F(t)]
— Common models for non-constant recovery rate
o Weibull
« Gamma
e Lognormal

i
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Alternatives to Exponential Model

o T~Weibull(e, 1)

— f(t) = a A trTexp(-A t9)

— F(t) =1—-exp (-1 1%)

— E(T) = 2211 + 1/a)

— For a =1, reduces to exponential(/)

— Recovery rate is function of time
e h(t) = a A trT
 a <1 = h(t) decreasing with time
o> 1 = h(l) increasing with time

i
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Alternative Weibull Parameters

* Previous slide uses parameters defined for
WinBUGS, which were convenient for Bayesian
analysis in the days before MCMC

« Alternative parameterization uses = A", giving
— f(t) = (B)(UP)* "exp[-(t/H)]
- F(t) = 1-exp [-(Vp)]
— E(T) = pI(1 + 1/c)
— h(t) = (/P

P |
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Alternatives to Exponential Model

T ~gamma(a, )
. ) = ﬂata—le—,b’t

['(a)
E(T) = o/
For o =1, reduces to exponential([f)
Recovery rate is function of time
— Cannot be written in closed form
— a < 1 = h(t) decreasing with time
— a > 1 = h(t) increasing with time
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Alternatives to Exponential Model

T ~ lognormal(u, &)

0=t el = a)

* F(0) = o[(Int - )/o]
o E(T) =exp(u+ c%/2)
* Recovery rate is function of time

— Increases from 0 initially (often very fast), then
decreases, approaching 0 asymptotically

» Approach to 0 can be very slow
— Useful when early recoveries dominate

i
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Alternatives to Exponential Model

 Note that all alternatives considered have two
unknown parameters

— Weibull(a, A)
— Gamma(a, p)
— Lognormal(u, o) or Lognormal(u, 1)
» Need to specify joint prior distribution, e.q., g(u, 1)

i
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Specifying Joint Prior via Bayesian
Network
 Much effort was spent in the past developing

complicated joint prior distributions that reflected
correlation between two parameters

» With Bayesian network, we can specify independent
priors and not worry about this

— In Bayesian network, parameters are independent
until data is observed

— Posterior distribution will reflect proper dependence
between parameters

P |
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Example DAG for Lognormal Model

=

fori [N T My

-




Choosing Priors for pand t

 Will use independent priors
 Range of 1 is -coto o
e Range of ris 0 to
» [f prior information is available, can use this
* Noninformative priors are often used
— Do not use Jeffreys prior in this case

— Use Laplace (infinite uniform) prior or very diffuse
normal prior for u

— Use finite uniform prior for o

P |
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Choosing Priors for pand t

« Easier to think in terms of o= 705
— Recall that EF = e':%45c for the lognormal distribution

« o= 10 corresponds to EF > 107

model
{
for (iin 1: N) {
time.rec[i] ~ dinorm(mu, tau) #Lognormal model for recovery time
}

mu ~ dflat() #Diffuse prior for mu
sigma ~ dgamma(0.0001, 0.0001)
tau <- pow(sigma, -2)

}

LOSP durations.odc

|daho National Laborator



Running the Script

 We are interested in inference for two parameters, so
convergence is a concern

— Wil run two chains starting at different points
» Check history plots for mu and sigma
 Check BGR statistic

i
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Results

» History plots after 1,000 samples

mu
20 20 B0

T T T T
] 250 a0 780
iteration

Eﬂ History

Sgma
100

2.0

0.0

T T T T
0 250 00 750
teration




Results

 BGR plots after 1,000 samples

0] bgr diagnostic =[] _ -0 bgr diagnostic = (8]
, A _ _ A
o |muchains 12 — o | =igma chainz 12 —
& 1= | g | =]
] o
50 =X
E-| == g7 =
=] & [
oo Lol
= T T T T = 1 T 1
300 G600 gao 300 GO0 d0a
iteration iteration
) o




Results

o Discard first 1,000 samples for burn-in, run additional
100,000 samples to estimate u and o:

E:ﬁ Mode statistics :
mean sil MC_ermor vals.0pc median  val25.0pc start sample %

mu 4.097 0.8524 0004145 2704 4 0498 5.483 1001 200000 =
sigma 3118 065G 0002175 2237 3.013 4 356 1001 200000 3

zﬂ Posterior density \ _
- N
mu samgle; 200000 zigma zample: 200000 —
- —_ |:|:| | i
— [ ]
£ 3 G
o A
) =
(=1 =
= T T T T = T T T T T
-50 nn 50 npo 25 50 75 100
mu sigma
w
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Exercises

Use the data in “times-1.txt” in the BUGS folder for the
following questions.

1. Assuming an exponential aleatory model, and a
lognormal prior for A with a mean of 1 and error factor of
3, find the posterior mean and 90% interval for A.

2. Assume a lognormal aleatory model with independent,
diffuse priors on the lognormal parameters. Find the
posterior mean and 90% interval for A.

—
g
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Exercises

3. The file “EDG repair times.txt” in the BUGS folder
contains 18 repair times recorded when a single EDG
failed.

a) Find the posterior means of the parameters of a
Weibull aleatory model for these repair times. Use
independent, diffuse priors for the Weibull parameters.

b) Generate two, independent predicted repair times from
the posterior distribution. What is the mean and 90%
credible interval for each of these times?

c) Define a new variable that is the minimum of each of
the two times generated in part (b). What is the mean
and 90% credible interval for this minimum time?

8
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Section 5: Modeling Population
Variability
 Problem: what to do when information cannot be
pooled
— Across components
— Across plants
— Across time
— Across experts

 |nappropriately pooling information leads to
underestimation of uncertainty

i
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Example: Variability in A 5¢p

e Xiis number of LOSP events at Plant i in time t;

e Assume variablility in A 5p from plant to plant can be
modeled with a gamma distribution

¢ ﬂ’LOSP,I ~ gamma(Ol, m y I — 1, 2, R
* There are (n + 2) unknown parameters: 4, ogp i» @, B

* In past problems we specified « and £, and there was
only one 4, o5sp

— aand fare now uncertain

1. Idaho National Laboratory 5.9




DAG Model

timel] @

forgi 1M T M)




Another Representation of the Problem

Level 0: Hyperprior Level 1: Population variability
A
7 1,
e ;
A
| Population-variability distribution,
gile.f)

Level 2: Plant-specific data

Plant 1,4,,t, —= X, ~Poisson(i,,)
Plant 2, 4,, 1, —= X, ~ Poisson(i,t,)

Plant m, 4,, t, —= X_~ Poisson(4,1,)

i
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Hierarchical Bayes

* Previous approach is called “hierarchical Bayes”
— Bayesian approach is to specify prior in stages (hierarchies)
* First stage is gamma(e, p) prior for A ogp ;
» Second stage is joint prior 7z («, f)
— Called hyperprior
— a, pcalled hyperparameters

— Often use vague (noninformative) prior for
hyperparameters

» Two stages typical, but can model three or more
7,(2) =] m(zx |, )7, (e, f)dadp

~ Overall prior Second-stage

First-stage

. Idano National Laboratory prior ot 5.5




Example: Variability in LOSP Frequency

 Data
Plant Failures Time (yrs)

Plant 1 2 15.986
Plant 2 1 16.878
Plant 3 1 18.146
Plant 4 1 18.636
Plant 5 2 18.792
Plant 6 0 18.976
Plant 7 12 18.522
Plant 8 5 19.04

Plant 9 0 18.784
Plant 10 3 18.868
Plant 11 0 19.232

—e
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WInBUGS Model

model {

for (iin 1: N){
lambda.losp[i] ~ dgamma(alpha, beta) #Model variability in LOSP frequency
mean[i] <- lambda.lospJi] * timeJi] #Poisson parameter for each plant
x[i] ~ dpois(mean(i]) #Poisson dist. for events at each plant
}

lambda.ind ~ dgamma(alpha, beta)

alpha ~ dgamma(0.0001, 0.0001) #Vague hyperprior for alpha

beta ~ dgamma(0.0001, 0.0001) #Vague hyperprior for beta

}

data

Open "LOSP frequencies.txt"

inits
list(alpha=1, beta=1)
list(alpha=0.5, beta=5)

W= Hierarchical LOSP frequency.odc
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Results

Eﬂ Mode statistics

mean sil MC_error vals.0pc median  val95.0pc start sample a
alpha 0.98654 0891 001191 0.26949 0.761 2.388 1001 200000

Eﬂ Node statistics

mean sl MC_error vals.0opc median  val95.0pc start sample b
heta T h44 749z 0.0a47y  1.301 5733 14.88 1001 200000

Eﬂ Mode statistics

mean s MC_error vals.opc median  val95.0pc start sample a
lambda.ind 01744 4.9049 001105 9519E-4 0.08422 0837 1001 200000
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Results

caterpillar plot: lambda.losp

2]

3]

[4]

. "
. ]
———T 9]
——te—————— 110
———1 11
0.134
OI.O O.I25 OI.5 0.I75 1I.O

lambda.losp




Exercises

1. Analyze the pooled data using the Jeffreys prior and
compare the results to those from the hierarchical
model

2. Replace the gamma first-stage prior with a lognormal
distribution. Use a dflat() hyperprior for the first
parameter. For the second parameter, reparameterize
In terms of o and place a dunif(0, 10) hyperprior on o.

a) How do the mean and median of lambda.ind
compare to the previous results? Explain.

b) How do the 90% intervals compare.
c) Any conclusions about choosing a first-stage prior?

.
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Example: Variability in EDG FTS
Probability

Assume X; ~ binomial(pgrs ;, ny) for each EDG
Assume pgg ; ~ beta(a, f)
Assume « and g have independent, vague hyperpriors
— m(a, B) = m(e) ()
— Vague hyperprior is gamma with both

parameters << 1

i
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Variability in EDG FTS Probability
(cont.)

 Data

Data taken from Failures Demands

(Siu and Kelly, 1998)
Plant 1 0 140
Plant 2 0 130
Plant 3 0 130
Plant 4 1 130
Plant 5 2 100
Plant 6 3 185
Plant 7 3 175
Plant 8 4 167
Plant 9 5 151
Plant 10 10 150

i
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DAG Model

forgi 1M 1 My




WInBUGS Model

model {

for (iin 1: N){
x[i] ~ dbin(p.fts[i], n[i]) #Binomial dist. for EDG failures
p.fts[i] ~ dbeta(alpha, beta) #Beta prior for FTS probability
}

p.ind ~ dbeta(alpha, beta)

alpha ~dgamma(0.0001, 0.0001) #Vague hyperprior for alpha

beta ~ dgamma(0.0001, 0.0001) #Vague hyperprior for beta

}

inits
list(alpha=1, beta=25)
list(alpha=0.5, beta=75)

hierarchical EDG FTS probability.odc
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Results

Results for 100,000 samples (10,000 burn in)

E.d Mode statistics

! mean sl MC_error valbh.opc median  val95.0pc start sample "~

alpha 2.0848 4.69 01102 0.3235 1.087 6.0549 10001 200000 3

B8 Node statistics E
mean s MC_error vals.0pc  median  val95.0pc start sample e

heta 112.1 238.2 5837 1219 58.24 3326 10001 200000 3
5.3 Node statistics E
! mean s MC_error valb.0pc  median  val?25.0pc start sample b
p.ind 0.02088 002851 119E-4  3724E-4 001397 006395 10001 200000 3
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Results

* Results for 100,000 samples (10,000 burn in)

caterpillar plot: p.fts

1 [1]
————1 2
—_——1— [3]
—— [4]
[5]
* [6]
Yl
. €]
- [9]
- [10]
0.0187
OI.O 0.(I)25 0.I05 0.(IJ75 Ol.l

p.fts




Empirical Bayes

» Older approach but still widely used
« Data are used to estimate parameters of first-stage prior

— Prior should not depend on observed data, so this is a

criticism
— Does not directly include uncertainty in parameters
« Approximations can be used for this

— Prior then updated, with same data used to estimate prior
« Can be viewed as approximation to hierarchical Bayes
 Widely used in analyses for NRC (e.g., NUREG/CR-6928)
« Can be used to estimate initial values for hierarchical Bayes

.. Idaho National Laboratory 5.17



Empirical Bayes

How it works:
1. Specify first stage prior
a) Gammal(a, p) for Poisson data

b) Beta(o, ) for binomial data
2. Write down marginal likelihood

3. Find values of a, fthat maximize marginal likelihood

4. Update prior with observed data (yes, data are used
twice)

i
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Empirical Bayes

 Can use Excel to do empirical Bayes

— Need to get Excel to calculate natural logarithm of
marginal likelihood

 Done via Visual Basic macro

— Use Solver to find alpha and beta that maximize
natural logarithm of marginal likelihood

— Can also find so-called Kass-Steffey adjustments to
address parameter uncertainty

% LOSP variability.xIs

Microsoft Excel Log-like.xla

. Idano National Laboratory 5-19




Potential Issues with Hierarchical Bayes

e Convergence can be a problem
— Especially when variability is not large

— May need to reparameterize model to speed up
convergence

« Some results can be sensitive to choice of first-stage
prior

— Especially when variability is very large
o See (Kelly and Atwood, 2008) for more details

. Idano National Laboratory 5-20




Exercises

1. This example uses Wr BUGS to analyze a fairly large data set. The file
ed data txt” in the BUGS folder contains data for ailure on demand for 195

ED Recalling th tthe MLE of pis |ven £3/x n, you should find that the

MLE |s > 0.05 for EDGs 183, 184, an THere is a desire to
demonstrate that Pr(p > 0.05) < 0.05. In Eng ish, we want to show that we are
95% sure that EDG reliability on demand is at least 95%. If we analyze each
EDG separately, using a Jeffreys prior, we will find quite a few that do not
meet the criterion (i.e., too many false positives). Pooling the data would also
be |nappropr|ate gtrvmg a very narrow credible |nterval forP all of the EDGs
would meet the cr erron y awid e margin. We would |ke 0 get a better
answer than either of th ese simple aB roac es gives by developing a
hierarchical Bayes model that describes the vanatlon in p across the 195
EDGs in the dataset.

a) Use WInBUGS to analyze a hierarchical Bayes model for this data. Treat
the number of failures tor each EDG as bindmial, with p, ~ beta(q,

independent diffuse h}éperprlors for ¢ and S. We want to find whic EDGS
have Pr(p > 0.05) >

b) Re-analyze this. model, using a uniform( O 10) hyp erprror for , and an
independent uniform(0, 1 )g

Rerprlor oth oes this c ange |n£rrors
affect your conclusrons about which EDGs have Pr(p > 0.05) >

5-21




Section 6: Uncertain Data

 Problem: observed data are uncertain or “fuzzy”
— Interval-valued observations and other types of censoring
— Unclear whether failure occurred
— Number of demands not known with certainty

o Will illustrate Bayesian approach to these problems

i
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When Durations are Uncertain

» Consider following data
for fire suppression time

Event Duration (mins.)
<5

<5

<15

14

15

15
10 - 30
15

150

0 100 - 300

[N O[O | N[O AN[WO|IN|=

i
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When Durations are Uncertain

« Use simple model for T (fire duration)
- Tsupp ~ exp(4)
— Ais suppression rate, units of min
 Data are interval-censored, meaning we only have an interval for some points
— Know duration was > lower bound time and < upper bound time
« Handled in WinBUGS by specifying
time.suppli] ~ dexp(lambda)C(lower[i] , upperl[i])
 Specifying data
— |f s_pecific duration observed, set lower[i] = upper[i] = duration for that
point
— No fixed time observed, set time.supp[i] = NA, lower][i] and upper|[i] set to
bounds of interval

« WinBUGS imputes missing data using the likelihood function

|daho National Laborator




When Durations are Uncertain

o WinBUGS program

Suppression data, uncertain times

model

{
for (iin 1: N){
time.supp[i] ~ dexp(lambda)C(lower[i](, upper[i]) #Exponential distribution for suppression times
}

lambda ~ dgamma(0.0001,0.0001) #Diffuse prior for exponential parameter

}

data

list(time.supp=c(NA, NA, NA, 14, 15, 15, NA, 15, 150, NA), lower=c(0,0,0,14,15,15,10,15,150,100), upper=c(5,
5, 15, 14, 15, 15, 30, 15, 150, 300), N = 10)

inits

list(lambda = 0.1) #initial values

list(lambda = 0.01)

A T

Yy Ye

ldaho National LObOFUTE}T}f m Case study for uncertain times.odc 6-4
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When Durations are Uncertain

e Results

Node statistics =13
' mean sd MC_error val5.0pe median  val950pe¢ start sample |
20000 v |

lambda 002668 0008713 7.1B3E-5 0.01423 002563 004244 10D

Posterior density EI@HXI

larmbda sarnple: 20000 L

N

T T T T
0.0 0.0z 004 0.08
larnbda

ﬂ“ ilduho Nationdl Lubmuioi "

P(lambda)
0.0 40.0




When Durations are Uncertain

—
g

This is sometimes referred to as likelihood-based approach to
uncertain data

— Observed time in interval [a, b] contributes e*@ — e* to the
likelihood function in Bayes’ Theorem

Caution: cannot have too much censoring and still get sensible
estimates

— If all durations are censored, cannot get meaningful estimate
Frequentist estimate is 0.0265/min, very close to posterior mean

— Expect values to be close with diffuse prior on A

— Frequentists cannot easily find uncertainty in estimate

. Idaho National Laboratory
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When Demands are Uncertain

« Often a problem with components such as MOVs, where each demand
may not be recorded

* Handle in Bayesian approach by assigning a distribution to number of
demands, n

— Uniform(a, b)
— Poisson(u)
o Uniform(a, b)
— N is discrete variable, so really want discrete uniform distribution
— Can program this into WinBUGS

— Easier to sample from continuous uniform distribution and round
sample to nearest integer

* Endpoints are under-represented, but this is not usually a problem

N . Idaho National Laboratory




When Demands are Uncertain

o« Example: Assume prior distribution for MOV FTO is
lognormal with mean = 0.003 and EF = 10

— Assume 1 failure is seen, and demands are not
recorded, but are known to lie between 12 and 40

— WinBUGS model

Modeling demands with uniform distribution

model {

mov.fto ~ dbin(p, demands) #binomial model for MOV FTO

p ~dlnorm(-6.79, 0.5102) #prior for p (mean = 0.003, EF = 10)
demands.continuous ~ dunif(lower, upper) #Models uncertainty in demands
demands <- round(demands.continuous) #Rounds to integer demands

}

data
list(lower=12, upper=40, mov.fto=1)

Uncertain demand — uniform.odc
[¥.] [v]

Yol Yy
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When Demands are Uncertain

e DAG model

[Dwier Upper

!




When Demands are Uncertain

e Results

E‘E Node statistics

mean sl MC_error vals.0pc  median  val95.0pc stant sample
] 0008556 0.0132 2924E-4 6.713E-4 000539 00314 1001 000

£

— Comparable to results with n set to mean value (26)

» Posterior mean somewhat sensitive to n, but
uncertainty in p relatively insensitive to uncertainty
in n

P |
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When Demands are Uncertain

* Try same example, but with Poisson distribution for
number of demands

— Use mean of 26 (same as previous example)

— Recall variance = mean for Poisson distribution =
standard deviation = 5.1

Modeling demands with Poisson distribution

model {

mov.fto ~ dbin(p, demands) #binomial model for MOV FTO

p ~dlnorm(-6.79, 0.5102) #prior for p (mean = 0.003, EF = 10)
demands ~ dpois(mu) # Poisson distribution for number of demands

}

data
list(mu = 26, mov.fto=1)

3 : :
Uncertain demands — Poisson.odc

6-11




When Demands are Uncertain

e DAG model

mu

v




When Demands are Uncertain

e Results

Eﬁ Node statistics

mean s MC_error vals.0pc median  val?5.0pc stan sample ]
4] 0.009343 001172 2.335E-4 B194E-4 0005231 003181 10M H000 w|

— Essentially the same as with uniform distribution for n

i
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When Failures Are Uncertain

» Information from LERSs and other information sources
may not be clear enough to ascertain exact number of
failures

o Sloppy record-keeping may result in imprecise
estimates

— Analogous to rounding of value
 Two approaches

— Posterior-averaging

— Likelihood-based

P |
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Posterior-Averaging Approach

Analyst must develop subjective prior distribution for
number of observed events

Example 1: plugging of service water strainers

— Inspection Report (IR) describes 7 plugging events
over time period of interest

— 3 of these may not have been complete plugging
events from perspective of PRA model

— Therefore, actual number of eventsis 4, 5, 6, or 7

.
. .. Idaho National Laboratory 6-15



Posterior-Averaging Approach

e Analyst, by poring over the IR, and applying expert

P |

knowledge, has come up with following distribution for
actual number of complete plugging events:

Pr(x=4)=0.75

Pr(x=5)=0.15

Pr(x = 6) =0.075

Pr(x =7) =0.025

Note that probabilities must sum to unity!

N . Idaho National Laboratory




Posterior-Averaging Approach

« WIinBUGS program for Example 1

Number of Poisson events is uncertain

model {
#Use following if data are observed with subjective probability specified by p[] vector
for(i in 1:N) {

x[i] ~ dpois(muli])
muli] <- lambda[i]*time.exp
lambda[i] ~ dgamma(0.5, 0.0001) #Jeffreys prior for lambda
}
lambda.avg <- lambda[r] #Overall composite lambda, monitor this node
r ~dcat(p[])

}

Data
list(x=c(4,5,6,7), p=c(0.75, 0.15, 0.075, 0.025), N=4)
list(time.exp=48180)

1 i '-
. "-H uncertainty in Poisson event count.odc
ﬂjlduho National Laboratory 1 6-17




Posterior-Averaging Approach

* Results for Example 1

Node statistics
mean sd MC_error val3.0pc median  val95.0pc start sample e |
lambda.ava  1.012E-4 4858E-5 217E-Y  JB7TIE-S O312E5 19244 1001 48000 v |
<t
+
2 8r
" L
()
o
oL
o
T T T T
0.0 2.0E-4 4.0E-4
lambda.avg

-



Posterior-Averaging Approach

o Example 2: MOV failures in 381 demands

— Because of vagueness of problem reports, can't tell if
actual number of failures was 3, 4, 5, or 6

— Analyst develops following distribution:
Pr(x =3) =0.1

Pr(x=4) =0.7

Pr(x=5)=0.15

Pr(x = 6) = 0.05

P |
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Posterior-Averaging Approach

« WIinBUGS program for Example 2

Number of binomial failures is uncertain

model {
#Use following if data are observed with subjective probability specified by q[] vector
for (iin 1:N) {

x[i] ~ dbin(p]i], D)

p[i] ~ dbeta(0.5, 0.5) #Jeffreys prior

}
p.avg <- p[r] #Composite posterior, monitor this node
r ~dcat(q[])
}

Data
list(x=c(3,4,5,6), q=c(0.1, 0.70, 0.15, 0.05), N=4)
list(D=381)

uncertainty in binomial failures.odc

— LAR A
B Idaho National Laborator s




Posterior-Averaging Approach

Results for Example 2

Node statistics
' mean sd MC_error val5.0pe median  val950pe¢ start sample il
0.avi 001222  DDOS8SYS  2418E-5 0004338 001129 00232 1001 48000 v |

2 L

7]

S o

o
oL
o




Likelihood-Based Approach

* Revisit same examples, but treat number of failures as “missing’,
but known to be in the interval [4, 7] for Example 1 and [3, 6] for
Example 2.

« WIinBUGS program for Example 1

Number of Poisson events is uncertain
model {

#Use following for likelihood-based approach
X ~ dpois(mu)l(lower, upper)

mu <- lambda*time.exp

lambda ~ dgamma(0.5, 0.0001) #Jeffreys prior

}

data

#Load following for likelihood-based approach
list(x=NA, lower=4, upper=7)
list(time.exp=48180)

1. Idaho National Laboratory




Likelihood-Based Approach

* Results for Example 1

Node statistics
' mean sd MC_error val5.0pe median  val950pe¢ start sample il
lambda 1.217E-4  551BE-5 3153E-7 4531E-5 1.141E4 22344 1001 48000 v |
S?_
=il &
T o
(@)
o
2k

I I
0.0 2.0E-4 4.0E-4
lambda




Likelihood-Based Approach

« WIinBUGS program for Example 2

Number of binomial failures is uncertain
model {

#Use following for likelihood-based approach
x ~ dbin(p, D)I(lower, upper)

p ~ dbeta(0.5, 0.5) #Jeffreys prior

}

data

#Load following for likelihood-based approach
list(x=NA, lower=3, upper=6)

list(D=381)

\daho National Laborator




Likelihood-Based Approach

* Results for Example 2

Node statistics

! mean sd MC_error val3.0pc median  val95.0pc start sample e |
n 001274 oooed4r  2722E-5 000400 001179 0.0247 10001 §0000 v |

>

k= L

2 o

G)O'_

0 g
ek
o




Section 7: Bayesian Modeling of Time
Trends

* Problem
— What if there is a monotonic trend over time for p or A?

 Willillustrate

— Graphical methods
— Implementation of quantitative trend models in WinBUGS

—



Example Data

Year Number of Events Exposure Time
1 16 14.63
2 10 14.15
3 7 15.75
4 13 17.77
) 9 17.11
6 6 17.19
7 2 17.34

i
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Is There a Time Trend in A?

year| Plot of lambda

0.0 0.5 Iamjb'ga 15

Graph indicates apparent decreasing trend over
time

i



Example Valve Leakage Data

Year Number of Failures Demands
1 4 52
2 2 52
3 3 52
4 1 52
5 4 52
6 3 52
7 4 52
8 9 52
9 6 52

P |
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Is There a Time Trend In p?

caterpillar plot: p

T T T T
0.0 0.1 0.2 0.3
p

« Graph appears to indicate increasing trend in time

i



Nonhomogeneous Poisson Process

* Recall that one of the assumptions leading to the
Poisson distribution was that 4 is constant

e Can relax this assumption, and allow A to vary with
time

» Leads to what is called a nonhomogeneous Poisson
process

— Like a Poisson distribution, but with parameter

u(t) = [ A(s)ds

. Idano National Laboratory 7.6




Need Model for A(t)

e Many possibilities:
— Linear: A(t) = 4, + at
— Loglinear: In[A(t)] = a + bt
— Power law: A(t) = aAt*!
— Extended power law: A(t) = ad t*t + A

* No theoretical justification for any of these
« Will illustrate loglinear model in WinBUGS

i
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DAG for Loglinear Trend Model

------

ford 1N T 2 M)

-




Loglinear Model: In[A(t)] = a + bt

 WInBUGS model

Loglinear model for time trend.odc




Loglinear Model: In[A(t)] =a + bt

 Results
Node statistics
! mean sd MC_error val5.0pc median  val95.0pc start sample e |
b -02375 008717 0.002073 -0.3526  -0.235 -0.1312 40M 34000 v

Posterior density

fr sample: 34000 L

Pib)
00 40 8O

AN

T T T T T
-06 -04 -0.2 5355E17 02
]

* Pr(b <0) near unity (negative slope)
« Posterior distribution of b is approximately normal

\daho National Laborator




Loglinear Model: In[A(t)] =a + bt

e Results for lambda in each year:

2.8 Node statistics - ||8][X]
mean sil MC_error vals.0pc  median  val95.0pc stant sample &
lambda[1]  1.042 0.2004 0.005141 0.7349 1.028 1.393 1001 9000 =
lambdal?] 08173 01218 0.002605 06268 0.8102 1.028 1001 9000
lambdald] 0.6435 0.08177  0.001007 05142 0.6402 0.7837 1001 9000
lambdal4] 0.50849 0.06933 5.153E-4 0.4005 0.5059 0.6288 1001 49000
lambdals]  0.4042 0.06931 9.732E-4 0.297 0.4006 0.52462 1001 9000
lambdal6] 0.3224 0.07128 0001319 0.2152 0.3166 0.448 1001 9000
lambda[7] 0.2583 0.07184 0001503 01547 0.2503 0.349 1001 9000 3

ldaho National Laboratory




Loglinear Model: In[A(t)] =a + bt

« Uncertainty in lambda for each year

=]t

caterpillar plat: lambda d

g5 caterpillar plot

T T T T
0.0 0.5 1.0 1.5

e I lambida




Predicted A In Year 8

Node statistics |

mean sd MC_error val5.0pe median  val95.0pe start sample |

larmbda[1] 1.048 0.2062 0.006232 0.744 1.027 142 4001 32000 = |

lambda[2]  0.B188 0.1241 0.003161 0.B288 08123 1.035 4001 32000 B
lambda[3d]  0.6436 0.08268 0001249 05159 0 6405 0.7865 4001 32000
lambda[4]  0.5082 0.06984 B443E-4 03596 0.5048 0.6284 4001 32000
lambda[®] 0403 0.08982 0001143 0.25938 03996 0.6242 4001 32000
lambda[E]  0.321 0.07156 0001541 02121 03157 0.4472 4001 32000
lambda[7]  0.2567 007177 0001747 015813 025 0.3871 4001 32000

lambdal®1  0.2062 0.0v014 0001819 01073 0.1976 0.3362 4001 32000 v

L5 caterpillar plot

catergillar plot: lambda

me
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Possible Models for p

« Constantp
e Logistic
e Logit(p) =In(p/1—-p)=a+ bt
* Probit
e Probit(p) = @&1(p) =a + bt
e Complementary log-log
e In(-In(1-p) = a + bt

i

-



Logistic Model: Logit(p) =a + bt

 WInBUGS model




Logistic Model: Logit(p) = a + bt

Results
Node statistics
mean sd MC_error val3.0pc median  val95.0pc start sample e |
b 015583 007038 0001892 004212 01538 02742 1001 20000 v |

fr sample: 20000

T T T T T
-0.2 0.0 0.z 04 0.6

1]

Pr(b > 0) is > 0.95 =

P(b)
4.0

0.0

— Strong evidence of increasing trend in p over time




Logistic Model: Logit(p) = a + bt

e Results for p in each year:

=3 Node statistics

mean sd MC_error val5.0pe median  val95.0pe start sample L
nl1] 004171 0Ma0r F214E-4 002066  0.03881 006313 1001 20000 =
n[2] 0.04749 001429  3008E-4 002662 004511 007308 1001 20000 B
n[3] 0.05427 001344 2B81E-4 003405 005325 007757 1001 20000
n[4 006221  0.M2B2 22592E-4 004485 008147 008414 1001 20000
n[a] 0.a#1e1r 0232 1608E-4 002455 007085 008283 1001 20000
n[e] 0.0824 001336 9171E-5 006146 008171 01057 1001 20000
<l 0.09213 0.01eBE: 1.138E-4 0068318 0.09442 01238 1007 20000
n[a] 0.1094 002285  248H82E-4 007524 01087 0.1491 1001 20000
Al 0127 0.03108  4B841E-4 008027 01247 0.1814 1001 20000 v

\daho National Laborator




a + bt

Logistic Model: Logit(p)

* Uncertainty in p for each year

&d caterpillar plot |:HEHX‘

caterpillar plot p |




Predicted Value of p In Year 10

Node statistics

! mean sd

nl1] 004181 001513
02l 004767  0.01441
nld 0.05442  0.01354
n] 006233 0.01269
ni5] 00716 001235
nlE] 008245 0.01339
nl7l 0.09513  0.0167
nlE] 01093 00227
nld] 01269 003135
nl101 0.1485 0.0426

MC_error val3.0pe

J.805E-4
3.514E-4
J.087E-4
2485E-4
1.684E-4
g.42E-5

1.456E-4
3.328E-4
5815E-4
g9.81E-4

0.02035
0.02632
0.03365
0.04248
0.06209
0.06163
0.06925
0.07515
0.08029
0.054393

median
0.04016
0.0484
0.05352
0.061687
0.0v1
o.oa1e
0.0944
01084
01243
01414

val95.0pe start

0.06972 1001
0.07348 1001
0.07804 1001
0.08411 1001
0.08281 1001
0.1057 1001
0.1239 1001
0.14492 1001
0.183 1001
02235 1001

\daho National Laborator
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Section 8: Mixture Priors

e Problem

— What if a single distribution is inadequate to represent prior
knowledge?

e Willillustrate
— Implementation of mixture prior distributions in WinBUGS

-



What is a Mixture Prior?

« Can specify prior distribution as a weighted
average of distributions

7,(0)=> kx,,(6)

where ks are weighting factors, which sum to 1
e Can lead to multimodal prior (and posterior)

i
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Example Use of Mixture Prior

e Consider case where three sets of prior information
about p are available

« Each gives different lognormal distribution for p
— Source 1. median=0.03, EF =5
— Source 2: median =0.001, EF =10
— Source 3: median =0.003, EF =8.1

e Our subjective weights for the three sources are 0.6,
0.2, and 0.2

o Use this information as prior, with observed data of 1
failure in 1,200 demands

.
. .. Idaho National Laboratory 8.3



DAG Model




Example Use of Mixture Prior

Can model this iIn WinBUGS

Mixture prior for p in binomial distribution
model {
for(iin 1:3) {
p[i] ~ dInorm(mul[i], tau[i]) #Individual lognormal priors
muli] <- log(median[i])
sigma]i] <- log(EF[i])/1.645
tau[i] <- pow(sigmali], -2)
}
p.avg <- p[r] #Mixture prior
r ~ dcat(k[]) #Categorical distribution
x ~ dbin(p.avg, n) #Binomial likelihood for observed data

}

data
list(median=c(3.E-2, 1.E-3, 3.E-3), EF=c(5, 10, 8.1), k=c(0.6, 0.2, 0.2))
list(x=1, n=1200)

mixture priors.odc

BUGS

1. Idaho National Laboratory




Example Use of Mixture Prior

e Prior

% Node statistics

mean sd MC_error val5.0pc median  val95.0pec start sample e
1.ava 003081 005157 1.686E-4 316834 001381 01162 1001 899000 v |

Mixture prior density

| | |
ol I - ‘ 0.0 0.05 0.1
0 1 2 3

0.6

P(r)
40.0

0.4

0.2
0.0

p.avg

\daho National Laborator




Example Use of Mixture Prior

e Posterior

Eﬂ Mode statistics

! mean sl MC_error vals.0pc median  val95.0pc start sample bl

f.avy 0001171 9.097E-4 4158E-6 2.054E-4 93Z6E-4 0002957 1001 100000 v
o
©o| =i
= 8
= =
ol St
©
N o
ol =13
<t
ol S
o §_

0 1 2 3
={N
r o
0.0 0.005 0.01 0.015
— 7 p.avg
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Exercises

1. Inits normal state, a component has a CNI prior with a mean
failure rate of 4.6E-5/hr. In its degraded state, the prior
distribution for the failure rate is a CNI prior with a mean that
Is a factor of 10 higher. Assume there have been 3 tests
with an average run time of 23 hours per test, and that 1
failure to run has been observed. Assume the prior
probability that the component is in the degraded state is

0.05.
a) What is the posterior mean failure rate?

b) Which is the more likely state of the component based on
this information?

c) Repeat (a) and (b) assuming 2 failures to run have been
observed. Note the shape of the posterior density in this

case.

8
h‘"! Idano National Laboratory 3.8




Section 9: Model Validation and
Selection

* Problem
— How to decide if model (prior + likelihood) is a “good fit

— How to decide among competing models
o Willillustrate

— Graphical methods
— Use of predictive distributions and summary statistics

— Information criteria for model selection
— Implementation of quantitative methods in WinBUGS

“i ldaho National Lubomtori i‘



Graphical Methods

« Example: EDG FTS data railures pemands
* IS pgrg Varying Plant 1 0 140
significantly among the Plant 2 0 130
plantS’? Plant 3 0 130
— Side-by-side plots of Plan 4 1 130
Bayes credible Plants 2 100
Intervals Plant6 3 185
» Use Jeffreys prior Plant 7 3 175
« Plot posterior - ) i
intervals e ° oL
Plant 10 10 150

i

. Idano National Laboratory 9-2




Graphical Methods

Plot of EDG FTS data

—_— 1]

—— ]

—— 3]

*Graph suggests plant-to-plant variability

*Pooling of data across plants may not be justified

i

-



Example: LOSP frequency data

Plant Failures Time (yrs)

Plant 1 2 15.986
Plant 2 1 16.878
Plant 3 1 18.146
Plant 4 1 18.636
Plant 5 2 18.792
Plant 6 0 18.976
Plant 7 12 18.522
Plant 8 5 19.04

Plant 9 0 18.784
Plant 10 3 18.868
Plant 11 0 19 232

\daho National Laborator




LOSP frequency data

caterpillar plot: lambda.losp

|

= =
<
=

0.0 0.5 1.0 15
lambda.losp

lllustrates significant variability

—_—



Are Observed Times Exponential?

« Can use cumulative hazard plot
— For exponential data, hazard function is constant, equal to A
— C_u_mulative hazard function is integral of hazard function from O to t,
giving t
H(t) = j,z(t' )dt:
0

— For exponential data, we get a straight line with slope A:
H(t) = At

— If plot of estimate of H(t) is curved, this suggests A not constant with
time

« Data not exponential
« Decreasing slope (concave) = decreasing hazard
 Increasing slope (convex) = increasing hazard

1. Idaho National Laboratory




Estimating H(t)

» Use a step function, which jumps by 1/n, where n, is the number of
items that have not failed by time t

 Example: observed following fire suppression times, in minutes:
1.7,1.8,1.9,5.8, 10.0, 11.3, 14.3, 16.6, 19.4,54.8, n = 10

— H(t) jumps from 0 to 0.1 at 1.7 mins., 0.1 to 0.21 at 1.8 mins.,
etc.

Cumulative Hazard Plot

3.50
3.00 .
2.50

< 200 -

L 150 -
1.00 ~—
0.50 o *

0.00 $ : : : : :
0.00 10.00 20.00 30.00 40.00 50.00 60.00

time (mins.)

P |
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Estimating H(t)

« With only 10 points, plot is somewhat ragged
» Another chart, with n = 25 points:

Cumulative Hazard Plot

0 50 100 150 200

Duration (mins.)

— These data look exponential



Another Example

e Observed the following times (in hours) at which offsite
power was recovered: 1.6, 1.8, 13.8,17.2, 19.2, 24 .4,
30.2, 39.1, 49.1, 61.2

Cumulative Hazard Plot

3.50
3.00
2.50

= 2.00
LT 1.50
1.00
0.50
0.00
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

time (hr)




Another Example

e This plot looks fairly straight
* Are the data really exponential?
* Need quantitative tools to help answer this question

— Graphs are useful with fairly large amounts of data,
less useful with small amounts

— Data on previous slide are actually from a Weibull
distribution with A(t) decreasing as t increases

P |
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Use of Posterior Distribution

 Example: can EDG data from two trains be pooled?
— Train 1. 3 failures in 75 demands
— Train 2: 5 failures in 69 demands

» Use Jeffreys prior and find posterior distribution for each
train

 Calculate probability that p, > p;,
— Pr(p, >py) =7

i
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Use of Posterior Distribution

 WInBUGS model

nl

model{
pl ~ dbeta(0.5,0.5) #Jeffreys prior for pl
x1 ~dbin(p1,nl) #Binomial distribution for x1
p2 ~ dbeta(0.5,0.5) #Jeffreys prior for p2
x2 ~dbin(p2,n2) #Binomial distribution for x2
p.value <- step(p2 - pl) #Gives Pr(p2 > pl)

}

data

list(x1 =3,n1=75,x2=5,n2=69)

E? ?ﬁ

iy
&

BUGS

proportion test.odc




Use of Posterior Distribution

e Results

Eﬂ Mode statistics

|G

mean sil MC_error val2.5pc  vals.0pc median  val95.0pc valo7.5pc start sample
pwalue 0.7aa2 04013 00045382 00 0.0 1.0 1.0 1.0 1001 4000

[

* Pr(p,>p,) =0.7982
 Weak evidence that p2 > p1l
e Could probably pool data from both EDGs
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Use of Predictive Distribution

* In Bayesian framework, “model” comprises
— Likelihood function
 How data were generated
— Prior distribution
« Uncertainty about parameters

 Bayesian inference sometimes criticized for sensitivity to
prior

— In practice, likelihood function can also be in question
 Need to check both parts of our “model”

. Idano National Laboratory 9-14




Prior Predictive Distribution

The prior predictive distribution is the denominator of Bayes’ Theorem

f(x)=[f(x]|0)z,(0)do
« Gives probability of observing X = x, unconditional upon any particular
value of the parameter(s), &
— Also called the marginal distribution of X

« Before observing data, can check reasonableness of prior by calculating
probabilities for data we expect to see

— Small probabilities = prior not consistent with expected data
— Sometimes called “preposterior analysis”

* Not defined for improper priors (e.g., Jeffreys prior for Poisson or
exponential data)

. Idano National Laboratory 9-15




Binomial Likelihood — Beta Prior

« f(x) can be found analytically
— Called beta-binomial distribution

f(x):(njr(mx) r(B+n-x) T(a+p)

X)) I'lx) I'(p) F(a+,b’+n)'

— a and g are parameters of beta prior distribution for p
— [I(e) is the gamma function, defined for > 0 as

() = [t7edt

— Excel has In[/{#)] built in (“single parameter estimation.x|s” in
Excel folder)

i
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Poisson Likelihood — Gamma Prior

f(x) can be found analytically
— Called gamma-Poisson distribution

(0= T[] 1, 1)

— aand g are parameters of gamma prior distribution
for A

@ single parameter estimation.xls
Microsoft Excel

i
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Exponential Likelihood — Gamma Prior

It can be shown that f(2t|1) is gamma(n, 1)
Can then show that, for a gamma(e«, f) prior on A

2T beta(n, a)
p

2T+
« If X~ beta(a, f), can show that (1 — X) ~ beta(g, «), therefore
LA beta(a, n)
2T +p

Can use these in Excel

i
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Posterior Predictive Distribution

» Gives conditional probability of seeing a new set of data, X
the old set, x

given

rep’

* In symbols

f(x, | x)=[f(x_ |6)7(60]x)dE

* For beta-binomial and gamma-Poisson cases

— Use earlier formulae, but use posterior o and g

» Posterior predictive distribution is primary tool for Bayesian model
validation

— Focuses on predictive validity of model (prior + data)

N . Idaho National Laboratory




Using Posterior Predictive Distribution
to Check Model

¢ IS Xgp IN tail of f(X;ep[X)7?
— No = model OK
— Yes = problem with prior and/or likelihood
e Check prior sensitivity

— Prior-dominated: sharp prior, sparse data,
likelihood function centered away from mode
of prior

* Check appropriateness of likelihood
— For example, are failures independent?

. Idaho National Laboratory 9-20




Using WIinBUGS to Simulate Predictive
Distributions

e Can handle both conjugate and nonconjugate priors

e To simulate from glgrior_predictive distribution, compile
program without loading data

 Example: using Industry prior for EDG FTS of
beta(0.957, 190)

— Will 3 failures in 24 demands be an extreme value In
the prior predictive distribution for X?

« Can use Excel (see “single parameter
estimation.xIs” in Excel folder)

e Pr(X>3) =0.001, so 3 failures in 24 demands is
not consistent with the industry prior

8
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Using WIinBUGS to Simulate Predictive
Distributions

e Use WINBUGS program below

EDG FTS

model {
edg.fail ~ dbin(p, 24) #Binomial model for EDG FTS in 24

demands
p ~ dbeta(0.957, 190) #Beta prior for p
prior.pred <- step(edg.fail — 3) # Prior pred. Pr(edg.fail >=3)

}
Compile this program, monitor prior.pred

B4 Node statistics |:| |EJ |E|
! mean sl MC_error val2hpe  valbopc median  val95.0pc val97.5pc start sample %
priorpred  0.001444 003798 3726E-4 0.0 0.0 0.0 0.0 0.0 1001 000 =

N . Idaho National Laboratory




Using WIinBUGS to Simulate Predictive
Distributions

« To simulate from posterior predictive distribution, define
new variable and monitor it

EDG FTS

model {

edg.fail ~ dbin(p,24) #Binomial model for EDG FTS in 24 demands

p ~ dbeta(0.957, 190) #Beta prior for p

fail.new ~ dbin(p,24) #Replicated failures from posterior predictive distribution
post.pred <- step(fail.new - 3) #Posterior pred. Pr(fail.new >= 3)

}

data
list(edg.fail=3)

Fail.new is node for posterior predictive distribution

Observed data is 3 failures in 24 demands
i .. Idaho National Laboratory 9-23



Using WIinBUGS to Simulate Predictive
Distributions

» Posterior distribution of p is beta(3.957, 211), giving posterior mean of 0.02

» Posterior predictive distribution for X shown in Excel file “single parameter
estimation.xIs”

« WInBUGS results (remember to load data this time!)

Eﬂ Mode statistics

mean sil MC_error val2.5pc  vals.opc median  val95.0pc val97.5pc stant sample
postpred 001356 01146 0001236 0.0 0.0 0o 0.0 0o 1001 q000

£ |2

« 3failuresin 24 demands is quite unlikely
— Prior doesn’t describe our diesel?
» Already know that prior is inconsistent with this data
— Problem with binomial model for failure, also?
» Are failures really independent?

. ldaho National Laboratory 9-24




Use of Summary Statistics from Posterior
Predictive Distribution

Is data exponential (i.e., is likelihood correct)?

— Use X't and examine posterior predictive distribution
for 2T, |

 Where does observed 2't; fall in posterior
predictive distribution for ST rep, i 7

» Use diffuse prior for 4 to eliminate effect of prior

— Observed X't will always be at median, so we
need another approach

—
g
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Are Times Exponential?

« Cramer-Von Mises test, Bayesian version
e Uses fact that F(t) ~ uniform(0, 1)

e Bayesian version in following script compares observed
and replicated values

 Example: fire suppression times in minutes:

1.7, 1.8, 1.9, 5.8, 10.0, 11.3, 14.3, 16.6, 19.4, 54.8 (n =
10)

i
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Are Times Exponential?

model
{
for (iin1:N){
time.supp[i] ~ dexp(lambda) #Exponential distribution for suppression times
time.supp.ranked][i] <- ranked(time.supp[].i)
time.rep[i] ~ dexp(lambda)
time.rep.ranked[i] <- ranked(time.rep([], i)
F.obsJi] <- 1 - exp(-lambda*time.supp.ranked[i])
F.rep[i] <- 1 - exp(-lambda*time.rep.ranked[i])
diff.obs[i] <- pow(F.obs[i] - (2*i-1)/(2*N), 2)
diff.rep[i] <- pow(F.rep[i] - (2*i-1)/(2*N), 2)
}
lambda ~ dgamma(0.0001,0.0001) #Diffuse prior for exponential parameter
CVM.obs <- sum(diff.obs[])
CVM.rep <- sum(diff.repl[])
p.value <- step(CVM.rep - CVM.obs) #Small value indicates problem with exponential likelihood

}

data
list(time.supp=c(1.7 ,1.8, 1.9, 5.8, 10.0, 11.3, 14.3, 16.6, 19.4, 54.8), N=10)

suppression rate data.odc
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Are Times Exponential?

 Run 100,000 samples with 1,000 burn-in iterations and
monitor mean of p.value node

% Node statistics

s

! mean sd MC_error start sample —
nwalue 06212 04851 0.001578 1001 49000 v

e Value of 0.62 indicates no significant deviation from
exponential distribution
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Are Times Exponential?

« Example: LOSP recovery times in hrs.

0.2,37.3,0.5,43,80.1, 13.3, 2.1, 3.7,8.2, 2.8
n=10

 Run WInBUGS again with these data

- OX

mean sd MC_error start sample —
01711 03766 0001258 1001 53000

— Smaller p.value suggests exponential distribution
may not be adequate aleatory model

P |
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Testing for Population Variability in p

—
g

Recall EDG FTS data
from earlier

Side-by-side plot of
credible intervals
suggested there is
variability in p

— Simple binomial model
then not appropriate

Can we gquantify this with
a test?

Yes!

. |daho National Laboratory

Failures

Demands

Plant 1

140

Plant 2

130

Plant 3

130

Plant 4

130

Plant 5

100

Plant 6

185

Plant 7

175

Plant 8

167

Plant 9

ol BN w w N = o o o

151

Plant 10

[N
o

150
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Testing for Population Variability in p

 Will use Bayesian analog of chi-square statistic, along with
posterior predictive distribution for X, via WinBUGS

1. Specify binomial model for X
2. Diffuse prior for p to eliminate prior sensitivity

3. Generate replicate values from posterior predictive distribution
for X, with estimate of p based on pooled data

 What we would expect to see if all p’s are equal
4. Calculate observed and replicate chi-square statistics

« Compares what we see to what we would see, on
average, if all p’s are equal

5. Is difference significantly different from 0?
 Yes = variability

i
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Testing for Population Variability in p

model {
for (iin 1: N){
x[i] ~ dbin(p[i], n[i]) #Binomial model for X
p[i] <- p.constant #All sources have same p
x.rep[i] ~ dbin(p[i], n[i]) #Replicate from posterior predictive distribution
diff.obs[i] <- pow(X[i] - p[i]*n[i], 2)/(n[i]*p[i]*(1-p[i])) #Difference between observed
and expected x
diff.rep[i] <- pow(x.repli] - p[i]*nl[i], 2)/(n[i]*p[i]*(1-p[i])) #Difference between
replicated and expected x
}
chisq.obs <- sum(diff.obs][])
chisq.rep <- sum(diff.rep[])
p.value <- step(chisq.rep - chisq.obs) #Value should be near 0.5 for homogeneous data
p.constant ~ dbeta(0.5, 0.5) #Jeffreys prior for p

}

Bayesian chi-square test for EDG FTS.odc

\daho National Laborator




Testing for Population Variability in p

* Run program with EDG FTS data
— Let WinBUGS generate initial values
* Monitor mean of p.value node

:;35 Node statistics

mean sd MC_error start sample e
nvalue 0006051 0DO7755  2406E-4 1001 59000 v |

— Small value indicates data nonhomogeneous population

i
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Testing for Population Variability in p

e p.value is small
— Analogous with frequentist p-value
e Strong evidence of variabllity in p
— Simple binomial model inadequate
e p not the same for all EDGs
— Need more complex model describing variation in p
 More complex model covered in Section 5

P |
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Testing for Population Variability in A

* Another example: LOSP frequency

Plant Failures Time (yrs)
Plant 1 2 15.986
Plant 2 1 16.878
Plant 3 1 18.146
Plant 4 1 18.636
Plant 5 2 18.792
Plant 6 0 18.976
Plant 7 12 18.522
Plant 8 ) 19.04
Plant 9 0 18.784
Plant 10 3 18.868
Plant 11 0 19.232

i
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Testing for Population Variability in A

o Earlier plot of credible intervals suggested variability

e Again, use Bayesian version of chi-square statistic
based on replicates from posterior predictive distribution

i

“ ilduhn National Labomiari i ii



Testing for Population Variability in A

model {
for (iin 1: N){
muli] <- lambda.losp[i] * time[i] #Poisson parameter for each plant
x[i] ~ dpois(mul[i]) #Poisson dist. for events at each plant
lambda.losp|[i] <- lambda.const #Constant value for lambda
x.rep[i] ~ dpois(muli])
diff.obs[i] <- pow(x[i] - mul[i], 2)/mul[i]
diff.rep[i] <- pow(x.repl[i] - mu[i], 2)/muli]
}
chisq.obs <- sum(diff.obs][])
chisq.rep <- sum(diff.rep[])
p.value <- step(chisq.rep - chisq.obs) #Value should be near 0.5 for homogeneous data
lambda.const ~ dgamma(0.5, 0.0001) #Jeffreys prior

}

Yol 2 %
A

s Bayesian chi-square test for losp frequency.odc
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Testing for Population Variability in A

e Results

E:ﬂ Mode statistics

mean s MC_error valb0opc median  val95.0pc start sample b
nvalue 2.3E-4 001516  4.835E-5 0.0 0.0 0.0 1001 100000 2

« Strong evidence of plant-to-plant variability

i
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Model Selection via BIC and DIC

* Previous portions of this section examined goodness-of-
fit in absolute sense, using posterior predictive
distribution, and summary statistics derived from it

e Can also examine relative fit of candidate models

e Various information criteria have been proposed to help
with this task

1. Bayesian Information Criterion (BIC)
2. Deviance Information Criterion (DIC)

 Both of these are based on Akaike Information Criterion
(AIC)

8
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Basic Form of Information Criteria

 BIC, DIC, and AIC all have same general form:

IC =—2log|f (t]6 ]+ g(k)

N

Deviance Penalty function

e Choose model with smallest IC

i
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Bayesian Information Criterion (BIC)

e Uses g(k) = klog(n), where k is number of unknown
parameters and n is number of observations (data
points)

« Recommended by some for comparing nonhierarchical
models

* Not calculated by WIinBUGS directly, but easy to include
In script

P |
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BIC Example

« Example: LOSP recovery times in hrs.
0.2,37.3,05,4.3,80.1, 13.3, 2.1, 3.7,8.2, 2.8
n=10

« Earlier Bayesian goodness-of-fit test gave Bayesian p-
value of 0.17 for exponential model

* Use BIC to compare exponential and Weibull model

— Use diffuse priors on all parameters so that focus is
on aleatory model rather than prior distributions

. Idano National Laboratory 9-42




BIC Example

model {
for(iin 1:N) {
#  time[i] ~ dexp(lambda) #Exponential aleatory model
#Exponential log-likelihood components
# log.like[i] <- log(lambda) - lambda*time][i]
time[i] ~ dweib(beta, lambda) #Weibull aleatory model
#Weibull log-likelihood components
log.like[i] <- log(lambda) + log(beta) + (beta-1)*log(time]i]) - lambda*pow(time[i], beta)
}
lambda ~ dgamma(0.0001, 0.0001)
beta ~ dgamma(0.0001, 0.0001)
log.like.tot <- sum(log.like[])
#Exponential model
#BIC <- -2*log.like.tot + log(N)
#Weibull model
BIC <- -2*log.like.tot + log(N)*2

}

4 BIC example.odc
Idaho National Laborator




BIC Example

e Results

— Exponential BIC = 77.8

— Weibull BIC =76.5
« Slight preference for Weibull model over exponential
« Caveat: BIC measures relative model fit

— All models being considered could be poor in
absolute sense

i
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Deviance Information Criterion (DIC)

 Take average deviance over posgerior: B
Dbar = -2 j log[ f (| 6)7,(6|F)d6

— Dbar is automatically monitored by WinBUGS node called
“deviance”

 DIC = Dbar +pD
— pD is effective number of parameters
— pPD = Dbar — Dhat

* Dhat is deviance evaluated at posterior mean of
parameter(s)

« Recommended by some for comparing hierarchical models
— In our experience, can use DIC with simple models, too

N . Idaho National Laboratory 9-45




Deviance Information Criterion (DIC)

e DIC (and even pD) can be negative in some cases
— DIC negative when density functionis > 1
« Smallest DIC still indicates best fitting model
— Example: three models with DICs of 10, -3, -9
e Third model, with DIC = -9, is best fit
— If pD is negative, cannot use DIC
 DIC is measure of relative goodness of fit
— Model with smallest DIC can still be poor fit

—
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Using DIC to Explore Model Fit

* Run exponential model first
Do run of 100,000 samples to estimate A (burn in of 1,000)
 Results
Eﬂ Mode statistics |Z| |§| |E|
! mean sil MC_error valz.hpe  vals.ope  median  val95.0pc val?7.5pc stant sample e
larmbda 0.06552 002077 4.4516E-9 003145 003558 008329 0103 0.1124 1001 201000 3
 Now select “DIC” from “Inference” menu
fo  Model BOEGEEN COptions Doodle
Samples. ..
Campare. ..
Correlations, ..
Surmary. ..
(00007 Rank... Se pric
0.0001, prior
—

Use priorrarm
0001, 0.0001) #Diffuse prior fo
|daho National Laborator




Using DIC to Explore Model Fit

e Set DIC, then run 100,000 more updates
* Results for exponential model:

B:ﬂ Deviance information

Dbar Dhat DIC pD &)
time 78.91 74.49 TE.93 1.02 El
total 78.91 74.49 TH.A3 1.02
Minimum deviance
74.49 v

* Repeat for other possible models

i
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Using DIC to Explore Model Fit

Weibull
B8 Node statistics E
! mean sil MC_error vals.0pc  median  val95.0pc stant sample s
heta nE214 014501 T.B86E-4 0.28493 06127 n.eaza 1001 200000 3

— f <1 = decreasing recovery rate

zﬁ Deviance information _'X_
P
Dhar Dhat DIC pD —
time 71.86 59.88 73.84 1.981 =
total 71.86 F9.88 73.84 1.981
Minimum deviance
F9.82
£9.82 3

— DIC < DIC for exponential model

 Weibull is better fit
e Consistent with results from BIC

\daho National Laborator




Exercises

1. The table below shows successful launches/launch
attempts for a series of launch vehicles developed after

1980.

\daho National Laborator

Vehicle Outcome
Pegasus 9/10
Percheron 0/1
AMROC 0/1
Conestoga 0/1
Ariane-1 9/11
India SLV-3 3/4
India ASLV 2/4
India PSLV 6/7
Shavit 2/4
Taepodong 0/1
Brazil VLS 0/2




Exercises

1. Continued----

a)

b)

Using a binomial aleatory model for the number of successes
for each vehicle, is a common success probability (i.e., no
vehicle-to-vehicle variability) a reasonable choice? Use
Bayesian p-value to answer this question.

Let the success probability vary from vehicle to vehicle
according to a beta distribution with parameters Ko and K(1 -
0), where Jis the expected success probability before any data
are observed, and K controls the dispersion of the population
variability distribution. Model this in BUGS using a beta(0.5,
0.5) hyperprior for 6 and a gamma(5, 1) hyperprior for K. Find
the posterior mean and 90% credible interval for success
Probablllty of a future launch. How does the Baye5|anr§)-value
or this model compare with the constant model above? Has
the marginal posterior distribution for K been affected much by
the observed data? What might this suggest about sensitivity
studies for the hyperprior on K?
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Exercises

2. The following projector lamp failure times (in hours) have
been collected: 387, 182, 244, 600, 627, 332, 418, 300,
798, 584, 660, 39, 274, 174, 50, 34, 1895, 158, 974, 345,
1755, 1752, 473, 81, 954, 1407, 230, 464, 380, 131, 1205.

a) The vendor has provided an estimate of the mean time to
failure (MTTF) for the lamp. This estimate is 1000 hours.
Use this value to develop a prior distribution for the lamp
failure rate, assuming the time to failure is exponentially
distributed.

b) Compare the posterior distribution for the failure rate with
this prior to what would have been obtained using the
Jeffreys noninformative prior for the failure rate.

.
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Exercises

c) Use a Weibull aleatory model for the failure time,
with diffuse priors on the Welibull parameters. What
IS the posterior probability that the Weibull shape
parameter exceeds 1? What does this suggest
about the viabllity of the Weibull model compared
with the exponential model?

d) Use BIC and DIC to compare exponential, Weibull,
and lognormal aleatory failure time models for the
lamp.

—
g
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