# generation MPOVET

## B&W mPower<sup>™</sup> Reactor Seismic Update and Hydrology Discussions

17 May, 2012

© 2012 Babcock & Wilcox Nuclear Energy, Inc. and Bechtel Power Corporation. All Rights Reserved. This document is the property of Babcock & Wilcox Nuclear Energy, Inc. (B&W) and Bechtel Power Corporation and is "CONFIDENTIAL AND PROPRIETARY" to B&W and Bechtel Power Corporation. Recipient and/or its representatives have, by receiving same, agreed to maintain its confidentiality and shall not reproduce, copy, disclose or disseminate the contents, in whole or in part, to any person or entity other than the Recipient and/or Recipient's representatives without the prior written consent of B&W and Bechtel Power Corporation.



#### **Seismic Update and Hydrology Discussions**

- Plant Layout
- Recap of May 2011 Seismic Meeting

-Break

- EPRI CEUS Seismic Source Report
- SSI Analysis Using SASSI

-----Lunch

- SSI Modeling Studies
- Nuclear Island SSI Model
- Structural Analysis and Design Plan
- Considerations for Groundwater and

**Probable Maximum Flood** 

Recap



### **Plant Layout**

Martin Reifschneider



### **Site Overview Looking South**





#### **Plot Plan**



### **Model Cut Looking West**



### **RCB Looking West**



### **RCB Looking North**

]



### RCB Plan El. [

[CCI per Affidavit 4(a)-(d)]



### RCB Plan El. [

[CCI per Affidavit 4(a)-(d)]

1



### RCB Plan El. [ ] [CCI per Affidavit 4(a)-(d)]



### RCB Plan El. [



### RCB Plan El. [ ] [CCI per Affidavit 4(a)-(d)]



### **Nuclear Island (RSB) Looking West**

]



### **Nuclear Island (RSB) Looking North**

J



### Nuclear Island (RSB) Plan El. [ CCI per Affidavit 4(a)-(d)]



### Nuclear Island (RSB) Plan El. [ CCI per Affidavit 4(a)-(d)]



### Nuclear Island (RSB) Plan El. [ [CCI per Affidavit 4(a)-(d)]



### Nuclear Island (RSB-Annex) Plan El. [



### Nuclear Island (RSB) Plan El. [ [CCI per Affidavit 4(a)-(d)]



### Nuclear Island (RSB-Annex) Plan El. [ [CCI per Affidavit 4(a)-(d)]



### Nuclear Island (RSB) Plan El. [ ] [CCI per Affidavit 4(a)-(d)]



### Nuclear Island (RSB) Plan El. [ ] [CCI per Affidavit 4(a)-(d)]



### Nuclear Island (RSB-Annex) Plan El. [

[CCI per Affidavit 4(a)-(d)]



### Nuclear Island (Radwaste) Plan El. [ ] [CCI per Affidavit 4(a)-(d)]



### **Recap of May 2011 Seismic Meeting**

Mike McHood



#### Recap of May 2011 Seismic Meeting

- Soil Profiles for Generation mPower (GmP) standard plant
- Development of Certified Seismic Design Response Spectra (CSDRS) for GmP
  - FIRS from other DCDs and COL Applications
  - Ground Response
- USGS PSHA
- Eastern Tennessee
- V/H



### **Soil Profile Selection Strategy**

j



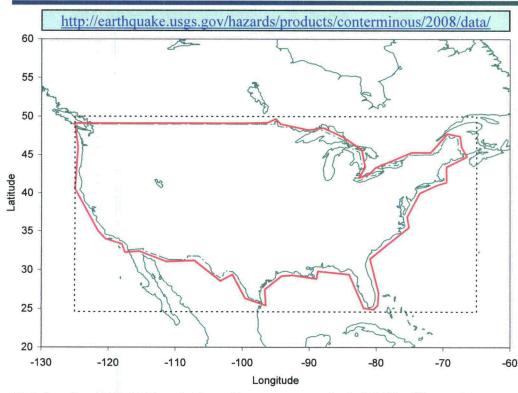
#### **CSDRS Evaluation**

1,1 1,1



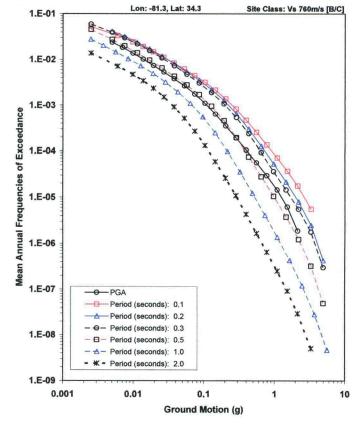
#### **CSDRS Selection**




### **WUS CSDRS Input**



### **CEUS CSDRS Input**




#### **USGS 2008 Seismic Hazard Data**



- Originally, 611,309 grid locations spaced at 0.05°, filtered to 362,509 land-only values
- Originally, NEHRP Site Class B/C seismic hazard curves
- Use amplification factors from Petersen et al. (2008) to convert to hard rock ["Site Class A"] hazard curves
- PGA and 6 response spectral periods: 0.1, 0.2, 0.3, 0.5, 1.0, and 2.0 seconds

#### USGS 2008 Seismic Hazard Curves



#### **USGS 2008 Seismic Hazard Data**

#### Regulatory Guide 1.208: Definition of the GMRS/FIRS

The site-specific PSHA seismic hazard curve slope factor  $A_R(f)$  is determined from:

$$A_{R}(f) = Sa(f | 10^{-5}) / Sa(f | 10^{-4})$$
 Eq. 1

where f is frequency and Sa(f | 10<sup>-4</sup>) and Sa(f | 10<sup>-5</sup>) are response spectral acceleration values for the hazard levels of 10<sup>-4</sup> and 10<sup>-5</sup>, respectively.

The "Design Factor" DF(f), based on  $A_R$ , is given by:

DF(f) = 
$$maximum \{ 1.0, 0.6 \times A_R(f)^{0.80} \}$$
 Eq. 2

Finally, design response spectrum DRS(f) is given by:

DRS(f) = Sa(f | 10<sup>-4</sup>) × DF(f) for 
$$A_R(f) \le 4.2$$
 Eq. 3  
= 0.45 × Sa(f | 10<sup>-5</sup>) for  $A_R(f) > 4.2$ 

where the design response spectrum [DRS(f)] is, depending on subsurface horizon and design intent, the GMRS or Foundation Input Response Spectra (FIRS).



### USGS 2008 Seismic Hazard Data (Reflects Bechtel Calculations)



#### **CSDRS** vs Eastern Tennessee



# **Design Spectra for Eastern Tennessee**



J







### Recommended V/H



# **CEUS Recommended V/H**



# **WUS Recommended V/H**





 V/H ratios from NRC guidance are typically applied to surface or near surface spectra



# **CEUS Seismic Input Motion**

 For each design spectrum GmP has fit a 3-component set of time histories as allowed by current NRC guidance
 [



# **EPRI CEUS Seismic Source Report**

Joe Litehiser



### **PSHA Studies Other than USGS (2008)**

### Composite EPRI-USGS Hybrid (60 CEUS NPP sites)

- USGS (2008) source model
  - (Geographic distribution of recurrence, Mmax distribution.)
- EPRI (2004, 2006) ground motion prediction equations
  - (SA (M, D), aleatory and epistemic uncertainty, CAV.)
- EPRI (2005, 2008) site-specific amplification factors
  - (Based on subsurface profiles for NRC licensing documents.)
  - (Used to develop five general site conditions.)

# EPRI CEUS-SSC Follow-up (60 CEUS NPP sites)

- Site-specific amplification factors at several elevations
  - (For UHS and FIRS)
- Additional PSHA using interim NGA-East GMPEs?



# **EPRI Study Demonstration Sites**

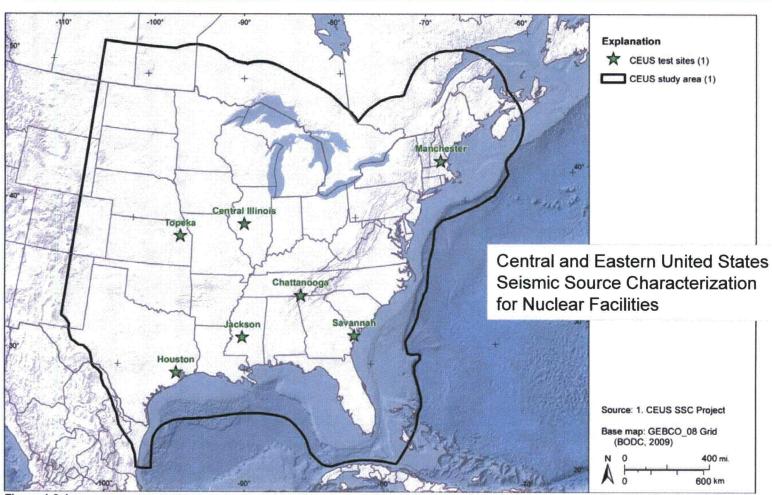
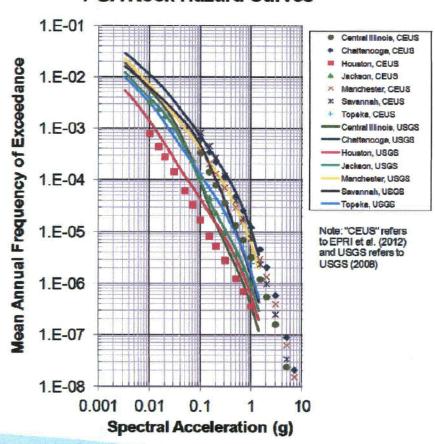
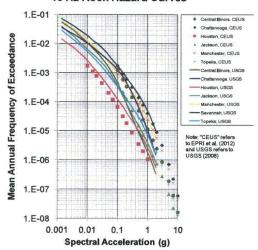


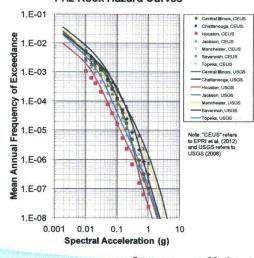

Figure 1.3-1
Map showing the study area and test sites for the CEUS SSC Project




# **USGS Seismic Hazard** (Reflects Bechtel Calculation)

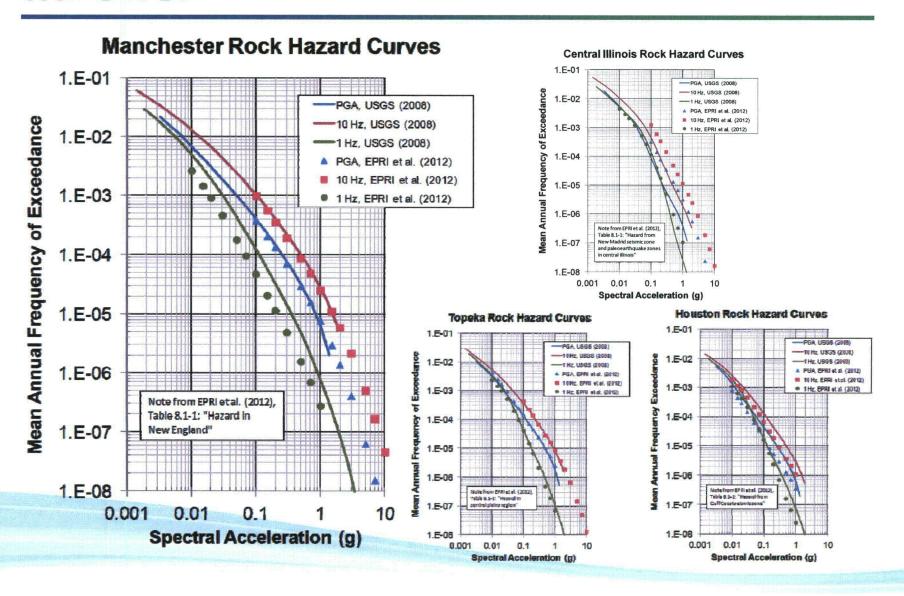



#### **EPRI Rock Hazard Curves**


#### **PGA Rock Hazard Curves**



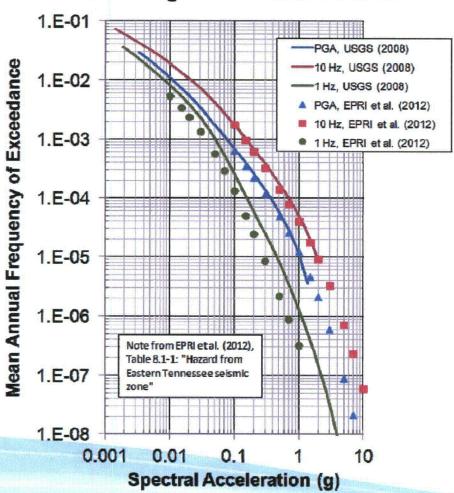
#### 10 Hz Rock Hazard Curves



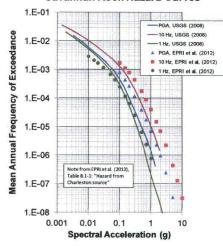

#### 1 Hz Rock Hazard Curves



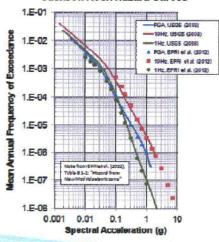



#### **EPRI Rock Hazard Curves**



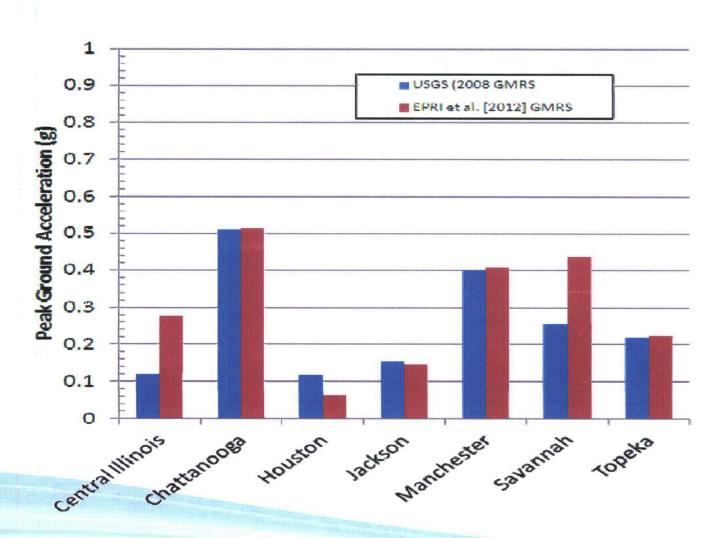



#### **EPRI Rock Hazard Curves**


#### **Chattanooga Rock Hazard Curves**

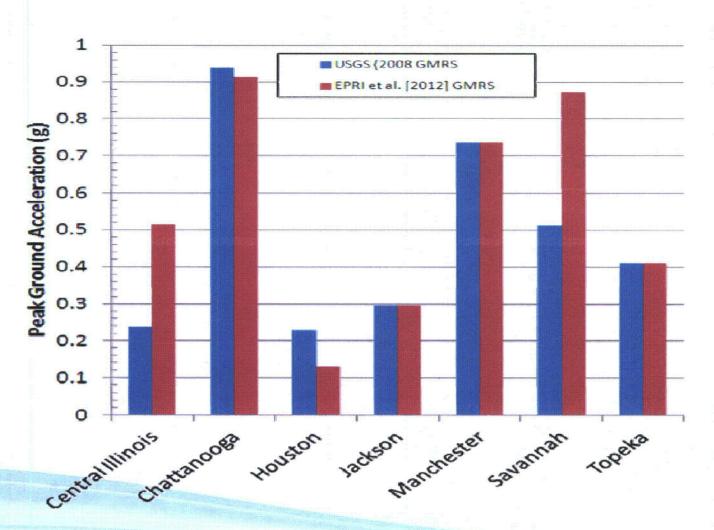


#### Savannah Rock Hazard Curves



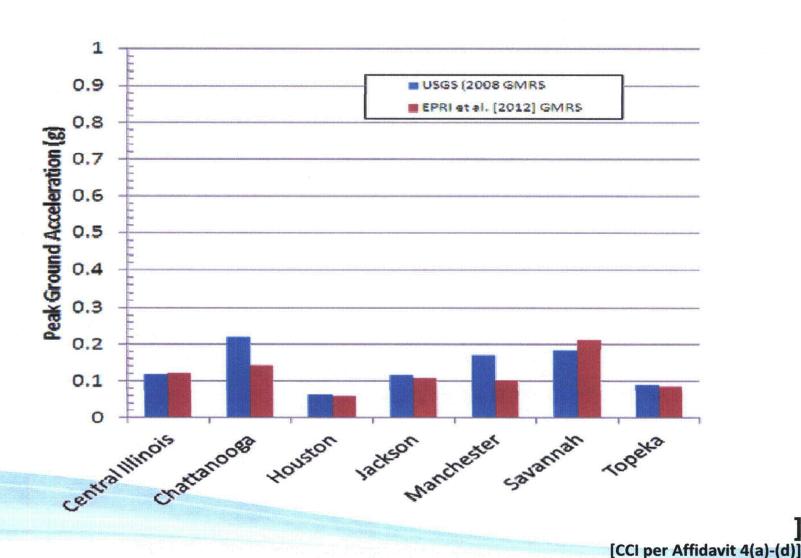

#### Jackson Rock Hazard Curves






# **USGS-EPRI PGA Comparison**






# **USGS-EPRI 10 Hz Comparison**





# **USGS-EPRI 1Hz Comparison**





### **Rock GMRS**



#### **Manchester GMRS**



### **Central Illinois GMRS**



# Topeka GMRS



### **Houston GMRS**



### **Jackson GMRS**



#### Savannah GMRS



# **Chattanooga GMRS**



# **SSI Analysis Using SASSI**

Farhang Ostadan

# **SSI Analysis**

l



# **SSI Analysis Approach**



# **SSI** Analysis



# **SSI Analysis**

1



















#### **SASSI Subtraction Method**



#### **SASSI Subtraction Method**



#### **SASSI Subtraction Method**



# **SSI Modeling Studies**

Lisa Anderson



#### **SSI Studies**



#### 2-D Planar Model



## **Backfill Retaining Wall Study**

. (-1)]



## **Backfill Retaining Wall Study**

]



# **Eastern Tennessee Input Study**



## **Eastern Tennessee Input Study**



# **Berm Configuration Study**



## **Berm Configuration Study**



# **Separation Distance Study**



# **Separation Distance Study**



#### **SSI Studies**



#### **Nuclear Island SSI Model**

Mike McHood



#### **Nuclear Island SSI Model**



### **Nuclear Island SSI Model**



# **SSI Modeling Overview**



## Structural Analysis and Design Plan

**Jack Demitz** 









]





# **Structural Design Plan**

]



## **Structural Design Plan**



# Considerations for Groundwater and Probable Maximum Flood

**Jack Demitz** 



#### **Considerations for Groundwater & PMF**



#### **Considerations for Groundwater & PMF**



## Recap

# Recap

# Recap