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1 Introduction

In the initial quantification (Crenshaw, 2012), Fleming et al. (2011) per-

formed a substantial study designed to build upon the established EPRI

risk-informed in-service inspection program (EPRI, 1999). The methodol-

ogy of EPRI (1999) was used as the primary basis to develop the size and

location-specific rupture frequencies for the initial quantification. Although

the overall methodology appears to be sound based on peer review (Mosleh,

2011) and reasonableness of the values obtained, NRC feedback in the Pilot

Project reviews has resulted in further review of the approach. In this pa-

per we propose a new approach to assign location-specific LOCA frequencies

derived from the overall frequencies, as defined in Tregoning et al. (2008),

which we refer to as NUREG-1829.

The NUREG-1829 annual frequencies are neither plant specific nor plant-

location specific. Yet they are used throughout the nuclear industry as an

important input to PRA analyses, and therefore, they need to be preserved.

Conservation of the NUREG-1829 break frequencies is our guiding principle.

In this document we work with the six categories defined in Table 1,

NUREG-1829 Volume 1, page xxi, as “effective break size” for the PWR
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plants. Table 1 shows the mapping between the NUREG-1829 notation

and ours. In addition, we use the term distribution to mean a distribution

function—either cumulative distribution function (CDF), probability density

function (PDF), or probability mass function (PMF)—of a random variable

used to model a specified uncertainty.

Table 1: LOCA categories notation map

Effective break size
(inch) for PWR Notation

1
2

cat1
15

8
cat2

3 cat3
7 cat4
14 cat5
31 cat6

We should point out that South Texas Project PRA analysis uses only

three LOCA categories, small, medium, and large. Our proposed methodol-

ogy can be applied to any finite number of break-size categories.

In this document we will use the term location to represent a specific weld

case, using the terminology of Fleming et al. (2011). Overall there are two

distinct approaches to derive location- or weld-case-specific LOCA frequen-

cies: bottom-up and top-down. The first approach requires location specific

failure data to estimate the corresponding probability of a weld failure. Sup-

pose a break occurs and assume there are Mj different welds in the plant

where breaks of size catj can occur, weld1, . . . , weldMj
, then using the law of
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total probability we can write:

P [catj] =

Mj∑
i=1

P [catj|weldi]P [weldi], j = 1, 2, . . . , 6,

where P [catj] is the probability of a catj LOCA given that a break occurs,

P [catj|weldi] is the conditional probability of a catj LOCA given that the

break occurs at weld i, and P [weldi] is the probability that the break occurs

at weld i, where again, weld i represents weld case i, using the terminology

of Fleming et al. (2011).

In the bottom-up approach we first must determine P [catj|weldi] (using

estimation or expert elicitation). Then, if we assume that each location

is equally likely to have the break, we can multiply by 1/Mj and sum the

resulting probabilities to obtain the total probability the break is a catj

LOCA. If the bottom-up approach is followed the resulting total catj LOCA

probability will not equal the number provided in NUREG-1829 (or at least it

is very unlikely to yield that number). This approach, taken by Fleming et al.

(2011), is an inherently bottom-up approach. In an attempt to preserve the

NUREG-1829 frequencies Fleming et al. (2011) developed an approximation

scheme. In their review, the NRC technical team raised several questions

about using this as a “stand alone” methodology, which has led us to take a

different path.

The approach that we propose to take is rooted in the combining the

top-down and bottom-up approaches: We start with the NUREG-1829 fre-

quencies and develop a way to distribute them across different locations pro-

portionally to the frequencies estimated using the bottom-up approach. In

this way, we maintain the NUREG-1829 frequencies overall but also allow

for location-dependent differences. We should point out that we use the lo-

3



cation specific tables as defined in Fleming et al. (2011). To our knowledge

no other sources of location specific frequencies exist. If such information

becomes available our proposed methodology can immediately incorporate

that information.

For a top-down approach, we will use again the catj LOCA as an illus-

trative example. The LOCA frequencies (NUREG-1829 Volume 1, page xxi,

Table 1) are cumulative and so we compute the probability of a LOCA being

in catj using the formula

P [catj] =
Frequency[LOCA ≥ catj]− Frequency[LOCA ≥ catj+1]

Frequency[LOCA ≥ cat1]
,

for j = 1, . . . , 6 and where Frequency[LOCA ≥ cat7] ≡ 0. Again we assume

there are Mj different locations in the plant where breaks of size catj can

occur, weld1, . . . , weldMj
. Assume, for the moment, given that we have a

catj break, these Mj locations are equally likely to have the break, i.e.,

P [weldi|catj] =
1

Mj

, i = 1, . . . ,Mj.

Then we have P [catj at weldi] = P [catj]P [weldi|catj] and so P [catj at weldi] =

P [catj]/Mj. Finally, applying the law of total probability,

P [catj] =

Mj∑
i=1

P [catj at weldi],

we see that the resulting probability of a catj LOCA matches exactly the

NUREG-1829 probability. The approach we propose in this document, fol-

lows the steps we have just outlined, except we propose replacing the simple

assumption of a catj break being equally likely to occur across all locations

with an approach that uses location-specific conditional probabilities that we

infer from Fleming et al. (2011).
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The above methodology distributes equally the LOCA frequencies as de-

fined in NUREG-1829 Table 1 across all locations that can experience breaks

from one or more of the six size categories. The six break size categories (from

the NUREG-1829 Table 1) represent six bounded intervals. For a particular

weld we need to be able to sample from the continuous interval of break size

values. In addition, we would like to be able to sample from the distribution

of the frequencies. The rows in Table 1 from NUREG-1829 represent the

distribution of the frequencies by reporting the mean, median, 5th and 95th

percentiles. We will use this information to fit six continuous distributions

for each break size category.

2 Proposed Methodology

2.1 Fitting distribution to the LOCA frequencies

We first describe how we fit a distribution to the frequencies for each break

size category. In theory, there are an infinite number of distributions that

one can fit to the LOCA frequencies represented in NUREG-1829. For exam-

ple, two split lognormal distributions are used in NUREG-1829 and gamma

distributions are used in NUREG/CR 6928.

We choose to fit the bounded Johnson distribution, (Johnson, 1949) for

the following reasons:

• The Johnson has four parameters, which will allow us to match closely

the distributional characteristics provided by NUREG-1829. In order

to obtain the parameters of the Johnson distribution we solve an opti-

mization problem with constraints defined by the distributional char-

acteristics.
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• The Johnson distribution allows for a variety of shapes. In particular,

skewed, symmetric, bimodal, or unimodal shapes can be obtained.

The cumulative distribution function (CDF) of the bounded Johnson is:

F [x] = Φ {γ + δf [(x− ξ)/λ]} ,

where Φ[x] is the CDF of a standard Normal (0,1) random variable, γ and

δ are shape parameters, ξ is a location parameter, λ is a scale parameter,

and f(z) = log[z/(1 − z)]. We restricted our attention to bell-shaped PDF

curves only. This was achieved by imposing a constraint γ ≥ 1 in our fitting

algorithm. The fitted parameters of the Johnson distribution for each of the

six categories are given in Table 2. The comparison between the NUREG-

1829 distributional characteristics of the LOCA frequencies and the fitted

ones are presented in Table 3. We note that the expert elicitation was for

the 5%, 50% (median), and 95% quantiles, and did not involve eliciting the

mean parameters. So we focus on matching the parameters elicited from

the experts as indicated by the results in the final four columns of Table 3.

The six panels in Figures 1 and 2 show the fitted PDFs of the Johnson

distribution for each category. Once the best fit is found, we sample the

LOCA frequencies for each category to obtain Frequency[LOCA ≥ catj]—a

realization of the cumulative LOCA frequency to be in category j or larger.

2.2 Distribution of LOCA frequencies to different weld
locations

We first convert the sampled LOCA frequencies to probabilities using

P [catj] =
Frequency[LOCA ≥ catj]− Frequency[LOCA ≥ catj+1]

Frequency[LOCA ≥ cat1]
, (1)

where
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Table 2: Fitted Johnson parameters

Johnson Parameters
γ δ ξ λ

Cat1 2.144623E+00 7.507774E-01 2.597254E-04 6.698783E-02
Cat2 1.365229E+00 4.195681E-01 4.822843E-06 3.646760E-03
Cat3 1.392766E+00 4.196874E-01 1.415507E-07 9.377713E-05
Cat4 1.701576E+00 4.554581E-01 5.609081E-09 1.302968E-05
Cat5 1.906196E+00 3.825140E-01 2.573251E-10 1.730668E-06
Cat6 2.525065E+00 3.816999E-01 1.853162E-11 8.868925E-07

Table 3: NUREG-1829 and fitted Johnson median, low and high quantiles
values

NUREG 1829 Values Fitted Johnson Relative Error

5th Median Mean 95th 5th Median Mean 95th 5th Median Mean 95th

Cat1 6.90E-04 3.90E-03 7.30E-03 2.30E-02 6.89E-04 3.90E-03 6.68E-03 2.30E-02 0.20% 0.00% 8.56% 0.00%

Cat2 7.60E-06 1.40E-04 6.40E-04 2.40E-03 7.61E-06 1.39E-04 4.97E-04 2.41E-03 0.14% 0.38% 22.37% 0.62%

Cat3 2.10E-07 3.40E-06 1.60E-05 6.10E-05 2.09E-07 3.42E-06 1.24E-05 6.07E-05 0.52% 0.53% 22.69% 0.49%

Cat4 1.40E-08 3.10E-07 1.60E-06 6.10E-06 1.40E-08 3.09E-07 1.20E-06 6.12E-06 0.01% 0.28% 24.97% 0.25%

Cat5 4.10E-10 1.20E-08 2.00E-07 5.80E-07 4.18E-10 1.20E-08 9.91E-08 5.81E-07 1.99% 0.28% 50.47% 0.17%

Cat6 3.50E-11 1.20E-09 2.90E-08 8.10E-08 3.45E-11 1.21E-09 1.65E-08 8.04E-08 1.42% 0.43% 43.27% 0.75%
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Figure 1: Johnson PDF for each category
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Figure 2: Johnson PDF for each category, zoomed to a narrower range of
frequencies near the modes of the distributions
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• J = {cat1, cat2, cat3, ..., catB}: set of possible break types (categories),

• P [catj]: probability of observing a break that falls into category j given

that a break was observed

• Frequency[LOCA ≥ catj]: frequency of break of type j or larger, j ∈ J

• Frequency[LOCA ≥ catB+1] ≡ 0.

As we describe above, there are a total of B = 6 categories in NUREG-

1829. Given P [catj], the next step is to distribute that probability across

all welds that can experience a break from that particular category. Not all

types of welds can experience all types of breaks. We use Ij to denote the

subset of locations that can have a break from category j.

We compute the probability that weld i will experience a break of type

j using P [catj at weldi] = wi
jP [catj], where wi

j = P (weldi|catj) is the con-

ditional probability of the break occurring at weld i given that we have a

category j break. Restated, wi
j is the fraction that weld i contributes to cat-

egory j’s total break frequency from the bottom-up approach for i ∈ Ij.

Computation of wi
j is straightforward. The bottom-up approach gener-

ates the frequency of category j breaks at location i, which we denote

Freqbu[LOCA ≥ catj at weldi]. Given these frequencies, the wi
j values can

be computed using:

wi
j =

Freqbu[LOCA ≥ catj at weldi]− Freqbu[LOCA ≥ catj+1 at weldi]
Freqbu[LOCA ≥ cat1 at weldi]

. (2)

Given P [catj] from equation (1) and wi
j from equation (2), we form

P [catj at weldi] = wi
jP [catj]. (3)

Since the sum of all wi
j across i ∈ Ij is equal to one, with this approach we

are guaranteed to match the NUREG-1829 specified values for P [catj].
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2.3 Sampling of the break size

The final step is to sample the actual break size conditioned on the break

category. Here we assume that the break size has a uniform distribution

within a given category. Formally, we write

breakSizei
j ∼ U [minBreaki

j,maxBreak
i
j], j ∈ J, i ∈ Ij,

where

• minBreaki
j = catminBreak

j

• maxBreaki
j = min{catmaxBreak

j , weldsize
i }

• catminBreak
j – minimum break size that would put it into category j

• catmaxBreak
j – maximum break size that would put it into category j

• weldsize
i – actual weld size (it cannot experience break size larger than

its diameter).

2.4 Methodology summary

Our approach requires two sampling loops in our simulator CASA GRANDE,

Letellier (2011). We need one sampling loop for the break size within each

category and an outer loop that samples LOCA frequencies. Below is a

step-by-step description of the procedure:

1. Input: N , the number of LOCA frequency samples, and S, the number

of break size samples to generate.

2. Sample LOCA frequencies Frequency[LOCA ≥ catj], j = 1, 2, . . . , 6,

from the fitted Johnson distributions for each break category; see Sec-

tion 2.1.
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3. Distribute uncertainty across plant-specific welds as described in Sec-

tion 2.2.

4. Sample break size for each possible weld / break-category combination

as described in Section 2.3.

5. Estimate, and store, performance measures using CASA GRANDE.

6. Go to step 4 and repeat until we obtain S break-size samples.

7. Compute, and store, performance measures.

8. Go to step 2 and repeat until we have obtained N LOCA frequency

samples.

9. Form the summary of aggregated performance measures.

3 Illustrative Example

We illustrate the approach we describe in the first four steps from Section 2.4

using the following example. Assume we have a total of six welds and these

are the only locations where a break can occur. Three of them (welds 1, 2 and

3) are small and have sizes of 1.7, 2, and 2.5 inches and hence can experience

only small breaks (category 1 and category 2). Two of those six (welds 4

and 5) are of medium size and have a diameter of 3.8 inches and thus can

have small and medium breaks (category 1, category 2, and category 3 only;

they cannot experience category 4, or larger, breaks). The last weld (weld

6) is large with a size of 35 inches and can have all types of breaks—small,

medium, and large (category 1, . . . , category 6). A graphical representation

of the system is shown in Figure 3.
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Figure 3: Example system depiction with six welds of various sizes that
can each experience some subset of six types of breaks from category
1,. . . ,category 6.

Adapting the notation developed in Section 2 to this example we have:

J = {cat1, cat2, cat3, cat4, cat5, cat6},

Icat1 = {weld1, weld2, weld3, weld4, weld5, weld6},

Icat2 = {weld1, weld2, weld3, weld4, weld5, weld6},

Icat3 = {weld4, weld5, weld6},

Icat4 = {weld6}, Icat5 = {weld6}, Icat6 = {weld6},

and
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BreakSizeweld1
cat1 ∼ U [0.5, 1.625] (4a)

BreakSizeweld2
cat1 ∼ U [0.5, 1.625] (4b)

BreakSizeweld3
cat1 ∼ U [0.5, 1.625] (4c)

BreakSizeweld4
cat1 ∼ U [0.5, 1.625] (4d)

BreakSizeweld5
cat1 ∼ U [0.5, 1.625] (4e)

BreakSizeweld6
cat1 ∼ U [0.5, 1.625] (4f)

BreakSizeweld1
cat2 ∼ U [1.625, 1.7] (4g)

BreakSizeweld2
cat2 ∼ U [1.625, 2] (4h)

BreakSizeweld3
cat2 ∼ U [1.625, 2.5] (4i)

BreakSizeweld4
cat2 ∼ U [1.625, 3] (4j)

BreakSizeweld5
cat2 ∼ U [1.625, 3] (4k)

BreakSizeweld6
cat2 ∼ U [1.625, 3] (4l)

BreakSizeweld4
cat3 ∼ U [3, 3.8] (4m)

BreakSizeweld5
cat3 ∼ U [3, 3.8] (4n)

BreakSizeweld6
cat3 ∼ U [3, 7] (4o)

BreakSizeweld6
cat4 ∼ U [7, 14] (4p)

BreakSizeweld6
cat5 ∼ U [14, 31] (4q)

BreakSizeweld6
cat6 ∼ U [31, 35]. (4r)

Below we enumerate the first four steps of the procedure from Section 2.4

for this example system.

1. Assume S = 1, N = 1.
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2. Sampled LOCA frequencies (using the fitted Johnson distributions)

are given in Table 4. The right-most column of Table 4 computes the

probability mass for each category according to equation (1).

3. Break frequency tables for each weld obtained from the bottom-up ap-

proach can be found in Tables 5-7. (For the full collection of location-

specific frequency tables see Fleming et al. (2011).) Table 4 contains

bins defining the break categories, as derived from Table 1. The asso-

ciated categories for each break size are indicated in Tables 5-7.

Using Tables 5-7 we compute weights for each weld and report results

in Tables 8-10. To describe the derivation of these weights we begin

with Table 8. The weld 1 frequency value in that table is the difference

between the cumulative frequencies from the 0.5-inch row and the 1.7-

inch row from Table 5. The weld 2 and weld 3 frequency values are the

difference between the frequencies from the 0.5-inch row and the 2-inch

row from Table 5. The weld 4, weld 5, and weld 6 frequencies are simi-

larly the difference between the frequencies from the 0.5-inch rows and

the 2-inch rows from Tables 6 and 7. Finally, we normalize the result-

ing values using equation (2) to compute the weights wweld1
cat1 , . . . , wweld6

cat1 .

Tables 9 and 10 contain the results of the analogous calculations for

category 2 and category 3. There is no need to form the corresponding

frequency values for category 4,. . . ,category 6 because these categories

only occur for weld 6, and hence these weights are simply 100%.

Using equation (3) we now compute P [catj at weldi] for each category-

weld combination. The results are given in Table 11. We see that the

sum of the distributed probabilities match the target probabilities.
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4. We simulate break sizes for each weld within each category using the

uniform distributions with the parameters specified in equation (4).

The sample is shown in Table 12.

Finally, we note that our assumptions lead to a piece-wise linear CDF

governing the break size for a given weld. For example, consider weld 6. The

CDF of the break size for that weld has six pieces with the slopes deter-

mined by the P [catj at weld6] values and break points at the catmaxBreak
j bin

boundaries of 1.625, 3, 7, 14, and 31 inches, see Figure 4.

Figure 4: CDF of break size distribution for weld 6

Conclusion

In this document we present solutions to three problems:
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1. How should we preserve the NUREG 1829 LOCA frequencies when

distributing them across different locations (welds) in a nuclear power

plant. The approach that we propose to take is rooted in combining

the top-down and bottom-up approaches: We start with the NUREG-

1829 frequencies and develop a way to distribute them to different

locations proportionally to the frequencies estimated using the bottom-

up approach. In this way, we maintain the NUREG-1829 frequencies

overall but also allow for location-dependent differences.

2. The six break size categories (from the NUREG-1829 Table 1) represent

six intervals. For a particular weld we need to be able to sample from

the continuous interval of break size values. We propose to use linear

interpolation which is equivalent to assigning equally likely probabilities

within each break size category.

3. How to model the distribution of the LOCA frequencies. We propose

to fit the Johnson distribution to the NUREG-1829 quantiles of 5%,

50%, and 95%.

In this document we do not discuss the different sampling techniques

needed. We will provide their description and examples in a separate docu-

ment.
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Table 4: Sampled LOCA frequencies and corresponding probabilities

Failure Type Category Break Size Bins (in.) Frequency Probability
small 1 [0.5,1.625) 3.9E-03 9.64E-01
small 2 [1.625,3) 1.4E-04 3.50E-02

medium 3 [3,7) 3.4E-06 7.92E-04
medium 4 [7,14) 3.1E-07 7.64E-05

large 5 [14,31) 1.2E-08 2.77E-06
large 6 [31,41) 1.2E-09 3.08E-07

Table 5: Frequency tables for small welds from bottom-up approach

SMALL

weld1 weld2 weld3

Small Bore SIR CVCS

1 1.5 2

1.414213562 2.121320344 2.828427125

B-J B-J B-J

VF, SC, D&C D&C TF, VF, D&C

193 0 10

X, Break Size (in.) F (LOCA ≥ X) X, Break Size (in.) F (LOCA ≥ X) X, Break Size (in.) F (LOCA ≥ X)

0.5 (cat1) 1.22E-07 0.5 (cat1) 1.1402E-08 0.5 (cat1) 4.2814E-08

0.75 (cat1) 7.18E-08 0.75 (cat1) 6.843E-09 0.75 (cat1) 2.5696E-08

1 (cat1) 5.00E-08 1 (cat1) 4.8541E-09 1 (cat1) 1.8227E-08

1.5 (cat1) 4.30E-09 1.5 (cat1) 3.072E-09 1.5 (cat1) 1.1536E-08

1.7 (cat2) 2.30E-09 2 (cat2) 1.6483E-09 2 (cat2) 6.0274E-09

2.5 (cat2) 2.4179E-09
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Table 6: Frequency tables for medium welds from bottom-up approach

MEDIUM
weld4 weld5

CVCS Pressurizer
4 3

5.656854249 4.242640687
BC B-J

TF, D&C TF, D&C
4 14

X, Break Size (in.) F (LOCA ≥ X) X, Break Size (in.) F (LOCA ≥ X)
0.5 (cat1) 7.9803E-08 0.5 (cat1) 4.5883E-08

0.75 (cat1) 4.7896E-08 0.75 (cat1) 2.7565E-08
1 (cat1) 3.3975E-08 1 (cat1) 1.9569E-08

1.5 (cat1) 2.1502E-08 1.5 (cat1) 1.24E-08
2 (cat2) 1.1235E-08 2 (cat2) 6.6408E-09
3 (cat3) 4.5068E-09 3 (cat3) 2.7541E-09

3.8 (cat3) 2.3397E-09 3.8 (cat3) 1.3018E-09

Table 7: Frequency tables for large welds from bottom-up approach

LARGE

weld6

SG Inlet

29

41.01219331

B-F

SC, D&C

4

X, Break Size (in.) F (LOCA ≥ X)

0.5 (cat1) 1.9783E-06

1.5 (cat1) 4.5932E-07

2 (cat2) 3.4469E-07

3 (cat3) 2.3061E-07

4 (cat3) 1.5971E-07

6 (cat3) 9.5224E-08

6.75 (cat3) 8.1186E-08

14 (cat5) 3.3453E-08

20 (cat5) 1.8122E-08

29 (cat5) 9.5661E-09

31.5 (cat6) 8.3016E-09

35 (cat6) 5.2422E-09
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Table 8: Category 1 weld weights in total failure frequency using bottom-up
approach

Cat1 weld1 weld2 weld3 weld4 weld5 weld6 Total

Frequency 1.20E-07 9.75E-09 3.68E-08 6.86E-08 3.92E-08 1.63E-06 1.91E-06

Weight 6.30% 0.51% 1.93% 3.59% 2.06% 85.61% 100.00%

Table 9: Category 2 weld weights in total failure frequency using bottom-up
approach

Cat2 weld1 weld2 weld3 weld4 weld5 weld6 Total

Frequency 2.30E-09 1.65E-09 6.03E-09 6.73E-09 3.89E-09 1.14E-07 1.35E-07

Weight 1.70% 1.22% 4.48% 5.00% 2.89% 84.71% 100.00%

Table 10: Category 3 weld weights in total failure frequency using bottom-up
approach

Cat3 weld4 weld5 weld6 Total

Frequency 4.51E-09 2.75E-09 1.97E-07 2.04E-07

Weight 2.20% 1.35% 96.45% 100.00%

Table 11: Distributed LOCA probabilities among all welds

weld1 weld2 weld3 weld4 weld5 weld6 Total Target
Cat1 6.07E-02 4.93E-03 1.86E-02 3.46E-02 1.98E-02 8.25E-01 9.64E-01 9.64E-01
Cat2 5.97E-04 4.29E-04 1.57E-03 1.75E-03 1.01E-03 2.97E-02 3.50E-02 3.50E-02
Cat3 X X X 1.75E-05 1.07E-05 7.64E-04 7.92E-04 7.92E-04
Cat4 X X X X X 7.64E-05 7.64E-05 7.64E-05
Cat5 X X X X X 2.77E-06 2.77E-06 2.77E-06
Cat6 X X X X X 3.08E-07 3.08E-07 3.08E-07
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Table 12: Sampled break sizes (inches) for all welds within each break cate-
gory

Weld 1 2 3 4 5 6
Cat1 1.1 0.6 0.87 1.34 0.79 1.23
Cat2 1.69 1.9 2.1 2.9 1.75 2.36
Cat3 X X X 3.76 3.54 5.97
Cat4 X X X X X 9.67
Cat5 X X X X X 25.68
Cat6 X X X X X 32.67
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