Analysis of Ultimate-Heat-Sink Spray Ponds

U.S. Nuclear Regulatory Commission

Office of Nuclear Reactor Regulation

R. Codell

Available from

GPO Sales Program

Division of Technical Information and Document Control

U.S. Nuclear Regulatory Commission

Washington, DC 20555

Printed copy price: \$6.50

and

National Technical Information Service Springfield, VA 22161

Analysis of Ultimate-Heat-Sink Spray Ponds

Manuscript Completed: January 1981 Date Published: August 1981

R. Codell

Division of Engineering Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555

ABSTRACT

This report develops models which can be utilized in the design of certain types of spray ponds used in ultimate heat sinks at nuclear power plants, and ways in which the models may be employed to determine the design basis required by U.S. Nuclear Regulatory Commission Regulatory Guide 1.27.

The models of spray-pond performance are based on heat and mass transfer characteristics of drops in an environment whose humidity and velocity have been modified by the presence of the sprays. Drift loss from the sprays is estimated by a ballistics model.

The pond performance model is used first to scan a long-term weather record from a representative meteorological station in order to determine the periods of most adverse meteorology for cooling or evaporation. The identified periods are used in subsequent calculations to actually estimate the design-basis pond temperature. Additionally, methods are presented to correlate limited quantities of onsite data to the longer offsite record, and to estimate the recurrence interval of the design-basis meteorology chosen.

CONTENTS

				Page
1000	FD 4 07	_		. iii
			· · · · · · · · · · · · · · · · · · ·	
	BOLS			
1	TNTR	DUCTION	·	. 1-1
			AND MASS TRANSFER PERFORMANCE MODELS	
	2.1	Microso	cale Submodel	. 2-1
		2.1.1	Drop Motion	. 2-1
		2.1.2	Heat and Mass Transfer Relations	
		2.1.3	Momentum Transfer	
		2.1.4	Solution of Microscale Equations	
	2.2	Macros	cale Submodels	. 2-7
		2.2.1	High-Windspeed Submodel	. 2-8
		2.2.2	Low-Windspeed Macroscale Submodel	
	2.3	Compar	ison With Field Data	. 2-19
		2.3.1	Canadys Data Comparison	. 2-20
			Rancho Seco Data	
	2.4	Simpli	fying Assumptions for Performance Models	. 2-25
		2.4.1	•	ソー・ロ
		2.4.2	Effect of Drag on Performance Models	. 2. 30

CONTENTS (Continued)

			Page
3	DRIF	Γ-LOSS MODEL	3-1
	3.1	Model Assumptions	3-1
		3.1.1 Ballistics Model for a Drop	3-2
		3.1.2 Initial and Boundary Conditions	3-2
	3.2	Model Validation	3-5
		3.2.1 Rancho Seco Data	3-5
		3.2.2 Validity of Drift-Loss Model	3-7
4	POND	MODEL	4-1
	4.1	Heat Balance	4-2
		4.1.1 Heat Load into Ponds	4-2
		4.1.2 Heat Out From Surface	4-2
		4.1.3 Heat Out in Blowdown or Leakage Stream	4-5
	4.2	Mass Balance	4-6
5	DATA	-SCREENING METHODOLOGY	5-1
	5.1	Development of Method	5-1
	5.2	Meteorological Inputs to Screening Model	5-3
		5.2.1 Solar Radiation	5-4
	5.3	Scanning-Performance Models	5-5
		5.3.1 Approximate Spray-Performance Model	5-6
		5.3.2 Functional Dependencies of Spray-Performance Models	5-6

CONTENTS (Continued)

			Page
6	ONS1	TE-OFFSITE CORRELATION	6-1
7	DESC	RIPTION OF COMPUTER PROGRAMS	7-1
	7.1	Program SPRCO	7-1
		7.1.1 Operation of Program	7-3
		7.1.2 Program Inputs	7-3
		7.1.3 Program Outputs	7-3
	7.2	Program DRIFT	7-5
	7.3	Meteorological Data Screening Program SPSCAN	7-6
		7.3.1 Program Operation	7-7
		7.3.2 Program Outputs	7-8
		7.3.3 Program Inputs	7-9
		7.3.4 Pond Data Card	7-10
		7.3.5 Monthly Average Card	7-11
		7.3.6 End Card	7-11
	7.4	Program COMET2	7-11
		7.4.1 Program Inputs	7-12
	7.5	Program SPRPND	7-13
		7.5.1 Input to Program	7-13
		7.5.2 Usage of Program SPRPND	7-16
8	SAMP	LE PROBLEM	8-1
	8.1	Introduction	8-1
	8.2	Determining Characteristics of Spray Field	8-4

CONTENTS (Continued)

			Page
		8.2.1 Dimensions of Sprayed Region	8-4
		8.2.2 Average Drop Diameter	8-5
		8.2.3 Length and Width of Spray Field	8-5
	8.3	Spray-Field Performance Regression EquationsProgram SPRCO	8-5
	8.4	Determining Drift-Loss TableProgram DRIFT	8-6
	8.5	Scanning Weather RecordProgram SPSCAN	8-11
	8.6	Determining the Uncorrected Design-Basis Temperature	
		Program SPRPND	8-12
		8.6.1 Procedure 1	8-14
			8-32
	8.7	Correction Factors for Geographic Differences Between Site and	
		Meteorological StationProgram COMET2	8-44
	8.8	Statistical Adjustments	8-45
	8.9	Conclusion	8-51
9	REFE	ERENCES	9-1
ΑP	PEND]	IX ASTATISTICAL TREATMENT OF OUTPUT	A-1
ΑP	PEND	IX BCOMPUTER CODES	B-1

FIGURES

		Page
2.1	Ballistics of a Drop Leaving a Spray Nozzle	2-2
2.2	Segmentation of Spray Field for High-Windspeed Model	2-8
2.3	Compartment Model of Spray Field for High Windspeed	2-8
2.4	Segmentation of Spray Field for Low-Windspeed Model	2-13
2.5	Compartment Model of Spray Field for Low Windspeed	2-13
2.6	Convergence of Low-Windspeed Model With and Without Damping	2-19
2.7	Canadys Spray-Cooling Pond	2-20
2.8	Measured and Predicted Performance of Canadys Pond, Complete Spray Model (High Windspeed)	2-23
2.9	Rancho Seco Spray-Cooling Ponds	2-23
2.10	Measured and Predicted Performance of Rancho Seco Pond, Complete Spray Model	2-25
2.11	Model	2-27
2.12	Determination of "Average Drop Diameter" for Low-Windspeed Model	2-28
2.13	Performance of High-Windspeed Model for Mean and Distributed Drop Diameter	2-28
2.14	Drop-Diameter Distribution	2-30
2.15	Comparison of NRC Model With Rancho Seco Data for "No-Drag" Model	2-32
3.1	Typical Layout of Pond Sprays and Determination of Critical Pond Boundary	3-4
3.2	Measured and Modeled Water Loss From Rancho Seco Test 4	3-6
4.1	Mixed-Tank Model	4-2
4.2	Heat Loads on the Surface of a Pond	4-3
5.1	Insolation as a Function of Time	5-4
5.2	Dependence of η on Wet-Bulb Temperature	5-7

FIGURES

		Page
5.3	Dependence of η on Dry-Bulb Temperature	5-7
5.4	Spray Efficiency vs Sprayed Temperature	5-8
5.5	Spray Efficiency vs Windspeed	5-8
7.1	Flowchart for Design-Basis Water Loss and Temperature Determination	7-2
8.1	Hypothetical Spray-Cooling Pond	8-2
8.2	Example of Design-Basis Heat Load	8-3
8.3	Input Deck for Program SPRCO	8-6
8.4	Output From Program SPRCO	8-7
8.5	Input Deck for Program DRIFT	8-12
8.6	Output From Program DRIFT	8-13
8.7	Input Deck for Program SPSCAN	8-14
8.8	Output From Program SPSCAN	8-15
8.9	Input Deck for Program SPRPND, Procedure 1	8-26
8.10	Output From Program SPRPND, Effect of Ambient Meteorology and Steady Heat Load	8-27
8.11	Pond Temperature in Response to a Steady Heat Load and Ambient Meteorology	8-32
8.12	Output From Program SPRPND, Effect of Design-Basis Heat Load and Steady Meteorology	8-33
8.13	Pond Temperature in Response to Design-Basis Heat Load and Constant Meteorology	8-38
8.14	Final Run of Program SPRPND, Procedure 1	8-39
8.15	Input Data for Program SPRPND, Iterative Run, Procedure 2	8-39
8.16	Output From Program SPRPND, Iterative Run, Procedure 2	8-40
8.17	Effect of Starting Time for Design-Basis Accident on Peak Pond Temperature	8-44
8.18	Input for Program SPRPND, Combined Runs for Rigorous and Regression Spray Models, TSKIP = 447.0 Hours	8-45
8.19	Output From Program SPRPND, Run for Rigorous Spray Model, TSKIP = 447.0 Hours	8-46
8.20	Pond Temperature in Response to Ambient Meteorology and Design-Basis Heat Load, TSKIP = 447.0 Hours	8-51
8.21	Input Data for Program COMET2	8-52
8.22	Input Deck for Program SPRCO	8-53

FIGURES

		Page
8.23	Comparison of Susquehanna Site and Harrisburg Spray-Pond Temperatures, Program COMET2	8-61
8.24	Comparison of Susquehanna Site and Harrisburg Pond Water Losses, Program COMET2	
8.25	Exceedance Probability for Annual Peak Pond Temperature	8-63
8.26	Exceedance Proability for Annual Peak 30-Day Pond Water Loss	8-64

TABLES

		Page
2.1	Physical Characteristics of Canadys Spray Pond Used in Spray-Field Model	2-21
2.2	Measured Atmospheric Parameters and Spray Efficiency, and Efficiency Predicted From High-Windspeed Model With Drag Terms Included	2-22
2.3	Physical Characteristics of Rancho Seco Spray Pond Used in Spray-Field Model	2-24
2.4	Measured Atmospheric Parameters and Spray Efficiency, and Efficiency Predicted from Combined High-Windspeed and Low-Windspeed Model With and Without Drag Terms Included	2-24
2.5	Drop-Diameter Distribution for Spraco 1751A Nozzle	2-26
3.1	Default Drop-Diameter Distribution for Spraco Nozzle 1751A for Use in Drift Model	3-3
/.1	Namelist INPUTInputs to Program SPRCO	7-4
7.2	Input Variables for Program DRIFT	7-7
7.3	Namelist INPUTPond Data Card for Program SPSCAN	7-10
7.4	Nameslist INPUTMonthly Average Card for Program SPSCAN	7-11
7.5	Meteorological Data Input for Program COMET2	7-13
7.6	Namelist PARAM, Spray-Field Data for Program SPRPND	7-14
7.7	Meteorological Input for Program SPRPND	7-15
7.8	Namelist HFT for Program SPRPND	7-16
7.9	Namelist INLIST for Program SPRPND	7-17
8.1	Parameters of Spray-Pond Example	8-3
8.2	Drop-Diameter Spectrum for Spray Nozzle	8-4

ACKNOWLEDGMENTS

The author of this report wishes to acknowledge several people who have made substantial contributions to its preparation. Much of the technical basis for the spray performance model can be traced directly to the work of Dennis Myers who also provided documentation and direct personal communication during development of the models.

Bill Nuttle (Massachusetts Institute of Technology) developed a large part of the meteorological scanning model for surface cooling ponds, which the author modified for spray ponds. He is also largely responsible for the drift-loss model.

I also wish to thank the Division of Technical Information and Document Control, for the careful editing of the text. Its editors suggested many useful changes. Beth Williams did an outstanding job typing the report, especially considering the number of difficult equations it contained.

Dennis Myers (Rodgers and Associates Corporation), Asem Elgawhary and Tim Morgan (Bechtel Power Corporation), and Bob Baird (Ford, Bacon, and Davis, Utah Corporation) reviewed the draft and made many good suggestions.

SYMBOLS

```
= pond surface area, ft<sup>2</sup> or acres
Α
     = total side area of the outermost segment, cm<sup>2</sup>
     = cross-sectional area of the (assumed) spherical drop, cm
     = cross-sectional area of the spray field, cm<sup>2</sup>
A_{\mathsf{T}}
     = total area of top of spray field, cm<sup>2</sup>
     = top area of segment n, cm<sup>2</sup>
A_{T,N} = \text{top area of segment N, cm}^2
BDA = bone-dry air
C
     = cloud cover in tenths of the total sky obscured
C^{4}
     = drag coefficient for falling drops
     = heat capacity of water, cal/(gm °C)
\mathsf{C}_{\mathsf{WA}}
     = concentration of water in air in equilibrium at the temperature of the
        drop, qm water/cm<sup>3</sup> air
C_{\infty}
     = concentration of water in air in which the drop is immersed,
        gm water/cm<sup>3</sup> in air
     = molecular diffusivity of air, cm<sup>2</sup>/sec
D
     = drop diameter, cm
Di
     = mean diameter, cm
     = "Sauter" mean diameter, cm
D_3
      = mean drop diameter for spray performance calculations, cm
drag = drag force, gm cm/sec<sup>2</sup>
      = partial pressure of water vapor in the air, mm Hg
      = vapor pressure of water at the pond-surface temperature, mm Hg
ec
     = equilibrium temperature, oF
Ε
     = overall bias in pond temperature between the two data sets, °F
ΔΕ
      = heat flowrate entering the segment, cal/sec
E;
      = heat entering nth segment of sprays, cal/sec
      = fraction of drops in diameter range i whose diameter is D;
f;
      = buoyant force of rising air against the force of gravity, gm cm/sec<sup>2</sup>
      = buoyant force of rising air against force of gravity in segment n,
```

```
F(D)
        = probability density function for the drop-diameter distribution
        = net drag force from falling droplets in segment n, gm cm/sec<sup>2</sup>
F<sub>d.n</sub>
F(w)
        = wind function
        = acceleration of gravity, cm/sec<sup>2</sup>
g
h<sub>c</sub>
        = heat transfer coefficient for drop, cal/(sec cm<sup>2</sup> °C)
^{\mathsf{h}}\mathsf{d}
        = mass transfer coefficient for drop, cm/sec
hn
        = heat flowrate of air leaving segment n, cal/sec
        = heat flow rate of air leaving segment 1, cal/sec
h<sub>1</sub>
        = humidity of air, gm water/cm3 BDA
Н
        = net rate of heat transfer from the pond due to conduction and convection,
H^{\sim}
          Btu/(ft<sup>2</sup> day)
        = humidity of air leaving segment n, gm water/gm BDA
Hn
        = humidity of ambient air, qm water/qm BDA
H٧
Н
        = rate of atmospheric heat transfer, Btu/(ft^2 day)
^{\mathsf{H}}AN
        = net rate of longwave atmospheric radiation entering the pond, measured
           directly, Btu/(ft<sup>2</sup> day)
        = net rate of back radiation leaving the pond surface. Btu/(ft^2 day)
HBR
        = net rate of heat flow from the pond due to conduction and convection,
H<sub>C</sub>
           Btu/(ft<sup>2</sup> day)
        = net rate of heat loss due to evaporation, Btu/(ft^2 day)
H_{\mathsf{F}}
        = net plant heat rejection, Btu/(ft2 day)
H_{RJ}
        = steady-state heat load, Btu/(ft2 day)
H<sub>RJ.0</sub>
        = gross rate of solar radiation, Btu/(ft<sup>2</sup> day)
H_{S}
        = net rate of shortwave solar radiation entering the pond, Btu/(ft^2 day)
H_{SN}
        = heat rejected by sprays, Btu/(ft<sup>2</sup> day)
H<sub>spray</sub>
        = evaporation from a single drop during its flight, gm
I_i
        = total daily solar radiation, Btu/(ft^2 day)
I
        = factor dependent on probability using Student's T distribution
k
        = thermal conductivity of air, cal/(cm sec °C)
ka
        = equilibrium heat-transfer coefficient, Btu/(ft<sup>2</sup> hr °F)
        = mass of drop, gm
m
М
        = sample mean
        = mass flowrate of water vapor entering segment n from the spray, from
          drops of diameter range i, gm/sec
        = total mass flowrate of water vapor entering segment n, gm/sec
Mn
```

= molecular weight of water, 18 gm/gm mole M, = momentum of drop in vertical direction, gm cm/sec = net downward momentum of the falling drops of diameter range i, gm cm/sec = atmospheric pressure, mm Hg р = vapor pressure of water, mm Hg Pw = probability = plotting position for ranked annual maximum values in probability coordinates = Prandtl number Pr = evaporation rate, Btu/hr q = flowrate of water into the nth section = flowrate of water to spray field, cm³/sec or ft³/hr = evaporation correction factor, ft³/hr ΔQ = flowrate of BDA, gm BDA/sec = flowrate of BDA leaving segment n, gm BDA/sec Q_{A_yN} = net outward flowrate of BDA leaving the innermost segment N of the spray field, gm BDA/sec $Q_{A,0}$ = quantity of BDA entering the first segment of the spray field, = quantity of BDA leaving top of segment n in LWS model, gm BDA/sec = drop radius, cm r² = coefficient of determination = particular average radius of drop, cm ri = cooling range of the sprays R_{c} = Reynold's number of drop Re = universal gas constant, 82.02 cm³ atm/(gm mole ^oK) R_{g} = standard deviation S

Sc = Schmidt number

t = time, sec or hr

 t_f = time for drop to fall to water surface, sec

 t_1 = one-half the length of daylight per day, hr

 t_{Ω} = time of the observation (in hours before or after midday)

T = temperature of drop, °C or °K

```
T_{\mathbf{A}}
        = ambient air temperature, °C
\mathsf{T}_{\mathsf{HOT}}
        = temperature of the drop when it left the nozzle, °C or °F
\mathsf{T}_{\max}
        = highest observed value of pond water temperature, oF
        = 100-yr recurrence interval pond temperature, of
T_{100}
        = pond surface temperature. of
Ts
T's
        = pond ambient temperature, °F
        = "virtual" temperature difference between the pond surface water and air
ΔΤͺͺ
          above the pond. of
        = temperature of liquid water leaving segment n, °C
        = wet-bulb temperature, of
T<sub>w</sub>
        = temperature of liquid water leaving segment 1, °F
        = velocity of drop in x direction, cm/sec
u¹
        = ambient air velocity component, cm/sec
        = velocity of drop in y direction, cm/sec
٧¹
        = ambient air velocity component, cm/sec
        = net upward- or downward-induced air velocity, cm/sec
        = absolute velocity of drop relative to air, cm/sec
        = humid volume of the ambient air, cm<sup>3</sup>/gm BDA
        = humid volume of the air in segment N, cm<sup>3</sup>/gm BDA
٧į
        = volume of drop in size range i, cm<sup>3</sup>
۷p
        = pond volume, ft<sup>3</sup>
        = windspeed perpendicular to the pond, either naturally impinging or induced,
          cm/sec
        = induced windspeed at the circumference, cm/sec
        = flowrate through pond or sprays, ft<sup>3</sup>/hr
W
        = flowrate of the blowdown or leakage stream, ft^3/hr
Wh
        = water loss attributable to drift, cm<sup>3</sup>/sec
We
        = evaporation rate, ft^3/hr
        = total water loss attributable to sprays, cm<sup>3</sup>/sec
W
\mathbf{w}_{\text{max}}
        = maximum observed value of evaporation, ft^3/30 days
        = 100-yr recurrence interval 30-day evaporation, ft^3/30 days
W<sub>100</sub>
        = rate of water evaporated from all drops in the spray field, ft^3/hr
```

= correction factor for peak temperature

= air temperature, of or oc

ΔΤ

 ΔZ = one-half the height of the spray field, cm

 α = convergence parameter

 η = spray efficiency

θ = excess temperature, °F

 λ = heat of vaporization for water, cal/gm

 μ = viscosity of air, gm/(cm sec)

 ρ = density of water, lb/ft³ or gm/cm³

 ρ_{A} = density of air, gm/cm³

 $\overline{\Delta} \rho_A = average$ density difference between the air in segment n and the ambient air, gm/cm³

 $\overline{\rho}_{A,n}$ = average density of the air in segment n, gm/cm³

 σ = standard error

ANALYSIS OF ULTIMATE-HEAT-SINK SPRAY PONDS

1 INTRODUCTION

The ultimate heat sink (UHS) is defined as the complex of cooling-water sources necessary to safely shut down and cool down a nuclear power plant. Cooling ponds, spray ponds, and mechanical draft cooling towers are some examples of the types of ultimate heat sinks in use today.

The U.S. Nuclear Regulatory Commission (NRC) has set forth in Regulatory Guide 1.27 (Ref. 1) the following positions on the design of ultimate heat sinks: (1) The ultimate heat sink must be able to dissipate the heat of a design-basis accident (for example, loss-of-coolant accident) of one unit plus the heat of a safe shutdown and cooldown of all other units it serves. (2) The heat sink must provide a 30-day supply of cooling water at or below the design-basis temperature for all safety-related equipment. (3) The system must be shown to be capable of performing under the meteorologic conditions leading to the worst cooling performance and the conditions leading to the highest water loss.

This report identifies methods that may be used to select the most severe combinations of controlling meteorological parameters for a spray-cooling pond of conventional design. The procedure scans a long-term weather record, which is usually available from the National Weather Service for a nearby station, and predicts the period for which either pond temperature or water loss would be maximized for a hydraulically simple spray pond. The principle of linear superposition is used to develop a procedure that allows the peak ambient pond temperature to be superimposed on the peak "excess" temperature, due to plantheat rejection. This procedure determines the timing within the weather record of the peak ambient pond temperature. The true peak can then be determined in a subsequent, more-rigorous calculation.

Maximum 30-day water loss is determined directly from the scanning model.

The data-scanning procedure requires a data record on the order of tens of years to be effective. Since these data will usually come from somewhere other than the site itself (such as a nearby airport), methods to compare these data with the limited onsite data are developed so that the adequacy or at least the conservatism of the offsite data can be established. Conservative correction factors to be added to the final results are suggested.

These models and methods, provided as useful tools for UHS analyses of spray cooling ponds, are intended as guidelines only. Use of these methods does not automatically assure NRC approval, nor are they required procedures for nuclear-power-plant licensing. Furthermore NRC does not, by publishing this guidance, wish to discourage independent assessments of UHS performance or furtherance of the state of the art.

2 SPRAY-POND HEAT AND MASS TRANSFER PERFORMANCE MODELS

A set of models which consider the interaction of sprayed water with air in a spray pond has been developed to calculate cooling and water-loss performance. The models are developed along the line of other models of spray-pond performance (Refs. 2 and 3 and D. M. Myers, personal communication, 1976) and have been tested with field data on prototype ponds. These models form the bases of the analytical methods of spray-pond analysis.

The performance model is developed in two parts:

- (1) A "microscale" submodel which considers the heat, mass, and momentum transfer of a single drop as it falls through the surrounding air.
- (2) "Macroscale" submodels which consider the modification of the surrounding air resulting from the heat, mass, and momentum transfer from many drops in different parts of the spray field.

The microscale and macroscale submodels are combined into a model of performance of the entire spray field. This spray-field model may then be combined with a submodel of the pond itself to simulate the performance of the total UHS system.

2.1 Microscale Submodel

This portion of the model considers the heat, mass, and momentum transfer from a single water drop with the surrounding air.

2.1.1 Drop Motion

The motion of the drop after it leaves the spray nozzle is approximated by the classic ballistic problem as described in Figure 2.1. Drops leave the nozzle

Figure 2.1 Ballistics of a drop leaving a spray nozzle

at an angle θ to the horizontal. After leaving the nozzle, the drop is subjected to the force of gravity and drag from the air. The motion of the drop is represented by the following differential equations:

$$\frac{du}{dt} = -\frac{C_d A_d \rho_A (u - u') V}{m}$$
 (2.1)

$$\frac{dv}{dt} = -\frac{C_d A_{\bar{q}} p_{\bar{A}} (\bar{v} - v^{\dagger}) V}{m} - g \qquad (2.2)$$

where

u = velocity of drop in x direction, cm/sec

v = velocity of drop in y direction, cm/sec

t = time, sec

 C_d = drag coefficient for falling drops

 $A_d^{} = cross\text{-sectional area of drop, } cm^2$

 ρ_A = air density, gm/cm³

u', v' = ambient air velocity components, cm/sec

V = absolute velocity of drop relative to air

m = mass of drop, gm

 $g = acceleration of gravity, cm/sec^2$

 $\mathbf{C_d}$, a drag coefficient for falling drops, is a function of Reynold's number Re. An approximation of $\mathbf{C_d}$ as a function of Re for rigid spheres is suggested by Bird, Stewart, and Lightfoot (Ref. 4):

For Re < 2

$$C_{d} = \frac{24}{Re} \tag{2.3}$$

For 2 < Re < 500

$$C_{d} = \frac{18.5}{Re^{0.6}}$$
 (2.4)

For Re > 500

$$C_{d} = 0.44$$
 (2.5)

Reynold's number is defined in the following relationship:

$$Re = \frac{2rV\rho}{\mu}$$

where

r = drop radius, cm

 $\mu = viscosity of air, gm/(cm sec)$

and V and ρ are as previously defined.

2.1.2 Heat and Mass Transfer Relations

The falling drop exchanges heat and mass with the surrounding air. The rate of change of the drop's temperature may be expressed in terms of the following differential equation (Ref. 2):

$$\frac{dT}{dt} = -\frac{1}{\frac{4}{3}C_{p}\rho\pi r^{3}} \left[4\pi r^{2}h_{d} \left(C_{WA} - C_{\infty} \right) \lambda + 4\pi r^{2}h_{c} \left(T - T_{A,\infty} \right) \right]$$
 (2.6)

where

T = temperature of the drop, °C

 C_p = heat capacity of water, cal/(gm $^{\circ}$ C)

 ρ = density of water, gm/cm³

 h_d = mass transfer coefficient, cm/sec

 C_{WA} = concentration of water in air in equilibrium at the temperature of the drop, gm water/cm³ air

 C_{∞} = concentration of water in air in which the drop is immersed, gm water/cm³ air

 λ = heat of vaporization of water, cal/gm

h_c = heat-transfer coefficient, cal/(sec cm² °C)

 $T_{A,\infty}$ = temperature of the air in which the drop is immersed, °C and t and r are as previously defined.

The heat and mass transfer coefficients $h_{\rm C}$ and $h_{\rm d}$, respectively, are based on the classic work of Ranz and Marshall (Ref. 5) on pendant drops. The heat-transfer coefficient $h_{\rm C}$ has been empirically determined to be:

$$h_{c} = \frac{k_{a}}{r}(1 + 0.3Pr^{1/3}Re^{1/2}) \text{ cal/(sec cm}^{2 \text{ oC})}$$
 (2.7)

where

 k_a = thermal conductivity of air, cal/(sec cm °C)

Pr = Prandtl number

Re = Reynolds number

and h_{c} and r are as previously defined.

Similarly, the mass transfer coefficient has been empirically determined to be:

$$h_d = \frac{D}{r} (1 + 0.3Sc^{1/3}Re^{1/2}) \text{ cm/sec}$$
 (2.8)

where

 \mathcal{D} = molecular diffusivity of air, cm²/sec

Sc = Schmidt number

and h_d , r, and Re are as previously defined.

The concentration \mathbf{C}_{∞} is determined from the ideal gas law:

$$C_{\infty} = \frac{p_{\mathbf{w}}^{\mathsf{M}_{\mathbf{w}}}}{R_{\alpha}\mathsf{T}} \tag{2.9}$$

where

 p_{w} = vapor pressure of water, atm

 $M_{\rm w}$ = molecular weight of water, 18 gm/gm mole

 R_{q} = universal gas constant, 82.02 cm³ atm/(gm mole $^{\circ}$ K)

T = absolute temperature of the drop, °K

and $\mathbf{C}_{\!_{\boldsymbol{\infty}}}$ is as previously defined.

The parameters ρ , μ , Pr, Sc, D and k_a (all previously defined) are thermodynamic properties of the air-water system. For the present purposes, these have been expressed by the following empirical relationships in terms of the <u>absolute</u> temperature of air, T_A , ^{O}K (Refs. 2 and 6):

$$\mu = 2.7936 \times 10^{-6} T_{\Delta}^{0.73617} \text{ gm/(cm sec)}$$
 (2.10)

$$\rho = 0.353 \, T_{A}^{-1} \, \text{gm/cm}^{3} \tag{2.11}$$

$$Pr = 0.93176 T_{A}^{-0.042784}$$
 (2.12)

$$Sc = 2.2705 T_A^{-0.21398}$$
 (2.13)

$$\mathcal{D} = 5.8758 \times 10^{-6} \, T_A^{1.8615} \, \text{cm}^2/\text{sec}$$
 (2.14)

$$k_a = 3.9273 \times 10^{-7} T_A^{0.88315} \text{ cal/(cm sec °C)}$$
 (2.15)

The vapor pressure of water may be expressed in terms of the absolute water temperature of the drop, $T(^{O}K)$:

$$\ln p_{W} = (71.02499 - 7381.6477/T - 9.0993037 \ln T + 0.0070831558 T) atm$$
 (2.16)

2.1.3 Momentum Transfer

The falling water drops will impart momentum to the surrounding air because of drag. Since the spray from a single nozzle will be axially symmetrical, the net momentum in the x direction should be approximately zero.* In typical UHS designs the net momentum change in the vertical direction due to the drag from the drops will be in the downward direction. The net momentum is defined by the integral:

$$M_{y} = \int_{0}^{t_{f}} \frac{drag}{V} dt \quad gm \ cm/sec$$
 (2.17)

where

 t_f = time for drop to fall to water surface drag = drag force, (gm cm)/sec²

^{*}In this analysis, oriented spray nozzles which are purposely arranged to induce a lateral flow are not considered.

2.1.4 Solution of Microscale Equations

The above equations are solved simultaneously with numerical integration in a fourth-order Runge-Kutta scheme. Mass, heat, and momentum transfer are calculated for a single drop, specifying as inputs the drop radius, the initial velocity from the nozzle, the spray angle, the height of the nozzle above the water surface, the sprayed temperature, and the temperature and humidity of the surrounding air. The outputs from this submodel are subsequently used in the macroscale submodel.

2.2 <u>Macroscale Submodels</u>

The performance of a single isolated spray nozzle might be adequately predicted by the microscale model alone. When many spray nozzles are arranged into a spray field, however, consideration must be given to the modification of the atmospheric environment in which the nozzle is immersed because of neighboring spray nozzles. The temperature and humidity of the air in the interior of a spray field are both raised and will lead to diminished spray performance with respect to an isolated nozzle in unaffected air. In addition, heated, humidified air is less dense than cooler, drier air. Therefore, it is likely that complicated convection currents will be generated, which may also be affected by the drag forces of the falling drops.

There are separate macroscale models dealing with high- and low-windspeed conditions. The high-speed model assumes that the momentum exchange in the pond due to drag and buoyancy are much less important than that due to the wind blowing through the spray field. The low-speed model assumes that the opposite is the case. The transfer of the air through the spray field is self-induced.

Both models are run at the same time in the simulation, since for some cases of high-heat loadings, natural convection might be greater than wind-induced convection. The higher performance model is then chosen as being representative of the spray field for that time interval.

2.2.1 High-Windspeed Submodel

The spray field is represented by a rectangular volume, in which the density of sprayed drops is great, as represented in Figure 2.2. The rectangular volume is divided into N equal segments. Each segment is then considered to be a compartment whose air temperature and humidity are determined by the preceding segment, as depicted in Figure 2.3.

Figure 2.2 Segmentation of spray field for high-windspeed model

Figure 2.3 Compartment model of spray field for high windspeed

Ambient air of humidity H_0 (gm water/gm dry air) and temperature $T_{A,0}$ (°C) enters the first segment of the spray field at a volumetric rate wA_s cm³/sec, where w is the windspeed perpendicular to the long axis of the pond (cm/sec)

and A_s is the cross-sectional area of the spray field (cm²). It is convenient to perform all mass and heat-transfer calculations on a "bone dry air" (BDA) basis (Ref. 6). The "humid volume" V_h is defined as the volume occupied by a parcel of air whose dry weight is 1 gm and at a pressure of 1 atm:

$$V_h = \left(81.86T_{A,0} + 22,387\right) \left(\frac{1}{29} + \frac{H_0}{18}\right) \text{ cm}^3/\text{gm BDA}$$
 (2.18)

The quantity of BDA, $\mathbf{Q}_{\mathbf{A}}$, entering and passing through every segment of the pond (flow rate) is, therefore:

$$Q_A = w \times \frac{A_s}{(81.86T_{A,0} + 22,387)} / (\frac{1}{29} + \frac{H_0}{18}) \text{ gm BDA}$$
 (2.19)

The concentration of water in air C_{WA} anywhere in the pond is related to the humidity H and temperature T_A by the relationship:

$$C_{WA} = \frac{H}{\left(81.86T_A + 22,387\right)\left(\frac{1}{29} + \frac{H}{18}\right)}$$
 gm water/cm³ wet air (2.20)

For a particular segment n, it can be assumed that the humidity and air temperature are determined only by what left the segment upwind, providing that all other parameters of the system, such as initial drop velocity, spray angle, nozzle height, and hot-water temperature, are known. Subroutine SPRAY is then called several times for each segment n or to solve the microscale equations of heat and mass transfer from drops over a range of radii whose distribution is typical of the particular nozzle design employed.

For drops of a particular average radius r_i (cm), the heat entering the segment, E_i , is proportional to the fraction of drops in that diameter range (diameter D_i); f_i , the flowrate of water into the nth section q_{wn} ; and the difference between

the temperature of the drop when it left the nozzle, T_{HOT} , and when it reached the pond surface, $T_{i}(^{\circ}C)$:

$$E_{i} = \rho C_{p} q_{wn} f_{i} \frac{T_{HOT} - T_{i}}{\frac{4}{3}\pi r_{i}^{3}} \text{ cal/sec}$$
 (2.21)

The total rate of heat entering pond segment n is therefore:

$$E_{n} = \sum_{i} E_{i} = \frac{\rho C_{p} Q_{wn}}{\frac{4}{3}\pi} \sum_{i=1}^{j} \frac{T_{HOT} - T_{i}}{f_{i} r_{i}^{3}} \text{ cal/sec}$$
 (2.22)

where j is the number of drop-diameter ranges used.

The heat flowrate in the air leaving segment n (and entering segment n+1) is therefore:

$$h_{n+1} = h_n + E_n \text{ cal/sec}$$
 (2.23)

where h_n = heat flow rate leaving segment n, cal/sec.

Liquid water leaving the segment is of temperature:

$$T_{w,n} = \sum_{i=1}^{j} f_i T_i$$
 °C (2.24)

For drops of a particular average radius r_i (cm), the mass flowrate entering the segment from the sprays will be:

$$M_{i,n} = \frac{f_i q_{wn}^I i}{\frac{4}{3}\pi r_i^3} \text{ gm/sec}$$
 (2.25)

where I_i is the evaporation from a single drop during its flight, in grams.

The total mass flowrate of water vapor entering segment n is therefore:

$$M_{n} = \sum_{i=1}^{j} M_{i,n} = \frac{3q_{wn}}{\frac{4}{3}\pi} \sum_{i=1}^{j} \frac{f_{i}I_{i}}{r_{i}^{3}} \text{ gm/sec}$$
 (2.26)

Adding M_n gm/sec of water vapor to the air leaving the segment n increases the humidity of segment n+1 by the following amount:

$$H_{n+1} = H_n + \frac{M_n}{Q_A} \text{ gm water/gm BDA}$$
 (2.27)

The temperature of the air leaving one segment and entering the next reflects the added heat and moisture:

$$T_{A,n+1} = \frac{\frac{n_{n+1}}{Q_A} - H_{n+1} \lambda}{0.24 + 0.45 H_{n+1}} \quad ^{\circ}C$$
 (2.28)

Calculations continue with segment n+1, and step through all pond segments.

The properties of the air in the first segment are determined by the ambient air temperature $T_{A,0}$ and humidity H_0 :

$$T_{A,1} = T_{A,0}$$
 °C
 $H_1 = H_0$ gm water/gm BDA
 $h_1 = Q_A \left[0.24 T_{A,0} + H_0 \left(\lambda \pm 0.45 T_{A,0} \right) \right]$ cal/sec (2.29)

The total cooling performance of the spray field is simply the average cooling from all sections:

Range =
$$\frac{\sum_{n=1}^{N} q_{wn}(T_{HOT} - T_{w,n})}{\sum_{n=1}^{N} q_{w,n}}$$
 °C (2.30)

Cooling performance may also be expressed in terms of "efficiency" of approach to wet-bulb temperature:

$$\eta = \frac{\text{range}}{\left(T_{\text{HOT}} - T_{\text{W}}\right)} \times 100 \quad \text{percent}$$
 (2.31)

2.2.2 Low-Windspeed Macroscale Submodel

At low ambient windspeeds, the flow of air through the spray field is largely controlled by two mechanisms: drag from the spray droplets and buoyancy of the heated, humidified air. Since the spray-field arrangements in most conventional spray fields are already evenly distributed and symmetrical, it would appear that there would be little net effect of the spray droplet drag in the lateral direction. There would be a net downward drag due to the falling drops.*

In a conventional spray pond under loads typical of UHS service, buoyancy is the dominant force in the low-windspeed case.

For the low-windspeed model, the spray field is sectioned into N rectangular cylinders of equal volume as shown in Figure 2.4 (Ref. 3 and D. M. Myers, personal communication, 1976). Air enters the segment from all four sides,

^{*}However, at least one spray-equipment manufacturer, Ecolaire (Ref. 7), is marketing an oriented spray-field arrangement which induces the circulation of air laterally.

and leaves the segment to enter the next segment after being heated and humidified by the sprays. Unlike the high-windspeed model, however, air also leaves through the top of the segment because of buoyancy. Each segment is then considered to be a compartment whose air temperature, humidity, and air-flow rate are determined by the heat and mass transfer of the segment itself and the previous and next segments as depicted in Figure 2.5.

Figure 2.4 Segmentation of spray field for low-windspeed model

Figure 2.5 Compartment model of spray field for low windspeed

2.2.2.1 Material and Energy Balances of Segment n

If a control volume is drawn around segment n, the relationships between the air and water streams can be defined. The flow of air is described on a BDA basis:

$$Q_{A,n} = air leaving segment n = Q_{A,n+1} + Q_{T,n} gm BDA/sec$$
 (2.32)

and the water vapor entering segment n will be:

$$M_{n} = \frac{3q_{wn}}{4\pi} \sum_{i=1}^{j} \frac{f_{i}I_{i}}{r_{i}^{3}} \text{ gm/sec}$$
 (2.33)

Adding M_n gm/sec of water vapor to the air leaving segment n increases the humidity of segment n + 1:

$$H_{n+1} = H_n + \frac{M_n}{Q_{A,n}}$$
 (2.34)

The temperature of the air leaving segment n and entering the next is modified by the added heat and moisture:

$$T_{n+1} = \frac{\frac{h_{n+1}}{Q_{A,n}} - H_{n+1}}{\frac{A_{n+1}}{0.24 + 0.45 H_{n+1}}}$$
°C (2.35)

where λ = heat of vaporization, cal/gm.

The quantity of BDA entering the first segment ${}^{\mathbb{Q}}A_0$ of the spray field is defined to be:

$$Q_{A_0} = \frac{w_0 \times A_c}{\left(81.86T_{A,0} + 22,387\right)\left(\frac{1}{29} + \frac{H_0}{18}\right)} \text{gm BDA/sec}$$
 (2.36)

where

 \mathbf{w}_0 = induced windspeed at the circumference, cm/sec

 ${\rm A_C}$ = total side area of the outermost segment, cm² and ${\rm T_{A,0}}$ and ${\rm H_0}$ are as previously defined.

Air leaving the last segment can leave only through the top, so:

$$Q_{A,N} = 0 \tag{2.37}$$

2.2.2.2 Momentum Balance

The movement of air and water vapor through the spray field is controlled by complicated aerodynamic effects. In the grossest sense, however, a balance of vertical momentum, i.e., Bernoulli's equation (Ref. 4), can be used to represent the movement of air streams. For any segment n, the vertical momentum of the entering and leaving streams of air is defined by the following equations:

(1) Force of air leaving top of segment:

$$v_n^{12}\overline{\rho}_{A,n}^A A_{T,n}$$
 (2.38)

where

 v_n^1 = upward velocity of the air in segment n, cm/sec $\overline{\rho}_{A,n}$ = average density of the air in segment n, gm/cm³ $A_{T,n}$ = top area of segment n, cm²

(2) The buoyant force of rising air against the force of gravity in segment n:

$$F_{b,n} = A_{T,n} g \overline{\Delta \rho}_{A,n} \Delta Z \text{ gm cm/sec}^2$$
 (2.39)

where

 $\overline{\Delta p}_{A,n}$ = average density difference between the air in segment n and the ambient air, gm/cm³

 ΔZ = one-half the height of the spray field, cm

and $A_{T,n}$, g, and $\overline{\rho}_{A,n}$ are as previously defined.

2.2.2.3 Net Drag Force From Falling Droplets in Segment n

$$F_{d,n} = \sum_{i} \frac{f_i M_{y,i} Q}{V_i A_T} \text{ gm cm/sec}^2$$
 (2.40)

where

 $M_{y,i}$ = net downward momentum of each of the falling drops in diameter range i (from Eq. 2.17), gm cm/sec

Q = flowrate of water to spray field, cm³/sec

 V_{i} = volume of drop in size range i, cm³

 A_T = total top surface area of the spray field, cm²

The net upward or downward air velocity of the air in segment n, v_n^i (cm/sec) is found by solving one of the following two expressions:

$$v_n' = \sqrt{(F_{b,n} + F_{d,n})/\rho_A} \text{ if } (F_{b,n} + F_{d,n}) > 0$$
 (2.41)

for upward velocity or

$$v_n' = -\sqrt{-(F_{b,n} + F_{d,n})/\rho_A} \text{ if } (F_{b,n} + F_{d,n}) < 0$$
 (2.42)

for downward velocity.

2.2.2.3 Solving for Air Flow

The velocity of air leaving each segment is calculated at each iteration based on the temperature and humidity of the segments in the previous iteration. The calculation of mass transport through the spray field starts at the innermost segment. The net outward flowrate of BDA leaving the innermost segment N of the spray field is:

$$Q_{A,N} = \frac{v_N^{l}A_{T,N}}{v_{h,N}} \text{ if } v_N^{l} \text{ is positive}$$
 (2.43)

$$Q_{A,N} = \frac{v_N^{\prime A} I_{,N}}{v_h} \text{ if } v_N^{\prime} \text{ is negative}$$
 (2.44)

where

 $A_{T,N}$ = top area of segment N, cm² $V_{h,N}$ = humid volume of the air within segment N, cm³/gm BDA V_{h} = humid volume of the ambient air, cm³/gm BDA and V_{N} is as previously defined.

The flowrate of BDA for all other segments $Q_{A,n}$ is calculated by stepping from the innermost segment outward:

$$Q_{A,n} = Q_{A,n+1} + \frac{v_n' A_{T,n}}{V_{h,n}} \quad \text{if } v_n' \text{ is positive}$$
 (2.45)

$$Q_{A,n} = Q_{A,n+1} + \frac{v_n'^A T_{,n}}{V_h} \text{ if } v_n' \text{ is negative}$$
 (2.46)

The temperature and humidity in each segment are next recomputed based on the new estimate of flowrate of BDA starting with the outermost segment and working in. The enthalpy of air entering the first segment is simply that of the ambient air H_{Ω} .

2.2.2.4 Convergence of Iterative Solution

The computations for the LWS (low-windspeed) model outlined above are iterative. The flowrate of air and water vapor depends on the computed temperature and humidity in each segment. Conversely, the temperature and humidity depend on the flow of air through the spray field. The computations proceed iteratively until the differences of temperature, humidity, and air flow between two computations are smaller than a certain tolerance.

Under certain circumstances, convergence may be very difficult. For example, a poor initiation of the computation may cause the first calculated flowrates to be very small, which in turn would cause the subsequently calculated temperatures to be very large. Because the equations are highly nonlinear, a wide initial oscillation may drive the iterative calculations beyond the region of convergence and into a region of divergence where the solution will degenerate or "blow up."

Other factors contribute to the divergence of the solution of the LWS model. The effect of the downward drag of falling drops seems to destabilize the calculation, especially if the net flow from any segment were to be downward instead of upward.

2.2.2.5 Measures To Aid Convergence

It is possible to assure convergence of the LWS model in almost every case by imposing several computational restrictions:

- (1) Allow only positive (upward) air flow from each segment.
- (2) Eliminate vertical drag as a force in the momentum balance.
- (3) Introduce "damping" to smooth out oscillations.

Steps 1 and 2 above are compromises which could affect the computation accuracy. The effect of these restrictions on the resultant performances is shown later to be minor and in fact appears to improve the model's comparison to field data.

Damping is a computational trick which has the effect of smoothing large oscillations, but whose influence disappears at steady state (Ref. 8). The temperature and humidity in the ith segment are damped in the following manner:

$$T_{A,i}^{k'} = T_{A,i}^{k} - \alpha \left(T_{A,i}^{k-2} - 2T_{A,i}^{k-1} + T_{A,i}^{k} \right)$$
 (2.47)

$$H_{i}^{k'} = H_{i}^{k} - \alpha \left(H_{i}^{k-2} - 2H_{i}^{k-1} + H_{i}^{k} \right)$$
 (2.48)

where

 $T_{A,i}^{k'}$ = smoothed value of air temperature in the segment $T_{A,i}^{k}$

 $H_i^{k'}$ = smoothed value of the humidity in the segment H_i^k

 α = convergence coefficient. Typically, its value should be about 0.05 to 0.1, but other values may be used.

The superscript k represents the present iteration; the superscripts k-1 and k-2 represent the previous two iterations, respectively.

An example of the effect of damping is illustrated in Figure 2.6. The temperature of the innermost segment oscillates around the steady-state value, but appears to converge faster with damping. The results for the damping case are identical until the third iteration since the damping factor depends on having results from two previous iterations.

Figure 2.6 Convergence of low-windspeed model with and without damping

2.3 Comparison With Field Data

The results of the spray performance models were compared with available data on spray-pond performance.* Two sets of data were generally available at the

^{*}Actually, the "mean drop diameter" simplification was taken, as developed in Section 3, but the results are shown to be nearly identical.

time the comparison was made: (a) the Canadys test data (Ref. 9), and (b) the Rancho Seco spray-pond confirmatory tests (Ref. 10). Both data sets considered only the instantaneous cooling of the sprays, and did not attempt to include other heat-transfer mechanisms, such as cooling from the pond surface. The Canadys data were gathered on an operating spray-cooling pond used for condensor cooling at a fossil-fuel electric station in South Carolina. The Rancho Seco data were gathered at an actual UHS spray pond in California during a preoperational test requested by the NRC. The Rancho Seco tests were designed specifically to determine the performance of the spray field, while the Candys tests considered the performance of the pond as a whole, including heat transfer from the pond's surface. The Rancho Seco data are more appropriate for the present comparison.

2.3.1 Canadys Data Comparison

The Canadys spray pond is shown in Figure 2.7. Not all of the information on the basic physical parameters of the Canadys spray pond could be found, and some parameters had to be inferred. For example, the height of the nozzles, the height of the sprayed water, the nozzle distribution, and the drop-diameter

Figure 2.7 Canadys spray-cooling pond

distribution of the sprays (in 10 divisions shown in Table 2.5) were taken as those for the Spraco 1751 nozzle and recommended layout, although the design probably was somewhat different (Ref. 11). It should be noted that the performance models can be used with any nozzle as long as the drop-diameter distribution is known. Necessary pond parameters are shown in Table 2.1. Table 2.2 contains the measured atmospheric variables and pond performance in terms of spray efficiency η , as well as the predicted performance from the HWS model. Figure 2.8 plots the predicted efficiency versus the measured efficiency. There is a great deal of scatter evident from Figure 2.8, but the points distributed on the diagonal, indicating no systematic bias.

Table 2.1 Physical Characteristics of Canadys Spray Pond Used in Spray-Field Model

Variable	Measurement
Length of spray field	304.8 m
Width of spray field	30.48 m
Height of spray field	3.66 m
Initial drop velocity	6.67 m/sec
Angle of drop with respect to horizon	76°
Height of nozzles from water surface	1.52 m
Barometric pressure	29.92 in. Hg
Flowrate through all nozzles	11,400 liters/sec

It should be noted that the Canadys pond has a sprayed-water loading about twice that recommended by spray-nozzle manufacturers. The cooling efficiency of this pond and that predicted by the NRC model were well below the efficiencies predicted by conventional techniques before the pond was constructed.

2.3.2 Rancho Seco Data

The Rancho Seco pond is shown in Figure 2.9. This pond incorporates a standard Spraco design for spray configuration and the employment of the 1751 nozzle. Most operational characteristics of the pond were well documented. The basic

Table 2.2 Measured Atmospheric Parameters and Spray Efficiency, and Efficiency Predicted From High-Windspeed Model With Drag Terms Included

T _w -°C	T _A ,°C	T _{HOT} ,°C	w, cm/sec	η _{measured}	η _{predicted}
25.4	30.4	43.6	163.2	0.443	0.250
27.1	35.6	45.0	244.8	0.248	0.334
27.1	34.6	44.7	204.0	0.279	0.301
23.2	24.7	44.2	244.8	0.275	0.310
25.8	27.2	41.7	201.0	0.346	0.279
26.1	30.3	42.8	191.0	0.270	0.276
26.1	31.7	43.6	201.0	0.325	0.288
24.2	27.5	43.3	163.2	0.257	0.244
26.6	31.3	42.2	175.9	0.320	0.261
25.4	28.5	44.2	163.2	0.252	0.253
26.8	31.1	43.6	226.1	0.265	0.312
25.6	35.2	45.3	163.3	0.198	0.257
26.6	30.9	45.6	276.4	0.263	0.353
27.4	34.1	44.4	271.0	0.351	0.350
25.4	36.7	45.6	246.4	0.252	0.328
26.5	36.1	44.4	246.4	0.302	0.329
21.3	25.8	43.9	427.2	0.339	0.378
22.1	25.0	44.4	305.1	0.372	0.339
21.6	24.3	43.9	276.4	0.343	0.319
20.8	24.4	44.4	226.1	0.335	0.288
16.8	21.7	36.1	376.9	0.346	0.305
17.8	24.7	37.8	414.6	0.275	0.330
18.5	25.6	38.3	194.8	0.287	0.229

physical parameters for the pond are given in Table 2.3. The measured meteorological variables and spray performance (in terms of efficiency η) are shown in Table 2.4, as well as the NRC model predictions. Figure 2.10 shows the predicted efficiency versus the measured efficiency.

The scatter is much smaller than in the comparison of the model to the Canadys data. This is probably an indication that the experiments were conducted more carefully at Rancho Seco. The NRC model clearly underpredicts the efficiency, and should, therefore, be considered conservative for temperature computations.

Figure 2.8 Measured and predicted performance of Canadys pond, complete spray model (high windspeed)

Figure 2.9 Rancho Seco spray-cooling ponds (not to scale)

Table 2.3 Physical Characteristics of Rancho Seco Spray Pond Used in Spray-Field Model

Variable	Measurement
Length of spray field	84.8 m
Width of spray field	35.1 m
Height of spray field	3.66 m
Initial drop velocity	6.67 m/sec
Angle of drop with respect to horizon	76°
Height of nozzles from water surface	1.52 m
Barometric pressure	29.92 in. Hg
Flowrate through all nozzles	1590 liters/sec

Table 2.4 Measured Atmospheric Parameters and Spray Efficiency, and Efficiency Predicted From Combined High-Windspeed and Low-Windspeed Model With and Without Drag Terms Included

T _w ,°C	T _A ,°C	T _{HOT} ,°C	w, cm/sec	η _{measured}	$\eta_{calculated}^*$	η _{calculated**}
16.1	27.5	26.6	581.8	0.417	0.383	0.415
16.4	27.2	26.7	558.8	0.475	0.381	0.414
10.6	12.8	25.2	236.9	0.325	0.259	0.276
9.2	11.1	25.2	44.7	0.288	0.248	0.277
13.6	18.3	25.3	268.2	0.309	0.287	0.307
14.2	21.7	25.9	290.6	0.355	0.303	0.324
22.4	35.0	26.7	312.9	0.389	0.398	0.423
20.9	33.9	27.3	295.0	0.343	0.368	0.391
19.2	29.8	27.1	375.5	0.458	0.373	0.400
16.1	22.4	26.8	169.9	0.345	0.256	0.261
15.7	20.7	26.5	169.9	0.285	0.250	0.270
12.3	14.4	38.6	44.7	0.352	0.324	0.350
11.7	13.9	37.8	71.5	0.362	0.318	0.348
11.1	13.3	36.6	58.1	0.344	0.310	0.340
9.4	11.7	38.7	44.7	0.345	0.315	0.340
8.9	10.6	36.3	17.9	0.346	0.302	0.330

^{*}With drag terms.
**Without drag terms.

Figure 2.10 Measured and predicted performance of Rancho Seco pond, complete spray model (with drag terms)

2.4 Simplifying Assumptions for Performance Models

The microscale model of the falling drop has been formulated in considerable detail. The possibility of simplifying this facet of the model is explored by starting with a more complete numerical solution of the falling drop and comparing the results to simplified versions of the model (for example, by eliminating one or more terms from the equations). If the results using the simplified model can be shown to be acceptable, substantial reductions in computing time can be realized. In addition, troublesome aspects of the computations can be eliminated if it can be shown that their effects on the performance of the model are negligible.

2.4.1 Simplification for Average Drop Diameter

The motion of the drop and its heat, mass, and momentum-transfer properties depend strongly on its diameter. The drop-diameter distribution in 10 divisions for the Spraco 1751A nozzle is illustrated in Table 2.5. As suggested in

Table 2.5 Drop-Diameter Distribution for Spraco 1751A Nozzle

Diameter, cm.	Percent of total	Cumulative volume, %
0.075	10	10
0.12	10	20
0.15	10	30
0.184	10	40
0.22	10	50
0.245	10	60
0.27	10	70
0.31	10	80
0.36	10	90
0.45	10	100

Source: Summarized from Reference 3.

Section 2.1, the heat, mass, and momentum transfers in any segment of the pond can be found by integrating the contributions over the range of drop diameters. In practice, the drop-diameter distribution may be broken up into j diameter ranges and the contribution from each diameter range summed to get the average. For example, the average drop temperature T is:

$$T = \sum_{i=1}^{j} f_i T_i \quad ^{\circ}C$$
 (2.49)

The problem with this approach is that there must be a solution of the equations for each of the j drop diameters. If instead, a single average drop diameter could be found, which gave the same results as the summation of the results for the j individual drop diameters, the computational effort would be reduced by a factor of about 1/j.

It is not obvious that an average drop diameter exists which would consistently duplicate the performance of the spray model using the distributed drop-diameter formulation. In order to test the theory that an acceptable mean diameter could be used, the HWS and LWS models were run over a wide range of conditions, using an observed drop-diameter distribution. The resulting performances were then compared to the results of the HWS and LWS models using a single drop diameter over the same range of conditions.

In all cases for which it was tested, it appears that a single average drop diameter <u>can</u> be chosen to very nearly represent the drop-diameter distribution over a wide range of operation for both the LWS and HWS models. Figures 2.11 and 2.12 illustrate that for the HWS and LWS models, the "average" drop diameter which gives results closest to the distributed drop for the Spraco 1751 nozzle is about 0.208 cm for the LWS model and 0.196 cm to 0.202 cm for the HWS model. Figure 2.13 demonstrates for the HWS model how closely the "average drop diameter" model compares to the "distributed drop diameter" model.

2.4.1.1 Estimating the Average Drop Diameter

The average diameter illustrated above was determined by experimentation with the model on a single drop-diameter distribution and spray-pond configuration. It is difficult to generalize how one would estimate the average drop diameter under completely general conditions, except to illustrate how well the empirically determined average diameter works over a wide range of conditions for both the HWS and LWS spray-pond models.

Figure 2.11 Determination of "average drop diameter" for high-windspeed model

Figure 2.12 Determination of "average drop diameter" for low-windspeed model

Figure 2.13 Performance of high-windspeed model for mean and distributed drop diameter

A formula which has been developed on physical principles to represent the mean drop diameter in heat and mass transfer from drops is the "Sauter" mean (Ref. 12), which is based on an area-weighted mean volume:

$$D_{3} = \frac{\int_{0}^{\infty} D^{3} F(D)}{\int_{0}^{\infty} D^{2} F(D)} \stackrel{:}{=} \frac{\sum_{i=1}^{j} D_{i}^{3} f_{i}}{\sum_{j=1}^{j} D_{j}^{2} f_{j}}$$
(2.50)

where

D = drop diameter, cm

D; = drop diameter in diameter range i, cm

 f_i = fraction of drops by mass in diameter range i.

For the Spraco 1751 nozzle drop-diameter distribution shown in Table 2.5, the Sauter mean calculated by the discrete form of Eq. 2.50 is $D_3=0.339\,$ cm. This is somewhat larger than the mean diameter from 0.2 cm to 0.208 cm, which was determined to give the best agreement with the distributed diameter model.

Use of the Sauter mean would result in a lower cooling efficiency than would be predicted by the "correct" method using the distributed drop diameters.

It is possible to define a general class of mean diameters D_n :

$$D_{n} = \frac{\int_{0}^{\infty} D^{n} F(D)}{\int_{0}^{\infty} D^{(n-1)} F(D)} \stackrel{!}{=} \frac{\sum_{i=1}^{j} D_{i}^{n} f_{i}}{\sum_{j=1}^{j} D_{j}^{(n-1)} f_{j}}$$
(2.51)

For example, the Sauter mean would be called D_3 . Figure 2.14 shows the nth order mean diameter D_n calculated from the discrete form of Eq. 2.51 versus the order n for the distribution shown in Table 2.5. The order of the mean

which yields the empirically determined mean diameter of 0.208 cm is about n=+0.45. Since larger drop diameters are conservative, we will arbitrarily pick an order of the mean n=0.5, which gives a mean diameter of 0.211 cm. Equation 2.51 for n=0.5 reduces to:

$$D_{\frac{1}{2}} = \frac{\int_{0}^{\infty} \sqrt{D} F(D)}{\int_{0}^{\infty} \frac{F(D)}{\sqrt{D}}} \stackrel{:}{=} \frac{\sum_{i=1}^{j} \sqrt{D_{i}} f_{i}}{\sum_{i=1}^{j} \sqrt{D_{i}}}$$
(2.52)

This is the suggested diameter to be used in the HWS and LWS performance models.

Figure 2.14 Determination of order of the mean for Spraco 1751A drop-diameter distribution

2.4.2 Effect of Drag on Performance Models

Including drag on the falling drops introduces several complications to the model, most notably:

- (1) The drag term makes the equations of motion for the drop (Eqs. 2.1 and 2.2) nonlinear, requiring a numerical integration solution. By eliminating the drag term, the motion of the drop can be described analytically.
- (2) On the LWS model, the net downward drag of the drops is a destabilizing influence on the iterative solution, especially at low heat loads.

For these and other reasons, it would be highly desirable to eliminate the drag term from Eqs. 2.1 and 2.2. The effect of eliminating the drag term from the HWS and LWS models was tested for a typical spray-pond configuration over a wide range of heat loading and atmospheric conditions. The following is a discussion of the various effects resulting from drag elimination.

2.4.2.1 Microscale Submodel

Eliminating the drag terms in Eqs. 2.1 and 2.2 has two effects:

- (1) The time of flight is shortened.
- (2) The rate of heat and mass transfer is increased because the average drop velocity is higher.

These two phenomena counteract each other to a certain extent, but the net effect is that the falling drops are predicted to experience more cooling and evaporation once drag is eliminated.

2.4.2.2 Macroscale Model

Eliminating the drag term increases the efficiencies predicted by both the HWS and LWS models. In addition, it increases the stability of the iterative solution in the LWS model. Table 2.4 shows the predicted efficiencies for the HWS and LWS models with and without drag over a range of heat and meteorological conditions for the Rancho Seco spray-pond test. Figure 2.15 compares the combined HWS-LWS "no-drag" model results (choosing the higher η of the two) with the Rancho Seco test data. The model-prototype agreement is good, and

the no-drag model results are still conservatively low. In fact, agreement is better <u>without</u> drag than <u>with</u> drag, because the elimination of drag raises the predicted efficiency.

On the basis of the good agreement to data shown by the model and the improvement in stability of the LWS model, the drag term can be eliminated for typical spray-pond applications. This would not be a correct assumption for certain oriented spray configurations that are designed to induce lateral air flows (Ref. 7). In those cases, the effects of drag would have to be included. In addition, drag cannot be neglected in the drift-loss model described in the next section, since the smaller drop diameters which are most prone to drift, are strongly affected by drag.

Figure 2.15 Comparison of NRC model with Rancho Seco data for "no-drag" model

3 DRIFT-LOSS MODEL

A fraction of the water droplets sprayed from the nozzles will be lost because they are physically carried by the wind beyond the pond borders. This "drift" loss can be estimated by means of a mathematical model showing the trajectory of droplets in a wind field and where the droplets fall in relation to the borders of the pond. Drift losses are generally small compared with evaporative losses.

3.1 Model Assumptions

The model is formulated for a spray pond of conventional design, with the Spraco 1751A nozzle operating at the recommended pressure and height. The trajectories of drops leaving the spray nozzles are simulated using a ballistics approach, in a similar manner as the "microscale" submodel of Section 2.1, but for 21 drop diameters which represent the drop-diameter distribution of the Spraco 1751 nozzle rather than the 10 drop diameters used in performance models. The equations in Section 2.1.1 apply exactly. No interaction of drops is presumed. It is likely that this is a conservative assumption, since small drops in some cases would collide to form larger drops which are less prone to be carried by wind.

The process of drop formation is complicated. Water will generally leave the nozzles in a continuous stream. Once the stream is airborne, forces of surface tension tend to cause the breakup of the stream into drops of varying sizes. Aerodynamic forces may also cause the larger drop diameters to become unstable and break up into smaller, more-stable drops. In every case, the breaking apart of larger drops into smaller drops causes the formation of one or more very small particles separate from the two major components of the fission. The drop-diameter distribution is not only a function of the type of spray nozzle and pressure, but of the distance from the nozzle, since the breakup into smaller drops occurs along the entire path.

If the assumption were made that all particles were already formed leaving the nozzle, drift loss would be underestimated. This is because the smallest particles most prone to drift also have small momentum, and would not be predicted to attain a very great height with respect to the nozzle. The most conservative assumption in this case would be that all droplets are formed at the apogee of the trajectory of the largest drop diameter, even though many small drops form close to the nozzle.

The buoyancy of the heated, humidified air in a heavily loaded spray pond could cause an updraft on the order of tens to hundreds of centimeters per second during low wind conditions. A single value of updraft velocity is chosen and inputted to represent an average for the 30-day period of an accident. The default value is 50 cm/sec.

3.1.1 Ballistics Model for a Drop

The model for the flight of the drops is the same as that developed in Section 2.1.1 and will not be repeated. It should be noted, however, that more emphasis is placed on the trajectory of small drops in the drift model; these are relatively less important for the spray-heat-loss calculations of Section 2. Therefore, a finer drop-diameter distribution is needed. The default drop-diameter distribution used for the drift model is shown in Table 3.1.

3.1.2 Initial and Boundary Conditions

The Spraco 1751 under a design pressure of 7 psig demonstrates a nozzle velocity of about 24 ft/sec. The spray would form a cone of water with an average angle of 58° from the horizontal. In calm conditions, the sprayed water forms an "umbrella" of about 12 ft in height and up to 16 ft in radius when the nozzle is 5 ft above the water surface according to Spraco promotional literature (Ref. 11).

Under the influence of wind, the spray umbrella is distorted. The circular pattern of droplets falling on the water surface is shifted downwind. The apogee of the drops is decreased in the upwind direction and increased in the

Table 3.1 Default Drop-Diameter Distribution for Spraco Nozzle 1751A for Use in Drift Model

Diameter, microns	Percent of total	Cumulative volume, %
200	0.05	0.05
260	0.05	0.1
300	0.05	0.2
330	0.1	0.3
365	0.1	0.4
400	0.1	0.5
425	0.2	0.7
460	0.3	1.0
520	0.4	1.4
580	0.6	2.0
640	2.0	4.0
855	3.0	7.0
1000	3.0	10.0
1190	5.0	15.0
1340	5.0	20.0
1650	10.0	30.0
2000	10.0	40.0
2290	10.0	50.0
2800	20.0	70.0
3600	15.0	85.0
4000	15.0	100.0

Source: See Reference 3

downwind direction. The smaller drop diameters would naturally be affected more than the larger ones. All drops of the same diameter would fall roughly in a circular pattern, however. This last assumption simplifies the analysis somewhat, because the diameter of the circular pattern for a particular drop diameter can be determined from just the straight upwind and straight downwind trajectories of the spray.

The starting point for the trajectory computations for all drop diameters is conservatively chosen as the apogee of the largest drop diameter, for reasons previously discussed.

The velocities and vertical and horizontal coordinates of both the upwind and downwind apogees for the largest drop diameter are calculated for a range of

windspeeds and stored. These stored values are then used as the initial conditions for each windspeed in Eqs. 2.1 and 2.2 for the range of 22 drop diameters representing the spray-diameter distribution.

The circular patterns for each windspeed and each drop diameter, which are predicted from the drop ballistics, are used subsequently to predict the fraction of water passing beyond the boundaries of the pond. A drop is assumed to be lost if it does not fall on the pond surface. No allowance is made for runoff from the berms back into the pond.

The critical pond boundary is a straight line, arbitrarily oriented to be closest to the greatest number of nozzles in the downwind direction, as illustrated in Figure 3.1. The distance of the nozzles, or group of nozzles, equidistant from this line and the fraction of water in each group is specified. The part of the circular pattern for each drop diameter and wind falling outside of the critical pond boundary is then calculated for each nozzle or group of nozzles, which is the drift loss.

Figure 3.1 Typical layout of pond sprays and determination of critical pond boundary

3.2 Model Validation

3.2.1 Rancho Seco Data

Only limited field data are available on actual spray ponds with which the drift model can be validated.

The Rancho Seco drift-loss data were collected during an operational test of the spray-pond system required by NRC for the licensing of the plant (Ref. 10). Pond inventory and windspeed measurements were made during the test period, and then used to estimate the fraction of sprayed water lost versus windspeeds, which were typically from 0 to 15 mph.

To account for evaporation under zero heat load, the investigators conservatively estimated the drift loss by subtracting the water-loss rate at zero windspeed from the rest of the data. They erroneously assumed that evaporation from the pond and sprays would be independent of windspeed. Actually, evaporation from both the pond surface and spray increases directly with the windspeed. They therefore overestimated the water loss due to drift by neglecting the additional evaporation from the sprays. The water-loss data for the no-heat-load run (No. 4) of the Rancho Seco test are plotted versus windspeed in Figure 3.2.

The results of the drift-loss model cannot be directly compared to the prototype data in Figure 3.2 without first estimating the evaporative losses of the sprays, even without external heat loads. Unfortunately, there were no meteorological data other than windspeeds readily available from the no-heat-load test. On the basis of data that were available from other tests in the series, however, two combinations of wet-bulb/dry-bulb temperature values were estimated, which probably bound the range of meteorological conditions other than wind during the test.

The correction factor for evaporation of the sprays was computed directly from the high windspeed (HWS) performance model described in Section 2.2.1, which was run under no-heat-load conditions for a range of windspeeds. The sprayed

Figure 3.2 Measured and modeled water loss from Rancho Seco test 4

temperature $T_{\mbox{HOT}}$ was forced to be equal to the temperature after spraying T by running the program iteratively until convergence. Two cases were run:

- (1) Wet-bulb temperature = 70°F Dry-bulb temperature = 80°F
- (2) Wet-bulb temperature = 60°F
 Dry-bulb temperature = 90°F

Additionally, a correction factor has been added to account for the relatively minor contribution of heat to the spray pond from solar radiation. Mean daily solar radiation during May is about 2,450 Btu ($\rm ft^2$ day) (Ref. 13). The surface area of the full pond is about 66,470 ft². If 80% of this added heat is lost through evaporation, it would correspond to a water loss of 0.0239 ft³/sec. The quantity of sprayed water during the test was about 35.4 ft³/sec, which means that water evaporated because of solar heat load would be about 0.067% of the volume sprayed.

The water loss during the no-heat-load test is, therefore, calculated to be:

$$W_1 = drift loss + (evaporative loss) + (solar heat load) + (solar heat load) + (3.1)$$

Water loss versus windspeed is plotted in Figure 3.2 for the two assumed meteorologic conditions, along with data from the no-heat test at Rancho Seco. The model appears to conservatively follow the field data on water loss, although it must be recognized that no detailed meteorological conditions were readily available for this comparison.

3.2.2 Validity of Drift-Loss Model

The drift-loss model presented here has been shown to perform acceptably well when compared to the limited field data available and incorporates a number of conservatisms in its formulation. Greater emphasis on the drift-loss model is probably not warranted, since the total quantity of water lost to drift is generally much smaller than water lost to evaporation. Drift loss may exceed evaporation momentarily during high winds but it is unlikely that these conditions could be sustained for a sufficient length of time to change this conclusion.

4 POND MODEL

The pond model is used to calculate the temperature and water loss from the pond. It combines the model of heat and mass loss from the sprays, the model of circulation and heat retention in the mass of water in the pond, and additional heat and mass transfer from the surface of the pond. The pond model developed here is similar to the mixed-tank model of NUREG-0693 (Ref. 14).

A typical spray pond differs from surface-cooling ponds by having smaller volume and surface areas. The rates of heat and water loss from the sprays to heat and water loss from the pond surface is generally high.

The heat and water loss from the pond surface may in most cases be considered a secondary effect with regard to the sprays. In addition, the small volumes of the ponds relative to the water circulation through them diminishes the effects of such phenomena as thermal stratification, which are of importance in surface-cooling ponds (Ref. 15). For this reason, the modeling of the balance of the pond other than the sprays is fairly straightforward and simple. The "mixed tank" model of the pond assumes total mixing of all water throughout the volume of the pond. It must be noted, however, that some spray ponds may have a relatively large surface area and volume, or the sprays may be operated only intermittently. In these cases, surface-heat transfer and the effects of stratification may take on greater importance than in a typical spray-pond situation. The effects of "short-circuiting" of pond water are not nearly as important in typical spray ponds as they could be in surface-cooling ponds.

The mixed-tank model depicted in Figure 4.1 presumes that the heated effluent is instantaneously and uniformly mixed throughout the volume of the tank, and that the water in the tank is uniform in temperature. Atmospheric-heat transfer from the surface is related to the pond-surface temperature.

Figure 4.1 Mixed-tank model

4.1. Heat Balance

A heat-and-mass balance can be formulated for the mixed-tank model. The terms of the heat, balance are:

4.1.1 Heat Load Into Ponds

Heat in =
$$H_{RJ}$$
 Btu/(ft² day) (4.1)

4.1.2 Heat Out From Surface

A relation for the rate of net heat flow across the surface of the pond can be developed through consideration of each heat source and heat loss. The net rate of heat flow H into the pond is:

$$\dot{H} = \dot{H}_{SN} + \dot{H}_{AN} - \dot{H}_{BR} - \dot{H}_{E} - \dot{H}_{C}$$
 Btu/(ft² day) (4.2)

where

H_{SN} = net rate of shortwave solar radiation entering the pond, measured directly, Btu/(ft² day)

 H_{AN}^{-} = net rate of longwave atmospheric radiation entering the pond, measured directly, $Btu/(ft^2 day)$

 H_{BR} = net rate of back radiation leaving the pond surface, $Btu/(ft^2 day)$

 H_F = net rate of heat loss attributable to evaporation, Btu/(ft² day)

 H_C = net rate of heat flow from the pond attributable to conduction and convection, $Btu/(ft^2 day)$

The relationships are illustrated graphically in Figure 4.2.

Figure 4.2 Heat loads on the surface of a pond

The net atmospheric radiation term can be approximated using air temperature T_A and cloud cover C. Ryan and Harleman (Ref. 16) develop the following formula for H_{AN} :

$$H_{AN} = 1.2 \times 10^{-13} (T_A + 460)^6 (1 + 0.170^2)$$
 Btu/(ft² day) (4.3)

The back radiation term may be expressed using the relation for radiation from a black body (Ref. 17):

$$H_{BR} = 4.026 \times 10^{-8} (460 + T_s)^4$$
 Btu/(ft² day) (4.4)

The evaporative-heat-transfer component is a function of surface temperature at atmospheric temperature and humidity:

$$\dot{H}_{E} = (e_{s} - e_{a})F(w) \qquad Btu/(ft^{2} day) \qquad (4.5)$$

where

e_s = vapor pressure of water at the pond-surface temperature, mm Hg

e = partial pressure of water vapor in the air (that is, the vapor pressure of water at the dewpoint), mm Hg

F(w) = wind function

A semiempirical wind function is proposed by Ryan and Harleman (Ref. 16) which agrees well with field data on large ponds:

$$F(w) = \left[22.4 \times (\Delta T_v)^{1/3} + 14w\right] \tag{4.6}$$

where

l

w = windspeed, mph

 ΔT_{V} = "virtual" temperature difference between the pond surface water and air above the pond, rewritten:

$$\Delta T_{V} = \frac{T_{S} + 460}{1 - \frac{0.378 \times e_{S}}{p}} - \frac{T_{A} + 460}{1 - \frac{0.378 \times e_{a}}{p}}$$
(4.7)

and p = atmospheric pressure, mm Hg

The net rate of heat transfer from the pond attributable to conduction and convection, $H_{\rm c}$, is also a function of the pond surface and atmospheric humidity and temperature (Ref. 16):

$$H_c = 0.26 \times (T - T_A) \times F(w)$$
 (4.8)

4.1.3 Heat Out in Blowdown or Leakage Stream

With reference to the pond temperature T, heat loss from blowdown is by definition zero:

$$q_b = W_b \rho C_p (T - T) \equiv 0 \quad \text{Btu/hr}$$
 (4.9)

where

 W_b = flowrate of the blowdown or leakage stream, ft^3/hr and ρ and C_p are as previously defined.

4.1.4 Heat Rejected by Sprays

$$H_{spray} = Q\rho C_p R_c$$
 Btu/(ft² day) (4.10)

where

 $R_c = cooling$ range of the sprays determined from either the HWS-LWS model or the regression equations

and Q, $\rho,$ and \boldsymbol{C}_{p} are as previously defined.

Combining all heat inputs to and outputs from the pond, and using the relationship relating temperature to heat, the following relationship is obtained:

$$\frac{dT}{dt} = \frac{\dot{H}_{RJ} - \dot{H} - \dot{H}_{spray}}{\rho C_{p} V_{p}} \quad ^{\circ}F/hr$$
 (4.11)

where

 V_{n} = pond volume in cubic feet

and all other elements of the equation are as previously defined.

Note that there is no provision for a makeup stream in either the heat or mass balance, since Regulatory Guide 1.27 specifically denies makeup during the operation of a UHS pond.

4.2 Mass Balance

The mass balance on the pond includes evaporative loss from the surface, drift, and blowdown or leakage. The terms of the mass balance are:

Blowdown or leakage flow = W_b , ft³/hr Evaporative loss from surface = W_e , ft³/hr

$$W_{e} = \frac{\dot{H}_{E}}{\rho \lambda} \tag{4.12}$$

where

 λ = heat of vaporization of water, Btu/lb ρ = density of water, lb/ft³ . and H_F is defined by Eq. 4.5.

Combining all terms of the mass balance yields the expression:

$$\frac{dV}{dt} = -W_b - \frac{\dot{H}_E}{\rho \lambda} - W_{drift} - W_{spray}$$
 (4.13)

where

W_{drift} = drift loss

 W_{spray} = rate of water evaporated from all drops in the spray field, ft³/hr

determined from the evaporative heat-transfer component of Eq. 2.7.

5 DATA-SCREENING METHODOLOGY

In this section, a method is developed with which long-term weather records can be screened to find the period in which the spray-pond temperature or water loss will be maximized.

5.1 Development of Method

The "equilibrium temperature" heat-transfer approach is used in a method that decouples the plant-heat-input effects from environmental effects on the pond. The temperature of the pond, T_s , may be determined by the solution of the differential equation for the mixed-tank model:

$$\frac{dT_s}{dt} = \frac{\dot{H}}{\rho C_p V_p} + \frac{Qn}{V_p} \left(T_s + \frac{\dot{H}_{RJ}^A}{\rho C_p Q} - T_W \right)$$
 (5.1)

where

 $V_p = pond \ volume, ft^3$

A = pond surface area, ft²

T_W = wet-bulb temperature, °F

and all other elements are as previously defined.

For the purpose of developing the model, V_p and η are temporarily assumed to be constant. The "equilibrium temperature" E (Ref. 17) is a useful invention at this point in the model development. The rate of atmospheric-heat transfer can be assumed to be proportional to the difference between the pond temperature and the equilibrium temperature:

$$\dot{H} = KA(T_s - E) \tag{5.2}$$

where

K = equilibrium-heat-transfer coefficient, Btu/(ft²hr°F)

If we further assume that K is a constant, Eq. 5.1 will be linear with respect to $T_{\rm S}$, and it will be possible to consider that the pond temperature is the sum of the pond "ambient" temperature $T_{\rm S}'$ and an "excess" temperature θ :

$$T_{S} = T_{S}^{1} + \theta \tag{5.3}$$

 T_{s}^{i} would be determined by the solution of Eq. 5.1 for a steady heat load $H_{RJ,0}$:

$$\frac{dT_{s}^{i}}{dt} = \frac{AK}{\rho C_{p} V_{p}} \left(T_{s}^{i} - E \right) - \frac{Q\eta}{V_{p}} \left(T_{s}^{i} + \frac{\dot{H}_{RJ,0}^{A}}{\rho C_{p} W} - T_{W} \right) + \frac{\dot{H}_{RJ,0}^{A}}{\rho C_{p} V_{p}}$$
(5.4)

where

 $H_{RJ,0}$ = steady-state heat load, Btu/(ft² day) and all other values are as previously defined.

Subtracting Eq. 5.4 from Eq. 5.1 gives the differential equation for excess temperature:

$$\frac{d\theta}{dt} = \frac{AK}{\rho C_p V_p} \theta + \left(\frac{\dot{H}_{RJ} - \dot{H}_{RJ,0}}{\rho C_p V_p}\right) - \frac{Q\eta}{V_p} \left(\theta + \frac{\dot{H}_{RJ} - \dot{H}_{RJ,0}}{\rho C_p Q} - T_W\right)$$
(5.5)

The determination of pond temperature has, therefore, been separated into two simpler problems, because now the ambient and excess pond temperatures can be determined independently from one another. The excess temperature θ does not depend on the meteorological record, so it can be solved directly from Eq. 5.5

using the plant-heat-rejection rate. The pond ambient temperature T_S^i does not depend on the heat rejection from the plant, so it can be calculated from Eq. 5.4 using only the long-term meteorological record. The peak pond temperature can, therefore, be found by summing (superimposing) the peak of T_S^i and θ :

$$(T_s)_{peak} = (T_s')_{peak} + \theta_{peak}$$
 (5.6)

Unfortunately, the basic premise that Eq. 5.1 is linear is incorrect. Both K, E, and η are functions of T_s and atmospheric variables. In addition, the pond volume V_p will change as water on the pond is lost as a result of seepage, drift, and evaporation. (Makeup water is assumed to be unavailable during the operation of the pond.) The function of the procedure outlined above is to identify the timing of the maximum ambient and maximum excess temperatures so that more accurate computation can be performed in which the spray-pond temperature is determined directly. Since the heat- and mass-transfer relationships are nonlinear with respect to pond and spray temperature, temperature calculations may be different from those used in the screening. There are, however, no firm guarantees that the optimal starting time for peak temperature will necessarily be found by this procedure. A series of model runs spaced several hours apart, over the length of the data record, is an alternative method of determining the optimal timing.

5.2 Meteorological Inputs to Screening Model

The screening model developed in Section 5.1 requires two types of data: (a) weather data such as wet- and dry-bulb temperatures, dewpoint, windspeed, and atmospheric pressure, which may be obtained from National Weather Service records, and (b) rates of net solar radiation which generally do not exist for long periods of record. A method for synthesizing solar radiation using cloud-cover data has been developed. National Weather Service tapes of "Tape Data Family-14" (TDF-14) are used by the model as a source of temperature, windspeed, and cloud-cover observations. These tapes are available for major observation points throughout the United States.

5.2.1 Solar Radiation

The solar radiation term for the heat-exchange relation must be either taken from direct measurements or estimated. The model estimates hourly solar radiation rates in a three-step process. First, given the latitude of the pond and the time of year, the maximum solar radiation available to the pond for the given day is estimated. Second, this gross figure is fitted to a sinusoidal relation to find the rate of insolation for each hour of daylight. Finally, these hourly rates are modified to take into account the effect of cloud cover.

Figure 5.1 Insolation as a function of time

A procedure based on the work of Hamon, Wiess, and Wilson (Ref. 18) is used to estimate the maximum daily solar radiation. This total daily radiation figure is fitted to a sinusoidal function as shown in Figure 5.1. The hourly variation of radiation is:

$$H_{S}(t_{0}) = 2t_{1} \quad \beta \cos\left(\frac{\pi t_{0}}{12}\right) - \beta \cos\left(\frac{\pi t_{1}}{12}\right) \quad \text{Btu/(ft}^{2} \text{ day)}$$
 (5.7)

where

 H_{ς} = gross rate of solar radiation, Btu/(ft² day)

 t_0 = time of the observation in hours before or after midday

 t_1 = one-half the length of daylight per day, hr and

$$\beta = \left[\left(\frac{1}{I_s} \right) \left(\frac{\pi}{12} \right) \sin \left(\frac{\pi t_1}{12} \right) - \frac{1}{I_s} t_1 \cos \left(\frac{\pi}{12} t_1 \right) \right]^{-1}$$

where

 $I_c = \text{total daily solar radiation, Btu/(ft}^2 \text{ day)}$

Solar radiation ultimately reaching the earth's surface is greatly affected by atmospheric conditions, especially cloud cover. The amount of cloud cover, in tenths of the total sky obscured, is available from the data tapes. This information is used in a relationship developed by Wunderlich (Ref. 19) to modify the hourly insolation rates:

$$H_{SN} = H_{S}(1 - 0.65C^{2})0.94$$
 Btu/(ft² day) (5.8)

in which 0.94 is a factor which adjusts for the average 6% reflection from the water surface.

5.3 Scanning-Performance Models

In order to determine the design-basis conditions for evaluation of the spray pond, a long-term weather record is searched for key conditions which would predict the highest pond temperature or water-loss rate. Basically, a long-term weather record is searched by using a model which is nearly the same as the model in Section 4 to simulate the performance of a loaded spray pond. The scanning model differs from the model of Section 4 in that the HWS and LWS spray-performance models are not used directly. Using the rigorous performance

models for a long (tens of years) simulation would be prohibitively costly and inefficient.

5.3.1 Approximate Spray-Performance Model

The HWS and LWS spray-performance models are steady state. Therefore, they do not depend on any history of input conditions, but predict instantaneous heat rejection and evaporation for a given set of meteorological and heat-load conditions.

If the spray-performance models can be exercised over a wide range of inputted independent meteorological variables, the resulting performances can be formulated into regression models. These regression models can then be used to predict the performance of the sprays for other conditions that are within the ranges of the correlating independent variables. This procedure is much more efficient than using the original models directly.

5.3.2 Functional Dependencies of Spray-Performance Models

Before the regression models are formulated, it is useful to perform numerical experiments using the LWS and HWS models to determine the approximate dependence of predicted performance on the independent variables T_W , T_{HOT} , and w for a typical spray-pond situation. Figures 5.2 through 5.5 show, respectively, the different "spray efficiencies" η of both the HWS and LWS models, that occurred upon variations in wet-bulb temperature, dry-bulb temperature, sprayed-water temperature, and windspeed. The higher of the two predicted efficiencies (LWS or HWS) would be used in the actual performance model, which is depicted on the figures as a bold line.

Figure 5.2 shows the dependence of η on the wet-bulb temperature T_W . Over the range tested, both models show a nearly linear dependence on T_W .

Figure 5.3 demonstrates the dependence of η on sprayed temperature $T_{\mbox{HOT}}.$ The HWS model shows a nearly linear dependence, whereas the LWS model has a decreasing slope with increasing temperature.

Figure 5.2 Dependence of η on wet-bulb temperature

Figure 5.3 Dependence of η on dry-bulb temperature

Figure 5.4 demonstrates the dependence of η on dry-bulb temperature T_A . The HWS model shows a small positive, nearly linear dependence on T_A . The LWS model shows a much larger, negative dependence with an apparent inflection.

Figure 5.5 demonstrates the dependence of η on windspeed w. Since windspeed is not one of the independent variables in the LWS model, η is a constant for that model. The HWS model shows a decreasing slope with increasing windspeed.

It is possible to guess a form for the equations (with as-yet-undetermined coefficients), which would predict the performance of the HWS and LWS models over a wide range of variations of the independent variables T_A , T_W , T_{HOT} , and w. The proposed equation for the efficiency of the HWS model would be:

$$\eta_{HWS} = a_1 + b_1 T_A + c_1 T_W + d_1 T_{HOT} + e_1 W + f_1 \sqrt{W}$$
 (5.9)

Figure 5.4 Spray efficiency vs sprayed temperature

Figure 5.5 Spray efficiency vs windspeed

For the LWS model, the regression equation for efficiency would be:

$$\eta_{LWS} = a_2 + b_2 T_A + c_2 T_A^2 + D_2 T_A^3 + e_2 T_W + f_2 T_{HOT} + g_2 T_{HOT}^2$$
 (5.10)

The evaporation rate Q is correlated in exactly the same fashion:

$$Q_{HWS} = a_3 + b_3 T_A + c_3 T_W + d_3 T_{HOT} + e_3 W + f_3 \sqrt{W}$$
 (5.11)

and

$$Q_{LWS} = a_4 + b_4 T_A + c_4 T_A^2 + d_4 T_A^3 + e_4 T_W + f_4 T_{HOT} + g_4 T_{HOT}^2$$
 (5.12)

The coefficients a through g are determined by a least-squares multiple-linear-regression analysis of η and Q over a wide range of the independent variables $T_A,\ T_W,\ T_{HOT},$ and w for the spray pond under investigation. Program SPRCO generates random values of the independent variables in given ranges, runs the HWS and LWS models to generate η and Q, performs the multiple-linear regressions, and presents the correlations of the curve-fitted η and Q versus the calculated η and Q in terms of the coefficient of determination r^2 and a graphical x-y scattergram. The coefficients for Eqs. 5.9 through 5.12 are punched for subsequent use in programs SPSCAN, SPRPND and COMET2. Correlations of the regression equations with the HWS and LWS models are generally excellent.

6 ONSITE-OFFSITE CORRELATION

Long-term meteorological records at the site itself are not usually available and current NRC practice requires only limited onsite data collection. Furthermore, the meteorological data collected onsite may be incomplete for the purposes of spray-pond analysis.

The meteorological data for UHS performance must be obtained from offsite weather stations (such as airports) for which long-term records, including solar radiation or cloud cover, are available. The site meteorology may be significantly different from that of the offsite station, however, because of such reasons as orographic features or altitude differences. Thus, it is necessary to determine if serious discrepancies exist between the two sites. We are only interested, however, in long-term differences between the meteorology of the onsite and offsite data, and not the short-term, local variations, such as thunderstorms.

The assumption is made that we can calculate an "average" pond temperature or water loss based on monthly (or some other period) averages of the important meteorological parameters for the onsite and offsite data. By comparing the monthly average pond temperatures or water loss using the onsite data with the pond temperature or water loss using the offsite data, we can estimate the bias that would be introduced by using the offsite data in the temperature calculations. The biases estimated by the above procedure can be used as correction factors for the water losses and peak temperatures calculated using the long-term offsite data. Experimentation with the models has shown that the proposed correction factors reliably account for the differences between the onsite and offsite data sets and are conservative.

The biases in pond temperature and evaporation can further be related to differences in each meteorological parameter separately. For example, if the meteorological parameters of the model are T_A , T_W , H_S , and W:

$$\Delta E \cong \Delta E)_{T_A, w, H_{SN}} + \Delta E)_{T_W, w, H_{SN}} + \Delta E)_{T_A, T_W, H_{SN}} + \Delta E)_{T_A, T_W, w}$$
(6.1)

where

 ΔE = overall bias in pond temperature between the two data sets, ${}^{\circ}F$

 T_{W} = wet bulb temperature, ${}^{o}F$

and

$$\Delta E)_{T_A, W, H_{SN}} =$$
 bias attributable only to the variation in T_{W_A}

$$\Delta E)_{T_W, w, H_{SN}}$$
 = bias attributable only to the variation in T_A

$$\Delta E$$
)_{TA}, H_{SN} = bias attributable only to the variation in w between the data sets, of

$$^{\Delta E)}$$
TA, TW, w = bias attributable only to the variation in H SN between the data sets, of

Equation 6.1 is extremely useful because it allows a comparison between onsite and offsite data sets, even if one or more parameters are missing. For example, solar radiation is not usually collected on site. The biases attributable to the other variations can be estimated, bearing in mind that no contribution of the solar radiation difference is included.

A brief computer program, COMET2 (COmpare METeorology), has been written which evaluates the differences in steady-state temperatures between two data sets and their sensitivity to differences in the averages of wet bulb, air temperature, windspeed, and solar radiation between the two sets of data.

This program also calculates the correction factor, in cubic feet of water, for the differences in evaporation and drift between two sites based on the 30-day average meteorology.

Resultant steady-state temperatures and water-loss rates between the two data sets are correlated and the coefficients of correlation, r^2 , and the standard error, σ , are calculated.

7 DESCRIPTION OF COMPUTER PROGRAMS

Five separate computer programs are described that are used for several facets of the spray-cooling-pond analysis:

- (1) Program SPRCO simulates the high- and low-windspeed versions of the spraypond-cooling model and generates regression equations based on these models for use in subsequent programs.
- (2) Program DRIFT calculates a table of drift water loss versus windspeed for the spray pond.
- (3) Program SPSCAN scans a weather-record tape to predict the likely periods of lowest cooling performance and highest evaporation and drift losses.

 Programs DRIFT and SPRCO generate necessary inputs on the pond performance for this code.
- (4) Program COMET2 compares the limited quantity of onsite meteorological data with summaries of offsite data provided by program SPSCAN to determine if there are significant differences between the two which might lead to differences in predicted nond performance, and suggests correction factors.
- (5) Program SPRPND calculates the most pessimistic cooling-pond temperature for a design-basis accident using the abbreviated data provided by program SPSCAN.

The complicated manner in which these programs are used to determine designbasis temperature and heat loads is shown in Figure 7.1 and described below.

7.1 Program SPRCO

This program generates the coefficients of a set of multiple-linear regression equations which represent the cooling performance and evaporative water loss

Figure 7.1 Flowchart for design-basis water loss and temperature determination

of a spray field. The regression equations are subsequently used in programs SPSCAN, SPRPND and COMET2 because they are much less time consuming than the direct use of the HWS and LWS models.

7.1.1 Operation of Program

Program SPRCO runs the HWS and LWS for a large number of cases, typically 200. Each case has the meteorological inputs of wet-bulb temperature $T_{\rm W}$, dry-bulb temperature $T_{\rm A}$, windspeed w, and sprayed-water temperature $T_{\rm HOT}$, chosen from a specified range by a pseudorandom-number routine. The resulting cooling performance and evaporation for the HWS and LWS models are recorded and are subsequently fitted to multiple-regression equations whose independent variables are $T_{\rm A}$, $T_{\rm W}$, w, and $T_{\rm HOT}$, or powers thereof. Goodness of the fit is tested by calculating the estimated efficiency and evaporation from the four regression equations and comparing these to the results of the HWS and LWS models directly. The standard errors and coefficient of correlation are also calculated.

7.1.2 Program Inputs

Inputs to program SPRCO are of two types:

- (1) Variables which describe the basic characteristics of the spray field.
- (2) The ranges of meteorological conditions from which each case is randomly chosen.

All inputs are specified in a namelist called INPUT, which is described in Table 7.1. Default values are given where possible, which are typical of Spraco 1751 nozzles with the manufacturer's recommended setup. Only those variables different from the default values need to be read in.

Table 7.1 Namelist INPUT--Inputs to Program SPRCO

Variable name	Description and units	Default value
NPNTS	Number of randomly chosen cases in set	200
VELØ	Initial velocity of drops leaving the spray nozzle, ft/sec	-
нт	Height of spray field from water surface to highest point attained by drop, ft	-
ALEN	Length of the spray field, ft (longer dimension)	-
WID	Width of the spray field, ft (shorter dimension)	-
THETA	Angle of spray to horizontal, degrees	71
ΥØ	Height of spray nozzles from water surfaces, ft	-
R	Mean drop radius, cm (see text)	0.104
PB	Atmospheric pressure, in. Hg	29.92
Q	Flowrate of water sprayed, ft ³ /sec	· -
PHI	Heading of wind with respect to long axis, degrees	90
TWETØ	The lower limit of T_{W} , ${}^{\mathbf{o}}F$	50
RTW	Range of Tw, °F	30
DTDRYØ	Ø The lower limit of ΔT_A (which is added to the value	
	of T_W , since $T_W \ge T_A$; i.e., $T_A = T_W + \Delta T_A$, of	20
RTD	Range of ΔT_A , of	30
WINDØ	The lower limit of w, mph	0.1
RW	Range of w, mph	20
тнотø	The lower limit of T _{HOT} , °F	90
RTH	Range of T _{HOT} , °F	30

Ø = zero

7.1.3 Program Outputs

The following outputs are generated:

(1) The random meteorological inputs and results of the HWS and LWS models for each case.

- (2) The regression equations in terms of the coefficient a_1 through g_4 :
 - (a) HWS efficiency (approach to wet bulb):

$$n_{HWS} = a_1 + b_1 T_A + C_1 T_A + d_1 T_{HOT} + e_1 w + f_1 \sqrt{w}$$

(b) HWS evaporation (fraction sprayed evaporated):

$$EVAP_{HWS} = a_2 + b_2T_A + c_2T_W + d_2T_{HOT} + e_2W + f_2\sqrt{W}$$

(c) LWS efficiency:

$$\eta_{LWS} = a_3 + b_3 T_A + c_3 T_A^2 + d_3 T_A^3 + e_3 T_W + f_3 T_{HOT} + g_3 T_{HOT}^2$$

(d) LWS evaporation:

$$EVAP_{LWS} = a_4 + b_4 T_A + C_4 T_A^2 + d_4 T_A^3 + e_4 T_W + f_4 T_{HOT} + g_4 T_{HOT}^2.$$

- (3) Goodness of fit of the regression equations versus the HWS and LWS model outputs:
 - (a) Coefficient of determination r^2 .
 - (b) Standard error σ .
 - (c) x-y scattergrams.

7.2 Program DRIFT

The computer program DRIFT computes the drift loss from a spray pond in terms of a fraction of the total amount of water sprayed. The program requires the input of the spray-field geometry and outputs the drift-loss fraction for various windspeeds between 0 and 50 mph. The default drop-diameter distribution in the program is for the Spraco 1751A nozzle under standard operating conditions. Other distributions may be entered.

The spray-field geometry is described by specifying the distances downwind from a group of sprays to the edge of the pond surface and the fraction of the total flow of the spray field represented by that group. When concerned with finding the worst-case drift loss, the direction of the wind is assumed to be the direction that minimizes the distance between the sprays and the edge of the pond surface.

The description of the spray geometry is fairly straightforward when rows of sprays are set parallel to the edge of the pond, as each row can be considered a group of sprays. Irregularly shaped ponds or complex spray arrangements may require an arbitrary grouping of sprays. Figure 3.3 shows how this can be done for a complicated geometry.

To begin the calculation of drift loss from a spray pond, it is first necessary to choose a worst-case wind direction. For simple ponds, this may be done by inspection; more-complex ponds may require that several likely wind directions be modeled before the worst-case wind direction can be determined. Second, the spray field is divided into groups of sprays which are roughly equidistant from the downwind edge of the pond. For conservatism, all of the sprays in the group may be assumed to lie on the boundary of each segment nearest the pond's edge. The fraction of sprays in each group is then calculated.

The final step in the calculations is to prepare the input for DRIFT and run the program. Table 7.2 shows the input format for program DRIFT.

These cards form a repeatable data set. Several runs may be made in a single execution of the program enabling, for example, different pond geometries to be tested.

7.3 Meteorological Data Screening Program SPSCAN

Program SPSCAN is used to scan long-term weather records to determine the period of lowest cooling performance and highest water loss for spray cooling ponds in UHS service. A simple mixed-tank hydraulic model is employed in a running

Table 7.2 Input Variables for Program DRIFT

Card no.	Format	Variables	Comments
1	80A1	TITLE	Columns 2-80 are used to input a message which will be printed at the beginning of the output
2	namelist DROPSZ	{DIAM(I), } PROPOR(I)}	Table for optional drop-diameter distribution. DIAM(I) = drop diameter, cm. PROPOR(I) = corresponding fraction by mass of that diameter. Up to 21 values in table.
3	12	NUM	Number of cards used in the description of the spray geometry
4 to (3 + NUM)	2F10.0	SPRAY (N,1) SPRAY (N,2)	Distance between a group of sprays and the downwind edge of the pond (ft) and the location of the sprays in the group. There should be NUM cards of this type, one for each group of sprays
(4 + NUM)	80A1	TITLE	The letter "s" is entered in the first column of the last card in the data deck to stop the program

simulation for the entire length of the weather record. Heat and water losses from the sprays are estimated from regression equations generated from program SPRCO and the drift-loss table generated from program DRIFT. The time of maximum ambient pond temperature and the 30-day period giving maximum water loss are determined from the simulation. Annual event statistics are generated for water loss and temperature maxima.

7.3.1 Program Operation

The program first reads and screens meteorological data from National Weather Service Tape Data Family-14 (TDF-14) magnetic tapes. Hourly or three-hourly values of up to 48 meteorological variables are stored on these tapes in a compact alphanumeric code. The program interprets the code and extracts the values of windspeed, dry-bulb temperature, wet-bulb temperature, dewpoint temperature, cloud cover, and atmospheric pressure.

The stored data are checked for missing or inconsistent values. If one or two consecutive observations of a meteorological parameter are missing, they will be replaced by interpolated values. If, however, more than two consecutive observations are missing or in error, the entire day of data is skipped and an informative message to this effect is printed.

The program synthesizes solar radiation needed for subsequent calculations from the cloud cover, date, and latitude, since no direct observations of solar radiation are contained in the TDF-14 tapes. This procedure is discussed in Section 5.2. Direct observations of solar radiation would be most desirable if available from other sources, but no provisions for their input are presently incorporated in the program.

The program then calculates the ambient pond temperature and evaporative loss with the mixed-tank model using the meteorological variables generated in subroutine SUB1. It is necessary to specify a base heat load, which should be the 30-day average design-basis heat load, because the spray performance models are highly nonlinear and sensitive to heat input. The yearly maximum pond temperature and yearly maximum 30-day evaporative and driftwater loss are determined along with their dates of occurrence.

The program statistically treats the data base consisting of the annual maximum pond temperatures and 30-day evaporations. The recurrence interval of the maximum water loss and temperature can be determined from this analysis.

7.3.2 Program Outputs

The program provides the following information, depending in some cases on the options selected:

- (1) An informative message is printed if bad data are encountered, so that it is clear that the record for that day has been skipped.
- (2) A table of hourly values of windspeed, dry-bulb temperature, wet-bulb temperature, solar radiation, atmospheric pressure, and dewpoint temperature is printed and/or punched (or stored in some other fashion) for the

20 days preceding the time of maximum ambient temperature and 30 days following. This table may subsequently be used in a more rigorous computation of thermally loaded pond temperature with program SPRPND or some other dynamic temperature model.

- (3) The dates and quantity of the yearly worst-30-day-water-loss period for the spray pond with steady heat load is outputted. Since the 30-day-average design-basis heat load is used in this program, the water loss calculated in SPSCAN approximately adequately reflects the design-basis loss (other than seepage) without the need for subsequent modeling.
- (4) Monthly averages of meteorological parameters for all specified years of the record are printed for the purpose of comparing offsite data with limited quantities of onsite data using program COMET2 which will be described later.
- (5) The maximum annual pond temperatures and 30-day water losses for all years on the tape are printed, ranked from highest to lowest magnitude. Approximate probabilities are calculated so that the ranked outputs can be plotted on an arithmetic-probability scale. The mean and standard deviation of the data are also printed. Maximum likelihood and confidence limit curves are generated for the statistical adjustment of the design-basis water loss and temperature, as discussed in Appendix A.

7.3.3 Program Inputs

The following input data are necessary to run program SPSCAN:

- (1) Pond surface area
- (2) Pond volume
- (3) Base heat load
- (4) Latitude
- (5) A TDF-14 weather tape from a representative station near the site

The TDF-14 weather tapes can be obtained for U.S. weather stations from the National Climatic Center, Federal Building, Asheville, North Carolina 28801.

Computer and peripheral requirements to run program SPSCAN on the Brookhaven National Laboratory CDC 7600 computer are one magnetic tape drive, two disk files and about 12,000 (decimal) words.

The data deck required to operate program SPSCAN consists of four types of data cards: the regression coefficient cards, the pond data card, the monthly average card, and the end card.

The regression coefficients for the spray performance equations are inputted in exactly the format in which they are punched by program SPRCO. There are 26 variables, read in format 4E15.8 on 7 cards.

The pond data, monthly average, and end cards are read in a namelist format called INPUT. The variables in this namelist are described in Tables 7.3 and 7.4.

7.3.4 Pond Data Card

This card specifies the pond parameters for the mixed-tank models and specifies certain printing options as shown in Table 7.3.

Table 7.3 Namelist INPUT--Pond Data Card for Program SPSCAN

Variable name	Value	Type and description
N	1-99	Integercard number used to identify the card as a "pond data" card and to identify the results in the output
Α	<u>></u> 0	Realpond surface area in square feet
	< 0	In acres
٧	<u>≥</u> 0	Realpond volume in cubic feet
	< 0	In acre feet
LAT	25-50	Reallatitude of pond in decimal degrees north latitude
IPRNT		Integerprint option
	0	Prints and punches hourly meteorological data
	1	Printed output only
	-1	Punched output only
HEAT		Realbase-heat load, Btu/hr

7.3.5 Monthly Average Card

This card specifies the year and month to start computing monthly meteorological summaries to be used for comparison with onsite meteorological data in program COMET2, as shown in Table 7.4.

Table 7.4 Namelist INPUT--Monthly Average Card for Program SPSCAN

Variable name	Value	Type and description	
N	Greater than 99		
YRMODY(1)	-	Realthe year of the beginning date for the computation of monthly averages of meteorological data	
YRMODY(2)	5-9	Realthe month of the beginning date for the computation of monthly averages	
LAT	25-50	Realthe latitude in decimal degrees north if different from that previously specified	

7.3.6 End Card

By specifying N = 0, the program terminates.

One set of output is generated from each pond data card or monthly average card. These cards are unrelated and may be inserted in any order.

If a second pond data or monthly average card is used, say, to test the sensitivity to a variation in a pond parameter, only the variable changed needs to be inputted on the namelist card.

7.4 Program COMET2

Program COMET2 (<u>COmpare METeorology</u>) compares steady-state temperature, drift and evaporation rates computed from monthly average values of solar radiation, dry-bulb temperature, wet-bulb temperature, rms windspeed, and barometric pressure for two data sets.

Program SPSCAN computes the monthly averages of the meteorological parameters from the offsite weather station record provided on the National Climatic Center tape. The other data set would be taken from limited onsite measurements.

If onsite data are not complete (for example, if solar radiation is not available), the offsite data can be substituted for the missing parameters. The program calculates the steady-state temperature and 30-day water loss for each data set, the difference in calculated values of pond temperature, and the apparent differences in pond temperature due to differences between each of the meteorological parameters. Therefore, if one of the meteorological parameters for the site is unknown, the apparent differences due to only the other three parameters can still be determined.

The output values of onsite and offsite equilibrium temperature and evaporation rates are correlated for as many months as available to determine if there is a significant difference between the locations. The coefficient of determination r^2 is computed for pond temperatures and water losses for both onsite and offsite locations. A coefficient of determination of 0.9 would indicate that 90% of the variance in one data set is accounted for by variation of the other data set, and that 10% of the variation is unexplained.

The average equilibrium temperature difference and water loss rate difference between the two data sets are the <u>biases</u>. The biases may be used cautiously as correction factors to the peak thermally loaded-pond temperature and 30-day evaporation loss. The coefficient of determination r^2 should be high. Lower values may indicate poor quality data or real orographic differences between the sites. Because the data bases are generally small and may be incomplete, it is suggested that the biases be used only in the conservative sense; that is, if onsite values for pond temperatures or water losses are greater than corresponding offsite values, the difference should be added to the peak loaded-pond temperature or water loss as a correction. If the opposite is the case, no corrections should be made.

7.4.1 Program Inputs

Program COMET2 requires recording of monthly averages of dry-bulb temperature, wet-bulb temperature, solar radiation, rms windspeed, and barometric pressure

for each site. The first card specifies the number of months of data (I), and is read in I5 format. The next I cards contain the information shown in Table 7.5.

Table 7.5 Meteorological Data Input for Program COMET2

Field	Variable name	Description
1	TW1	Wet-bulb temperature, ^o F, data set 1
2	TA1	Dry-bulb temperature, °F, data set 1
3	W1	Rms windspeed, mph, data set 1
4	H1	Solar radiation, Btu/(ft^2 day), data set 1
5	PB1	Atmospheric pressure, in. Hg, data set 1
6	TW2	Wet-bulb temperature, °F, data set 2
7	TA2	Dry-bulb temperature, °F, data set 2
8	W2	Rms windspeed, mph, data set 2
9	H2	Solar radiation, Btu/(ft ² day), data set 2
10	PB2	Atmospheric pressure, in. Hg, data set 2

7.5 Program SPRPND

Program SPRPND calculates the temperature in the UHS pond under the combined influence of the meteorology and the external plant heat load. Hourly meteorological data are provided on cards, disk, or tape from program SPSCAN. The pond is represented by a simplified mixed-tank model used in the screening program SPSCAN. Maximum temperature is determined and the time of the occurrence of the maximum is printed.

7.5.1 Input to Program

Necessary input data for this program include a title card, the external heat input, meteorological conditions, volume and surface area, makeup, blowdown, leakage, circulation flowrate of the pond, height, length, and width of the spray field, and other parameters that describe the sprays.

The first data set consists of the spray performance and evaporation coefficients for the regression equations, punched directly from program SPRCO. There are 26 numbers, read in 4E15.8 format on 7 cards. The spray-pond performance can be calculated from either the regression equations or the self-contained HWS and LWS models, but these seven cards, or seven blank cards, must be read in.

The input data pertaining to the spray field itself are next read in from namelist PARAM, which is defined in Table 7.6.

Table 7.6 Namelist PARAM, Spray-Field Data for Program SPRPND

Parameter	Default value	Description
NDRIFT	_	Number of points in drift-loss table
WDRØ	-	Lowest windspeed in drift-loss table, mph
DWDR	-	Windspeed increment of table, mph
FDRIFT	-	Array of drift-loss fractional values
CEMAX	0.1	Maximum allowed evaporation fraction
CEMIN	0.0	Minimum allowed evaporation fraction
CMAX	0.8	Maximum allowed spray efficiency
CMIN	0.2	Minimum allowed spray efficiency
VELØ	22.5	Initial velocity of drop leaving nozzle, ft/sec*
THETA	71.0	Initial angle with respect to horizon of drop leaving nozzle, degrees*
R	0.104	Average drop radius, cm*
HT.	-	Height of spray field, ft*
VID	-	Width of spray field, ft (short dimension)*
ALEN	-	Length of spray field, ft (long dimension)*
rø	5.0	Height of sprays above water surface*, ft
PHI	80.0	Angle of wind direction with respect to long axis, degrees*
ISPRAY	2	If ISPRAY = 1, use regression model for spray performance
		If ISPRAY = 2, use rigorous model

^{- =} no default value

^{* =} these variables need to be read in only for rigorous model, i.e., ISPRAY=2 \emptyset = zero

The meteorological data are inputted next. Meteorological data are generally provided directly from program SPSCAN. The first card in the meteorological deck specifies the number of time periods in the table and is read in I5 format. The subsequent cards are read two time periods (usually 1 hr each) per card in the format shown in Table 7.7 as punched by program SPSCAN. (Typically, the meteorological table itself would be stored on a disk or tape file rather than on punched cards. In the present version of the program, this table is read from logical file number 8.)

Table 7.7 Meteorological Input for Program SPRPND [Format (I3, 3F5.0, F6.0, F7.0, F7.0, 3F5.0, F6.0, F7.0, F7.0)]

Field	Variable	Description
1	ISEQ	Sequence numbernot used
2	W(I)	Windspeed, mph
3	TA(I)	Dry-bulb temperature, °F
4	TD(I)	Dewpoint temperature, °F
5	HS(I)	Solar radiation Btu/(ft ² day)
6	TW(I)	Wet-bulb temperature, °F
7	PRESS(I)	Atmospheric pressure, psia
8	W(I+1)	Windspeed, mph
9	TA(I+1)	Dry-bulb temperature, °F
10	TD(I+1)	Dewpoint temperature, °F
11	HS(I+1)	Solar radiation, Btu/(ft² day)
12	TW(I+1)	Wet-bulb temperature, °F
13	PRESS(I+1)	Atmospheric pressure, psia

The heat-and-flowrate table is inputted next. The plant-heat rejection and UHS flowrate during the design accident should be plotted on a log-linear scale, with heat and flowrate on the linear scale and time on the logarithmic scale. A table of heat and flowrate to the pond versus time should then be created from a straight line approximation of the graph. This procedure must be followed because a log-linear interpolation of the heat and flowrate table is used in the program. Also, plant-heat rejection is often provided directly in this graphical form.

Heat and flowrate are inputted in a namelist format named HFT as shown in Table 7.8.

Table 7.8 Namelist HFT for Program SPRPND

Variable name	Description
HEAT	An array of values of the heat load on the pond, Btu/hr
FLOW	An array of values of the flowrate through the sprays, ft ³ /hr
TH	The array of values of time corresponding to the element of the HEAT and FLOW arrays, hr
NH	The number of entries in the table (maximum of 20)

It should be noted that the start of the heat and flowrate table does not necessarily have to correspond to the start of the meteorological input table. The time for the start of the heat-and-flowrate table is delayed by a variable TSKIP(hr) to be described.

Pond parameters and constants are read next in a namelist format called INLIST. The variables in INLIST are described in Table 7.9.

Multiple runs may be made by inserting several title and INLIST cards in succession. Only the variables that are different from the previous namelist card read are changed. A blank title card terminates the program.

7.5.2 Usage of Program SPRPND

Program SPRPND is usually employed to determine maximum pond temperature in the following manner:

- (1) Two initial pond simulations should be performed (in the same run):
 - (a) The first run simulates the pond ambient temperature resulting only from meteorological inputs with a constant base heat load H1 and flowrate F1 specified.

Table 7.9 Namelist INLIST for Program SPRPND

Variable name	Default value	Description
VZERO BLOW A NSTEPS NPRINT DT TZERO	0.0 0.0 0.0 100 10 0.2 80	Pond volumes, ft ³ if zero, terminates program Blowdown flowout, ft ³ /hr Pond surface area, ft ² Number of timesteps to be performed Printouts of pond temperature and volume every NPRINT steps Integration timestep, hr Initial pond temperature, °F
TSKIP	0	Time after start of program that corresponds to start of heat-and-flow table. Shifts this table relative to meteorology table which starts at time zero. For time less than TSKIP, evaporation is suppressed so that the pond volume does not decrease
QBASE FBASE Q1 F1	0 0 0 1	Bias to be added to all heat in heat-flow table, Btu/hr Bias to be added to all flowrate in heat-flow table, ft ³ /hr Heat load for time less than TSKIP, Btu/hr Flow through sprays for time less than TSKIP, ft ³ /hr
HEAT FLOW NH	Same as speci- fied by previous input in namelist HFT	Heat-flow table if different from that specified by previous input in namelist HFT
ISPRAY	2	If ISPRAY = 1, uses regression equations for spray performance If ISPRAY = 2, uses HWS and LWS performance models directly
IMET	0	If IMET = 0, regular meteorological table used If IMET = 1, constant values TA, TW, W, TD, HS, and PB are used for dry-bulb temperature, wet-bulb temperature, windspeed, dewpoint, solar radiation, and atmospheric pressure as defined in this namelist
TA TD TW W HS	90 60 70 3 1500	Constant dry-bulb temperature, °F Constant dewpoint temperature, °F Constant wet-bulb temperature, °F Constant windspeed, mph Constant solar radiation, Btu/hr/ft²
IEVAP	1	If IEVAP = 0, water level in pond remains constant If IEVAP = 1, normal water loss allowed
TSPRON	0	Delay turning on sprays TSPRON hours. Also maintains full pond until sprays are turned on
NITER	0	Repeat run NITER times, incrementing the value of TSKIP and TSPRON by the value DTITER. Used in procedure 2 to determine maximum pond temperature (see paragraph 8.6.2)
DTITER	5	Increment for iterative procedure above, hr

- (b) The second simulation determines the peak pond temperature from the effects of external heat input only. This is done by specifying constant values of the meteorological variables.
- (2) A second run is prepared so that peak ambient pond temperature determined from the first simulation will roughly coincide with the peak excess temperature caused by plant input alone:
 - (a) By inspection of the two previous simulations the times of peak temperature for each are chosen.
 - (b) The approximate time to delay the start of the heat input TSKIP and TSPRON is then defined:

TSKIP = (time of peak ambient temperature) - (time of peak excess temperature).

(c) The peak pond temperature should occur at approximately the same time as the peak temperature determined for the steady heat load.

Because of nonlinearities in the pond models, the time to the peak temperature may be shifted. An alternative procedure which increments values of the TSKIP and TSPRON for multiple runs may be preferred for determining peak temperature. (See paragraph 8.6.2.) The difference in the final peak temperatures determined will generally be minor.

Either the regression equations (ISPRAY = 1) or the HWS/LWS performance models (ISPRAY = 2) may be used. The latter option has higher accuracy, but the computations are much more time consuming, and may be prohibitive for more than several runs. The regression equations generally give adequate results.

An example run of all programs from start to finish will be covered in the next section.

8 SAMPLE PROBLEM

8.1 Introduction

A complete study of a hypothetical UHS spray pond was undertaken in order to demonstrate the procedure for evaluating the design-basis performance. Details of pond design and meteorology are taken from no plant in particular, but represent eastern U.S. sites and environments. It would be useful to follow the flowchart in Figure 7.1 as an aid in understanding the procedures used.

A plan view of the pond is shown in Figure 8.1. The design-basis heat load is shown in Figure 8.2. Other parameters characterizing the pond are given in Table 8.1.

The spray nozzles are assumed to be of a type similar to the Spraco 1751A, operating at standard pressure and arranged in accordance with the manufacturer's recommendations but with a somewhat different drop-diameter distribution. The drop-diameter distribution for this nozzle is available in only 10 ranges, and given in Table 8.2.

The 28-year tape record (1948-1975) from Harrisburg, Pennsylvania was ordered from the National Climatic Center, Asheville, North Carolina 28801 in TDF-14 format. The spray pond was assumed to be located at the site of the Susquehanna Nuclear Generating Station, although the pond design and heat loads used are not those of this plant, and should not be directly compared. Approximately 15 months of May-October onsite meteorological data were available from the site for a direct side-by-side comparison with the Harrisburg data.

The design-basis evaluation consists of running five programs sequentially as shown in Figure 7.1:

- (1) Program SPRCO estimates the regression equations for spray performance for subsequent use in other programs;
- (2) Program DRIFT estimates the drift loss for the sprays in the pond configuration as a tabular function of windspeed;
- (3) Program SPSCAN scans the TDF-14 meterology tape to determine the periods of most adverse performances and their recurrence intervals;

Figure 8.1 Hypothetical spray-cooling pond

Figure 8.2 Example of design-basis heat load

Table 8.1 Parameters of Spray-Pond Example

Variable	Quantity
Initial pond volume	2,942,357 ft ³
Pond surface area	422,000 ft ²
Flowrate through sprays	57 cfs
Number of nozzles	484
Nozzle pressure	7 psig
Width of spray field	183 ft
Length of spray field	283 ft
Height of nozzles above initial surface	5 ft
Height attained by spray, above nozzles	7 ft

Table 8.2 Drop-Diameter Spectrum for Spray Nozzle

Diameter, Cm	Volume fraction, %
0.067	10
0.108	10
0.135	10
0.166	10
0.198	10
0.220	10
0.243	10
0.279	10
0.324	10
0.405	10

- (4) Program COMET2 compares onsite versus offsite meteorology to predict correction factors for pond temperature and evaporation;
- (5) Program SPRPND predicts the uncorrected design-basis pond temperature.

The step-by-step analysis of this spray pond is demonstrated below.

8.2 <u>Determining Characteristics of Spray Field</u>

The first step in the analysis is to determine the inputs for the spray performance model.

8.2.1 Dimensions of Sprayed Region

The average angle of the droplets leaving the spray nozzle can be determined from photographs of sprays operating at the design pressure, or from promotional literature from the spray-nozzle manufacturers. The literature indicated that the spray from the nozzles will reach a height of about 7 ft above the nozzles at a pressure of 7 psig. The heaviest accumulation of water will occur

at a radius of about 13 ft. If friction between the drop and the air is neglected, simple ballistics indicates that the initial drop velocity should be about 22.47 ft/sec and the initial angle of the drop trajectory with the horizon should be about 71° .

8.2.2 Average Drop Diameter

The drop-diameter distribution for the nozzle is presented in Table 8.2. Since the distribution is given as tabular values in 10 equal divisions, the discrete summation form of Eq. 2.52 is used for the mean diameter:

$$D_{1_{2}} = \frac{\sum_{i=1}^{10} \sqrt{D_{i}}}{\sum_{i=1}^{10} \sqrt{\frac{1}{D_{i}}}}$$

The mean diameter calculated from the above equation is about 0.19 cm.

8.2.3 Length and Width of Spray Field

The arrangement of sprays is shown in Figure 8.1. The center of each cluster of four nozzles (inset, Figure 8.1) is on 12.5-ft spacing in one direction and 25-ft spacing in the other direction. The overall distance between nozzles is, therefore, 257.1 ft in the long direction and 157.1 ft in the short direction. The actual width of the spray field extends about 13 ft further on each side, which is the radius of the spray umbrella from each nozzle. The length and width of the spray field are, therefore, 283 ft and 183 ft, respectively.

8.3 Spray-Field Performance Regression Equations--Program SPRCO

Program SPRCO generates the coefficients of several regression equations which are used to represent the spray performance models in subsequent programs SPSCAN,

COMET2, and SPRPND. Figure 8.3 shows the input cards for program SPRCO set up in accordance with Section 7.1.

Ranges of meteorological variables were chosen to bound those of the site. Other climates might dictate different ranges. The sprayed temperature chosen is rather high, which places emphasis on the performance of the pond under high-heat-load conditions.

\$INPUT NPNTS=200,HT=12,ALEN=283,WID=183,VEL0=22.47,THETA=71,Y0=5,R=.095,PB=29.92,Q=57,PHI=90,TWET0=50,DTDRY0=20,WIND0=0.1,THOT0=90,RTW=30,RW=20,RTH=30,RTD=30\$

Figure 8.3 Input dedk for program SPRCO

The output from program SPRCO is shown in Figure 8.4. The high coefficients of determination and relatively small scatter indicate that the regression equations for cooling and evaporative loss should be consistent predictors of the basic performance models. The regression coefficients are outputted on punched cards for subsequent use.

8.4 Determining Drift-Loss Table--Program DRIFT

A table of drift loss versus windspeed is necessary for subsequent use in programs SPSCAN, COMET2, and SPRPND. The arrangement of the spray field with respect to the most critical direction for drift loss is shown in Figure 8.1. Data inputs to program DRIFT are given in Figure 8.5. Although the drop-diameter distribution of Table 8.2 is somewhat different from the Spraco 1751A distribution, only the default distribution is used. Drift is generally only a small contribution to total water loss, and the difference in this case was judged insignificant. If the correct distribution were to be used, a finer division of the scale, especially toward the smaller drop diameters, would be necessary. The output from program DRIFT for the default distribution is shown in Figure 8.6.

INPUT VARIABLES

NUMBER OF RANDOM POINTS, NPNTS = 200

INITIAL VELOCITY OF DROPS LEAVING NOZZLE, VELO = 22.47 FT/SEC

INITIAL ANFLE OF DROPS TO HOR., THETA = 71.000 DEGREES

GEOMETRIC MEAN RADIUS OF DROPS, R = .0950 CM

ATMOSPHERIC PRESSURE, PB = 29.92 INCHES HG

HEIGHT OF SPRAY FIELD, HT = 12.00 FT

WIDTH OF SPRAY FIELD, WID = 183.0 FT

LENGTH OF SPRAY FIELD, ALEN = 283.0 FT

HEIGHT OF SPRAY NOZZLES ABOVE POND SURFACE, YO = 5.0 FT

FLOWRATE OF WATER SPRAYED, Q = 57.00 CU.FT./SEC

HEADING OF WIND W.R.T.LONG AXIS, PHI = 90.00 DEGREES

RANGES OF METEDROLOGICAL PARAMETERS
WET BULB TEMPERATURE # 50.000 TO 80.000 DEG.F
DRY BULB TEMPERATURE # 70.000 TO 130.000 DEG.F
WIND SPEED # .100 TO 20.100 MPH
SPRAYED TEMPERATURE # 90.000 TO 120.000 DEG.F

PT A	10.	TWE T F	TDRY F	THOT F	WIND MPH	HUMID	ETA Lws	ETA HWS	EVAP. LWS	EVAP. HWS
	1	67.4034	115.9188	98.9286	15.8274	.0033	*****	.5380	******	.020377
	5	63.6110	83.7989	99.1695	5.6147	.0079	.4149	.3835	.013030	.011946
	3	70.6730	102.1529	114.9557	2.7581	.0088	4544	.3241	.019007	.012913
	4	67.4894	90.4482	108.6134	5.6310	.0091	4553	.4208	.016761	.015325
	5	79.3804	120.1969	96.3628	18.7895	.0122	*****	.6291	******	.015147
	6	72.9555	121.2013	107.5499	5,8861	.0063	*****	.4503	******	.016922
	ĭ	77.0908	123.6912	101.8945	10.0333	.0093	*****	.5444	*****	.016790
	á	76.1547	124.0878	96.2884	12.0097	.0084	*****	.5596	******	.015672
	ğ	76.6438	110.5680	103,4017	12.6606	.0119	*****	.5640	*****	.016678
1	ιÓ	63.7355	90.7825	107.7358	15.3719	.0064	.4359	.5209	.017421	.021192
	ii	63.3150	98.1664	96.3034	18.5362	.0045	*****	.5156	******	.018110
	iż	74.9604	99,5406	110.3361	17.0259	.0130	.4561	.5875	.015159	.019981
	13	77.7856	108.6317	98.4362	5.1585	.0134	****	.4255	*****	.009660
	4	61.3496	84.1540	109.9794	6.3540	.0064	.4549	.4196	.019059	.017558
	15	69.5134	104.8221	101.5942	3,7755	.0073	*****	. 3436	******	.010932
	16	71.3049	112.9713	90.4744	12.9280	.0069	*****	.5263	******	.013812
	17	62.6886	94.3131	116,9105	12.1842	.0049	.4635	.5176	.022789	.025712
	18	77.2425	114.4053	113,5303	2.5335	.0116	****	.3211	******	.011077
	9	67.6711	96.0390	96,9980	9,1525	.0080	.3888	.4640	.011624	.013746
	50	68.7162	112.8469	105.4877	2.8467	.0049	****	.2978	*****	.010872
	21	69.0083	111.2167	105,2128	14.1406	.0055	****	.5422	******	.021321
-	55	72.4562	109.3174	104.5630	6.2623	.0086	*****	.4498	******	.014952
	23	75.6357	121.2607	105.0449	13,8731	.0086	*****	.5792	******	.020161
	24	56.0361	81.5676	115.7457	6.0561	.0037	.4605	.4097	.023309	.020749
-	25	53,6464	80.2143	118,6083	16.3569	.0027	.4632	.5072	.025324	.028258
	26	66.0732	103.3842	100.8678	14,7033	.0052	****	.5201	******	.019210
	27	69.3244	104.5041	101.5334	17.8440	.0073	*****	.5537	*****	.019146
	28	72.9292	119.3568	92.2437	2.6840	.0067	*****	.2651	******	.006386
-	29	72.9469	120.4440	105,2067	15.3963	.0065	*****	.5756	*****	.021750
	30	65.6499	114.2279	117.5436	19,2457	.0024	.4336	.5784	.022758	.031003
	31	72.5336	102.1859	117.3421	16.1745	.0103	.4762	.5876	.019962	.025103
	32	75.0965	105.6050	103.7690	16.1169	.0117	*****	.5771	*****	.017556
	33	66.2869	112.3171	98.8206	6.9498	.0033	*****	.4295	*****	.015601
	34	71.0051	92.4416	91.9975	3.8862	.0113	*****	.3307	*****	.006774
	35	65.8917	100.6496	101,1688	2.2234	.0056	.3897	.2368	.014099	.007846
	36	51.0901	76.6584	110.8489	18.4939	.0022	4355	.4878	.021699	.024855
	37	68.6926	117.0634	107.6917	19,2171	.0040	*****	.5762	*****	.025237
	38	65.7140	95.8163	107.6715	4.8479	.0066	.4219	. 3894	.016621	.014989
	39	68.8206	101.2450	110,1299	9.0038	.0076	.4174	.4965	.016510	.019756
	40	55.7223	93.8110	108.1511	10.5547	.0008	3989	.4583	.019600	.022675
	41	54.4359	89.5847	101.3530	6,2148	.0010	3737	. 3744	.016444	.016277
	42	55.4213	83.3247	99.0454	16.4184	.0030	.3893	.4719	.015290	.018918
	43	79.4392	99.5306	91.5599	5.9521	.0171	*****	.4445	*****	.006209
	44	56.5438	92.2766	106.1011	2.1938	.0016	.3966	.2287	.018364	.010011
	45	67.7047	110.1276	91.9911	1.0133	.0048	*****	.1055	******	.002781
	46	52.2689	84.5510	113.8613	8.9372	.0010	.4367	.4401	.023504	.023800
	47	62.1334	104.9040	103.1690	8.3484	.0022	*****	.4465	*****	.018832
	48	53,5962	90.3111	109.6218	12.3392	.0004	.4116	.4681	.021101	.024257

Figure 8.4 Output from program SPRCO

49	71.8194	97.8476	100,4904	18.8526	.0107	.4079	.5624	011700	044888
50	58.3695							.011680	.016444
		91.8028		13.6956	.0028	.3502	.4651	.012886	.017369
51	78.6444	102.3428	90,7101	8.5383	.0156	****	.5035	*****	.007661
52	70.3325	91.3590	107.4342	5.5791	.0110	.4555	.4267	.015186	.014074
53	54.9284	92.8665		4.2193	•				
					.0006	.4291	.3511	.023300	.018558
54	60.1730	90.6156	91.8128	1.4641	.0042	.3554	.1432	.011434	.004185
55	56.1549	80.2818	97.6986	16.4833	.0041	.3950	.4703	.014412	.017541
56	59.4876	87,2057		1,1705	.0045				
						.3556	.1154	.010026	.003352
57	69.0714	113,9063	110.7897	6.2578	.0049	*****	.4510	******	.019149
58	65.6746	113.0471	99.5546	15.6650	.0027	*****	.5278	******	.020772
59	63.5147	101.1542		6.5767	.0039	.3891			
60							.4166	.015448	.016132
	67.0307	88.2855		1.7116	.0093	.4471	.2081	.015401	.006861
61	69.6083	109.1265	108.2640	19.0745	.0064	****	.5753	*****	.023480
62	78.2613	125.4515	111.8672	12.6241	.0100	*****	.5945	******	.022694
63	59,9315	106.1264		7.9430					
					.0005	*****	.4171	******	.016579
64	67.5132	100.1693	99.9405	17.1177	.0069	***	.5360	******	.018191
65	58,9288	95.9033	100.0849	7.3330	.0022	.3621	.4091	.014747	.016489
66	78.1897	113.7561		12,5969	.0126	*****	.5717	*****	
									.015552
67	66.6298	94.3767	95,9493	5.7640	.0076	.3723	.3919	.011011	.011268
68	64,2434	113.7548	90.9821	10.5420	.0016	****	.4648	*****	.015929
69	59,8068	93.0472	109.0746	6.1812	.0034	.4207	.4095	.019166	
70	74,3182	96.6462							.018429
				10.4864	.0131	.4120	.5135	.010155	.012674
71	61.0001	105.2545	105.0803	2.8782	.0014	*****	.2795	****	.011768
72	58.0411	82.6889	94,1253	5.4050	.0046	.3732	.3484	.012279	.011297
73	64.3971	110,8943		6,5829		*****			
					.0023		.3999	*****	.013257
74	66.9483	96.0381	116.1524	15.1604	.0074	.4713	.5530	.021153	.025213
75	77,3562	102.1617	104.8187	6.5793	.0145	.4364	.4766	.011977	.012820
76	72.9537	113,9999		5.9842	.0080	****	.4618	*****	
									.018170
77	76.9588	111.5965	118.5848	1.5527	.0119	.4717	.2396	.019282	.009035
78	79.0883	100.3738	111.8250	17.4999	.0165	.4787	.6117	.014600	.019093
79	51,1801	83.2446	99.6720	20.0928	.0007	.3790	.4716		·
80	79.9590	100.7945	95.4169	9.8881				.016631	.021198
					.0173	*****	.5322	*****	.009141
81	72.7173	122.5141	104.2142	11.6365	.0058	****	.5434	*****	.020278
82	70.1080	100.6791	91.4884	12.1836	.0087	****	.5025	*****	.012442
83	61.4963	86.2209	106.0671	13,9953	.0060	.4347	4985		
								.017156	.019997
84	61.9210	97.4075	106,4095	19.1029	.0037	.3876	.5310	.016492	.023274
85	63.8127	100.0225	103.3220	3,4352	.0044	.3901	.3142	.015424	.011732
86	72.4654	121.6405	114.1130	13,4156	.0058	*****	.5744	*****	
87	52,4328	86.9093							.025972
			117.0768	18,4850	.0006	.4441	.5105	.025293	.029624
88	58.0944	100.7889	104.3526	4.5358	.0006	.3755	.3466	.017402	.015413
89	68.6256	90.5076	113,9251	11.0905	.0099	.4833	.5234	.019258	.021075
90	63,5293	105.6638	91,2158	10.2672	,0029	*****			
							.4545	******	.014903
91	57.9937	65.4488	95.7425	.4734	.0040	.3703	.0473	.012977	.001380
92	57,9713	96.7101	118.1942	9,9329	.0015	.4457	.4832	.024748	.026921
93	65.2281	97.4012	99.3172	19.5465	.0059	.3896			
							.5329	.013442	.018720
94	72.7199	104.0671	106.0756	6.0870	.0100	.4297	.4485	.014514	.014718
95	68.5792	113.9043	98,8573	6.9392	.0046	*****	. 4391	******	
96	63,4203	98.3815	95.7829	13.8597	.0045	*****			.015092
97	56.7413						.4906	*****	.016865
		92.3483	112.4770	19,1774	.0017	.4289	.5211	.021870	.027121
98	79.9125	120.6913	98.2020	4.4492	.0126	*****	.4083	****	.009232
99	78.8285	127.2704	93.1343	18.1476	.0101	*****	.6387	****	
100	64.8418	92.5447	92.9948	10.5771	.0068				.015174
						.3692	.4599	.010652	.013219
101	64.7569	95.1750	90.5651	19.7177	.0061	*****	.5148	*****	.014690
102	70.3287	111.6158	108.0073	4.7942	.0064	****	.4049	****	.015339
103	79.8324	122.5774	101.1812	13.7402	.0121	*****			
104	50.2843	84.3593		·			.5999	*****	.016546
			111.8900	4.1588	.0000	.4237	.3312	.022954	.017607
105	67.6379	105.7145	104.8616	4.3632	.0057	*****	.3714	*****	.013595
106	76.5129	97.4769	93.7958	3,8063	.0148	*****	.3503	****	
107	50,2871	75.6865	100.6088	13.8789	.0020	.3996			.006151
108	61.1566	94.0369				•	.4415	.017028	.019177
			94.6069	13.5144	.0040	.3622	.4740	.012411	.016340
109	61.6523	92.7169	100,8256	19.4719	.0046	.3774	.5171	.014091	.019873
110	68.7779	96.4446	90,5561	10.0251	.0087	*****	.4686	*****	
111	69.2385	89.9574	114.4638	13.8699	-				.011255
					.0105	.4891	.5480	.019320	.021985
112	79.2581	128.2571	118,6875	2.8362	.0102	*****	.3623	******	.014153
113	51.0051	79.0942	99.0560	.6522	.0016	.3881	.0671	.016336	
114	61.0026	87.8337	113,3350	17,5152	.0053	4585			.002695
115	71.1008	105.0568					.5307	.021103	.024898
			104.6273	12.2713	.0085	*****	.5325	*****	.018511
116	72.2442	93.8480	112.2074	15.0614	.0120	.4800	.5651	.017231	.020637
117	53.6169	19.2727	113.8384	11.5373	.0029	.4496	.4683		
118	58.6711	83.3907	103.7567	7.1649				.022772	.024064
119					.0049	.4223	.4115	.016708	.016269
	64.5140	105.3610	93.9220	2.3925	.0036	*****	.2284	*****	.006941
120	57.2807	91.5981	96.8422	16.0434	.0022	.3258	.4767	.012430	
121	64.1858	93.1116	103.4380	8.3820	.0062				.018808
122						.4029	.4521	.014877	.016711
	79.2938	107.4412	109.2870	3.8628	.0151	.4594	.4012	.013957	.011532
123	66.6769	116.0519	100.5806	17,3038	.0027	*****	.5451	******	.021838
124	69.1430	103.5153	113.7618	.5781	.0074	.4301			
125	56,3752	84.8528	99.7334				.0842	.018342	.003336
				18.1018	.0032	.3890	.4846	.015302	.019508
126	61.9749	88.3719	107.5155	10.3578	.0058	.4367	.4758	.017814	.019565
127	79.0554	103,2812	99.1784	11,1396	.0158	*****			
128	68.7923	98.1392	116,8077				.5493	******	.011949
				15.5832	.0083	.4741	.5653	.020929	,025380
129	73.2131	108.5415	113.5956	17.6234	,0094	.4494	.5946	.018027	.024338
130	55.4639	82.9496	99.7177	14.8472	.0031	.3939	.4656		
							. 7030	.015593	.018775

Figure 8.4 (Continued)

131	61.3000	88.8576	114.7576	11 8224	0057	8437	6020	024824	
				11.8224	.0053	.4627	.5029	.021826	.023983
132	74.4032	114.3866	105.0155	4.1364	.0091	****	.3858	*****	.012270
133	51.5690	84.2426	109.8430	13.8297	.0007	.4206	.4693	.021596	.024458
			116.9882						
134	50.5931	70.6975		11.2832	.0032	.4588	.4612	.024244	.024867
135	52.2620	78.0522	116,2913	11,9360	.0025	.4544	.4720	.024269	.025602
136	61.6710	83.1307	99.7283	19.2615	.0068				
						.4126	.5079	.013825	.017451
137	73.8796	113.5426	101.2148	13,5128	.0088	****	• 5563	*****	.017638
138	51.1270	72.2501	116.4497	17.3699	.0032	.4580	.4947	.024042	.026575
			101.4917						
139	72.7124	107.6576		5.8419	.0092	*****	.4323	*****	.013030
140	78.6340	115,3275	93,9846	16.2058	.0126	*****	.6036	*****	.013078
141	56.7777	95.2767	94,6560	15,5823	.0011	*****	.4699		
								*****	.018627
142	64.6105	109.8044	119.4119	13.4093	.0027	.4098	.5453	.021677	.029597
143	71.3983	95.3890	110,7226	18.1067	.0110	.4620	.5743	.016628	.021133
144	77.9664	126.3154	100,1681						
				9.9117	.0095	*****	•5477	****	.015976
145	78.5490	99.8391	105.1210	8,7062	.0161	.4142	.5223	.010540	.013434
146	57.5637	89.1638	116.5244	11,9659	.0029	4553	.4944		
								.023809	.026122
147	73.2727	121.2378	109,8102	3.1316	.0066	*****	.3398	*****	.012620
148	64,6853	93.5201	105,9272	15.9243	.0064	.4181	.5253	.016070	.020609
149	68.2226	94.7813	99.4242	8.8357	.0087	.3580			
							.4662	.010750	.014201
150	74.6831	109.0938	107.2351	1.6844	.0105	*****	.2199	*****	.006741
151	66.0542	89.9826	97.0707	15.1379	.0082	.3784	.5066	.011097	.015212
152	74,1215	117.6612	105.9791	7.8658					
					.0081	****	.4977	***	.017477
153	76.7173	123.7331	109,4219	18.9267	.0089	****	.6226	******	.023748
154	57.0949	90.9050	106,2536	10.2591	.0022	.4047	.4551	.018393	
155	58.1275								.020819
		93,6501	108.8546	13.7410	.0022	.4115	.4935	.019437	.023661
156	54.3402	87.3218	113,2785	7.4716	.0015	.4362	.4255	.022818	.022219
157	71.7842	106.3771	97.3862	3.8282	.0087	*****			
							.3435	****	.009226
158	75.5373	122.6951	110.5109	2.5525	.0081	****	.3079	*****	.010840
159	57.2252	98.2442	106.6623	15.8426	.0007	.3685	.4992	.017543	.024399
160	56.5473	77.6957	92.6084						
				8.9358	.0049	.3786	.4036	.011930	.012831
161	64.4577	111.0088	110.1480	7.9576	.0023	****	.4659	****	.021685
162	56.7155	99.4639	117,3073	13.4489	.0001	.4283	.5069	.024351	
									.029193
163	72.0759	114.8235	107.5444	16.5400	.0071	****	.5777	*****	.022581
164	55,6898	90.2117	109.4029	19.4244	.0016	.4179	.5103	.020478	.025549
165	62,3659	83.1844	99.3503	13.3041	.0072	.4132		•	
							.4812	.013454	.015951
166	62,9510	94.7213	99.7866	17.8437	.0050	.3612	.5154	.012931	.019018
167	66.6190	93.2614	106.3580	4.1365	.0078	.4287	.3628	.015763	.012969
168	79.4957	114.5755	113.9865	11.4705	.0136	*****			
							.5863	****	.020950
169	68.7722	114.9594	93.8845	5.8484	.0045	****	.4023	****	.012248
170	64.3319	111.0137	99.7700	12.3209	.0022	******	.4969	*****	.019850
171	79.3533	120,9988	119,5969	14.4833					
					.0120	****	.6239	*****	.026386
172	56.9720	79.0464	93.8202	7,5818	.0048	.3814	.3890	.012376	.012655
173	58.3138	83.2309	110,1849	10.7160	.0047	.4466	.4704	.019965	.021265
174	51.4455	81.6802	117,7597	2.7979					
					.0012	.4513	.2883	.025553	.016039
175	58,3238	89.4820	101.8941	8.8074	.0033	.3899	.4324	.015794	.017560
176	75.5881	108.8309	97.5416	13.8105	.0114	*****	.5593	*****	.014463
177	63,6032	105.1123	119,6778						
				15.2361	.0031	.4419	.5313	.023583	.028708
178	65.6732	105.6303	113.1837	2.8961	.0044	.4075	.3138	.018837	.013769
179	65.6493	112.4201	115,5197	13,7300	8500.	.4289	.5450	.021643	
180	58.2750								.027777
		95.1571	107.5181	18.3230	.0020	.3975	.5146	.018483	.024504
181	60,1580	85.6616	118,8607	1.4109	.0053	.4788	.1974	.024169	.009711
182	76,9950	126.6796	116.0926	12.2467	.0065	*****	.5920	*****	
183									.025492
	69.9647	90.4464	118.5879	10.7991	.0110	.5063	.5361	.021362	.022856
184	57.5646	92.8684	112,1333	11.1285	.0021	.4287	.4788	.021467	.024164
185	72,1245	108.8369	101,4905	17.7975	.0085	*****	.5705	*****	
186	61,5944	85.8952	95.7620						.018733
				18.2366	.0061	.3805	.4975	.012027	.016129
187	63.1549	93.7709	119.5039	15.5678	.0053	.4767	.5461	.024117	.028055
188	65.6625	101.4808	116.4901	17.9258	.0053	.4479	.5645	.021445	
189	72.8020								.027625
		109.5644	118.9666	13.6729	.0088	.4428	.5808	.019693	.026450
190	57.7963	78.7206	110.3588	10.2728	.0054	.4534	.4634	.019846	.020570
191	65,9348	93.1745	114,5765	17.8526	.0074	.4688	.5569		
192	72.4141	105.4053	93.4107					.020537	.024871
				11.3346	.0095	*****	.5121	*****	.012790
193	70.1000	99.7839	102,0029	5.7930	.0089	.4015	.4203	.012879	.013113
194	50.9828	75.4225	105,9585	13.8405	.0024	.4210			
							.4556	.019275	.021263
195	69.4827	118.2645	90.2725	4.7112	.0043	*****	.3598	*****	.009863
196	71.4134	101.5811	110.0976	16.1022	.0096	.4270	.5680	.015822	.021580
197,	73.5714	104.0047	94.4088	5.3200	.0108	****			
							.4040	*****	.009282
198	64.4607	111.3646	108,5826	7.7821	.0023	*****	.4595	****	.020863
199	71.0673	102,9614	106.7075	14.1714	.0090	.4231	.5495	.015025	.019772
200	59.9966	108,3595	118,1041	11,9669					
				7007	.0001	.3947	.5128	.022150	.029395
	OF POINTS								
NUMBER	OF POINTS	PLOTTED =	117						'

FOR HWS EFFICIENCY, CONSTANT AND COEFF OF T, TWET, THOT, WIND AND WINDA*, 5 ARE
-.60637276E+00
.40195127E-03
.38449863E-02
.18230236E-02
-.34078270E-01
.30138737E+00

Figure 8.4 (Continued)

```
FOR HWS EVAPORATION, CONSTANT AND COEFICIENT OF T, TWET, THOT, WIND AND WIND **.5 ARE
 -. 41450389E-01
  .14646531E-03
 -.33234415E-03
  .41560445E-03
 -.12268707E-02
  .11416664E-01
                                                          T##3, TWET, THOT AND THOT##2 ARE
FOR LWS EFFICIENCY, CONSTANT AND COEFF OF T, T**2,
 -.25690451E+01
.65576685E-01
-.73791051E-03
  .26319278E-05
  .35669730E-02
   .12911864E-01
 -.39275022E-04
FOR LWS EVAPORATION, CONSTANT AND COEFF OF T, T++2, T++3, TWET, THOT AND THOT++2 ARE
 -.86122112E-01
 .28767122E-02
-.29725976E-04
.10168749E-06
  -.27394599E-03
   .28406611E-04
   .22034012E-05
                       CORRELATION OF EVAPORATION FRACTION
                      CORRELATION COEFF R**2 2 .9895
STANDARD ERROR = .0005
MIN AND MAX OF PLOT SCALES =
                                                              .100256E-01
                                                                                .310034E-01
                      ******************************
                                                  5
551
5215
                            121
```

Figure 8.4 (Continued)

PLOTTED CHARACTERS ARE NUMBER OF POINTS FALLING AT THAT POSITION

Figure 8.4 (Continued)

8.5 Scanning Weather Record--Program SPSCAN

The periods of most-adverse meteorology with respect to cooling performance and water loss were determined from the tape meteorological record using program SPSCAN and the output from programs SPRCO and DRIFT. The inputs to program SPSCAN were developed according to Section 7.4, and are shown in Figure 8.7. There is one pond data card, one monthly average card, and one end card.

```
DRIFT TABLE FOR HYPOTHETICAL SPRAY POND
SDROPSZS
13
   120.0 .07692308
          .07692308
   132.5
           .07692308
   145.0
          .07692308
   157.5
           .07692308
   170.0
           .07692308
   182.5
           .07692308
   195.0
   207.5
           .07692308
           .07692308
   0.055
   232.5
           .07692308
          .07692308
   245.0
   257.5
          .07692308
          .07692308
   270.0
S
```

Figure 8.5 Input deck for program DRIFT

The base heat load HEAT on the pond data card is taken to be the 30-day average excess heat load from the plant, so that the 30-day evaporative loss calculated in this program could be used directly, since evaporation is approximately proportional to the cumulative heat load.

Partial printed output is shown in Figure 8.8. In addition to the printed output, the hourly record of the 20-day period before and the 30-day period after the time of most-adverse cooling performance was either punched or (preferably) stored on a permanent file for further use in program SPRPND. This output is also shown in Figure 8.8.

8.6 Determining the Uncorrected Design-Basis Temperature--Program SPRPND

Once the period of most-adverse meteorology for cooling has been determined by program SPSCAN, program SPRPND is run to simulate the pond temperature under the actual design-basis heat loads. One of two procedures may be followed to make this determination.

TITLE: ORIFT TABLE FOR HYPOTHETICAL SPRAY POND
SPRAY GEOMETRY (13 POINTS)

FEET FROM EDGE	FRAC. OF SPRAYS
120,000000	.076923
132.500000	.076923
145.000000	.076923
157.500000	.076923
170.000000	.076923
182.500000	.076923
195.000000	.076923
207.500000	.076923
250.000000	.076923
232.500000	.076923
245.000000	.076923
257.500000	.076923
270.00000	.076923
DRIFT LOSS FRACTION	
WIND SPEED	LOSS FRAC.
0.000	.00050000
2.500	.00050000
5.000	.00050000
7.500	.00050000
10.000	.00058047
12.500	.00075946
15.000	.00106712
17.500	.00145037
20.000	.00191420
22.500	.00237861
25.000	.00296085
30.000	.00434594
35.000	.00590310
40.000	.00789034
45.000	.01086714
50.000	.01432954

Figure 8.6. Output from program DRIFT

```
-.60637276E+00
               .40195127E-03 .38449863E-02 .18230236E-02
                .30138737E+00 -.25690451E+01
                                             .65576685E-01
-.34078270E-01
-.73791051E-03 .26319278E-05 .35669730E-02 .12911864E-01
-.39275022E-04 -.41450389E-01 .14646531E-03 -.33234415E-03
 .41560445E-03 -.12268707E-02 .11416664E-01 -.86122112E-01
                              .10168749E-06 -.27394599E-03
 .28767122E-02 -.29725976E-04
 -28406611E-04
                .22034012E-05
SINPUT N=1,A=422000.,V=2942357.,LAT=41.2,HEAT=2.3E8,IPRNT=0,WDR0=0,
  NDRIFT =6,DWDR=10,FDRIFT=.0005,.00058,.001914,.004346,.007890,.0143308
$INPUT N=100, YRMODY(1)=73, YRMODY(2)=5$
SINPUT N=0S
```

Figure 8.7 Input deck for program SPSCAN

8.6.1 Procedure 1

- (1) Make two runs of program SPRPND; first to determine the pond temperature for the ambient meteorology (but with a steady heat load), and second, to determine the pond response to the design-basis heat load, but with constant meteorological parameters.
- (2) Make a third run combining the time-varying meteorology and heat load, with the timing adjusted so that the two temperature peaks determined in the step above are approximately superimposed.

The inputs to program SPRPND for the first run are shown in Figure 8.9. The parameter IMET = 0 specifies that the tabular meteorological data is used for meteorology. ISPRAY = 1 specifies that the regression model is used for spray-heat and mass transfer. TSKIP = 5000 effectively eliminates the use of the design-basis heat-and-flowrate table. Parameter Q1 = 0.23E9 specifies the steady heat load for this run. IEVAP = 0 forces the pond to remain full for the run. TSPRON = 0 specifies that the sprays are turned on at the beginning of the run.

The output of run 1 is shown printed in Figure 8.10 and plotted in Figure 8.11.

```
******* SUBROUTINE SUB1 HAS BEEN CALLED FOR LATITUDE # 41.20 DEG. NORTH ****
                DISCONTINUITY IN DATA CAUSED 6/11/71 TO BE SKIPPED
                DISCONTINUITY IN DATA CAUSED 9/25/71 TO BE SKIPPED DISCONTINUITY IN DATA CAUSED 5/ 5/72 TO BE SKIPPED
                DISCONTINUITY IN DATA CAUSED 5/ 6/72 TO BE SKIPPED DISCONTINUITY IN DATA CAUSED 5/ 7/72 TO BE SKIPPED
                                                 5/ 8/72 TO BE SKIPPED
8/ 7/72 TO BE SKIPPED
                DISCONTINUITY IN DATA CAUSED
                DISCONTINUITY IN DATA CAUSED
                DISCONTINUITY IN DATA CAUSED DISCONTINUITY IN DATA CAUSED
                                                  7/11/73 TO BE SKIPPED
                                                  7/15/73 TO BE SKIPPED
                DISCONTINUITY IN DATA CAUSED 7/16/73 TO BE SKIPPED DISCONTINUITY IN DATA CAUSED 7/17/73 TO BE SKIPPED
                DISCONTINUITY IN DATA CAUSED 5/ 1/75 TO BE SKIPPED
SURFACE AREA
                                    422000.00 FT**2 (
                                                            9.69 ACRES)
                VOLUME
                                  2942357.00 FT**3 (
                                                           67.55 ACRE-FT)
                ISRCH = 1
                                                  IPRNT # 0
******* POND NUMBER 1 HAS BEEN MODELLED TO DETERMINE THE WORST ********
                   PERIODS FOR COOLING AND EVAPORATIVE WATER LOSS
BASE HEAT LOAD =
                                        .23E+09 BTU/HR
                MINIMUM EVAPORATIVE LOSS FRACTION =
                                                         0.000000
                MAXIMUM EVAPORATIVE LOSS FRACTION = .100 MAXIMUM SPRAY EFFICIENCY = .800 MAXIMUM SPRAY EFFICIENCY = .800
                                                          .050000
                                                 .1000
                                                   .8000
WIND SPEED - MPH
                                           DRIFT LOSS FRACTION
                      0.00
                                                      .000500
                                                      .000580
                     10.00
                     20..00
                                                      .001914
                     30.00
                                                      .004346
                                                      .007690
                     40.00
                                                      .014330
                     50.00
```

Figure 8.8 Output from program SPSCAN

			RE	EVAPORATIVE	
	*EXCEEDE		DATE *EX		DATE *
	*/100 YR	* (DEG.F)	*(YR.MO.DY.)*/1	00 YR* FT**3	*(YR.MO.DY.)*
		• • • • • • • • • • •			••••••
	* 2.45			2.45 * 2462822.8	
		* 92.02		5.97 * 2409377.5	
		* 91.55		9.49 * 2352520.5	
	* 13.01			3.01 * 2337086.9	
	* 16.54			6.54 * 2332290.8	
	* 20.06			0.06 * 2330110.7	
	* 23.58			23.58 * 2329511.1	
	* 27.10	-		27.10 * 2326817.8	
	* 30.63	* 90.39		80.63 * 2323800.6	
	* 34.15	* 90.35		84.15 * 2309946.7	
	* 37.67	* 90.34		37.67 * 2306465.0	
	* 41.19	* 90.01	* 62. 7. 8. * 4	11.19 * 2302173.2	* 53. 7.20. *
	* 44.72	* 90.01	* 66. 8.22. * 4	14.72 * 2302154.9	* 49. 7. 5. *
	* 48.24	* 89.97	* 63. 7. 1. * 4	18.24 * 2288803.4	* 62. 7.27. *
	* 51.76	* 89.57	* 55. 7. 4. * 5	1.76 * 2287736.5	* 59. 7. 5. *
	* 55.28	* 89.54	* 64. 7.20. * 5	5.28 * 2286469.7	* 72. 7.26. *
	* 58.81	* 89.39		8.81 * 2283665.6	
	* 62.33	* 89.27	* 69. 6.28. * 6	2.33 * 2270155.6	* 51. 8. 2. *
	* 65.85	* 89.23		5.85 * 2268953.0	
	* 69.37	* 89.07	* 61. 7.23. * 6	9.37 * 2267994.3	* 67. 7. 4. *
	* 72.90	* 88.73		2.90 * 2265241.7	
	* 76.42	* 88.65		6.42 * 2261924.0	
	* 79.94	* 88.10		9.94 * 2251452.1	
	*.83.46	* 88.09		3.46 * 2245862.8	
	* 86.99			6.99 * 2242686.2	
	* 90.51			0.51 * 2226405.1	
		* 87.62		4.03 * 2215186.3	
	* 97.55			7.55 * 2202979.8	
		••••••			

	MEAN	89.73		2296092.7	
STANDARD	OEV.	1.380		55542.66	1
	SKEW	.154		1.01	.0

Figure 8.8 (Continued)

PREDICTED VALUES AND CONFIDENCE LIMITS ON PEAK TEMPERATURE, DEG.F

EXCEEDED	PREDICTED	5 PERCENT	95 PERCENT
PER 100 YR	VALUE	CONFIDENCE	CONFIDENCE
.100	94,451	93,288	95,613
500	93.554	92,577	94.530
1.000	93,142	92.248	94.037
2.000	92,708	91,898	93,518
5.000	92.081	91.386	92,776
10.000	91.544	90,937	92.150
20.000	90,911	90.392	91.430
	90.463	89.949	90.938
30.000	90.084	49.633	90.535
40,000	. •		A9.830
60,000	89.378	85,927	
70.000	88.999	88.585	89.473
80.000	88.551	AA.033	89.070
90.000	87,419	67.313	A6.525
95.000	87.381	86.686	58.077
98.000	86,754	85.944	A7.564
99.000	86.320	A5.425	87.214
99.500	85,909	84,932	86.686
99,900	85.012	83,849	86.174

PREDICTED VALUES AND CONFIDENCE LIMITS ON 30 DAY EVAPORATION, FT##3

EXCEEDED PER 100 YR	PREDICTED Value	5 PERCENT CONFIDENCE	95 PERCENT CONFIDENCE
.100	2486106.070	2439307.091	2532905.048
.500	2449983.821	2410657.411	2489310.231
1.000	2433430.819	2397419.438	2469442.200
2.000	2415944.033	2383327.751	2448560.315
5,000	2390697.864	2362709,866	2418685.863
10,000	2369059,240	2344656 889	2393461.591
20,000	2343589.274	292696.192	2364482,356
30,000	8325566.328	2306470,449	2344662.207
40,000	2310303.682	2292134,736	2328472.628
60,000	2281881.643	2263712.697	2300050.589
70.000	826618.996	2247523,118	2285714.875
80.000	2248596.051	2227702.969	2269489.132
90.000	2223126.085	2198723,734	2247528.435
95,000	2201487.460	2173499,462	2229475,459
98,000	2176241.292	2143625.010	2208857,573
99,000	2198754.506	2122743,125	2194765.887
99.500	2142201.504	2102875.094	2181527.914
99,900	2106079,255	2059280,276	2152678,233

Figure 8.8 (Continued)

***	*** MET	EOR	ROLOGY	FOR	7/ 3/7	2**	****	*****	****	***	***	***	***	***
• •		• • •		••••		•••	• • • • • • •	• • • • •		• • • • •	• • •	• • • • •	••••	
•	HOUR		WIND	SP.,	DRY BULB	, 0	EWPOINT	SOLAF	RAD	WET B	ULB	, ATN	.PRE	38,
•		•	(MPH		(DEG.F)	•	(DEG.F)	, B 1 U / F	. 15/0	(DEG	•F)	, F	SIA	•
•	0.	•••	5.0		74.0	• • •	65.7		0.0	68.	• • • : 4 7	• • • •	9.59	• • •
;	i.	•	3.5		72.0		66.0	•					9.58	-
•	ě.	,			72.0			•	0.0	68.	00	, ?	9.57	
,	3.	•		-			66.0			68.			9.57	
•	4.	•			72.0	,	66.0	,		68.			9.56	_
•	5.	•	5.4					, 24	17.5	69.	00	. a	9.56	•
•	6.	•	_			•	67.3						9.56	
•	7.	•	4.6		76.0	•							9.56	
•	8.	•	4.6		78.3								9.55	
•	9.	•	4.6		80.7	-							9.55	
•	10.	•	_		83.0	•		, 252					9.54	-
•	12.		7.7 10.7		84.7 86.3	•							9.53	
,	13.		13.8		88.0			279					9.52	
•	14.		11.9	_	65.0								9.51	
·	15.		10.0										9.51	_
,	16.		8.1		79.0	-		, 123					9.52	-
•	17.		10.0		79.3		67.7						9.53	
,	18.		11.9		79.7	,							9.54	
,	19.	•	13.8	•	80.0		67.0	. 24	7.6 .	71.	00	, ž	9.55	
	20.	•	13.8		78.3	,		,		70.			9.58	
•	21.		13.8		76.7		65.0		0.0.	69.	00	, a	9.60	•
•	22.		13.8		75.0	,	64.0	•	0.0 ,	68.	00	. 2	9.63	
_	23.	•	10.4		73.0	•	62.0	•	0.0	66.	00	, 2	9.65	•
***			ROLOGY		7/ 4/7		*****							****
***	**** MET	TEOR	ROLOGY	FOR	7/ 4/7	2**	*****	****	****	****	***	***	***	
***	*** MET	TEOR	ROLOGY WIND	FOR	7/ 4/7 DRY BULB	2**	******	***** SOLA	***** R RAD	***** WET B	*** ulb	****	****	
• •	*** MET	TEOR	ROLOGY	FOR	7/ 4/7	2**	******	***** SOLA	***** R RAD	***** WET B	*** ulb	****	****	
•	*** MET	TEOR	ROLOGY WIND (MPH	FOR	7/ 4/7 DRY BULB (DEG.F)	2**	******* EWPOINT (DEG.F)	,SOLAI ,BTU/I	***** R RAD FT2/D	***** WET B , (DEG	*** ULB .F)	**** AT!	A***	E95,
,	*** MET	TEOR	WIND (MPH	FOR	7/ 4/7 DRY BULB (DEG.F)	2**	EWPOINT (DEG.F)	,SOLAI	**** R RAD FT2/D	***** WET B , (DEG	*** ULB .F)	**** ,AT!	**************************************	ESS,
•	*** MET HOUR 0. 1.	TEOR	ROLOGY WIND (MPH	FOR	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0	2**	EWPOINT (DEG.F) 60.0 58.0	,SOLAI ,BTU/	***** R RAD FT2/D	***** WET B , (DEG	*** ULB .F)	**** ,AT!	**************************************	ESS.
,	*** MET HOUR 0. 1.	TEOR	WIND (MPH	FOR	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7	2**	EWPOINT (DEG.F) 60.0 58.0 57.0	, SOLAI , BTU/I	R RAD FT2/D	***** WET B , (DEG , 64. , 62.	*** ULB .F)	****	***** 1.PR PSIA 29.66	ESS,
,	*** MET HOUR 0. 1. 2. 3.	TEOR	WIND (MPH	SP.,	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3	2**	EWPOINT (DEG.F) 60.0 58.0 57.0 56.0	,SOLAI ,BTU/I	R RAD FT2/D	WET B, (DEG, 64., 62., 61., 60.	*** ULB .F) 00 00 33 67	***** ,AT!	**** 4.PRI 9SIA 29.66 29.66	ESS,
,	*** MET HOUR 0. 1. 2. 3.	TEOR	WIND (MPH 6.9 3.5 6.1 8.8	FOR	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0	2**	EWPOINT (DEG.F) 60.0 58.0 57.0 56.0 55.0	,SOLAI ,BTU/I	**** R RAD FT2/D 0.0 0.0 0.0	***** WET B , (DEG	*** ULB .F) 00 00 33 67	***** ,AT!	**************************************	ESS.
,	*** MET HOUR 0. 1. 2. 3.	TEOR	WIND (MPH 6.9 3.5 6.1 8.8	FOR	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0	2**	EWPOINT (DEG.F) 60.0 58.0 57.0 56.0 55.0	,SOLAI ,BTU/I	***** R RAD FT2/D 0.0 0.0 0.0 0.0 0.0	WET B, (DEG, 64., 62., 61., 60.	*** ULB) .F) 00 03 67 00	**************************************	**** 4.PRI 9SIA 29.66 29.66	ESS
,	*** MET HOUR 0. 1. 2. 3. 4.	TEOR	ROLOGY WIND (MPH 6.9 3.5 6.1 8.8	FOR	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7	2**	EWPOINT (DEG.F) 60.0 58.0 57.0 56.0 55.0	,SOLAI ,BTU/I	***** R RAD FTZ/D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	***** WET B (OEG 64. 62. 61. 60. 60.	*** ULB) .F) 000 33 67 000 000	******* ,AT! , a :	4 * * * * * * * * * * * * * * * * * * *	ESS.,
,	*** MET HOUR 0. 1. 2. 3. 4. 5. 6. 7.	TEOR	WIND (MPH 6.9 3.5 6.1 8.8 11.5 10.0	FOR	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 69.3	2**	EWPOINT (DEG.F) 60.0 58.0 57.0 55.0 55.0 55.0 55.0	, SOLAI , BTU/I	***** R RAD FTZ/D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	***** WET B (OEG , 64. , 62. , 61. , 60. , 60.	*** ULB .F) 00 03 367 00 00 00	****** ,AT! , a :	***** 1. *** 1. *** 2. * 2. * 2. ** 2. *	ESS.,
•	**** MET HOUR 0. 1. 2. 3. 4. 5. 6. 7. 8.	TEOR	WIND (MPH 	FOR	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 69.3 71.7	2**	EWPOINT (DEG.F) 	, SOLAI , BTU/I	***** R RAD FTZ/D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	***** WET BG 64. 64. 60. 60. 60. 60.	*** •F •00 00 00 00 00 00 00 00 00 00	**** ,AT!	***** 4.PRI PSIA 29.6(29.7) 29.71 29.71 29.71 29.71	E9S.,
	**** MET HOUR 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	TEOR	ROLOGY WIND (MPH 3-5 3-1 8-8 11-5 10-0 8-4 10-0	FOR	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 69.3 71.7 74.0	2**	******* EWPGOINT (DEG.)	, SOLAI , BTU/I , BTU/I , 20 , 12 , 19 , 26 , 33	***** R RAD FTZ/D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	***** WET EG 64. 61. 60. 60. 60. 61. 63.	*** ••• ••• ••• ••• ••• ••• ••• ••• •••	**** ,AT!	**************************************	E9S.,
	**** MET HOUR 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	TEOR	ROLOGY WIND (MPH 3-5 6-1 8-4 11-5 10-0 11-5 10-0	FOR	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 69.3 71.7 74.0 74.7	2**	EWPOINT (DEG.F) 	, SOLAI , BTU/I , BTU/I , 20 , 12 , 19 , 26 , 33 , 32	***** R RAD FTZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	***** WET BG 64. 64. 661. 60. 60. 60. 63.	**** B .F) 000 33 67 000 000 000 000 000 000	**** . A T! . 3 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	**************************************	ESS
	**** MET HOUR 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	TEOR	ROLOGY WIND (MPH 6-9 6-1 8-4 10-0 11-5 10-0	FOR SP.,	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 69.3 71.7 74.0 74.7	2**	******* EWPOINT (DEG.F) 	, SOLAI , BTU/I , BTU/I , 12° , 12° , 12° , 26° , 33° , 32°	****** R RAD FTZ/D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	**************************************	**************************************	**** ,AT!	**************************************	E9S.
	**** MET HOUR 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	TEOR	ROLOGY WIND (MPH 6-9 6-1 8-8 11-5 10-0 11-5 10-0	FOR SP.,	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 74.7 75.3 76.0	2**	******* EWPGONF) ******** (DEG.**) ***** ***** ***** ***** ***** **** ****	, SOLAI , BTU/I , BTU/I , 12° , 12° , 26° , 33° , 32° , 29°	****** RAD FTZ/D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	**************************************	**************************************	**** ,ATI	**************************************	E9S.
	**** MET HOUR 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	TEOR	ROLOGY WIND (MPH 6-9 6-1 8-4 10-0 11-5 10-0 8-4	FOR SP.,	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 71.7 74.0 74.7 75.3 76.0 77.0	2**	******* EWPG.F) 	, SOLAI , BTU/I , BTU/I , 12° , 12° , 26° , 33° , 28° , 28°	****** R RAD FTZ/D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	**************************************	**************************************	**** AT!	**************************************	ESS
	**** MET HOUR 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	TEOR	ROLOGY WIND (MPH 6-9 6-1 8-4 10-0 11-5 10-0 8-4 7-3 7-7	FOR SP.,	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 71.7 74.0 74.7 75.3 76.0 77.0	2***	**************************************	, SOLAI , BTU/I , BTU/I , BTU/I , 26 , 12 , 26 , 33 , 32 , 26 , 26	****** RAD FTZ-0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	**************************************	**************************************	**** ,AT!	**************************************	E9S
	**** MET HOUR 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	TEOR	ROLOGY WIND (MPH 6-9 6-1 8-8 11-5 10-0 8-4 10-0 8-4 10-0 8-4	FOR SP.	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 74.7 75.3 76.0 77.0 78.0 79.0	2***	**************************************	, SOLAI , BTU/I , BTU/I , BTU/I , 26 , 12 , 26 , 23 , 26 , 23	**************************************	**************************************	***B)	*** . AT!	**************************************	E9S.
	**** MET HOUR 1. 2. 3. 4. 5. 6. 7. 8. 9. 11. 12. 13. 14. 15. 16.	TEOR	ROLOGY WIND (MPH 6.9 6.1 8.8 11.5 10.0 8.4 10.0 8.4 10.0 8.4 10.0 8.4 10.0 8.4 10.0 8.4 10.0 8.4	FOR SP.	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 74.7 75.3 76.0 77.0 78.0 79.0 78.0	2**************************************	**************************************	***** ,SOLAI ,BTU/I ,BTU/I ,126 ,126 ,126 ,126 ,126 ,231 ,266 ,231	**************************************	**************************************	**.U.F) . **.B) . **.B) .	**** . A T !	**************************************	ESS
	**** MET HOUR 1. 2. 3. 4. 5. 6. 7. 8. 11. 12. 13. 14. 15. 16. 17.	TEOR	ROLOGY WINDH (MPH 6-9 6-1 8-4 10-0 11-5 10-0 8-4 10-0 8-4 10-0 11-5 10-0 8-4 10-0 8-4 10-0 8-4 10-0 8-5	FOR SP.	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 74.7 75.3 76.0 77.0 78.0 77.0	2**************************************	**************************************	***** ,SOLAI ,BTU/ , BTU/ , 199 , 269 , 293 , 293 , 293 , 293 , 293 , 293 , 293 , 293 , 293	**************************************	**************************************	***UF*********************************	***	***** **** **** **** **** **** ****	ESS
	**** MET HOUR 1. 2. 3. 4. 5. 6. 7. 8. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	TEOR	ROLOGY WIMPH (MARCHARLE) 3-5 3-5 10-0 8-4 10-0 11-5 10-0 8-9 7-3 7-3 8-9 8-4 6-9	FOR SP.	7/ 4/7BULB (DEG.F)71.0 69.0 68.7 67.3 67.0 67.7 74.0 74.7 75.0 77.0 78.0 77.0 76.0	2**************************************	**************************************	, SOLAI , BTU/I , BTU/I , BTU/I , 26 , 12 , 26 , 25 , 26 , 25 , 26 , 25 , 26 , 25 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26	****** R RAD T Z / D 0 0 0	**************************************	* .UF .0003600000000003703700000000000037003700	***	**************************************	ESS
	**** MET HOUR 1. 2. 3. 4. 5. 6. 7. 8. 11. 12. 13. 14. 15. 16. 17.	TEOR	ROLOGY WINDH (MPH 6-9 6-1 8-4 10-0 11-5 10-0 8-4 10-0 8-4 10-0 11-5 10-0 8-4 10-0 8-4 10-0 8-4 10-0 8-5	FOR	7/ 4/7 DRY BULB (DEG.F) 71.0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 74.7 75.3 76.0 77.0 78.0 77.0	2**************************************	**************************************	***** ,SOLAI ,BTU/ , BTU/ , 199 , 269 , 293 , 293 , 293 , 293 , 293 , 293 , 293 , 293 , 293	****** R RAD O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.	**************************************	* .UF .00036000000000036003707	***	**************************************	ESS
	**** MET HOUR 1. 2. 3. 4. 5. 6. 7. 8. 10. 112. 13. 145. 16. 17. 18. 19. 20.	TEOR	ROLOGY WIMPH (MARCHARLE) 10.04 8.4 110.04 11	FOR	7/ 4/7BULF CDEG0 69.0 68.7 68.3 68.0 67.7 67.3 67.0 74.7 75.0 77.0 78.0 77.0 74.7	2**************************************	**************************************	***** **** **** **** *** *** *** *** *** *** *** ** *** *	**************************************	**************************************	* .UF .00036000000000036003700633	***	**************************************	ESS
	**** MET HOUR 1. 2. 3. 4. 5. 6. 7. 8. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	TEOR	ROLOGY WIMPH 6-9 3-11 8-4 110-0 8-4 10-0 110-0 8-9 77-7 8-19 8-4 4-2 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-8	FOR	7/ 4/7BULF) CONTROL BULF)	2**************************************	**************************************	***** **** **** **** **** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *	****** R RAD O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.	**************************************	* .UF .0003600000000003600370730	***	**************************************	ESS

Figure 8.8 (Continued)

****	METEOROLOGY	FOR	8/20/72米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米
------	-------------	-----	--

•	HOUR	•••	WIND SP	D	RY BULB (DEG.F)	.0	EWPOINT	, 5	OLAR RAD		ET BULB	, A	TM.PRES Psia	S ,
•				• • •		••		• •		• •		• • •	20 71	• •
•	0.	•	1.5	,	63.7	•	58.7		0.0		61.00	•	29.71	•
,	1.	•	0.0	•	65.0	•	58.0	•	0.0	•	60.00	•	29.72	•
,	2.	,	1.9		61.3	•	57.7	•	0.0		59.33	•	29.72	•
,	3.	,	3.8	,	60.7	•	57.3	•	0.0		58.67	•	29.73	•
,	4.	•	5.8		60.0	•	57.0	,	0.0	-	58.00	•	29.73	•
,	5.		5.4	•	61.0		57.7	•	0.0		59.00	•	29.74	•
	6.	,	5.0	,	62.0	•	58.3	•	537.2	-	60.00	•	29.76	
•	7.	•	4.6		63.0		59.0	•	1296.6		61.00	•	29.77	•
	8.	,	4.6	,	67.3	,	58.3	•	2004.3	-	65.00	•	29,77	•
	9.		4.6	,	71.7	,	57.7	•	2612.0	,	63.00	•	29.78	•
	10.	,	4.6		76.0	•	57.0	,	3078.4	•	64.00	•	29.78	•
	11.		6.9		78.0	,	57.0	,	3371.5	,	65.00		29.77	•
•	12.		9.2	,	80.0	,	57.0		3471.5		66.00	•	29.75	•
•	13.		11.5	•	0.58	,	57.0	,	3371.5	,	67.00	•	29.74	•
•	14.	•	10.0		82.7	,	55.7		3078.4		66.33	•	29.74	
•	15.		8.4		83.3	,	54.3		2612.0		65.67		29.73	
•	16.	•	6.9		84.0	,	53.0	,	2004.3	,	65.00		29.73	•
•	17.	•	6.1		82.3		53.0		1296.6		64.67		29.73	•
,	18.	•	5.4	•	80.7		53.0	,	537.2	,	64.33	•	29.74	•
•	19.		4.6	·	79.0	•	53.0		0.0		64.00		29.74	•
•	50.	•	3.1	•	74.3	•	54.0		0.0	,	62.67	•	29.74	
•		•	1.5	•	69.7	•	55.0		0.0	- 7	61.33	•	29.75	,
•	21.	,	0.0	•	65.0	•	56.0	•	0.0		60.00	•	29.75	
•	22.	,	0.0	Α,	64.0	•	55.7	•	0.0	-	59.33	•	29.76	,
•	23.	•	V.V.		54.0				• • • • • • • •			• • •		

						• •		• •		• •	• • • • • • •	• •		•
••	HOUR	•	WIND SP	. DR	Y BULB	, D	EWPOINT	, 3	OLAR RAD	W	ET BULB	, A	TM.PRESS	•
•		•	(MPH)		DEG.F)		(DEG.F)	,8	TU/FT2/D	•	(DEG.F)	•	PSIA	•
•		•	(,			-							• • • • • • •	•
• •		• • •	0.0	,	63.0	,	55.3		0.0	,	58.67	•	29.76	•
•	0.	•	. •	•	62.0	•	55.0	:	0.0		58.00		29.77	•
•	1.	•	0.0	•		•	54.7	•	0.0		57.33		29.77	
,	ą.	•	0.0	•	61.0	•	54.3	•	0.0		56.67		29.77	
•	3.	•	0.0	•	60.0	•		•	0.0		56.00	-	29.77	
•	4.	•	0.0	•	59.0	•	54.0	•			57.00	•	29.78	:
	5.	,	0.0	•	59.7	•	55.0	•	0.0		_		29.79	•
	6.	,	0.0	•	60.3	•	56.0	•	521.7		58.00	•		•
	7.		0.0	,	61.0		57.0	•	1280.5		59.00	•	29.80	•
•	8.		1.9		65.7		58.7	•	1987.5		61.67	•	29.79	•
•	9.	•	3.8		70.3		60.3	,	2594.6		64.33	9	29.79	•
•	10.		5.8		75.0		62.0		3060,5	,	67.00	•	29.78	•
•		•	5.0	•	77.7	•	60.7		3353.4		67.00	,	29.77	•
•	11.	•		•	80.3	•	59.3	·	3453.3		67.00		29.76	
•	12.	•	4.2	•		,	58.0	ï	3353.4		67.00		29.75	,
,	13.	•	3.5	•	83.0	•		•	3025.2		67.33	•	29.73	
•	14.	•	4.6	•	83.3	•	58.3	•	2474.7		67.67	•	29.72	
	15.	•	5.8	•	83.7	,	58.7	•			68.00	•	29.70	•
	16.	,	6.9		84.0	•	59.0	•	1780.8			•	29.69	•
•	17.	,	6.5	•	81.7	•	60.0	•	1188.0		67.67	,		•
•	18.		6.1	,	79.3	•	61.0	•	497.6		67.33	•	29.68	•
•	19.		5.8		77.0	•	62.0	•	0.0		67.00	•	29.67	•
•	20.	•	6.5	•	76.0	,	61.7	,	0.0	,	66.67	•	29.67	•
•		•	7.3	•	75.0		61.3		0.0	,	66.33		29.67	
•	21.	,		•	74.0		61.0		0.0	,	66.00		29.67	
•	55.	,	8.1	•	72.3	•	60.7		0.0		65.00	,	29.67	
•	23.	•	6.9	•	12.3	•	50.7							• •
•	• • • • • •	• • •		• • • •	•••••	• •	• • • • • • •	• •						

Figure 8.8 (Continued)

******** THE MONTHLY AVERAGE VALUES FROM 5/ 1/73 TO END OF DATA *******

1973		*DRY BULB * (DEG.F)		* SOLAR *RADIATION	*WET BULB * (DEG.F)	*ATM.PRESS* * PSIG *
MAY	* * 8.91	* 57.38	* * 47.16	* * 1378.4	* * 52.03	* * 29.54 *
JUNE	* 6.12	* 72.79	* * 62.67	* * 1662.2	* * 66.35	* * 29.64 *
JULY	* 6.43	* 76.14	* 63.78	* * 1884.9	* * 68.19	* 29.63 *
AUGUST	* 5.90	* 75.38	* 64.59	* 1539.1	* 68.37	* 29.67 *
SEPTEMBER	* 7.37	* 67.87	* 55.93 *	* 1291.5	* 60.89	* 29.71 *
1974	*****		•••••••	••••••	 •••••••••	."
MAY	* 8.61	63.47	# 46.71	* 1648.8	* 54.71	* 29.58 *
JUNE	* 7.59	70.60	* 57.27	* 1686.6	* 62.61	* 29.60 *
JULY	* 7.54	77.27	59.89	* 1763.9	* * 66.46	* 29.64 *
AUGUST	* 5.74	76.47	63.89	* 1377.3	* * 68.34	*
SEPTEMBER	* 7.46	64.24	55.62	* 1182.6	* * 59.29	*
1975	*		• • • • • • • •	R. • • • • • • • • • •	*	* *
MAY	* 6.65	64.74	55.96	* 1559.6	* * 59.57	* 29.61 *
JUNE	7.61	70.57	62.24	1636.9	65.36	* 29.67 *
JULY	* 6.84	75.01	66.34	1746.9	* 69.36	* 29.65 *
AUGUST	6.75	75.12	66.77	1507.4	69.63	*
SEPTEMBER	7.31	62.82	56.25	1157.0	58.99	* 29.76 *
		*		•	,	R #

Figure 8.8 (Continued)

** APPROXIMATELY 50 DAYS OF MET. DATA FOLLOW. DATA AREPUNCHED 2 HOURS TO A **** CARD BEGINNING WITH HOUR O ON 7. 3.72. THE FORMAT FOR THE DATA IS 13,2(****3F5.1,F6.1,F4.2,F4 .0)WHERE FIELD 1 IS THE CARD NUMBER AND THE FOLLOWING RIABLE SEQUENCE IS REPEATED: WIND SPEED, DRY BULB, DEWPOINT, SOLAR RA D-***IATION, CLOUD COVER, AND RELATIVE HUMIDITY 3.5 72.0 66.0 0.0 68.00 29.58 0.0 68.67 29.59 5.0 74.0 65.7 29.57 29.57 5.0 72.0 66.0 0.0 68.00 0.0 68.00 4.2 72.0 66.0 5.4 73.3 66.7 247.5 29.56 69.00 5.8 72.0 66.0 0.0 68.00 29.56 4.6 76.0 68.01788.6 4.6 80.7 70.72556.1 71.00 29.56 29.56 5.0 74.7 67.3 947.6 70.00 73.67 29.55 4.6 78.3 69.32296.4 72.33 29.55 7.7 84.7 71.32725.0 29.53 4.6 83.0 72.02522.9 75.00 29.54 75.33 29.52 13.8 88.0 70.02725.0 76.00 29.51 10.7 86.3 70.72794.0 75.67 7 29.51 10.0 82.0 68.71772.2 73.33 29.52 74.67 11.9 85.0 69.32287.7 29.52 10.0 79.3 67.71042.2 71.67 29.53 8.1 79.0 68.01238.5 72.00 29.54 13.8 80.0 67.0 247.6 71.00 29.55 11.9 79.7 67.3 699.2 71.33 10 0.0 69.00 29.60 13.8 78.3 66.0 0.0 70.00 29.58 13.8 76.7 65.0 11 68.00 29.63 10.4 73.0 62.0 0.0 66.00 29.65 0.0 12 13.8 75.0 64.0 6.9 71.0 60.0 0.0 64.00 29.66 3.5 69.0 58.0 0.0 62.00 29.68 13 8.8 68.3 56.0 29.71 60.67 6.1 68.7 57.0 61.33 29.70 0.0 0.0 14 29.73 10.0 67.7 55.0 264.8 60.00 29.75 11.5 68.0 55.0 0.0 60.00 15 8.4 67.3 55.0 800.7 6.9 67.0 55.01290.6 60.00 29.79 60.00 29.77 16 8.4 69.3 55.31998.7 62.00 29.80 29.80 10.0 71.7 55.72699.8 61.00 17 29.81 29.81 10.0 74.7 55.73253.5 63.00 11.5 74.0 56.03310.8 63.00 18 29.81 6.9 76.0 55.02331.0 63.00 29.81 8.4 75.3 55.32910.2 63.00 19 29.80 63.33 7.7 78.0 54.32627.6 63.67 29.80 7.3 77.0 54.72627.5 50 6.9 78.0 53.71586.1 29.79 29.79 63.33 8.1 79.0 54.02337.9 64.00 21 4.6 76.0 53.0 244.1 29.78 62.00 5.8 77.0 53.3 862.5 29.78 62.67 22 4.2 74.7 55.0 29.78 3.8 73.3 57.0 0.0 63.33 29.79 62.67 0.0 53 29.79 29.79 4.6 71.0 57.3 0.0 62.67 72.0 59.0 0.0 64.00 24 3.5 29.79 0.0 60.00 5.8 70.0 55.7 61.33 29.79 6.9 69.0 54.0 0.0 25 29.79 29.79 4.6 63.7 54.0 0.0 58.00 5.8 66.3 54.0 0.0 59.00 26 5.4 60.3 53.0 123.6 56.33 29.80 29.79 3.5 61.0 54.0 0.0 57.00 27 7.3 59.7 52.0 392.2 29.82 29.81 9.2 59.0 51.0 660.7 55.00 55.67 28 11.5 59.7 53.01125.8 56.33 29.81 29 10.4 59.3 52.0 910.9 55.67 29.82 29.80 11.9 60.0 54.01394.4 57.00 57.00 29.81 30 12.7 60.0 54.01290.7 57.00 29.80 10.4 60.0 54.01394.4 57.00 29.79 11.1 60.0 54.01429.7 31 29.77 8.8 61.7 54.71290.7 59.00 58.00 29.78 7.3 63.3 55.31125.8 32 29.76 7.7 65.7 56.3 660.7 60.33 5.8 65.0 56.0 910.9 29.76 60.00 33 11.5 67.0 57.0 123.6 29.76 61.00 29.76 9.6 66.3 56.7 392.2 60.67 34 10.7 65.7 57.0 9.2 64.7 56.3 0.0 60.33 29.77 11.1 66.3 57.0 0.0 60.67 29.76 35 29.77 29.77 0.0 59.67 10.4 65.0 57.0 0.0 60.00 36 59.00 29.77 6.9 64.0 55.0 0.0 8.1 64.3 55.7 0.0 59.33 29.77 37 29.77 6.5 63.7 55.0 29.77 6.1 63.3 55.0 0.0 58.33 0.0 58.67 38 29.77 5.8 63.0 54.7 121.8 5.8 63.0 55.0 58.00 58.00 29.78 0.0 39 29.81 5.8 63.0 54.0 658.5 5.8 63.0 54.3 390.2 58.00 29.80 58.00 40 5.8 63.7 54.71123.3 58.67 29.83 5.8 63.3 54.3 908.6 29.82 41 50.33 29.84 5.8 65.3 54.71391.7 59.33 29.84 5.8 64.0 55.01288.1 59.00 42 5.8 66.7 54.31427.0 5.8 68.0 54.01391.7 60.00 29.84 59.67 29.84 43 29.83 5.0 70.0 54.01642.6 5.4 69.0 54.01596.4 29.83 60.67 60.33 44 29.82 4.6 70.3 55.71162.7 61.67 29.82 4.6 71.0 54.01516.0 61.00 45 4.6 69.7 57.3 725.1 29.82 29.82 4.6 69.0 59.0 237.2 63.00 62.33 46 29.84 4.2 67.3 58.0 29.83 3.8 65.7 57.0 0.0 60.33 0.0 61.67 47/ 59.00 29.85 3.5 64.0 56.0 59.00 29.85 3.5 63.3 56.3 0.0 0.0 48 0.0 3.5 62.0 57.0 59.00 29.85 29.85 49 3.5 62.7 56.7 0.0 59.00 3.5 60.0 55.0 29.86 58.00 29.85 0.0 57.00 50 3.5 61.0 56.0 0.0 4.6 59.7 54.7 294.5 3.5 59.0 54.0 0.0 56.00 29.86 56.67 29.87 51 29.90 6.9 61.0 56.0 656.3 5.8 60.3 55.3 721.4 58.00 57.33 29.89 52 6.9 67.0 58.72452.9 62.00 29.91 6.9 64.0 57.31512.0 29.90 60.00 53 6.1 72.0 59.03234.5 29.90 64.00 29.91 64.00 54 6.9 70.0 60.03290.5 4.6 76.0 57.02317.4 64.00 64.00 29.87 5.4 74.0 58.02893.5 29.88 55 4.6 76.3 56.32269.4 4.6 76.7 55.72082.8 64.00 29.85 64.00 29.86 56 64.00 5.0 76.0 56.01277.9 29.84 29.84 4.6 77.0 55.01764.5 64.00

Figure 8,8 (Continued)

5.4 75.0 57.0 755.9 64.00 29.85 5.8 74.0 58.0 233.8 58 29.85 64.00 3.8 71.7 57.7 0.0 63.00 29.85 1.9 69.3 57.3 0.0 62.00 29.85 60 0.0 67.0 57.0 0.0 61.00 29.85 1.2 66.3 57.0 60.67 29.85 0.0 2.3 65.7 57.0 0.0 60.33 29.86 3.5 65.0 57.0 61 0.0 60.00 29.86 3.5 63.7 56.3 59.33 62 0.0 29.86 3.5 62.3 55.7 0.0 58.67 29.87 63 3.5 61.0 55.0 0.0 58.00 29.87 3.8 62.0 56.3 337.0 59.00 29.88 4.2 63.0 57.71090.6 64 60.00 29.88 4.6 64.0 59.01820.2 61.00 29.89 4.6 66.7 59.72603.8 4.6 65.3 59.32356.4 65 61.67 29,89 62.33 29.89 29.89 4.6 70.7 59.02575.7 4.6 68.0 60.02497.3 63.00 29.88 66 63.33 4.6 73.3 58.02509.3 29.86 4.6 76.0 57.02312.6 67 63.67 64.00 29.85 7.3 74.0 58.02140.0 29.85 10.0 72.0 59.01865.6 68 64.00 64.00 29.86 69 12.7 70.0 60.01507.9 29.86 10.7 70.0 59.71215.5 64.00 63.67 29.86 70 8.8 70.0 59.3 784.6 63.33 29.86 6.9 70.0 59.0 258.9 63.00 29.86 5.8 68.3 59.0 3.5 65.0 59.0 4.6 66.7 59.0 71 0.0 62.33 29.87 0.0 61.67 29.88 29.89 2.3 64.0 58.0 72 0.0 61.00 0.0 60.00 29.89 1.2 63.0 57.0 0.0 62.0 56.0 59.00 29.90 73 0.0 58.00 29.90 0.0 1.5 61.7 56.3 29.89 3.1 61.3 56.7 74 0.0 58.33 58.67 29.89 0.0 4.6 61.0 57.0 59.33 75 0.0 59.00 29.88 4.6 61.3 57.3 116.5 29.89 4.6 61.7 57.7 384.1 76 59.67 29.90 4.6 62.0 58.0 651.8 60.00 29.91 5.0 64.0 59.3 901.2 29.91 77 61.33 5.4 66.0 60.71115.3 62.67 29.92 29.92 8.1 70.7 63.71714.0 29.89 12.7 76.0 67.02307.6 29.87 11.9 79.3 67.01382.3 78 5.8 68.0 62.01279.7 64.00 66.00 29.91 79 10.4 73.3 65.32073.8 68.00 70.00 29.88 12.3 77.7 67.01871.2 80 70.67 71.33 29.85 81 11.5 81.0 67.0 901.2 29.84 10.7 80.0 65.3 881.7 72.00 29.83 70.67 82 10.0 79.0 63.7 641.0 69.33 29.83 9.2 78.0 62.0 226.8 68.00 29.82 29.83 10.7 75.3 64.7 83 10.0 76.7 63.3 0.0 68.33 0.0 29.83 68.67 84 11.5 74.0 66.0 69.00 29.84 10.0 73.7 65.7 0.0 0.0 68.67 29.84 6.9 73.0 65.0 0.0 8.4 73.3 65.3 0.0 68.33 29.84 A5 68.00 29.84 2.3 71.7 64.3 0.0 3.1 71.3 63.7 304.0 4.6 72.3 64.7 67.67 29.84 86 0.0 67.33 29.83 29.83 87 0.0 71.0 64.0 0.0 67.00 66.67 29.83 6.1 71.7 63.31071.9 29.83 9.2 72.0 63.01855.5 88 66.33 66.00 29.83 89 10.7 74.3 63.72567.4 67.33 29.83 12.3 76.7 64.33178.6 29.84 68.67 90 13.8 79.0 65.03647.7 70.00 29.84 13.8 81.3 65.73760.4 71.00 29.84 91 13.8 83.7 66.33295.5 29.83 13.8 86.0 67.02302.5 72.00 73.00 29.83 29.82 12.3 84.0 66.31378.8 92 13.0 85.0 66.71866.8 72.67 72.33 29.81 29.80 11.9 81.7 66.0 649.4 29.81 12.7 79.0 66.0 114.7 29.83 10.4 78.3 65.3 0.0 93 11.5 83.0 66.0 898.6 72.00 29.81 71.33 94 12.3 80.3 66.0 382.1 11.5 78.7 65.7 0.0 70.67 70.00 29.82 95 70.00 70.00 29.85 9.2 78.0 65.0 29.86 10.0 77.3 64.7 96 0.0 70.00 0.0 69.33 29.87 97 10.7 76.7 64.3 0.0 68.67 29.87 11.5 76.0 64.0 0.0 29.88 68.00 98 7.7 74.7 63.7 0.0 67.33 29.88 3.8 73.3 63.3 29.88 0.0 66.67 99 0.0 72.0 63.0 0.0 66.00 29.88 0.0 73.0 64.0 322.5 67.00 29.89 68.00 100 0.0 74.0 65.01085.6 29.91 0.0 75.0 66.01848.7 69.00 29.92 3.8 79.7 68.73170.4 6.5 84.0 69.33888.1 1.9 77.3 67.32559.8 29.92 101 70.67 72.33 29.92 5.8 82.0 70.03639.0 102 74.00 29.92 74.00 29.92 8.1 88.0 68.03524.4 7.3 86.0 68.73847.5 29.91 103 74.00 74.00 29.91 8.4 88.7 68.73123.9 74.67 29.90 104 8.8 89.3 69.32584.2 75.33 29.89 105 9.2 90.0 70.01960.8 76.00 29.88 8.1 89.0 70.31506.9 76.00 29.88 6.9 88.0 70.7 931.9 76.00 29.87 106 5.8 87.0 71.0 289.0 76.00 29.87 6.1 85.3 67.3 0.0 73.33 29.88 107 6.5 83.7 63.7 70.67 0.0 29.89 108 6.9 82.0 60.0 0.0 68.00 29.90 6.1 80.0 62.7 0.0 69.00 29.90 4.6 76.0 68.0 5.4 74.7 66.7 109 5.4 78.0 65.3 0.0 70.00 29.91 0.0 71.00 29.91 5.0 75.3 67.3 110 70.33 29.90 0.0 0.0 69.67 29.90 5.8 74.0 66.0 111 69.00 29.89 5.0 74.3 66.7 315.3 0.0 69.33 29.89 4.2 74.7 67.31051.5 69.67 29.90 3.5 75.0 68.01734.0 112 70.00 29.90 113 4.2 76.7 69.02240.6 71.33 29.90 5.0 78.3 70.02502.0 72.67 29.89 5.8 80.0 71.02473.8 29.89 114 74.00 5.4 81.3 70.72552.5 74.00 29.88 5.0 82.7 70.32486.9 115 74.00 29.86 4.6 84.0 70.02291.7 74.00 29.85 6.1 84.7 68.71371.6 116 5.4 84.3 69.31857.8 73.67 29.83 73.33 29.81 6.9 85.0 68.0 893.2 6.9 84.0 68.3 798.9 117 73.00 29.79 73.00 29.78 6.9 83.0 68.7 552.5 118 73.00 29.78 6.9 82.0 69.0 185.3 73.00 29.77

Figure 8.8 (Continued)

								ER 93334 4	44 47	29.49
428	11.1	79.3	58.32422.5	66.33		11.9	00.7	57.72221.6	66.67	29.48
429	12.7	0.58	57.01839.1	67.00	29.49			59.01329.4	67.00	
430	4.2	76.7	61.0 677.3	67.00	29.48			63.0 0.0	67.00	29.47
431			62.7 0.0	66.67	29.48		74.0		66.33	29.49
432			62.0 0.0	66.00	29.50	4.6	72.7	62.3 0.0	66.00	29.50
433				66.00	29.49	0.0	70.0	63.0 0.0	66.00	29.49
-			62.7 0.0	65.00	29.48			62.3 0.0	64.00	29.47
434			02.07	63.00	29.46			63.0 0.0	64.00	29.47
435					29.48			65.0 695.4	66.00	29.49
436			64.0 500.9	65.00					69.33	29.49
437			65.71196.3	67.67	29.49			66.31725.3		29.49
438			67.02222.5	71.00				66.02197.5	71.00	
			65.02006.1	71.00				64.01683.8	71.00	29.48
440	15.3	84.0	62.31904.5	70.00				60.71902.8	69.00	29.51
441	13.8	82.0	59.01670.3	68.00	29.52	13.0	78.7	56.71162.0	65.33	29.55
			54.3 574.2	62.67	29.58	11.5	72.0	52.0 0.0	60.00	29.61
	10.7			59.33	29.64	10.0	66.7	52.7 0.0	58.67	29.67
444			53.0 0.0	58.00	29.70			52.7 0.0	57.33	29.71
445			52.3 0.0	56.67	29.73			52.0 0.0	56.00	29.74
			51.7 0.0	55.67	29.75			51.3 0.0	55.33	29.76
446				55.00	29.77			51.0 0.0	55.00	29.79
447						-			55.00	29.82
448			51.0 687.4	55.00	29.80			51.01443.9		29.84
449	10.0	63.0	50.02151.1	55.67	29.83	10.7	95.0	49.02758.4	56.33	
			48.03224.3	57.00				47.33448.3	57.33	29.85
			46.73427.9	57.67				46.03172.1	58.00	29.84
452	11.5	72.7		58.33				46.02383.4	58.67	29.84
453	11.5	74.0	46.01813.3	59.00	29.84			47.01348.3	59.00	29.84
454	6.1	72.0	48.0 677.0	59.00	29.84			49.0 0.0	59.00	29.84
455			49.3 0.0	57.33	29.85	1.2	63.0	49.7 0.0	55.67	29.87
456			50.0 0.0	54.00	29.88	0.0	58.0	49.7 0.0	53.33	29.89
457	0.0	57.0	49.3 0.0	52.67	29.90	0.0	56.0	49.0 0.0	52.00	29.91
458			48.3 0.0	51.00	29.91	0.0	53.3	47.7 0.0	50.00	29.91
459			47.0 0.0	49.00	29.91			48.3 0.0	50.33	29.92
460			49.7 604.2	51.67	29.94			51.01101.5	53.00	29.95
461			52.01926.0	55.00	29.94			53.02688.8	57.00	29.94
			54.03229.5	59.00	29.93			53.33483.5	60.00	29.91
462	7.5	77 0	52.73457.2	61.00	29.88			52.03157.7	62.00	29.86
463			53.02893.6	62.67	29.84			54.02473.5	63.33	29.83
464				64.00	29.81			55.31353.8	63.67	29.80
465			55.01926.0		29.79				63.00	29.78
466			55.7 656.8	63.33				56.7 0.0	62.33	29.78
467			56.3 0.0	62.67	29.78					29.78
468			57.0 0.0	62.00	29.78			57.0 0.0	61.67	29.78
469			57.0 0.0	61.33	29.78			57.0 0.0	61.00	
470			57.3 0.0 58.0 0.0	61.00	29.77			57.7 0.0	61.00	29.75
471				61.00	29.74	0.0	66.0	58.3 0.0	61.33	29.75
472			58.7 407.3	61.67	29.75		66.0	59.0 497.9	62.00	29.76
473	0.0	66.0	59.7 746.9	62.33	29.76			60.3 960.6	62.67	29.77
474	0.0	66.0	61.01124.7	63.00	29.77			62.31521.7	64.67	29.76
475	3.1	71.3	63.71846.8	66.33	29.75			65.02048.7	68.00	29.74
476			66.31762.9	69.33	29.72	5.4	77.3	67.71404.7	70.67	29.70
477			69.01010.4	72.00	29.68	3.8	79.0	68.3 673.6	71.67	29.67
478			67.7 312.1	71.33	29.67	0.0	79.0	67.0 0.0	71.00	29.66
479			67.3 0.0	70.67	29.68	3.8	76.3	67.7 0.0	70.33	29.70
480	-		68.0 0.0	70.00	29.72			67.7 0.0	69.67	29.71
481			67.3 0.0	69.33	29.71			67.0 0.0	69.00	29.70
482			67.0 0.0	68.67	29.70			67.0 0.0	68.33	29.70
			67.0 0.0	68.00	29.70			67.0 0.0	68.00	29.71
483	V • U	71.0	67.0 225.4	68.00	29.71			67.0 492.5	68.00	29.72
484				68.67	29.72			67.02090.1	69.33	29.73
485			67.01236.9		29.73		77 2	67.32924.2	71.00	29.73
486			67.02864.6	70.00				68.02379.5	73.00	29.72
487			67.72751.5	72.00	29.72			65.32395.6	71.67	29.70
488			66.72529.7	72.33	29.71			62.71370.5	70.00	29.69
489	9.2	85.0	64.01994.1	71.00	29.69	1.1	03.1	9501131003	, , , , ,	G 7 6 U 7

Figure 8.8 (Continued)

```
29.69
     6.1 82.3 61.3 639.9
                           69.00
                                   29.69
                                           4.6 81.0 60.0
                                                            0.0
                                                                 68.00
490
                           67.00
                                   29.70
                                           3.8 73.0 62.0
                                                            0.0
                                                                 66.00
                                                                         29.72
                      0.0
     4.2 77.0 61.0
                                           2.3 68.3 62.7
                                                                         29.73
                      0.0.65.00
                                   29.73
                                                            0.0
                                                                 64.67
     3.5 69.0 63.0
492
                      0.0
                            64.33
                                   29.73
                                           0.0 67.0 62.0
                                                            0.0
                                                                 64.00
                                                                         29.73
     1.2 67.7 62.3
493
                                                                         29.72
                                                            0.0
                                                                 64.67
                      0.0
                            64.33
                                   29.72
                                           3.1 67.0 63.3
494
     1.5 67.0 62.7
                            65.00
                                   29.71
                                           5.4 67.0 64.3
                                                            0.0
                                                                 65.33
                                                                         29.72
     4.6 67.0 64.0
                      0.0
495
                                   29.72
                                           6.9 67.0 65.01391.5
     6.1 67.0 64.7 628.9
                                                                         29.73
                            65.67
                                                                 66.00
496
                                                                 69.33
                                                                         29.73
                                   29.73
                                           6.9 75.7 66.32641.8
     6.9 71.3 65.72088.5
                           67.67
497
                                   29.73
     6.9 80.0 67.02994.5
                           71.00
                                          6.9 82.7 66.32983.1
                                                                 71.67
                                                                         29.71
498
                                          6.9 88.0 65.02029.4
                                                                 73.00
     6.9 85.3 65.72643.1
                           72.33
                                   29.70
                                                                         29.68
499
                                   29.67 10.0 89.3 64.32516.5
                                                                 73.00
                                                                         29.65
                           73.00
500
     8.4 88.7 64.72516.7
                           73.00
                                          9.2 87.3 64.01291.0
                                                                 72.00
                                   29.64
                                                                        29.63
501 11.5 90.0 64.02088.5
                                          4.6 82.0 64.0
     6.9 84.7 64.0 497.6
                           71.00
                                   29.63
                                                          0.0
                                                                 70.00
                                                                        29.62
502
                           69.67
                                   29.62
                                          7.7 78.0 64.7
                                                            0.0
                                                                 69.33
                                                                         29.61
503
     6.1 80.0 64.3
                      0.0
     9.2 76.0 65.0
                                          8.4 75.3 64.3
                                                                 68.33
                      0.0
                           69.00
                                   29.61
                                                           0.0
                                                                         29.61
504
                                          6.9 74.0 63.0
                                                                        29.62
                                                                 67.00
                           67.67
                                   29.62
                                                           0.0
505
     7.7 74.7 63.7
                      0.0
                                   29.62
                                          8.4 74.7 64.3
                                                                         29.63
     7.7 74.3 63.7
                           67.67
                                                            0.0
                                                                 68.33
                      0.0
506
     9.2 75.0 65.0
                      0.0
                           69.00
                                   29.63 10.0 72.7 62.0
                                                            0.0
                                                                 66.33
                                                                         29.67
507
                                                                 61.00
                                   29.71 11.5 68.0 56.0 651.5
                                                                         29.75
508 10.7 70.3 59.0 266.2
                           63.67
                                   29.77 13.0 72.0 54.02367.0
                                                                 61.67
                                                                         29.79
                           61.33
509 12.3 70.0 55.01483.4
                                   29.81 13.8 75.7 52.73395.7
510 13.8 74.0 53.03081.7
                           62.00
                                                                 62.33
                                                                         29.81
                                   29.82 13.8 79.0 52.03435.7
                                                                         29.82
511 13.8 77.3 52.33517.4
                           62.67
                                                                 63.00
                                   29.82 12.3 77.7 52.02366.9
                                                                        29.83
512 13.0 78.3 52.03017.8
                                                                 62.33
                           62.67
                                   29.83 10.0 75.0 51.31053.9
                                                                 61.00
513 11.5 77.0 52.01598.0
                           62.00
                                                                        29.84
                                   29.86
                                          6.9 71.0 50.0
                                                                 59.00
                                                                         29.87
     8.4 73.0 50.7 470.1
                           60.00
                                                           0.0
514
                                          2.3 65.0 52.0
                                                                         29.89
     4.6 68.0 51.0
                      0.0
                           58.33
                                   29.88
                                                           0.0
                                                                 57.67
515
                                                                         29.91
                                   29.90
                                          0.0 61.3 53.0
     0.0 62.0 53.0
                      0.0
                           57.00
                                                           0.0
                                                                 56.67
516
     0.0 60.7 53.0
                           56.33
                                   29.91
                                          0.0 60.0 53.0
                                                           0.0
                                                                 56.00
                                                                         29.92
                      0.0
517
                                          0.0 59.3 53.0
0.0 60.0 54.0
                           56.00
                                   29.92
                                                                 56.00
                                                                         29.93
     0.0 59.7 53.0
                      0.0
                                                           0.0
518
                                                                         29.94
     0.0 59.0 53.0
                                   29.93
                                                                 56.67
519
                      0.0
                           56.00
                                                           0.0
     0.0 61.0 55.0 582.9
                                   29.96
                                          0.0 62.0 56.01280.6
                                                                 58.00
                                                                        29.97
                           57.33
520
     2.7 64.7 56.01889.1
                           59.33
                                   29.96
                                          5.4 67.3 56.02352.4
                                                                 60.67
                                                                         29.96
152
                                          7.7 70.7 54.02636.0
     8.1 70.0 56.02635.8
                           62.00
                                   29.95
                                                                 61.33
                                                                         29.93
522
                                                                         29.89
                                          6.9 72.0 50.02009.7
                                                                 60.00
     7.3 71.3 52.02413.5
                                   29.91
                           60.67
523
                                   29.87
                                          9.2 74.7 50.71564.8
                                                                 60.67
                                                                         29.84
     8.1 73.3 50.31838.0
                           60.33
524
                                          9.2 74.0 51.0 794.3
6.9 70.0 51.0 0.0
8.4 68.7 51.0 0.0
525 10.4 76.0 51.01208.9
                                   29.82
                                                                 60.33
                                                                         29.81
                           61.00
     8.1 72.0 51.0 349.5
                           59.67
                                   29.80
                                                                 59.00
                                                                         29.79
526
                                   29.80
                                                                         29.80
                                                                 58.33
     7.7 69.3 51.0
                     0.0
                           58.67
527
     9.2 68.0 51.0
                                          9.2 67.0 52.3
                                                           0.0
                           58.00
                                   29.81
                                                                 58.33
                                                                         29.79
                      0.0
528
     9.2 66.0 53.7
                      0.0
                           58.67
                                   29.76
                                          9.2 65.0 55.0
                                                            0.0
                                                                 59.00
                                                                         29.74
529
                                   29.72
                                          7.7 63.7 56.3
                                                                 59.00
                                                                         29.71
     8.4 64.3 55.7
                           59.00
                                                           0.0
530
                      0.0
                                                                 59.67
                           59.00
                                   29.69
                                          4.6 63.3 57.7
                                                           0.0
                                                                         29.69
     6.9 63.0 57.0
                      0.0
531
                                          0.0 64.0 59.0 470.5
4.6 64.7 59.7 932.0
     2.3 63.7 58.3 204.1
                           60.33
                                  29.68
                                                                 61.00
                                                                        29.68
532
                                                                 61.67
                                                                         29.67
     2.3 64.3 59.3 718.8
                           61.33
                                   29.68
533
                                          4.6 65.3 61.01198.4
     6.9 65.0 60.01095.6
                           62.00
                                   29.67
                                                                 62.67
                                                                        29.66
534
                                                                        29.64
                                          0.0 66.0 63.01198.4
     2.3 65.7 62.01233.5
                           63.33
                                   29.65
                                                                 64.00
535
                                          0.0 67.3 63.0 932.0
                           64.33
                                   29.63
                                                                 64.67
                                                                        29.61
     0.0 66.7 63.01095.6
536
                                   29.60
                                          1.9 67.3 63.3 470.5
                                                                 65.00
                                                                        29.60
                           65.00
     0.0 68.0 63.0 718.8
537
                                                                        29.60
                                                                 65.00
     3.8 66.7 63.7 204.1
                           65.00
                                   29.60
                                          5.8 66.0 64.0
                                                           0.0
538
                                                                        29.60
                                          6.5 65.3 63.3
                                                                 64.33
     6.1 65.7 63.7
                      0.0
                                   29.60
                                                           0.0
                           64.67
539
                           64.00
                                   29.60
                                          4.6 65.0 62.7
                                                           0.0
                                                                 63.67
                                                                        29.60
                      0.0
540
     6.9 65.0 63.0
                                          0.0 65.0 62.0
                      0.0
                           63.33
                                   29.60
                                                            0.0
                                                                 63.00
                                                                        29.60
     2.3 65.0 62.3
541
                           63.00
                                   29.59
                                          0.0 65.0 62.0
                                                            0.0
                                                                 63.00
                                                                        29.59
542
     0.0 65.0 62.0
                      0.0
                                   29.58
                                          0.0 65.3 62.3
                                                            0.0
                                                                 63.33
                                                                        29.59
                      0.0
                           63.00
543
     0.0 65.0 62.0
                                   29.59
                                          0.0 66.0 63.0 465.0
                                                                 64.00
                                                                        29.60
     0.0 65.7 62.7 198.7
                           63,67
544
     0.0 67.7 63.7 713.1
                                  29.60
                                          0.0 69.3 64.3 926.1
                                                                 66.00
                                                                        29.61
                           65.00
545
                                          2.3 74.3 66.72105.1
     0.0 71.0 65.01089.6
                           67.00
                                   29.61
                                                                 69.00
                                                                         29.59
546
                                   29.58
                                          6.9 81.0 70.03207.4
                                                                 73.00
                                                                        29.56
                           71.00
547
     4.6 77.7 68.32858.5
                                          9.2 85.7 71.32628.8
                           74.33
                                   29.54
                                                                 75.67
                                                                         29.52
     8.1 83.3 70.73032.2
548
549 10.4 88.0 72.02037.4
                                   29.50
                                          8.8 86.3 72.01313.2
                                                                 76.33
                                                                         29.50
                           77.00
                                          5.8 83.0 72.0
                           75.67
                                   29.51
                                                            0.0
                                                                 75.00
                                                                         29.51
     7.3 84.7 72.0 541.6
550
                                          5.0 79.7 70.0
                                   29.52
                                                            0.0
                                                                 73.00
                                                                        29.52
     5.4 81.3 71.0
                     0.0
                           74.00
551
```

Figure 8.8 (Continued)

4.6 76.3 68.3 0.0 71.00 29.54 29.53 4.6 78.0 69.0 72.00 0.0 552 0.0 69.00 29.56 70.00 29.55 4.6 73.0 67.0 0.0 4.6 74.7 67.7 553 0.0 65.00 29.57 67.00 29.57 1.5 67.7 63.7 0.0 3.1 70.3 65.3 554 0.0 64.33 29.60 29.58 2.7 67.7 62.7 0.0 65.0 62.0 0.0 63.00 555 8.1 73.0 64.01278.5 29.64 29.62 67.00 5.4 70.3 63.3 546.1 65.67 556 29.66 64.02439.2 69.00 68.00 77.7 7.7 75.3 64.01927.5 29.65 7.3 557 62.32681.8 69.33 29.66 6.9 80.0 64.02773.9 29.67 7.7 80.7 70.00 558 9.2 82.0 59.01604.8 29.65 68.00 8.4 81.3 60.72269.5 68.67 29.66 559 5.4 84.0 61.71791.8 70.00 29.62 29.64 7.3 83.0 60.31807.9 69.00 560 3.8 83.3 61.31176.1 69.33 29.62 29.61 3.5 85.0 63.01548.0 71.00 561 29.63 66.00 29.62 4.6 80.0 58.0 0.0 4.2 81.7 59.7 538.1 67.67 562 0.0 64.00 29.67 4.6 71.3 59.3 29.65 4.6 75.7 58.7 0.0 65.00 563 3.1 65.3 59.3 0.0 62.00 29.70 29.69 63.00 4.6 67.0 60.0 0.0 564 29.71 0.0 62.0 58.0 0.0 60.00 29.72 0.0 61.00 1.5 63.7 58.7 565 29.73 58.57 3.8 60.7 57.3 0.0 29.72 1.9 61.3 57.7 0.0 59.33 566 59.00 29.74 29.73 0.0 0.0 5.4 61.0 57.7 58.00 5.8 60.0 57.0 567 4.6 63.0 59.01296.6 29.77 61.00 5.0 62.0 58.3 537.2 60.00 29.76 568 4.6 71.7 57.72612.0 63.00 29.78 29.77 4.6 67.3 58.32004.3 62.00 569 29.77 65.00 6.9 78.0 57.03371.5 64.00 29.78 4.6 76.0 57.03078.4 570 67.00 29.74 11.5 82.0 57.03371.5 66.00 9.2 80.0 57.03471.5 29.75 571 8.4 83.3 54.32612.0 65.67 29.73 572 10.0 82.7 55.73078.4 66.33 29.74 6.1 82.3 53.01296.6 29.73 6.9 84.0 53.02004.3 29.73 64.67 65.00 573 29.74 4.6 79.0 53.0 0.0 64.00 29.74 5.4 80.7 53.0 537.2 64.33 574 29.75 61.33 29.74 0.0 62.67 1.5 69.7 55.0 3.1 74.3 54.0 0.0 575 59.33 29.76 0.0 0.0 64.0 55.7 0.0 65.0 56.0 0.0 60.00 29.75 576 58.00 29.77 0.0 62.0 55.0 0.0 0.0 63.0 55.3 58.67 29.76 0.0 577 29.77 0.0 60.0 54.3 0.0 56.67 29.77 57.33 0.0 61.0 54.7 0.0 578 57.00 0.0 29.78 0.0 59.7 55.0 56.00 29.77 54.0 0.0 0.0 59.0 579 0.0 61.0 57.01280.5 29.80 59.00 0.0 60.3 56.0 521.7 58.00 29.79 580 3.8 70.3 60.32594.6 29.79 64.33 29.79 1.9 65.7 58.71987.5 61.67 581 29.77 67.00 29.78 5.0 77.7 60.73353.4 5.8 75.0 62.03060.5 67.00 582 67.00 29.75 3.5 83.0 58.03353.4 67.00 29.76 4.2 80.3 59.33453.3 583 5.8 83.7 58.72474.7 29.72 29.73 67.67 4.6 83.3 58.33025.2 67.33 584 29.69 6.5 81.7 60.01188.0 67.67 29.70 6.9 84.0 59.01780.8 68.00 585 29.67 0.0 67.00 5.8 77.0 62.0 29.68 6.1 79.3 61.0 497.6 67.33 586 66.33 29.67 0.0 29.67 7.3 75.0 61.3 0.0 66.67 76.0 61.7 587 6.5 29.67 6.9 72.3 60.7 0.0 65.00 29.67 8.1 74.0 61.0 0.0 66.00 588

Figure 8.8 (Continued)

The input for run 2 is also shown in Figure 8.9. The parameter IMET = 1 specifies that the fixed values are used for meteorology for the run, namely $TA \pm 90$, TW = 70, TD = 60.1, W = 3, and HS = 1500. The parameter ISPRAY = 1 specifies the regression model. IEVAP = 0 specifies that the pond remains full during the run. The parameter TSPRON = 200 specifies that the sprays are off until 200 hr into the run. Essentially, this allows the pond temperature to reach equilibrium before the effects of the sprays are felt, allowing a more-accurate prediction of the peak temperature attributable to heat load alone.

```
.40195127E-03
-.60637276E+00
                               .38449863E-02 .18230236E-02
-.34078270E-01
               .30138737E+00 -.25690451E+01
                                              .65576685E-01
                                             .12911864E-01
-.73791051E-03 .26319278E-05 .35669730E-02
-.39275022E-04 -.41450389E-01
                               .14646531E-03 -.33234415E-03
 .41560445E-03 -.12268707E-02
                               .11416664E-01 -.86122112E-01
 .28767122E-02 -.29725976E-04
                               .10168749E-06 -.27394599E-03
 .28406611E-04 .22034012E-05
SPARAM WID=183,ALEN=283,HT=12.0,THETA=71.0,VEL0=22.47,R=.095,
  Y0=5.0, WDR0=0, NDRIFT=6, DWDR=10, FDRIFT=.0005, .00058, .001914, .004346,
 .00789,.014330$
1176
SHFT NH=14.,TH=0...01,1.,1.1.1.9,3.9,5.,8.,12.,24.,29.,140.,840.,2000.,
 HEAT(1)=0.,0.,.85E9,2*.51E9,.5E9,.68E9,.6E9,.4E9,.31E9,.27E9,
   .21E9,.18E9,.1E9,FLOW=14*205200.0$
  EFFECTS OF DESIGN BASIS METEOROLOGY WITH STEADY HEAT LOAD-SPRAYS ON
SINLIST VZER0=2942357,A=422000,NSTEPS=2000,NPRINT=10,TZER0=80,
   IMET=0, ISPRAY=1, TSKIP=5000, Q1=0.23E9, F1=2.052E5, TSPRON=0.0, IEVAP=0$
  EFFECTS OF DESIGN BASIS HEAT LOAD ONLY
$INLIST VZER0=2942357.,A=422000.,NSTEPS=2000,NPRINT=10,TZER0=90,IMET=1,
   TSKIP=200,DT=.5,TA=90,TW=/0,TD=60.1,W=0,HS=1500,ISPRAY=1,IEVAP=0,
  TSPRON=200,01=0,F1=15
```

Figure 8.9 Input deck for program SPRND, procedure 1

The output from run 2 is shown printed in Figure 8.12 and plotted in Figure 8.13.

Run 3 would be set up after inspection of runs 1 and 2. The peak temperature for ambient meteorology and steady heat load occurred at 451.0 hr. The peak temperature for the design-basis heat load alone occurred at 213.0 hr, or 15.0 hr after the sprays were turned on. The parameter TSKIP should, therefore, be 451.0 hr - 13.0 hr = 438.0 hr.

The data input for run 3 is shown in Figure 8.14. The parameter TSPRON = 438.0 hr delays the sprays 438.0 hr. The parameters Q1 = 0.0 and F1 = 1.0 specify that the heat load and flowrate to the pond are 0 Btu/hr and $1 \text{ ft}^3/\text{hr}$ for times less than 438.0 hr. The parameter IMET = 0 specifies that the meteorological table is used for input. IEVAP = 1 specifies that the pond volume is allowed to change in response to water loss for times greater than 438.0 hr. The parameter ISPRAY = 2 specifies that the rigorous spray model is used.

```
SPRAY FIELD PARAMETERS
          *************
INITIAL VELOCITY OF DROPS LEAVING NOZZLE. VELO =
                                                 684.89 CM/SEC
                                       1.239 RADIANS
INITIAL ANGLE OF DROPS TO HOR., THETA =
                                      .0950 CM
GEOMETRIC MEAN RADIUS OF DROPS, R =
                             365.76 CM
HEIGHT OF SPRAY FIELD, HT =
WIDTH OF SPRAY FIELD, WID =
                             5577.8 CM
                               8625.8 CM
LENGTH OF SPRAY FIELD. ALEN =
HEIGHT OF SPRAY NOZZLES ABOVE POND SURFACE, YO =
                                                  152.4
                                       90.00 DEGREES
HEADING OF WIND W.R.T.LONG AXIS. PHI =
HOND PARAMETERS
             *********
                             2942357.0 CU.FT.
INITIAL POND VOLUME, VZERO =
POND SURFACE AREA, A = 422000.0 SQ.FT.
BLOWDOWN AND LEAKAGE, BLOW =
                              0.00 CU.FT./HR.
NUMBER OF INTEGRATION STEPS, NSTEPS = 2000
PRINT INTERVAL, NPRINT =
                              .50 HOURS
INTEGRATION TIMESTEP, DT =
INITIAL POND TEMPERATURE, TZERO = 80.00 DEG.F
DELAY FOR HEAT TABLE, TSKIP = 5000.00 HRS
```

BASE HEAT LOAD ADDED TO TABLE, GBASE = 0.00 HRS

BASE FLOW RATE ADDED TO TABLE .FBASE =

HEAT IN	• •	TIME FROM	•	FLOW IN :
BTU/HR	:	START	1	FT**3/HR :
10.	•	0.00	:	.205E+06
:0.	1	.01	•	.205E+06 :
.850E+09	:	1.00	8	.205E+06 :
: .510E+09	:	1.10	8	.205E+06 :
: .510E+09		1.90	•	. 90+350s.
: .500E+09	8	3.90	:	.205E+06 :
: .680E+09	:	5.00	•	.205E+06 :
: .600E+09	:	8.00	i	.205E+06 :
: .400E+09	:	12.00	•	.205E+06 :
: .310E+09	:	24.00	Ī	.205E+06
: .270E+09	I	29.00 140.00	•	.205E+06
: .210E+09	•	840.00	•	.205E+06
: .180E+09 : .100E+09	•	2000.00	:	.205E+06 :

CU.FT./HR.

```
FOR TIME LESS THAN TSKIP
Q1 = .230E+09 BTU/HR
F1 = .205E+06 FT**3/HR
```

Figure 8.10 Output from program SPRPND, effect of ambient meteorology and steady heat load

METEOROLOGICAL TABLE USED AS INPUT

REGRESSION EQUATIONS USED FOR SPRAY MODEL

SPRAYS WILL BE DELAYED 0.00 HOURS

******** MODEL RESULTS ********

TIMETEN	MPERATURE (F).	VOLUME, FT**3 :
	• • • • • • • • • • • • •	
5.00	80.58	.29423570E+07
10.00	82.48	.29423570E+07
15.00	84.21	.29423570E+07
20.00	83.76	.29423570E+07
25.00	82.27	.29423570E+07
30.00	80.57	.29423570E+07
35.00	80.35	.29423570E+07
40.00	81.02	.29423570E+07
45.00	80.92	.29423570E+07
50.00	80.29	.29423570E+07
55.00	79.26	.29423570E+07
60.00	77.43	.29423570E+07
65.00	77.21	.29423570E+07
70.00	76.45	.29423570E+07
75.00	76.27	.29423570E+07
80.00	76.53	.29423570E+07
85.00	77.21	.29423570E+07
90.00	78.04	.29423570E+07
95.00	78.22	.29423570E+07
100.00	78.14	.29423570E+07
105.00	78.26	.29423570E+07
110.00	79.78	.29423570E+07
115.00	80.45	.29423570E+07
120.00	80.28	.29423570E+07
125.00	79.77	.29423570E+07
130.00	80.28	.29423570E+07
135.00	81.01	.29423570E+07
140.00	80.31	.29423570E+07
145.00	79.97	.29423570E+07
150.00	79.59	.29423570E+07
155.00	79.82	.29423570E+07
160.00	80.66	.29423570E+07
165.00	80.78	.29423570E+07
170.00	80.71	.29423570E+07
175.00	81.15	.29423570E+07
180.00	81.95	.29423570E+07
185.00	82.56	.29423570E+07
-		

Figure 8.10 (Continued)

190.00	82.05	.29423570E+07
195.00	81.58	.29423570E+07
200.00	82.49	.29423570E+07
205.00	84.93	.29423570E+07
210.00	86.44	.29423570E+07
215.00	86.17	· ·
		.29423570E+07
220.00	85.40	.29423570E+07
225.00	85.54	.29423570E+07
230.00	86.79	.29423570E+07
235.00	86.92	.29423570E+07
240.00	86.13	.29423570E+07
245.00	85.28	
250.00		.29423570E+07
	84.92	.29423570E+07
255.00	85.88	.29423570E+07
260.00	84.09	.29423570E+07
265.00	82.87	.29423570E+07
270.00	82.51	.29423570E+07
275.00	84.23	.29423570E+07
280.00	85.54	.29423570E+07
285.00		
290.00	85.72	.29423570E+07
	85.18	.29423570E+07
295.00	84.90	.29423570E+07
300.00	86.40	.29423570E+07
305.00	87.24	.29423570E+07
310.00	86.33	.29423570E+07
315.00	85.60	.29423570E+07
320.00	85.85	.29423570E+07
325.00	87.22	
330.00	87.17	.29423570E+07
		.29423570E+07
335.00	86.62	.29423570E+07
340.00	86.13	.29423570E+07
345.00	85.78	.29423570E+07
350.00	87.40	.29423570E+07
355.00	87.78	.29423570E+07
360.00	87.33	.29423570E+07
365.00	86.63	.29423570E+07
370.00	87.05	.29423570E+07
375.00	88.70	
380.00		.29423570E+07
	89.38	.29423570E+07
385.00	88.90	.29423570E+07
390.00	88.23	.29423570E+07
395.00	89.42	.29423570E+07
400.00	91.39	.29423570E+07
405.00	91.36	.29423570E+07
410.00	90.52	.29423570E+07
415.00	89.55	.29423570E+07
420.00		
425.00	90.57	.29423570E+07
-	90.99	.29423570E+07
430.00	90.98	.29423570E+07
435.00	90.05	.29423570E+07
440.00	89.91	.29423570E+07
445.00	91.29	.29423570E+07
450.00	92.12	.29423570E+07
455.00	91.68	.29423570E+07
460.00	90.33	
	70.33	.29423570E+07

Figure 8.10 (Continued)

465.00	89.66	.29423570E+07
470.00	90.70	.29423570E+07
475.00	92.11	.29423570E+07
480.00	91.39	.29423570E+07
485.00	90.05	.29423570E+07
490.00	90.31	.29423570E+07
495.00	91.18	.29423570E+07
500.00	91.07	.29423570E+07
505.00	89.51	.29423570E+07
510.00	88.44	_29423570E+07
515.00	88.74	.29423570E+07
520.00	88.99	.29423570E+07
		- · · · · · · · · · · · · · · · · · · ·
525.00	88.08	.29423570E+07
530.00	87.27	.29423570E+07
535.00	86.77	.29423570E+07
540.00	86.70	.29423570E+07
545.00	86.32	.29423570E+07
550.00	84.34	.29423570E+07
555.00	81.94	.29423570E+07
	80.57	.29423570E+07
560.00		
565.00	80.21	.29423570E+07
570.00	79.80	.29423570E+07
575.00	79.82	.29423570E+07
580.00	80.08	.29423570E+07
585.00	80.51	.29423570E+07
590.00	81.21	.29423570E+07
595.00	81.62	.29423570E+07
		.29423570E+07
600.00	81.66	
605.00	81.38	.29423570E+07
610.00	81.90	.29423570E+07
615.00	82.72	.29423570E+07
620.00	81.93	.29423570E+07
625.00	81.32	.29423570E+07
630.00	80.46	.29423570E+07
635.00	80.39	.29423570E+07
640.00	81.45	.29423570E+07
	81.81	.29423570E+07
645.00		.29423570E+07
650.00	81.58	
655.00	81.16	.29423570E+07
660.00	81.41	.29423570E+07
665.00	81.71	.29423570E+07
670.00	81.85	.29423570E+07
675.00	81.38	.29423570E+07
680.00	81.41	.29423570E+07
	81.94	.29423570E+07
685.00		.29423570E+07
690.00	82.67	
695.00	82.95	.29423570E+07
700.00	82.48	.29423570E+07
705.00	82.36	.29423570E+07
710.00	83.71	.29423570E+07
715.00	84.40	.29423570E+07
	84.23	.29423570E+07
720.00		.29423570E+07
725.00	33.79	
730.00	84.51	.29423570E+07
735.00	85.48	.29423570E+07

Figure 8.10 (Continued)

740.00	85.28	.29423570E+07
745.00	84.68	.29423570E+07
750.00	84.30	.29423570E+07
755.00	84.74	.29423570E+07
760.00	86.18	.29423570E+07
765.00	86.39	.29423570E+07
770.00	85.88	.29423570E+07
775.00	85.05	.29423570E+07
780.00	84.19	.29423570E+07
785.00	82.30	.29423570E+07
790.00	80.78	
		.29423570E+07
795.00	80.07	.29423570E+07
800.00	79.65	.29423570E+07
805.00	80.32	.29423570E+07
810.00	81.21	.29423570E+07
815.00	80.95	
		.29423570E+07
820.00	80.53	.29423570E+07
825.00	80.48	.29423570E+07
830.00	81.46	.29423570E+07
835.00	82.01	.29423570E+07
840.00		
-	81.72	.29423570E+07
845.00	81.19	.29423570E+07
850.00	81.28	.29423570E+07
855.00	81.34	.29423570E+07
860.00	81.57	.29423570E+07
-		
865.00	81.53	.29423570E+07
870.00	81.60	.29423570E+07
875.00	82.51	.29423570E+07
880.00	82.31	.29423570E+07
	80.35	.29423570E+07
885.00		
890.00	79.35	.29423570E+07
895.00	78.06	.29423570E+07
900.00	77.47	.29423570E+07
905.00	77.17	.29423570E+07
910.00	77.32	.29423570E+07
915.00	77.63	.29423570E+07
920.00	78.00	.29423570E+07
925.00	79.18	.29423570E+07
930.00	79.76	.29423570E+07
935.00	78.91	.29423570E+07
940.00	79.11	.29423570E+07
945.00	79.64	.29423570E+07
950.00	80.83	.29423570E+07
955.00	82.21	.29423570E+07
		.29423570E+07
960.00	82.68	
965.00	82.98	.29423570E+07
970.00	83.65	.29423570E+07
975.00	85.00	.29423570E+07
980.00	84.90	.29423570E+07
985.00	83.97	.29423570E+07
990.00	83.14	.29423570E+07
995.00	83.81	.29423570E+07
1000.00	^5.17	.29423570E+07
· • · ·		

TSKIP = 5000.0 HOURS MAX MODELED TEMPERATURE = 92.17 AT 451.00 HOURS

Figure 8.10 (Continued)

Figure 8.11 Pond temperature in response to a steady heat load and ambient meteorology

The reliability of this estimate of the parameter ISKIP is questionable however, because of nonlinearities in the models that make the use of linear superposition strictly invalid. Therefore, a series of runs should be made varying TSTART over a range of 1 or 2 days. The results of this run will, therefore, not be shown, in favor of procedure 2 below.

8.6.2 Procedure 2

An alternative procedure for determining TSKIP is simply to vary this parameter over a wide range in a repetitive manner within the 50-day period of data and pick the value giving the highest pond temperature. This "brute force" approach is not particularly wasteful of computer time if the regression spray model is used for pond performance. The rigorous spray model may then be run for the value of TSKIP determined to give the highest pond temperature.

The input for the first run in procedure 2 is shown in Figure 8.15. The parameters IEVAP = 1 and IMET = 0 specify normal water loss and meteorological

EFFECTS OF DESIGN BASIS HEAT LOAD ONLY

SPRAY FIELD PARAMETERS ********** INITIAL VELOCITY OF DROPS LEAVING NOZZLE, VELO = 684.89 CM/SEC INITIAL ANGLE OF DROPS TO HOR., THETA = 1.239 RADIANS GEOMETRIC MEAN RADIUS OF DROPS, R = .0950 CM HEIGHT OF SPRAY FIELD, HT = 365.76 CM WIDTH OF SPRAY FIELD, WID = 5577.8 CM LENGTH OF SPRAY FIELD, ALEN = 8625.8 CM HEIGHT OF SPRAY NOZZLES ABOVE POND SURFACE, YO = 152.4 HEADING OF WIND W.R.T.LONG AXIS, PHI = 90.00 DEGREES

POND PARAMETERS

```
********
INITIAL POND VOLUME, VZERO =
                             2942357.0 CU.FT.
POND SURFACE AREA.A = 422000.0 SQ.FT.
BLOWDOWN AND LEAKAGE, BLOW =
                              0.00 CU.FT./HR.
NUMBER OF INTEGRATION STEPS, NSTEPS = 1600
PRINT INTERVAL, NPRINT = 10
INTEGRATION TIMESTEP, DT =
                              .50 HOURS
INITIAL POND TEMPERATURE, TZERO =
                               90.00 DEG.F
DELAY FOR HEAT TABLE, TSKIP =
                              200.00 HRS
BASE HEAT LOAD ADDED TO TABLE, GRASE =
                                        0.00 HRS
BASE FLOW RATE ADDED TO TABLE , FBASE =
                                      0.
                                                  CU.FT./HR.
```

HEAT IN	• • •	TIME FROM	• •	FLOW IN :
: BTU/HR	:	START	•	FT**3/HR :
• • • • • • • • • •	• • •	• • • • • • • • •	• •	
:0.	:	0.00	1	.205E+06 :
:0.	:	.01	:	.205E+06 :
: .850E+09	:	1.00	:	.205E+06 :
: .510E+09	:	1.10	:	.205E+06 :
: .510E+09	:	1.90	:	.205E+06 :
: .500E+09	:	3.90	1	.205E+06 :
: .680E+09	:	5.00	:	.205E+06 :
: .600E+09	:	8.00	2	.205E+06 :
: .400E+09	•	12.00	:	.205E+06 :
: .310E+09	:	24.00	2	.205E+06 :
: .270E+09	:	29.00	1	.205E+06 :
: .210E+09	1	140.00	:	.205E+06 :
: .180E+09	1	840.00	:	.205E+06 :
: .100E+09	:	2000.00	*	.205E+06 :

Figure 8.12 Output from program SPRND, effect of design-basis heat load and steady meteorology

FOR TIME LESS THAN TSKIP

Q1 = Q BTU/HR

F1 = .100E+01 FT++3/HR

FIXED METEOROLOGICAL VALUES USED AS INPUT

DRY BULB TEMPERATURE, TA = 90.00 DEG. F
WET BULB TEMPERATURE, TW = 70.00 DEG. F
WIND SPEED, W = 0.00MPH
DEW POINT TEMPERATURE, TD = 60.10 DEG. F
SOLAR RADIATION, HS = 1500.00 BTU/SQ.FT./DAY
3AROMETRIC PRESSURE, PB = 29.92 IN. HG.

REGRESSION EQUATIONS USED FOR SPRAY MOTEL

SPRAYS WILL BE DELAYED 200.00 HOURS

••••••••••

******** MODEL RESULTS *******

TIME	TEMPERATURE (F)	VOLUME
: HR		FT**3
•••••	••••••	
5.00	90.04	.29423570E+07
10.00	90.07	.29423570E+07
15.00	90.11	.29423570E+07
20.00	90.14	.29423570E+07
25.00	90.16	.29423570E+07
30.00	90.19	.29423570E+07
35.00	90.21	.29423570E+07
40.00	90.24	.29423570E+07
45.00	90.26	.29423570E+07
50.00	90.28	.29423570E+07
55.00	90.30	.29423570E+07
60.00	90.31	.29423570E+07
65.00	90.33	.29423570E+07
70.00	90.34	.29423570E+07
75.00	90.36	.29423570E+07
80.00	90.37	.29423570E+07
85.00	90.38	.29423570E+07
90.00	90.39	.29423570E+07
95.00	90.40	.29423570E+07
100.00	90.41	.29423570E+07
105.00	90.42	.29423570E+07
110.00	90.43	.29423570E+07
115.00	90.44	.29423570E+07
120.00	90.44	.29423570E+07
125.00	90.45	.29423570E+07

Figure 8.12 (Continued)

130.00	90.46	.29423570E+07
135.00	90.46	.29423570E+07
	90.47	.29423570E+07
140.00	90.47	.29423570E+07
145.00		.29423570E+07
150.00	90.48	
155.00	90.48	.29423570E+07
160.00	90.49	.29423570E+07
165.00	90.49	,29423570E+07
170.00	90.49	.29423570E+07
175.00	90.50	.29423570E+07
	90.50	.29423570E+07
180.00	90.50	.29423570E+07
185.00		.29423570E+07
190.00	90.50	
195.00	90.51	.29423570E+07
200.00	90.38	.29423570E+07
205.00	92.89	.29423570E+07
210.00	95.00	.29423570E+07
215.00	95.21	.29423570E+07
	94.96	.29423570E+07
220.00		.29423570E+07
225.00	94.55	.29423570E+07
230.00	93.96	
235.00	93.42	.29423570E+07
240.00	92.97	.29423570E+07
245.00	92.60	.29423570E+07
250.00	92.29	.29423570E+07
255.00	92.03	.29423570E+07
260.00	91.81	.29423570E+07
	91.62	.29423570E+07
265.00		.29423570E+07
270.00	91.46	
275.00	91.31	.29423570E+07
280.00	91.18	.29423570E+07
285.00	91.06	.29423570E+07
290.00	90.95	.29423570E+07
295.00	90.86	.29423570E+07
300.00	90.77	.29423570E+07
305.00	90.68	.29423570E+07
	90.60	.29423570E+07
310.00	90.53	.29423570E+07
315.00		.29423570E+07
320.00	90.46	.29423570E+07
325.00	90.39	
330.00	90.33	.29423570E+07
335.00	90.27	.29423570E+07
340.00	90.21	.29423570E+07
345.00	90.16	.29423570E+07
350.00	90.11	.29423570E+07
	90.07	.29423570E+07
355.00 340.00	90.04	.29423570E+07
360.00		.29423570E+07
365.00	90.01	- -
370.00	89.98	.29423570E+07
375.00	89.96	.29423570E+07
380.00	89.94	.29423570E+07
385.00	89.92	.29423570E+07
390.00	89.90	.29423570E+07
395.00	89.88	.29423570E+07
3736VV	****	-

Figure 8.12 (Continued)

400.00	89.86	.29423570E+07
405.00	89.84	-29423570E+07
410.00	89.82	.29423570E+07
415,00	89.81	.29423570E+07
420.00	89.79	.29423570E+07
425.00	89.78	.29423570E+07
430.00	89.76	.29423570E+07
435.00	89.75	.29423570E+07
440.00	89.73	.29423570E+07
445.00	89.72	.29423570E+07
450.00	89.71	.29423570E+07
455.00	89.69	.29423570E+07
460.00	89.68	.29423570E+07
465.00	89.67	.29423570E+07
470.00	89.65	.29423570E+07
475.00	89.64	.29423570E+07
480.00	89.63	.29423570E+07
485.00 490.00	89.62	.29423570E+07
495.00	89.61	.29423570E+07
500.00	89 . 59 89 . 58	.29423570E+07
505.00	89.57	.29423570E+07
510.00	89.56	.29423570E+07
515.00	89.55	.29423570E+07
520.00	89.54	.29423570E+07
525.00	89.53	.29423570E+07
530.00	89.52	.29423570E+07
535.00	89.51	.29423570E+07
540.00	89.50	.29423570E+07
545.00	89.49	.29423570E+07
550.00	89.48	.29423570E+07
555.00	89.47	.29423570E+07
560.00	89.46	.29423570E+07
565.00	89.45	.29423570E+07
570.00	89.44	.29423570E+07
575.00	89.44	.29423570E+07
580.00	89.43	.29423570E+07
585.00	89.42	.29423570E+07
590.00	89.41	.29423570E+07
595.00	89.40	.29423570E+07
600.00	89.39	.29423570E+07
605.00	89.38	.29423570E+07
610.00	89.38	.29423570E+07
615.00	89.37	.29423570E+07
620.00	89.36	.29423570E+07
625.00	89.35	.29423570E+07
630.00	89.35	.29423570E+07
635.00	89.34	.29423570E+07
640.00	89.33	.29423570E+07
645.00 650.00	89.32	.29423570E+07
655.00	89.31	.29423570E+07
660.00	89.31	.29423570E+07
665.00	89.30	-29423570E+07
203.00	89.29	.29423570E+07

Figure 8.12 (Continued)

670.00	89.29 89.28 89.27 89.27 89.26 89.25 89.25 89.23 89.23 89.21 89.21 89.19 89.19 89.18 89.18 89.17 89.18 89.17 89.18	.29423570E+07
675.00	89.28	.29423570E+07
680.00	89.27	.29423570E+07
685.00	89.27	.29423570E+07
690.00	89.26	.29423570E+07
695.00	89.25	.29423570E+07
700.00	89.25	.29423570E+07
705.00	89.24	.29423570E+07
710.00	89.23	.29423570E+07
715.00	89.23	.29423570E+07
720.00	89.22	.29423570E+07
725.00	89.21	.29423570E+07
730.00	89.21	.29423570E+07
735.00	89.20	.29423570E+07
740.00	89.19	.29423570E+07
745.00	89.19	.29423570E+07
750.00	89.18	.29423570E+07
755.00	89.18	.29423570E+07
760.00	89.17	.29423570E+07
765.00	89.16	.29423570E+07
770.00	89.16	.29423570E+07
775.00	89.15	.29423570E+07
780.00	89.15	.29423570E+07
785.00	89.14	.29423570E+07
790.00	89.14	.29423570E+07
795.00	89.13	.29423570E+07
800.00	89.12	29423570E+07

TSKIP = 200.0 HOURS MAX MODELED TEMPERATURE = 95.22 AT 213.00 HOURS

Figure 8.12 (Continued)

table input, respectively. The parameter ISPRAY = 1 specifies the regression spray performance model. The parameters ISPRON = 0, TSKIP = 0, NITER = 150, and DTITER = 5 specify that the program should iterate from TSKIP and TSPRON = 0 to 750 hr in 5-hr increments. The parameter NPRINT = 5000 effectively suppresses intermediate output so that only the temperature peak for each run is outputted.

The output for this run is shown printed in Figure 8.16 and plotted in Figure 8.17. From Figure 8.17, there appear to be two temperature peaks, each about 94.0°F. The first occurs at a value of TSKIP of about 425.0 hr and the second roughly 1 day later at a value of TSKIP of about 447.0 hr. The value of TSKIP determined from procedure 1 was 438.0 hr. For a value of TSKIP = 438.0 hr, the temperature peak from Figure 8.17 is about 93.7°F. Therefore, a relatively small error of about 0.3°F would be made by relying on the estimate on TSKIP from procedure 1.

Figure 8.13 Pond temperature in response to design-basis heat load and constant meteorology

The input for the second run of procedure 2 is shown set up in Figure 8.18 for the second peak at TSKIP = 447.0 hr, with ISPRAY = 2, which specifies the rigorous spray model. Output from this run is shown printed in Figure 8.19 and plotted in Figure 8.20. The peak temperature predicted is 93.91°F.

Also shown plotted in Figure 8.20 is the output from the run repeated with the regression spray model (ISPRAY = 1). The agreement between the rigorous and regression ISPRAY performance models is excellent, especially for the highest temperatures. The regression spray model predicts a slightly higher peak temperature of 93.97°F.

```
.40195127E-03
                                .38449863E-02
-_60637276E+00
                                               .18230236E-02
                .30138737E+00 -.25690451E+01
                                               .65576685E-01
-.34078270E-01
                                               .12911864E-01
-.73791051E-03
                .26319278E-05
                                .35669730E-02
-.39275022E-04 -.41450389E-01
                                .14646531E-03 -.33234415E-03
 .41560445E-03 -.12268707E-02
                                .11416664E-01 -.86122112E-01
 .28767122E-02 -.29725976E-04
                                .10168749E-06 -.27394599E-03
                .22034012E-05
 .28406611E-04
SPARAM WID=183,ALEN=283,HT=12.0,THETA=71.0,VEL0=22.47,R=.095,
  Y0=5.0,WDR0=0,NDRIFT=6,DWDR=10,FDRIFT=.0005,.00058,.001914,.004346,
 .00789,.0143303
1176
SHFT NH=14.,TH=0.,.01,1.,1.1,1.9,3.9,5.,8.,12.,24.,29.,140.,840.,2000.,
 HEAT(1)=0.,0.,.85E9,2*.51E9,.5E9,.68E9,.6E9,.4E9,.31E9,.27E9,
   .21E9,.18E9,.1E9,FLOW=14*205200.0$
        COMBINED RUN WITH RIGOROUS MODEL
SINLIST VZERO=2942357,A=422000,NSTEPS=1600,NPRINT=10,Q1=0,F1=1,IEVAP=1,
  DT=.5, IMET=0, ISPRAY=2.
 TSPRON= 438 . TSKIP= 438 3
```

Figure 8.14 Final run of program SPRPND, procedure 1

```
.38449863E-02
-.60637276E+00 .40195127E-03
                                               .18230236E-02
                                               .65576685E-01
                .30138737E+00 -.25690451E+01
-.34078270E-01
                                              .12911864E-01
                               .35669730E-02
-.73791051E-03 .26319278E-05
                                .14646531E-03 -.33234415E-03
-.39275022E-04 -.41450389E-01
                                .11416664E-01 -.86122112E-01
 .41560445E-03 -.12268707E-02
                                .10168749E-06 -.27394599E-03
 .28767122E-02 -.29725976E-04
 .28406611E-04
               .22034012E=05
$PARAM WID=183,ALEN=283,HT=12.0,THETA=71.0,VEL0=22.47,R=.095,
  Y0=5.0, WDR0=0, NDRIFT=6, DWDR=10, FDRIFT=.0005, .00058, .001914, .004346,
 .00789,.014330$
1176
$HFT NH=14.,TH=0.,.01,1.,1.1,1.9,3.9,5.,8.,12.,24.,29.,140.,840.,2000.,
 HEAT(1)=0.,0.,.85E9,2*.51E9,.5E9,.68E9,.6E9,.31E9,.31E9,.27E9,
 . .21E9,.18E9,.1E9,FLOW=14+205200.0$
          ITERATE TSKIP FROM 0 TO 750 HOURS STEP 5
SINLIST VZERO=2942357, A=422000, NSTEPS=2000, NPRINT=5000, TZERO=80, IMET=0,
  TSPRON=0, TSKIP=0, DTITER=5, NITER=150, ISPRAY=1, IEVAP=1, Q1=0, F1=1, DT=.5$
```

Figure 8.15 Input data for program SPRPND, iterative run, procedure 2

ITERATE TSKIP FROM 0 TO 750 HOURS STEP 5

SPRAY FIELD PARAMETERS

INITIAL VELOCITY OF DROPS LEAVING NOZZLE, VELO = 684.89 CM/SEC INITIAL ANGLE OF DROPS TO HOR., THETA = 1.239 RADIANS GEOMETRIC MEAN RADIUS OF DROPS, R = .0950 CM HEIGHT OF SPRAY FIELD, HT = 365.76 CM WIDTH OF SPRAY FIELD, WID = 5577.8 CM LENGTH OF SPRAY FIELD, ALEN = 8625.8 CM HEIGHT OF SPRAY NOZZLES ABOVE POND SURFACE, YO = 152.4 HEADING OF WIND W.R.T.LONG AXIS, PHI = 90.00 DEGREES

POND PARAMETERS

```
# HEAT IN # TIME FROM # FLOW IN # # BTU/HR # START # FT**3/HR #
                  0.00 : .205E+06 : .01 : .205E+06 : 1.00 : .205E+06 : 1.10 : .205E+06 :
:0.
       .
:0.
            :
: .850E+09 :
.510E+09 :
                  1.90 1 .205E+06 ;
: .510E+09 :
: .500E+09 :
                   3.90 ; .205E+06 :
: .680E+09 :
                   5.00 : "205E+06 ;
: .600E+09 :
                   8.00 : .205E+06 :
: .400E+09 :
                  12.00 : .205E+06 :
: .310E+09 :
                         : .205E+06 :
                  24.00
: .270E+09 :
                  29.00
                140.00 : .205E+06 :
: .210E+09 :
                 840.00 : .205E+06 :
: .180E+09 :
: .100E+09 : 2000.00 : .205E+06 :
```

FOR TIME LESS THAN TSKIP
Q1 = 0. BTU/HR
F1 = .100E+01 FT**3/HR

Figure 8.16 Output from program SPRPND, iterative run, procedure 2

METEOROLOGICAL TABLE USED AS INPUT
REGRESSION EQUATIONS USED FOR SPRAY MODEL

SPRAYS WILL BE DELAYED

0.00 HOURS

********** MODEL RESULTS ********

```
..TIME.....VOLUME....
                                                                      FT**3
                           MAX MODELED TEMPERATURE # 91.95 AT 474.50 HOURS
TSKIP =
             0.0 HOURS
TSKIP =
             5.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.94 AT
                                                                   474.50 HOURS
TSKIP =
            10.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.93 AT
                                                                   474.50 HOURS
TSKIP =
            15.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                         91.91 AT
                                                                  474.50 HOURS
TSKIP =
            20.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                         91.90 AT
                                                                   474.50 HOURS
TSKIP =
            25.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                         91.88 AT
                                                                   474.50 HOURS
TSKIP =
            30.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                         91.87 AT
                                                                  474.50 HOURS
TSKIP =
            35.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                         91.86 AT
                                                                  474.50 HOURS
TSKIP =
            40.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                         91.85 AT
                                                                  474.50 HOURS
TSKIP =
                           MAX MODELED TEMPERATURE #
            45.0 HOURS
                                                        91.83 AT
                                                                  474.50 HOURS
TSKIP =
            50.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.82 AT
                                                                  474.50 HOURS
                           MAX MODELED TEMPERATURE =
TSKIP =
            55.0 HOURS
                                                        91.81 AT
                                                                   474.50 HOURS
            60.0 HOURS
TSKIP =
                           MAX MODELED TEMPERATURE =
                                                        91.80 AT
                                                                   474.50 HOURS
TSKIP =
            65.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.80 AT
                                                                  474.50 HOURS
TSKIP =
            70.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.79 AT
                                                                  474.50 HOURS
TSKIP =
            75.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.78 AT
                                                                  474.50 HOURS
TSKIP =
            80.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.77 AT
                                                                  474.50 HOURS
TSKIP =
            85.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.77 AT
                                                                  474.50 HOURS
TSKIP =
            90.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                                  474.50 HOURS
                                                        91.76 AT
TSKIP =
           95.0 HOURS
                           MAX MODELED TEMPERATURE *
                                                        91.76 AT
                                                                  474.50 HOURS
TSKIP =
           100,0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.75 AT
                                                                  474.50 HOURS
           105.0 HOURS
TSKIP =
                           MAX MODELED TEMPERATURE =
                                                        91.75 AT
                                                                  474.50 HOURS
TSKIP =
                           MAX MODELED TEMPERATURE =
           110.0 HOURS
                                                        91.74 AT
                                                                  474.50 HOURS
TSKIP =
           115.0 HOURS
                           MAX MODELED TEMPERATURE = MAX MODELED TEMPERATURE =
                                                        91.74 AT
                                                                  474.50 HOURS
TSKIP =
           120.0 HOURS
                                                        91.73 AT
                                                                  475.00 HOURS
                           MAX MODELED TEMPERATURE =
TSKIP =
           125.0 HOURS
                                                        91.73 AT
                                                                  475.00 HOURS
TSKIP =
           130.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.73 AT
                                                                  475.00 HOURS
TSKIP =
           135.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.72 AT
                                                                  475.00 HOURS
TSKIP =
           140.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.72 AT
                                                                  475.00 HOURS
TSKIP =
           145.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.72 AT
                                                                  475.00 HOURS
TSKIP =
                           MAX MODELED TEMPERATURE =
           150.0 HOURS
                                                        91.72 AT
                                                                  475.00 HOURS
TSKLP =
           155.0 HOURS
                           MAX MODELED TEMPERATURE #
                                                        91.72 AT
                                                                  475.00 HOURS
TSKIP #
           160.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.71 AT
                                                                  475.00 HOURS
TSKIP =
           165.0 HOURS
                          MAX MODELED TEMPERATURE =
                                                        91.71 AT
                                                                  475.00 HOURS
TSKIP =
           170.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.71 AT
                                                                  475.00 HOURS
TSKIP =
           175.0 HOURS
                          MAX MODELED TEMPERATURE =
                                                        91.71 AT
                                                                  475.00 HOURS
TSKIP =
           180.0 HOURS
                          MAX MODELED TEMPERATURE =
                                                        91.70 AT
                                                                  475.00 HOURS
TSKIP =
           185.0 HOURS
                          MAX MODELED TEMPERATURE =
                                                        91.70 AT
                                                                  475.00 HOURS
TSKIP =
           190.0 HOURS
                           MAX MODELED TEMPERATURE =
                                                        91.70 AT
                                                                  475.00 HOURS
TSKIP =
           195.0 HOURS
                          MAX MODELED TEMPERATURE =
                                                        91.70 AT
                                                                  475.00 HOURS
           200.0 HQURS
TSKIP =
                          MAX MODELED TEMPERATURE =
                                                        91.70 AT
                                                                  475.00 HOURS
TSKIP =
           205.0 HOURS
                         MAX MODELED TEMPERATURE =
                                                        91.70 AT
                                                                  475.00 HOURS
```

Figure 8.16 (Continued)

rskip	2	210-0	HOURS	MAX	MODELED	TEMPERATURE	3	91.70	AT	475.00	HOURS
			HOURS	MAY	MODELED	TEMPERATURE	2	91.70	AT	475.00	
TSKIP										475.00	
TSKIP	3		HOURS			TEMPERATURE		91.70		4/3.00	HOURS
TSKIP	=	225.0	HOURS	MAX	MODELED	TEMPERATURE	2	91.70	AT	475.00	HOURS
TSKIP		230.0		MAX	MODELED	TEMPERATURE	2	91.70		475.00	HOURS
								-			
TSKIP	=	235.0				TEMPERATURE		91.70		475.00	
TSKIP	=	240.0	HOURS	MAX	MODELED	TEMPERATURE	2	91.70	AT	475.00	HOURS
TSKIP		245.0		MAY	MODELED	TEMPERATURE	=	91.71		475.00	HOURS
TSKIP	7	250.0				TEMPERATURE		91.71			
TSKIP	=	255.0	HOURS	MAX	MODELED	TEMPERATURE	2	91.71	AT	475.00	HOURS
TSKIP	2	260.0	HOURS	MAX	MODELED	TEMPERATURE	*	91.71	AT	475.00	HOURS
						TEMPERATURE		91.72		475.00	
TSKIP		265.0									
TSKIP	3	270.0				TEMPERATURE		91.72		450.50	
TSKIP	3	275.0	HOURS	MAX	MODELED	TEMPERATURE	=	91.74	AT	450.50	HOURS
TSKIP		280.0				TEMPERATURE		91.75	AT	450.50	HOURS
										450.50	
TSKIP	3.	285.0				TEMPERATURE		91.76			
TSKIP	=	290.0	HOURS	MAX	MODELED	TEMPERATURE	=	91.77	AT	450.50	HOURS
TSKIP	3	295.0	HOURS	MAX	MODELEO	TEMPERATURE	3	91.81	AT	401.00	HOURS
		300.0				TEMPERATURE		91.86		401.00	
TSKIP								_			
TSKIP	3	305.0	HOUKS			TEMPERATURE		91.92		401.00	
TSKIP	3	310.0	HOURS	MAX	MODELED	TEMPERATURE	3	91.99	AT	401.00	HOURS
TSKIP		315.0		MAY	MODELED	TEMPERATURE	2	92.06	AT	401.00	HOURS
						TEMPERATURE		92.14		401.00	
TSKIP		320.0									
TSKIP	2	325.0		MAX	MODELED	TEMPERATURE	3	92.22		401.00	
TSKIP	=	330.0	HOURS	MAX	MODELED	TEMPERATURE	2	92.31	AT	401.00	HOURS
TSKIP		335.0		MAY	MODEL ED	TEMPERATURE	2	92.41	AT	401.00	
						TEMPERATURE		92.52		401.00	
TSKIP		340.0						_			
TSKIP	= '	345.0		MAX	MODELED	TEMPERATURE	*	92.65		401.00	
TSKIP	2	350.0	HOURS	MAX	MODELED	TEMPERATURE	3	92.76	AT	401.00	HOURS
TSKIP		355.0		MAY	MODELED	TEMPERATURE	3	92.88	AT	401.00	HOURS
						TEMPERATURE		93.02		401.00	
TSKIP		360.0									
TSKIP	=	365.0		MAX	MODELED	TEMPERATURE	=	93.19		401.00	
TSKIP	=	370.0	HOURS	MAX	MODELED	TEMPERATURE	3	93.31	AT	401.00	HOURS
TSKIP	2 ·	375.0		XAM	MODELED	TEMPERATURE	2	93.26	AT	401.50	HOURS
		380.0				TEMPERATURE		92.88		402.00	
TSKIP						_					
TSKIP	2	385.0				TEMPERATURE		92.82		450.50	
TSKIP	=	390.0	HOURS	MAX	MODELED	TEMPERATURE	3	92.93	AT	450.50	HOURS
TSKIP	=	395.0	HOURS	MAX	MODELED	TEMPERATURE	3	93.04	AT	450.50	HOURS
		400.0				TEMPERATURE		93.16		450.50	
TSKIP								-			
TSKIP	2	405.0				TEMPERATURE	3	93.29	Αï		HOURS
TSKIP	3	410.0	HOURS	MAY							
TSKIP					MODELED	TEMPERATURE		93.48		450.00	HOURS
		415.0				TEMPERATURE	2	93.48	AT	450.00	
			HOURS	MAX	MODELED	TEMPERATURE	2 2	93.72	AT AT	450.00 450.00	HOURS
TSKIP	=	420.0	HOURS	MAX	MODELED MODELED	TEMPERATURE TEMPERATURE	2 2 3	93.72 93.90	AT AT	450.00 450.00 450.00	HOURS
TSKIP	=	420.0 425.0	HOURS Hours Hours	MAX MAX	MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE	2 2 3	93.72 93.90 94.00	AT AT AT	450.00 450.00 450.00 450.50	HOURS HOURS HOURS
TSKIP	3	420.0 425.0	HOURS Hours Hours	MAX MAX	MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE	2 2 3	93.72 93.90	AT AT AT	450.00 450.00 450.00	HOURS HOURS HOURS
TSKIP TSKIP	= =	420.0 425.0 430.0	HOURS HOURS HOURS	MAX MAX MAX	MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	2 3 3 3	93.72 93.90 94.00 93.80	AT AT AT AT	450.00 450.00 450.50 450.50	HOURS HOURS HOURS
TSKIP TSKIP TSKIP	= = =	420.0 425.0 430.0 435.0	HOURS HOURS HOURS HOURS	MAX MAX MAX MAX	MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	2 2 3 3 3 3	93.72 93.90 94.00 93.80 93.52	AT AT AT AT AT	450.00 450.00 450.50 451.50 475.00	HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP	= = =	420.0 425.0 430.0 435.0 440.0	HOURS HOURS HOURS HOURS HOURS HOURS	MAX MAX MAX MAX MAX	MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	3 3 3 3 3 3 3	93.72 93.90 94.00 93.80 93.52 93.76	AT AT AT AT AT AT	450.00 450.00 450.50 451.50 475.00	HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP	= = =	420.0 425.0 430.0 435.0	HOURS HOURS HOURS HOURS HOURS HOURS	MAX MAX MAX MAX MAX	MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	3 3 3 3 3 3 3	93.72 93.90 94.00 93.80 93.52 93.76 93.92	AT AT AT AT AT AT	450.00 450.00 450.50 451.50 475.00	HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP	2 2 2 2 2 2	420.0 425.0 430.0 435.0 440.0 445.0	HOURS HOURS HOURS HOURS HOURS HOURS HOURS	MAX MAX MAX MAX MAX MAX	MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	3	93.72 93.90 94.00 93.80 93.52 93.76 93.92	AT AT AT AT AT AT	450.00 450.00 450.50 451.50 475.00 475.00	HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP	= = = = = = = = = = = = = = = = = = = =	420.0 425.0 430.0 435.0 440.0 445.0	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS	MAX MAX MAX MAX MAX MAX MAX	MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	3	93.72 93.90 94.00 93.80 93.52 93.76 93.92 93.98	AT AT AT AT AT AT AT	450.00 450.00 450.50 451.50 475.00 475.00 475.00	HOURS HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 435.0 440.0 450.0 450.0	HOURS	MAX MAX MAX MAX MAX MAX MAX	MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	2	93.72 93.90 94.00 93.80 93.52 93.76 93.92 93.98 93.84	AT AT AT AT AT AT AT AT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50	HOURS HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 435.0 440.0 445.0 450.0 455.0	HOURS	MAX MAX MAX MAX MAX MAX MAX MAX	MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE		93.72 93.90 94.00 93.80 93.52 93.76 93.92 93.98 93.84 93.84	AT AT AT AT AT AT AT AT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 476.50	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 435.0 440.0 445.0 450.0 460.0 465.0	HOURS	XAM XAM XAM XAM XAM XAM XAM XAM	MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	= = = = = = = = = = = = = = = = = = =	93.72 93.90 94.00 93.80 93.52 93.76 93.98 93.84 93.84 93.58 92.95	AT AT AT AT AT AT AT AT AT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 476.50 495.00	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 435.0 440.0 445.0 450.0 460.0 465.0	HOURS	XAM XAM XAM XAM XAM XAM XAM XAM	MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	= = = = = = = = = = = = = = = = = = =	93.72 93.90 94.00 93.80 93.52 93.76 93.92 93.98 93.84 93.84	AT AT AT AT AT AT AT AT AT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 476.50	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 435.0 440.0 445.0 450.0 455.0 460.0 465.0	HOURS	XAM XAM XAM XAM XAM XAM XAM XAM XAM	MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	93.72 93.90 94.00 93.80 93.52 93.76 93.98 93.84 93.88 92.95 93.18	AT ATT ATT ATT ATT ATT ATT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 476.50 495.00	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 435.0 440.0 445.0 450.0 465.0 460.0 470.0	HOURS	X AM X	MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	93.72 93.90 94.00 93.80 93.52 93.76 93.98 93.84 93.58 92.95 93.18 93.20	AT ATT ATT ATT ATT ATT ATT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 476.50 495.00 497.50	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 440.0 445.0 450.0 455.0 460.0 470.0 475.0 480.0	HOURS	X X X X X X X X X X X X X X X X X X X	MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	93.72 93.90 94.00 93.80 93.76 93.98 93.84 93.88 93.88 93.18 93.20 93.14	AT ATT ATT ATT ATT ATT ATT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 476.50 497.00 497.50	HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 435.0 440.0 445.0 450.0 465.0 460.0 470.0	HOURS	X X X X X X X X X X X X X X X X X X X	MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	93.72 93.90 94.00 93.80 93.52 93.76 93.98 93.84 93.58 92.95 93.18 93.20	AT ATT ATT ATT ATT ATT ATT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 495.00 497.50 498.00 499.00	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 440.0 445.0 450.0 455.0 460.0 475.0 480.0 485.0	HOURS	MAXX MAXX MAXX MAXX MAXX MAXX MAXX MAXX	MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE		93.72 93.90 94.00 93.80 93.76 93.98 93.84 93.88 93.88 93.18 93.20 93.14	AT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 495.00 497.50 498.00 499.00	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 440.0 445.0 450.0 455.0 460.0 475.0 485.0 485.0 490.0	HOURS	X X X X X X X X X X X X X X X X X X X	MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	93.72 93.90 94.00 93.80 93.52 93.76 93.98 93.84 93.58 92.95 93.18 93.20 93.14 92.92	AT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 476.50 497.00 497.50 498.00 499.00 500.50	HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 435.0 435.0 440.0 445.0 450.0 455.0 460.0 475.0 485.0 490.0 495.0	HOURS	MAXX MAXX MAXX MAXX MAXX MAXX MAXX MAXX	MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE		93.72 93.90 94.00 93.80 93.76 93.98 93.84 93.84 93.58 93.18 93.20 93.14 92.92 91.96 91.41	AT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.00 475.50 495.00 497.50 497.50 498.00 499.00 500.50 518.00	HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 435.0 435.0 440.0 445.0 450.0 455.0 460.0 475.0 485.0 490.0 495.0 500.0	HOURS	MAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE		93.72 93.90 94.00 93.80 93.76 93.98 93.84 93.58 93.18 93.20 93.14 92.92 91.96 91.41 91.23	AT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 495.00 497.50 497.50 498.00 499.00 518.50	HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 435.0 435.0 440.0 445.0 450.0 455.0 460.0 475.0 485.0 490.0 495.0	HOURS	MAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE		93.72 93.90 94.00 93.80 93.76 93.98 93.84 93.84 93.58 93.18 93.20 93.14 92.92 91.96 91.41	AT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.00 475.50 497.00 497.50 497.50 497.50 518.50 518.50	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS
TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP TSKIP		420.0 425.0 430.0 440.0 445.0 450.0 465.0 465.0 470.0 485.0 490.0 495.0 500.0	HOURS	MAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	MODELED	TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE		93.72 93.90 94.00 93.80 93.76 93.98 93.84 93.58 93.18 93.20 93.14 92.92 91.96 91.41 91.23	ATT	450.00 450.00 450.50 451.50 475.00 475.00 475.00 475.50 495.00 497.50 497.50 498.00 499.00 518.50	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS

Figure 8.16 (Continued)

TSKIP	2	515.0	HOURS	MAX	MODELED	TEMPERATURE	. 3	89,62	AT	526,50	HOURS
TSKIP	2	520.0	HOURS	MAX	MODELED	TEMPERATURE	. =	89.22		539.50	
TSKIP	=	525.0		MAX	MODELED	TEMPERATURE	2	89.05	AT	542.00	HOURS
TSKIP	=	530.0	HOURS	MAX	MODELED	TEMPERATURE	3	88.84		544.00	
TSKIP	=	535.0	HOURS	MAX	MODELED	TEMPERATURE	1	88.35		545.50	
TSKIP		540.0				TEMPERATURE		86.79		548.00	
TSKIP		545.0				TEMPERATURE		85.86		762.00	
TSKIP		550.0				TEMPERATURE		85.86		762.00	
TSKIP		555.0				TEMPERATURE		85.87		762.00	
TSKIP		560.0			_	TEMPERATURE		85.87		762.00	
TSKIP		565.0				TEMPERATURE		85.88		762.00	
TSKIP		570.0				TEMPERATURE		85.89		762.00	
TSKIP		575.0				TEMPERATURE		85.90		762.00	
								_			
TSKIP TSKIP		580.0 585.0				TEMPERATURE TEMPERATURE		85.91		762.00	
								85.92		762.00	
TSKIP		590.0				TEMPERATURE		85.94		762.00	
TSKIP		595.0				TEMPERATURE		85.96		762.00	
TSKIP		600.0				TEMPERATURE		85.98		762.00	
TSKIP		605.0				TEMPERATURE		86.00		762.00	
TSKIP		610.0				TEMPERATURE		86.03		762.00	
TSKIP		615.0				TEMPERATURE		86.06		762.00	
TSKIP		650.0				TEMPERATURE		86.10		762.00	
TSKIP		625.0				TEMPERATURE		86.15		762.00	
TSKIP		630.0				TEMPERATURE		86.20		762.00	
TSKIP		635.0				TEMPERATURE		86.25		762.00	
TSKIP		640.0				TEMPERATURE		86.31		762.00	
TSKIP	2	645.0				TEMPERATURE		86.37		762.00	
TSKIP		650.0	HOURS			TEMPERATURE		86.44	AT	762.00	HOURS
TSKIP	2	655.0				TEMPERATURE		86.50		762.00	
TSKIP	3	660.0	HOURS			TEMPERATURE		86.57	AT	762.00	HOURS
TSKIP	2	665.0	HOURS	MAX	MODELED	TEMPERATURE	2	86.65	AT	762.00	HOURS
TSKIP	3	670.0	HOURS	MAX	MODELED	TEMPERATURE	#	86.73	AT	762.00	HOURS
TSKIP	3	675.0	HOURS	MAX	MODELED	TEMPERATURE	2	86.81		762.00	
TSKIP	3 '	680.0	HOURS	MAX	MODELED	TEMPERATURE	3	86.90	AT	762.00	HOURS
TSKIP	= '	685.0	HOURS	MAX	MODELED	TEMPERATURE		86.99	AT	762.00	HOURS
TSKIP	3	690.0	HOURS	MAX	MODELED	TEMPERATURE	3.	87.09	AT	762.00	HOURS
TSKIP	2 '	695.0	HOURS	MAX	MODELED	TEMPERATURE	3:	87.19	AT	762.00	HOURS
TSKIP	3	700.0	HOURS	XAM	MODELED	TEMPERATURE	*	87.30	AT	762.00	HOURS
TSKIP	3.	705.0	HOURS	MAX	MODELED	TEMPERATURE	#	87.41	AT	762.00	HOURS
TSKIP	=	710.0	HOURS	MAX	MODELED	TEMPERATURE	2	87.50	AT	762.00	HOURS
TSKIP	=	715.0	HOURS	MAX	MODELED	TEMPERATURE	3.	87.58	AT	762.00	
TSKIP		720.0		MAX	MODELED	TEMPERATURE	#	87.68		762.00	
TSKIP		725.0			-	TEMPERATURE		87.80		762.00	
TSKIP		730.0				TEMPERATURE		87.85		762.00	
TSKIP		735.0				TEMPERATURE		87.80		762.50	
TSKIP			HOURS			TEMPERATURE		87.51		764.50	
TSKIP		745.0				TEMPERATURE		87.04		767.00	
									• •		
TSKIP	=	750.0	HOURS	MAX	MODELED	TEMPERATURE	2	86.51	AT	770.00	HOURS

Figure 8.16 (Continued)

Figure 8.17 Effect of starting time for design-basis accident on peak pond temperature

8.7 Correction Factors for Geographic Differences Between Site and Meteorological Station--Program COMET2

Program COMET2 is used to estimate the differences in the meteorological data bases of the site and the point at which the long-term meteorological data were taken. Monthly average values of wet-bulb temperature, dry-bulb temperature, rms windspeed, barometric pressure, dewpoint temperature, and solar radiation were obtained from program SPSCAN for a 15-month period corresponding to the period of onsite data availability at the Susquehanna site. The input data for COMET2 are shown in Figure 8.21. The output is shown printed in Figure 8.22 and plotted in Figures 8.23 and 8.24. It is clear from the output that there are biases in the two data sets. The average bias for the Susquehanna-site data indicates that the spray-pond temperature should be about 1.36°F lower than predicted from program SPRPND.* The evaporation should also be less by

^{*}Although the points in Figure 8.23 fall on both sides of the 45° diagonal line, the Harrisburg data are most conservative at the higher temperatures, which is the region of greater concern.

163,464 ft³. The Harrisburg data are, therefore, conservative. Although the peak temperature and evaporation could have been corrected by the above amounts, it is suggested that the corrections be performed only if they lead to greater conservatism.

```
.40195127E-03 .38449863E-02
                                               .18230236E=02
-.60637276E+00
               .30138737E+00 -.25690451E+01
                                               .65576685E=01
-.34078270E-01
                .26319278E-05 .35669730E-02 .12911864E-01
-.73791051E-03
-.39275022E-04 -.41450389E-01 .14646531E-03 -.33234415E-03
 .41560445E-03 -.12268707E-02 .11416664E-01 -.86122112E-01
 .28767122E-02 -.29725976E-04 .10168749E-06 -.27394599E-03
                .22034012E-05
 .28406611E-04
SPARAM WID=183, ALEN=283, HT=12.0, THETA=71.0, VEL0=22.47, R=.095,
 Y0=5.0, WDR0=0, NDRIFT=6, DWDR=10, FDRIFT=.0005, .00058, .001914, .004346,
 .00789,.014330$
1176
SHFT NH=14., TH=0.,.01,1.,1.1,1.9,3.9,5.,8.,12.,24.,29.,140.,840.,2000.,
  HEAT(1)=0.,0.,.85E9,2*.51E9,.5E9,.68E9,.6E9,.4E9,.31E9,.27E9,
   .21E9,.18E9,.1E9,FLOW=14*205200.0$
        COMBINED RUN WITH RIGOROUS MODEL
SINLIST VZERO=2942357,A=422000,NSTEPS=1600,NPRINT=10,Q1=0,F1=1,IEVAP=1,
  DT=.5, IMET=0, ISPRAY=2,
 TSPRON=447.TSKIP=4478
          COMBINED RUN WITH REGRESSION MODEL
SINLIST VZERO=2942357, A=422000, NSTEPS=1600, NPRINT=10, Q1=0, F1=1, IEVAP=1,
  DT=.5, IMET=0, ISPRAY=1,
 TSPRON=447, TSKIP=4475
```

Figure 8.18 Input for program SPRPND, combined runs for rigorous and regression spray models, TSKIP = 447.0 hours

8.8 Statistical Adjustments

Program SPSCAN calculates the yearly maximum temperature and 30-day water loss for each year of record. The maximum likelihood and 5% and 95% confidence limits are generated for these data. Using the procedures outlined in Appendix A, it is possible to construct the plots of temperature and evaporation, respectively, versus recurrence interval shown in Figures 8.25 and 8.26. It is then possible to estimate correction factors based on the recurrence intervals of the peak temperature and evaporation found. If, for example, the 100-yr recurrence—interval meteorology were chosen as the basis for the temperature and evaporation conditions, correction factors could be developed for the final answer as demonstrated below:

COMBINED RUN WITH RIGOROUS MODEL

SPRAY FIELD PARAMETERS ************************** INITIAL VELOCITY OF DROPS LEAVING NOZZLE, VELO = 684.89 CM/SEC INITIAL ANGLE OF DROPS TO HOR., THETA = 1.239 RADIANS GEOMETRIC MEAN RADIUS OF DROPS, R = .0950 CM HEIGHT OF SPRAY FIELD, HT = 365.76 CM WIDTH OF SPRAY FIELD, WID = 5577.8 CM LENGTH OF SPRAY FIELD, ALEN = 8625.8 CM HEIGHT OF SPRAY NOZZLES ABOVE POND SURFACE, YO = 152.4 HEADING OF WIND W.R.T.LONG AXIS, PHI = 90.00 DEGREES

POND PARAMETERS

NUMBER OF INTEGRATION STEPS, NSTEPS = 1600
PRINT INTERVAL, NPRINT = 10
INTEGRATION TIMESTEP, DT = .50 HOURS
INITIAL POND TEMPERATURE, TZERO = 60.00 DEG.F
DELAY FOR HEAT TABLE, TSKIP = 447.00 HRS

DELAY FOR HEAT TABLE, TSKIP = 447.00 HRS

BASE HEAT LOAD ADDED TO TABLE, GBASE = 0.00 HRS

BASE FLOW RATE ADDED TO TABLE , FBASE = 0. CU.FT./HR.

: HEAT IN	:	TIME FROM	•	FLOW IN	:
: BTU/HR	:	START	:	FT**3/HR	:
	•	• • • • • • • • • •		• • • • • • • •	
:0.	3	0.00	:	.205E+06	:
:0.	:	.01	:	.205E+06	:
: .850E+09	:	1.00		.205E+06	:
: .510E+09	:	1.10	:	.205E+06	:
: .510E+09	:	1.90	:	.205E+06	:
: .500E+09	:	3.90	:	.205E+06	:
: .680E+09	:	5.00	:	.205E+06	:
: .600E+09	:	8.00	:	.205E+06	:
: .400E+09	:	12.00	:	.205E+06	:
: .310E+09	2	24.00	:	.205E+06	:
: .270E+09	:	29.00	•	.205E+06	:
: .210E+09	:	140.00	:	.205E+06	:
: .180E+09	:	840.00	:	.205E+06	:
: .100E+09	:	2000.00	1	.205E+06	:

Figure 8.19 Output from program SPRPND, run for rigorous spray model, TSKIP = 447.0 hours

FOR TIME LESS THAN TSKIP

Q1 = 0. BTU/HR

F1 = .100E+01 FT+*3/HR

METEOROLOGICAL TABLE USED AS INPUT

RIGOROUS SPRAY MODEL CHOSEN

SPRAYS WILL BE DELAYED 447.00 HOURS

******** MODEL RESULTS ********

TIME	TEMPERATURE	(F)	VOLUME	
: HR		*		
•••••				• • • •
5.00	79.03		.2942357	0E+07
10.00	79.24		.2942357	0E+07
15.00	79.90		.2942357	0E+07
20.00	79.25		.2942357	0E+07
25.00	77.87		.2942357	0E+07
30.00	76.33		.2942357	0E+07
35.00	75.98		.2942357	0E+07
40.00	76.19		.2942357	
45.00	75.66		.2942357	
50.00	74.64		.2942357	
55.00	73.33		.2942357	
60.00	72.04		.2942357	
65.00	71.28		.2942357	
70.00	70.24		.2942357	
75.00	69.24		.2942357	
80.00	68.50		.2942357	
85.00	68.33		.2942357	
90.00	68.47		.2942357	
95.00	67.96		.2942357	
100.00	67.25		.2942357	
105.00	66.90		.2942357	
110.00	67.90		.2942357	
115.00	68.26		.2942357	
120.00	67.87		.2942357	
125.00	67.24		.2942357	
130.00	67.56		.2942357	
135.00	68.31		.2942357	
140.00	68.22		.2942357	
145.00	67.67		.2942357	
150.00	67.04		.2942357	
155.00	67.00		.2942357	UE+07

Figure 8.19 (Continued)

160.00	67.83	.29423570E+07
165.00	67.93	.29423570E+07
170.00	67.72	.29423570E+07
175.00	67.67	.29423570E+07
180.00	69.07	.29423570E+07
185.00	69.96	.29423570E+07
190.00	69.88	.29423570E+07
195.00	69.58	.29423570E+07
200.00	69.78	.29423570E+07
205.00	71.45	.29423570E+07
210.00	72.66	.29423570E+07
215.00	72.57	.29423570E+07
220.00	72.25	.29423570E+07
225.00	72.57	.29423570E+07
230.00	73.59	.29423570E+07
235.00	73.87	.29423570E+07
240.00	73.55	.29423570E+07
245.00	73.13	.29423570E+07
250.00	73.11	.29423570E+07
255.00	74.03	.29423570E+07
260.00	73.91	.29423570E+07
265.00	73.13	.29423570E+07
270.00	72.59	.29423570E+07
275.00	73.59	.29423570E+07
280.00	74.80	.29423570E+07
285.00	74.77	.29423570E+07
290.00		
	74.32	.29423570E+07
295.00	73.97	.29423570E+07
300.00	75.25	.29423570E+07
305.00	76.61	.29423570E+07
310.00	76.40	.29423570E+07
315.00	75.83	.29423570E+07
320.00	75.78	.29423570E+07
325.00	77.12	.29423570E+07
330.00	77.57	.29423570E+07
335.00	77.10	.29423570E+07
340.00	76.60	.29423570E+07
345.00	76.32	.29423570E+07
350.00	77.35	.29423570E+07
355.00	77.53	.29423570E+07
360.00	77.12	.29423570E+07
365.00	76.60	.29423570E+07
370.00	76.74	.29423570E+07
375.00	77.73	.29423570E+07
380.00	78.00	.29423570E+07
385.00	77.67	.29423570E+07
390.00	77.29	.29423570E+07
		.29423570E+07
395.00	78.06	
400.00	79.55	.29423570E+07
405.00	79.75	.29423570E+07
410.00	79.38	.29423570E+07
415.00	79.04	.29423570E+07
420.00	80.17	.29423570E+07
425.00	81.19	.29423570E+07

Figure 8.19 (Continued)

430.00	81.04	.29423570E+07
435.00	80.53	.29423570E+07
440.00	80.38	.29423570E+07
445.00	81.42	.29423570E+07
450.00	85.34	.29272932E+07
455.00	89.55	.28972500E+07
460.00	90.63	.28696068E+07
465.00	90.96	.28455993E+07
	92.43	.28229635E+07
470.00	93.90	.28039529E+07
475.00		.27846809E+07
480.00	92.92	
485.00	91.33	.27653170E+07
490.00	91.46	.27467519E+07
495.00	92.25	.27262648E+07
500.00	91.93	.27065416E+07
505.00	90.13	.26870599E+07
510.00	88.93	.26694924E+07
515.00	89.19	.26522187E+07
520.00	89.40	.26325687E+07
525.00	88.34	.26131694E+07
530.00	87.37	.25969744E+07
535.00	86.76	.25816960E+07
540.00	86.74	.25629735E+07
545.00	86.37	.25429982E+07
550.00	84.18	.25224251E+07
555.00	81.35	.25029815E+07
560.00	79.72	.24860614E+07
565.00	79.61	.24673550E+07
570.00	79.31	.24491142E+07
575.00	79.12	.24352591E+07
580.00	79.10	.24227987E+07
585.00	79.35	.24102278E+07
590.00	80.05	.23967512E+07
595.00	80.42	
600.00	80.27	.23840885E+07
605.00		.23718274E+07
	79.62	.23593050E+07
610.00	80.23	.23470600E+07
615.00	81.39	.23322636E+07
620.00	80.56	.23156647E+07
625.00	79.23	.23021190E+07
630.00	77.37	.22885307E+07
635.00	77.42	.22755886E+07
640.00	79.20	.22632377E+07
645.00	79.84	.22507591E+07
650.00	79.44	.22381073E+07
655.00	78.64	.22256378E+07
660.00	79.15	.22129448E+07
665.00	79.79	.22000894E+07
670.00	79.97	.21880215E+07
675.00	79.24	.21752503E+07
680.00	79.06	.21636144E+07
685.00	79.71	.21524136E+Q7
690.00	80.65	.21418406E+07
695.00	80.99	.21311774E+07
700.00	80.25	.21192703E+07
,	~ · · · · · ·	

Figure 8.19 (Continued)

705.00	80.12	.21075767E+07
710.00	82.22	.20960858E+07
	83.20	.20830286E+07
720.00	82.83	.20703926E+07
725.00	81.96	.20579820E+07
730.00	82.92	.20464775E+07
735.00	84.40	.20331592E+07
740.00	84.11	.20187462E+07
	83.14	.20055908E+07
750.00	82.40	.19935346E+07
755.00	83.11	.19821931E+07
760.00	85.22	-19714001E+07
765.00	85.41	.19583762E+07
770.00	84.54	.19452174E+CT
	83.38	.19313785E+07
	82.38	.19153827E+07
785.00	80.04	.18978776E+07
790.00	77.97	.18825298E+07
795.00	76.14	
800.00	74.86	.18692831E+07 .18563833E+07
000.00	14.00	* 101070775401

TSKIP = 447.0 HOURS MAX MODELED TEMPERATURE = 93.91 AT 475.00 HOURS

Figure 8.19 (Continued)

```
\Delta T = T(100\text{-yr recurrence}) - T_{max} = 93.14^{\circ}F - 92.74^{\circ}F = +0.40^{\circ}F and \Delta EVAP = EVAP(100\text{-yr recurrence}) - EVAP_{max} = 2.435 \times 10^{6} - 2.463 \times 10^{6} = -28,000 \text{ ft}^{3}
```

The correction factor for the 100-yr recurrence interval is positive for temperatures and, therefore, should be added to the final result from program SPRPND:

Design-basis maximum temperature = 93.91 + 0.40 ≥ 94.3°F

The correction for evaporation is negative and, therefore, should not be added to the results:

Design-basis 30-day evaporation = $2.46 \times 10^6 \text{ ft}^3$

Figure 8.20 Pond temperature in response to ambient meteorology and design-basis heat load, TSKIP = 447.0 hours

8.9 Conclusion

The maximum pond temperature is predicted to be $94.3^{\circ}F$. The maximum 30-day evaporation is predicted to be 2.46×10^6 ft³. These results are conservative because it has been demonstrated that the evaporation and temperature using Susquehanna-site data would be lower than the results using Harrisburg data. In addition, the peak evaporation appears to use meteorological data with greater than a 100-year-recurrence interval.

Water loss from seepage and blowdown or other uses must, of course, be added to the evaporation and drift losses predicted.

It has been demonstrated that procedure 1 may be used to determine the starting time for the final calculations with only a small error in peak temperature, and that the regression spray model is a reliable predictor of the spray performance determined from the rigorous spray model.

```
-.60637276E+00
                   .40195127E-03
                                   .38449863E-02
                                                   .18230236E-02
 -.34078270E-01
                  .30138737E+00 -.25690451E+01
                                                   .65576685E-01
                   .26319278E-05
 -.73791051E-03
                                   .35669730E-02
                                                   .12911864E-01
 -.39275022E-04 -.41450389E-01
                                   .14646531E-03 -.33234415E-03
  .41560445E-03 -.12268707E-02
                                   .11416664E-01 -.86122112E-01
  .28767122E-02 -.29725976E-04
                                   .10168749E=06 -.27394599E=03
  .28406611E=04
                  .22034012E-05
 SINLIST V=2942357.,A=422000.,HEAT=2.3E8,NDRIFT=6,WDR0=0,DWDR=10.,
   QSPRAY=57.
                        FDRIFT=.0005,.00058,.001914,.004346,.007890,.0143508
15
52.03
        57.38
                 8.91
                          1378.4
                                   29.54
                                           49.9
                                                             5.48
                                                    53.8
                                                                          29.54
                                                                      0.
66.35
        72.79
                 6.12
                                                    67.5
                          1662.2
                                   29.64
                                           59.1
                                                                          29.64
                                                             3.9
                                                                      0.
68,19
        76.14
                 6.43
                          1884.9
                                   29.63
                                           59.7
                                                    67.8
                                                             3.7
                                                                          29.63
                                                                      0.
68.37
        75.38
                 5.90
                          1539.1
                                   29.67
                                                    69.4
                                           60.7
                                                             3.2
                                                                          29.67
                                                                      0.
60.89
        67.87
                 7.37
                          1291.5
                                   29.71
                                          58.
                                                    60.4
                                                             4.
                                                                          29.71
                                                                      0.
54.71
        63.47
                 8.61
                          1648.8
                                   29.58
                                           51.6
                                                    56.7
                                                             5.6
                                                                      0.
                                                                          29.58
                 7.59
62,61
        70.6
                          1686.6
                                   29.6
                                           55.9
                                                    63.1
                                                             4.8
                                                                          29.60
                                                                      0.
                 7.54
66.46
        72,27
                          1763.9
                                                                      0.
                                   29.64
                                           59.1
                                                    68.4
                                                             4.12
                                                                          29.64
68.34
        76.47
                 5.74
                          1377.3
                                  29.71
                                           59.5
                                                                      0.
                                                    68.
                                                             3.39
                                                                          29.71
        64.24
59.29
                 7.46
                          1182.6
                                  29.7
                                           53.6
                                                    58.5
                                                             4.18
                                                                      0.
                                                                          29.70
59.57
        64.74
                 6.65
                          1559.6
                                  29.61
                                           54.6
                                                    61.
                                                             4.36
                                                                      0.
                                                                          29.61
        70.57
65.36
                 7.61
                          1636.9
                                  29.67
                                           58.
                                                    65.7
                                                             4.53
                                                                      0.
                                                                          29.67
69.36
        75.01
                 6.84
                                                                     0.
                          1746.9
                                  29.65
                                           60.3
                                                    69.4
                                                             3.54
                                                                          29.65
        75.12
                 6.75
69.63
                                                    68.2
                          1507.4
                                  29.7
                                           59.6
                                                             3.94
                                                                          29.70
                                                                      0.
58.99
        62.82
                 7.31
                          1157.
                                  29.76
                                           53.2
                                                    57.9
                                                             4.47
                                                                          29.76
                                                                      0.
```

Figure 8.21 Input data for program COMET2

DIFFERENCES IN STEADY STATE TEMPERATURES AND WATER USE FOR SUBJECT SPRAY POND USING MONTHLY AVERAGE VALUES OF WET BULB, WIND SPEED, AND SOLAR RADIATION FROM UNSITE AND OFFSITE MET STATIONS

TIMESTEP IN ITERATION DIIME # 12,527 HOURS
VOLUME OF POND, V # 2942357.0 FT**3
SURFACE AREA OF POND, A # 422000.0 FT**2
RATE OF SPRAYING, QSPRAY # 57.0 FT**3/SEC
STEADY HEAT LOAD, HEAT # 230000000.0 BTU/HR
LOWER LIMIT OF WIND IN DRIFT TABLE WDRO # 0.00 MPH
INCREMENT IN DRIFT TABLE, DWDR # 10.00 MPH

DRIFT LOSS TABLE WIND SPEED, MPH DRIFT LOSS FRACTION

							EVAPORATION		2043639.16	1952527.68	VAP1 # -91111.5
							POND TE	(DEG. F)	72.43	77.65	EVAP2-EVAP1
							8	INCHES HG	29.54	29.54	E2-E1 # 5.221
								(BTU/FT**2/DY) INCHES HG	1378.40	1378.40	
00	00	00	00	00	00	WIND SPEED		(MPH)	8.91	84.8	
*0002000	00028000	.00191400	.00434600	.00789000	.01433000	DRY BULB		(DEG.F)	57.38	53.80	
00.0	10.00	20°00	00°08	40.00	20.00	WET BULB	SOLAR RAD.	(0EG, F)	52,03	06"67	
									DATA SET 1	DATA SET 2	

DIFFERENCES IN E BETWEEN DATA SET 2 AND DATA SET 1 BY PARAMETER

DEG.	183 DEG. F	.387 DEG.	90 000	.000 DE	4.105 DEG. F
DIFFERENCE DUE TO WET BULB =	IFFERENCE DUE	IFFERENCE DUE	ERENCE DUE TO INSOLATION	IFFERENCE DUE TO BAROMETR	UMMATION OF INDIVIDUAL DIFFERENCES

Figure 8.22 Input deck for program SPRCO

Ť	
*	
*	
#	
•	
#	
*	
Ē	
#	
#	
É	
#	
*	
Ē	
₹.	
*	
#	
Ē	
Ŧ	
#	
É	
#	
#	
*	
Ē	
# #5	
*	
*	
*	
Ē	
#	
#	
*	
=	
*	
•	
*	
**	
化化物 医乳球球 医乳球球球 医乳球球球球球球球球球球球球球球球球球球球球球球球球球	
化化化物 医乳球球 医乳球球球 医乳球球球球球球球球球球球球球球球球球球球球球球球球球	
化苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲苯甲	
化合物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物	
医含化氢氧化氢化氢氧化氢 医乳腺性乳腺性乳腺性乳腺	
化二氯苯甲基苯甲基苯甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	
化二氯苯甲苯甲苯甲苯甲甲苯甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	
· 电阻阻性阻性性 医克勒氏性 医克勒氏性 医克勒氏性 医克勒氏性 医克勒氏性 医克勒氏性 医克勒氏性 医克勒氏性 医克勒氏征 医氏征检查检查检查检查检查检查检查检查检查检查检查检查检查检查检查检查检查检查检查	
医骨性骨骨 化氯化甲基苯甲基甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	
医骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨	
化复数分类 医乳腺素 医乳腺素 医乳腺素素 医乳腺素素 医乳腺素素 医乳腺素素 医乳腺素素	
化多氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	
化合物 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性	
化复数分类 医二苯甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	
化复数化物 化二氯甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	
医乳球球球球球球球球球球球球球球球球球球球球球球球球球球球球球球球球球球球球	

	EVAPORATION FT##3	2292962.49	2180291,13	-112671.4
	POND TEMP	83.33	80.46	EVAP2-EVAP1 =
,	INCHES HG	29.64	29.64	E2-E1 # -2.878
	(BTU/FT**2/DY) INCHES HG	1662.20	1662,20	S
WIND SPEED	(MPH)	6.12	3.90	
DRY BULB	(DEG,F)	72,79	67.50	
WET BULB	(OEG. F)	66.35	59.10	
		DATA SET 1	DATA SET 2	

DIFFERENCES IN E BETWEEN DATA SET 2 AND DATA SET 1 BY PARAMETER

- W. 602 DEG	0.000 DEG F -2.950 DEG F
	*
OIFFERENCE DUE TO WET BULB # OIFFERENCE DUE TO DRY BULB TEMP. # OIFFERENCE DUE TO WIND SPEED # DIFFERENCE DUE TO INSOLATION #	DUE TO

						ı	
	WET BULB	DRY BULB	WIND SPEED				
	COEG. F)	(DEG.F)	(мьн)	(BTU/FT**2/DY) INCHES HG	PB INCHES HG	POND TEMP (DEG. F)	EVAPORATION FIRES
DATA SET 1	68.19	76.14	6.43	1884,90	29.63	84.83	2424193.83
DATA SET 2	59.70	67.80	3.70	1884.90	29.63	81.17	2214258.36
				EZ	E2-E1 # -3.686	EVAP2-EVAP1 #	-209935.5

DIFFERENCES IN E BETWEEN DATA SET 2 AND DATA SET 1 BY PARAMETER

Figure 8.22 (Continued)

化化 化化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化	化化化化化化化化化化化化化化化化	- 在在我在我们的现在分词	医食物 化化物 医皮肤	化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化	化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化	化化物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物物	化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化
	WET BULB Solar Rad. (Deg. F)	DRY BULB (DEG.F)	WIND SPEED (MPH)	(BTU/FT**2/DY)	PB NCHES HG	POND TEMP (DEG. F)	EVAPORATION FT**3
DATA SET 1	68,37	75.36	5.90	1539.10	29.67	84. 50	2342843.19
DATA SET 2	60.70	69.40	3.20	1539.10	29.67	81.30	2206192.05
				G	E2-E1 # -3.250	EVAP2-EVAP1 #	-136651.1

DIFFERENCES IN E BETWEEN DATA SET 2 AND DATA SET 1 BY PARAMETER

. 3, 9, 12 DEG. 7. 10, 000 DEG. 7. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	化化化 化化物化化化物 化化物 化化物 化化物 化化物 化化物 化化物 化化物
DIFFERENCE DUE TO WET BULB ** DIFFERENCE DUE TO DRY BULB TEMP. ** DIFFERENCE DUE TO WIND SPEED ** DIFFERENCE DUE TO INSOLATION ** DIFFERENCE DUE TO BAROMETRIC PRESSURE ** SUMMATION OF INDIVIDUAL DIFFERENCES **	TREE TREE TREE TREE TREE TREE TREE TREE

	WET BULB	DRY BULB	WIND SPEED		<u>a</u>	DONG TEMP	EVAPORATION
	SOLAR RAD. (DEG. F)	(DEG.F)	(MPH)	(BTU/FT**2/DY) INCHES HG	INCHES HG	(DEG. F)	W * * -
DATA SET 1	60.09	67.87	7.37	1291.50	29.71	79.35	2127673.35
DATA SET 2	58.00	60.40	4.00	1291.50	29.71	19.99	1841507.91
					E2=E1 a .639	EVAP2-EVAP1 # -286165.4	-286165.4

DIFFERENCES IN E BETWEEN DATA SET 2 AND DATA SET 1 BY PARAMETER

-1.378 DEG. F	1.290 DEG. F	0.000 DEG. F	0.000 DEG F	149 DEG. F
			819	
DUE TO WET BULB .	DIFFERENCE DUE TO DRY BULB TEMP. #	DUE TO INSOLATION	DUE TO BAROME	SUMMATION OF INDIVIDUAL DIFFERENCES *

Figure 8.22 (Continued)

- 化化物化化化物化物化物	化物化物化物化物物物 医克拉克氏征 医克拉克氏征 医克拉氏性 医克拉氏性 医克拉氏征 医克拉氏征 医克拉氏试验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	-	化化 化化 化化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化	有效保存性的现在分词使有效	化化银银铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁		化化化化 化化化化化化化化化化
	WET BULB Solar Rad. (Deg. F)	DRY BULB (DEG.F)	WIND SPEED (MPH)	(BTU/FT*#2/DY)	PB INCHES HG	POND TEMP (DEG. F)	EVAPORATION FT##3
DATA SET 1 DATA SET 2	54.71	63.47	80 RU 10.00	1648.80	80 80 80 80 80 80	75.06	2216888.45
				E2	E2-E1 # 3.203	EVAP2-EVAP1 *	-351503.8
DIFFEREN	CES IN E BETWEE	DIFFERENCES IN E BETWEEN DATA SET 2 AND DATA SET 1 BY PARAMETER	DATA SET 1 BY	PARAMETER			
DIFFEREN DIFFEREN DIFFEREN DIFFEREN SUMMATIO	DIFFERENCE DUE TO WET BULB = OIFFERENCE DUE TO DRY BULB TEMP. DIFFERENCE DUE TO WIND SPEED = DIFFERENCE DUE TO BAROMETRIC PRESUMMATION OF INDIVIDUAL DIFFEREN	ULB TEMP. # SPEED # ATION # ETRIC PRESSURE # DIFFERENCES #	-1.603 DEG -371 DEG -398 DEG 0.000 DEG 1.014 DEG	in in in in in in			
- 教育教育教育教育教育教育	T. 化热热性热热性热热性热性热性 化多类性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种		************		*******		

EVAPORATION FT##3	2269915.48 2063438.26 -206477.2
POND TEMP (DEG. F)	80.78 78.99 EVAP2-EVAP1 #
PB PB PB PB PB PB PB PB PB PB PB PB PB P	29.60 29.60 E2=E1 = -1.787
PB (BTU/FT**2/DY) INCHES HG	1686.60 1686.60
WIND SPEED (MPH)	7.59
DRY BULB (DEG.F.)	70.60
WET BULB SOLAR RAD. (DEG. F)	62.61 55.90
	DATA SET 1.

DIFFERENCES IN E BETWEEN DATA SET 2 AND DATA SET 1 BY PARAMETEF

-3.164 DEG. F	.004 DEG. F	EG.	0.000 DEG. F)EG F	-2.115 DEG. F
	DUE TO	DUE TO WIND SPEED	DIFFERENCE DUE TO INSOLATION .	DUE TO BAROMETRIC	F INDIVIDUAL DIFFERENCES
		_	_		-

Figure 8.22 (Continued)

EVAPORATION FT##3	2294305.86	2231119.09	-63186.8		E CAPONA A A A A A A A A A A A A A A A A A A
POND TEMP (DEG. F)	63.02	80,52	EVAP2-EVAP1 =		ARE WIND SPEED CALLES IN CONCEPT OF THE PERSON OF THE PERS
PB Inches HG	29.64	29.64	E2-E1 x -2.497		
(BTU/FT**2/DY)	1763.90	1763.90	E		
WIND SPEED (MPH)	7.54	4.12		*3.724 DEG. 1.234 DEG. 0.000 DEG. 2.625 DEG.	WIND SPEED
DRY BULE (DEG.F)	72.27	68.40		DIFFERENCE DUE TO WET BULB # **13.724 DEG, F DIFFERENCE DUE TO DRY BULB TEMP, # 1,234 DEG, F DIFFERENCE DUE TO WIND SPEED # 0,000 DEG, F DIFFERENCE DUE TO BAROMETRIC PRESSURE # 0,000 DEG F SUMMATION OF INDIVIDUAL DIFFERENCES # -2,625 DEG, F	DRY BULB
WET BULB Solar Rad. (Deg. F)	96.46	59.10		DIFFERENCE DUE TO WET BULB = DIFFERENCE DUE TO DRY BULB TEMP. * DIFFERENCE DUE TO WIND SPEED = DIFFERENCE DUE TO INSOLATION = DIFFERENCE DUE TO BAROMETRIC PRESSURE SUMMATION OF INDIVIDUAL DIFFERENCES =	MET BULS DRY BU
	DATA SET 1.	DATA SET 2		DIFFERENCE DIFFERENCE DIFFERENCE DIFFERENCE DIFFERENCE SUMMATION O	在 作 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在

	SOLAR RAD. (DEG. F)	(DEG.F)	(MPH)	(BTU/FT**2/DY) INCHES HG	PB INCHES HG	POND TEMP (DEG. F)	EVAPORATIO FT##3
DATA SET 1	68.34	76.47	5.74	1377.30	29.71	64.47	2353480.48
DATA SET 2	59.50	68.00	3.39	1377.30	29.71	80.39	2148689.17
				ŭ	E2-E1 = -4.080	EVAP2-EVAP1 a	-204791.3
	ATAC SARWING P ST SECURES		SET 2 AND DATA SET 1 BY DADAMETED	O V P			

Figure 8.22 (Continued)

- 521 DEG. T - 865 DEG. T 0 000 DEG. T - 4 084 DEG. T

DIFFERENCE DUE TO WET BULB #
DIFFERENCE DUE TO DRY BULB TEMP. #
DIFFERENCE DUE TO WIND SPEED #
DIFFERENCE DUE TO INSOLATION #
DIFFERENCE DUE TO BAROMETRIC PRESSURE SUMMATION OF INDIVIDUAL DIFFERENCES #

_	
¥.	
*	
-	
#	
,我们是我们的现在分词,我们是这个人的,我们是我们的,我们们们是我们的,我们们们是我们的,我们们的,我们们的,我们们	
-	
*	
*	
*	
*	
ě	
-	
*	
:	
*	
化	
K	
÷	
*	
-	
-	
*	
×	
įŁ	
16	
ŧ.	
*	
#	
-	
*	
*	
#	
*	
-	
*	
*	
-	
*	
*	
*	
*	
*	
-	
*	
-	
*	
-	
-	
-	
*	
÷	
#	
*	
*	
#	
*	
#	
ě	
*	
-	
-	
•	
•	
- 44	
=	
7	
*	
-	
-	

(DEG. F) (חאו פטרפ				POND TEMP	EVAPORATION
	(DEG.F)	(мьн)	(BIU/FI**2/DY)) INCHES HG	(DEG. F)	# # #
•	64.24	7.46	1182.60	29.70	78.29	2022014.79
5.8	• 50	4.18	1182.60	29.70	78.39	1829890.64
	•			E2-E1 # .096	EVAP2-EVAP1 =	-192124.1
OIFFERENCES IN E BETWEEN DATA	SET 2 AND D	ATA SET 1	SET 2 AND DATA SET 1 BY PARAMETER			
1 E E	DIFFERENCE DUE TO WET BULB # DIFFERENCE DUE TO DRY BULB TEMP. #	-2.958 D	EG. F			
E N		1.508 0	DEG. F			
DIFFERENCE DUE TO BAROMETRIC PI SUMMATION OF INDIVIDUAL DIFFER	RESSURE #		0EG F 0EG. F			

			!				
	WET BULB	DRY BULB	WIND SPEED		ď	DANT CNC	EVAPORATION
	COEG. F)	(DEG.F)	(MPH)	(81U/FT**2/DY) INCHES HG	INCHES HE	(DEG. F)	Mexica
DATA SET 1	59.57	64.74	6,65	1559.60	29.61	79.49	2052606.74
DATA SET 2	54.60	61.00	4.36	1559.60	29.61	78.17	1977817.37
					727 124	FVADO-FVADO	474789.4

DIFFERENCES IN E BETWEEN DATA SET 2 AND DATA SET 1 BY PANAMETER

Figure 8.22 (Continued)

WET BULB DRY BULB					
(DEG.F)	WIND SPEED (MPH)	(BTU/FT**2/DY)	PB INCHES HG	POND TEMP (DEG. F)	EVAPORATION FT**3
10.57	7.61	1636.90	29.67	82.13	2223929.43
65.70	4.5W	1636.90	29.67	19.71	2125769.65
BETWEEN DATA SET 2 AND	DATA SET 1	BY PARAMETER			
UE TO WET BULB # UE TO DRY BULB TEMP. # UE TO WIND SPEED # UE TO INSOLATION # UE TO BAROMETRIC PRESSURE # INDIVIDUAL DIFFERENCES #	# # # # # # # # # # # # # # # # # # #	066. T 066. T 066. T T T			
**************************************	MIND SPEED	**************************************	PB FF	**************************************	EVAPORATION
75.01	48.9	1746,90	29.65	85.05	2357392,80
69.40	J. 54	1746.90	29.65	81.30	2244560.67
BETWEEN DATA SET 2 AND	DATA SET 1	E2 BY PARAMETER	E2-E1 # -3.743	EVAP2-EVAP1 M	-1,12832,1
# 82 FI	4 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

EVAPORATION FT##3	2322665.82	2176958.91	-145706.9		***	EVAPORATION FT**3	1973356.18	1807507.15	-165849.0		# # # # # # # # # # # # # # # # # # #
POND TEMP (DEG. F)	06.48	80.41	EVAP2.EVAP1 #		是我们的现在分词,我们们的现在分词,我们们的现在分词,我们们的现在分词,我们们的现在分词,我们们的现在分词,我们们的现在分词,我们们们们的证明,我们们们们的证明,我们们们们们们们们们们们们的证明,我们们们	POND TEMP (DEG. F)	78.22	78.21	EVAP2-EVAP1 #		######################################
PB Inches Hg	29.70	29.70	E2-E1 # -4.485			PB INCHES HG	29.76	29.76	E2-E1 x -,005		
(BTU/FT##2/DY)	1507.40	1507.40	PARAMETER	ia ia ia ia la		(BTU/FT**2/DY)	1157.00	1157.00	PARAMETER	<u> </u>	STANDARD ERROR
WIND SPEED (MPH)	6.75	3.94	DATA SET 1 BY	.5.182 DEG. .354 DEG. 0.000 DEG. 0.000 DEG.	の では、		7.31	4.47	DATA SET 1 BY	1263 DEG. 1418 DEG. 0.000 DEG. 1823 DEG.	. 755 . 643 . 755 . 643
ORY BULB (DEG.F)	75.12	68.20	N DATA SET 2 AND	WET BULB # BORY BULB TEMP. # BIND SPEED # INSOLATION # BAROMETRIC PRESSURE # IDUAL DIFFERENCES #	***************************************	(DEG.F)	62,82	57.90	TWEEN DATA SET 2 AND	WET BULB # DRY BULB TEMP. # WIND SPEED # INSOLATION # BAROMETRIC PRESSURE #	
WET BULB SOLAR RAD. (DEG. F)	69.63	29.60	CES IN E BETWEEN DATA	DUE TO DUE TO DUE TO DUE TO F INDIV		SOLAR RAD. (DEG. F)	58,99	53,20	S IN E BE	0UE TO 0UE TO 0UE TO 0UE TO 0UE TO	SAMPLE & SQUARED FOR EQUILIBRIUM SAMPLE & SQUARED FOR EQUILIBRIUM SAMPLE & SQUARED FOR EVAPORATION OF A VERAGE E. DATA SET 1 B SAVERAGE E. DATA SET 2 B A VERAGE E. B A VERAGE EVAP1 B A VERAGE B
	DATA SET 1	DATA SET 2	DIFFERENCES	DIFFERENCE DIFFERENCE DIFFERENCE DIFFERENCE DIFFERENCE BUMMATION			DATA SET 1	DATA SET 2	OIFFERENCE	DIFFERENCE OIFFERENCE DIFFERENCE OIFFERENCE DIFFERENCE SUMMATION	SAMPLE R SAMPLE R SAMPLE R AVERAGE B AVERAGE B AVERAGE B

Figure 8.22 (Continued)

Figure 8.23 Comparison of Susquehanna site and Harrisburg spray-pond temperatures, program COMET2

Figure 8.24 Comparison of Susquehanna site and Harrisburg pond water losses, program COMET2

Figure 8.25. Exceedance probability for annual peak pond temperature

Figure 8.26 Exceedance probability for annual peak 30-day pond water loss

9 REFERENCES

- U.S. Nuclear Regulatory Commission, Regulatory Guide 1.27, "Ultimate Heat Sink for Nuclear Power Plants."*
- 2. A. M. Elgawhary, "Spray Pond Mathematical Model for Cooling Fresh Water and Brine," Ph.D. Thesis, Oklahoma State University, Stillwater, 1971.
- Pennsylvania Power and Light, "Preliminary Safety Analysis Report, Susquehanna Steam Electric Station Units 1 and 2," Docket 50-387.**
- 4. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, <u>Transport Phenomena</u>, John Wiley and Sons, Inc., New York, NY, 1960.
- 5. W. D. Ranz and W. R. Marshall, "Evaporation From Drops," <u>Chemical</u>
 <u>Engineering Progress</u> 48, 141-173 (1952).***
- 6. D. M. Himmelblau, <u>Basic Principles and Calculations in Chemical</u> Engineering, Prentice Hall, Inc., Englewood Cliffs, NJ, 1962.
- 7. Ecolaire Co., "Topical Report-Oriented Spray Cooling System," Ecolaire Condenser, Lehigh Valley, PA, January 1977.
- 8. R. B. Codell, "Digital Computer Simulation of Thermal Effluent Dispersion in Rivers, Lakes and Estuaries," Ph.D. Thesis, Lehigh University, Bethlehem, PA, 1973.
- 9. G. W. Branne, "Spray Pond Testing at Canadys Station," South Carolina Electric and Gas Co., Columbia, SC, unpublished.**

See footnotes at end of list.

- 10. V. E. Schrock and G. J. Trezek, "Rancho Seco Nuclear Service Spray Ponds Performance Evaluation," Report No. WHM-4, University of California (Berkeley) for Sacramento Municipal Utility District, July 1973.
- 11. SPRACO, "Spray Ponds--The Answer to Thermal Pollution Problems," Spray Engineering Company, Burlington, MA, undated.
- 12. K. H. Chen and G. J. Trezek, "Spray Energy Release (SER) Approach to Analyzing Spray System Performance," <u>Proceedings of American Power Conference</u>, Vol. 38, 1435-1448, Illinois Institute of Technology, Chicago, IL, 1976.
- J. L. Baldwin, <u>Climates of the United States</u>, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Washington, DC, 1973.
- 14. R. B. Codell and W. K. Nuttle, "Analysis of Ultimate Heat Sink Cooling Ponds," USNRC Report NUREG-0693, November 1980.†
- 15. G. H. Jirka, G. Abraham, and D. R. F. Harleman, "An Assessment of Techniques of Hydrothermal Prediction," Technical Report No. 203, R. M. Parsons Laboratory for Water Resources and Hydrodynamics, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, July 1975 (also available as NUREG-0044†, March 1976).
- 16. P. J. Ryan and D. R. F. Harleman, "An Analytical and Experimental Study of Transient Cooling Ponds Behavior," Report No. 161, R. M. Parsons Laboratory for Water Resources and Hydrodynamics, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, January 1973.
- 17. D. K. Brady, W. L. Graves, and J. C. Geyer, <u>Surface Heat Exchange at Power Plant Cooling Lakes</u>, Report No. 5, Edison Electric Institute, EEI Publication 69-401, New York, NY, 1969.

See footnotes at end of list.

- 18. R. W. Hamon, L. L. Wiess, and W. T. Wilson, "Insolation as an Empirical Function of Daily Sunshine Duration," <u>Monthly Weather Review</u> 82(6):141-146, June 1954.***
- 19. W. O. Wunderlich, "Heat and Mass Transfer Between a Water Surface and the Atmosphere," Report No. 14, TVA Engineering Laboratory, Norris, TN, 1972.
- 20. L. R. Beard, "Statistical Methods in Hydrology," Engineering Memorandum EM 1110-2-1450, U.S. Army Engineer District, Corps of Engineers, Sacramento, CA, January 1962.

^{*}Single copies of Active Guides are available for \$1.50 each. Send check/money order (made payable to Superintendent of Documents) to the U.S. Nuclear Regulatory Commission, Washington, DC 20555. ATTN: Sales Manager.

^{**}Available in NRC Public Document Room (1717 H St., N.W., Washington, DC 20555) for inspection and copying for a fee.

^{***}Available in public technical libraries.

[†]Available for purchase from the NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555, and/or the National Technical Information Service, Springfield, VA 22161.

APPENDIX A

STATISTICAL TREATMENT OF OUTPUT

Program SPSCAN, in addition to determining the peak ambient pond temperature for the entire length of record, determines the maximum ambient temperature and evaporation for each year of the record and performs several manipulations of the yearly maximums to facilitate graphic analyses:

- (1) The data are ranked from highest to lowest temperature.
- (2) Their "probability" or plotting position is determined based on the number of years in the data set using the formulae (Ref. 20):

$$P_1 = 1 - (0.5)^{1/N}$$
 (A.1)

$$P_{N} = (0.5)^{1/N}$$
 (A.2)

$$P_{i} = P_{1} - (i-1)\Delta P \tag{A.3}$$

where
$$2 (0.5 - P_1)$$

 $\Delta P = \frac{2 (0.5 - P_1)}{N-1}$

N = number of data points in the set

 P_1 = plotting position of the highest yearly maximum

 P_N = plotting position of the lowest yearly maximum

 P_i = plotting position of each individual point

(3) The first two moments of the distribution of any variable T (mean and standard deviation) are determined from the formulae (Ref. 20):

$$M = \frac{\Sigma T}{N}$$
 (sample mean) (A.4)

$$s^2 = \frac{\Sigma T^2 - (\Sigma T)^2 / N}{N - 1}$$
 (standard deviation)² (A.5)

where

 $\boldsymbol{\Sigma}$ implies the sum over all N values in the data set

(4) The maximum likelihood curve and confidence limits of temperature and water loss are calculated. The probabilities of the data are assumed to be representable by Student's t distribution.

A.1 Maximum Likelihood Curve

The maximum likelihood frequency curve for any variable T in probability coordinates is described by the equation:

$$T = M + sk \tag{A.6}$$

where

M = sample mean of T

s = standard deviation of T

and

k = the 100 (1 - P)th percentile of Student's t distribution with N - 1
degrees of freedom,

where P = the probability (independent variable)
N = the sample size.

A.2 Confidence Limits

The 5% and 95% confidence limits of T are calculated from the formulae

$$T_{95} = T + \sqrt{\frac{s^2}{N} \left(1 + \frac{k^2}{2}\right)}$$
 k (A.7)

$$T_5 = T - \sqrt{\frac{s^2}{N} \left(1 + \frac{k^2}{2}\right)}$$
 k (A.8)

The 95% and 5% confidence limits and maximum likelihood curve are calculated for probabilities P ranging from 0.001 to 0.999. These points should be plotted as smooth curves on probability-scale paper along with the ranked raw data.

The error-limit curves express the probability of a value falling outside of the error banks in any given year. For the 95% and 5% bands, therefore, there is 1 chance in 20 that the ambient temperature value for any given recurrence interval is greater than indicated by the 5% curve and 1 chance in 20 that it is less than the 95% curve.

The conservatism of choosing the design-basis event coincident with the most adverse meteorological conditions may be demonstrated with the following procedure.

The maximum-likelihood curves for temperature T (°F) and 30-day evaporation, may be extrapolated to the 100-yr recurrence intervals (0.01 probability per year) T_{100} and W_{100} , respectively, or to any other justifiable recurrence interval. Correction factors for peak pond temperature ΔT and evaporation ΔW_e are determined by comparing T_{100} and W_{100} with their corresponding highest observed values from the record, T_{max} and W_{max} :

$$\Delta T = T_{100} - T_{\text{max}} \circ F \tag{A.10}$$

$$\Delta W_e = W_{100} - W_{max} ft^3/30 days$$
 (A.11)

Only correction factors greater than zero should be considered. If the maximum observed temperature or evaporation is higher than the 100-yr (or other period) recurrence values, no correction factor is taken. These correction factors may be added directly to the peak loaded pond temperature and evaporations determined in subsequent calculations.

An example of the statistical procedure is offered in Section 7.

APPENDIX B

COMPUTER CODES

Figure	B.1	Listing	of	Program	SPRCO
Figure	B.2	Listing	of	Program	DRIFT
Figure	B.3	Listing	of	Program	SPSCAN
Figure	B.4	Listing	of	Program	SPRPND
Figure	B. 5	Listing	of	Program	COMET2

```
PROGRAM SPRCO(INPUT, OUTPUT, TAPE7, TAPE9, TAPE5=INPUT, TAPE6=OUTPUT,
     1 PUNCH. TAPE4=PUNCH)
       SPRAY POND CORRELATION MODEL
      RICHARD CODELL
C
      U.S. NUCLEAR REGULATORY COMMISSION, WASHINGTON D.C.
C
      GENERATES A SET OF PERFORMANCES FROM THE HIGH WIND SPEED(HWS) MODEL
      AND THE LOW WIND SPEED MODEL(LWS) AND CORRELATES THE RESULTS TO
      A SET OF MULTILE LINEAR REGRESSION EQUATIONS
      DIMENSION TSEG(11), HUM(11)
                                                                                000130
      COMMON/LWSCOM/ ATOP(12), ASIDE(12)
                                                                                000140
      COMMON A, VOL, AM, CON1, CON2, CON3, CON4, CON5, VIS, RHOA, DIFF,
                                                                                000160
     1 PR, AK, DT, H, EVAP, NSTEPS, CON6, DTO6, DTO2, TDROP
                                                                                000170
     1 ,U0, V0, SC
                                                                                000180
      C(Z) = (Z-32)/1.8
                                                                                000190
      ALPHA IS CONVERGENCE PARAMETER OF LWS MODEL
      DATA ALPHA/-.2/
      DATA NPNTS, VELO, THETA, YO, R, PB, PHI/200, 22.5, 71.0, 5.0, .104,
     1 29.92,90.0/
      DATA TWETO, DTDRYO, WINDO, THOTO, RTW, RTD, RW, RTH/50.0, 20.0,
     1 0.1,90.0,30.0,30.0,20.0,30.0/
      NAMELIST/INPUT/ NPNTS, HT, ALEN, WID, VELO, THETA, YO, R, PB,
     1 Q.PHI, TWETO, DTDRYO, WINDO, THOTO, RTW, RTD, RW, RTH
      REWIND 7
                                                                                000230
      REWIND 9
      WRITE(6,22)
   22 FORMAT(1H1,30X, COEFFICIENTS FOR EFFICIENCY AND EVAPORATION'/
     1 10x, 'FROM A SPRAY FIELD'///30x, 'INPUT VARIABLES')
      READ (5, INPUT)
      WRITE(6,200) NPNTS, VELO, THETA, R, PB, HT, WID, ALEN, YO, Q, PHI
  200 FORMAT(///,20x, 'NUMBER OF RANDOM POINTS, NPNTS = ",15/
     1 20x, 'INITIAL VELOCITY OF DROPS LEAVING NOZZLE, VELO = ',F10.2,
     2 ' FT/SEC'/
     3 20X, INITIAL ANFLE OF DROPS TO HOR., THETA = ',F10.3,' DEGREES'/ 4 20X, GEOMETRIC MEAN RADIUS OF DROPS, R = ',F10.4,' CM'/
     5 20x, 'ATMOSPHERIC PRESSURE, PB = ',F10,2,' INCHES HG'/
     6 20x, HEIGHT OF SPRAY FIELD, HT = ',F10.2,' FT'/
     7 20x, WIDTH OF SPRAY FIELD, WID = ',F10.1,' FT'/
     8 20X, 'LENGTH OF SPRAY FIELD, ALEN = ',F10.1,' FT'/
     8 20x, HEIGHT OF SPRAY NOZZLES ABOVE POND SURFACE, YO = ',F10.1,
        ' FT'/20x, 'FLOWRATE OF WATER SPRAYED, Q = ',F10.2,' CU.FT./SEC',/
     * 20%, HEADING OF WIND W.R.T.LONG AXIS, PHI = ',F10.2,' DEGREES'//)
      CONVERT SPRAY PARAMETERS TO METRIC UNITS
C
      VELO=VELO+30.48
      THETA =THETA+(3.1415926/180.0)
      HT=HT+30.48
      WID=WID+30.48
      ALEN#ALEN#30.48
      Y0=Y0+30.48
      Q=Q*28316
      TWETH=TWETO+RTW
      TDRYO=TWETO+DTDRYO
      TDRYH=TWETH+RTD+DTDRYO
      WH=WINDO+RW
      THOTH=THOTO+RTH
  WRITE(6,201) TWETO, TWETH, TDRYO, TDRYH, WINDO, WH, THOTO, THOTH 201 FORMAT(/40X, 'RANGES OF METEOROLOGICAL PARAMETERS'/20X,
     1 'WET BULB TEMPERATURE = ',F10.3,' TO',F10.3,' DEG.F'/20X,
     3 'DRY BULB TEMPERATURE = ',F10.3,' TO',F10.3,' DEG.F'/ 20X,
     2 'WIND SPEED = ',F10.3,' TO',F10.3,' MPH'/20X,
     3 'SPRAYED TEMPERATURE = ',F10,3,' TO',F10,3,' DEG,F'//)
      NPNTS = THE NUMBER OF POINTS IN THE CORRELATION
C
      HT = THE HEIGHT OF THE SPRAY FIELD, FT
```

Figure B.1 Listing of program SPRCO

```
ALEN = THE LENGTH OF THE SPRAY FIELD, FT
      WID = THE WIDTH OF THE SPRAY FIELD, FT
      VELO = THE INITIAL VELOCITY OF THE DROPS LEAVING THE NOZZLE, FT/SEC
C
C
      THETA = THE ANGLE OF THE DROPS LEAVING THE NOZZLE W.R.T. HORIZON, DEGREES
      YO = THE HEIGHT OF THE NOZZLES ABOVE POND SURFACE, FT
      R = THE GEOMETRIC MEAN DROP SIZE, CM
C
C
      PB = BAROMETRIC PRESSURE, INCHES MERCURY
      Q = QUANTITY OF WATER SPRAYED THROUGH FIELD, CUBIC FEET PER SECOND
C
      TWETO=LOWER LIMIT OF RANGE OF WET BULB T., F
C
      DTDRYO = LOWER LIMIT ON RANGE OF DRY BULB T ADDED TO WET BULB T, F
C
      WINDO = LOWER LIMIT OF WIND SPEED RANGE, MPH
C
      THOTO = LOWER LIMIT OF SPRAYED WATER TEMPERATURE, F
C
C
      RTW = RANGE OF WET BULB TEMPERATURE, F
      RTD = RANGE OF DRY BULB TEMPERATURE, F
C
      RW = RANGE OF WIND SPEED, MPH
C
C
      RTH = RANGE OF SPRAYED TEMPERATURE, F
      WRITE(9) NPNTS
      AREA OF SIDE OF SPRAY POND IN HWS MODEL
C
      ASIDEH#HT*ALEN
                                                                            000300
      NSTEPS=10
                                                                            000340
      DLEN=ALEN/10
                                                                            000350
      DWID=WID/10
                                                                            000360
      DO 801 J=1,10
      I=12-J
                                                                             000370
      TOP AND SIDE AREAS FOR EACH SEGMENT IN LWS MODEL
      ATOP(I)=J*DLEN*DWID*J=(J=1)*DLEN*DWID*(J=1)
                                                                            000380
      ASIDE(I)=((J=1)*DLEN+(J=1)*DWID)*2*HT
                                                                            000390
                                                                            000400
  801 CONTINUE
      ASIDE(1)=(ALEN+WID) +2+HT
                                                                            000410
                                                                             000430
      ASIDE(12)=0
      CALL INIT(R, THETA, YO, VELO)
      WRITE(6.6)
    6 FORMAT(10x, 'PT NO,', T20, 'TWET', T30, 'TDRY', T40, 'THOT', T50, 'WIND',
     1 T61, 'HUMID', T71, 'ETA', T81, 'ETA', T92, 'EVAP.', T105, 'EVAP.',
     2 /T22, 'F', T32, 'F', T42, 'F', T51, 'MPH', T92, 'LWS', T105, 'HWS',
     3 T71, 'LWS', T81, 'HWS'/)
                                                                             000520
      DO 1 I=1, NPNTS
      GENERATE RANDOM MET DATA
C
      CALL RANDIN(TWETO, DTDRYO, WINDO, THOTO, RTW, RTD, RW,
                                                                             000530
                                                                             000540
     1 RTH, TWET, TORY, WIND, THOT, PB)
                                                                             000560
      WIND=WIND *ABS(SIN(PHI*.017453293))
                                                                             000570
    CONVERT MPH TO CM/SEC
C
      WIND1=WIND+44.7
C
      CALCULATE HUMIDITY
                                                                             000590
      CALL PSY1(TDRY, TWET, PB, DP, PV, HUMID, ENTHAL, VOLUME, RH)
      THOT1=C(THOT)
      TDRY1=C(TDRY)
      TWET1=C(TWET)
       HIGH WIND SPEED MODEL
C
     , USE HIGH WIND SPEED MODEL
C
      CALL HWS(THOT1, HUMID, TDRY1, ASIDEH, TWAV, WIND1, Q, R, EVAPS)
C
      HWS EFFICIENCY AND EVAPORATION
      ETA2=(THOT1=TWAV)/(THOT1=TWET1)
      ETA2S=ETA2
                                                                             000670
                                                                             000680
      EVAPSS=EVAPS/Q
      DELIBERATELY SET TO EXCEED FORMAT, THEREBY PRINTING STARS
Ç
                                                                             000700
      ETA2=-9999
      EVAP8=-9999999
      IF(TDRY.GT.THOT) GOTO 1111
                                                                             000710
                                                                             000720
      DO 444 L=2,11
      TSEG(L)=TDRY1+1.0
```

Figure B.1 (Continued)

```
444 HUM(L)=HUMID+.01
                                                                               000740
    5 FORMAT(10x,15,5F10.4,3x,F7.4,F10.4.2(5x,F9.6))
LOW WIND SPEED MODEL
C
      CALL LWS(THOT1, HUMID, TDRY1, ALEN, WID, TWAV, Q, R,
     1 TSEG, HUM, ALPHA, HT, EVAPS)
                                                                               000770
      LWS EFFICIENCY AND EVAPORATION
C
      ETA2=(THOT1-TWAV)/(THOT1-TWET1)
      EVAPS=EVAPS/Q
                                                                               000810
 1111 CONTINUE
                                                                               000820
      WRITE(9) TWET, TDRY, THOT, WIND, HUMID, ETA2,
     1 ETA2S, EVAPS, EVAPSS
      WRITE(6,5) I, TWET, TDRY, THOT, WIND, HUMID, ETA2, ETA2S, EVAPS, EVAPSS
                                                                               000860
    1 CONTINUE
      GENERATE REGRESSION EQUATIONS
C
      CALL FITSPR
                                                                               000865
      STOP
                                                                               000870
      END
                                                                               000880
      SUBROUTINE RANDIN(TWETO, OTDRYO, WINDO, THOTO, RTW, RTD,
                                                                               000890
                                                                               000900
     1 RW, RTH, TWET, TDRY, WIND, THOT, PB)
      GENERATES RANDOM VALUES OF METEOROLOGICAL VARIABLES
                                                                               000910
      DO 1 I=1,10
      TWET=TWETO+RTW*RANF(J)
                                                                               000920
      TDRY=TWET+DTDRYO+RTD*RANF(J)
                                                                               000930
      CHECK FOR PLAUSIBILITY OF TWET WITH RESPECT TO TDRY
      CALL PSY1(TDRY, TWET, PB, DP, PV, HUMID, H, V, RH)
                                                                               000940
      IF(HUMID.GT.0) GOTO 2
                                                                               000950
      GOTO 1
    2 WIND=WINDO+RW*RANF(J)
                                                                               000970
                                                                               000980
      THOT=THOTO+RTH+RANF(J)
      IF (THOT.LE.TDRY.AND.WIND.LT.1.0) GOTO 1
      GOTO 3
    1 CONTINUE
                                                                               000960
    3 CONTINUE
      RETURN
                                                                               000990
                                                                               001000
      END
      SUBROUTINE LWS(THOT, HUMID, TAIR, ALEN, WID, TWAV, Q, R, TSEG,
                                                                               001010
                                                                               001020
     1 HUM, ALPHA, HT, EVAPS)
      LOW WIND SPEED MODEL
C
      COMMON A, VOL, AM, CON1, CON2, CON3, CON4, CON5, VIS,
                                                                               001030
     1 RHOA, DIFF, PR, AK, DT, H, EVAP, NSTEPS, CON6, DTO6,
                                                                               001040
                                                                               001050
     2 DTO2, TDROP, UO, VO, SC
      COMMON/LWSCOM/ ATOP(12), ASIDE(12)
                                                                               001060
      DIMENSION VUP(12), FLOW(12), QT(12), RHO2(12), VH(12)
                                                                               001090
      DIMENSION TSEG(11), HUM(11), HOUT(11)
      DIMENSION HFIL(12), TFIL(12)
                                                                               001100
      DIMENSION TM2(12), TM1(12), HM2(12), HM1(12)
                                                                               001110
                                                                               001120
      DO 491 I=1,12
                                                                               001130
      0=(I)SMT
                                                                               001140
      TM1(I)=0
      0=(I)SMH
                                                                               001150
                                                                               001160
  491 HM1(I)=0
                                                                               001170
      TLAST=0
                                                                               001180
      DATA HVAP, CP, RHO/580.0,1.0,1.0/
      ICNT=0
                                                                               001190
      DENSITY OF AMBIENT AIR GM/CC
C
      RHO1 = (1 + HUMID) / ((81.86 * TAIR + 22387) * (.03448 + HUMID / 18))
                                                                               001200
                                                                               001210
      FLOW(11)=0
      QT(1)=0
                                                                               001220
                                                                               001230
      FLOW(1)=0
                                                                               001240
      RH02(1)=RH01
                                                                               001250
      ATOT=ALEN*WID
                                                                               001260
      TSEG(1)=TAIR
```

Figure B.1 (Continued)

```
00127C
      HUM(1)=HUMID
      CONCENTRATION OF WATER IN AIR
C
                                                                          001280
      CWA=HUMID/((81.86*TAIR+22387)*(.03448+HUMID/18))
      BEGIN ITERATIVE SOLUTION
C
                                                                           001290
      DO 801 NITER=1,20
                                                                           001300
      DO 101 J=1,10
                                                                           001310
      I=12-J
      DENSITY OF AIR IN EACH SEGMENT GM/CC
C
      RHO2(I)=(1+HUM(I))/((81.86*TSEG(I)+22387)*(.03448+HUM(I)/18))
                                                                          001320
      HUMID VOLUME, CC/GM BDA
      VH(I)=((81.86*TSEG(I)+22387)*(.03448+HUM(I)/18))
                                                                           001330
                                                                           001340
  101 CONTINUE
  105 CONTINUE
                                                                           001350
                                                                           001360
      DO 1001 J=1,10
                                                                           001370
      I=12-J
                                                                           001380
      DRHO=RHO1-RHO2(I)
                                                                           001390
      ARG=980*DRHO*HT*.5/RHO1
                                                                           001400
      ICNT=1
                                                                           001410
      IF(ARG.LT.0.0) GOTO 668
      UPWARD VELOCITY OF AIR LEAVING EACH SEGMENT
C
                                                                           001420
      VUP(I)=SQRT(ARG)
                                                                           001430
  668 CONTINUE
      MATERIAL BALANCE ON EACH SEGMENT
                                                                           001440
      QT(I)=VUP(I)+ATOP(I)/VH(I)
                                                                           001450
      FLOW(I=1)=FLOW(I)+GT(I)
                                                                           001460
 1001 CONTINUE
                                                                           001470
      ICNT=ICNT+1
                                                                           001480
  104 CONTINUE
      ENTHALPY OF AIR ENTERING FIRST SEGMENT, CAL/GM BDA
      HOUT(1) #FLOW(1) *(.238 *TAIR + HUMID *(HVAP + .45 *TAIR))
                                                                           001490
                                                                           001510
      TSEG(1)=TAIR
                                                                           001520
      EVAPS=0
                                                                           001530
      HUM(1)=HUMID
                                                                           001540
      SUMTC=0
                                                                           001550
      11,5=I 10S 00
                                                                           001560
      TEMP=TSEG(I-1)+273.2
      VISCOSITY OF AIR, GM/(SEC CM)
C
                                                                           001570
      VIS=2.7936E=6*TEMP**.73617
      DENSITY OF AIR, GM/CC
C
                                                                           001580
      RHOA=.353/TEMP
      DIFFUSION COEFF OF AIR(CM**2/SEC)
C
      DIFF=5.8758E=6*TEMP**1.8615
C
      PRANTL NO
                                                                           001600
      PR#.93176*TEMP**(=.042784)
C
      SCHMIDT NO
                                                                           001610
      SC=2.2705*TEMP**(-.21398)
      THERMAL CONDUCTIVITY OF AIR, CM/SEC
C
                                                                           001620
      AK#3.9273E=7*TEMP**.88315
                                                                           001630
      CON4=AK/R
      CON6=2*R*RHOA/VIS
                                                                           001640
                                                                           001650
      CONS=DIFF/R
                                                                           001660
      TDROP=THOT
      CALCULATE TEMPERATURE AND EVAPORATION OF FALLING DROPS
C
                                                                           001670
      CALL DROP(TSEG(I-1), CWA)
      SENSIBLE HEAT TRANSFER IN SEGMENT
      HSEG=RHO*CP*(Q*ATOP(I)/ATOT)*(THOT=TDROP)
                                                                           001680
C
      EVAPORATION IN SEGMENT
                                                                           001690
      EVAP1=EVAP*G*ATOP(I)/(ATOT*VOL)
       SENSIBLE HE AT LEAVING SEGMENT AND ENTERING NEXT
C
      HOUT(I)=HSEG+HOUT(I-1)*(1-QT(I-1)/(QT(I-1)+FLOW(I-1)))
                                                                           001700
      HUMIDITY IN SEGMENT
C
      HUM(I)=HUM(I-1)+EVAP1/FLOW(I-1)
                                                                           001710
```

Figure B.1 (Continued)

```
TEMPERATURE IN SEGMENT
C
       TSEG(I) = (HOUT(I)/FLOW(I=1) = HUM(I) + HVAP)/(.238 + .45 + HUM(I))
                                                                             001720
       EVAPS=EVAPS+EVAP1
                                                                             001730
       CWA=HUM(I)/((81.86*TSEG(I)+22387)*(.03448+HUM(I)/18))
                                                                             001740
       SUMTC=SUMTC+TDROP+ATOP(I)
                                                                             001750
  201 CONTINUE
                                                                             001760
       AVERAGE TEMPERATURE OF WATER FALLING TO POND SURFACE
       TWAV=SUMTC/ATOT
                                                                             001770
       IF(NITER.LT.3) GOTO 49
                                                                             001790
       DO 492 I=2,11
                                                                             001800
       SECOND ORDER SMOOTHING OPERATOR TO AID CONVERGENCE
       HFIL(I) = ALPHA * (HM2(I) = 2 * HM1(I) + HUM(I))
                                                                             001810
       TFIL(I) = ALPHA*(TM2(I) = 2*TM1(I) + TSEG(I))
                                                                             001820
  492 CONTINUE
                                                                             001830
       DO 493 I=2,11
                                                                             001840
       TSEG(I)=TSEG(I)+TFIL(I)
                                                                             001850
      HUM(I)=HUM(I)+HFIL(I)
                                                                             001860
  493 CONTINUE
                                                                             001870
   49 DO 494 I=2,11
                                                                             001880
      TM2(I)=TM1(I)
                                                                             001890
      TM1(I)=TSEG(I)
                                                                             001900
      HM2(I)=HM1(I)
                                                                             001910
  494 HM1(I)=HUM(I)
                                                                             001920
      IF(ABS((TLAST=TWAV)/TWAV).LT.0.002) GOTO 800
                                                                             001930
      TLASTETWAY
                                                                             001940
  801 CONTINUE
                                                                             001950
      WRITE(6,20)
   20 FORMAT(10X, 'NO CONVERGENCE AFTER 20 TRIES')
  800 RETURN
                                                                             001970
      END
                                                                             001980
      SUBROUTINE HWS(THOT, HUMID, TAIR, ASIDE, TWAV.
                                                                             001990
     1 WIND, Q, R, EVAPS)
                                                                             002000
      HIGH WIND SPEED MODEL
C
      COMMON A, VOL, AM, CON1, CON2, CON3, CON4, CON5, VIS, RHOA, DIFF,
                                                                             002010
     1 PR, AK, DT, H, EVAP, NSTEPS, CON6, DTO6, DTO2, TDROP
                                                                             005050
     1 ,U0, V0, SC
                                                                             002030
      DIMENSION TSEG(11), HUM(11), HOUT(11)
                                                                             002040
      DATA HVAP, CP, RHO/580.0, 1.0, 1.0/
                                                                             002050
      CON7=RHO+CP+Q/10
                                                                            005060
      CON8=Q/(10*VOL)
                                                                            002070
C
      GMS OF BDA ENTERING SPRAY FIELD FROM UPWIND
      FLOW=WIND*ASIDE/((81.86*TAIR+22387)*(.03448+HUMID/18))
                                                                            080500
      ENTHALPY OF AIR ENTERING SPRAY FIELD, CAL/SEC
C
      HOUT(1)=FLOW+(.238+TAIR+HUMID+(HVAP+.45+TAIR))
      TSEG(1)=TAIR
                                                                            002100
      HUM(1)=HUMID
                                                                            002110
      CONCENTRATION OF WATER IN AIR
C
      CWA=HUMID/((81.86*TAIR+22387)*(.03448+HUMID/18))
                                                                            002120
      EVAPS=0
                                                                            002130
      SUMTC=0
                                                                            002140
      11,5=I 1 00
                                                                            002150
      TEMP=TSEG(I-1)+273.2
                                                                            002160
      VISCOSITY OF AIR GM/(CM SEC)
C
      VIS=2.7936E=6*TEMP**.73617
                                                                            002170
      DENSITY OF AIR GM/CC
      RHOA=.353/TEMP
                                                                            002180
C
      DIFFUSION COEFFICIENT OF AIR CM**2/SEC
      DIFF=5.8758E=6*TEMP**1.8615
C
      PRANTL NO
      PR=.93176*TEMP**(-.042784)
                                                                            002200
C
      SCHMIDT NO
      SC=2.2705*TEMP**(-.21398)
                                                                            002210
```

Figure B.1 (Continued)

_	THEOMAL CONDUCTIVITY OF AID CM/REC	
C	THERMAL CONDUCTIVITY OF AIR CM/SEC AK=3.9273E=7*TEMP**.88315	002220
		002230
	CON4=AK/R CON6=SQRT(2*R*RHOA/VIS)	002240
		002250
	CONS=DIFF/R	002260
	TDROP#THOT TEMPERATURE AND EVAPORATION OF DROP	002200
C		002270
_	CALL DROP(TSEG(I=1),CWA) SENSIBLE HEAT ENTERING SEGMENT FROM DROPS	VV2E1 V
С	HSEG=CON7*(THOT=TDROP)	002280
_	EVAPORATION FROM ALL DROPS INTO SEGMENT	V02200
C	EVAPIREVAP+CON8	002290
_	ENTHALPY LEAVING SEGMENT AND ENTERING NEXT	002270
С	HOUT(I)=HOUT(I=1)+HSEG	002300
C.	HUMIDITY OF SEGMENT	002300
C	HUM(I)=HUM(I=1)+EVAP1/FLOW	002310
С	AIR TEMPERATURE IN SEGMENT	***************************************
L	TSEG(I)=(HOUT(I)/FLOW-HUM(I)*HVAP)/(.24+.45*HUM(I))	002320
	EVAPS=EVAPS+EVAP1	002330
С	CWA = CONCENTRATION OF WATER IN AIR, GM/CC	002350
· ·	CWA=HUM(I)/((81.86*TSEG(I)+22387)*(.03448+HUM(I)/18))	002340
	SUMTC=SUMTC+TDROP	002360
	1 CONTINUE	002370
С	AVERAGE TEMPERATURE OF WATER FALLING TO POND SURFACE	
·	TWAV=SUMTC/10	002380
	RETURN	002390
	END	002400
	SUBROUTINE DROP(TAIR, CINF)	002410
	COMMON A, VOL, AM, CON1, CON2, CON3, CON4, CON5, VIS, RHOA, DIFF,	002420
	1 PR ,AK,DT,H,EVAP,NSTEPS,CON6,DT06,DT02,TDR0P	002430
	1 ,U0,V0,SC	002440
C	CALCULATE HEAT AND MASS TRANSFER FROM A DROP	
-	EVAP=0	002470
	ICNT=1	002480
С	BEGIN FOURTH ORDER RUNGE-KUTTA INT.OF EQUATIONS	002490
	DO 1 I=1,NSTEPS	002500
	CALL FTDROP(ICNT, TOROP, DTD1, DI1, TAIR, CINF)	002510
	ICNT=ICNT+1	002520
	TDROP1=TDROP+DTO2*DTD1	002530
	CALL FTDROP(ICNT, TDROP1, DTD2, DI2, TAIR, CINF)	002540
	TDROP2#TDROP+DTD2#DT02	002550
	CALL FTDROP(ICNT, TDROP2, DTD3, DI3, TAIR, CINF)	002560
	ICNT=ICNT+1	002570
	TDROP3=TDROP+DTD3+DT	002580
	CALL FTDROP(ICNT, TDROP3, DTD4, D14, TAIR, CINF)	002590
	TDROP#TDROP+(DTD1+2*(DTD2+DTD3)+DTD4)*DTD6	002600 002610
	EVAP=EVAP+(DI1+2*(DI2+DI3)+DI4)*DT06	005950
	1 CONTINUE	002630
	RETURN	002640
	END SUBROUTINE FTDROP(ICNT, TDRP, DTD, DI, TAIR, CINF)	002650
	COMMON A, VOL, AM, CON1, CON2, CON3, CON4, CON5, VIS, RHOA, DIFF,	002660
	1 PR,AK,DT,H,EVAP,NSTEPS,CON6,DT06,DT02,TDR0P	002670
	1 , U0, V0, SC	002680
С	RATE OF HEAT AND MASS TRANSFER FROM A DROP	
U	COMMON/RESTOR/ SQV(100)	002690
	DATA RG/82.02/	002700
	TDK=TDRP+273.2	002710
C	VAPOR PRESSURE OF WATER ATM	
•	P=EXP(71.02499-7381.6477/TDK-9.0993037*ALOG(TDK)	002720
	1 +.0070831558*TDK)	002730
	• • • • • • • • • • • • • • • • • • • •	=

Figure B.1 (Continued)

```
SRE=CON6 + SQV(ICNT)
                                                                             002740
                                                                             002750
      HC=CON4+(1+.3+PR++.3333333*SRE)
                                                                             002760
      HD=CON5+(1+.3+8C++.3333333+SRE)
      CDROP=P+18.0/(RG+TDK)
                                                                             002770
      RATE OF MASS TRANSFER
C
                                                                             002780
      DI=CON3*HD*(CDROP=CINF)
      DATA HVAP/580.0/
      RATE OF TEMPERATURE CHANGE
C
      DTD==CON1 * (DI*HVAP+CON3*HC*(TDRP=TAIR))
                                                                             002800
      RETURN
                                                                             002810
      END
                                                                             002820
      SUBROUTINE INIT(R, THETA, YO, VELO)
      COMMON A, VOL, AM, CON1, CON2, CON3, CON4, CON5, VIS, RHOA, DIFF,
                                                                             004170
     1 PR, AK, DT, H, EVAP, NSTEPS, CON6, DTO6, DTO2, TDROP
                                                                             004180
     1 ,U0, V0, SC
                                                                             004190
      COMMON/RESTOR/SQV(100)
                                                                             004210
      VOL=(3.1415926*4/3)*R**3
                                                                             004220
      DATA G/980.0/
                                                                             004230
      DATA HVAP, CP, RHO/597.0, 1.0, 1.0/
                                                                             004240
      A=3.1415926*R**2
                                                                             004250
      CON1=1.0/VOL
                                                                             004260
      CON2=HVAP+12.566371+R++2
                                                                             004270
      CON3=12.566371*R**2
                                                                             004280
      VO=VELO*SIN(THETA)
                                                                             004290
      UO=VELO*COS(THETA)
                                                                             004300
      TFALL=V0/G+SQRT((V0/G)**2+2*Y0/G)
                                                                             004310
      DT=TFALL/NSTEPS
                                                                             004320
      DT06=DT/6
                                                                             004330
      S/10=S010
                                                                             004340
      NUM#2*NSTEPS+10
                                                                             004350
      DO 1 I=1, NUM
                                                                             004360
      SOTO*(1-1)*T
                                                                             004370
      V=SQRT(U0**2+(V0=980*T)**2)
                                                                             004380
    1 SQV(I)=SQRT(V)
                                                                             004390
                                                                             004400
      RETURN
      END
                                                                             004410
      SUBROUTINE FITSPR
                                                                             004440
      FITS SPRAY EFFICIENCY OF HWS AND LWS MODELS TO REGRESSION
      EQUATIONS AND COMPARES FITTED RESULTS TO ORIGINAL COMPUTATIONS
      DIMENSION EV(200), YEVAP(200)
                                                                             004450
      DIMENSION T(200), TW(200), THOT(200), WIND(200), CH(6), CL(7),
                                                                             004460
     1 CEH(6), CEL(7), TL(200), TWL(200), THOTL(200), WINDL(200), ETA(200),
                                                                             004470
     2 ETAL(200), EVAPH(200), EVAPL(200), X(1200), A( 7, 8), P(200),
     3 JJJ( 7), IHLD( 7), YP(200), ETAH(200)
      REWIND 9
                                                                             004510
                                                                             004520
      REWIND 7
      READ(9) NPNTS
      NPL=0
                                                                             004550
      DO 1 I=1, NPNTS
                                                                             004560
      READ FROM SCRATCH FILE
C
      READ(9) TW(I), T(I), THOT(I), WIND(I), HUMID,
     1 TETA, ETAH(I), TEVAP, EVAPH(I)
      CHECK TO SEE IF LWS MODEL WAS USED
C
                                                                             004600
      IF(TETA.LE.O.O) GOTO 1
                                                                             004610
      NPL=NPL+1
                                                                             004620
      TWL (NPL) = TW(I)
                                                                             004630
      TL(NPL)=T(I)
                                                                             004640
      THOTL (NPL) = THOT (I)
                                                                             004650
      WINDL(NPL)=WIND(I)
                                                                             004660
      ETAL (NPL) = TETA
                                                                             004670
      EVAPL (NPL) = TEVAP
                                                                             004680
      REVISED SCRATCH FILE ELIMINATING PTS WHERE LWS NOT USED
C
```

Figure B.1 (Continued)

```
WRITE(7) TW(1),T(1),THOT(1),WIND(1),HUMID,
     1 TETA, ETAH(I), TEVAP, EVAPH(I)
                                                                             004710
    1 CONTINUE
      PRINT 101, NPNTS, NPL
  101 FORMAT(10x, 'NUMBER OF POINTS GENERATED = ', 15,/
     1 10x, 'NUMBER OF POINTS PLOTTED = ', 15)
                                                                             004730
      PUT HWS DATA INTO ARRAY FOR ETA EGN
C
                                                                             004740
      00 2 I=1, NPNTS
                                                                             004750
      X(I)=T(I)
                                                                             004760
      I1=I+NPNTS
                                                                             004770
      IZ=I1+NPNTS
                                                                             004780
      I3=I2+NPNTS
                                                                             004790
      14=13+NPNTS
                                                                             004800
      X(I1)=TW(I)
                                                                             004810
      (I)TOHT=(SI)x
                                                                             004820
      X(I3)=WIND(I)
      X(I4) = SQRT(WIND(I))
                                                                             004840
    2 CONTINUE
      MULTIPLE REGRESSION ON HWS EFFICIENCY
C
      CALL SURFIT (X, ETAH, NPNTS, 5, 7 , A, WORK, P, JJJ, IHLD, E)
       SAVE COEFFICIENTS OF EQN FOR ETAH
                                                                             004860
C
                                                                             004870
      DO 4 I=1,6
                                                                             004880
    4 CH(I)=A(I,1)
       IF(E.EQ.1.0) WRITE(6.6)
    6 FORMAT(10X, CONVERGENCE ERROR')
                                                                             004900
      WRITE(6,5) (CH(I), I=1,6)
    5 FORMAT(1H1, 10x, FOR HWS EFFICIENCY, CONSTANT AND COEFF OF T, TWET, TH
     10T, 1,10x, WIND AND WIND ++.5 ARE 1,/(10x,E15.8))
                                                                             004940
       EVAPORATION FOR HWS MODEL
C
       REGRESSION OF HWS EVAPORATION
C
       CALL SURFIT(X, EVAPH, NPNTS, 5, 7, A, WORK, P, JJJ, IHLD, E)
                                                                             004950
       IF(E.EQ.1.0) WRITE(6.6)
                                                                             004970
       DO 7 I=1.6
                                                                             004980
    7 CEH(I)=A(I,1)
       WRITE(6,8) (CEH(I), I=1,6)
    8 FORMAT(///,10x, FOR HWS EVAPORATION, CONSTANT AND COEFICIENT OF T,
      1 TWET, THOT, WIND AND WIND**.5 ARE*,/(10x,E15.8))
                                                                             005030
       SETUP LWS DATA FOR ETAL EQUATION
C
                                                                             005040
       DO 10 I=1, NPL
                                                                              005050
       X(I)=TL(I)
                                                                              005060
       I1=I+NPL
                                                                             005070
       I2=I1+NPL
                                                                              005080
       13=12+NPL
                                                                              005090
       14=13+NPL
       IS=I4+NPL
       X(I1)=TL(I)**2
       X(I2)=TL(I)**3
       x(I3)=TWL(I)
       X(I4)=THOTL(I)
       x(I5)=THOTL(I)**2
                                                                              005140
    10 CONTINUE
       MULTIPLE REGRESSION FOR LWS EFFICIENCY
C
       CALL SURFIT(X,ETAL, NPL, 6, 7, A, WORK, P, JJJ, IHLD, E)
       IF(E.EQ.1.0) WRITE(6,6)
                                                                              005170
       SAVE COEFF OF EGN FOR ETAL
       00 11 I=1.7
                                                                              005190
    11 CL(I)=A(I,1)
       WRITE(6,12) (CL(I), I=1,7)
    12 FORMAT(///,10x, FOR LWS EFFICIENCY, CONSTANT AND COEFF OF T, T ** 2,
      1 T**3, TWET, THOT AND THOT **2 ARE'/(10X, E15.8))
       REGRESSION FOR LWS EVAPORATION
C
       CALL SURFIT (X, EVAPL, NPL, 6,7, A, WORK, P, JJJ, IHLD, E)
```

Figure B.1 (Continued)

```
IF(E.EQ.1.0) WRITE(6.6)
       DO 13 I=1,7
    13 CEL(I)=A(I,1)
                                                                             005300
       WRITE(6,14) (CEL(I), I=1,7)
    14 FORMAT(///,10x, FOR LWS EVAPORATION, CONSTANT AND COEFF OF T, T**2,
      1 T**3, TWET, THOT AND THOT **2 ARE 1/(10x, E15.8))
       REWIND 7
                                                                             005360
C
       COMPARE REGRESSION TO ORIGINAL
       DO 31 I=1,NPL
                                                                             005370
       READ(7) TW(I), T(I), THOT(I), WIND(I), HUMID,
      1 TETA, ETAH(I), TEVAP, EVAPH(I)
C
     CHOOSE HIGHER INPUT EFF
                                                                             005400
       IF(TETA.GT.ETAH(I)) GOTO 32
                                                                             005410
       EV(I)=EVAPH(I)
                                                                             005420
       ETA(I) = ETAH(I)
                                                                             005430
       GOTO 31
                                                                             005440
    32 ETA(I)=TETA
                                                                             005450
       EV(I)=TEVAP
                                                                             005460
    31 CONTINUE
                                                                             005470
    PICK HIGHER CORRELATION COEFF
                                                                             005480
       DO 33 I=1,NPL
                                                                             005490 .
       EH=CH(1)+CH(2)*T(I)+CH(3)*TW(I)+CH(4)*THOT(I)+
                                                                             005500
      1 CH(5) *WIND(I) +CH(6) *SQRT(WIND(I))
       EL=CL(1)+CL(2)*T(I)+CL(3)*T(I)**2+CL(4)*T(I)**3+
      1 CL(5) *TW(I) +CL(6) *THOT(I) +CL(7) *THOT(I) **2
      IF(EH.GT.EL) GOTO 34
                                                                             005540
       YP(I)=EL
                                                                             005550
      YEVAP(I) #CEL(1)+CEL(2)+T(I)+CEL(3)+T(I)+*2+CEL(4)+T(I)+*3
      1 +CEL(5) *TW(I) +CEL(6) *THOT(I) +CEL(7) *THOT(I) **2
      GOTO 33
                                                                             005580
   34 YP(I)=EH
                                                                             005590
      YEVAP(I) = CEH(1) + CEH(2) + T(I) + CEH(3) + TW(I) + CEH(4) + THOT(I) +
                                                                             005600
     1 CEH(5) *WIND(I) +CEH(6) *SQRT(WIND(I))
   33 CONTINUE
                                                                             005620
      WRITE (6,81)
   81 FORMAT(1H1,30X, 'CORRELATION OF SPRAY EFFICIENCY')
C
      PLOT SCATTERGRAMS FOR DATA VS REGRESSION
      CALL SCATTER(ETA, YP, NPL)
                                                                             005640
      WRITE(6,82)
   82 FORMAT(1H1,30X, CORRELATION OF EVAPORATION FRACTION')
      CALL SCATTER(EV, YEVAP, NPL)
                                                                             005670
      WRITE(4,201) CH,CL,CEH,CEL
  201 FORMAT(4E15.8)
      STOP
                                                                             005680
      END
                                                                             005690
      SUBROUTINE SCATTER(X,Y,NPNTS)
                                                                             005700
C
      PLOTS SCATTERGRAM OF X ARRAY VS Y ARRAY AND CALCULATES
      CORRELATION COEFFICIENTS
      DIMENSION ICHAR(11), X(200), Y(200), MA(70,42)
                                                                             005710
      DATA ICHAR/1H ,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,1HZ/
                                                                             005720
      DO 1 I=1,70
                                                                            005730
      DO 1 J=1,42
                                                                             005740
    1 MA(I,J)=1
                                                                             005750
C
      SCALE INPUT
                                                                             005760
      X0=1.0E50
                                                                            005770
      X1=-X0
                                                                            005780
      SXXZO
                                                                            005790
      SYYEO
                                                                            005800
      SXY=0
                                                                            005810
      XAV=0
                                                                            005820
      YAVEO
                                                                            005830
```

Figure B.1 (Continued)

```
DO 100 I=1, NPNTS
                                                                         005840
    SXX=X(I) **2+SXX
                                                                         005850
    YY2+(I) **2+SYY
                                                                         005860
    SXY=X(I)*Y(I)+SXY
                                                                         005870
    XAV=XAV+X(I)
                                                                         005880
    YAV=YAV+Y(I)
                                                                         005890
    IF(X(I).GT.X1) X1=X(I)
                                                                         005900
    IF(Y(I),GT,X1) X1=Y(I)
                                                                         005910
    IF(X(I).LT.X0) X0=X(I)
                                                                         005920
                                                                         005930
    IF(Y(I),LT,X0)X0=Y(I)
100 CONTINUE
                                                                         005940
                                                                         005950
    RANGE=X1-X0
    SXX=NPNTS+SXX=XAV++2
                                                                         005960
    S***VAY-YYE*EIN9N=YYY
                                                                         005970
                                                                         005980
    SXY=NPNTS+SXY=XAV+YAV
    R2=SXY**2/(SXX*SYY)
                                                                         005990
    SERR=SQRT(((SXX+SYY)-SXY++2)/(I*(I+2)+SXX))
    WRITE(6,20) R2, SERR, X0, X1
 20 FORMAT (30X, CORRELATION COEFF R**2 = 1,F8.4,/
   1 30x, 'STANDARD ERROR = ',F10.4/,30x,
   1 'MIN AND MAX OF PLOT SCALES = ',2E15.6)
    DO 2 K=1, NPNTS
                                                                         006020
    N=((X(K)-X0)/RANGE)*70+.5
                                                                         006030
    IF(N.GT.70) N#70
                                                                         006040
                                                                         006050
    IF(N.LT.1) N=1
    M=((Y(K)=X0)/RANGE)*42+.5
                                                                         006060
    IF (M.GT.42) M#42
                                                                         006070
    IF(M.LT.1)M#1
                                                                         006080
    MA(N,M) = MA(N,M) + 1
                                                                         006090
  2 CONTINUE
                                                                         006100
                                                                         006110
    00 3 N=1,70
    DO 3 M#1,42
                                                                         006120
    IF (MA(N,M).LT.9) GOTO 4
                                                                         006130
    MA(N,M)=ICHAR(11)
                                                                         006140
    GOTO 3
                                                                         006150
  4 K=MA(N,M)
                                                                         006160
    MA(N,M) = ICHAR(K)
                                                                         006170
  3 CONTINUE
                                                                         006180
    WRITE(6,7)
                                                                         006200
    DO 5 J=1,42
    J1=42-J+1
                                                                         006210
  5 WRITE(6,6) (MA(I,J1),I=1,70)
    WRITE(6,7)
  6 FORMAT(26X,1H*,70A1,1H*)
  7 FORMAT(26X,1H*,7(10HI********))
    WRITE(6,8)
  8 FORMAT(/26x, 'PLOTTED CHARACTERS ARE NUMBER OF POINTS FALLING AT TH
   1AT POSITION')
    RETURN
                                                                         006330
    END
    SUBROUTINE SURFIT(X,Y,N,M,MX,A,WORK,P,JJJ,IHLD,E)
                                                                         006340
    DIMENSION X(1),Y(1),A(MX,1),WORK(1),P(1),JJJ(1),IHLD(1)
                                                                         006350
    MULTIPLE LINEAR REGRESSION ROUTINE
    R CODELL AFTER US ARMY MISSILE COMMAND, REDSTONE ARSENAL ALA
                                                                         006360
    FEO
    LB=M+2
                                                                         006370
    LV=M+1
                                                                         006380
                                                                         006390
    L=1
    JJJ=1
                                                                         006400
    D04 I=2,M
                                                                         006410
    JJJ(I)=N*L+1
                                                                         006420
```

Figure B.1 (Continued)

```
006430
  4 L=L+1
                                                                          006440
    DO 1 I=1,LV
                                                                          006450
    DO 1 J=1,L8
                                                                          006460
  1 A(I,J)=0.
                                                                          006470
    AZN
                                                                          006480
    DO 5 I=1.N
                                                                          006490
  5 P(I)=1.
                                                                          006500
    00 2 I=1,LV
                                                                          006510
    DO 3 J=1,N
                                                                          006520
  3 A(I,LB)=A(I,LB)+Y(J)*P(J)
    IF(I.EQ.LV) GOTO 211
                                                                          006530
                                                                          006540
    K=JJJ(I)
                                                                          006550
    DO 2 L=1,N
                                                                          006560
    P(L)=X(K)
                                                                          006570
  2 K=K+1
211 DO 88 I=1,N
                                                                           006580
 88 P(I)=1.
                                                                           006590
    DO 9 I=1,M
                                                                          006600
                                                                          006610
    LL=I+1
    DO 6 JELL,LV
                                                                           006620
    K=JJJ(J=1)
                                                                           006630
                                                                           006640
    DO 7 KK=1.N
    A(I,J)=A(I,J)+P(KK)+X(K)
                                                                           006650
  7 K=K+1
                                                                           006660
                                                                           006670
  6 A(J,I)=A(I,J)
                                                                           006680
    K=JJJ(I)
                                                                           006690
    DO 9 MM=1,N
    P(MM)=X(K)
                                                                           006700
  9 K=K+1
                                                                           006710
                                                                           006720
    DO 101 I=2,LV
    K=JJJ(I-1)
                                                                           006730
                                                                           006740
    DO 101 KK=1,N
                                                                           006750
    A(I,I) = A(I,I) + X(K) + *2
                                                                           006760
101 K=K+1
    DO 21 I=1,LV
                                                                           006770
 21 IHLD(I)=I
                                                                           006780
                                                                           006790
    JJ=LB
                                                                           006800
    DO 55 I=1,LV
    KK=LV-I
                                                                           006810
                                                                           006820
    IF (KK) 10,10,26
                                                                           006830
 26 LL=KK+1
                                                                           006840
    IJJ=1
                                                                           006850
    L=I
    WORK=A
                                                                           006860
    DO 17 II=1,LL
                                                                           006870
                                                                           006880
    DO 17 J=1,LL
    IF(ABS(WORK)-ABS(A(II,J))) 18,17,17
                                                                           006890
 18 WORK=A(II,J)
                                                                           006900
    L=J+I-1
                                                                           006910
    IJJ=J
                                                                           006920
                                                                           006930
 17 CONTINUE
    IF(IJJ-1)222,222,19
                                                                           006940
                                                                           006950
 19 DO 20 II=1,LV
                                                                           006960
    Z=A(II,1)
    A(II,1)=A(II,IJJ)
                                                                           006970
 20 A(II,IJJ)=Z
                                                                           006980
                                                                           006990
    IY=IHLD(I)
    IHLD(I)=IHLD(L)
                                                                           007000
                                                                           007010
    IHLD(L)=IY
222 DO 111 L=1,KK
                                                                           007020
    IF(ABS(A)-ABS(A(L+1,1))) 77,111,111
                                                                           007030
```

Figure B.1 (Continued)

```
007040
  77 00 99 J=1,JJ
                                                                            007050
     Z=A(1,J)
                                                                            007060
      A(1,J)=A(L+1,J)
                                                                            007070
  99 A(L+1,J)=Z
                                                                            007080
 111 CONTINUE
                                                                            007090
  10 JJ=JJ-1
                                                                            007100
      IF(A)11,8,11
                                                                            007110
  11 00 12 J=1,JJ
                                                                            007120
  12 WORK (J) = A(1, J+1)/A
                                                                            007130
      KK=JJ+1
                                                                            007140
      DO 33 K=1,M
                                                                            007150
     00 33 J=2,KK
                                                                            007160
  33 A(K,J-1)=A(K+1,J)-A(K+1,1)*WORK(J-1)
                                                                            007170
      DO 55 J=1,JJ
                                                                            007180
  55 A(LV,J) = WORK(J)
                                                                            007190
      00 55 I=1'W
      L=I+1
                                                                            007200
                                                                            007210
      DO 22 J=L,LV
                                                                            007220
      IF(IHLD(I)=IHLD(J)) 22,22,23
                                                                            007230
   23 IY=IHLD(I)
                                                                            007240
      IHLD(I)=IHLD(J)
                                                                            007250
      IHLD(J)=IY
                                                                            007260
      Z=A(I,1)
                                                                            007270
      A(I,1)=A(J,1)
                                                                            007280
      A(J,1)=Z
                                                                            007290
  22 CONTINUE
                                                                            007300
   13 RETURN
                                                                            007310
    8 E=1.
                                                                            007320
      GOTO 13
                                                                            007330
      END
                                                                            002830
      SUBROUTINE PSY1(DB, WB, PB, DP, PV, W, H, V, RH)
      THIS ROUTINE CALCULATES' VAPOR PRESSURE PV, HUMIDITY RATIO W,
                                                                            002840
                                                                            002850
          ENTHALPY H, VOLUME V, RELATIVE HUMIDITY RH, AND
C
                                                                            002860
          DEW POINT TEMPERATURE DPN
          WHEN THE DRY BULB TEMPERATURE DB, WET BULB TEMPERATURE WB,
                                                                            002870
          AND BAROMETRIC PRESSURE PB ARE GIVEN
                                                                            088500
C
                                                                            002890
      UNITS' DB, WB, + DP )F>\ PB, + PV )IN OF HG>\ W) = WATER VAPOR
Ç
          PER = DRY AIR>\ H )BTU/= OF DRY AIR>\ V )FT**3/= OF DRY
                                                                            002900
C
          AIRN RH IS A FRACTION, NOT (
                                                                            002910
C
                                                                            002920
      C(F) = (F - 32.0E0)/1.8E0
                                                                            002930
      PVP=PVSF (WB)
      WSTAR=0.622*PVP/(PB=PVP)
                                                                            002940
      IF (WB.GT.32.0) GO TO 105
                                                                            002950
      PV=PVP=5.704E=4*PB*(DB=WB)/1.8
                                                                            002960
                                                                            002970
      GO TO 110
                                                                            002980
  100 PV=PVP
                                                                            002990
      GO TO 110
                                                                            003000
  105 CDB=C(DB)
                                                                            003010
      CWB#C(WB)
      HL=597.31+0.4409*CD8-CW8
                                                                            003020
      SH=0.2402+0.4409*WSTAR
                                                                            003030
                                                                            003040
      EX=(WSTAR=CH*(CDB=CWB)/HL)/0.622
                                                                            003050
      PV=PB*EX/(1.+EX)
                                                                            003060
  110 W=0.622*PV/(PB-PV)
      V=0.754*(DB+459.7)*(1.0+7000.0*W/4360.0)/PB
                                                                            003070
                                                                            003080
      H=0.24*D8+(1061.0+0.444*DB)*W
                                                                            003090
      IF (PV.GT.0.0) GO TO 115
                                                                            003100
      PV=0.0
      DP=0.0
                                                                            003110
                                                                            003120
      RH=0.0
                                                                            003130
      RETURN
                                                                            003140
 115 IF (DB.NE.WB) GO TO 120
```

Figure B.1 (Continued)

```
0P=08
                                                                          003150
    RH=1.0
                                                                          003160
    RETURN
                                                                          003170
120 OP=DPF(PV)
                                                                          003180
    RH=PV/PVSF(DB)
                                                                          003190
    RETURN
                                                                          003200
    END
                                                                          003210
    FUNCTION PVSF(X)
                                                                          003440
    DIMENSION A(6), B(4), P(4)
                                                                          003450
    DATA A/-7.90298,5.02808,-1.3816E-7,11.344,8.1328E-3,-3.49149/
                                                                          003460
    DATA 8/-9.09718,-3.56654,0.876793,0.0060273/
                                                                          003470
    T=(X+459.688)/1.8
                                                                          003480
    IF (T.LT.273.16) GO TO 100
                                                                          003490
    Z=373.16/T
                                                                          003500
    P(1)=A(1)*(Z=1.0)
                                                                          003510
    P(2)=A(2)*ALOG10(Z)
                                                                          003520
    Z1=A(4)*(1.0=1.0/2)
                                                                          003530
    P(3)=A(3)*(10.0**Z1-1.0)
                                                                          003540
    Z1=A(6) * (Z-1.0)
                                                                          003550
    P(4)=A(5)*(10.0**Z1-1.0)
                                                                          003560
    GO TO 105
                                                                          003570
100 Z=273.16/T
                                                                          003580
    P(1)=B(1)*(Z=1.0)
                                                                          003590
    P(2)=B(2)*ALOG10(Z)
                                                                          003600
    P(3)=B(3)*(1.0-1.0/2)
                                                                          003610
    P(4)=ALOG10(B(4))
                                                                          003620
105 SUM=0.0
                                                                          003630
    DO 110 I=1,4
                                                                          003640
110 SUM=SUM+P(I)
                                                                          003650
    PVSF=29.921 *10.0 * * SUM
                                                                          003660
    RETURN
                                                                          003670
    END
                                                                          003680
    FUNCTION DPF(PV)
                                                                          003690
    THIS ROUTINE CALCULATES DEW-POINT TEMPERATURE FOR A GIVEN
                                                                          003700
        VAPOR PRESSURE PV
                                                                          003710
    DP(A,B,C,Y)=A+(B+C*Y)*Y
                                                                          003720
    Y=ALOG(PV)
                                                                         003730
    IF (PV.GT.0.1836) GO TO 100
                                                                         003740
    DPF=DP(71.98,24.873,0.8927,Y)
                                                                         003750
    RETURN
                                                                         003760
100 DPF=DP(79.047,30.579,1.8893,Y)
                                                                         003770
    RETURN
                                                                         003780
    END
                                                                         003790
```

Figure B.1 (Continued)

```
PROGRAM DRIFT (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
C
                                                                           000110
      THIS PROGRAM COMPUTES THE DRIFT LOSS FROM A SPRAY POND FOR
                                                                           000120
C
      VARIOUS WIND SPEEDS. COMPUTATIONS ARE BASED ON A CONSERVATIVE
                                                                           000130
      BALLISTIC MODEL OF DROP TRAJECTORIES.
C
                                                                           000140
      WK NUTTLE AND R CODELL, U.S. NUCLEAR REGULATORY COMMISSION
С
C
      WASHINGTON D.C. 20555
C
                                                                           000160
      COMMON WND, VUP, DIA, A, W
                                                                           000170
      REAL GAMMA(2), WIND(16), KX(4), KY(4), DIAM(21)
                                                                           000180
      REAL PROPOR(21), DIS(2), RAD(21), XPRIM(21)
                                                                           000190
      REAL XI(2,16), YI(2,16), VI(2,16), SPRAY(50,2)
      INTEGER TITLE (60)
                                                                           000210
      DATA GAMMA/0., 180./
                                                                           000220
      WIND SPEED TABLE
C
      DATA WIND/0.,2.5,5.,7.5,10.,12.5,15.,17.5,20.,22.5,25.,
                                                                           000230
     1 30.,35.,40.,45.,50./
                                                                           000240
      DIAMETER OF DROPS IN TYPICAL SPRAYCO DISTRIBUTION
      DATA DIAM/4000.,3600.,2800.,2290.,2000.,1650.,1340.,1190.,1000.,85000250
     15.,640.,580.,520.,460.,425.,400.,365.,330.,300.,260.,200./
C
      FRACTION OF DROPS IN CORRESPONDING DIAMETER RANGE
      DATA PROPOR/.15,.15,.2,.1,.1,.05,.05,.03,.03,.02,.006,.004,.003000270
     1,.002,.001,.001,.001,.001,.0005,.0005/
                                                                           000280
C
      ASSUMED 50 CM/SEC UPDRAFT IN SPRAY FIELD
      VUP=50
                                                                           000290
      XI AND YI ARE COORDINATES OF UPWIND AND DOWNWIND APOGEE FOR
      EACH WIND SPEED IN TABLE
      DATA XI/235.,-235.,216.,-254.,195.,-270.,173.,-286.,151.,-296.,
                                                                           000300
     1128.,=306.,104.,=311.,80.,=319.,57.,=327.,32.,=338.,8.,=349.,
                                                                           000310
     2-38.,-375.,-87.,-403.,-136.,-442.,-185.,-471.,-232.,-512./
                                                                           000320
      DATA YI/359.,359.,355.,363.,350.,367.,345.,369.,341.,370.,337.,
                                                                           000330
     1369.,332.,367.,328.,364.,324.,360.,321.,355.,317.,351.,311.,342., 000340
     2305.,333.,299.,325.,294.,318.,290.,311./
                                                                           000350
      VI IS HORIZONTAL DROP VELOCITY AT EACH UPWIND OR DOWNWIND APOGEE
С
      DATA VI/331.,331.,398.,259.,461.,180.,519.,96.,574.,7.2,626.,
                                                                           000360
     1-81.,676.,-167.,723.,-246.,769.,-320.,807.,-388.,850.,-451.,932., 000370
     2-566.,1002.,-669.,1069.,-757.,1132.,-844.,1193.,-919./
                                                                           000380
      NAMELIST/DROPSZ/DIAM, PROPOR
    1 READ(5,520) TITLE
                                                                           000400
  520 FORMAT(80A1)
                                                                           000410
      IF(TITLE(1).EQ.'S') STOP
                                                                           000420
      WRITE(6,570) TITLE
                                                                           000430
      READ (5, DROPSZ)
  570 FORMAT(1H1,5(/),T20, TITLE: 1,80A1)
                                                                           000440
      READ(5,550) NUM
                                                                           000450
  550 FORMAT(I2)
                                                                           000460
      WRITE(6,510) NUM
                                                                           000470
  510 FORMAT(
                 5(/), T20, 'SPRAY GEOMETRY (', 12, ' POINTS)'//, T23,
                                                                           000480
     1'FEET FROM EDGE', T42, 'FRAC. OF SPRAYS',/)
                                                                           000490
      DO 7 N=1, NUM
                                                                           000500
      READ (5,560) SPRAY (N,1), SPRAY (N,2)
  560 FORMAT(2F10.0)
                                                                           000520
    7 WRITE(6,500) SPRAY(N,1), SPRAY(N,2)
                                                                           000530
  500 FORMAT(T20,2F15,6,/)
      WRITE (6,540)
                                                                           000550
  540 FORMAT(1x,5(/),T20,'DRIFT LOSS FRACTION',//,T27,'WIND SPEED',T42, 000560
     1'LOSS FRAC.',/)
                                                                           000570
C
      DT IS THE TIMESTEP IN PATHWAY INTEGRATION, SEC
      DATA DT, DTO2, PI/. 01, . 005, 3, 1415926/
      DO 20 J=1,16
                                                                           000600
      WND=WIND(J) *5280./3600.*12.*2.54
                                                                           000610
      15,1=M 5 00
                                                                           000620
```

Figure B.2 Listing of program DRIFT

```
000630
      UIA=DIAM(M)/10000.
                                                                             000640
      A=PI*DIA**2/4
                                                                             000650
      W=PI+DIA++3/6
                                                                             000660
C
                                                                             000670
      INITIALIZE TRAJECTORY CALCULATIONS
C
                                                                             000680
C
                                                                             000690
      DO 6 I=1,2
                                                                             000700
      GAMEGAMMA(I) *3.1416/180.
                                                                             000710
      x=xI(I,J)
                                                                             000720
      Y=YI(I,J)
                                                                             000740
      VYN=0
                                                                             000750
      VXN=VI(I,J) *COS(GAM)
                                                                             000770
      DO 3 K=1,1000
      CALL FUN(VXN, VYN, KX(1), KY(1))
                                                                             000780
                                                                             000790
      VXN1=VXN=KX(1) *DT
                                                                             000800
      VYN1=VYN-KY(1) *DT
                                                                             000810
      CALL FUN(VXN1, VYN1, KX(2), KY(2))
                                                                             000820
      X=X+DTO2*(VXN+VXN1)
                                                                             000830
      Y=Y+DTO2*(VYN+VYN1)
                                                                             000840
      VXN=VXN=DTO2*(KX(1)+KX(2))
                                                                             000850
      VYN=VYN-DTO2*(KY(1)+KY(2))
                                                                             000860
      DIS(I)=X
                                                                             000870
      IF(Y.LE.O.) GO TO 6
                                                                             000880
    3 CONTINUE
                                                                             000890
      RAD (M) = . 1
                                                                             000900
      XPRIM(M)=10000.
                                                                             000910
      GO TO 2
                                                                             000920
    6 CONTINUE
                                                                             000930
C
      SOLVE FOR RADIUS OF SPRAY DISTRIBUTION AND DISPLACEMENT
                                                                             000940
C
                                                                             000950
C
      DOWN WIND
                                                                             000960
C
                                                                             000970
      RAD(M) = (DIS(1) - DIS(2))/2.
                                                                             000980
      xprim(m)=(DIS(1)+DIS(2))/((-2.))
                                                                             000990
    2 CONTINUE
                                                                             001000
¢
                                                                             001010
C
       COMPUTE DRIFT LOSS FRACTION
                                                                             001020
                                                                             001030
       DRFTFC=0.
                                                                             001040
       DO 19 I=1, NUM
                                                                             001050
       XDW=SPRAY(I,1) +12. +2.54
                                                                             001060
       DRFTLS=0.
                                                                             001070
       DO 18 M=1,21
       IF(XDW.GT.(XPRIM(M)+RAD(M)))GO TO 18
                                                                             001080
                                                                             001090
       IF(XDW.GT.(XPRIM(M)-RAD(M)))GO TO 16
       DRFTLS=DRFTLS+PROPOR(M)
                                                                             001100
                                                                              001110
       GO TO 18
                                                                              001120
    16 IF(XDW.GT.XPRIM(M)) GO TO 17
       DRFTLS=DRFTLS+PROPOR(M)=PROPOR(M)*(ACOS((XPRIM(M)=XDW)/RAD(M))/3.1001130
                                                                              001140
      14159)
                                                                              001150
       GO TO 18
    17 DRFTLS=DRFTLS+PROPOR(M) * (ACOS((XDW-XPRIM(M))/RAD(M))/3.14159)
                                                                              001160
                                                                              001170
    18 CONTINUE
                                                                              001180
    19 DRFTFC=DRFTLS+SPRAY(I,2)+DRFTFC
                                                                              001190
       WRITE(6,530) WIND(J), DRFTFC
   530 FORMAT(T20,F15.3,F15.8,/)
                                                                              001210
    20 CONTINUE
                                                                              001220
       GO TO 1
                                                                              001230
       END
       SUBROUTINE FUN(VX, VY, DVX, DVY)
                                                                              001240
                                                                              001250
     VELOCITY COMPONENTS OF DROP
 C
                                                                              001260
       COMMON WND, VUP, DIA, A, W
```

Figure B.2 (Continued)

	DATA RHO, VIS/.001204,.0001831/	001270
_		001260
C	DROP VELOCITIES WITH RESPECT TO WINDS	001290
	RVX=VX+WND	
	RVY=VY-VUP	001300
	V=SQRT(RVX**2+RVY**2)	001310
	RE=DIA+V+RHO/VIS	001320
	IF(RE.GT.2.0) GOTO 11	001330
	CD=24/RE	001340
		001350
	GOTO 15	001360
	11 IF(RE.GT.500.0) GOTO 12	001370
	CD=18.5/RE**.6	
	GOTO 15	001380
	12 CD=0.44	001390
	15 DRAG=CD+A+RHO+V++2/2	001400
	DVX=DRAG+RVX/V/W	001410
	DVY=DRAG#RVY/V/W+980.0	001420
		001430
	RETURN	001440
	END	001440

Figure B.2 (Continued)

```
PROGRAM SPSCAN(INPUT, OUTPUT, TAPE9, TAPE8=/495, TAPE5=INPUT
                                                                             SPSCAN 2
     1, TAPE6=OUTPUT, PUNCH, TAPE4, DEBUG=OUTPUT)
                                                                             SPSCAN 3
C
                                                                              SPSCAN 4
      PROGRAM SPSCAN IS A PROGRAM UNDER DEVELOPMENT BY THE STAFF OF THE SPSCAN 5
C
      HYDROLOGIC ENGINEERING SECTION OF THE U.S. NUCLEAR REGULATORY
C
                                                                             SPSCAN 6
      COMMISSION FOR USE IN EVALUATING THE DESIGN BASIS METEOROLOGY OF
C
                                                                             SPSCAN 7
C
                     PONDS USED AS THE ULTIMATE HEAT SINK OF A NUCLEAR
      SMALL SPRAY
                                                                             SPSCAN 8
¢
      POWER PLANT.
                     THE PROGRAM USES HISTORICAL WEATHER DATA PROVIDED
                                                                             SPSCAN 9
      ON TAPE BY THE NATIONAL WEATHER SERVICE AND A SIMPLIFIED POND
C
                                                                             SPSCAN10
C
      TEMPERATURE MODEL TO DETERMINE THE PERIOD OF RECORD WHICH WOULD
                                                                             SPSCAN11
C
      RESULT IN EITHER THE LOWEST COOLING PERFORMANCE OR HIGHEST
                                                                             SPSCAN12
C
      EVAPORATIVE WATER LOSS IN A GIVEN POND. THE USE OF THE PROGRAM
                                                                             SPSCAN13
C
      AND THE ANALYTICAL TECHNIQUES WHICH IT EMPLOYS ARE FULLY DESCRIBEDSPSCAN14
      IN LITERATURE AVAILABLE THROUGH THE HYDROLOGIC ENGINEERING SECTION. ALL QUESTIONS AND COMMENTS SHOULD BE ADDRESSED TO
C
                                                                             SPSCAN15
C
                                                                             SPSCAN16
C
      R. CODELL.
                                                                             SPSCAN17
                                                                             SPSCAN18
      REAL LATI, LAT, YRMODY (3), YRMAX (40,8)
                                                                             AUG6
      COMMON/COEF/ CEH(6).CEL(7),CH(6),CL(7),FEVAP,FDR,WDRO,NDRIFT,
                                                                             SPSCAN20
     1 DWDR, FDRIFT (20), HEAT, CON1, CON2, CON3, DTSPRY, DTIME, QSPRAY, CON4, CON53PSCAN21
     1 ,CEMIN,CEMAX,CMIN,CMAX
                                                                             SPSCAN22
      LATI=0.
                                                                             SPSCAN24.
      WRITE(6,100)
                                                                             SPSCAN25
  100 FORMAT(1H1,20(/),10X, U.S. NUCLEAR REGULATORY COMMISSION- ULTIMATESPSCAN26
     1 HEAT SINK SPRAY POND METEOROLOGICAL SCANNING MODEL.
                                                                             SPSCAN27
                                                                             SPSCANZE
      NAMELIST/INPUT/N, A, V, LAT, ISRCH, IPRNT, YRMODY
                                                                             SPSCAN29
     1 JGSPRAY, HEAT, NDRIFT, WDRO, DWDR, FDRIFT
                                                                             SPSCAN30
       ,CEMIN,CEMAX,CMIN,CMAX
                                                                             SPSCAN31
      HEAT=2.0E8
                                                                             SPSCAN32
      GSPRAY=50
                                                                             SPSCAN33
      NDRIFT=3
                                                                             SPSCAN34
      FDRIFT(1)=0.0
                                                                             SPSCAN35
      FDRIFT(2)=.00001
                                                                             SPSCAN36
      FDRIFT(3)=.00002
                                                                             SPSCAN37
      WDR0=0.0
                                                                             SPSCAN38
      DWDR=5.0
                                                                            SPSCAN39
      CMIN=0.1
                                                                             SPSCAN40
      CMAX=0.8
                                                                             SPSCAN41
      CEMIN=0.0
                                                                             SPSCAN42
      CEMAX=0.05
                                                                             SPSCAN43
      READ(5,555) CH,CL,CEH,CEL
                                                                             SPSCAN44
  555 FORMAT(4E15.8)
                                                                             SPSCAN45
      DATA N. ISRCH. IPRNT/1.1.0/
                                                                             SPSCAN46
                                                                             SPSCAN47
Ç
      READ DATA CARD
                                                                             SPSCAN48
C
                                                                             SPSCAN49
    1 READ(5, INPUT)
                                                                             SPSCAN50
      CON4=QSPRAY+3600
                                                                             SPSCAN51
      CON3=62.4*3600
                                                                             SPSCAN52
      CON5=1/(62.4*V)
                                                                             SPSCAN53
      DTSPRY=HEAT/(GSPRAY+3600+62.4)
                                                                             SPSCAN54
      IF(N.EQ.O) STOP
                                                                             SPSCAN55
C
                                                                             SPSCAN56
C
      IF THIS IS THE FIRST DATA CARD OR IF LAT HAS CHANGED, GENERATE A SPSCAN57
C
      NEW INTERMEDIATE FILE.
                                                                             SPSCAN58
C
                                                                             SPSCAN59
      IF(ABS(LAT1+LAT).GE..OO1) CALL SUB1(LAT)
                                                                             SPSCAN60
      LAT1=LAT
                                                                             SPSCAN61
      IF(N.GT.99) GO TO 4
                                                                             SPSCAN62
      IF(V.LT.0.) V=V*(-43560.)
                                                                             SPSCAN63
      IF(A.LT.O.) A=A*(+43560.)
                                                                             SPSCAN64
```

Figure B.3 Listing of program SPSCAN

```
SPSCANAS.
      A1=A/43560.
                                                                             SPSCAN66
      V1=V/43560.
                                                                             SPSCAN67
C
      PRINT POND PARAMETERS.
                                                                             SPSCAN68
C
                                                                             SPSCAN69
      WRITE(6,510)N,A,A1,V,V1, ISRCH, IPRNT
                                                                             SPSCAN70
  510 FORMAT(5(/), T20,10('*'), POND NUMBER ', I2, HAS THE FOLLOWING PARSPSCAN71
     1AMETERS ',25('*'),//.T35, 'SURFACE AREA'2X,F12.2, ' FT**2 (',F9.2, SPSCAN72
     2' ACRES) ', //, T35, 'VOLUME', 8X, F12.2, ' FT*+3 (', F9.2, ' ACRE-FT) ', //, SPSCAN73
     3735, 'ISRCH = ', I2, T65, 'IPRNT = ', I2)
                                                                            SPSCAN74
      WRITE(6,550)N
  550 FORMAT(5(/), T20,10('*'), POND NUMBER ',12, HAS BEEN MODELLED TO SPSCAN76
     IDETERMINE THE WORST ',13('+'),/,T38, 'PERIODS FOR COOLING AND EVASPSCAN77
     2PORATIVE WATER LOSS', /, 1H1)
                                                                             SPSCAN78
      WRITE(6,551)QSPRAY, HEAT, CEMIN, CEMAX, CMIN, CMAX
                                                                             SPSCAN79
  551 FORMAT (//, T20, 10 ('*'), 'SPRAY PARAMETERS', /, T35, 'SPRAY RATE = ',
                                                                             SPSCANAO
     1F10.2, ' CFS', T35, 'BASE HEAT LOAD = ', E12.2, ' BTU/HR',/
                                                                             SPSCAN81
     2,735, MINIMUM EVAPORATIVE LOSS FRACTION = ',F10.6,/
                                                                             SPSCANB2
     3, T35, MAXIMUM EVAPORATIVE LOSS FRACTION = ',F10.6,/
                                                                             SPSCAN83
     4, T35, MINIMUM SPRAY EFFICIENCY = ',F10.4./,
                                                                             SPSCAN84
     5735, MAXIMUM SPRAY EFFICIENCY = ',F10.4)
                                                                             SPSCAN85
                                                                             SPSCAN86
      WRITE (6,552)
  552 FORMAT(//, T20,10('*'), 'DRIFT LOSS TABLE'.//,
                                                                             SPSCAN87
     1730, WIND SPEED - MPH", T60, DRIFT LOSS FRACTION")
                                                                             SPSCAN88
                                                                             SPSCAN89
      DO 553 I=1, NORIFT
        WINDSP=(I-1) + DWDR+WDR0
                                                                             SPSCAN90
                                                                             SPSCAN91
  553 WRITE(6,554)WINDSP,FORIFT(I)
                                                                             SPSCAN92
  554 FORMAT(/,T35,F10.2,T67,F10.6)
                                                                             SPSCAN93
C
      MODEL TO FIND YEARLY MAXIMUM TEMPERATURES AND 30 DAY EVAPORATIVE
                                                                             SPSCAN94
C
                                                                             SPSCAN95
C
      LOSSES.
                                                                             SPSCAN96
C
                                                                             AUG6
      CALL SUB2(A, V, YRMAX)
      RANK YEARLY MAXIMUM TEMPERATURES AND 30 DAY EVAPORATIVE LOSSES
                                                                             SPSCAN98
C
                                                                             SPSCAN99
      COMPUTE 100 YEAR EXCEEDENCES, SAMPLE MEANS, STANDARD DEVIATIONS,
C
                                                                             SPSCA100
      AND SKEWS.
C
                                                                             SPSCA101
C
      CALL SUB5 (YRMAX)
                                                                             SPSCA102
      IF(ISRCH.LE.O.OR.ISRCH.GE.6) GO TO 1
                                                                             SPSCA103
      PRINT AND/OR PUNCH DAILY METEOROLOGY FOR THE PERIODS OF RECORD
                                                                             SPSCA104
C
      PRECEEDING THE HIGHEST ISRCH POND TEMPERATURES. (ISRCH ) 6)
                                                                             SPSCA105
C
                                                                             SPSCA106
      DO 2 I=1, ISRCH
                                                                             SPSCA107
                                                                             SPSCA108
      00 3 J=1.3
                                                                             SPSCA109
       J1=J+1
    3 YRMODY(J)=YRMAX(I,J1)
                                                                             SPSCA110
                                                                             AUG6
      CALL SUB3(YRMODY, IPRNT)
                                                                                    3
                                                                             SPSCA112
       IF (IPRNT.EQ.1) WRITE(6,520)
  520 FORMAT(1H1)
                                                                             SPSCA113
                                                                             SPSCA127
    2 CONTINUE
                                                                             SPSCA128
      GO TO 1
                                                                             SPSCA129
    4 YRMODY (3)=1.
                                                                             SPSCA130
      CALCULATE AND PRINT MONTHLY AVERAGES OF EACH PARAMETER IN METABL. SPSCA131
C
C
                                                                             SPSCA132
                                                                             SPSCA133
      CALL SUB4(YRMODY LAT )
                                                                             SPSCA134
      GO TO 1
                                                                             SPSCA135
      END
                                                                             SUB1
       SUBROUTINE SUB1 (LAT)
                                                                                    2
                                                                             SUB1
                                                                                    3
C
                                                                             SUB1
                                                                                    4
C
                                                                             SUB1
                                                                                    5
      REAL METABL(27,10), SRAD(25), LAT
      COMMON IDATE(3), IHOUR(6), WINDSP(6), TEMPDB(6), TEMPWB(6), TEMPDP(6), SUB1
                                                                             SUB1
      1 HUMID (6) , PRESSR (6) , SKY (6)
```

Figure B.3 (Continued)

```
8
      DATA METABL/270+0./
                                                                               SUB1
                                                                               SUB1
      DATA SRAD /25*0./
                                                                                      10
      WRITE(6,520) LAT
  520 FORMAT(5(/), T20, 10('*'), SUBROUTINE SUB1 HAS BEEN CALLED FOR LATISUB1
                                                                                      11
     1TUDE = ',F5.2,' DEG. NORTH ',5('*')./)
                                                                                      12
                                                                               SUB1
                                                                                      13
C
                                                                               SUB1
      POSITION TAPE TO FIRST OF MAY.
                                                                                      14
C
                                                                               SUB1
                                                                                      15
C
      CALL READRO
                                                                               SUB1
                                                                                      16
      I=(121-IDATE(3))*4-2
                                                                               SUB1
                                                                                      17
                                                                               SUB1
                                                                                      18
      DO 2 J=1, I
                                                                               SUB1
                                                                                      19
    2 READ(8)
                                                                               SUB1
    3 CALL READRO
                                                                                      20
                                                                               SUB1
       IF(IHOUR(1).NE.0) GO TO 3
                                                                                      21
                                                                               SUB1
                                                                                      55
      IF (IDATE (2).LT.5) GO TO 3
                                                                               SUB1
                                                                                      23
C
      READ IN FIRST 6 LINES OF DATA
                                                                               SUB1
                                                                                      24
C
C
                                                                               SUB1
                                                                                      25
                                                                               SUB1
                                                                                      26
      DO 4 I=1.6
      METABL(I,1)=IDATE(1)
                                                                               SUB1
                                                                                      27
                                                                               SUB1
      METABL(I,2)=IDATE(2)
                                                                                      28
                                                                               SUB1
                                                                                      29
      METABL(I,3)=IDATE(3)
      METABL(I,4)=IHOUR(I)
                                                                               SUB1
                                                                                      30
       METABL(I,5)=WINDSP(I)
                                                                               SUB1
                                                                                      31
                                                                               SU81
      METABL(I,6)=TEMPDB(I)
                                                                                      32
      METABL(I,7)=TEMPOP(I)
                                                                               SUB1
                                                                                      33
                                                                               SUB1
       METABL(I,8)=SKY(I)
                                                                                      34
       METABL(I,9)=TEMPWB(I)
                                                                               SUB1
                                                                                      35
    4 METABL(I,10)=PRESSR(I)
                                                                               SUB1
                                                                                      36
                                                                                      37
                                                                               SUB1
C
       MAKE SURE THAT THE FIRST LINE OF DATA IS COMPLETE.
                                                                               SUB 1
                                                                                      38
C
       IF DATA ARE MISSING, SUBSTITUTE FROM THE SECOND OR THIRD LINES
                                                                               SUB1
                                                                                      39
C
                                                                               SUB1
       IF FIRST THREE LINES ARE BAD, SKIP TO THE NEXT DAY.
                                                                                      40
C
                                                                               SUB1
                                                                                      41
C
                                                                               SUB1
                                                                                      42
       INDEX=1
                                                                               SUB1
                                                                                      43
       IYR=IDATE(1)
       IMON=IDATE(2)
                                                                               SUB1
                                                                                      44
                                                                                      45
                                                                               SUB1
       IDAY=IDATE(3)
                                                                               SUB1
                                                                                      46
       1=1
       GO TO 6
                                                                               SUBI
                                                                                      47
                                                                               SUB1
                                                                                      48
     5 IF(I.EQ.3) GO TO 12
                                                                               SUB1
                                                                                      49
       I=I+1
                                                                               SUB1
                                                                                      50
       DO 7 J=5.10
                                                                               SUB1
    7 IF (METABL(1,J).GE.999.) METABL(1,J)=METABL(I,J)
                                                                                      51
                                                                               SUB1
                                                                                      52
     6 DO 1 J=5,10
       IF (METABL (1, J).GE.9999.) GO TO 5
                                                                               SUB1
                                                                                      53
                                                                               SUB1
                                                                                      54
     1 CONTINUE
                                                                               SU81
                                                                                      55
       INDEX=2
                                                                               SUB1
                                                                                      56
C
       READ IN REST OF FIRST DAY'S DATA.
                                                                               SUB1
                                                                                      57
C
Ċ
                                                                               SUB1
                                                                                      58
                                                                               SUB1
                                                                                      59
       DO 8 K=7,19,6
                                                                               SUB1
                                                                                      60
       K5=K+5
       CALL READRC
                                                                               SU81
                                                                                      61
                                                                               SUB1
       IK1=I-K+1
                                                                                      62
                                                                               SUB1
                                                                                      63
       00 8 I=K,K5
       IK1=I-K+1
                                                                               SUB1
                                                                                      64
                                                                               SUB 1
       METABL(I,1)=IDATE(1)
                                                                                      65
       METABL(I,2)=IDATE(2)
                                                                               SUB1
                                                                                      66
       METABL(I,3)=IDATE(3)
                                                                               SUB1
                                                                                      67
                                                                               SUB1
                                                                                      68
       METABL(I,4)=IHOUR(IK1)
       METABL(I,5)=WINDSP(IK1)
                                                                               3UB1
                                                                                      69
       METABL(I,6)=TEMPOB(IK1)
                                                                                      70
                                                                               SUB1
       METABL(I,7)=TEMPOP(IK1)
                                                                               SUB1
                                                                                      71
```

Figure B.3 (Continued)

```
METABL(I,8)=SKY(IK1)
                                                                            SUB1
                                                                                  72
      METABL(I,9)=TEMPWB(IK1)
                                                                            SUB1
                                                                                   73
    B METABL(I,10)=PRESSR(IK1)
                                                                            SUB1
                                                                                   74
      CALL READRC
                                                                            SUB1
                                                                                   75
                                                                                   76
      DO 9 I=1,3
                                                                            SUB1
                                                                                  77
      124=1+24
                                                                            SUB1
      METABL(124,1)=IDATE(1)
                                                                            SUB1
                                                                                  78
      METABL (124,2)=IDATE(2)
                                                                            SUB1
                                                                                   79
                                                                                   80
      METABL(I24,3)=IDATE(3)
                                                                            3UB1
      METABL(124,4)=IHOUR(I)
                                                                            SUB1
                                                                                   81
      METABL (124,5) = WINDSP(I)
                                                                            SUB1
                                                                                   82
      METABL(124,6) = TEMPDB(I)
                                                                                   83
                                                                            SUB1
      METABL(124,7)=TEMPDP(1)
                                                                            SUB1
                                                                                   84
      METABL (124,8)=SKY(I)
                                                                            SUB1
                                                                                   85
      METABL(124,9)=TEMPWB(1)
                                                                            SUB1
                                                                                  86
    9 METABL(I24,10)=PRE3SR(I)
                                                                            SUB1
                                                                                   87
      METABL (25,4)=24.
                                                                            SUB1
                                                                                   88
                                                                                  89
                                                                            SUB1
C
      SEARCH DATA RECORD FOR MISSING DATA AND INTERPOLATE TO
                                                                                   90
C
                                                                            SUB1
C
      COMPLETE RECORD.
                                                                            SUB 1
                                                                                   91
                                                                                   92
C
                                                                            SUB1
                                                                            SUB1
                                                                                   93
      00 10 I=1,25
      00 10 K=5,10
                                                                            SUB1
                                                                                   94
      IF (METABL(I,K).LT.9999.) GO TO 10
                                                                            SUBI
                                                                                   95
                                                                            SUBI
                                                                                  96
      I1=I+1
      IF (METABL(I1,K).GE.9999.) GO TO 11
                                                                            SUB1
                                                                                   97
                                                                                   98
      10=1-1
                                                                            SUB1
                                                                                  99
      METABL(I,K)=METABL(I1,K)=(METABL(I1,K)=METABL(I0,K))+.5
                                                                            SUB1
                                                                            SUB1 100
      GO TO 10
                                                                            SUB1 101
   11 12=1+2
C
                                                                            SUB1 102
                                                                            SUB1 103
      IF THREE OR MORE CONSECUTIVE HOURS OF DATA ARE MISSING. SKIP
C
C
      TO THE NEXT DAY.
                                                                            SUB1 104
                                                                            SUB1 105
                                                                            SUB1 106
      IF (METABL (12, K).GE.9999.) GO TO 12
                                                                            SUB1 107
      I0=I-1
      METABL(I,K) = METABL(I2,K) = (METABL(I2,K) = METABL(I0,K)) *.6667
                                                                            3UB1 108
      METABL(I1,K)=METABL(I2,K)+(METABL(I2,K)+METABL(I0,K))+.3333
                                                                            SUB1 109
   10 CONTINUE
                                                                            SUB1 110
                                                                            SUB1 111
C
      GENERATE SOLAR RADIATION TERM.
                                                                            SUB1 112
C
                                                                            SUB1 113
C
                                                                            SUB1 114
      CALL SOLAR (LAT, IYR, IMON, IDAY, SRAD)
                                                                            SUB1 115
C
C
      APPLY CLOUD COVER ADJUSTMENT (AFTER WUNDERLICH) AND READ SOLAR RADSUBJ 116
                                                                            SUB1 117
      IATION TERM INTO METABL.
                                                                            SUB1 118
                                                                            SUB1 119
      DO 13 I=1,25
   13 METABL(I,8)=SRAD(I) +.94+(1.-.65+METABL(I,8)++2)
                                                                            SUB1 120
      WRITE ONE DAY'S WEATHER RECORD IN TO INTERMEDIATE STORAGE.
                                                                            SUB1 121
C
                                                                            SUB1 122
C
                                                                            SUB1 123
      WRITE(9) METABL
C
                                                                            SUB1 124
      IF NEXT DAY IS FIRST OF OCTOBER, SKIP TO NEXT MAY FIRST.
                                                                            SUB1 125
                                                                            SUB1 126
C
                                                                            SUB1 127
   20 IF (METABL (26,2).LE.9) GO TO 14
                                                                            SUB1 128
      SEPARATE YEARS BY BLANK DATA RECORD.
                                                                            SUB1 129
C
C
                                                                            SUB1 130
                                                                            SUB1 131
      DO 15 I=1.27
                                                                            SUB1 132
      00 15 J=1,10
   15 METABL(I,J)=0.
                                                                            SUB1 133
                                                                            SUB1 134
      WRITE(9) METABL
                                                                            SUB1 135
      00 16 I=1>847
```

Figure B.3 (Continued)

```
READ(8)
                                                                             SUB1 136
C
                                                                             SUB1 137
      IF END OF RECORD ENCOUNTERED, RETURN TO MAIN PROGRAM.
C
                                                                             SUB1 138.
                                                                             SUB1 139
      IF(EOF(8).NE.0) GO TO 17
                                                                             SUB1 140
   16 CONTINUE
                                                                             SUB1 141
      GO TO 3
                                                                             SUB1 142
C
                                                                             SUB1 143
      READ IN NEXT DAY'S DATA.
C
                                                                             SUB1 144
C
                                                                             SUB1 145
   14 DO 18 I=1.3
                                                                             SUB1 146
      154=1+54
                                                                             SUB1 147
      DO 18 K=1,10
                                                                             SUB1 148
                                                                             SUB1 149
   18 METABL(I,K)=METABL(I24,K)
      METABL (1,4)=0.
                                                                             SUB1 150
      DO 19 I=4,6
                                                                             SUB1 151
      METABL(I,1)=IDATE(1)
                                                                             SUB1 152
      METABL(1,2)=IDATE(2)
                                                                             SUB1 153
      METABL(I,3)=IDATE(3)
                                                                             SU81 154
                                                                             SUB1 155
      METABL(I,4)=IHOUR(I)
      METABL(I,5)=WINDSP(I)
                                                                             3UB1 156
      METABL(I,6)=TEMPDB(I)
                                                                             SUB1 157
      METABL(I,7)=TEMPDP(I)
                                                                             SUB1 158
      METABL(I,8) = SKY(I)
                                                                             SUB1 159
      METABL(I,9)=TEMPWB(I)
                                                                             SUB1 160
   19 METABL(I,10)=PRESSR(I)
                                                                             SUB1 161
      INDEX=1
                                                                             SUB1 162
      IYR=IDATE(1)
                                                                             SUB1 163
      IMON=IDATE(2)
                                                                             SUB1 164
      IDAY=IDATE(3)
                                                                             SUB1 165
                                                                             SUB1 166
      1=1
                                                                             SUB1 167
      GO TO 6
C
                                                                             3UB1 168
C
      WRITE ERROR MESSAGE WHEN DATA ARE SKIPPED
                                                                             SUB1 169
                                                                             SUB1 170
   12 WRITE(6,500) IMON, IDAY, IYR
                                                                             SUB1 171
  500 FORMAT(T35, DISCONTINUITY IN DATA CAUSED '.12, '/',12, '/',12, ' TO BSUB1 172
     1E SKIPPED')
                                                                             SUB1 173
C
                                                                             SUB1 174
      FLAG RECORD CONTAINING BAD DATA.
C
                                                                             SUB1 175
C
                                                                             SUB1 176
                                                                             SUB1 177
      METABL (2,1)=9999.
      WRITE(9) METABL
                                                                             SUB1 178
      GO TO (3,20), INDEX
                                                                             SUB1 179
   17 REWIND 9
                                                                             SUB1 180
      REWIND 8
                                                                             SUB1 181
      RETURN
                                                                             SUB1 182
                                                                             SUB1 183
      END
      SUBROUTINE SUB2(A, V, YRMAX)
                                                                             AUG6
C
    IMPROVED VERSION OF NUTTLE PROGRAM USING 2ND ORDER RK
                                                                             SUB2
                                                                                     3
    R CODELL, SEPT 19,1979
                                                                             SUBS
                                                                                     4
                                                                                     5
                                                                             SUB2
      MODELS POND TEMPERATURE RESPONSE USING DATA IN INTERMEDIATE
C
                                                                             SUB2
C
      STORAGE. RETURNS YEARLY MAXIMUM TEMPERATURES AND 30 DAY EVAPOR-
                                                                             SU82
                                                                                     7
      ATIVE LOSSES WITH THEIR DATES OF OCCURENCE.
C
                                                                             2808
                                                                                     8
C
                                                                             SU82
                                                                                     Q
      COMMON/COEF/ CEH(6), CEL(7), CH(6), CL(7), FEVAP, FDR, WDRO, NDRIFT,
                                                                             SUB2
                                                                                   10
     1 DWDR, FORIFT(20), HEAT, CON1, CON2, CON3, DTSPRY, DTIME, QSPRAY, CON4, CON5SUB2
                                                                                   11
     1 , CEMIN, CEMAX, CMIN, CMAX
                                                                             SUB2
                                                                                   12
      REAL ABSMAX(4), METABL(27,10), SRAD(25), TEMPOB(25),
                                                                                    5
                                                                             AUG6
     1TEMPOP(25), WINDSP(25), KN(4), EV(4), EVAP(30), TEMPMX(5)
                                                                                   14
                                                                             SUB2
     2,EVPMAX(4),YRMAX(40,8),MAXT
                                                                             AUG6
                                                                                    6
      DIMENSION TEMPWB(25), PRESSR(25)
                                                                             SUB2
                                                                                   16
      DATA DT02, DT06, DT/.5, .16666667, 1.0/
                                                                             SUBS
                                                                                   17
      DO 39 I=1,40
                                                                             SUB2
                                                                                   18
```

Figure B.3 (Continued)

```
00 39 J=1,8
                                                                              2808
                                                                                     19
                                                                              SUB2
                                                                                     20
   39 YRMAX(I,J)=0.
      CON1=A/(62.4*24*V)
                                                                              SUB2
                                                                                     15
      CON2=A/(62.4*1040*24)
                                                                              SUB2
                                                                                     55
                                                                              SUB2
                                                                                     23
      LNDX=0
                                                                              AUG6
      MAXT=0.
                                                                              SUB2
                                                                                     29
      ABSMAX(1)=0.
                                                                              SUBS
                                                                                     30
      EVPMAX(1)=0.
                                                                              SUB2
                                                                                     31
      TEMPMX(1)=0.
      EVTOT=0.
                                                                              SUB2
                                                                                     32
                                                                              SUB2
                                                                                     33
   10 READ(9) METABL
      IF(EOF(9).NE.0) GO TO 12
                                                                               SUB2
                                                                                     34
                                                                               SUB2
                                                                                     35
      IF (METABL (2,1).GE.9999.) GO TO 10
                                                                               SUB2
                                                                                     36
      PONDTP=METABL(1,7)
                                                                              SUBS
                                                                                     37
      00 30 I=1.30
                                                                              SUB2
                                                                                     38
   30 EVAP(I)=0
                                                                              SUB2
                                                                                     39
    1 CONTINUE
                                                                              SUB2
                                                                                     40
      DO 131 J=1.25
                                                                              SUB2
                                                                                     41
      SRAD(J)=METABL(J,8)
                                                                              SUB2
                                                                                     42
      TEMPDB(J)=METABL(J.6)
                                                                              SUBS
                                                                                     43
      TEMPDP(J)=METABL(J,7)
                                                                              SUB2
                                                                                     44
      WINDSP(J)=METABL(J,5)
                                                                              SUBS
                                                                                     45
      TEMPWB(J)=METABL(J,9)
                                                                              SUB2
      PRESSR(J)=METABL(J,10)
                                                                                     46
                                                                               SUB2
                                                                                     47
  131 CONTINUE
                                                                               SUB2
                                                                                     48
      00 132 J=1,24
                                                                              SUB2
                                                                                     49
      JP1=J+1
                                                                               SUB2
                                                                                     50
C
      CALCULATION OF POND TEMPERATURE AND EVAPORATIVE WATER LOSS USING
                                                                              SUB2
                                                                                     51
C
      THE LINEAR HEAT EXCHANGE EQUATIONS IN A SECOND ORDER RUNGE-KUTTA
                                                                              SU82
                                                                                     52
C
                                                                               SUB2
                                                                                     53
C
      NUMERICAL INTEGRATION.
                                                                               Subs
                                                                                     54
C
      CALL TFUN(PONOTP, TEMPOB(J), WINDSP(J), SRAD(J), TEMPOP(J),
                                                                                     55
                                                                              SUB2
     1 KN(1), EV(1), TEMPWB(J), PRESSR(J))
                                                                               SUB2
                                                                                     56
                                                                               SUBS
                                                                                     57
      PTP1=PONDTP+KN(1)*DT
      CALL TFUN(PTP1, TEMPD8(JP1), WINDSP(JP1), SRAD(JP1), TEMPDP(JP1),
                                                                               SUB2
                                                                                     58
     1 KN(2), EV(2), TEMPW8(JP1), PRESSR(JP1))
                                                                               SUB2
                                                                                     59
      PONDTP=PONDTP+(KN(1)+KN(2))*0T02
                                                                               SUBP
                                                                                     60
                                                                              SUB2
      EVAP(1)=EVAP(1)+(EV(1)+EV(2))*DTO2
                                                                                     61
                                                                               SUBS
                                                                                     62
C
                                                                              SUBS
      COLLECT MAXIMUM TEMPERATURE
                                                                                     63
C
                                                                              SUB2
                                                                                     64
C
                                                                               AUG6
                                                                                      8
      IF (PONDTP.GT.MAXT) MAXT=PONDTP
                                                                              SUB2
  132 CONTINUE
                                                                                     66
                                                                               SUBP
                                                                                     67
C
      SEARCH FOR YEARLY MAXIMUM TEMPERATURE AND EVAPORATIVE WATER LOSS. SUB2
                                                                                     68
C
                                                                               SUBP
C
                                                                                     69
                                                                               SUB2
                                                                                     70
      00 33 I=1,30
   33 EVTOT=EVTOT+EVAP(I)
                                                                               SUB2
                                                                                     71
                                                                               SUB2
                                                                                     72
      IF(EVTOT.LT.EVPMAX(1))GO TO 13
                                                                               SUBZ
                                                                                     73
      EVPMAX(1)=EVTOT
                                                                              SUB2
                                                                                     74
      EVPMAX(2)=METABL(1,1)
                                                                               SUB2
                                                                                     75
      EVPMAX(3)=METABL(1,2)
      EVPMAX(4)=METABL(1,3)
                                                                               SUB2
                                                                                     76
                                                                              SUBS
                                                                                     77
   13 DO 29 I=1,29
                                                                               SUB2
                                                                                     78
      I30=30-I
                                                                               SUB2
                                                                                     79
      I1=I30+1
   29 EVAP(I1)=EVAP(I30)
                                                                              SUBZ
                                                                                     80
                                                                               SUB2
                                                                                     81
      EV4P(1)=0.
                                                                               SUBS
                                                                                     82
      EVTOT=0.
                                                                               AUG6
      IF (MAXT.LT.ABSMAX(1)) GO TO 8
                                                                               AUGA
                                                                                     10
       TXAME(1)XAMEBA
                                                                               SUB2
                                                                                     85
      ABSMAX(2)=METABL(1,1)
                                                                               SBUS
                                                                                     86
      ABSMAX(3)=METABL(1,2)
                                                                               S8U8
                                                                                     87
      ABSMAX(4)=METABL(1.3)
```

Figure B.3 (Continued)

```
8 MAXT=0.0
                                                                             AUG6
                                                                                    11
C
                                                                             SUBZ
                                                                                    92
C
      READ IN NEXT DAY'S DATA.
                                                                             SUB2
                                                                                    93
C
                                                                             SUB2
                                                                                    94
   11 READ(9) METABL
                                                                                    95
                                                                             SUB2
      IF(EOF(9).NE.0.0) GOTO 12
                                                                             SUBS
                                                                                    96
      IF (METABL(1,1).GT.0.) GO TO 14
                                                                             SUB2
                                                                                    97
      LNDX=LNDX+1
                                                                                    98
                                                                             SHRP
      YRMAX(LNDX,1) = ABSMAX(1)
                                                                             SUB2
                                                                                    99
       YRMAX(LNDX,2)=A85MAX(2)
                                                                             SUB2 100
      YRMAX(LNDX, 3) = ABSMAX(3)
                                                                             SUB2 101
      YRMAX(LNDX,4)=ABSMAX(4)
                                                                             SUB2 102
      YRMAX(LNDX,5)=EVPMAX(1)
                                                                             SUB2 103
      YRMAX(LNDX,6)=EVPMAX(2)
                                                                             SUB2 104
       YRMAX(LNDX,7)=EVPMAX(3)
                                                                             SUB2 105
      YRMAX(LNDX,8)=EVPMAX(4)
                                                                             SUB2 106
      DO 15 I=1,5
                                                                             SUB2 107
      IF (ABSMAX(1).GE.TEMPMX(1))GO TO 16
                                                                             SUB2 108
   15 CONTINUE
                                                                             SUB2 109
      GO TO 20
                                                                             SUB2 110
   16 IF(I.GE.5) GO TO 17
                                                                             SUB2 111
      I5=5-I
                                                                             SUB2 112
      00 18 J=1, I5
                                                                             SUB2 113
                                                                             SUB2 114
      L=5-J
      L1=L+1
                                                                             SUB2 115
   18 TEMPMX(L1)=TEMPMX(L)
                                                                             SUB2 116
   17 TEMPMX(I)=ABSMAX(1)
                                                                             SUB2 119
                                                                             SU82 122
   20 ABSMAX(1)=0.
      EVPMAX(1)=0.
                                                                             SUB2 123
      MAXT=0.0
                                                                             AUG6 12
      GO TO 10
                                                                             SU82 126
   14 IF (METABL (2,1).LT.9999.) GO TO 1
                                                                             SUB2 127
      MAXT=0.0
                                                                             AUG6 13
      GO TO 11
                                                                             SUB2 132
                                                                             SUB2 133
C
      END OF DATA FILE ENCOUNTERED. RETURN TO MAIN PROGRAM.
                                                                             SU82 134
                                                                             SUB2 135
   12 REWIND 9
                                                                             SUB2 136
      RETURN
                                                                             SUB2 137
      END
                                                                             SUB2 138
      SUBROUTINE TFUN(PT,DB,W,SRAD,DP,DT,DE,TW,PINCH)
                                                                             TFUN
                                                                                     5
      COMMON/COEF/ CEH(6), CEL(7), CH(6), CL(7), FEVAP, FDR, WDRO, NDRIFT,
                                                                             TFUN
                                                                                     3
     1 DWDR, FDRIFT(20), HEAT, CON1, CON2, CON3, DTSPRY, DTIME, GSPRAY, CON4, CON5TFUN
     1 , CEMIN, CEMAX, CMIN, CMAX
                                                                             TFUN
                                                                                     5
C
     CONVERT PRESSURE TO MM HG
                                                                             TFUN
                                                                                    6
      PAIR=PINCH+25.40
                                                                             TFUN
                                                                                    7
C
      SPRAY HEAT TRANSFER AND WATER LOSS
                                                                             TFUN
                                                                                    8
      TSPRAY=PT+DTSPRY
                                                                             TFUN
                                                                                    9
C
      HWS EFFICIENCY
                                                                             TFUN
                                                                                   10
      ETA=CH(1)+CH(2)*DB+CH(3)*TW+CH(4)*TSPRAY+CH(5)*W+CH(6)*SQRT(W)
                                                                             TFUN
                                                                                   11
C
      LWS EFFICIENCY
                                                                             TFUN
                                                                                   12
      EL=CL(1)+CL(2)*DB+CL(3)*DB**2+CL(4)*DB**3+CL(5)*TW+
                                                                             TFUN
                                                                                   13
     1 CL(6) *TSPRAY+CL(7) *TSPRAY**2
                                                                             TFUN
                                                                                   14
      IF(ETA.LT.EL) ETA=EL
                                                                             TFUN
                                                                                   15
      IF (ETA.LT.CMIN) ETA=CMIN
                                                                             TFUN
                                                                                   16
      IF(ETA.GT.CMAX) ETA=CMAX
                                                                             TFUN
                                                                                   17
C
      SPRAY HEAT LOSS
                                                                             TFUN
                                                                                   18
      HSPRAY=HEAT-GSPRAY+CON3+ETA+(TSPRAY-TW)
                                                                             TFUN
                                                                                   19
      IF(ETA.EQ.EL) GOTO 3
                                                                             TFUN
                                                                                   50
C
      HIGH WIND SPEED EVAPORATION
                                                                             TFUN
                                                                                   21
      FEVAP=CEH(1)+CEH(2) *DB+CEH(3) *TW+CEH(4) *TSPRAY+
                                                                             TFUN
                                                                                   55
     1 CEH(5) +W+CEH(6) +SQRT(W)
                                                                             TFUN
                                                                                   53
      GOTO 4
                                                                             TFUN
                                                                                   24
C
      LOW WIND SPEED EVAPORATION
                                                                             TFUN
                                                                                   25
    3 FEVAPECEL(1)+CEL(2)+08+CEL(3)+D8+*2+CEL(4)+D8**3+CEL(5)*TW
                                                                             TFUN
                                                                                   26
```

Figure B.3 (Continued)

```
1 +CEL(6) +TSPRAY+CEL(7) +TSPRAY++2
                                                                             TFUN
                                                                                   27
                                                                             TFUN
                                                                                   28
      DRIFT LOSS
C
                                                                             TFUN
                                                                                    29
    4 NTBL=(W-WDR0)/DWDR+1
      IF (NTBL.GE.NDRIFT) NTBL=NDRIFT-1
                                                                             TFUN
                                                                                    30
      FDR=FDRIFT (NTBL)+((W-WDRO-(NTBL-1)+DWDR)/DWDR)+
                                                                             TFUN
                                                                                    31
                                                                             TFUN
                                                                                    32
     1 (FDRIFT(NTBL+1) -FDRIFT(NTBL))
                                                                             TFUN
      IF (FEVAP.LT.CEMIN) FEVAPECEMIN
                                                                                    33
                                                                             TFUN
                                                                                    34
      IF (FEVAP.GT.CEMAX) FEVAP=CEMAX
                                                                             TFUN
                                                                                    35
      ESPRAY=(FDR+FEVAP) +CON4
                                                                             TFUN
     SURFACE HEAT TRANSFER AND EVAPORATION FROM RYAN, 1973
                                                                                    36
C.
                                                                             TFUN
      DTV=(PT+460)/(1-.378*PWAT(PT)/PAIR)-
                                                                                    37
                                                                             TFIIN
                                                                                    38
     1 (D8+460)/(1-.378*PWAT(DP)/PAIR)
                                                                             TFUN
                                                                                    39
      DTV3=0
                                                                             TFUN
                                                                                    40
      IF(DTV.LE.0.0) GOTO 1500
                                                                             TFUN
                                                                                    41
      DTV3=DTV++0.333333333
 1500 FU=(22.4+DTV3+14+W)
                                                                             TFUN
                                                                                    42
                                                                             TFUN
                                                                                    43
      HC=0.26*(PT=DB)*FU
                                                                             TFUN
                                                                                    44
      HBR#4.026E-8*(460+PT)**4
                                                                             TFUN
      HE=(PWAT(PT)-PWAT(DP))+FU
                                                                                    45
                                                                             TFUN
                                                                                    46
      HAN=1.16E-13*(DB+460)**6*(1=CC**2*.17)
                                                                             TFUN
                                                                                    47
    CONSERVATIVE ASSUMPTION NO CLOUDS
                                                                             TFUN
                                                                                    4A
      DATA CC/0-0/
                                                                             TFUN
                                                                                    49
      HR=SRAD-HC+HAN-HBR-HE
      DT=HSPRAY*CON5+HR*CON1
                                                                             TFUN
                                                                                    50
                                                                             TFUN
      DE=HE+CON2+ESPRAY
                                                                                    51
                                                                             TFUN
                                                                                    52
      RETURN
                                                                             TFUN
                                                                                    53
      END
                                                                             PWAT
                                                                                     2
      FUNCTION PWAT(T)
                                                                             PWAT
                                                                                     3
     VAPOR PRESSURE OF AIR IN MM HG FOR T IN DEG.F
      TK=(T-32)/1.8+273.1
                                                                             PWAT
                                                                                     4
                                                                             PWAT
                                                                                     5
      PWAT=760*EXP(71.02499-7381.6677/TK-9.0993037*ALOG(TK)
                                                                             PWAT
     1 +.0070831558*TK)
                                                                                     6
                                                                             PWAT
                                                                                     7
      RETURN
                                                                             PWAT
                                                                                     8
      SUBROUTINE SUB3(YRMODY, IPRNT)
                                                                             AUG6
                                                                                    14
                                                                             AUG6
                                                                                    15
    PRINTS AND/OR PRNCHES DATA FROM INTERMEDIATE
                                                                             AUG6
                                                                                    16
C
    FILE FOR PERIOD OF #NDYS# DAYS BEFORE AND 30
                                                                             AUG6
                                                                                    17
C
                                                                             AHRA
    DAYS FOLLOWING YRMODY.
                                                                                    18
C
                                                                             AUGA
                                                                                    19
C
        IF IPRINT=1, DATA IS PRINTED
                                                                             AUG6
                                                                                    20
C
                                                                             AUG6
                                                                                    21
        IF IPRINT==1, DATA IS PUNCHED
C
        IF IPRINT=0, DATA IS BOTH PRINTED AND PUNCHED
                                                                             AUG6
                                                                                    55
C
                                                                             AUG6
                                                                                    23
C
                                                                             AUG6
                                                                                    24
      REAL YRMODY (3), METABL (27, 10), JNDX
                                                                             AUG6
                                                                                    25
       INTEGER IDATE(3)
                                                                             AUG6
                                                                                    95
      NEO
                                                                             AUG6
                                                                                    27
      DATA NOYS/20/
                                                                             AUG6
                                                                                    85
       JNOX=0.
                                                                             AUG6
                                                                                    29
       IPNCH=0
                                                                             AUG6
                                                                                    30
       IF(IPRNT_EQ.1) GO TO 40
                                                                             AUG6
                                                                                    31
       IF(IPRNT.EQ.0) IPRNT=1
                                                                             AUG6
       IPNCH=1
                                                                                    35
                                                                             AUG6
                                                                                    33
   40 CONTINUE
                                                                             AUG6
                                                                                    34
C
    POSITION TAPES TO #NDYS# DAYS BEFORE DATE
                                                                             AUG6
                                                                                    35
C
     PROVIDED IN YRMODY. IF DATA 19 NOT AVAILABLE,
                                                                             AUG6
                                                                                    36
C
                                                                             AUG6
C
     POSITION TAPES TO FIRST DAY OF DATA IN THE
                                                                                    37
                                                                             AUG6
     SAME YEAR AS YRMODY.
                                                                                    38
C
                                                                             AUG6
                                                                                    39
C
      READ(9) METABL
                                                                             AUG6
                                                                                    40
                                                                             AUG6
                                                                                    41
       YR=METABL(1,1)
                                                                             AUG6
                                                                                    42
      REWIND 9
       IF (YRMODY(1).LE.YR) GO TO 1
                                                                             AUG6
                                                                                    43
                                                                             AUG6
                                                                                    44
      N=(YRMODY(1)-YR)*154.
```

Figure B.3 (Continued)

```
AUG6
                                                                                           45
      DO 2 I=1,N
                                                                                    AUG6
                                                                                           46
    2 READ(9) METABL
                                                                                    AUG6
                                                                                           47
      N=0
                                                                                    AUG6
                                                                                           48
    1 IF (YRMODY(2).LE.5.)GO TO 3
                                                                                    AUG6
                                                                                           49
       N=((YRMODY(2)-5.)+31.)
                                                                                    AUG6
                                                                                           50
       IF (YRMODY(2).GT.6.)N=N-1
                                                                                    AUG6
                                                                                           51
    3 CONTINUE
                                                                                    AUGA
                                                                                           52
      N=YRMODY(3)+N=NDYS
                                                                                    AUG6
                                                                                           53
       IF(N.GT.0)GO TO 4
                                                                                    AUG6
                                                                                           54
       NDYS=NDYS+N
                                                                                           55
                                                                                    AUGA
       60 TO 6
                                                                                    AUG6
                                                                                           56
    4 00 5 I=1,N
                                                                                    AUG6
                                                                                           57
    5 READ(9) METABL
                                                                                    AUG6
                                                                                           58
    6 CONTINUE
                                                                                    AUG6
                                                                                           59
       NDYS6=NDYS+30
                                                                                    AUG6
                                                                                           60
       N=0
                                                                                    AUG6
                                                                                           61
C
                                                                                    AUG6
                                                                                           62
C
    GENERATE OUTPUT
                                                                                    AUG6
                                                                                           63
C
                                                                                    AUG6
                                                                                           64
       DO 35 I=1.NDYS6
                                                                                    AUG6
                                                                                           65
       READ (9) METABL
                                                                                    AHGA
       IF (METABL (2,1).GE.9999.)GO TO 35
                                                                                           66
                                                                                    AUGA
                                                                                           67
       IF (IPNCH_NE_1) GO TO 41
       IF(I.EQ.1) PUNCH(4,610)NDYS6, METABL(1,2), METABL(1,3), METABL(1,1)
                                                                                    AUG6
                                                                                           68
  610 FORMAT( ** APPROXIMATELY ', 12, ' DAYS OF MET. DATA FOLLOW. DATA AREAUG6
1PUNCHED 2 HOURS TO A', /, **** CARD BEGINNING WITH HOUR 0 ON 353 AUG6
                                                                                           69
                                                                                           70
      2.0, THE FORMAT FOR THE DATA IS 13,2(1,/, ****355.1, 6.1, 54.2, 54 AUG6
                                                                                           71
      2.0) WHERE FIELD 1 IS THE CARD NUMBER AND THE FOLLOWING . / . **** AUG6
                                                                                           72
      BRIABLE SEQUENCE IS REPEATED: WIND SPEED, DRY BULB, DEWPOINT, SOLAR RA AUG6
                                                                                           73
      50-4,/, ****IATION, CLOUD COVER, AND RELATIVE HUMIDITY. 1)
                                                                                    AUG6
                                                                                           74
                                                                                    SUBS
                                                                                           41
       DO 42 L=1,23.2
                                                                                    SUBT
                                                                                           42
       L1=L+1
                                                                                    SUB3
                                                                                           43
       N=N+1
   42 WRITE(4,590)N, ((METABL(J,K),K=5,10),J=L,L1)
                                                                                    SUB3
                                                                                           44
                                                                                    SUB3
                                                                                           45
  590 FORMAT (13,2(3F5.1,F6.1,F7.2,F7.2))
                                                                                    SUB3
                                                                                           46
       IF(IPRNT.NE.1) GO TO 35
                                                                                           47
                                                                                    SHAZ
   41 CONTINUE
                                                                                    SUB3
                                                                                           48
       IDATE(1)=METABL(1,2)
                                                                                    SUB3
                                                                                           49
       IDATE(2)=METABL(1,3)
                                                                                    SUB3
                                                                                           50
       IDATE(3)=METABL(1,1)
                                                                                    SUB3
                                                                                            51
       WRITE(6,500) IDATE
                                                                                    SUB3
                                                                                           52
       DO 39 J=1,24
                                                                                    SUB3
                                                                                           53
   39 WRITE(6,520) (METABL(J,K),K=4,10)
                                                                                           54
       WRITE(6,510)
  500 FORMAT(1H1,5(/),T20,10('*'), METEOROLOGY FOR '2(12,'/'),12,44('*'SUB3
                                                                                           55
      1),///, T25,71('.'),/,T25,', HOUR , WIND SP., DRY BULB , DEWPOINT , SUB3
                                                                                           56
      280LAR RAD WET BULB ,ATM.PRESS,',/,T25,',',T35,', (MPH) , (DEG.F)SUB3 , (DEG.F) ,BTU/FT2/D, (DEG.F) , PSIA ,',/,T25,71('.')) SUB3
                                                                                           57
      3 , (DEG.F) ,BTU/FT2/D, (DEG.F) , PSIA
                                                                                    SUBT
                                                                                           58
  510 FORMAT(T25,71('.'))
520 FORMAT(T25,',',3X,F3.0,3X,',',2X,F4.1,3X,',',2X,F5.1,2X,',',2X,
1F5.1,2X,',',2X,F6.1,1X,',',F7.2,2X,',',F7.2,2X,',')
                                                                                    SUBS
                                                                                           59
                                                                                    SU83-
                                                                                           60
                                                                                    SUB3
                                                                                           61
                                                                                    SUB3
                                                                                           62
    35 CONTINUE
       IF(IPNCH.EQ.1) WRITE(6,600)N
                                                                                     SUB3
                                                                                            94
   600 FORMAT(1H1,5(/),T20,10(***), NUMBER OF CARDS PUNCHED = *,I3,* *,
                                                                                    SUB3
                                                                                            95
                                                                                     SU83
                                                                                            96
      140(***))
                                                                                     SUB3
                                                                                            97
       REWIND 9
                                                                                           98
                                                                                     SUB3
       RETURN
                                                                                     SUB3 103
       SUBROUTINE SUB4(YRMODY, LAT)
                                                                                     SUB4
                                                                                             2
                                                                                     SU84
                                                                                             3
C
       PRINTS OUT AVERAGE MONTHLY VALUES FOR METEOROLOGIC PARAMETERS
                                                                                     SUB4
                                                                                             Δ
C
                                                                                             5
                                                                                     SUB4
       BEGINNING WITH DATE GIVEN IN YRMODY AND ENDING WITH THE LAST
C
                                                                                     SUB4
                                                                                             6
       DAY ON THE DATA TAPE.
C
                                                                                     SUB4
                                                                                             7
C
```

Figure B.3 (Continued)

```
SUB4
                                                                                           8
      REAL YRMODY (3), METABL (27, 10), LAT
                                                                                   SUB4
                                                                                           0
      INTEGER IDATE(3), MON(5), MONTH(5)
                                                                                   SUB4
                                                                                          10
      DATA MON/121,152,182,213,244/
      DATA MONTH/ MAY', JUNE', JULY', AUGUST', SEPTEMBER'/
                                                                                   SUB4
                                                                                          11
                                                                                   SUB4
                                                                                          12
      INDX=0
                                                                                   SU84
                                                                                          13
      WINDSP=0.
                                                                                   SUB4
                                                                                          14
      TEMPDP=0.
                                                                                   SUB4
                                                                                          15
      TEMPOB=0.
                                                                                   SUB4
                                                                                          16
      SOLARD=0.
                                                                                   SUB4
                                                                                          17
      IDATE(1)=YRMODY(2)
                                                                                   SUB4
                                                                                          18
      PRESSR=0.0
                                                                                   SU84
                                                                                          19
      TWET=0.0
                                                                                   SU84
                                                                                          20
      IDATE(2)=YRMODY(3)
                                                                                   SUB4
                                                                                          21
       IDATE(3)=YRMODY(1)
                                                                                   SUB4
                                                                                          55
      WRITE(6,500) IDATE
  500 FORMAT( 5(/), T20,10(***), THE MONTHLY AVERAGE VALUES FROM*, 12(12,*/*),12,* TO END OF DATA *,13(***),//)
                                                                                   SUB4
                                                                                          23
                                                                                          24
                                                                                   SURA
                                                                                   3UB4
                                                                                          25
      WRITE(6,510)
  510 FORMAT(T30,61('.'),/,T30'*RMS WIND *DRY BULB *DEWPOINT * SQLAR *SUB4 1WET BULB *ATM.PRESS*',/,T30,'* SPEED * (DEG.F) * (DEG.F) *RADIATSUB4
                                                                                          56
                                                                                          27
                                                                                          28
     2ION* (DEG.F) * PSIG **)
                                                                                   SUB4
                                                                                          59
       IYR=1900+IDATE(3)
                                                                                   SUBA
                                                                                          30
      WRITE(6,520) IYR
  520 FORMAT (T20, 14, T30, 61 ('.'), /, T30, '*', T40, '*', T50, '*', T60, '*', T70,
                                                                                   SUB4
                                                                                          31
                                                                                   SUB4
                                                                                          32
     1'*', T80, '*', T90, '*')
                                                                                   SUB4
                                                                                          33
C
       POSITION TAPES TO FIRST DAY OF MONTH PROVIDED IN YRMODY.
                                                                                   SUB4
C
                                                                                   SUB4
                                                                                          35
                                                                                   SUB4
                                                                                          36
       READ(9) METABL
                                                                                   SUB4
                                                                                          37
       YR=METABL(1,1)
                                                                                   SU84
                                                                                          38
       REWIND 9
                                                                                   SUB4
                                                                                          39
       IF (YRMODY(1).LE.YR) GO TO 1
                                                                                   SUB4
                                                                                          40
       N=(YRMODY(1)=YR)+154.+1.
                                                                                   SUB4
                                                                                          41
       00 2 I=1,N
                                                                                   SUB4
                                                                                          42
    2 READ(9)METABL
                                                                                   SU84
                                                                                          43
    1 N=((YRMODY(2)-5.)*31.)
                                                                                   SUBA
                                                                                          44
       IF(N.LE.0) GO TO 6
                                                                                   SUB4
                                                                                          45
       DO 4 I=1.N
                                                                                   3U84
                                                                                          46
     4 READ(9) METABL
                                                                                   SU84
    6 IF (METABL (1,3).LE.1.) GO TO 5
                                                                                          47
                                                                                   SUB4
                                                                                          48
       BACKSPACE 9
                                                                                   SUB4
                                                                                          49
       READ (9) METABL
                                                                                   SU84
                                                                                          50
       GO .TO 6
                                                                                   SUBA
                                                                                          51
     5 IF (METABL (2,1).GE.9999.) GO TO 9
                                                                                   SUB4
                                                                                          52
                                                                                   SUB4
                                                                                          53
       READ IN ONE MONTH'S DATA
C
                                                                                   SUB4
                                                                                          54
C
                                                                                   3U84
                                                                                          55
     8 INDX=INDX+1
                                                                                   SUB4
                                                                                          56
       IDATE(1)=METABL(1,2)
                                                                                   3UB4
                                                                                          57
       IDATE(2)=METABL(1,3)
                                                                                   SUB4
                                                                                          58
       IDATE(3)=METABL(1,1)
                                                                                   SUB4
                                                                                          59
       DAYNUM=MON(IDATE(1)-4)+IDATE(2)-1
                                                                                   SUB4
                                                                                          60
       IF (MOD (IDATE(3),4).EQ.0) DAYNUM#DAYNUM+1.
                                                                                   SUB4
                                                                                          61
       DAYLEN=DAYLIT(LAT, DAYNUM)
                                                                                   SUBA
                                                                                          62
       DO 7 I=1.24
                                                                                   SUB4
                                                                                          63
       WINDSP=METABL(I,5) **2+WINDSP
                                                                                   SUB4
                                                                                          64
       TEMPOB=METABL(I,6)+TEMPOB
                                                                                          65
                                                                                   SUBA
       TEMPOP=METABL (I,7)+TEMPOP
                                                                                   SUB4
                                                                                          66
       TWET=METABL(I,9)+TWET
                                                                                   SUB4
                                                                                          67
       PRESSR=METABL(I,10)+PRESSR
                                                                                   SU84
                                                                                          68
     7 SOLARD=SOLARD+METABL(I,8)/DAYLEN
                                                                                   SUB4
                                                                                          69
     9 READ (9) METABL
                                                                                   SUB4
                                                                                          70
       IF (METABL (1,1).LE.O.) GO TO 11
```

Figure B.3 (Continued)

٦

```
IF (METABL (1,3) .LE.1.) GO TO 10
                                                                                   SU84
                                                                                          71
       IF (METABL (2,1).GE.9999.) GO TO 9
                                                                                   SUB4
                                                                                          72
       GO TO 8
                                                                                   SU84
                                                                                          73
   10 DAYS=INDX
                                                                                   SUB4
                                                                                          74
C
                                                                                   SUB4
                                                                                          75
C
       CALCULATE AND PRINT AVERAGES
                                                                                   SUB4
                                                                                          76
C
                                                                                   SUB4
                                                                                          77
       IND X=0
                                                                                   3UB4
                                                                                          78
       AVGWS=(WINDSP/DAYS/24.)**.5
                                                                                   SUB4
                                                                                          79
       AVGDP=TEMPDP/DAYS /24.
                                                                                   SUB4
                                                                                          80
       AVGDB=TEMPDB/DAYS/24.
                                                                                   SUB4
                                                                                          81
       AVWET=TWET/DAYS/24
                                                                                   SU84
                                                                                          82
       AVPR=PRESSR/DAYS/24
                                                                                   SUB4
                                                                                          83
       AVGSR=SOLARD/DAYS
                                                                                   SURA
                                                                                          A 4
       I=IDATE(1)-4
                                                                                   SUB4
                                                                                          85
       WRITE(6,530) MONTH(I), AVGWS, AVGDB, AVGDP, AVGSR, AVWET, AVPR
                                                                                   SUB4
                                                                                          86
  530 FORMAT(T20,A10,'*',2x,F5.2,2x,'*',2x,F5.2,2x,'*',2x,F5.2,2x,'*',1xsub4
1,F6.1,2x,'*',F6.2,3x,'*',F6.2,3x,'*',/,T30,'*',T40,'*',T50,
SUB4
3'*',T60,'*',T70,'*',T80,'*',T90,'*')
                                                                                          87
                                                                                          88
                                                                                   3UB4
                                                                                          89
       WINDSP=0.
                                                                                   SU84
                                                                                          90
       TEMPOB=0.
                                                                                   SUB4
                                                                                          91
       TWET=0.0
                                                                                   3UB4
                                                                                          92
       TEMPDP=0.0
                                                                                   3UB4
                                                                                          93
       PRESSR=0.0
                                                                                   SUB4
                                                                                          94
       SOLARD=0.
                                                                                   3UB4
                                                                                          95
       GO TO 5
                                                                                   SUB4
                                                                                          96
   11 DAYS=INDX
                                                                                   SUB4
                                                                                          97
C
                                                                                          98
                                                                                   SUB4
C
       CALCULATE AND PRINT AVERAGES FOR THE LAST MONTH OF EACH DATA
                                                                                   SUR4
                                                                                          99
C
       PERIOD
                                                                                   SUB4 100
C
                                                                                   SUB4 101
       INDX=0
                                                                                   SUB4 102
       AVGWS=(WINDSP/DAYS/24.)**.5
                                                                                   SUB4 103
       AVGDP=TEMPDP/DAYS/24.
                                                                                   SUB4 104
       AVGDB=TEMPDB/DAYS/24.
                                                                                   SUB4 105
       AVPR=PRESSR/DAYS/24
                                                                                   SUB4 106
       AVWET=TWET/DAYS/24
                                                                                   SU84 107
       AVGSR=SOLARD/DAYS
                                                                                   SUB4 108
       WRITE(6,530) MONTH(5), AVGWS, AVGDB, AVGDP, AVGSR, AVWET, AVPR
                                                                                   SUB4 109
       WINDSP=0.
                                                                                   SUB4 110
       TEMPDB=0.
                                                                                   SU84 111
       TEMPDP=0.
                                                                                   SUB4 112
       SOLARD=0.
                                                                                   SUB4 113
       PRESSR=0.0
                                                                                   SUB4 114
       TWET=0.0
                                                                                  SUB4 115
       READ (9) METABL
                                                                                   SUB4 116
       IF(EOF(9).NE.0) GO TO 12
                                                                                   SUB4 117
       IYR=1900+METABL (1,1)
                                                                                   SUB4 118
       WRITE(6,520) IYR
                                                                                  SUB4 119
       IF (METABL (2,1).GE.9999.) GO TO 9
                                                                                  SUB4 120
       GO TO 8
                                                                                  SUB4 121
                                                                                   SUB4 122
   12 WRITE(6,540)
  540 FORMAT(T30,61('.'))
                                                                                  SUB4 123
                                                                                   SUB4 124
       RETURN
                                                                                  SUB4 125
       SUBROUTINE SUB5 (YRMAX)
                                                                                   SUB5
                                                                                           2
                                                                                   SUB5
                                                                                           3
C
       COMPUTES SAMPLE MEAN, STANDARD DEVIATION, SKEW, AND EXCEEDENCE FOR SUBS
                                                                                           Δ
C
       YEARLY MAXIMUM TEMPERATURES AND WATER LOSSES GENERATED BY SUB2
                                                                                   SUB5
                                                                                           5
C
C
                                                                                   SUBS
                                                                                           6
                                                                                   SUB5
                                                                                           7
       REAL YRMAX(40,8), JUNK(4), P(40), MT, ME
                                                                                   SUB5
                                                                                           8
      SUMT=0.
                                                                                  SUB5
                                                                                           ۰
       SUMT2=0.
                                                                                   SU85
                                                                                         10
       SUMT3=0.
```

Figure B.3 (Continued)

```
SU85
                                                                                                                                                                                       11
              SUME=0.
                                                                                                                                                                         SUB5
                                                                                                                                                                                       12
              SUME2=0.
                                                                                                                                                                         SUB5
                                                                                                                                                                                       13
              SUME 3=0.
                                                                                                                                                                         SU85
                                                                                                                                                                                       14
              00 20 L=1,40
                                                                                                                                                                         SU85
                                                                                                                                                                                       15
              IF (YRMAX(L,1).LE.O.) GO TO 21
                                                                                                                                                                         SU85
                                                                                                                                                                                       16
       20 CONTINUE
                                                                                                                                                                         $U85
                                                                                                                                                                                       17
              L=L+1
                                                                                                                                                                         SU85
                                                                                                                                                                                       18
       21 L=L-1
                                                                                                                                                                         SUB5
                                                                                                                                                                                       19
C
                                                                                                                                                                                       20
              RANK DATA IN ORDER OF DECREASING MAGNITUDE
                                                                                                                                                                         SUB5
C
                                                                                                                                                                         SUB5
                                                                                                                                                                                       21
C
                                                                                                                                                                         SU85
                                                                                                                                                                                       55
              DO 1 J=1.5.4
                                                                                                                                                                                       53
                                                                                                                                                                         SUB5
              00 1 I=2,L
                                                                                                                                                                         SUB5
                                                                                                                                                                                       24
              I1=I-1
                                                                                                                                                                                       25
                                                                                                                                                                         SUB5
              IF(YRMAX(I,J).LE.YRMAX(I1,J)) GO TO 1
                                                                                                                                                                                       56
                                                                                                                                                                         SUBS
              DO 2 M=1,4
                                                                                                                                                                         SU85
                                                                                                                                                                                       27
              MJ=M+J-1
                                                                                                                                                                         SUB5
                                                                                                                                                                                       28
          2 JUNK(M)=YRMAX(I,MJ)
                                                                                                                                                                         SU85
                                                                                                                                                                                       29
              DO 3 M=1, I
                                                                                                                                                                         SUB5
                                                                                                                                                                                       30
              IF(JUNK(1).GT.YRMAX(M.J)) GO TO 4
                                                                                                                                                                         SU85
                                                                                                                                                                                       31
          3 CONTINUE
                                                                                                                                                                         3U85
                                                                                                                                                                                       32
          4 DO 5 K=M, I1
                                                                                                                                                                         SUBS
                                                                                                                                                                                       33
              KM=I-K+M
                                                                                                                                                                         SU85
                                                                                                                                                                                       34
              KM1=KM-1
                                                                                                                                                                         SUB5
                                                                                                                                                                                       35
              DO 5 L2=1,4
                                                                                                                                                                         SUB5
                                                                                                                                                                                       36
              LJ=L2+J-1
                                                                                                                                                                         SUB5
                                                                                                                                                                                       37
          5 YRMAX(KM,LJ)=YRMAX(KM1,LJ)
                                                                                                                                                                         3UB5
                                                                                                                                                                                       38
              00 6 L2=1.4
                                                                                                                                                                         SUB5
                                                                                                                                                                                       39
              LJ=L2+J-1
                                                                                                                                                                                       40
                                                                                                                                                                         SUB5
          6 YRMAX(M,LJ)=JUNK(L2)
                                                                                                                                                                                       41
                                                                                                                                                                         SUB5
          1 CONTINUE
                                                                                                                                                                         3UB5
                                                                                                                                                                                       42
                                                                                                                                                                          3UB5
                                                                                                                                                                                       43
              COMPUTE EXCEEDENCES
C
                                                                                                                                                                         SUB5
                                                                                                                                                                                       44
C
                                                                                                                                                                         SU85
                                                                                                                                                                                       45
              RL=L
              P(1)=(1.-(.5)**(1./RL))*100.
                                                                                                                                                                         SU85
                                                                                                                                                                                       46
                                                                                                                                                                          SU85
                                                                                                                                                                                       47
               X=2.*(50.-P(1))/(RL-1.)
                                                                                                                                                                                       48
                                                                                                                                                                          SUBS
              00 7 I=2.L
                                                                                                                                                                          SUB5
                                                                                                                                                                                       49
              I1=I-1
                                                                                                                                                                          SUB5
                                                                                                                                                                                       50
          7 P(I) = P(I1) + X
                                                                                                                                                                                       51
                                                                                                                                                                         3UB5
              J.1=1 55 00
                                                                                                                                                                          SUB5
                                                                                                                                                                                       52
               SUMT=SUMT+YRMAX(I,1)
                                                                                                                                                                          3U85
                                                                                                                                                                                       53
               SUMT2=SUMT2+YRMAX(I,1)**2
                                                                                                                                                                          SUB5
                                                                                                                                                                                       54
               SUMT3=SUMT3+YRMAX(I,1)**3
                                                                                                                                                                          SUB5
                                                                                                                                                                                       55
               SUME=SUME+YRMAX(I,5)
                                                                                                                                                                          SUB5
                                                                                                                                                                                       56
               SUME2=SUME2+YRMAX(I,5) **2
                                                                                                                                                                         SUB5
                                                                                                                                                                                       57
        22 SUME3=SUME3+YRMAX(I,5)**3
                                                                                                                                                                          SU85
                                                                                                                                                                                       58
               MT=SUMT/RL
                                                                                                                                                                          SUB5
                                                                                                                                                                                       59
               ST=SQRT((SUMT2-(SUMT**2/RL))/(RL-1.))
               GT=(RL**2*SUMT3=3.*RL*SUMT*SUMT2+2.*SUMT**3)/(ST**3*RL*(RL=1.)*
                                                                                                                                                                          SUB5
                                                                                                                                                                                       60
                                                                                                                                                                          SU85
                                                                                                                                                                                       61
            1(RL-2.))
                                                                                                                                                                          BUBS
                                                                                                                                                                                        62
             MERSUME/RL
                                                                                                                                                                          8UB5
                                                                                                                                                                                        63
             SE#SORT ( (SUME2= (SUME ++2/RL)) / (RL=1.))
                                                                                                                                                                          8UB5
                                                                                                                                                                                        66
             WRITE(6,530)
                                                                                                                                                                                        67
                                                                                                                                                                          8085
   530 FORMAT(////)
                                                                                                                                                                          1485
                                                                                                                                                                                        68
             WRITE(6,500)
   300 FORMAT(T20,10(1+1), THE SAMPLE OF YEARLY MAXIMUM POND TEMPERATURESSUBS
                                                                                                                                                                                        69
          AND 30 DAY 1, 10(1+1), /, T31, 1EVAPORATIVE LOSSES GENERATED BY THISUBS AND 30 DAY 1, 10(1+1), /, T31, 1EVAPORATIVE LOSSES GENERATED BY THISUBS AND THE TOTAL ACCESSES AND THE TOTAL ACCESSES APPENDING THE TOTAL ACCESSES ACTION TO THE TOTAL ACCESSES ACCESSES ACTION TO THE TOTAL ACCESSES ACC
                                                                                                                                                                                        70
                                                                                                                                                                                        73
                                                                                                                                                                                        74
                                                                                                                                                                          8U85
                                                *(YR.MO.DY.)*1,/,T28,65(1.1))
           5 YR*
                             FT##3
                                                                                                                                                                                        75
                                                                                                                                                                          8085
             DO 10 T#1,L
                                                                                                                                                                                        76
      10 WRITE(6,510) P(1), (YRMAX(1,1), Ju1,4), P(1), (YRMAX(1,K), Ku5,8)
                                                                                                                                                                          8UB5
```

Figure B.3 (Continued)

```
510 FORMAT (T28, 1+1, 1X, F5, 2, 1X, 1+1, 3X, F5, 2, 3X, 1+1, 1X, 3F3, 0, 1X, 1+1, 1X,
                                                                               8495
      2F5.2,1X, '+1,1X,F9.1,1X, '+1,1X,3F3.0,1X,1+1)
                                                                               8U85
                                                                                     78
       WRITE(6,520) MT, ME, ST, SE
                                                                               STATE
  520 FORMAT (T28,65('.'),//,T26, 'MEAN', T40,F5,2, T70,F9,1,//,T17,
                                                                               8085
                                                                                     80
      1 'STANDARD DEV.', T40, F6.3, T70, F10.2)
                                                                               STATI
                                                                                      2
       VARTEST##2
                                                                               STAT1
                                                                                      3
       VAREBSE*#2
                                                                               STAT1
                                                                                      4
       WRITE(6,600)
                                                                               STAT1
                                                                                      5
       CALL EXTREM(MT, VART, L)
                                                                               STAT1
                                                                                      6
       WRITE(6,601)
                                                                               STATS
                                                                                      7
      CALL EXTREM (ME, VARE, L)
                                                                               STAT1
                                                                                      8
  601 FORMAT(///,35x, PREDICTED VALUES AND CONFIDENCE LIMITS ON 1/,
                                                                               STAT1
      1 35x, 30 DAY EVAPORATION, FT*+31/)
                                                                               STAT1 10
  500 FORMAT(///,35x, PREDICTED VALUES AND CONFIDENCE LIMITS ON 1/,
                                                                               STATE 11
      1 35x, PEAK TEMPERATURE, DEG.FI./)
                                                                               STAT1 12
       RETURN
                                                                               SUBS
                                                                                     83
       FND
                                                                               8085
                                                                                     84
       SUBROUTINE EXTREM (MIL, V. N)
                                                                               STAT1
                                                                                     13
       THIS PROGRAM COMPUTES THE NECESSARY POINTS FOR COMSTRUCTING A
                                                                              STAT1
                                                                                     14
       MAXIMUM LIKELIHOOD FREQUENCY CURVE WITH UPPER AND LOWER ERROR BANDSTATS 15
           REAL EXCD(20), EXHAT(20), TEX(20), SEXC(20), LEX(20), UEX(20)
                                                                              STATI 15
       PEAL MU
                                                                              STAT1 17
       MUR MEAN VALUE
C
                                                                              STAT1 18
       VE VARIENCE
                                                                              STATI 19
C
       NO SAMPLE SIZE
                                                                              STAT1 20
C
       ALPHAS CONFIDENCE LEVEL FOR ERROR BANDS
                                                                              STAT1 21
C
               E.G., FOR 5 PER CENT AND 95 PER CENT
                                                                              SS ITATE
               ERROR BANDS ALPHA # .95
C
                                                                              STAT1 23
      ALPHARO.95
                                                                              STAT1 24
      NDF=N-1
                                                                              STAT1 25
      DATA EXCD/.001,.005,.01,.02,.05,.1,.2,.3,.4,.6,.7,.8,
                                                                              STAT1 26
     1 .9, .95, .98, .99, .995, .999/
                                                                              STAT1 27
      DATA M/18/
                                                                              85 ITATE
          DO 18 181,M
                                                                              STAT1 29
           PC=EXCD(I)+2.0
IF(EXCD(I).GT..5) PC=(1.0=EXCD(I))+2.0
                                                                              STAT1 30
                                                                              STAT1 31
           TEX(I) #STUDIN(PC.NDF)
                                                                              STAT1 32
           IF(EXCD(I).GT..5) TEX(T) == TEX(I)
                                                                              STATE 33
   18 CONTINUE
                                                                              STAT1 34
      COMPUTE EXPECTED VALUE LINE
C
                                                                              STAT1 35
           DO 21 Tel.M
                                                                              STATE 36
           EXMAT(I) BMU+TEX(I) #SORT(V)
                                                                              STAT1 37
   21
           SEXC(1) #SGRT(V+(1.0+.5+TEX(1)+#2)/N)
                                                                              STAT1 38
                                                                              STAT1 39
C
      COMPUTE UPPER AND LOWER ERROR BANDS
                                                                              STAT1 40
C
                                                                              STAT1 41
   29
           ALPHAG(1.0mALPHA)+2.0
                                                                              STAT1 42
           TAESTUDIN(ALPHA, NDF)
                                                                              STAT1 43
           DO 31 101,M
                                                                              STAT1 44
           LEX(I) = EXHAT(I) - SEXC(I) + TA
                                                                              STAT1 45
          UEX(I) WEXHAT(I) +SEXC(I) #TA
                                                                              STAT1 46
      WRITE (6,200)
                                                                              STAT1 47
  200 PORMAT(T29, 'EXCEEDED', T46, 'PREDICTED', T63, '5 PERCENT',
                                                                              STAT1 48
     1 T81, 195 PERCENTI,, T28, 'PER 100 VRI, T47, IVALUEI, T63, ICONFIDENCEI, STAT1 49
     2 TAL. CONFIDENCE .. /)
                                                                              8TAT1 50
          00 60 IM1, M
                                                                              STAT1 51
      EXCPREXCD(I) #100.0
                                                                              STAT1 52
          WRITE(6,105) EXCP , EXHAT(I), LEX(I), UEX(I)
   60
                                                                              STAT1 53
  105 FORMAT(1H , 15x, F20, 3, 3F18, 3)
                                                                              STAT1 54
   50
          CONTINUE
                                                                              8TAT1 55
      RETURN
                                                                              STAT1 56
          END
                                                                              STAT1 57
```

Figure B.3 (Continued)

```
STATE 58
          FUNCTION STUDIN(ALPHA, N)
                                                                              STAT1 59
Ç
      THIS FUNCTION COMPUTES THE UPPER ALPHA/2 PERCENTILE
                                                                              STAT1 60
¢
      POINT FOR A STUDENT'S T DISTRIBUTION WITH N DEGREES OF FREEDOM
                                                                              STAT1 61
C
                                                                              STAT1 62
¢
                                                                              STATI 63
      N1=1
                                                                              STATI
                                                                                    64
      NESN
                                                                              STAT1 65
      ((SM., NAMADA) THREET THROUGH ((SM., N1, N2))
                                                                              STATE 65
          RETURN
                                                                              STAT1 67
          END
                                                                              STATI 68
          FUNCTION FISHIN (ALPHA, N1, N2)
                                                                              STAT1 69
C
                                                                              STAT1 70
      THIS FUNCTION COMPUTES THE ALPHA PERCENTILE POINT FOR
C
                                                                              8TAT1 71
      FISHER'S F DISTRIBUTION WITH N1 AND N2 DEGREES OF FREEDOM
C
                                                                              STAT1 72
                                                                              STAT1 73
           YIEN1
                                                                              STAT1 74
           YZENZ
                                                                              8TAT1 75
           IF (N1.EQ.1) Y1#2
                                                                              8TAT1 76
           IF (NZ.EQ.1) YZER
           XETINORM (1.0-ALPHA)
                                                                              STAT1 77
                                                                              STAT1 78
           Y=(X++2=3.0)/6.0
                                                                              STATE 79
           IC=0
                                                                              STAT1 80
           Y1=1.0/(Y1=1.0)
                                                                              STAT1 B1
           (0.1=SY)\0.1=SY
                                                                              STAT1 62
           (57+17)\0.5#H
                                                                              STAT1 53
           X#X+80RT(H+Y)/H-(Y1-Y2)+(Y+5.0/6.0-2.0/(3.0+H))
                                                                              STAT1 84
           XEEXP(S.O+X)
                                                                              STAT1 85
           G#1.0
                                                                              STAT1 86
           181#2
                                                                              STAT1 67
           IF (MOD (N1,2) .EQ. 0) GO TO 1
           G#1.7724539
                                                                              STATE 55
                                                                              STAT1 69
           IB1=1
                                                                              8TAT1 90
           195.5
    1
                                                                              STATE 91
           IF (MOD (NZ, 2) .EQ. 0) GO TO 2
                                                                              8TAT1 92
           G=G+1.7724539
                                                                              STAT1 93
           182#1
                                                                              STATI 94
           183#2
    ?
                                                                              STAT1 95
           IF (MOD (N1+N2, 2) . EQ. 0) GO TO 3
                                                                              STAT1 96
           G#G/1.7724539
                                                                              STAT1 97
           18301
                                                                              8TAT1 98
           IF((IB1+IB2).HE.2) G#G+2.0
     4
                                                                              STATI 99
           IF((N1+M2), LK, 3) GO TO 5
                                                                              STAT1100
           ERI-SHSH+1HBON
                                                                              STAT1101
       NDP1 BND+1
                                                                              SCILLATE
       DO 4 IIP1, NOP1, 2
                                                                              STAT1103
       Tall-1
                                                                              STAT1104
           IF((I81+I).LE.(N1=2)) G#G+(I81+I)
                                                                              8TAT1105
           IF((182+1).LE.(N2-2)) G#G*(IR2+1)
                                                                              STAT1106
           G=G/(IA3+I)
                                                                              8TAT1107
     5
           (X#1N+SN)\SN#SY
                                                                              STATI108
           SY-0.101Y
                                                                              8TAT1109
           Y=1.0+(G+(1.0-ALPHA-FISH(X,N1,N2)))/80RT(Y1**N1*Y2**N2)
                                                                              STAT1110
           FISHINEXEY
                                                                              STATILL
           IF(Y.LT.O)FISHINE.5+X
                                                                              STATILLA
           IF (ABS(X/FISHIN-1.0).LT.(.5E-6)) GO TO 7
                                                                              STAT1113
           IF (ABS (X-FISHIN) .LT. (.SE-6)) GO TO 7
                                                                              STAT1114
           IC#IC+1
                                                                              8TAT1115
           IF(IC.GT.100) RP TO 7
                                                                              STAT1115
           X*FISHIN
                                                                              STAT1117
           60 TO 5
                                                                              STATILLS.
           RETURN
     7
                                                                              STAT1119
           FND
                                                                              STATILED
           FUNCTION TINORM(ALPHA)
```

Figure B.3 (Continued)

```
C
                                                                                                                                                                       1511TAT8
              THIS FUNCTION COMPUTES THE ALPHA PERCENTILE FOR THE NORMAL DISTRIBSTAT1122
C
                                                                                                                                                                       STAT1123
                       DIMENSION A(3),8(3)
                                                                                                                                                                       STAT1124
                       DATA A/.010328,.802853,2.515517/, B/.001030A,
                                                                                                                                                                       STAT1125
            1 .189269,1.432768/
                                                                                                                                                                       STAT1126
                       XBAL PHA
                                                                                                                                                                       STAT1127
                       IF(X) 4,4,1
                                                                                                                                                                        SSILTATS
         1 IF(x=1.0) 2,4,4
                                                                                                                                                                       PS11TATE
         ? IF(x.GT.0.5) X=1.0-X
                                                                                                                                                                        8TAT1130
                       X#SGRT(=2.0+ALOG(X))
                                                                                                                                                                        STAT1131
                       TINDRNBX=(A(3) +x+(3))Ax+(2)B) +x+0; A(4(1)) +x+0; A(4(3))Ax+(3) +x+0; A(4(3))Ax+0; A(4(4))Ax+0; A(4(4))Ax+0;
                       IF (ALPHA, LT. . 5) TINORNO-TINORN
                                                                                                                                                                       8TAT1133
         3 TINORMATINORN
                                                                                                                                                                       STAT1134
                       RETURN
                                                                                                                                                                        STAT1135
         4 TINDRNB1 DE32
                                                                                                                                                                       STAT1136
                       IF(X.LE.O.O) TINORNOUTINORN
                                                                                                                                                                        8TAT1137
                       GO TO 3
                                                                                                                                                                        STAT1136
                       END
                                                                                                                                                                        STAT1139
                       FUNCTION FISH(F.N1,N2)
                                                                                                                                                                        STAT1140
                                                                                                                                                                       STAT1141
C
              THIS FUNCTION COMPUTES THE UPPER TAIL AREA OF
                                                                                                                                                                       STAT1142
Ç
              FISHER'S F DISTRIBUTION WITH N1 AND N2 DEGREES OF FREEDOM
                                                                                                                                                                       STAT1143
                                                                                                                                                                       STAT1144
              LOGICAL E1, E2, E3
                                                                                                                                                                       STAT1145
                       E10.FALSE.
                                                                                                                                                                       STAT1146
                       ERM. FALSE.
                                                                                                                                                                       STAT1147
                        ESB.FALSE.
                                                                                                                                                                       STAT1145
                        IF (MDD(N1,2),EQ.O) Eim.TRUE.
                                                                                                                                                                       STAT1149
                                                                                                                                                                       STAT1150
                        IF (MOD (N2,2),EQ.O) EZE, TRUE.
                        X#HZ/(NZ+H1+F)
                                                                                                                                                                        STAT1151
                        IF(.NOT.(£1.0R.E2)) GD TO 5
                                                                                                                                                                        SELLTATE
                        IF(E1.AND.,NOT.E2) GO TO 1
                                                                                                                                                                       STAT1153
                        IF (.NOT.E1.AND.E2) GO TO 2
                                                                                                                                                                       STAT1154
                        IF(N1.LE.N2) GO TO 1
                                                                                                                                                                       STAT1155
         5
                        IWN1
                                                                                                                                                                       STAT1156
                        SHELN
                                                                                                                                                                       STAT1157
                        X81.0-X
                                                                                                                                                                       STAT1158
                        ESW. TRUE.
                                                                                                                                                                       STAT1159
                        Ymi.O=X
                                                                                                                                                                       STAT1160
         1
                        FISHWO.0
                                                                                                                                                                       874T1161
                        HOSORT (X##N2)
                                                                                                                                                                       STATILOZ
                       MEN1/2-1
                                                                                                                                                                       STAT1163
              HP1#M+1
                                                                                                                                                                       STAT1164
              DO 3 Ke1, MP1
                                                                                                                                                                       STAT1165
                                                                                                                                                                       STAT1166
                       IBK-1
                                                                                                                                                                       STAT1167
                        FISHBFISH+H
                        H#(H#Y#(M2+2.0#T))/(2.0#K)
         3
                                                                                                                                                                       97AT1168
                        IF(E3) GO TO 4
                                                                                                                                                                       STAT1169
                        FISHEL, OFFISH
                                                                                                                                                                       STAT1170
                        RETURN
                                                                                                                                                                       STAT1171
          u
                        IRMI
                                                                                                                                                                       STATILTE
                        SHEIN
                                                                                                                                                                       STAT1173
                                                                                                                                                                       STAT1174
                        I # SN
                        RETURN
                                                                                                                                                                       STAT1175
          5
                        Y=1.0=X
                                                                                                                                                                       8TAT1176
                        H# 63661977#89RT(X#Y)
                                                                                                                                                                       STAT1177
                        FISH# 63661977#ACOS(8GRT(X))
                                                                                                                                                                       STAT1178
                        IF(NZ.EQ.1) GO TO 8
                                                                                                                                                                       STAT1179
                        MENS-5
                                                                                                                                                                       STAT1180
                        DO 6 Im1.M.2
                                                                                                                                                                       STAT1181
                       FISHBFISH+R
                                                                                                                                                                       SB111AT8
```

Figure B.3 (Continued)

```
8TAT1183
          (S+T)\setminus (I+I) \times X + H = H
                                                                            STAT1184
          IF (N1 EQ.1) RETURN
                                                                            8TAT1185
          HEHOND
                                                                            STAT1186
          MEN1-2
                                                                            STAT1167
          5.M, tal 7 00
                                                                            STAT1188
          FISHAFISHAM
                                                                            STAT1189
          (S+I)\setminus (I+SN)*Y*H#H
   7
                                                                            STAT1190
      RETURN
                                                                            STAT1191
      END
      SUBROUTINE READRL
                                                                            READRC 2
                                                                            READRC 3
      READS WIND SPEED, DRY BULB TEMPERATURE, WET BULB TEMPERATURE,
                                                                           READRC 4
C
      DEW POINT, RELATIVE HUMIDITY, STATION PRESSURE, AND TENTHS OF
                                                                           READRC 5
      CLOUD COVER FROM NATIONAL WEATHER SERVICE DATA TAPES. WIND SPEED READRC 6
C
      IS RETURNED IN MPH, TEMPERATURE IN DEGREES FARENHEIT, AND PRESSUREREADRC 7
      IN MM-HG. INPUT RECORD IS 495 CHARACTERS LONG.
                                                                            READRC 8
C
                                                                            READRC 9
      INTEGER JUNK(6,9), ISTAT(2), IWIND(6,4), ITEMP(6,6), IHUMID(6,2),
                                                                            READRC10
     1 IPRESS (6,4), ISKY (6,6)
                                                                            READRC11
      COMMON IDATE(3), IHOUR(6), WINDSP(6), TEMPDB(6), TEMPWB(6), TEMPDP(6), READRC12
     1HUMID(6), PRESSR(6), SKY(6)
                                                                            READRC13
                    ISTAT, IDATE, (IHOUR(I), (JUNK(I,K),K=1,4),
                                                                            READRC14
      READ(8,500)
     1(IWIND(I,K),K=1,4),(ITEMP(I,K),K=1,6),IHUMID(I,1),IHUMID(I,2),
                                                                            READRC15
     2(IPRESS(I,K),K=1,4),(ISKY(I,K),K=1,6),(JUNK(I,K),K=5,9),I=1,6)
                                                                            READRC16
  500 FORMAT ( 14,15,312,6(12,1X,12,A1,1X,12,A1,11,A1,4(12,A1),1X,
                                                                            READRC17
     112, A1, I4, A1, I3, A1, 1X, 6A1,
                                  2(A10),A2,A8,A2,4X))
                                                                            READRC18
                                                                            READRC19
      DO 100 I=1.6
      CALL SIGNCK (IWIND(I,3), IWIND(I,4))
                                                                            READRC20
      WINDSP(I) = IWIND(I,3)
                                                                           READRC21
      CALL SIGNCK (ITEMP(I,1), ITEMP(I,2))
                                                                            READRC22
      WINDSP(I) = WINDSP(I) *1.15078
                                                                           READRC23
      CALL SIGNCK (ITEMP(I,3), ITEMP(I,4))
                                                                           READRC24
      CALL SIGNCK (ITEMP(1,5), ITEMP(1,6))
                                                                           READRC25
      TEMPDB(I)=ITEMP(I,1)
                                                                           READRC26
      TEMPWB(I) = ITEMP(I,3)
                                                                           READRC27
      TEMPOP(I)=ITEMP(I,5)
                                                                           READRC28
      CALL SIGNCK (IHUMID(I,1), IHUMID(I,2))
                                                                           READRC29
      HUMID(I)=IHUMID(I,1)
                                                                           READRC30
      CALL SIGNCK (IPRESS(I, 3), IPRESS(I, 4))
                                                                           READRC31
      PRESSR(I)=IPRESS(I,3)
                                                                           READRC32
      PRESSR(I)=PRESSR(I) *.01
                                                                           READRC33
      ICOVER=0
                                                                           READRC34
      CALL SIGNCK(ICOVER, ISKY(I,5))
                                                                           READRC35
  100 SKY(I)=ICOVER*.1
                                                                           READRC36
      RETURN
                                                                           READRC 37
      END
                                                                           READRC3A
      SUBROUTINE SIGNCK (IFLD, ISGN)
                                                                           SIGNCK 2
      THIS SUBROUTINE FURNISHED BY NATIONAL CLIMATIC CENTER, ASHEVILLE
                                                                           SIGNCK 3
          WILL TEST ANY PSYCHROMETRIC WITH A SIGN-OVER-UNITS
                                                                           SIGNCK 4
          POSITION READ AS A1 AND THE HIGH ORDER POSITION AS AN
                                                                           SIGNCK 5
          I SPECIFICATION OF PROPER WIDTH
                                                                           SIGNCK 6
C
      THE SIGN SHOULD ENTER THE PARAMETER LIST AS ISGN,
                                                                           SIGNCK 7
          THE REMAINING PORTION AS IFLD
C
                                                                           SIGNCK 8
      UPON RETURN FROM THE SUBROUTINE THE VALUE OF IFLD WILL BE
C
                                                                           SIGNCK 9
          AN INTEGER WITH PROPER SIGN
C
                                                                           SIGNCK10
      IT WILL BE THE USER'S RESPONSIBILITY TO CONVERT THIS
¢
                                                                           SIGNCK11
          TO DECIMAL WITH PROPER DECIMAL ALIGNMENT
                                                                           SIGNCK12
      INVALID CONDITION CAUSES IFLD TO BE SET TO 9999
C
                                                                           SIGNCK13
      DIMENSION IP(10), MIN(10), NUM(10)
                                                                           SIGNCK14
      DIMENSION INUM(10)
                                                                           SIGNCK15
      DATA INUM/'1','2','3','4','5','6','7','8','9','0'/
                                                                           SIGNCK16
      NOTE - SOME COMPUTER SYSTEMS MAY REQUIRE DIFFERENT CHARACTERS AS SIGNCK17
C
      THE LAST CHARACTERS IN ARRAYS IP AND MIN
C
                                                                           SIGNCK18
```

Figure B.3 (Continued)

```
DATA MIN/'J','K','L','M','N','O','P','G','R','L'/
DATA IP/'A','B','C','D','E','F','G','H','I',
                                                                            SIGNCK19
                                                                            SIGNCK20
                                                                            SIGNCK21
    1 725555555555555555
     DATA NUM/1,2,3,4,5,6,7,8,9,0/
                                                                            SIGNCK22
                                                                            SIGNCK23
     DATA IAST/***/
                                                                            SIGNCK24
      DATA MINUS/ - 1/
                                                                            SIGNCK25
      DATA NULL/ 1/
                                                                            SIGNCK26
      IF (ISGN.EG.NULL.AND.IFLD.NE.0) GO TO 125
                                                                            SIGNCK27
      IF (ISGN.EQ.IAST) GO TO 105
                                                                            SIGNCK28
      IF (ISGN.EQ.MINUS) GO TO 110
                                                                            SIGNCK29
      DO 100 K=1,10
                                                                            SIGNCK30
        (ISGN.EQ.IP(K)) GO TO 115
      IF
                                                                            SIGNCK31
      IF (ISGN.EQ.MIN(K)) GO TO 120
                                                                            SIGNCK32
      IF (ISGN.EQ.INUM(K)) GO TO 115
                                                                            SIGNCK33
 100 CONTINUE
                                                                            SIGNCK34
 105 IFLD=999999
                                                                            SIGNCK35
      RETURN
                                                                            SIGNCK36
 110 IFL0=10
                                                                            SIGNCK37
      RETURN
                                                                            SIGNCK38
 125 IFLD=IFLD*10
                                                                            SIGNCK39
      RETURN
                                                                            SIGNCK40
  115 IFLD=IFLD+10+NUM(K)
                                                                            SIGNCK41
      RETURN
                                                                            SIGNCK42
  120 IFLD==(IFLD*10+NUM(K))
                                                                            SIGNCK43
      RETURN
                                                                             SIGNCK44
      END
                                                                             SOLAR
      SUBROUTINE SOLAR (LAT, YR, MONTH, DAY, SRAD)
                                                                            SOLAR
                                                                                    3
C
      RETURNS INSOLATION IN BTU/FT**2/DAY AT EACH HOUR OF THE DAY.
                                                                             SOLAR
C
                                                                             SOLAR
                                                                                    5
C
                                                                             SOLAR
                                                                                    6
      INTEGER YR, MONTH, DAY, MONDAT (12)
                                                                             SOLAR
                                                                                    7
      REAL LAT, SRAD (25)
      DATA MONDAT/0,31,59,90,120,151,181,212,243,273,304,334/
                                                                             SOLAR
                                                                                    8
                                                                             SOLAR
                                                                                    9
      LP=MOD(YR,4)
                                                                             SOLAR 10
      IF(LP.NE.0)G0 TO 120
                                                                             SOLAR 11
      00 100 I=3,12
                                                                             SOLAR 12
  100 MONDAT(I)=MONDAT(I)+1
                                                                             SOLAR 13
  120 NUM=MONDAT (MONTH) +DAY
                                                                             SOLAR 14
C
                                                                             SOLAR 15
      FIND TOTAL POSSIBLE DAILY RADIATION AND LENGTH OF DAYLIGHT.
C
                                                                             SOLAR 16
C
                                                                             SOLAR 17
      TOTRAD=HAMN(LAT, YR, NUM)
                                                                             SOLAR 18
      DAYNUM=NUM
                                                                             SOLAR 19
      DAYLEN=DAYLIT (LAT, DAYNUM)
                                                                             SOLAR 20
C
                                                                             SOLAR 21
      CALCULATE THE SINUSOIDAL VARIATION IN DAILY RADIATION.
C
                                                                             SOLAR 22
C
                                                                             SOLAR 23
      T1= 5+DAYLEN
                                                                             SOLAR 24
      A=.5*TOTRAD
                                                                             SOLAR 25
      DATA W/.2618/
      ALPHA=1./(1./(A*W)*SIN(W*T1)=T1/A*COS(W*T1))
                                                                             SOLAR 26
                                                                             SOLAR 27
       ALPTO=ALPHA*COS(W*T1)
                                                                             SOLAR 28
      DO 130 I=1,25
                                                                             SOLAR 29
      T0=I-1.
                                                                             SOLAR 30
       SRAD(I)=0.
                                                                             SOLAR 31
       T0=ABS(T0=12.)
                                                                             SOLAR 32
C
                                                                             SOLAR 33
      CALCULATE RATE OF INSOLATION FOR EACH HOUR OF DAYLIGHT.
C
                                                                             SOLAR 34
       IF(TO.LE.T1)SRAD(I)=(ALPHA+COS(W+TO)-ALPTO)+DAYLEN
                                                                             SOLAR 35
                                                                             SOLAR 36
  -130 CONTINUE
                                                                             SOLAR 37
       IF(LP.NE.O) RETURN
                                                                             SOLAR 38
       DO 140 I=3,12
                                                                             SOLAR 39
   140 MONDAT(I)=MONDAT(I)=1
```

Figure B.3 (Continued)

```
SOLAR 40
      RETURN
                                                                             SOLAR 41
      END
                                                                             DAYLIT 2
      FUNCTION DAYLIT (LAT, DAYNUM)
                                                                             DAYLIT 3
C
      RETURNS HOURS OF DAYLIGHT GIVEN LATITUDE OF OBSERVATION AND
                                                                             DAYLIT 4
C
      NUMBER OF THE DAY OF THE YEAR. LATITUDE MUST BE BETWEEN 25 AND 50 DEGREES NORTH. THE SOURCE FOR THE LENGTH OF DAYLIGHT INFOR-
                                                                             DAYLIT
C
                                                                             DAYLIT 6
C
      MATION (STORED IN ARRAY 'LENGTH') IS THE SMITHSONIAN METEOROLOG-
                                                                             DAYLIT 7
C
                                                                             DAYLIT 8
      ICAL TABLES.
C
                                                                             DAYLIT 9
C
      REAL LAT, LATBL (6), LENGTH (6, 10) , DAY (10)
                                                                             DAYLIT10
                                                                             DAYLIT11
      DATA LATBL/25.,30.,35.,40.,45.,50.01/
      DATA DAY/-10.,13.,79.,145.,172.,197.,263.,333.,355.,378./
                                                                             DAYLIT12
                                                                             DAYLIT13
      DATA (LENGTH(1,I), I=1,10)
     1 /10.58,10.73,12.15,13.50,13.68,13.53,12.17,10.73,10.58,10.73/
                                                                             DAYLIT14
                                                                             DAYLIT15
      DATA (LENGTH(2, I), I=1,10)
     2/10.20,10.40,12.15,13.83,14.08,13.87,12.17,10.40,10.20,10.40/
                                                                             DAYLIT16
                                                                             DAYLIT17
      DATA (LENGTH(3, I), I=1,10)
     3/9.80,10.03,12.15,14.23,14.52,14.26,12.20,10.02,9.80,10.03/
                                                                             DAYLIT18
                                                                             DAYLIT19
      DATA (LENGTH(4, I), I=1, 10)
     4/9.33,9.60,12.18,14.67,15.02,14.70,12.22,9.60,9.33,9.60/
                                                                             DAYLIT20
                                                                             DAYLIT21
      DATA (LENGTH(5, I), I=1,10)
     5/8.75,9.10,12.19,15.28,15.61,15.23,12.23,9.09,8.75,9.10/
                                                                             SSTIJYAG
                                                                             ESTIJYAG
      DATA (LENGTH(6, I), I=1,10)
     6/8.07,8.50,12.22,15.83,16.38,15.88,12.28,8.48,8.07,8.50/
                                                                             DAYLIT24
                                                                             DAYLIT25
      00 100 I=2,10
                                                                             DAYLIT26
      I1=I-1
       IF(DAYNUM.GE.DAY(I1).AND.DAYNUM.LT.DAY(Í))GO TO 110
                                                                             DAYLIT27
                                                                              BSTIlYAG
  100 CONTINUE
                                                                             DAYLIT29
  110 00 120 K=2.6
                                                                             DAYLIT30
       K1=K-1
                                                                              DAYLIT31
       IF(LAT.GE.LATBL(K1).AND.LAT.LT.LATBL(K)) GO TO 130
                                                                              DAYLIT32
  120 CONTINUE
                                                                              DAYLIT33
C
      LINEAR INTERPOLATION OF TABLE 'LENGTH'.
                                                                              DAYLIT34
C
                                                                              DAYLIT35
C
                                                                              DAYLIT36
  130 DELDY=(DAY(I)-DAYNUM)/(DAY(I)-DAY(I1))
       A=LENGTH(K1,I)=(DELDY*(LENGTH(K1,I)=LENGTH(K1,I1)))
                                                                              DAYLIT37
       B=LENGTH(K, I) = (DELDY*(LENGTH(K, I) = LENGTH(K, I1)))
                                                                              DAYLIT38
                                                                              DAYLIT39
       DAYLIT=8-(LATBL(K)-LAT)/5.*(8-A)
                                                                              DAYLIT40
       RETURN
                                                                              DAYLIT41
       END
                                                                              HAMN
       FUNCTION HAMN(LAT, YR, MODA)
                                                                              HAMN
                                                                                     3
       SOLAR RADIATION ON HORIZONTAL SURFACE
C
                                                                              HAMN
                                                                                     4
           FROM HAMON, WEISS, + WILSON
                                           )100(>
C
           #MONTHLY WEATHER REVIEW#--PAGE 141--JUNE 1954
                                                                              HAMN
                                                                                      5
C
       PROGRAM AUTHOR--E.C.LONG. COMPUTER SCIENCES DIVISION--ORNL
                                                                              HAMN
                                                                                      6
C
       UNION CARBIDE NUCLEAR DIVISION. OAK RIDGE, TENNESSEE
                                                                              HAMN
                                                                                     7
C
                                                                              HAMN
  *** DAILY RADIATION RETURNED IN BTU'S ***
                                                                                      8
C
                                                                              HAMN
                                                                                      9
       REAL DATE(16), L25(16), L30(16), L35(16), L40(16), L45(16), L50(16),
                                                                              HAMN
                                                                                    10
            LT(6), LAT, X(3), Y(3), L(96)
                                                                              HAMN
                                                                                    11
     / INTEGER IM(12),N(12),YR
                                                                              HAMN
                                                                                    12
       EQUIVALENCE (L(1), L25(1)), (L(17), L30(1)), (L(33), L35(1)),
                                                                              HAMN
           (L(49),L40(1)),(L(65),L45(1)),(L(81),L50(1))
                                                                                    13
                                                                              HAMN
                                                                                    14
                     /-41.0,-11.0,20.0,51.0,79.0,110.0,140.0,
       DATA DATE
                                                                              HAMN
                                                                                    15
           171.0,201.0,232.0,263.0,293.0,324.0,354.0,385.0,416.0/
      1
                   /1754.0.1616.0.1794.0.2116.0.2399.0.2611.0.2708.0,
                                                                              HAMN
                                                                                    16
       DATA L25
                                                                              HAMN
           2729.0,2695.0,2571.0,2338.0,2030.0,1754.0,1616.0,
                                                                                    17
                                                                              HAMN
                                                                                    18
           1794.0,2116.0/
      2
                    /1557.0,1390.0,1570.0,1909.0,2266.0,2557.0,2699.0,
                                                                              HAMN
                                                                                    19
       DATA L30
           2729.0,2662.0,2503.0,2224.0,1873.0,1557.0,1390.0,
                                                                              HAMN
                                                                                    50
                                                                              HAMN
                                                                                    21
           1570.0,1909.0/
      2
                    /1338.0,1149.0,1351.0,1723.0,2124.0,2492.0,2680.0,
                                                                              HAMN
                                                                                    55
                                                                              HAMN
           2729.0,2645.0,2426.0,2064.0,1685.0,1338.0,1149.0,
                                                                                    23
```

Figure B.3 (Continued)

```
HAMN
                                                                                   24
          1351.0,1723.0/
      DATA L40
                  /1103.0,909.7,1103.0,1514.0,1947.0,2397.0,2655.0,
                                                                             HAMN
                                                                                   25
                                                                             HAMN
          2729.0,2603.0,2342.0,1951.0,1479.0,1103.0,909.7,
                                                                                   26
          1103.0,1514.0/
                                                                             HAMN
                                                                                   27
                   /882.7,687.3,881.0,1311.0,1778.0,2289.0,2618.0,
                                                                             HAMN
      DATA L45
                                                                                   28
          2729.0,2571.0,2247.0,1769.0,1274.0,882.7,687.3,881.0,1311.0/
                                                                             HAMN
                                                                                   29
                /682.3,463.3,631.0,1053.0,1568.0,2165.0,2581.0,
                                                                             HAMN
                                                                                   30
      DATA L50
                                                                             HAMN
          2729.0,2527.0,2136.0,1584.0,1060.0,682.3,463.3,631.7,1053.0/
                                                                                   31
                /25.0,30.0,35.0,40.0,45.0,50.0/
                                                                             HAMN
                                                                                   32
      DATA LT
              IM
                                                                             HAMN
                     /1,32,60,91,121,152,182,213,244,274,305,335/
                                                                                   33
      DATA
                                                                             HAMN
                                                                                   34
                    /31,28,31,30,31,30,31,31,30,31,30,31/
      DATA
              N
                                                                             HAMN
                                                                                   35
      DAYC=MODA
                                                                             HAMN
      LEAP=MOD (YR,4)
                                                                                   36
      IF (LEAP.NE.0) GO TO 110
                                                                             HAMN
                                                                                   37
                                                                             HAMN
      DO 100 I=4,16
      DATE(I)=DATE(I)+1.0
                                                                             HAMN
                                                                                   39
                                                                             MMAH
                                                                                   40
  100 CONTINUE
      11,5=I 201 00
                                                                             HAMN
                                                                                   41
                                                                             HAMN
                                                                                   42
      IM(I)=IM(I)+1
                                                                             HAMN
                                                                                   43
      N(I)=N(I)+1
                                                                             HAMN
                                                                                   44
  105 CONTINUE
                                                                             HAMN
                                                                                   45
  110 SUM=0.0
      IF (MODA.GT.0) GO TO 115
                                                                             HAMN
                                                                                   46
C
      FOR MODA)O FIND AVERAGE SOLAR RADIATION FOR MONTH -MODA
                                                                             HAMN
                                                                                   47
                                                                             HAMN
                                                                                   48
      MOS-MODA
                                                                             HAMN
                                                                                   49
      I1=[M(MO)
                                                                             HAMN
                                                                                   50
      ID=N(MO)
                                                                             HAMN
                                                                                   51
      I2=I1+ID-1
                                                                             HAMN
                                                                                   52
      DAYS=ID
                                                                             HAMN
      DAY=I1
                                                                                   53
                                                                             HAMN
                                                                                   54
      GO TO 120
C
      FOR MODA>O FIND RADIATION FOR DAY #DAYC#
                                                                             HAMN
                                                                                   55
                                                                             HAMN
          DAYC IS EQUIVALENCED TO MODA
                                                                                   56
C
                                                                             HAMN
                                                                                   57
  115 I1=1
                                                                             HAMN
                                                                                   58
      ID=1
                                                                             HAMN
                                                                                   59
      1=51
                                                                             HAMN
                                                                                   60
      DAY=DAYC
                                                                             HAMN
      DAYS=1.0
                                                                                   61
  120 DO 180 II=I1,I2
                                                                             HAMN
                                                                                   62
      DETERMINE IF DAY IS TABULAR
                                                                             HAMN
                                                                                   63
C
          OF IF DAY NOT TABULAR, INDEX OF DAY
                                                                             HAMN
                                                                                   64
C
                                                                             HAMN
                                                                                   65
      MD=0
                                                                             HAMN
                                                                                   66
      MI=0
                                                                             HAMN
                                                                                   67
      00 130 I=2,14
      DATEI=DATE(I)
                                                                             HAMN
                                                                                   68
      TF (DAY.NE.DATEI) GO TO 125
                                                                             HAMN
                                                                                   69
                                                                             HAMN
                                                                                   70
      MD=I
                                                                             HAMN
                                                                                   71
      GO TO 140
      MD HAS INDEX I IF DAY=DATE(I)
                                                                             HAMN
                                                                                   72
  125 IF (DAY.GT.DATEI.AND.DAY.LT.DATE(I+1)) GO TO 135
                                                                             HAMN
                                                                                   73
                                                                                   7 A
  130 CONTINUE
                                                                             HAMN
                                                                             HAMN
                                                                                   75
      GO TO 140
                                                                             HAMN
                                                                                   76
  135 MI=I
      MI=I FOR DATE(I))DAY)DATE(I+1)
                                                                             HAMN
                                                                                   77
C
      DETERMINE IF LAT IS TABULAR VALUE
                                                                             HAMN
                                                                                   78
  140 IF (MODA.LT.O.AND.II.GT.II) GO TO 150
                                                                             HAMN
                                                                                   79
                                                                             HAMN
                                                                                   80
      ML=0
      DO 145 I=1.6
                                                                             HAMN
                                                                                   81
      IF (LAT.NE.LT(I)) GO TO 145
                                                                             HAMN
                                                                                   82
                                                                             HAMN
                                                                                   83
      MLSI
      ML=I FOR LAT TABULAR VALUE
                                                                             HAMN
                                                                                   84
C
                                                                             HAMN
                                                                                   85
      GO TO 150
                                                                             HAMN
                                                                                   86
  145 CONTINUE
                                                                             HAMN
  150 IF (MD*ML.EQ.0) GO TO 155
                                                                                   87
```

Figure B.3 (Continued)

```
HAMN
                                                                                  88
      TABULAR DATE + LATITUDE
C
                                                                            HAMN
                                                                                   89
      J=(ML-1) +16+MD
                                                                            HAMN
                                                                                   90
      HAMN=L(J)
                                                                            HAMN
                                                                                   91
      GO TO 175
                                                                            HAMN
                                                                                   92
  155 IF (ML.EQ.0) GO TO 160
                                                                            HAMN
                                                                                   93
      NON TABULAR DATE + TABULAR LATITUDE
                                                                            HAMN
                                                                                   94
      MI1=MI-1
                                                                            HAMN
                                                                                   95
      J=(ML-1) *16+MI1
                                                                            HAMN
                                                                                   96
      HAMN=YLAG(DAY, DATE(MI1), L(J), 4)
                                                                            MMAH
                                                                                   97
      GO TO 175
                                                                            HAMN
                                                                                   Q.A
  160 IF (LAT.LE.32.5) LATF=1
                                                                            HAMN
                                                                                   99
      IF (LAT.GT.32.5.AND.LAT.LE.37.5) LATF=2
                                                                            HAMN 100
      IF (LAT.GT.37.5.AND.LAT.LE.42.5) LATF#3
                                                                            HAMN 101
      IF (LAT.GT.42.5) LATF=4
                                                                            HAMN 102
      X(1)=LT(LATF)
                                                                            HAMN 103
      .'(2)=LT(LATF+1)
                                                                            HAMN 104
      %(3)=LT(LATF+2)
                                                                            HAMN 105
      IF (MD.EQ.0) GO TO 165
                                                                            HAMN 106
      TABULAR DAY + NON TABULAR LATITUDE
C
                                                                            HAMN 107
      Y(1)=L((LATF-1) *16+MD)
                                                                            HAMN 108
      Y(2)=L(LATF *16+MD)
                                                                            HAMN 109
      Y(3)=L((LATF+1)+16+MD)
                                                                            HAMN 110
      60 TO 170
                                                                            HAMN 111
      NON TABULAR DATE + NON TABULAR LATITUDE
                                                                            HAMN 112
  165 M1=MI-1
                                                                             HAMN 113
      Y(1)=YLAG(DAY,DATE(M1),L((LATF+1)+16+M1),4)
                                                                             HAMN 114
       Y(2)=YLAG(DAY, DATE(M1), L(LATF+16+M1), 4)
                                                                             HAMN 115
       Y(3)=YLAG(DAY,DATE(M1),L((LATF+1)+16+M1),4)
                                                                             HAMN 116
  170 HAMN=YLAG(LAT, X, Y, 3)
                                                                             HAMN 117
       DAY=DAY+1.0
                                                                             HAMN 118
  175 DAY=DAY+1.0
                                                                             HAMN 119
  180 SUM=SUM+HAMN
                                                                             HAMN 120
       HAMN=AMIN1(2729.0,AMAX1(SUM/DAYS,0.0))
                                                                             HAMN 121
       IF (LEAP.NE.O) RETURN
                                                                             SSI NMAH
       DO 185 I=4,16
                                                                             HAMN 123
       DATE(I)=DATE(I)=1.0
                                                                             HAMN 124
   185 CONTINUE
                                                                             HAMN 125
       DO 190 I=2,11
                                                                             HAMN 126
       IM(I)=IM(I)=1
                                                                             HAMN 127
       N(I)=N(I)-1
                                                                             HAMN 128
   190 CONTINUE
                                                                             HAMN 129
       ETURN
                                                                             HAMN 130
       FND
                                                                             YLAG
                                                                                    5
       FUNCTION YLAG(XI, X, Y, N)
                                                                             YLAG
                                                                                    3
       N-POINT LAGRANGIAN INTERPOLATION WHERE I=1,N
                                                                                    4
       SPECIAL VERSION FOR USE WITH FUNCTION WHAMNA
                                                                             YLAG
       PROGRAM AUTHOR--E.C.LONG. COMPUTER SCIENCES DIVISION--ORNL
                                                                             YLAG
                                                                                    5
                                                                             YLAG
                                                                                    6
       UNION CARBIDE NUCLEAR DIVISION. OAK RIDGE, TENNESSEE
 C
                                                                                    7
                                                                             YLAG
       DIMENSION X(N),Y(N)
                                                                             YLAG
                                                                                    8
       S=0.0
                                                                             YLAG
       P=1.0
                                                                                   10
                                                                             YLAG
       DO 110 J=1,N
                                                                             YLAG
                                                                                   11
       P=P*(XI-X(J))
                                                                             YLAG
                                                                                   12
       D=1.0
                                                                             YLAG
                                                                                   13
       DO 105 I=1,N
                                                                             YLAG
                                                                                   14
       IF (I.NE.J) GO TO 100
                                                                             YLAG
                                                                                   15
        IXEG
                                                                             YLAG
                                                                                   16
       GO TO 105
                                                                             YLAG
                                                                                   17
   100 \times D=X(J)
                                                                             YLAG
                                                                                   18
   105 D=D+(XD-X(I))
                                                                                   19
                                                                             YLAG
   110 S=S+Y(J)/D
                                                                             YLAG
                                                                                   20
        YLAG=8+P
                                                                             YLAG
                                                                                   21
        RETURN
                                                                             YLAG
                                                                                   22
        END
```

Figure B.3 (Continued)

```
PROGRAM SPRPND(INPUT, OUTPUT, TAPE6=OUTPUT, TAPE8, TAPE5=INPUT)
                                                                               SPRPND 2
     PROGRAM TO CALCULATE MAX TEMPERATURE IN A UHS SPRAY-POND
C
                                                                               SPRPND 3
       RICHARD CODELL, U.S.N.R.C. - WASHINGTON D.C. 20555 JULY 1980
                                                                               SPRPND 4
       DIMENSION TIME (20)
                                                                               SPRPND 5
       DIMENSION ITITLE (80)
                                                                               SPRPND 6
       COMMON CH(6),CL(7),CEH(6),CEL(7),NDRIFT,WDRO,DWDR,FDRIFT(20),
                                                                               SPRPND 7
      1 CEMIN, CEMAX, CMIN, CMAX, VOL, AM, CON1, CON2, CON3, CON4, CON5, CON6,
                                                                               SPRPND 8
     2 VIS.RHOA, DIFF, AK, H, EVAP, DTO6, DTO2, TDROP, UO, VO, SC, PRANTL, NSTDR.
                                                                               SPRPND 9
     3 ATOP(12), ASIDE(12), K1, E, E2, BETA, TSKIP, QBASE, FBASE, M1, M2, BTA,
                                                                               SPRPND10
     4 BTD, BHS, BW, IMET, BLOW, F1, R1, TD, TA, HS, W, G(1400,6), HEAT(20),
                                                                               ITER
      5 FLOW(20), TH(20), NMET, NH, A, DTMET, TW. PR, DTDROP
                                                                               SPRPND12
      6 , ASIDEH, HT, WID, ALEN, PB, ISPRAY
                                                                               SPRPND13
      COMMON/SPSW/ TSPRON
                                                                               SPRPND14
       COMMON/DRPSZ/ R
                                                                               SPRPND15
       C(Z) = (Z-32)/1.8
                                                                               SPRPND17
       NAMELIST/HFT/ NH, HEAT, FLOW, TH
                                                                               SPRPND18
       F1=0.0
                                                                               SPRPND19
       Q1=0.0
                                                                               SPRPND20
       IMET=0
                                                                               SPRPN022
       CEMAX=0.1
                                                                               SPRPND23
      CEMIN=0.
                                                                               SPRPND24
      CMAX=0.8
                                                                               SPRPND25
       CMIN=0.2
                                                                               SPRPNDZE
       VEL0=22.5
                                                                               JULY30 1
       TA=90.
                                                                               SPRPND26
       TW=70.
                                                                               SPRPND29
       TD=60.
                                                                               SPRPND30
       W=3.
                                                                               SPRPND31
       HS=1500.
                                                                               SPRPN032
      PB=29.92
                                                                               SPRPND33
       THETA=71.0
                                                                               JULY30 2
       Y0=5.0
                                                                               JULY30 3
      R=.104
                                                                               SPRPND38
      PHI=90.0
                                                                               SPRPND39
      NITER=0
                                                                               ITER
                                                                                       2
      DTITER=5.0
                                                                               ITER
C
      NUMBER OF STEPS IN INTEGRATION OF DROP HEAT AND MASS TRANSFER
                                                                               SPRPNDAD
      NSTDR=10
                                                                               SPRPND41
      TZER0=80.0
                                                                               SPRPN042
      DT=0.2
                                                                               SPRPND43
      DATA M4, NSTEPS, NPRINT/0, 100, 10/
                                                                               SPRPND44
      NAMELIST /INLIST/ VZERO, BLOW, A, NH, NSTEPS, NPRINT, DT, TZERO, DTMFT
                                                                               SPRPN045
     1 .TSKIP.QBASE.FBASE.IMET.
                                        ISPRAY,Q1.F1
                                                                               SPRPND46
     2 , HEAT, FLOW, TH
                                                                               SPRPND47
     1 ,TA,TW,W,TD,HS,PB,IEVAP,TSPRON
                                                                               SPRPND48
     1 , NITER, DTITER
                                                                               ITER
      NAMELIST/PARAM/ NDRIFT, WDRO, DWDR, FDRIFT, CEMAX, CEMIN, CMAX, CMIN
                                                                               SPRPND49
     1 , VELO, THETA, R, HT, WID, ALEN, YO, PHI, ISPRAY, TA, TD, TW, HS, W, PB
                                                                               SPRPND50
      READ(5,555) CH,CL,CEH,CEL
                                                                               SPRPND51
  555 FORMAT (4E15.8)
                                                                               SPRPND52
      READ (5, PARAM)
                                                                               SPRPND53
     CONVERT SPRAY PARAMETERS TO METRIC UNITS
                                                                               JULY30 4
      VEL0=VEL0+30.48
                                                                               JULY30 5
      THETA=THETA*(3.1415926/180.0)
                                                                               JULY30 6
      HT=HT+30.48
                                                                               JULY30 7
      WID=WID*30.48
                                                                               JULY30 8
      Y0=Y0+30.48
                                                                               JULY30 9
      ALEN=ALEN+30.48
                                                                               JULY3010
      READ(5,101) NMET
                                                                               SPRPND54
  101 FORMAT(I5)
                                                                               SPRPND55
     READ IN MET TABLE (WIND SP., DRY BULB, DEW PT, TWET, ATM PRESS)
C
                                                                               SPRPND56
     SKIP FIRST 5 CARDS
                                                                               JULY3011
```

Figure B.4 Listing of program SPRPND

```
DO 8 I=1.5
                                                                       JULY3012
                                                                       JULY3013
    8 READ(8,9)
                                                                       JULY3014
    9 FORMAT(1H )
                                                                       SPRPND57
      READ(8,1) (G(I,4),G(I,2),G(I,1),G(I,3),G(I,5),G(I,6),I=1,NMET)
                                                                       SPRPND58
    1 FORMAT(3X,3F5.0,F6.0,2F7.0,3F5.0,F6.0,2F7.0)
     VZERO = VOLUME OF POND FT**3
                                                                       SPRPND59
     BLOW = BLOWDOWN RATE OUT FT**3/HR
                                                                       SPRPND60
C
     A = SURFACE AREA FT**2
                                                                       SPRPND61
     NSTEPS = NUMBER OF INTEGRATION STEPS
C
                                                                       SPRPND62
     NPRINT = PRINT EVERY NPRINT STEPS
                                                                       SPRPND63
    OT = INTEGRATION TIMESTEP, HRS
C
                                                                       SPRPND64
    TZERO = INITIAL POND TEMP DEG.F
C
                                                                       SPRPND65
C
     G(I,1)=TD=DEW POINT, DEG.F
                                                                       SPRPND66
C
    G(I,2)=TA=DRY BULB DEG.F
                                                                       SPRPND67
C
    G(I,3) = HS = SOLAR RADIATION BTU/(FT**2 DAY)
                                                                       SPRPN068
     G(I,4) = W = WIND SPEED MPH
                                                                       SPRPND69
    G(I,6) = PR = ATM PRESSURE -- INCHES HG .
                                                                       SPRPND70
     G(1,5) = TW = WET BULB TEMPERATURE - DEG. F
                                                                       SPRPN071
                                                                       SPRPND72
     GBASE = BASE HEAT LOAD, BTU/HR
C
     FBASE = BASE FLOW, FT**3/HR
                                                                       SPRPND73
     NH = NUMBER OF ENTRIES IN HEAT TABLE
                                                                       SPRPND74
C
     HEAT = ARRAY OF HEAT INPUTS, BTU/HR
                                                                       SPRPND75
C
     FLOW = ARRAY OF FLOW RATES, FT**3/HR
                                                                       SPRPND76
C
     TH = ARRAY OF CORRESPONDING TIMES FOR HEAT AND FLOW ARRAYS
                                                                       SPRPND77
C
                                                                       SPRPND78
C
     Q1 = HEAT LOAD FOR T LESS THAN TSKIP
C
     F1 = FLOW FOR T LESS THAN TSKIP
                                                                       SPRPND79
      (ABOVE 2 USED FOR AMBIENT TEMPERATURE CALCULATION)
                                                                       SPRPND80
C
     HT = HEIGHT OF SPRAY FIELD, FT
                                                                       JULY3015
C
     ALEN = LENGTH OF SPRAY FIELD, FT
                                                                       JULY3016
C
     WID = WIDTH OF SPRAY FIELD, FT
                                                                       JULY3017
     VELO = INITIAL VELOCITY OF DROPS, FT/SEC
                                                                       JULY3018
C
     THETA = ANGLE OF DROPS WITH RESPECT TO HORIZON, DEGREES
                                                                       JULY3019
C
     YO = HIEGHT OF NOZZLE ABOVE WATER SURFACE, FT
                                                                       JULY3020
C
C
      R = THE GEOMETRIC MEAN DROP SIZE, CM
                                                                       SPRPND87
     PB = BAROMETRIC PRESSURE, INCHES HG
                                                                       JULY3021
C
                                                                       SPRPND89
      CMAX = MAXIMUM ALLOWED SPRAY EFFICIENCY
C
C
      CMIN = MINIMUM ALLOWED SPRAY EFFICIENCY
                                                                       SPRPND90
      CEMAX = MAXIMUM ALLOWED EVAPORATION FRACTION
                                                                       SPRPND91
C
      CEMIN = MINIMUM ALLOWED EVAPORATION FRACTION
                                                                       SPRPND92
C
                                                                       SPRPND93
      BLOW=0
      DTMET=1
                                                                       SPRPND94
                                                                       SPRPND96
      QBASE=0
      FBASE=0
                                                                       SPRPND97
     **********************
C*
      PROGRAM SWITCHES
                                                                       SPRPND99
C
Ç
      TSKIP
                 DELAY START OF HEAT INPUT FROM TABLE TSKIP HOURS
                                                                       SPRPN100
                                                                       SPRPN101
                 BEFORE TSKIP HEAT=G1 AND FLOW=F1
C
C
      TSPRON
                 DELAY SPRAY TURNING ON TSPRON HOURS
                                                                       SPRPN102
                 ALSO ASSUMES FULL POND UNTIL TSPRON HOURS
                                                                       SPRPN103
C
C
      IEVAP
                =1, REGULAR WATER LOSS
                                                                       SPRPN104
      IEVAP
                =0, POND REMAINS FULL - NO WATER LOSS
                                                                       SPRPN105
C
                =1. REGRESSION SPRAY MODEL
                                                                       SPRPN106
C
      ISPRAY
                                                                       SPRPN107
      ISPRAY
                =2, RIGOROUS SPRAY MODEL
C
      TMET
                =0, USE METEOROLOGICAL TABLE AS INPUT
                                                                       SPRPN108
                =1, FIXED METEOROLOGICAL VARIABLES AS READ IN INLIST
C
      IMET
                                                                       SPRPN109
     C*
      AREA OF SIDE OF SPRAY POND IN HWS MODEL
                                                                       SPRPN111
C
                                                                       SPRPN112
      ASIDEH=HT*ALEN
                                                                       SPRPN113
      DLEN=ALEN/10
      DWID=WID/10
                                                                       SPRPN114
                                                                       SPRPN115
      DO 801 J=1,10
                                                                       SPRPN116
      I=12-J
C
      TOP AND SIDE AREAS FOR EACH SEGMENT IN LWS MODEL
                                                                       3PRPN117
```

Figure B.4 (Continued)

```
ATOP(I)=J*DLEN*DWID*J~(J-1)*DLEN*DWID*(J-1)
                                                                                SPRPN118
     ASIDE(I)=((J-1)*DLEN+(J-1)*DWID)*2*HT
                                                                                SPRPN119
                                                                                SPRPN120
 801 CONTINUE
     ASIDE(1)=(ALEN+WID) *2*HT
                                                                                SPRPN121
     ASIDE(12)=0
                                                                                SPRPN122
                                                                                SPRPN123
     CALL INIT (R, THETA, YO, VELO)
                                                                                SPRPN124
     READ (5, HFT)
                                                                                SPRPN125
     DO 4 I=1, NH
                                                                                SPRPN126
     TIME(I)=TH(I)
                                                                                SPRPN127
     TH(I) = TH(I) + 1.0E - 20
                                                                                SPRPN128
   4 TH(I) = ALOG(TH(I))
                                                                                SPRPN129
     IF(NH.GT.1) GOTO 710
     FLOW(2)=FLOW(1)
                                                                                SPRPN130
                                                                                SPRPN131
     HEAT(2)=HEAT(1)
                                                                                SPRPN132
     NH=2
                                                                                SPRPN133
     TH(2)=1.0E8
                                                                                SPRPN134
 710 CONTINUE
                                                                                SPRPN135
6000 CONTINUE
                                                                                JULY3022
     ISPRAY=2
                                                                                JULY3023
     TSPRON=0.0
                                                                                JULY3024
     TSKIP=0.0
                                                                                JULY3025
     IEVAP=1
                                                                                SPRPN136
     READ(5,480)ITITLE
 480 FORMAT(80A1)
                                                                                SPRPN137
                                                                                SPRPN138
     TERMINATE PROGRAM ON A BLANK TITLE CARD
                                                                                SPRPN139
     DO 45 I=1,80
                                                                                SPRPN140
     IF (ITITLE (I).NE.1H ) GOTO 46
                                                                                SPRPNIAI
  45 CONTINUE
                                                                                SPRPN142
     STOP
                                                                                SPRPN143
  46 CONTINUE
                                                                                SPRPN144
     READ(5, INLIST)
                                                                                ITER
     Q15=Q1
                                                                                ITER
     F13=F1
                                                                                SPRPN145
     WRITE(6,490) ITITLE
 490 FORMAT(1H1,5(/),T20,80A1)
                                                                                SPRPN146
     WRITE(6,200) VELO, THETA, R, HT, WID, ALEN, YO, PHI
                                                                                SPRPN147
 200 FORMAT(///, 20X, 'SPRAY FIELD PARAMETERS'/20X, 40('*')/
                                                                                SPRPN148
    1 20x, INITIAL VELOCITY OF DROPS LEAVING NOZZLE, VELO = ',F10.2,
                                                                                SPRPN149
                                                                                SPRPN150
    2 ' CM/SEC'/
    3 20X, INITIAL ANGLE OF DROPS TO HOR., THETA = ',F10.3,' RADIANS'/ SPRPN151
4 20X, GEOMETRIC MEAN RADIUS OF DROPS, R = ',F10.4,' CM'/ SPRPN152
6 20X, HEIGHT OF SPRAY FIELD, HT = ',F10.2,' CM'/ SPRPN153
7 20X, WIDTH OF SPRAY FIELD, WID = ',F10.1,' CM'/ SPRPN154
    8 20x, LENGTH OF SPRAY FIELD, ALEN = ',F10.1.' CM'/
                                                                                SPRPN155
    8 20x, HEIGHT OF SPRAY NOZZLES ABOVE POND SURFACE, YO = ",F10.1, / SPRPN156
    * 20x, 'HEADING OF WIND W.R.T.LONG AXIS, PHI = ',F10.2,' DEGREES'//) SPRPN157
     WRITE(6,500) VZERO, A, BLOW,
                                        NSTEPS, NPRINT, DT, TZERO,
                                                                                SPRPN158
                                                                                SPRPN159
    1 TSKIP, QBASE, FBASE
 500 FORMAT(///,20x, 'POND PARAMETERS'/20x,40('*')/
                                                                                JULY3026
    120x, 'INITIAL POND VOLUME, VZERO = ',F13.1,' CU.FT.'/
                                                                                JULY3027
    220X, 'POND SURFACE AREA, A = ',F13.1,' SQ.FT.'/
                                                                                JULY3028
    320x, BLOWDOWN AND LEAKAGE. BLOW = ',F10.2,' CU.FT./HR.'/
                                                                                JULY3029
    420X, NUMBER OF INTEGRATION STEPS, NSTEPS = ', 15/
                                                                                JULY3030
    520x, 'PRINT INTERVAL, NPRINT = ', 15/
                                                                                JULY3031
    20x, 'INTEGRATION TIMESTEP, DT = ',F10.2,' HOURS'/
                                                                                JULY3032
    720x, 'INITIAL POND TEMPERATURE, TZERO = ',F10.2,' DEG.F'/
                                                                                JULY3033
    820x, DELAY FOR HEAT TABLE, TSKIP = ',F10.2,' HRS'/
                                                                                JULY3034
    920x, BASE HEAT LOAD ADDED TO TABLE, GBASE = ',F10.2,' HRS'/
                                                                                JULY3035
    120x, 'BASE FLOW RATE ADDED TO TABLE , FBASE = ', E15.6,' CU.FT./HR.') JULY3036
                                                                                JULY3037
     WRITE(6,501)
 501 FORMAT(///.T43,
                                                                                JULY3038
    635('.'),/,T43,': HEAT IN : TIME FROM : FLOW IN :',/,T43,': BTU/SPRPN166
              START : FT**3/HR :',/,T43,35('.'))
                                                                                SPRPN167
```

Figure B.4 (Continued)

```
SPRPN168
      00 2 I=1,NH
                                                                                 SPRPN169
   2 WRITE(6,510) HEAT(I), TIME(I), FLOW(I)
                         E9.3,1X,':',2X,F7.2,2X,':', E9.3,1X,':')
                                                                                 SPRPN170
 510 FORMAT (T43, ":",
                                                                                 SPRPN171
      WRITE(6,524) Q1,F1
 524 FORMAT (/T30, 'FOR TIME LESS THAN TSKIP'/T30, 'Q1 = ',E12.3,
                                                                                 SPRPN172
     1 ' BTU/HR'/T30, 'F1 = ', E12.3, ' FT**3/HR')
                                                                                 SPRPN173
                                                                                 SPRPN174
      IF(IMET.EQ.0) WRITE(6,47)
                                                                                 SPRPN175
  47 FORMAT(/20x, 'METEOROLOGICAL TABLE USED AS INPUT'/)
                                                                                 SPRPN176
      IF (IMET.EQ.1) WRITE (6,48)
  48 FORMAT(/20X, FIXED METEOROLOGICAL VALUES USED AS INPUT'/)
                                                                                 SPRPN177
                                                                                 JULY3039
      IF (IMET.EQ.1) WRITE (6,61) TA, TW, W, TD, HS, PB
  61 FORMAT(/20X, DRY BULB TEMPERATURE, TA = 1,F10.2, DEG. F*/
                                                                                 JULY3040
     120x, WET BULB TEMPERATURE, TW = ',F10.2,' DEG. F'/
                                                                                 JULY3041
     220x, 'WIND SPEED, W = ',F10.2, 'MPH'/
                                                                                 JULY3042
     320x, 'DEW POINT TEMPERATURE, TD = ',F10.2,' DEG. F'/
420x, 'SOLAR RADIATION, HS = ',F10.2,' BTU/SQ.FT./DAY'/
                                                                                 JULY3043
                                                                                 JULY3044
     520x, 'BAROMETRIC PRESSURE, PB = ',F10.2,' IN. HG.')
                                                                                 JULY3045
                                                                                 SPRPN178
      IF(ISPRAY.EQ.2) WRITE(6,49)
                                                                                 SPRPN179
   49 FORMAT(/20x, 'RIGOROUS SPRAY MODEL CHOSEN'/)
                                                                                 SPRPN180
      IF(ISPRAY.NE.2) WRITE(6,50)
   50 FORMAT (/20x, 'REGRESSION EQUATIONS USED FOR SPRAY MODEL'/)
                                                                                 SPRPN181
                                                                                 SPRPN182
      WRITE(6,53) TSPRON
   53 FORMAT(/20x, SPRAYS WILL BE DELAYED', F10.2, 1x, 'HOURS', /)
                                                                                 SPRPN183
                                                                                 SPRPN184
      WRITE(6,520)
 520 FORMAT(T43,35('.'),5(/),T41,13('*'),' MODEL RESULTS ',13('*'),///,SPRPN185
1T38,'..TIME.....TEMPERATURE (F)......VOLUME....',/,T38,': HR SPRPN186
2 : FT**3 :',/,T38,46('.')) SPRPN187
                                                                                 ITER
 6003 CONTINUE
                                                                                         8
                                                                                 TTER
      T5=0
                                                                                 ITER
                                                                                         9
      MA = 0
                                                                                 ITER
                                                                                        10
      F1=F1S
                                                                                 ITER
                                                                                        11
      01=015
                                                                                 SPRPN189
      T5=0
                                                                                 SPRPN190
      M1=1
                                                                                 SPRPN191
      M2=1
                                                                                 SPRPN192
      x = .001
                                                                                 SPRPN193
      T=TZERO
                                                                                 SPRPN194
      V=VZERO
                                                                                 ITER 12
      VMIN=0.1*VZERO
                                                                                 SPRPN195
     BEGIN NUMERICAL INTEGRATIONS
C
                                                                                 SPRPN196
      DO 6 M=1.NSTEPS
                                                                                 SPRPN197
     MIXED TANK SOLUTIONS
(
                                                                                 SPRPN198
      CALL MIXED (F2,F3,T,V,X)
    FORCE FULL POND IF IEVAP=0
                                                                                 SPRPN199
                                                                                 SPRPN200
      IF(IEVAP.EG.O.OR.X.LT.TSPRON) F3=0.0
                                                                                 SPRPN201
      CALL MIXED(F7,F8,T+DT*F2,V+DT*F3,X+DT)
                                                                                 SPRPN202
      IF(IEVAP.EQ.O.OR.X.LT.TSPRON) F8=0.0
                                                                                 SPRPN203
      T=T+DT*(F2+F7)/2
                                                                                 SPRPN204
      V=V+DT*(F3+F8)/2
                                                                                 ITER 13
      IF(V.LT.VMIN) V=VMIN
                                                                                  SPRPN205
     FIND MAX TEMPERATURE FOR MIXED MODEL
C
                                                                                 SPRPN206
       IF(T.LT.T5) GOTO 63
                                                                                  SPRPN207
       TS=T
                                                                                  SPRPN208
       TIMEM=X
                                                                                  SPRPN209
   63 CONTINUE
                                                                                 SPRPN210
      M4=M4+1
                                                                                  SPRPN211
       X = X + DT
                                                                                 SPRPN212
       IF (NPRINT.GT.M4) GOTO 6
                                                                                 SPRPN213
      MAEO
                                                                                  SPRPN214
       WRITE(6,51) X.T.V
                                                                                 SPRPN215
   51 FORMAT (T35, F10.2, T53, F10.2, T70, E15.8)
                                                                                 SPRPN216
    6 CONTINUE
                                                                                  ITER 14
       IF (NITER.EQ.0) WRITE(6,566)
```

Figure B.4 (Continued)

```
566 FORMAT (1H0)
                                                                              ITER
                                                                                     15
      WRITE(6,55) TSKIP, T5, TIMEM
                                                                              ITER
                                                                                     16
   55 FORMAT ( T5,'TSKIP = ',F8.1,' HOURS',5X,'MAX MODELED TEMPERATURE ITER 1= ',F8.2,' AT',F8.2,' HOURS') ITER
                                                                                     17
                                                                                     18
                                                                              TTFR
                                                                                     19
      IF(NITER.LE.O) GOTO 6001
      TSPRON=TSPRON+DTITER
                                                                              ITER
                                                                                     50
      TSKIP=TSKIP+DTITER
                                                                              ITER
                                                                                     21
                                                                              ITER
                                                                                     22
      NITER=NITER-1
                                                                              ITER
                                                                                     23
      GOTO 6003
                                                                              ITER
6001 CONTINUE
                                                                                     24
                                                                              SPRPN220
      GOTO 6000
                                                                              SPRPN221
      END
                                                                              MIXED
                                                                                      2
      SUBROUTINE MIXED (FA, FB, T, v, X)
                                                                              MIXED
     MIXED TANK MODEL
C
      COMMON CH(6),CL(7),CEH(6),CEL(7),NDRIFT,WDRO,DWDR,FDRIFT(20),
                                                                              MIXED
                                                                                      4
                                                                                      5
     1 CEMIN, CEMAX, CMIN, CMAX, VOL, AM, CON1, CON2, CON3, CON4, CON5, CON6,
                                                                              MIXED
     2 VIS, RHOA, DIFF, AK, H, EVAP, DTO6, DTO2, TDROP, UO, VO, SC, PRANTL, NSTDR,
                                                                              MIXED
     3 ATOP(12) ,ASIDE(12),K1,E,E2,BETA,TSKIP,QBASE,FBASE,M1,M2,BTA,
                                                                              MIXED
                                                                                    25
     4 BTD, BHS, BW, IMET, BLOW, F1, Q1, TD, TA, HS, W, G(1400,6), HEAT(20),
                                                                              ITER
                                                                              MIXED
     5 FLOW(20), TH(20), NMET, NH, A, DTMET, TW, PR, DTDROP
                                                                                      9
     6 , ASIDEH, HT, WID, ALEN, PB, ISPRAY
                                                                              MIXED 10
                                                                              MIXED 11
      COMMON/SPSW/ TSPRON
      OG-LINEAR INTERPOLATION OF HEAT TABLE
                                                                              MIXED 12
C
                                                                              MIXED 13
      DO 1 M1=M2,NH
                                                                              MIXED 14
      X1=X-TSKIP
      IF(X1.LE.0.0) GOTO 300
                                                                              MIXED 15
                                                                              MIXED 16
      X9=ALOG(X1)
                                                                              MIXED 17
      IF(X9.LT.TH(M1)) GOTO 1
                                                                              MIXED 18
      IF(X9.LT.TH(M1+1)) GOTO 1210
                                                                              MIXED 19
    1 CONTINUE
1210 F4 = (X9 - TH(M1)) / (TH(M1+1) - TH(M1))
                                                                              MIXED 20
                                                                              MIXED 21
      M2=M1
                                                                              MIXED 22
     EXTERNAL HEAT INPUT TO POND
C
                                                                              MIXED 23
      Q1=HEAT(M1)+F4*(HEAT(M1+1)-HEAT(M1))
     CIRCULATION THROUGH POND
                                                                              MIXED 24
C
                                                                              MIXED 25
      F1=FLOW(M1)+F4*(FLOW(M1+1)=FLOW(M1))
                                                                              MIXED 26
     ADD BASE HEAT LOAD AND FLOW, IF ANY
                                                                              MIXED 27
      Q1=Q1+QBASE
                                                                              MIXED 28
      F1=F1+FBASE
                                                                              MIXED 29
  300 CONTINUE
     LINEAR INTERPOLATION OF MET TABLE
                                                                              MIXED 30
                                                                              MIXED 31
      IF(IMET.NE.0) GOTO 100
                                                                              MIXED 32
      M1=X/DTMET+1
                                                                              MIXED 33
      F4=(X-(M1-1) +DTMET) /DTMET
                                                                              MIXED 34
      TD=G(M1,1)+F4*(G(M1+1,1)-G(M1,1))
                                                                              MIXED 35
      iA=G(M1,2)+F4*(G(M1+1,2)-G(M1,2))
      HS=G(M1,3)+F4*(G(M1+1,3)-G(M1,3))
                                                                              MIXED 36
                                                                              MIXED 37
      W=G(M1,4)+F4*(G(M1+1,4)-G(M1,4))
      TW=G(M1,5)+F4*(G(M1+1,5)-G(M1,5))
                                                                              MIXED 38
                                                                              MIXED 39
      7B=G(M1,6)+F4*(G(M1+1,6)-G(M1,6))
                                                                              MIXED 40
      DATA WMIN/0.1/
     MINIMUM WIND SPEED FOR CONTINUITY OF PROGRAM
                                                                              MIXED 41
                                                                              MIXED 42
      IF (W.LT.WMIN) WEWMIN
                                                                              MIXED 43
  100 CONTINUE
                                                                              MIXED 44
      ETA=0.0
                                                                              MIXED 45
      FDR=0.0
                                                                              MIXED 46
      FEVAP=0.0
                                                                              MIXED 47
      HR=0.0
                                                                              MIXED 48
      HE=0.0
      CALCULATE HEAT TRANSFER FROM SURFACE OF POND
                                                                              MIXED 49
C
                                                                              MIXED 50
      CALL EGTEMP (T, HR, HE)
                                                                              JULY3046
      IF(F1.LE.0.0)F1=1.0
                                                                              MIXED 51
      TSPRAY=T+Q1/(62.4*F1)
```

Figure B.4 (Continued)

```
MIXED 52
      DELAY SPRAYS BY TSPRON HOURS.
C
                                                                              MIXED 53
      IF(X.LT.TSPRON) GOTO 201
                                                                              MIXED 54
      IF(ISPRAY.EG.1) GOTO 200
                                                                              MIXED 55
     RIGOROUS MODEL
C
      CALL SPRAY2(TSPRAY, ETA, FEVAP, FDR)
                                                                              MIXED 56
                                                                              MIXED 57
      10S 010a
                                                                              MIXED 58
     REGRESSION MODEL
                                                                              MIXED 59
  200 CALL SPRAY (TSPRAY, ETA, FEVAP, FDR)
                                                                              MIXED 60
  201 CONTINUE
                                                                              MIXED 61
      HSPRAY=Q1-F1+62.4+ETA+(TSPRAY=TW)
                                                                              MIXED 62
     RATE OF TEMPERATURE CHANGE, DEG F/HR
                                                                              MIXED 63
      FA=(HR+A/24+HSPRAY)/(62.4*V)
     EVAPORATION RATE FROM SURFACE IN FT**3/HR
                                                                              MIXED 64
                                                                              MIXED 65
      DATA HVAP/1040.0/
                                                                              MIXED 66
      E2=HE*A/(24*HVAP*62.4)
                                                                              MIXED 67
      E2=E2+F1 * (FEVAP+FDR)
                                                                              MIXED 68
     RATE OF VOLUME CHANGE, FT**3/HR
C
                                                                              MIXED 69
      FB=-BLOW-E2
                                                                              MIXED 70
      RETURN
                                                                              MIXED 71
      END
                                                                              EQTEMP 2
      SUBROUTINE EQTEMP(T, HR, HE)
                                                                              EQTEMP 3
      CALCULATE SURFACE HEAT TRANSFER AND EVAPORATION USING
C
                                                                              EGTEMP
     FORMULAE OF RYAN ET AL 1973
      COMMON CH(6), CL(7), CEH(6), CEL(7), NDRIFT, WDRO, DWDR, FDRIFT(20),
                                                                              EQTEMP 5
                                                                              EQTEMP
      1 CEMIN, CEMAX, CMIN, CMAX, VOL, AM, CON1, CON2, CON3, CON4, CON5, CON6,
      2 VIS,RHOA,DIFF,AK,H,EVAP,DT06,DT02,TDR0P,U0,V0,SC,PRANTL,NSTDR,
                                                                              EQTEMP 7
      3 ATOP(12), ASIDE(12), K1, E.E., BETA, TSKIP, QBASE, FBASE, M1, M2, BTA,
                                                                              EQTEMP 8
      4 BTD, BHS, BW, IMET, BLOW, F1, G1, TD, TA, HS, W, G(1400, 6), HEAT (20),
                                                                              ITER 26
      5 FLOW(20), TH(20), NMET, NH, A, DTMET, TW, PR, DTDROP
                                                                              EQTEMP10
      6 , ASIDEH, HT, WID, ALEN, PB, ISPRAY
                                                                              EQTEMP11
                                                                              EQTEMP13
       PAIR=PB*25.4
                                                                              EQTEMP14
       DTV=(T+460)/(1-.378*PWAT(T)/PAIR)
                                                                              EQTEMP15
      1 -(TA+460)/(1-.378*PWAT(TD)/PAIR)
                                                                              EQTEMP16
       DTV3=0
                                                                              EQTEMP17
       IF(DTV.LE.0.0) GOTO 1500
                                                                              EQTEMP18
       DTV3=DTV**.33333333
                                                                              EQTEMP19
 1500 FU=(22.4*DTV3+14*W)
                                                                              EQTEMP20
       HE=(PWAT(T)-PWAT(TD))*FU
                                                                              EQTEMP21
       HC=C1*(T-TA)*FU
                                                                              EGTEMP22
       DATA C1/0.26/
                                                                              EQTEMP23
       HBR=4.026E-8*(460+T)**4
                                                                              EQTEMP24
       HAN=1.16E-13*(TA+460)**6*(1=CC**2*.17)
                                                                              EQTEMP25
       DATA CC/0.0/
                                                                              EGTEMP26
       HR=HS-HC+HAN-HBR-HE
                                                                               EQTEMP27
       RETURN
                                                                               EGTEMP28
                                                                               PWAT
                                                                                      5
       FUNCTION PWAT(T)
                                                                               PWAT
      VAPOR PRESSURE OF AIR IN MM HG
                                                                                      3
                                                                               PWAT
                                                                                       4
      FOR T IN DEG F
                                                                                       5
                                                                               PWAT
     / TK=(T-32)/1.8+273.1
                                                                               PWAT
                                                                                       6
       PWAT=760*EXP(71.02499-7381.6677/TK-9.0993037*ALOG(TK)
                                                                              PWAT
                                                                                      7
      1 +.0070831558*TK)
                                                                               PWAT
                                                                                       8
       RETURN
                                                                               PWAT
       FND
                                                                               SPRAY
       SUBROUTINE SPRAY(TSPRAY, ETA, FEVAP, FDR)
                                                                               SPRAY
      SPRAY POND PERFORMANCE USING REGRESSION EQUATIONS
                                                                                       3
       COMMON CH(6), CL(7), CEH(6), CEL(7), NORIFT, WDRO, DWDR, FDRIFT(20),
                                                                               SPRAY
                                                                                       4
                                                                               SPRAY
                                                                                       5
      1 CEMIN, CEMAX, CMIN, CMAX, VOL, AM, CON1, CON2, CON3, CON4, CON5, CON6,
                                                                               SPRAY
      2 VIS.RHOA, DIFF, AK, H, EVAP, DTO6, DTO2, TDROP, UO, VO, SC, PRANTL, NSTDR,
                                                                                       6
      3 ATOP(12), ASIDE(12), K1, E, E2, BETA, TSKIP, GBASE, FBASE, M1, M2, BTA,
                                                                               SPRAY
      4 BTD. BHS. BW, IMET, BLOW, F1, Q1, TD, TA, HS, W, G(1400,6), HEAT(20),
                                                                               ITER
                                                                                     27
                                                                                      9
                                                                               SPRAY
      5 FLOW(20), TH(20), NMET, NH, A, DTMET, TW, PR, DTDROP
                                                                               SPRAY 10
      6 , ASIDEH, HT, WID, ALEN, PR, ISPRAY
```

Figure B.4 (Continued)

```
EQUIVALENCE (DB, TA)
                                                                             SPRAY 11
C
      HIGH WIND SPEED EFFICIENCY
                                                                             SPRAY 12
      ETA=CH(1)+CH(2)*DB+CH(3)*TW+CH(4)*TSPRAY+CH(5)*W+CH(6)*SQRT(W)
                                                                             SPRAY 13
                                                                             SPRAY 14
C
      LWS EFFICIENCY
      EL=CL(1)+CL(2)*DB+CL(3)*D8**2+CL(4)*D8**3+CL(5)*TW+
                                                                             SPRAY 15
     1 CL(6) *TSPRAY+CL(7) *TSPRAY**2
                                                                             SPRAY 16
      IF(ETA.LT.EL) GOTO3
                                                                             SPRAY 17
      HIGH WIND SPEED EVAPORATION
                                                                             SPRAY 18
      FEVAP=CEH(1)+CEH(2)*DB+CEH(3)*TW+CEH(4)*TSPRAY+
                                                                             SPRAY 19
     1 CEH(5) *W+CEH(6) *SQRT(W)
                                                                             SPRAY 20
                                                                             SPRAY 21
      GOTO 4
C
      LOW WIND SPEED EVAPORATION
                                                                             SPRAY 22
    3 FEVAP=CEL(1)+CEL(2)*D8+CEL(3)*D8**2+CEL(4)*D8**3+CEL(5)*TW
                                                                             SPRAY 23
     1 +CEL(6) *TSPRAY+CEL(7) *TSPRAY**2
                                                                             SPRAY 24
                                                                             SPRAY 25
      ETA=EL
                                                                             SPRAY 26
C
      DRIFT LOSS
    4 NTBL=(W-WDR0)/DWDR+1
                                                                             SPRAY 27
      IF(NTBL.GE.NDRIFT) NTBL=NDRIFT-1
                                                                             SPRAY 28
      FDR=FDRIFT(NTBL)+((W-WDRO-(NTBL-1)*DWDR)/DWDR)*
                                                                             SPRAY 29
     1 (FDRIFT(NTBL+1)-FDRIFT(NTBL))
                                                                             SPRAY 30
                                                                             SPRAY 31
SPRAY 32
C
      SET LIMITS ON EVAPORATION AND EFFICIENCY
      IF (FEVAP.LT.CEMIN) FEVAP=CEMIN
      IF (FEVAP.GT.CEMAX) FEVAP=CEMAX
                                                                             SPRAY 33
      IF (ETA.LT.CMIN) ETA=CMIN
                                                                             SPRAY 34
      IF (ETA.GT.CMAX) ETA=CMAX
                                                                             SPRAY 35
                                                                             SPRAY 36
      RETURN
                                                                             SPRAY 37
      END
      SUBROUTINE SPRAY2 (THOT, ETA, FEVAP, FDR)
                                                                             SPRAY2 2
      RIGOROUS SPRAY POND MODEL
                                                                             SPRAY2 3
C
      DIMENSION TSEG(11), HUM(11)
                                                                             SPRAY2 4
      COMMON CH(6).CL(7),CEH(6).CEL(7),NDRIFT,WDR0,DWDR,FDRIFT(20),
                                                                             SPRAY2 5
                                                                             SPRAY2 6
     1 CEMIN, CEMAX, CMIN, CMAX, VOL, AM, CON1, CON2, CON3, CON4, CON5, CON6,
     2 VIS,RHOA,DIFF,AK,H,EVAP,DTO6,DTO2,TDROP,UO,VO,SC,PRANTL,NSTDR,
                                                                             SPRAY2 7
     3 ATOP(12), ASIDE(12), K1, E, E2, BETA, TSKIP, QBASE, FBASE, M1, M2, BTA,
                                                                             SPRAY2 8
     4 BTD, BHS, BW, IMET, BLOW, F1, Q1, TD, TA, HS, W, G(1400,6), HEAT(20),
                                                                             ITER 28
     5 FLOW(20), TH(20), NMET, NH, A, DTMET, TW, PR, DTDROP
                                                                             SPRAY210
     6 , ASIDEH, HT, WID, ALEN, PB, ISPRAY
                                                                             SPRAY211
      COMMON/DRPSZ/ R
                                                                             SPRAY212
      EQUIVALENCE (TA, TDRY), (TW, TWET)
                                                                             SPRAY213
                                                                             SPRAY214
      C(Z) = (Z-32.)/1.8
      ALPHA IS CONVERGENCE PARAMETER OF LWS MODEL
C
                                                                             SPRAY215
      DATA ALPHA/-0.05/
                                                                             AUG12
    CONVERT MPH TO CM/SEC
                                                                             SPRAY217
C
      WIND1=W#44.7
                                                                             SPRAY218
     CONVERT FLOW TO CC/SEC
C
                                                                             SPRAY219
      Q=F1*7.87
                                                                             SPRAY220
C
      DRIFT LOSS
                                                                             SPRAY221
    4 NTBL=(W-WDR0)/DWDR+1
                                                                             SPRAY222
      IF(NTBL.GE.NDRIFT) NTBL=NDRIFT-1
                                                                             SPRAY223
      FOR=FORIFT(NTBL)+((W-WDRO-(NTBL-1)*DWDR)/DWDR)*
                                                                             SPRAY224
     1 (FDRIFT(NTBL+1) -FDRIFT(NTBL))
                                                                             SPRAY225
C
      CALCULATE HUMIDITY
                                                                             SPRAY226
      CALL PSY1 (TORY, TWET, PB, DP, PV, HUMID, ENTHAL, VOLUME, RH)
                                                                             SPRAY227
      THOT1=C(THOT)
                                                                             SPRAY228
      TDRY1=C(TDRY)
                                                                             SPRAY229
      TWET1=C(TWET)
                                                                             SPRAY230
       HIGH WIND SPEED MODEL
                                                                             SPRAY231
C
      FOR LOW WIND SPEEDS, GOTO LWS MODEL DIRECTLY
                                                                             SPRAY232
      IF(W.LT.3.0) GOT02000
                                                                             SPRAY233
      CALL HWS(THOT1, HUMID, TDRY1,
                                          TWAV, WIND1, Q, R, EVAPS)
                                                                             SPRAY234
      HWS EFFICIENCY AND EVAPORATION
C
                                                                             SPRAY235
      ETA=(THOT1-TWAV)/(THOT1-TWET1)
                                                                             SPRAY236
      FEVAP=EVAPS/G
                                                                             SPRAY237
```

Figure B.4 (Continued)

```
SPRAYZER
 2000 CONTINUE
      SKIP LWS MODEL FOR THIS CONDITION TO AVOID COMPUTATIONAL PROBLEMS SPRAY239
                                                                               SPRAY240
      HWS EFFICIENCY
C
                                                                               SPRAY241
      IF(TDRY.GT.THOT) GOTO 1111
                                                                               SPRAY242
      DATA KOUNT/0/
                                                                               SPRAY243
      IF(KOUNT.GT.1) GOTO 445
      INITIALIZE HUMIDITY AND TEMPERATURE IF FIRST RUN
                                                                               SPRAY244
C
                                                                               SPRAY245
      DO 444 L=2,11
                                                                               SPRAY246
      TSEG(L)=TDRY1+1.0
                                                                               SPRAY247
  444 HUM(L)=HUMID+.01
                                                                               SPRAYZAR
      KOUNT=KOUNT+1
                                                                               SPRAY249
  445 CONTINUE
                                                                               SPRAY250
      LOW WIND SPEED MODEL
C
      CALL LWS(THOT1, HUMID, TDRY1, TWAV, Q, R, TSEG, HUM, ALPHA, EVAPS)
                                                                               SPRAY251
                                                                               SPRAY252
      LWS EFFICIENCY AND EVAPORATION
C
                                                                               SPRAY253
      ETA2=(THOT1-TWAV)/(THOT1-TWET1)
                                                                               SPRAY254
      FEVAP2=EVAPS/Q
                                                                               SPRAY255
C
      PICK LARGER EFFICIENCY
                                                                               AUG12 2
       IF(ETA.GT.ETA2) GOTO 1002
                                                                               SPRAY257
      ETA=ETA2
                                                                               SPRAY258
      FEVAP=FEVAP2
                                                                               SPRAY259
      LIMITS ON EFFICIENCY AND EVAPORATION
                                                                               SPRAY260
 1002 IF(ETA.GT.CMAX) ETA=CMAX
                                                                               SPRAY261
       IF (ETA.LT.CMIN) ETA=CMIN
       IF(FEVAP.LT.CEMIN) FEVAP=CEMIN
                                                                               SPRAY262
                                                                               SPRAY263
       IF (FEVAP.GT.CEMAX) FEVAP=CEMAX
                                                                               SPRAY264
       RETURN
                                                                               SPRAY265
      FALL BACK ON REGRESSION MODEL
                                                                               SPRAY266
 1111 CONTINUE
                                                                               SPRAY267
       CALL SPRAY (THOT, ETA, FEVAP, FDR)
                                                                               SPRAY268
       RETURN
                                                                               SPRAY269
       END
       SUBROUTINE LWS(THOT, HUMID, TAIR, TWAV, Q, R, TSEG, HUM, ALPHA, EVAPS)
                                                                               LWS
                                                                                      2
                                                                               LWS
                                                                                       3
       LOW WIND SPEED MODEL
C
                                                                               LWS
       DIMENSION VUP(12), FLOW(12), QT(12), RHO2(12), VH(12)
                                                                               LWS
       DIMENSION TSEG(11), HUM(11), HOUT(11)
                                                                               LWS
       DIMENSION HFIL(12), TFIL(12)
                                                                               LWS
                                                                                       7
       DIMENSION TM2(12), TM1(12), HM2(12), HM1(12)
       COMMON CH(6),CL(7),CEH(6),CEL(7),NDRIFT,WDRO,DWDR,FDRIFT(20),
                                                                               LWS
                                                                                       Я
      1 CEMIN, CEMAX, CMIN, CMAX, VOL, AM, CON1, CON2, CON3, CON4, CON5, CON6,
                                                                               LWS
                                                                                       9
      2 VIS.RHOA, DIFF, AK, H, EVAP, DTO6, DTO2, TDROP, UO, VO, SC, PRANTL, NSTDR,
                                                                               LWS
                                                                                      10
      3 ATOP(12), ASIDE(12), K1, E, E2, BETA, TSKIP, QBASE, FBASE, M1, M2, BTA,
                                                                               LWS
                                                                                      11
      4 BTD, BHS, BW, IMET, BLOW, F1, Q1, TD, TA, HS, W, G(1400, 6), HEAT(20),
                                                                               ITER
                                                                                      29
                                                                                      13
      5 DUM1(20), TH(20), NMET, NH, A, DTMET, TW, PR, DTDROP
                                                                               LWS
                                                                               LWS
                                                                                      14
      6 , ASIDEH, HT, WID, ALEN, PB, ISPRAY
                                                                               LWS
                                                                                      15
       DO 491 I=1.12
                                                                               LWS
                                                                                      16
       0=(I)SMT
                                                                               LWS
                                                                                      17
       TM1(I)=0
                                                                               LWS
                                                                                      18
       0=(1) SMH
                                                                               LWS
                                                                                      19
  491 HM1(I)=0
                                                                               LWS
                                                                                      20
       TLAST=0
                                                                               LWS
                                                                                      21
       DATA HVAP, CP, RHO/580.0, 1.0, 1.0/
                                                                               LWS
                                                                                     55
       ICNT=0
                                                                               LWS
                                                                                      23
       DENSITY OF AMBIENT AIR GM/CC
C
       RH01=(1+HUMID)/((81.86*TAIR+22387)*(.03448+HUMID/18))
                                                                               LWS
                                                                                      24
                                                                               LWS
                                                                                      25
       FLOW(11)=0
                                                                               LWS
                                                                                      56
       QT(1)=0
                                                                               LWS
                                                                                      27
       FLOW(1)=0
                                                                               LWS
                                                                                      85
       RH02(1)=RH01
                                                                               LWS
                                                                                      29
       ATOT=ALEN*WID
                                                                                      30
                                                                               LWS
       TSEG(1)=TAIR
                                                                               LWS
                                                                                      31
       HUM(1)=HUMID
                                                                               LWS
                                                                                      35
       CONCENTRATION OF WATER IN AIR
C
```

Figure B.4 (Continued)

```
CWA=HUMID/((81.86*TAIR+22387)*(.03448+HUMID/18))
                                                                             LWS
                                                                                   33
C
      BEGIN ITERATIVE SOLUTION
                                                                                   34
                                                                             LWS
      DO 801 NITER=1,20
                                                                             LWS
                                                                                   35
      DO 101 J=1,10
                                                                             LWS
                                                                                   36
      I=12-J
                                                                             LWS
                                                                                   37
C
      DENSITY OF AIR IN EACH SEGMENT GM/CC
                                                                             LWS
                                                                                   38
      RHO2(I) = (1+HUM(I))/((81.86*TSEG(I)+22387)*(.03448+HUM(I)/18))
                                                                            LWS
                                                                                   39
      HUMID VOLUME, CC/GM BDA
C
                                                                            LWS
                                                                                   40
      VH(I)=((81.86*TSEG(I)+22387)*(.03448+HUM(I)/18))
                                                                            LWS
                                                                                   41
  101 CONTINUE
                                                                            LWS
                                                                                   42
  105 CONTINUE
                                                                            LWS
                                                                                   43
      00 1001 J=1,10
                                                                            LWS
                                                                                   ΔΔ
      I=12-J
                                                                            LWS
                                                                                   45
      DRHO=RHO1-RHO2(I)
                                                                            LWS
                                                                                   46
      ARG=980*DRHO*HT*.5/RH01
                                                                            LWS
                                                                                   47
      ICNT=1
                                                                                   48
                                                                            LWS
      IF(ARG.LT.0.0) GOTO 668
                                                                            LWS
                                                                                   49
      UPWARD VELOCITY OF AIR LEAVING EACH SEGMENT
C
                                                                            LWS
                                                                                   50
      VUP(I)=SQRT(ARG)
                                                                            LWS
                                                                                   51
  668 CONTINUE
                                                                            LWS
                                                                                   52
C
      MATERIAL BALANCE ON EACH SEGMENT
                                                                            LWS
                                                                                   53
      QT(I) = VUP(I) * ATOP(I) / VH(I)
                                                                            LWS
                                                                                   54
      FLOW(I-1)=FLOW(I)+QT(I)
                                                                            LWS
                                                                                   55
 1001 CONTINUE
                                                                            LWS
                                                                                   56
      ICNT=ICNT+1
                                                                            LWS
                                                                                   57
  104 CONTINUE
                                                                            LWS
                                                                                   58
      ENTHALPY OF AIR ENTERING FIRST SEGMENT, CAL/GM BDA
C
                                                                            LWS
                                                                                   59
      HOUT(1)=FLOW(1)*(.238*TAIR+HUMID*(HVAP+.45*TAIR))
                                                                            LWS
                                                                                   60
      TSEG(1)=TAIR
                                                                            LWS
                                                                                   61
      EVAPS=0
                                                                            LWS
                                                                                   62
      HUM(1)=HUMID
                                                                            LWS
                                                                                   63
      SUMTC=0
                                                                            LWS
                                                                                   64
      00 201 I=2,11
                                                                            LWS
                                                                                   65
      TEMP=TSEG(I-1)+273.2
                                                                            LWS
                                                                                   66
      VISCOSITY OF AIR, GM/(SEC CM)
C
                                                                            LWS
                                                                                   67
      VIS=2.7936E-6*TEMP**.73617
                                                                            LWS
                                                                                   68
      DENSITY OF AIR, GM/CC
C
                                                                            LWS
                                                                                   69
      RHOA=.353/TEMP
                                                                            LWS
                                                                                   70
      DIFFUSION COEFF OF AIR(CM**2/SEC)
C
                                                                            LWS
                                                                                   71
      DIFF=5.8758E=6*TEMP**1.8615
                                                                            LWS
                                                                                   72
      PRANTL NO
C
                                                                            LWS
                                                                                   73
      PRANTL=.93176*TEMP**(-.042784)
                                                                            LWS
                                                                                   74
      SCHMIDT NO
C
                                                                            LWS
                                                                                   75
      SC=2.2705*TEMP**(-.21398)
                                                                            LWS
                                                                                   76
      THERMAL CONDUCTIVITY OF AIR, CM/SEC
C
                                                                            LWS
                                                                                   77
      AC=3.9273E=7*TEMP**.88315
                                                                            LWS
                                                                                   78
      CON4=AC/R
                                                                            LWS
                                                                                   79
      CON6=2*R*RHOA/VIS
                                                                            LWS
                                                                                   80
      CONS=DIFF/R
                                                                            LWS
                                                                                   81
      TDROP=THOT
                                                                            LWS
                                                                                   82
      CALCULATE TEMPERATURE AND EVAPORATION OF FALLING DROPS
C
                                                                            LWS
                                                                                   83
      CALL DROP(TSEG(I-1),CWA)
                                                                            LWS
                                                                                   84
C
      SENSIBLE HEAT TRANSFER IN SEGMENT
                                                                            LWS
                                                                                   85
      HSEG=RHO+CP+(Q+ATOP(I)/ATOT)+(THOT-TDROP)
                                                                            LWS
                                                                                   86
C
      EVAPORATION IN SEGMENT
                                                                            LWS
                                                                                   A7
      EVAP1=EVAP*Q*ATOP(I)/(ATOT*VOL)
                                                                            LWS
                                                                                   88
      SENSIBLE HE AT LEAVING SEGMENT AND ENTERING NEXT
C
                                                                            LWS
                                                                                   89
      HOUT(I)=HSEG+HOUT(I-1)*(1-QT(I-1)/(QT(I-1)+FLOW(I-1)))
                                                                            LWS
                                                                                   90
C
      HUMIDITY IN SEGMENT
                                                                            LWS
                                                                                   91
      HUM(I)=HUM(I-1)+EVAP1/FLOW(I-1)
                                                                            LWS
                                                                                   92
C
      TEMPERATURE IN SEGMENT
                                                                            LWS
                                                                                   93
      TSEG(I)=(HOUT(I)/FLOW(I-1)-HUM(I)+HVAP)/(.238+.45*HUM(I))
                                                                                   94
                                                                            LWS
      EVAPS=EVAPS+EVAP1
                                                                            LWS
                                                                                   95
```

Figure B.4 (Continued)

```
CWA=HUM(I)/((81.86*TSEG(I)+22387)*(.03448+HUM(I)/18))
                                                                               LWS
                                                                                      96
                                                                                      97
                                                                               LWS
      SUMTC=SUMTC+TDROP*ATOP(I)
                                                                                      98
 201 CONTINUE
                                                                               LWS
      AVERAGE TEMPERATURE OF WATER FALLING TO POND SURFACE
                                                                               LWS
                                                                                      99
C
                                                                               LWS
                                                                                    100
      TWAV=SUMTC/ATOT
                                                                               LWS
                                                                                    101
      IF(NITER.LT.3) GOTO 49
                                                                               LWS
                                                                                    102
      DO 492 I=2,11
      SECOND ORDER SMOOTHING OPERATOR TO AID CONVERGENCE
                                                                               LWS
                                                                                    103
C
                                                                                    104
                                                                               LWS
      HFIL(I)=ALPHA*(HM2(I)=2*HM1(I)+HUM(I))
                                                                               LWS
                                                                                    105
      TFIL(I) = ALPHA*(TM2(I) - 2*TM1(I) + TSEG(I))
                                                                               LWS
                                                                                    106
  492 CONTINUE
                                                                               LWS
                                                                                    107
      DO 493 I=2,11
      TSEG(I)=TSEG(I)+TFIL(I)
                                                                               LWS
                                                                                    108
                                                                               LWS
                                                                                    109
      HUM(I) = HUM(I) + HFIL(I)
                                                                               LWS
                                                                                    110
  493 CONTINUE
                                                                               LWS
                                                                                     111
   49 DO 494 I=2.11
                                                                               LWS
                                                                                    112
      TM2(I)=TM1(I)
                                                                               LWS
                                                                                    113
      TM1(I)=TSEG(I)
      HM2(I)=HM1(I)
                                                                               LWS
                                                                                    114
                                                                               LWS
                                                                                    115
  494 HM1(I)=HUM(I)
      IF(ABS((TLAST-TWAV)/TWAV).LT.0.002) GOTO 800
                                                                               LWS
                                                                                    116
                                                                               LWS
                                                                                    117
      TLAST=TWAV
                                                                               LWS
                                                                                    118
  801 CONTINUE
                                                                               LWS
                                                                                     119
      WRITE(6,20)
                                                                               LWS
   20 FORMAT(10X, 'NO CONVERGENCE AFTER 20 TRIES')
                                                                                    120
                                                                               LWS
                                                                                     121
  800 RETURN
                                                                               LWS
                                                                                     122
      END
                                                                               HWS
      SUBROUTINE HWS(THOT, HUMID, TAIR, TWAV, WIND, G, R, EVAPS)
                                                                                       2
                                                                               HWS
                                                                                       3
C
      HIGH WIND SPEED MODEL
      COMMON CH(6),CL(7),CEH(6),CEL(7),NDRIFT,WDRO,DWDR,FDRIFT(20),
                                                                               HWS
                                                                                       4
     1 CEMIN, CEMAX, CMIN, CMAX, VOL, AM, CON1, CON2, CON3, CON4, CON5, CON6,
                                                                               HWS
                                                                                       5
     2 VIS, RHOA, DIFF, AK, H, EVAP, DTO6, DTO2, TDROP, UO, VO, SC, PRANTL, NSTDR,
                                                                               HWS
                                                                                       6
     3 ATOP(12), ASIDE(12), K1, E, E2, BETA, TSKIP, QBASE, FBASE, M1, M2, BTA,
                                                                               HWS
                                                                                       7
                                                                               ITER
                                                                                      30
     4 BTD, BHS, BW, IMET, BLOW, F1, Q1, TD, TA, HS, W, G(1400, 6), HEAT(20),
     5 FLOW(20), TH(20), NMET, NH, A, DTMET, TW, PR, DTDROP
                                                                               HWS
                                                                                       9
                                                                               HWS
                                                                                      10
     6 , ASIDEH, HT, WID, ALEN, PB, ISPRAY
                                                                               HWS
                                                                                      11
      DIMENSION TSEG(11), HUM(11), HOUT(11)
                                                                               HWS
                                                                                      12
      DATA HVAP, CP, RHO/580.0, 1.0, 1.0/
      CON7=RHO*CP*G/10
                                                                               HWS
                                                                                      13
                                                                               HWS
                                                                                      14
      CONB=Q/(10*VOL)
                                                                                      15
      GMS OF BDA ENTERING SPRAY FIELD FROM UPWIND
                                                                               HWS
C
      FLO=WIND * ASIDEH/((81.86 * TAIR + 22387) * (.03448 + HUMID/18))
                                                                               HWS
                                                                                      16
                                                                               HWS
C
      ENTHALPY OF AIR ENTERING SPRAY FIELD, CAL/SEC
                                                                                      17
      HOUT(1)=FLO *(.238*TAIR+HUMID*(HVAP+.45*TAIR))
                                                                               HWS
                                                                                      18
       TSEG(1)=TAIR
                                                                               HWS
                                                                                      19
                                                                                      50
                                                                               HWS
      HUM(1)=HUMID
      CONCENTRATION OF WATER IN AIR
                                                                               HWS
                                                                                      15
C
      CWA=HUMID/((81.86*TAIR+22387)*(.03448+HUMID/18))
                                                                               HWS
                                                                                      55
                                                                               HWS
                                                                                      23
      EVAPS=0
                                                                               HWS
      SUMTC=0
                                                                                      24
                                                                               HWS
                                                                                      25
      DO 1 I=2,11
                                                                               HWS
       TEMP=TSEG(I-1)+273.2
                                                                                      26
       VISCOSITY OF AIR GM/(CM SEC)
                                                                               HWS
                                                                                      27
C
       VIS=2.7936E-6*TEMP**.73617
                                                                               HWS
                                                                                      28
                                                                               HWS
                                                                                      29
      DENSITY OF AIR GM/CC
C
       RHOA=.353/TEMP
                                                                               HWS
                                                                                      30
       DIFFUSION COEFFICIENT OF AIR CM**2/SEC
                                                                               HWS
C
                                                                                      31
      DIFF=5.8758E-6*TEMP**1.8615
                                                                               HWS
                                                                                      32
C
      PRANTL NO
                                                                               HWS
                                                                                      33
                                                                               HWS
       PRANTL=.93176*TEMP**(-.042784)
                                                                                      34
                                                                               HWS
                                                                                      35
C
       SCHMIDT NO
       SC=2.2705*TEMP**(-.21398)
                                                                               HWS
                                                                                      36
C
       THERMAL CONDUCTIVITY OF AIR CM/SEC
                                                                               HWS
                                                                                      37
```

Figure B.4 (Continued)

```
AC=3.9273E=7*TEMP**.88315
                                                                                HWS
                                                                                       38
      CON4=AC/R
                                                                                      39
                                                                                HWS
      CON6=SQRT (2*R*RHOA/VIS)
                                                                                HWS
                                                                                      40
      CONS=DIFF/R
                                                                                HWS
                                                                                       41
      TDROP=THOT
                                                                                HWS
                                                                                      42
      TEMPERATURE AND EVAPORATION OF DROP
C
                                                                                HWS
                                                                                      43
      CALL DROP (TSEG(I-1), CWA)
                                                                                HWS
                                                                                      44
C
      SENSIBLE HEAT ENTERING SEGMENT FROM DROPS
                                                                                HWS
                                                                                      45
      HSEG=CON7 * (THOT=TDROP)
                                                                                HWS
                                                                                      46
C
      EVAPORATION FROM ALL DROPS INTO SEGMENT
                                                                                HWS
                                                                                      47
      EVAP1=EVAP*CON8
                                                                                HWS
                                                                                      48
      ENTHALPY LEAVING SEGMENT AND ENTERING NEXT
C
                                                                                HWS
                                                                                      49
      HOUT (I) = HOUT (I+1) + HSEG
                                                                                HWS
                                                                                      50
C
      HUMIDITY OF SEGMENT
                                                                                HWS
                                                                                      51
      HUM(I)=HUM(I=1)+EVAP1/FLO
                                                                                HWS
                                                                                      52
      AIR TEMPERATURE IN SEGMENT
C
                                                                                HWS
                                                                                      53
      TSEG(I) = (HOUT(I)/FLO -HUM(I) + HVAP)/(.24 + .45 + HUM(I))
                                                                                HWS
                                                                                      54
      EVAPS=EVAPS+EVAP1
                                                                                HWS
                                                                                      55
     CWA = CONCENTRATION OF WATER IN AIR, GM/CC
C
                                                                               HWS
                                                                                      56
      CWA=HUM(I)/((81.86*TSEG(I)+22387)*(.03448+HUM(I)/18))
                                                                                HWS
                                                                                      57
      SUMTC=SUMTC+TDROP
                                                                                HWS
                                                                                      58
    1 CONTINUE
                                                                                HWS
                                                                                      59
C
      AVERAGE TEMPERATURE OF WATER FALLING TO POND SURFACE
                                                                                HWS
                                                                                      60
      TWAV=SUMTC/10
                                                                                HWS
                                                                                      61
      RETURN
                                                                                HWS
                                                                                      62
      END
                                                                                HWS
                                                                                      63
      SUBROUTINE DROP(TAIR, CINF)
                                                                                DROP
                                                                                       2
      COMMON CH(6),CL(7),CEH(6),CEL(7),NORIFT,WDR0,DWDR;FDRIFT(20),
                                                                                DROP
                                                                                       3
     1 CEMIN, CEMAX, CMIN, CMAX, VOL, AM, CON1, CON2, CON3, CON4, CON5, CON6,
                                                                                DROP
                                                                                       4
     2 VIS,RHOA,DIFF,AK,H,EVAP,DTO6,DTO2,TDROP.UO,VO,SC,PRANTL,NSTDR,
                                                                               DROP
                                                                                       5
     3 ATOP(12), ASIDE(12), K1, E, E2, BETA, TSKIP, QBASE, FBASE, M1, M2, BTA,
                                                                                DROP
                                                                                       6
     4 BTD, BHS, BW, IMET, BLOW, F1, Q1, TD, TA, HS, W, G(1400, 6), HEAT(20),
                                                                                ITER
                                                                                      31
     5 FLOW(20), TH(20), NMET, NH, A, DTMET, TW, PR, DTDROP
                                                                                DROP
                                                                                       A
     6 , ASIDEH, HT, WID, ALEN, PB, ISPRAY
                                                                                DROP
                                                                                       9
      CALCULATE HEAT AND MASS TRANSFER FROM A DROP
C
                                                                               DROP
                                                                                      10
      EVAP=0
                                                                               DROP
                                                                                      11
      ICNT=1
                                                                               DROP
                                                                                      12
        BEGIN FOURTH ORDER RUNGE-KUTTA INT. OF EQUATIONS
C
                                                                               DROP
                                                                                      13
      DO 1 I=1, NSTDR
                                                                               DROP
                                                                                      14
      CALL FTDROP(ICNT, TDROP, DTD1, DI1, TAIR, CINF)
                                                                               DROP
                                                                                      15
      ICNT=ICNT+1
                                                                               DROP
                                                                                      16
      TDROP1=TDROP+DTO2*DTD1
                                                                               DROP
                                                                                      17
      CALL FTDROP(ICNT, TDROP1, DTD2, DI2, TAIR, CINF)
                                                                               DROP
                                                                                      18
      TDROP2=TDROP+DTD2*DT02
                                                                               DROP
                                                                                      19
      CALL FTDROP(ICNT, TDROP2, DTD3, DI3, TAIR, CINF)
                                                                               DROP
                                                                                      20
      ICNT=ICNT+1
                                                                               DROP
                                                                                      21
      TDROP3=TDROP+DTD3*DTDROP
                                                                               DROP
                                                                                      22
      CALL FTDROP(ICNT, TDROP3, DTD4, DI4, TAIR, CINF)
                                                                               DROP
                                                                                      23
      TDROP=TDROP+(DTD1+2*(DTD2+DTD3)+DTD4)*DTO6
                                                                               DROP
                                                                                      24
      EVAP=EVAP+(DI1+2*(DI2+DI3)+DI4)*DT06
                                                                               DROP
                                                                                      25
    1 CONTINUE
                                                                               DROP
                                                                                      56
      RETURN
                                                                               DROP
                                                                                      27
      END
                                                                               DROP
                                                                                      28
      SUBROUTINE FTDROP(ICNT, TDRP, DTD, DI, TAIR, CINF)
                                                                               FTDROP 2
      COMMON CH(6),CL(7),CEH(6),CEL(7),NDRIFT,WDRO,DWDR,FDRIFT(20),
                                                                               FIDROP 3
     1 CEMIN, CEMAX, CMIN, CMAX, VOL, AM, CON1, CON2, CON3, CON4, CON5, CON6,
                                                                               FTDROP
     2 VIS,RHOA,DIFF,AK,H,EVAP,DTO6,DTO2,TDROP,U0,V0,SC,PRANTL,NSTDR,
                                                                               FTDROP 5
     3 ATOP(12), ASIDE(12), K1, E, E2, BETA, TSKIP, GBASE, FBASE, M1, M2, BTA,
                                                                               FTDROP 6
     4 BTD,BHS,BW,IMET,BLOW,F1,Q1,TD,TA,HS,W,G(1400,6),HEAT(20),
                                                                               ITER
                                                                                     32
     5 FLOW(20), TH(20), NMET, NH, A, DTMET, TW, PR, DTDROP
                                                                               FTDROP 8
     6 , ASIDEH, HT, WID, ALEN, PB, ISPRAY
                                                                               FTDROP 9
C,
      RATE OF HEAT AND MASS TRANSFER FROM A DROP
                                                                               FTDROP10
      COMMON/RESTOR/ SQV(100)
                                                                               FTDROP11
```

Figure B.4 (Continued)

```
FTDROP12
      DATA RG/82.02/
                                                                              FTDROP13
      TDK=TDRP+273.2
                                                                              FTDROP14
C
      VAPOR PRESSURE OF WATER ATM
      P=EXP(71.02499=7381.6477/TDK=9.0993037*ALOG(TDK)
                                                                              FTDROP15
     1 +.0070831558*TDK)
                                                                              FTDROP16
                                                                              FTDROP17
      SRE=CON6 + SQV (ICNT)
      HC=CON4*(1+.3*PRANTL**.3333333*SRE)
                                                                              FTDROP18
                                                                              FTDROP19
      HD=CON5*(1+.3*SC**.3333333*SRE)
                                                                              FTDROP20
      CDROP=P*18.0/(RG*TDK)
      RATE OF MASS TRANSFER
                                                                              FTDROP21
C
      DI=CON3*HD*(CDROP=CINF)
                                                                              FTOROP22
                                                                              FTDROP23
      DATA HVAP/580.0/
      RATE OF TEMPERATURE CHANGE
                                                                              FTDROP24
C
                                                                              FTDROP25
      DTD==CON1 * (DI*HVAP+CON3*HC*(TDRP=TAIR))
                                                                              FTDROP26
      RETURN
                                                                              FTDROP27
      END
                                                                              INIT
      SUBROUTINE INIT(R, THETA, YO, VELO)
      INITIALIZE CONSTANTS AND VELOCITIES OF BALLISTIC DROP
                                                                              INIT
C
      COMMON CH(6),CL(7),CEH(6),CEL(7),NDRIFT,WDRO,DWDR,FDRIFT(20),
                                                                              INIT
                                                                                      5
                                                                              INIT
     1 CEMIN, CEMAX, CMIN, CMAX, VOL, AM, CON1, CON2, CON3, CON4, CON5, CON6,
                                                                              INIT
     2 VIS, RHOA, DIFF, AK, H, EVAP, DTO6, DTO2, TDROP, UO, VO, SC, PRANTL, NSTDR,
                                                                                      6
     3 ATOP(12), ASIDE(12), K1, E, E2, BETA, TSKIP, QBASE, FBASE, M1, M2, BTA,
                                                                              INIT
                                                                                      7
     4 8TD, BHS, BW, IMET, BLOW, F1, Q1, TD, TA, HS, W, Z(8400 ), HEAT (20),
                                                                              ITER
                                                                                     33
                                                                              INIT
                                                                                      9
     5 FLOW(20), TH(20), NMET, NH, A, DTMET, TW, PR, DTDROP
                                                                              INIT
                                                                                     10
     6 , ASIDEH, HT, WID, ALEN, PB, ISPRAY
                                                                              INIT
                                                                                     11
      COMMON/RESTOR/SOV(100)
      VOL=(3.1415926*4/3)*R**3
                                                                              INIT
                                                                                     12
                                                                              INIT
                                                                                     13
      DATA G/980.0/
      DATA HVAP, CP, RHO/580.0,1.0,1.0/
                                                                              INIT
                                                                                     14
      A=3.1415926*R**2
                                                                              INIT
                                                                                     15
                                                                              INIT
      CON1=1.0/VOL
                                                                                     16
                                                                              INIT
                                                                                     17
      CON2=HVAP*12.566371*R**2
                                                                              INIT
      CON3=12.566371*R**2
                                                                                     18
                                                                              INIT
                                                                                     19
      VO=VELO*SIN(THETA)
                                                                              INIT
                                                                                     20
      UO=VELO*COS(THETA)
      TIME FOR DROP TO HIT SURFACE OF WATER
                                                                              INIT
                                                                                     21
C
                                                                              INIT
                                                                                     22
      TFALL=V0/G+SQRT((V0/G)**2+2*Y0/G)
                                                                              INIT
                                                                                     23
      DTDROP=TFALL/NSTDR
                                                                              INIT
      DTO6=DTDROP/6
                                                                                     24
                                                                              INIT
                                                                                     25
      DT02=DTDR0P/2
                                                                              INIT
      NUM=NSTDR *2+10
                                                                                     95
                                                                              INIT
                                                                                     27
      DO 1 I=1, NUM
                                                                              INIT
                                                                                     28
      T=(I-1)*DT02
                                                                              INIT
                                                                                     29
      VELOCITY OF DROP
C
                                                                              INIT
                                                                                     30
      V=SQRT(U0**2+(V0=980*T)**2)
                                                                              INIT
                                                                                     31
     SQV(I)=SQRT(V)
                                                                              INIT
                                                                                     32
      RETURN
                                                                              INIT
                                                                                     33
      END
      SUBROUTINE PSY1 (DB, WB, PB, DP, PV, W, H, V, RH)
                                                                              PSY1
                                                                                      2
      THIS ROUTINE CALCULATES' VAPOR PRESSURE PV, HUMIDITY RATIO W,
                                                                              PSY1
                                                                                      3
C
           ENTHALPY H, VOLUME V, RELATIVE HUMIDITY RH, AND
                                                                              PSY1
           DEW POINT TEMPERATURE DPN
                                                                              PSY1
           WHEN THE DRY BULB TEMPERATURE DB, WET BULB TEMPERATURE WB,
                                                                              PSY1
C
           AND BAROMETRIC PRESSURE PB ARE GIVEN
                                                                              PSY1
                                                                                      7
C
      UNITS' DB, WB, + DP )F>\ PB, + PV )IN OF HG>\ W) = WATER VAPOR
                                                                              PSY1
C
                                                                                      8
           PER = DRY AIR>\ H )BTU/= OF DRY AIR>\ V )FT**3/= OF DRY
                                                                              PSY1
                                                                                      9
C
                                                                              PSY1
                                                                                     10
           AIR\ RH IS A FRACTION, NOT (
      C(F) = (F-32.0E0)/1.8E0
                                                                              PSY1
                                                                                     11
                                                                              PSY1
      PVP=PVSF (WB)
                                                                                     12
      WSTAR=Q.622+PVP/(PB-PVP)
                                                                              PSY1
                                                                                     13
                                                                              PSY1
                                                                                     14
      IF (WB.GT.32.0) GO TO 105
                                                                              PSY1
                                                                                     15
      PV=PVP=5.704E=4*PB*(DB=WB)/1.8
      GO TO 110
                                                                              PSY1
                                                                                     16
```

Figure B.4 (Continued)

```
105 CDB=C(DB)
                                                                            PSY1
                                                                                   17
     CWB=C(WB)
                                                                            PSY1
                                                                                   18
     HL=597.31+0.4409*CDB-CWB
                                                                            PSY1
                                                                                   19
     CH=0.2402+0.4409*WSTAR
                                                                            PSY1
                                                                                   20
     EX=(WSTAR-CH*(CDB-CWB)/HL)/0.622
                                                                            PSY1
                                                                                   15
     PV=PB*EX/(1.+EX)
                                                                            PSY1
                                                                                   22
110 W=0.622*PV/(PB-PV)
                                                                            PSY1
                                                                                   23
     V=0.754*(D8+459.7)*(1.0+7000.0*W/4360.0)/PB
                                                                            PSY1
                                                                                   24
     H=0.24*DB+(1061.0+0.444*DB)*W
                                                                            PSY1
                                                                                   25
     IF (PV.GT.0.0) GO TO 115
                                                                            PSY1
                                                                                   95
     PV=0.0
                                                                            PSY1
                                                                                   27
     DP=0.0
                                                                            PSY1
                                                                                   85
     RH=0.0
                                                                            PSY1
                                                                                   29
     RETURN
                                                                            PSY1
                                                                                   30
115 IF (DB.NE.WB) GO TO 120
                                                                            PSY1
                                                                                   31
     0P=08
                                                                            PSY1
                                                                                   32
     RH=1.0
                                                                            PSY1
                                                                                   33
     RETURN
                                                                            PSY1
                                                                                   34
120 DP=DPF(PV)
                                                                            PSY1
                                                                                   35
    RH=PV/PVSF(DB)
                                                                            PSY1
                                                                                  36
     RETURN
                                                                            PSY1
                                                                                   37.
    END
                                                                            PSY1
                                                                                   38
    FUNCTION PVSF(X)
                                                                            PSY1
                                                                                   39
    DIMENSION A(6),B(4),P(4)
                                                                            PSY1
                                                                                   40
    DATA A/-7.90298,5.02808,-1.3816E-7,11.344,8.1328E-3,-3.49149/
                                                                            PSY1
                                                                                  41
    DATA B/-9.09718,-3.56654,0.876793,0.0060273/
                                                                            PSY1
                                                                                  42
    T=(X+459.688)/1.8
                                                                            PSY1
                                                                                   43
    IF (T.LT.273.16) GO TO 100
                                                                            PSY1
                                                                                  44
    Z=373.16/T
                                                                            PSY1
                                                                                  45
    P(1)=A(1)*(Z-1.0)
                                                                            PSY1
                                                                                  46
    P(2)=A(2)*ALOG10(Z)
                                                                            PSY1
                                                                                  47
    Z1=A(4)*(1.0-1.0/Z)
                                                                            PSY1
                                                                                  48
    P(3)=A(3)*(10.0**Z1*1.0)
                                                                            PSY1
                                                                                  49
    Z1=A(6)*(Z=1.0)
                                                                            PSY1
                                                                                  50
    P(4)=A(5)*(10.0**Z1=1.0)
                                                                            PSY1
                                                                                  51
    GO TO 105
                                                                           PSY1
                                                                                  52
100 Z=273.16/T
                                                                           PSY1
                                                                                  53
    P(1)=B(1)*(Z-1.0)
                                                                           PSY1
                                                                                  54
    P(2)=B(2)*ALOG10(Z)
                                                                           PSY1
                                                                                  55
    P(3)=B(3)*(1.0-1.0/2)
                                                                           PSY1
                                                                                  56
    P(4)=ALOG10(B(4))
                                                                           PSY1
                                                                                  57
105 SUM=0.0
                                                                           PSY1
                                                                                  58
    DO 110 I=1.4
                                                                           PSY1
                                                                                  59
110 SUM=SUM+P(I)
                                                                           PSY1
                                                                                  60
    PVSF=29.921*10.0**SUM
                                                                           PSY1
                                                                                  61
    RETURN
                                                                           PSY1
                                                                                  62
    END
                                                                           PSY1
                                                                                  63
    FUNCTION DPF(PV)
                                                                           PSY1
                                                                                  64
    THIS ROUTINE CALCULATES DEW-POINT TEMPERATURE FOR A GIVEN
                                                                           PSY1
                                                                                  65
        VAPOR PRESSURE PV
                                                                           PSY1
                                                                                  66
    DP(A,B,C,Y)=A+(B+C*Y)*Y
                                                                           PSY1
                                                                                  67
    Y=ALOG(PV)
                                                                           PSY1
                                                                                  68
    IF (PV.GT.0.1836) GO TO 100
                                                                           PSY1
                                                                                  69
    DPF=DP(71.98,24.873,0.8927,Y)
                                                                           PSY1
                                                                                  70
    RETURN
                                                                           PSY1
                                                                                  71
100 DPF=DP(79.047,30.579,1.8893.Y)
                                                                           PSY1
                                                                                 72
    RETURN
                                                                           PSY1
                                                                                 73
    END
                                                                           PSY1
                                                                                 74
```

Figure B.4 (Continued)

```
PROGRAM COMET2(INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
C
      SPRAY POND DATA COMPARISON MODEL
C
      COMPARE WATER USAGE AND TEMPERATURE FOR TWO SETS OF METEOROLOGY
С
      RICHARD CODELL - US NRC, WASHINGTON DC, DECEMBER 1979
C
C
                                                                            000110
C
      TW1= WET BULB TEMPERATURE FOR DATA SET 1
C
                                                                            000130
      TA1= DRY BULB TEMP. FOR DATA SET 1 (F)
C
                                       (MPH)
                                                                            000140
      W1 = WIND SPEED FOR DATA SET 1
C
                                                (BTU/FT**2/DAY)
                                                                            000150
      H1= RATE OF INSOLATION FOR DATA SET 1
C
      TW2= WET BULB TEMPERATURE FOR DATA SET 2
C
                                                                            000170
      TAZE DRY BULB TEMP. FOR DATA SET 2
                                           (F)
Ç
                                                                            000180
                                       (MPH)
      WER WIND SPEED FOR DATA SET 2
C
                                                (BTU/FT**2/DAY)
      H2= RATE OF INSOLATION FOR DATA SET 2
                                                                            000190
C
      PB1 = BAROMETRIC PRESSURE, DATA SET 1(INCHES MERCURY)
      PB2 = BAROMETRIC PRESSURE, DATA SET 2(INCHES MERCURY)
C
                                                                            000200
      COMMON HE, FEVAP, FOR, WDRO, NDRIFT, DWDR, FDRIFT (20), CH(6), CL(7),
      1 CEH(6), CEL(7), HEAT, CON1, CON2, CON3, DTSPRY, DTIME, QSPRAY, V, TD
                                                                            000270
      DATA QX,QY,QX2,QY2,QCROSS/5+0.0/
                                                                            000280
       DATA ERR/1.0E=30/
                                                                            000290
       DATA SX,SY,SX2,SY2,SCROSS/5*0./
       NAMELIST /INLIST/ DTIME, V, A, GSPRAY, HEAT, NDRIFT, WDRO, DWDR, FDRIFT
       PRINT 95
    35 FORMAT (1H1, 20X, DIFFERENCES IN STEADY STATE TEMPERATURES AND WATER
      1 USE FOR SUBJECT SPRAY POND',/20X, USING MONTHLY AVERAGE VALUES OF
      2 WET BULB, DRY BULB, WIND SPEED, AND SOLAR RADIATION FROM ONSITE
      3',/20x'AND OFFSITE MET STATIONS',///)
       DTIME=0.0
       HEAT=5.0E8
       NDRIFT=2
       WDR0=0
       DWDR=2
       FDRIFT(1)=.0000001
       FDRIFT(2)=.0000001
       COEFFICIENTS FOR MULTIPLE REGRESSION MODELS OF SPRAY EFFICIENCY
C
       AND EVAPORATION LOSS GENERATED BY PROGRAM SPRCO
       READ (5,555) CH, CL, CEH, CEL
   555 FORMAT (4E15.8)
       READ(5, INLIST)
       ESTIMATE ITERATION TIME IF NOT SPECIFIED
 C
       IF(DTIME.GT.0.0) GOTO 40
       DTIME=10.0*HEAT/(62.4*V)
    40 CONTINUE
       WRITE(6,50) DTIME, V, A, QSPRAY, HEAT, WDRO, DWDR
    50 FORMAT(//20x, 'TIMESTEP IN ITERATION DTIME = ',F10.3,' HOURS'/
      1 20x, 'VOLUME OF POND, V = ',F12.1,' FT**3'/
      1 20x, 'SURFACE AREA OF POND, A = ',F12.1,' FT**2'/
      2 20x, RATE OF SPRAYING, GSPRAY = ',F12.1,' FT**3/SEC'/
      3 20x, 'STEADY HEAT LOAD, HEAT = ',F12.1,' BTU/HR'/
      5 20x, LOWER LIMIT OF WIND IN DRIFT TABLE WDRO = ",F10.2," MPH"/
      6 20X, 'INCREMENT IN DRIFT TABLE, DWDR = ",F10.2," MPH"//)
       WRITE(6,52)
    52 FORMAT(//,15x,'DRIFT LOSS TABLE',/,T18,'WIND SPEED, MPH',T34,'DRIF
      1T LOSS FRACTION',/)
       DO 51 I=1, NDRIFT
       WSP=(I-1) *DWDR+WDR0
    51 WRITE(6,53) WSP, FDRIFT(I)
    53 FORMAT(T20,F10.2,T40,F11.8)
                                                                             000350
       DTSPRYHEAT/(QSPRAY+3600+62.4)
       CON1=A/(1498+V)
CON2=A/(1497600)
                                                                             000360
                                                                             000370
                                                                             000380
       CON3=62.4*3600
```

Figure B.5 Listing of program COMET2

```
000390
      READ(5,499) 1
  499 FORMAT(I2)
                                                                               000400
                                                                               000410
      DO 2 J=1, I
      READ(5,500) TW1, TA1, W1, H1, PB1, TW2, TA2, W2, H2, PB2
  500 FORMAT(10F8.0)
C
C
      IF DATA ARE MISSING IN SECOND SET, SET EQUAL TO VALUE IN 1ST SET
C
      IF (TW2.EQ. 0.0) TW2=TW1
      IF (TA2.EQ.O.O) TA2=TA1
      IF (W2.EQ.0.0) W2=W1
      IF(H2.EQ.0.) H2#H1
                                                                               000440
      IF (PB2.EQ.0.0)PB2=P81
                                                                               000450
C
¢
      CALCULATE STEADY STATE TEMPERATURE AND EVAPORATION RATE
C
      FOR EACH DATA SET
                                                                              000470
C
      E1=E(TA1, W1, H1, PB1, TW1)
      EVAP1=30+HE/(62.4+HVAP)
      EVAP1=EVAP1+30+(FDR+FEVAP)+QSPRAY+86400/A
                                                                               000500
      EVAP1=EVAP1 *A
      EZEE (TAZ, WZ, HZ, PBZ, TWZ)
      DATA HVAP/1040.0/
      EVAP2=30+HE/(62.4+HVAP)
      EVAP2=EVAP2+30+(FDR+FEVAP)+QSPRAY+86400/A
                                                                               000530
      EVAP2=EVAP2*A
                                                                               000540
      DE=E2-E1
      DEVAP=EVAP2-EVAP1
                                                                               000550
      WRITE(6,99)
      WRITE(6,101) TW1, TA1, W1, H1, PB1, E1, EVAP1
      WRITE(6,200) TW2, TA2, W2, H2, PB2, E2, EVAP2
   99 FORMAT (T21, 'WET BULB', T37, 'DRY BULB', T51, 'WIND SPEED', /T22,
     1 'SOLAR RAD.'184, 'PB', T97, 'POND TEMP', T114, 'EVAPORATION', /T22,
     2 '(DEG. F)', T36,'(DEG.F)', T54,'(MPH)', T80,'INCHES HG', T64,
     3 '(BTU/FT**2/DY)', T96, '(DEG. F)', T112,'
                                                       FT**3'//)
  101 FORMAT( 5X, DATA SET 1', F12.2, 5F15.2, F20.2, /)
  200 FORMAT( 5x, 'DATA SET 2', F12.2, 5F15.2, F20.2, /)
      WRITE(6,102) DE, DEVAP
  102 FORMAT (T77, 'E2-E1 = ', F6.3,5x, 'EVAP2-EVAP1 = ',F12.1)
                                                                               000660
C
      CALCULATE SUMS FOR CORRELATION COEFFICIENTS
                                                                               000670
C
                                                                               000680
C
                                                                               000690
      SX=SX+E1
                                                                               000700
      SX2=SX2+E1**2
                                                                               000710
      SY=SY+E2
      SY2=SY2+E2**2
                                                                               000720
      SCROSS=SCROSS+E1*E2
                                                                               000730
                                                                               000740
      QX=QX+EVAP1
                                                                               000750
      QX2=QX2+EVAP1**2
      S4AV3+YD=YD
                                                                              000760
      S**S4AV3+SYD=SYD
                                                                              000770
      QCROSS=QCROSS+EVAP1*EVAP2
                                                                               000780
                                                                               000790
C
Ç
      DIFFERENCES IN EQUILIBRIUM TEMP DUE TO EACH PARAMETER.
                                                                              000800
C
                                                                              000810
      DTW=E(TA1, W1, H1, PB1, TW2) -E1
      DTA=E(TA2, W1, H1, PB1, TW1) -E1
      DW=E(TA1, W2, H1, P81, TW1) -E1
      DH=E(TA1, W1, H2, P81, TW1) -E1
      DPB-E(TA1, W1, H1, PB2, TW1)-E1
      DTOT=DTW+DTA+DW+DH+DPB
WRITE(6,5)
                                                                               000870
    5 FORMAT(//10X, 'DIFFERENCES IN E BETWEEN DATA SET 2 AND DATA SET 1 000880
     1BY PARAMETER . / )
                                                                              000890
```

Figure B.5 (Continued)

```
WRITE (6,6) DTW
   6 FORMAT(10X, DIFFERENCE DUE TO WET BULB = ',T50,F10.3, DEG. F')
                                                                            000920
      WRITE(6,7)DTA
   7 FORMAT(10X, 'DIFFERENCE DUE TO DRY BULB TEMP. 2 ', T50, F10.3, ' DEG.
                                                                            000940
    1F*)
                                                                            000950
     WRITE(6,8) DW
   8 FORMAT(10x, DIFFERENCE DUE TO WIND SPEED # ',T50,F10.3, DEG. F')
                                                                            000970
     WRITE(6,9)DH
   9 FORMAT(10X, DIFFERENCE DUE TO INSOLATION = 'T50, F10.3, DEG. F')
      WRITE(6,11) DPB
   11 FORMAT(10X, 'DIFFERENCE DUE TO BAROMETRIC PRESSURE = ', T50, F10.3,
     1 ' DEG F')
                                                                            000990
      WRITE(6,10)DTOT
   10 FORMAT (10x, 'SUMMATION OF INDIVIDUAL DIFFERENCES # ', T50, F10.3, ' DE
                                                                            001010
     1G. F',//,1X,130('*'),///)
                                                                            001020
    2 CONTINUE
                                                                            001030
C
                                                                            001040
      CORRELATION ANALYSIS
                                                                            001050
                                                                            001060
      SXX=I*SX2=SX**2
                                                                            001070
      S**Y8=SY2*1*YY8
                                                                            001080
      SXY=I*SCROSS=SX*SY
                                                                            001090
      RSQ=(SXY**2+ERR)/(SXX*SYY+ERR)
                                                                            001100
      GXX=I*GXS=GX**S
                                                                            001110
      GAA=I*GA5=GA**S
                                                                            001120
      QXY=I*QCROSS=QX*QY
                                                                            001130
      QRSQ=(QXY**2+ERR)/(QXX*QYY+ERR)
      SERR#SQRT(((SXX*SYY)=SXY**2)/(I*(I=2)*SXX))
      QSERR=SQRT(((QXX+QYY)-QXY++2)/(I+(I-2)+QXX))
      WRITE(6,300) RSQ, SERR
      WRITE(6,310) QRSQ,QSERR
  300 FORMAT(10X, SAMPLE R SQUARED FOR EQUILIBRIUM TEMP. = ',F10.3,
     1 10x, 'STANDARD ERROR = ',F10.3,' DEG.F')
  310 FORMAT(10x, SAMPLE R SQUARED FOR EVAPORATION = 1, F10.3,
     1 10x, 'STANDARD ERROR = ',F10.3, 'FT++3')
                                                                            001180
      SXXI=SX /I
                                                                            001190
       SYYI=SY /I
                                                                            001200
       BIAS=SYYI-SXXI
      WRITE(6,250) SXXI, SYYI, BIAS
  250 FORMAT(10X, AVERAGE E, DATA SET 1 = ",F12.3,/,10X, AVERAGE E, DATA001220
     1 SET 2 = ",F12.3,/,10x, AVERAGE E2 - AVERAGE E1 = ",F12.4)
                                                                            001230
                                                                            001240
       EBIAS=(QY-QX)/I
  WRITE(6,251) EBIAS
251 FORMAT(10X, 'AVERAGE EVAP2 - AVERAGE EVAP1 = ',F12.4)
                                                                             001260
                                                                             001270
       STOP
                                                                             001280
       END
       FUNCTION E (TA, W, H, PB, WB)
                                                                             001300
C
       CALCULATES THE STEADY STATE TEMPERATURE BY
C
       AN ITERATIVE PROCESS, WITH SPRAY HEAT LOSS, EVAPORATION, AND
C
       DRIFT DETERMINED BY REGRESSION COEFFICIENTS FROM PROGRAMS
¢
       #SPRAYCO# AND #DRIFT#
C
                                                                             001330
       COMMON HE, FEVAP, FDR, WDRO, NDRIFT, DWDR, FDRIFT (20), CH(6), CL(7),
      1 CEH(6), CEL(7), HEAT, CON1, CON2, CON3, DTSPRY, DTIME, QSPRAY, V, TD
       E3=100
      CONVERT ATM PRESSURE TO MM
C
       PAIR=PB+760.0/29.92
       CALCULATE DEW POINT TEMPERATURE
 C
       CALL PSY1 (TA, WB, PB, TD, PV, HUMRAT, ENTHAL, HUMVOL, RH)
       BEGIN ITERATIVE SOLUTION FOR POND TEMPERATURE
C
                                                                            001430
       DO 1 I=1,50
                                                                             001440
       TSPRAY=ES+DTSPRY
       SURFACE HEAT TRANSFER AND EVAPORATION FROM RYAN, 1973
C
```

Figure B.5 (Continued)

```
DTV=(ES+460)/(1.=.378*PWAT(ES)/PAIR)=
     1 (TA+460)/(1.0=.378*PWAT(TD)/PAIR)
      DTV3=0
      IF(DTV.LE.0.0) GOTO 1500
      DTV3=DTV++.333333333
1500 FU=22.4*DTV3+14*W
      HC=0.26*(ES-TA)*FU
      HBR=4.026E-8*(460+ES)**4
      HE=(PWAT(ES)=PWAT(TD))*FU
      HAN=1.16E=13*(TA+460)**6*(1.0=CC**2*.17)
     CONSERVATIVE VALUE FOR CLOUD COVER
C
      DATA CC/0.0/
      HR=H-HC+HAN-HBR-HE
      HWS EFFICIENCY
C
      ETA=CH(1)+CH(2) *TA+CH(3) *WB+CH(4) *TSPRAY+CH(5) *W+CH(6) *SQRT(W)
      LWS EFFICIENCY
C
      EL=CL(1)+CL(2)*TA+CL(3)*TA**2+CL(4)*TA**3+CL(5)*WB+
     1 CL(6) *TSPRAY+CL(7) *TSPRAY**2
                                                                           001520
      IF(ETA.LT.EL) ETA=EL
      IF(ETA.LT.0.0) ETA=0.0
      IF(ETA.GT.1.0) ETA=1.0
C
      SPRAY HEAT LOSS
                                                                           001530
      HSPRAY=HEAT-GSPRAY*CON3*ETA*(TSPRAY-WB)
      DTEMP=HR*CON1+HSPRAY/(62.4*V)
                                                                           001550
      T1=ES
                                                                           001560
      ES=ES+DTEMP*DTIME
      IF(ABS(T1-ES).LT.0.002) GO TO 2
                                                                           001580
    1 CONTINUE
                                                                           001590
    2 CONTINUE
      E=ES
      IF(ETA.EQ.EL) GOTO 3
                                                                           001600
      HIGH WIND SPEED EVAPORATION
C
      FEVAP=CEH(1)+CEH(2) *TA+CEH(3) *W8+CEH(4) *TSPRAY+
                                                                           001620
     1 CEH(5) *W+CEH(6) *SQRT(W)
                                                                           001640
      GOTO 4
      LOW WIND SPEED EVAPORATION
    3 FEVAP=CEL(1)+CEL(2) *TA+CEL(3) *TA**2+CEL(4) *TA**3+CEL(5) *WB
     1 +CEL(6) *TSPRAY+CEL(7) *TSPRAY**2
      DRIFT LOSS
C
                                                                           001670
    4 NTBL=(W-WDR0)/DWDR+1
                                                                           001680
      IF(NTBL.GE.NDRIFT) NTBL=NDRIFT=1
                                                                           001690
      FDR=FDRIFT(NTBL)+((W-WDR0-(NTBL-1)*DWDR)/DWDR)*
     1 (FDRIFT(NTBL+1)=FDRIFT(NTBL))
                                                                           001700
      IF(FEVAP.LT.0.0) FEVAP=0.0
      IF (FEVAP.GT.1.0) FEVAP=1.0
                                                                           001710
      RETURN
                                                                           001720
      END
      FUNCTION PWAT(T)
      TK = (T - 32.0)/1.8 + 273.1
      PWAT=760*EXP(71.02499=7381.6677/TK=9.0993037*ALOG(TK)+
     1/ .0070831558*TK)
      RETURN
      END
                                                                           001970
      SUBROUTINE PSY1 (DB, WB, PB, DP, PV, W, H, V, RH)
      THIS ROUTINE CALCULATES' VAPOR PRESSURE PV, HUMIDITY RATIO W,
                                                                           001980
          ENTHALPY H, VOLUME V, RELATIVE HUMIDITY RH, AND
                                                                           001990
          DEW POINT TEMPERATURE DP(
                                                                           002000
C
          WHEN THE DRY BULB TEMPERATURE DB, WET BULB TEMPERATURE WB,
                                                                           002010
          AND BAROMETRIC PRESSURE PB ARE GIVEN
                                                                           002020
C
      units' DB, WB, + DP )F] ( PB, + PV )IN OF HG) ( W)= WATER VAPOR
                                                                            002030
C
          PER = DRY AIR] ( H )BTU/= OF DRY AIR] ( V )FT**3/# OF DRY
                                                                            002040
C
          AIR( RH IS A FRACTION, NOT (
                                                                            002050
      C(F) = (F-32.0E0)/1.8E0
                                                                            002060
```

Figure B.5 (Continued)

```
PVP=PVSF (WB)
                                                                         002070
   WSTAR=0.622*PVP/(PB-PVP)
                                                                         002080
                                                                          002090
    IF (WB.GT.32.0) GO TO 105
                                                                          002100
    PV=PVP-5.704E-4*PB*(DB-WB)/1.8
                                                                          002110
    GO TO 110
                                                                          002140
105 CDB=C(DB)
                                                                          002150
    CWB=C(WB)
    HL=597.31+0.4409*CDB-CWB
                                                                          002160
    CH=0.2402+0.4409*WSTAR
                                                                          002170
                                                                          002180
    EX=(WSTAR-CH*(CDB-CWB)/HL)/0.622
                                                                          002190
    PV=PB*EX/(1.+EX)
                                                                          002200
110 W=0.622*PV/(PB=PV)
    V=0.754*(DB+459.7)*(1.0+7000.0*W/4360.0)/PB
                                                                          002210
                                                                          002220
    H=0.24+DB+(1061.0+0.444+DB)*W
                                                                          002230
    IF (PV.GT.0.0) GO TO 115
                                                                          002240
    PV=0.0
                                                                          002250
    DP=0.0
                                                                          002260
    RH=0.0
                                                                          002270
    RETURN
                                                                          002280
115 IF (DB.NE.WB) GO TO 120
                                                                          002290
    DP=DB
                                                                          002300
    RH=1.0
                                                                          002310
    RETURN
                                                                          002320
120 DP=DPF(PV)
                                                                          002330
    RH=PV/PVSF (D8)
                                                                          002340
    RETURN
                                                                          002350
    END
                                                                          002580
    FUNCTION PVSF(X)
                                                                          002590
    DIMENSION A(6),B(4),P(4)
    DATA A/-7.90298,5.02808,-1.3816E-7,11.344,8.1328E-3,-3.49149/
                                                                          002600
    DATA 8/-9.09718,-3.56654,0.876793,0.0060273/
                                                                          002610
                                                                          002620
    Ta(X+459.688)/1.8
                                                                          002630
    IF (T.LT.273.16) GO TO 100
                                                                          002640
    Z=373.16/T
                                                                          002650
    P(1)=A(1)*(Z=1.0)
    P(2) = A(2) * ALOG10(Z)
                                                                          002660
                                                                          002670
    Z1=A(4)*(1.0-1.0/Z)
                                                                          002680
    P(3)=A(3)*(10.0**Z1=1.0)
                                                                          002690
    Z1=A(6) * (Z=1.0)
                                                                          002700
    P(4)=A(5)*(10.0**Z1=1.0)
                                                                          002710
    GO TO 105
                                                                          002720
100 Z=273.16/T
                                                                          002730
    P(1)=B(1)*(Z=1.0)
                                                                          002740
     P(2) = B(2) + ALOG10(Z)
                                                                          002750
     P(3)=8(3)*(1.0-1.0/2)
                                                                          002760
    P(4) = ALOG10(B(4))
                                                                          002770
105 SUM=0.0
                                                                          002780
    DO 110 I=1.4
                                                                          002790
110 SUM=SUM+P(I)
                                                                          002800
     PVSF=29.921*10.0**SUM
                                                                          002810
     RETURN
                                                                          002820
     END
                                                                          002830
     FUNCTION DPF(PV)
     THIS ROUTINE CALCULATES DEW-POINT TEMPERATURE FOR A GIVEN
                                                                          002840
                                                                          002850
         VAPOR PRESSURE PV
                                                                          002860
     DP(A,B,C,Y)=A+(B+C*Y)*Y
                                                                          002870
     Y=ALOG(PV)
     IF (PV.GT.0.1836) GO TO 100
                                                                          002880
                                                                          002890
     DPF=0P(71.98,24.873,0,8927,Y)
                                                                          002900
     RETURN
                                                                          002910
 100 DPF=DP(79.047,30.579,1.8893,Y)
                                                                          002920
     RETURN
                                                                          002930
     END
```

Figure B.5 (Continued)

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION		1. REPORT NUMBER NUREG-0733	(Assigned by DDC)		
BIBLIOGRAPHIC DATA SHEET		1,01,24 0/00			
4. TITLE AND SUBTITLE (Add Volume No., if appropriate)		2. (Leave blank)			
Analysis of Ultimate-Heat-Sink Spray Ponds					
		3. RECIPIENT'S ACCESSION NO.			
7. AUTHOR(S) Richard B. Codell		5. DATE REPORT CO	MPLETED		
Richard B. Codell		Month January	YEAR 1981		
O BEDEODMING ODGANIZATION NAME AND MALLING ADDRESS (Include 7	in Cadal				
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code) Hydrologic Engineering Section Hydrologic Geotechnical Engineering Branch Division of Engineering, NRR Washington, D.C. 20555		DATE REPORT ISS	Y f981		
		aŭĝŭsť [†] f981			
		6. (Leave blank)	<u></u>		
		8. (Leave blank)			
12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code) Same as Box 9		10. PROJECT/TASK/WORK UNIT NO.			
		11. CONTRACT NO.			
13. TYPE OF REPORT	PERIOD COVERE	D (Inclusive dates)			
Technical Report					
15. SUPPLEMENTARY NOTES		14. (Leave blank)			
Computer programs available		·			
This report develops models which can be utilized in the design of certain types of spray ponds used in ultimate heat sinks at nuclear power plants, and ways in which the models may be employed to determine the design basis required by U.S. Nuclear Regulatory Commission Regulatory Guide 1.27. The models of spray-pond performance are based on heat and mass transfer characteristics of drops in an environment whose humidity and velocity have been modified by the presence of the sprays. Drift loss from the sprays is estimated by a ballistics model. The pond performance model is used first to scan a long-term weather record from a representative material extension and approach of most advence materials and formal approach of most advence materials and formal approach of most advence materials for the sprays and approach of most advence materials for the sprays and approach and approach of most advence materials for the sprays and approach and approach approach and approach and approach appr					
tive meteorological station in order to determine the periods of most adverse meteorology for cooling or evaporation. The identified periods are used in subsequent calculations to actually estimate the design-basis pond temperature. Additionally, methods are presented to correlate limited quantities of onsite data to the longer offsite record, and to estimate the recurrence interval of the design-basis meteorology chosen.					
17 KEY WORDS AND DOCUMENT ANALYSIS spray ponds meteorology ultimate heat sinks	7a. DESCRIPTORS				
17b. IDENTIFIERS/OPEN-ENDED TERMS spray ponds, ultimate heat sink (UHS), meteorology, heat transfer					
18. AVAILABILITY STATEMENT	unctassit	ied SS (This report)	21. NO. OF PAGES		
	unclassif	CLASS (This page)	22. PRICE S		

• .

UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, D. C. 20555

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300 POSTAGE AND FEES PAID
U.S. NUCLEAR REGULATORY
COMMISSION
U.S. MAIL