Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 25-Feb-2009

Hammer ID: CME08; Driller: L.CARTER CME550 (MACTEC)

EXELON VICT OP: JNH	ORIA - Boring	B3290 (48.5	-50' sample)		Hammer ID: CME08; Driller: L.CARTER CME550 (MACTEC) Test date: 21-Feb-2009				
AR: 2.27 I	n^2 It							SP: 0 EM: 3	0.492 k/ft3 0.000 ksi
WS: 16,807.91	l/s							JC:	0.70
CSX: Max Me TSX: Tension VMX: Maximu FMX: Maximu FVP: Force/V	asured Comp Stress Maxim m Velocity m Force elocity proport	r. Stress num					BPM: EF2: ETR: EMX:	Blows per Min Energy of F ² Energy Transf Max Transferr	ute er Ratio ed Energy
BL#	CSX	TSX	VMX	FMX	EVP	BPM	EF2	ETR	EMX
U.L.	ksi	ksi	f/s	kins	n	**	k-ft	(%)	k-ft
2	15.6	13.9	14.2	35	0.6	1.9	0.232	81.9	0.287
3	14.8	12.8	137	34	0.6	54.2	0 220	78.5	0 275
4	15 3	12.0	14.2	35	0.6	54.9	0.217	70.1	0.277
5	15.0	12.3	13.8	3.4	0.6	55.8	0.210	77.7	0.272
6	15.6	11.0	13.0	35	0.0	55.6 EE 4	0.213	76.3	0.272
0	10.0	11.0	13.8	30	0.0	55.4	0.222	70.3	0.207
1	14.0	12.5	13.7	34	0.6	00.4	0.214	70.2	0.267
8	15.6	13.0	13.8	35	0.6	55.2	0.227	77.5	0.2/1
9	15.7	12.4	13.4	36	0.6	55.6	0.226	76.3	0.267
10	15.3	12.1	13.7	35	0.6	55.9	0.221	76.4	0.267
11	15.4	12.0	13.7	35	0.6	55.8	0.214	76.2	0.267
12	15.6	11.5	13.6	35	0.6	55.2	0.217	76.6	0.268
13	14.8	11.3	12.9	34	0.6	56.1	0.221	77.1	0.270
14	14.7	11.3	12.7	33	0.6	55.8	0.211	74.0	0.259
15	15.7	11.2	13.7	36	0.6	55.2	0.221	78.7	0.275
16	15.5	11.2	13.6	35	0.6	55.9	0.215	76.0	0.266
17	15.7	11.7	13.4	36	0.6	55.8	0.219	75.6	0.264
18	14.9	11.1	13.1	34	0.6	55.4	0.221	76.3	0.267
19	15.7	11.3	13.9	36	0.6	55.8	0.225	77.3	0.271
20	14.7	10.4	13.0	33	0.6	56.0	0.212	73.8	0.258
21	16.1	10.2	13.1	37	0.6	56.1	0.212	73.2	0.256
22	16.3	10.6	13.0	37	0.6	55.2	0.216	73.8	0.258
23	16.4	10.6	13.0	37	0.6	55.8	0.217	72.8	0.255
24	16.7	11.4	13.3	38	0.6	55.7	0.222	78.2	0.274
24	16.4	11.9	12.7	30	0.6	56.0	0.222	75.2	0.264
20	15.9	10.7	12.7	37	0.0	50.0	0.220	75.3	0.204
20	15.2	10.7	12.9	30	0.0	0.00	0.223	75.2	0.203
21	16.9	11.9	13.3	38	0.6	55.7	0.227	78.4	0.274
28	16.2	10.6	13.0	37	0.6	54.9	0.221	75.1	0.263
29	16.8	11.7	13.3	38	0.6	55.8	0.233	80.6	0.282
30	16.1	11.8	12.9	37	0.6	55.5	0.222	75.4	0.264
31	15.7	10.8	12.9	36	0.6	55.6	0.219	75.5	0.264
32	15.4	11.3	12.8	35	0.6	56.1	0.227	76.9	0.269
33	15.4	11.1	12.6	35	0.6	56.0	0.222	74.7	0.262
34	15.1	12.1	12.7	34	0.7	56.0	0.224	76.8	0.269
35	15.3	12.6	12.2	35	0.7	55.5	0.228	78.2	0.274
36	15.4	11.8	12.2	35	0.7	56.0	0.222	74.4	0.261
37	16.4	11.8	12.9	37	0.6	56.2	0.233	78.3	0.274
38	16.5	11.2	12.6	37	0.6	55.8	0.227	76.9	0.269
39	16.3	12.5	13.0	37	0.6	55.9	0.231	78.1	0.273
40	15.0	9.9	12.4	34	0.7	55.5	0.219	74.9	0.262
41	14.9	10.4	12.4	34	0.7	56.3	0.224	777	0 272
42	15.1	10.8	12.6	34	0.7	55 5	0.218	74.1	0.250
43	16.0	12.1	127	36	0.7	56.3	0.232	79.5	0.279
44	16.2	11.8	12.5	37	0.7	55.9	0.235	78.0	0.273
45	16.2	10.9	12.0	37	0.7	55.0	0.235	70.0	0.273
40	15.2	10.0	12.7	35	0.7	50.0	0.231	75.0	0.279
40	10.0	10.0	12.0	35	0.7	50.2	0.213	70.0	0.203
Average	15.6	11.5	13.1	35	0.6	54.5	0.222	76.6	0.268

Time Summary

Drive 5 minutes 4 seconds Total number of blows analyzed: 45

3:12:28 PM - 3:17:32 PM (2/21/2009) BN 1 - 46

Page 598 of 751

MACTEC Engineering and Consulting, Inc. Case Method Results						Page 1 of 1 PDIPLOT Ver. 2008.1 - Printed: 23-Mar-2009				
EXEL OP: J	ON VICT	ORIA - Boring	B3290 (53.5'	-55' sample)		Hammer ID: CME08; Driller: L.CARTER CME550 (MACTEC) Test date: 21-Feb-2009				
AR: LE: WS: 1	2.27 i 59.00 f	n^2 t							SP: 0 EM: 3	0.492 k/ft3 0,000 ksi
CSX: TSX: VMX: FMX:	Max Me Tension Maximu Maximu	asured Comp Stress Maxim m Velocity m Force	r. Stress num					BPM: EF2: ETR: EMX:	Blows per Min Energy of F ² Energy Transf Max Transferr	ute ler Ratio red Energy
FVP:	Force/V	elocity proport	tionality							
	BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	2	KSI 15.7	KSI 12.2	12.0	kips		1.0	K-II	(%)	K-II
	2	15.7	12.2	13.9	30	0.6	56.8	0.222	70.9	0.275
	4	15.4	12.9	14.1	35	0.6	56.5	0.224	80.4	0.275
	5	15.1	12.2	14.0	34	0.6	57.5	0.215	78.5	0.275
	6	15.2	12.4	13.9	35	0.6	57.5	0.220	79.5	0.278
	7	15.3	11.7	14.0	35	0.6	57.9	0.224	80.7	0.282
	8	15.1	12.0	14.0	34	0.6	57.8	0.222	80.4	0.281
	9	15.5	12.1	14.3	35	0.6	57.3	0.229	82.4	0.288
	10	15.6	11.6	14.3	35	0.6	58.0	0.226	81.4	0.285
	11	15.4	12.3	13.7	35	0.6	57.4	0.229	81.2	0.284
	12	15.8	11.0	13.9	36	0.6	57.9	0.229	80.3	0.281
	13	15.5	10.6	13.1	35	0.7	57.1	0.221	78.4	0.275
	14	15.8	10.8	12.9	36	0.7	57.0	0.229	80.0	0.280
	15	15.6	10.4	13.2	35	0.6	58.2	0.226	78.3	0.274
	10	15.9	10.3	13.1	30	0.6	50.8	0.231	78.9	0.276
	18	15.8	9.0	13.2	35	0.6	57.6	0.225	77.0	0.272
	10	15.4	10.1	13.3	35	0.0	57.7	0.225	79.2	0.277
	20	16.1	10.2	13.4	37	0.6	57.2	0.231	79.7	0.279
	21	16.3	10.1	13.0	37	0.6	57.5	0.228	77.6	0.272
	22	15.6	10.2	12.7	35	0.7	57.1	0.223	76.8	0.269
	23	15.4	10.0	12.8	35	0.6	58.3	0.224	77.4	0.271
	24	15.1	9.9	12.9	34	0.7	56.9	0.218	77.0	0.269
	25	16.7	10.7	13.7	38	0.6	57.3	0.222	78.1	0.273
	27	15.9	11.2	13.1	36	0.6	57.8	0.212	76.8	0.269
	28	16.2	11.1	13.0	37	0.6	58.1	0.197	72.3	0.253
	29	16.5	11.0	13.0	37	0.6	57.2	0.190	69.0	0.241
	30	15.6	11.5	13.1	35	0.6	57.5	0.190	71.0	0.249
	31	15.7	10.9	13.1	30	0.6	57.0	0.175	08.4	0.239
	32	15.0	11.0	13.9	30	0.5	57.7	0.175	62.0	0.237
	34	14.2	11.1	13.2	32	0.5	57.5	0.165	65.5	0.229
	35	16.6	11.2	13.7	38	0.6	57.1	0.180	69.4	0.243
	36	14.9	10.3	13.5	34	0.5	57.6	0.163	65.9	0.230
	37	15.8	11.3	14.1	36	0.5	57.7	0.183	71.8	0.251
	38	14.9	11.4	13.4	34	0.6	57.2	0.179	71.1	0.249
	39	14.2	11.5	12.7	32	0.6	57.0	0.152	64.3	0.225
	40	14.8	9.3	13.5	34	0.5	57.3	0.152	63.6	0.223
	41	14.0	11.1	12.9	32	0.6	57.4	0.186	71.8	0.251
	42	13.8	10.7	12.7	31	0.6	57.2	0.156	69.3	0.243
	44	16.3	10.9	13.5	37	0.6	56.8	0.236	82.0	0.287
	45	16.0	9.4	13.7	36	0.6	56.9	0.209	75.3	0.264
	40	16.1	9.4	13.9	37	0.6	58.2	0.220	//.8	0.2/2
	49	14.0	10.5	12.2	34	0.6	59.2	0.203	80.2	0.310
	40	14.0	10.0	13.3	32	0.0	57.1	0 168	67.0	0.221
	50	14.0	10.7	12.7	32	0.6	58.0	0.173	68.1	0.238
	51	15.9	9.4	13.5	36	0.6	57.3	0.215	77.1	0.270
	52	14.7	9.0	12.5	33	0.7	57.1	0.217	76.9	0.269
	53	15.0	10.7	13.5	34	0.6	57.4	0.196	73.7	0.258
Avera	ige	15.4	10.9	13.4	35	0.6	56.3	0.204	75.2	0.263
Time	Cueros				i otal ni	imper of blows	anaryzed: 50	,		
ime	Summary	/								

Drive

Stop

13 minutes 53 seconds

Total time [0:13:53] = (Driving [0:00:53] + Stop [0:13:00])

^{3:22:27} PM - 3:22:27 PM (2/21/2009) BN 1 - 1 3:22:27 PM - 3:35:27 PM 3:35:27 PM - 3:36:20 PM BN 2 - 53

MACTEC

Engineering and constructing a better tomorrow

May 4, 2009

Memorandum to File

From: Jon Honeycutt, Staff Professional

Reviewed By: Steve Kiser, Principal Professional

Subject: Report of SPT Energy – MACTEC CME 45C Track Hammer Serial No. MEC-12 Automatic Hammer WORK INSTRUCTION No. 311 (DCN: EXE-917) Exelon Texas COL Project – Supplemental Investigation, Including UHS Victoria, Texas MACTEC Project No. 6468-07-1777

Jonathan Honeycutt, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the above referenced drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on January 22, 2009, during drilling of Boring B3202 at the referenced site. The testing was performed by Jonathan Honeycutt from approximately 9:11 AM to 10:20 AM (ET) on January 22 under sunny skies with a temperature of about 70 degrees Fahrenheit. The boring was drilled with personnel and equipment from the MACTEC Raleigh office. The drilling equipment consisted of a CME 45C model track-mounted drill rig with an SPT automatic hammer. The drilling tools consisted of AW-J-sized drilling rods and a 2-foot long split tube sampler. Mud rotary drilling techniques were used to advance the boring. The drill rig operator during sampling was Mr. Donnie Rhodes. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K0686 and K983) and strain gages (Serial Nos. AW#75/1 and AW#75/2). A steel drill rod, 2-feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod insert had a cross-sectional area of approximately 1.22 square inches and an outside diameter of approximately 1.75 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 1.75 and 1.375 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

16 Pages Total

MACTEC Engineering and Consulting, Inc. 2801 Yorkmont Road, Suite 100
Charlotte, NC 28208
Phone: 704.357.8600

May 4, 2009

Calibration Records

The calibration records for all the above are filed in DCN EXE-918.

Calculations for EFV

The work was done in general accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA, and the data was interpreted by the PDA according to the Case Method equation. The maximum energy transmitted to the drill rod string (as measured at the location of the strain gages and accelerometers) was calculated by the PDA using the EFV method equation, as shown below:

 $EFV = \int F(t) * V(t) * dt$

Where: EFV = Transferred energy (EFV equation), or Energy of FV F(t) = Calculated force at time t V(t) = Calculated velocity at time t

The EFV method of energy calculation is recommended in ASTM Standard D4633-05. The EFV equation, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

SPT Energy Measurements – Exelon Texas COL Project Supplemental Investigation, Including UHS MACTEC Project No. 6468-07-1777 May 4, 2009

Page 3

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

- The data obtained by the PDA are consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not used in the data reduction. This may result in more or less blows evaluated for ETR than what is shown on the boring logs.
- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 292 foot-pounds to 312 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 83% to 89% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) was 294.7 foot-pounds, with an average ETR of 84.2%.

Attachments:	Page 4 Table 1 - Summary of SPT Energy Measurements - 1 Page
	Page 5 Work Instruction - DCN EXE-917 - 1 Page
	Page 6 Record of SPT Energy Measurement - 1 Page
	Pages 7 – 16 PDIPLOT Output – 10 Pages

TABLE 1								
SUMMARY	OF SPT	ENERGY	MEASUREMENTS	(ASTM	D4633-05)			

Exelon Texas COL Project - Supplemental Investigation, Including UHS

Victoria, Texas

MACTEC Project No. 6468-07-1777

Automatic Hammer Serial Number and Rig Model	Rig Owner	Rig Operator	Boring No. Tested	Date Tested	Drill Rod Size	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
						18.5 - 20	2 - 4 - 4	10	312	89.1%
MEC-12						23.5 - 25	4 - 6 - 7	18	292	83.4%
CME 45C	MACTEC	Donnie	B3202	1/22/2009	AW-J	28.5 - 30	14 - 21 - 25	60	293	83.7%
Track)	Raleigh	Rhodes				33.5 - 35	7 - 12 - 11	30	295	84.3%
TIGOR)						38.5 - 40	3 - 5 - 8	16	293	83.7%
							Ave	rage for Rig:	294.7	84.2%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy. This may result in more or less blows evaluated for ETR than what is shown on the boring logs.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

Date: 5-4-09 Date: 5/4/09 Checked By: Prepared By:

	Work Instruction N Exelon COL Victoria MACTEC Engineering and C MACTEC Project 6468	o. 311 a Site onsulting, Inc.	
Issued To: Steve Kiser	and longthan Th	01-1111	
Issued By: Daniel	E AHL:	Rev. No0	
Valid From: 1/12/04	E 110110202	Date: 1/12/09 "	
and the second sec	and the second second second second	To: 12 31 09	

Task Description: Perform SPT Energy Measurements

- Applicable Technical Procedures or Plans, or other reference:
 - 1. Geotechnical Work Plan (current revision; available at Site Office), and 2. ASTM D 4633-05 (copy attached.).

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in accordance with ASTM D-4633-05. Consult with Site Manager as to schedule for performing the measurements. Hammer weights have been checked by site personnel, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Manager. See Site Manager for current boring logs of holes drilled and use these to plan most effective field measurement program. Submit copies of calibration records for equipment to Project Principal for

Special Instructions-(note attachments where necessary): Confirm with Site Manager that approval of equipment calibration records have been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Manager or Project Principal

Report Format: Prepare standard report in accordance with ASTM D 4633 requirements.

Specific Quality Assurance Procedures Applicable: QAP 20-1; QAP 25-1; QAP for Reporting Nuclear-Related Defects, or Noncompliances, per Federal Regulation 10CFR21 and Section 306 of the

Hold Points or Witness Points: None

Records:	All records	Seperated shall	i in the second s	
Reviewed	and Appro	ved by: Note	De considered	QA Records.

Project Manager:	e is required for issuance)
Project Principal Engineer:	Date:
Site Manager/Coordinator:	Date:
Pages: 1 plus attachment	Date: 1112/09
Attachments: ASTM D 4633-05	DCN: EXE917

MACTEC

2801 YORKMONT ROAD, SUITE 100 CHARLOTTE, NC 28208 Telephone: (704) 357-8600 / Facsimile: (704) 357-8638

RECORD OF SPT ENERGY MEASUREMENT

	GENERAL INFORM	MATION				D	RILL RIG	DATA		
PROJECT:	Exelon			MAKE:						
LOCATION:	Victoria, Texas			MODEL			CME		1	
PROJECT NO .:	6468-07-1777			SEDIAL NO	×.		95 0	t ga	ic k	
DATE:	1/22 / 2009			HAMMED T	Ni		ME	12		
WEATHER:	SUNNI 7	00 F		DODE CON	TPE:		in	10		
INSPECTOR:	SAH			ROPE CON	DITION:	N/A	4			
DRILLING COMPANY:	MACTEC			NO OF PU	EAUER.	81/6	AW	2.		
				NO. OF SH	EAVES;	IN/A				
POPING NUMPER-	122202	and the second se	BORING	DATA						
DEPTH OPH LED	133202									
TIME DRIVEN	VAR. OUS		-							
PIC OPERATOR	7:50AM -	9304M								
HAMMED ODERATOR:	D. TEHO	DE?								
PRAMMER OPERATOR:		N/A								
PDA PAK SERIAL NO .:	3	622L	-	_	_					
INSTR. ROD AREA:	1.22 :4 2									
STRAIN SERIAL NOS.:	43 K0686	49- 4983	-							
STROUM SERIAL NOS.:	TS HW	1/2								
	SAMPLE	SPT	1							
	DEPTH	N-VALUE					1			
	(feet)	(bpf)								
×	13.5-15	4-6-8								
	18.5 - 20	2-4-4								
	10	3 / /				-		-		
	23.5 - 25	4.6-7								
								-		
	28.5- 30	14-21-25-			-					
		11 - x1 = x1								
	33.5 - 35	7-12-11								
	38.5 - 40	3-5-8								
					_					
							-			
[
								-		
	() ()									
REMARKS:	SAMPLE (13.5	-15 TUKEN	w/ Ro	D 149	1 Au	1/2 -	- JAM	E HUCE	leromer	27
×	CouFisuentan	. (18.5-	40-1	USED	75 M	~ 1/2	#3.	KANS6	44 60	13
	Dele	and the second		1111		12	1, 3 %	10000)	mar n/1	-
SPT Energ	y Testing Form, Rev.	0 1/13/09		144 1	w1/2	ROD	- nos	MAFA	Tor 1	44AW
Volume	1, Revision 0		Page 60	5 of 751				DCN#	EXE1430	5
ENUS - TEStin	· Fram , Ro	11. 11.1.0								1-21-N

57

PDIPLOT Ver. 2008.2 - Printed: 2-Mar-2009

MACTEC Engineering and Consulting, Inc. - Case Method Results

Test date: 22-Jan-2009

Page 606 of 751

MAC ¹ Case	TEC Engli Method F	neering and C Results	onsulting, Inc				PDIPL	OT Ver. 200	P 8.2 - Printed: 2-	age 1 of 1 Mar-2009
EXEL OP: J	ON VICT	ORIA - Boring	B3202 (18.5	-20' sample)		Hammer ID	MEC12; Dril	ler: D.RHOD	ES CME 45C (Test date: 22	MACTEC) -Jan-2009
AR: LE: WS: 1	1.22 i 24.00 f 16,800.0 f	n^2 It //s							SP: (EM: 2 JC:	0.492 k/ft3 9,972 ksi 0.70
CSX: Max Measured Compr. Stress TSX: Tension Stress Maximum VMX: Maximum Velocity FMX: Maximum Force FVP: Force/Velocity proportionality								BPM: EF2: ETR: EMX:	Blows per Min Energy of F ² Energy Transf Max Transferr	ute er Ratio ed Energy
	BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
		ksi	ksi	f/s	kips	0		k-ft	(%)	k-ft
	2	18.5	6.9	19.1	23	0.4	1.9	0.187	81.1	0.284
	3	18.5	7.2	18.5	23	0.4	59.9	0.191	89.6	0.314
	4	18.9	6.6	17.2	23	0.4	55.7	0.194	93.3	0.327
	5	18.2	6.7	18.0	22	0.4	57.0	0.192	85.5	0.299
	6	17.7	6.3	16.8	22	0.4	55.9	0.194	85.7	0.300
	7	18.9	7.2	17.1	23	0.5	57.1	0.193	87.4	0.306
	8	17.5	7.3	16.7	21	0.4	55.9	0.196	96.3	0.337
	9	18.2	6.5	18.0	22	0.4	56.6	0.193	96.4	0.337
	10	17.6	7.0	17.0	21	0.3	56.2	0.191	87.7	0.307
	11	18.0	5.7	16.8	22	0.5	56.5	0.194	87.3	0.306
Avera	age	18.2	6.7	17.5	22	0.4	51.3	0.192	89.0	0.312

Time Summary

Drive 1 minute 26 seconds

Total number of blows analyzed: 10

9:11:03 AM - 9:12:29 AM (1/22/2009) BN 1 - 11

Page 608 of 751

MAC	Method F	neering and C Results	onsulting, Inc.			Page 1 of PDIPLOT Ver. 2008.2 - Printed: 2-Mar-200				
EXEL OP: J	ON VICT	ORIA - Boring	B3202 (23.5	-25' sample)		Hammer ID: MEC12; Driller: D.RHODES CME 45C (MACTE Test date: 22-Jan-20				
AR: LE: WS: 1	1.22 i 24.00 f 16,803.4 f	n^2 t /s							SP: (EM: 29 JC:	0.492 k/ft3 9,869 ksi 0.70
CSX: Max Measured Compr. Stress TSX: Tension Stress Maximum VMX: Maximum Velocity FMX: Maximum Force FVP: Force/Velocity proportionality								BPM: EF2: ETR: EMX:	Blows per Mini Energy of F^2 Energy Transfer Max Transferre	ute er Ratio ed Energy
	BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
		ksi	ksi	f/s	kips	0	**	k-ft	(%)	k-ft
	2	17.2	6.2	14.6	21	0.6	1.9	0.204	80.9	0.283
	3	19.8	7.4	12.9	24	0.7	59.1	0.203	84.1	0.294
	4	18.9	6.8	13.2	23	0.7	56.5	0.203	82.1	0.287
	5	19.6	5.5	13.1	24	0.7	56.8	0.206	82.5	0.289
	6	18.5	6.1	13.9	23	0.6	56.5	0.199	86.5	0.303
	7	19.8	6.0	12.7	24	0.7	56.4	0.206	81.9	0.287
	8	18.3	7.1	13.0	22	0.7	56.6	0.204	81.5	0.285
	9	19.8	6.2	14.2	24	0.6	55.7	0.204	83.0	0.290
	10	17.3	5.8	12.5	21	0.6	56.6	0.203	82.7	0.289
	11	18.7	5.1	13.2	23	0.7	56.3	0.204	84.9	0.297
	12	19.6	5.3	13.5	24	0.6	56.8	0.201	83.9	0.294
	13	19.6	5.1	12.8	24	0.7	55.6	0.206	83.4	0.292
	14	19.0	5.2	13.2	23	0.7	56.7	0.205	86.7	0.303
	15	19.1	4.7	13.1	23	0.7	56.6	0.201	82.1	0.287
	16	19.7	4.6	13.0	24	0.7	55.9	0.206	84.4	0.296
	17	19.0	3.9	13.0	23	0.8	56.7	0.206	84.8	0.297
	18	18.9	3.5	12.9	23	0.7	56.3	0.198	85.2	0.298
	19	19.7	3.2	12.8	24	0.8	55.8	0.208	81.8	0.286
Avera	age	19.0	5.4	13.2	23	0.7	53.5	0.204	83.5	0.292
					Total nu	mber of blows	analyzed: 18	3		

Time Summary Drive 8 minutes 52 seconds

9:22:07 AM - 9:30:59 AM (1/22/2009) BN 1 - 19

Volume 1, Revision 0

Page 610 of 751

Page 1 of 1

Test date: 22-Jan-2009 SP: 0.492 k/ft3

PDIPLOT Ver. 2008.2 - Printed: 2-Mar-2009 Hammer ID: MEC12; Driller: D.RHODES CME 45C (MACTEC)

0000	mourou recours			
EXEL OP: J	ON VICTORIA -	Boring B3202	2 (28.5'-30'	sample
AR: LE: WS:	1.22 in^2 34.00 ft 16,807.9 f/s			
CSX:	Max Measured	Compr. Stres	S	

VMX: Maximum Velocity

EM: 30,000 ksi JC: 0.70 BPM: Blows per Minute EF2: Energy of F*2 ETR: Energy Transfer Ratio

FMX: Maximu	m Force	lanality					EMX: N	lax Transferre	ed Energy
PVP. POICE/V	elocity proport	uonaiity	1.00.014	FT 414	-	0.011		-	-
BL#	CSX	ISX	VMX	FMX	EVP	BPM	EFZ	ETR	EMX
	KSI	KSI	1/S	kips			K-ft	(%)	k-ft
2	17.5	7.4	14.1	21	0.7	1.9	0.226	88.9	0.311
3	18.5	5.2	13.5	23	0.8	57.1	0.227	89.5	0.313
4	17.9	4.4	13.4	22	0.7	56.4	0.228	85.9	0.301
5	18.6	5.4	13.3	23	0.7	56.9	0.224	85.7	0.300
6	18.0	5.5	13.1	22	0.8	56.2	0.220	89.3	0.312
7	18.9	6.9	13.0	23	0.7	56.4	0.226	89.3	0.312
8	18.9	6.9	12.9	23	0.7	56.3	0.224	88.2	0.309
9	18.3	7.7	13.1	22	0.8	56.4	0.222	89.3	0.313
10	17.6	7.6	13.0	22	0.8	56.4	0.222	89.3	0.312
11	18.7	7.8	13.0	23	0.7	55.8	0.225	86.2	0.302
12	17.9	5.8	12.8	22	0.8	56.6	0.226	83.4	0.292
13	18.5	67	12.9	23	0.8	56.1	0.221	77.1	0.270
14	18.9	5.2	12.7	23	0.8	56.2	0.224	83.5	0.202
15	18.7	67	13.0	23	0.7	56.0	0.222	79.3	0.232
16	17.7	4.7	10.0	20	0.7	56.0	0.222	05 A	0.200
10	10.0	19.1 E.A	12.7	22	0.0	56.0	0.224	00.4	0.299
17	10.0	0.4	12.9	23	0.8	0.00	0.220	61.5	0.285
18	19.2	3.3	12.6	23	0.7	56.6	0.225	86.3	0.302
19	19.1	4.2	12.7	23	8.0	55.6	0.226	81.3	0.284
20	18.6	3.5	12.7	23	8.0	56.3	0.226	81.5	0.285
21	19.1	3.4	12.6	23	0.7	56.4	0.223	83.7	0.293
22	18.8	3.6	12.8	23	0.8	56.3	0.224	80.8	0.283
23	19.1	3.2	12.1	23	0.7	56.7	0.222	80.6	0.282
24	18.3	3.2	12.8	22	0.8	55.9	0.223	83.8	0.293
25	18.0	3.5	12.6	22	0.8	56.0	0.228	83.4	0.292
26	19.0	3.4	12.6	23	0.7	55.8	0.224	82.5	0.289
27	17.7	2.8	12.6	22	0.8	56.7	0.226	80.0	0.280
28	18.4	24	12.4	22	0.8	56.4	0.224	83.9	0.294
29	19.1	25	12.5	23	0.7	56.9	0 224	82.2	0.288
30	18.5	17	12.3	23	0.8	58.5	0.225	81.8	0.286
31	18.6	2.3	12.3	23	0.8	54.0	0.225	82.0	0.200
33	10.0	2.3	12.1	20	0.0	56.3	0.225	70.7	0.230
32	10.1	2.7	12.0	22	0.0	50.5 E0.E	0.220	19.1	0.279
33	10.4	2.2	12.0	22	0.0	50.5	0.220	01.1	0.204
34	18.7	1.8	12.4	23	0.8	55.7	0.229	89.8	0.314
35	19.2	1.5	12.5	23	0.8	57.1	0.224	84.8	0.297
36	18.9	1.8	12.4	23	0.9	56.6	0.222	85.3	0.299
37	19.1	1.8	12.3	23	0.9	55.5	0.225	83.6	0.293
38	19.3	1.7	12.2	24	0.8	56.4	0.224	82.9	0.290
39	18.8	1.9	12.4	23	0.8	56.3	0.223	88.0	0.308
40	18.5	1.8	12.6	23	0.8	55.8	0.225	82.9	0.290
41	19.0	1.7	12.2	23	0.8	56.0	0.219	81.1	0.284
42	19.2	1.9	12.2	23	0.9	56.2	0.225	80.8	0.283
43	19.0	1.9	12.5	23	0.9	55.9	0.222	84.5	0.296
44	19.4	3.1	12.2	24	0.9	56.2	0.227	82.5	0.289
45	19.0	3.0	12.1	23	0.9	56.4	0.223	81.4	0.285
46	18.8	3.0	12.3	23	0.8	55.6	0.227	82.9	0.290
47	18.1	2.8	12.3	22	0.8	56.6	0 223	85.1	0.298
48	18.0	2.0	12.3	22	0.8	56.5	0.224	81.9	0.287
40	18.7	3.0	12.4	22	0.0	55.9	0.224	81.6	0.207
50	10.1	3.0	12.4	20	0.0	50.0	0.224	94.5	0.200
50	19.1	3.0	12.2	23	0.9	55.0	0.222	04.0	0.290
51	17.9	3.1	12.4	22	0.8	55.8	0.219	82.0	0.287
52	18.9	2.9	12.4	23	0.9	56.1	0.224	02.5	0.289
53	18.9	3.0	12.3	23	0.8	56.7	0.218	85.4	0.299
54	19.0	2.9	12.2	23	0.7	55.9	0.223	83.5	0.292
55	18.8	3.0	12.2	23	0.9	56.3	0.220	80.1	0.280
56	19.3	3.0	12.1	24	0.8	56.1	0.223	82.3	0.288
57	18.2	1.9	12.4	22	0.8	56.2	0.223	84.2	0.295
58	18.7	1.9	12.6	23	0.8	56.2	0.225	83.1	0.291
59	19.2	2.0	12.4	23	0.9	56.2	0.223	85.3	0.298
60	19.1	1.9	12.6	23	0.9	55.9	0.225	81.6	0.286
61	18.7	2.0	12.3	23	0.8	56.2	0.222	85.0	0.297

Average

Time Summary Drive

18.6

7 minutes 50 seconds

3.6

12.6

0.8 Total number of blows analyzed: 60

55.3

0.224

9:42:53 AM - 9:50:43 AM (1/22/2009) BN 1 - 61

23

0.293

83.7

Page 612 of 751

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 2-Mar-2009

Hammer ID: MEC12; Driller: D.RHODES CME 45C (MACTEC)

EXELON VICTORIA - Boring B3202 (33.5'-35' sample) OP: JNH

OP.J	NE								Test date. 22	-19U-5008
AR: LE:	1.22 i 39.00 f	n^2 It							SP: (EM: 30	0.492 k/ft3 0,000 ksi
CSX: TSX: VMX: FMX:	Max Me Tension Maximu Maximu	asured Comp Stress Maxim m Velocity m Force	r. Stress num					BPM: E EF2: E ETR: E EMX: N	Blows per Min Energy of F^2 Energy Transf Max Transferr	ute er Ratio ed Energy
FVP:	Force/V	elocity proport	tionality							
	BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	-	ksi	ksi	f/s	kips	0		k-ft	(%)	k-ft
	2	20.3	12.3	14.6	25	0.8	1.9	0.247	83.9	0.294
	3	19.7	12.1	15.3	24	0.7	58.2	0.240	88.2	0.309
	4	19.8	11.1	14.8	24	0.7	56.4	0.239	84.2	0.295
	5	19.3	11.1	15.2	24	0.7	56.3	0.238	86.7	0.303
	6	19.3	11.4	15.4	24	0.7	56.6	0.238	89.3	0.312
	7	19.4	9.4	14.8	24	0.7	56.6	0.239	83.6	0.293
	8	19.7	9.2	15.2	24	0.7	56.3	0.239	87.3	0.306
	9	19.5	8.5	15.0	24	0.7	56.4	0.236	83.1	0.291
	10	19.6	8.2	15.0	24	0.7	56.5	0.237	86.1	0.301
	11	19.0	6.8	15.4	23	0.7	56.2	0.235	83.9	0.294
	12	19.2	7.1	15.5	23	0.7	56.4	0.236	85.1	0.298
	13	19.8	6.2	14.6	24	0.8	56.5	0.237	80.9	0.283
	14	19.8	7.0	15.0	24	0.7	56.2	0.235	82.0	0.287
	15	19.2	7.0	15.3	23	0.7	56.0	0.239	84.8	0.297
	16	19.6	6.8	15.2	24	0.7	56.6	0.237	79.5	0.278
	17	19.8	6.2	14.8	24	0.8	56.1	0.237	87.0	0.305
	18	19.7	6.3	15.0	24	0.7	56.3	0.238	85.3	0.298
	19	19.8	6.4	14.7	24	0.7	56.3	0.240	82.4	0.289
	20	19.0	7.0	15.4	23	0.7	56.0	0.234	82.3	0.288
	21	19.5	6.6	15.0	24	0.7	56.4	0.233	82.7	0.289
	22	19.2	6.6	15.3	23	0.7	56.2	0.236	83.9	0.294
	23	18.9	6.7	15.3	23	0.7	56.2	0.233	81.6	0.285
	24	19.7	6.6	15.1	24	0.7	56.0	0.234	82.1	0.287
	25	19.9	6.3	14.5	24	0.8	56.2	0.238	89.4	0.313
	26	18.6	6.3	15.3	23	0.7	56.3	0.229	85.2	0.298
	27	19.4	6.6	15.1	24	0.7	56.2	0.235	83.6	0.292
	28	19.4	7.9	15.2	24	0.7	56.5	0.239	84.7	0.297
	29	19.0	6.9	15.2	23	0.7	56.4	0.240	88.5	0.310
	30	19.5	7.8	15.0	24	0.7	56.1	0.229	82.6	0.289
	31	19.9	8.2	14.5	24	0.8	56.2	0.237	82.8	0.290
Augen	01	10.5	7.0	15.1	24	0.7	EAE	0.227	04.4	0.205
Avera	90	19.5	1.9	10.1	Z4	U.r	04.0	0.237	04.4	0.295

Time Summary

Drive 7 minutes 55 seconds

Total number of blows analyzed: 30

10:01:31 AM - 10:09:26 AM (1/22/2009) BN 1 - 32

Volume 1, Revision 0

Page 614 of 751

MACTEC Eng Case Method	ACTEC Engineering and Consulting, Inc.					PDIPL	Page 1 of OT Ver. 2008.2 - Printed: 2-Mar-2009		
EXELON VICTORIA - Boring B3202 (38.5'-40' sample) OP: JNH			Hammer ID	ES CME 45C (Test date: 22	MACTEC) -Jan-2009				
AR: 1.22 LE: 44.00 WS: 16,807.9	in^2 ft f/s							SP: (EM: 30 JC:	0.492 k/ft3 0,000 ksi 0.70
CSX: Max Me TSX: Tensior VMX: Maximu FMX: Maximu FVP: Force/V	easured Compr n Stress Maxim um Velocity um Force /elocity proport	r. Stress num					BPM: EF2: ETR: EMX:	Blows per Min Energy of F ² Energy Transf Max Transferre	ute er Ratio ed Energy
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips	0	**	k-ft	(%)	k-ft
2	20.8	13.6	16.6	25	0.6	1.9	0.258	82.8	0.290
3	20.9	13.8	16.0	25	0.7	57.6	0.263	86.8	0.304
4	20.3	13.4	15.8	25	0.7	56.2	0.257	92.0	0.322
5	20.1	13.5	17.0	25	0.6	57.5	0.250	83.1	0.291
6	19.7	12.0	16.0	24	0.6	56.5	0.251	81.1	0.284
7	20.5	11.7	16.0	25	0.6	56.6	0.251	83.6	0.293
8	19.9	12.6	15.9	24	0.7	57.1	0.247	83.4	0.292
9	20.0	11.5	16.8	24	0.7	56.3	0.248	83.2	0.291
10	19.7	11.2	16.7	24	0.6	56.3	0.249	83.6	0.293
11	20.1	11.2	14.9	25	0.6	56.6	0.250	81.3	0.284
12	19.4	11.5	16.2	24	0.6	57.1	0.246	79.8	0.279
13	19.4	11.0	15.8	24	0.6	56.1	0.246	81.8	0.286
14	19.8	11.5	15.2	24	0.7	56.6	0.246	85.5	0.299
15	19.3	10.6	16.7	24	0.7	56.4	0.242	83.5	0.292
16	19.7	11.1	15.6	24	0.7	56.6	0.248	86.6	0.303
17	19.4	9.8	15.5	24	0.7	56.9	0.242	82.4	0.288
Average	19.9	11.9	16.0	24	0.7	53.3	0.250	83.8	0.293
				Total nu	mber of blows	analyzed: 16			

Time Summary

Drive 7 minutes 31 seconds

10:12:54 AM - 10:20:25 AM (1/22/2009) BN 1 - 17

Engineering and constructing a better tomorrow

May 4, 2009

Memorandum to File

From: Jon Honeycutt, Staff Professional

Reviewed By: Steve Kiser, Principal Professional

Subject: Report of SPT Energy – MACTEC Atlanta CME 55 D Truck Hammer Serial No. MEC-20 Automatic Hammer WORK INSTRUCTION No. 311 (DCN EXE917) Exelon Texas COL Project – Supplemental Investigation, Including UHS Victoria County, Texas MACTEC Project No. 6468-07-1777

Jonathan Honeycutt, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the above referenced drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

Energy measurements of this drill rig were made for two different rod sizes used for drilling operations. A summary of the testing for each rod size is below:

<u>N3 Sized Rods</u> – SPT energy measurements were made on January 25, 2009, during drilling of Boring B3231 at the referenced site. The testing was performed by Jonathan Honeycutt from approximately 8:50 AM to 4:45 PM (ET) on January 25 under cloudy skies with a temperature of about 65 degrees Fahrenheit. The boring was drilled with personnel and equipment from the MACTEC Atlanta office. The drilling equipment consisted of a CME 55D model truck-mounted drill rig with an SPT automatic hammer. The drilling tools consisted of N3-sized drilling rods and a 2-foot long split tube sampler. Mud rotary drilling techniques were used to advance the boring. The drill rig operator during sampling was Mr. Phil Pitts. Energy measurements were recorded during sampling at the depth intervals shown in Table 3.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K990 and K1050) and strain gages (Serial Nos. NW#146/1 and NW#146/2). A steel drill rod, 2-feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod insert had a cross-sectional area of approximately 2.27 square inches and an outside diameter of approximately 2.625 inches at the

39 Pages Total

MACTEC Engineering and Consulting, Inc. 2801 Yorkmont Road, Suite 100
Charlotte, NC 28208
Phone: 704.357.8600

www.mactec.com

SPT Energy Measurements – Exelon Texas COL Project Supplemental Investigation, Including UHS MACTEC Project No. 6468-07-1777 May 4, 2009

Page 2

gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 2.625 and 2.25 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

<u>NW-J Sized Rods</u> – SPT energy measurements were made on January 28, February 20, and February 21, 2009. The measurements were made during drilling of Boring B3224 (January 28) and B3232 (February 20 and 21) at the referenced site. The measurements made on February 20 and 21, 2009 were made after adjustments to the hammer weight were performed. The testing was from approximately 10:15 AM to 3:30 PM (ET) on January 28 under cloudy skies with a temperature of about 40 degrees Fahrenheit. The testing was from approximately 1:15 to 4:25 PM (ET) on February 20 under sunny skies with a temperature of about 70 degrees Fahrenheit. The testing was from approximately 8:35 to 9:40 AM (ET) on February 21 under cloudy skies with a temperature of about 65 degrees Fahrenheit. The borings were drilled with personnel and equipment from the MACTEC Atlanta office. The drilling equipment consisted of a CME 55D model truck-mounted drill rig with an SPT automatic hammer. The drilling tools consisted of NW-J-sized drilling rods and a 2-foot long split tube sampler. Mud rotary drilling techniques were used to advance the borings. The drill rig operator during sampling was Mr. Phil Pitts. Energy measurements were recorded during sampling at the depth intervals shown in Table 3.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K990 and K1050) and strain gages (Serial Nos. NW#146/1 and NW#146/2 on January 28; NW#221/1 and NW#221/2 on February 20 and 21). A steel drill rod, 2-feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod inserts had cross-sectional areas of approximately 1.43 square inches (NW#146) and 2.27 square inches (NW#221) and an outside diameter of approximately 2.625 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 2.625 and 2.25 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

Calibration Records

The calibration records for all the above are filed in DCN EXE 918.

Calculations for EFV

The work was done in general accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA, and the data was interpreted by the PDA according to the Case Method equation. The maximum energy transmitted to the drill rod string (as measured at the location of the strain gages and accelerometers) was calculated by the PDA using the EFV method equation, as shown below:

 $EFV = \int F(t) * V(t) * dt$

Where: EFV = Transferred energy (EFV equation), or Energy of FV

SPT Energy Measurements – Exelon Texas COL Project Supplemental Investigation, Including UHS MACTEC Project No. 6468-07-1777 May 4, 2009

Page 3

F(t) = Calculated force at time t V(t) = Calculated velocity at time t

The EFV method of energy calculation is recommended in ASTM Standard D4633-05. The EFV equation, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 3.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

- The data obtained by the PDA are generally consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two or more) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not used in the data reduction. This may result in more or less blows evaluated for ETR than what is shown on the boring logs.
- The range of average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method is shown in Table 1 below for each rod size tested. The corresponding energy transfer ratio of the SPT hammer system is also shown.

Rod Size	Range of Average Energy Transferred, Per Individual Sample (foot-pounds)	Range of Average Energy Transfer Ratio (ETR)
N3	283 to 293	81% to 84%
NW-J	265 to 294	76% to 84%

Table 1: Average Energy Transfer Range for the Depth Intervals Tested

May 4, 2009

Page 4

• The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) is shown in Table 2 below for each rod size tested.

Rod Size	Overall Average Energy Transferred (foot-pounds)	Range of Overall Average Energy Transfer Ratio (ETR)
N3	289.6	82.7%
NW-J	287.2	82.0%
Average of All Rod Sizes	288.5	82.4%

Table 2: Overall Average Energy Testing Results for Each Rod Size

Attachments: Page 5 Table 1 – Summary of SPT Energy Measurements – 1 Page Page 6 Work Instruction No. 311 – DCN EXE917 – 1 Page Pages 7 – 10 Record of SPT Energy Measurement – 4 Pages Pages 11 – 39 PDIPLOT Output – 29 Pages TABLE 3 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

Exelon Texas COL Project - Supplemental Investigation, Including UHS

Victoria, Texas

MACTEC Project No. 6468-07-1777

Automatic Hammer Serial Number and Rig Model	Rig Owner	Rig Operator	Boring No. Tested	Date Tested	Drill Rod Size	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
						318.5 - 320	5 - 11 - 22	40	284	81.1%
						328.5 - 330	6 - 16 - 19	45	283	80.9%
			D2221	1/25/2000	N/2	338.5 - 339.4	49 - 50/5"	117	293	83.7%
			B3231	1/25/2009	IND	348.5 - 350	9 - 17 - 27	57	291	83.1%
						358.5 - 358.8	100/4"	88	290	82.9%
							Average for	AW-J Rods:	289.6	82.7%
1000 00						38.6 - 40.1	6 - 7 - 8	21	265	75.7%
MEC-20	MACTEC	Dhil Ditta				43.5 - 45	3 - 4 - 8	16	268	76.6%
(CME 55D	(Atlanta)	Phil Phils	B3224	1/28/2009		53.5 - 55	5 - 6 - 8	20	292	83.4%
Truck)						58.5 - 60	7 - 15 - 20	43	285	81.4%
					NW-J	64 - 65.5	5 - 7 - 8	20	286	81.7%
				2/20/2000		288.7 - 290.2	6 - 12 - 25	42	290	82.9%
			D2020	2/20/2009		298.4 - 299.9	10 - 16 - 24	49	292	83.4%
			B3232	2/21/2009		308.5 - 310	15 - 17 - 21	64	294	84.0%
							Average for	NW-J Rods:	287.2	82.0%
							Total Ave	rage for Rig:	288.5	82.4%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy. This may result in more or less hammer blows evaluated for ETR than what is shown on the boring logs.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).

The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

Prepared By:	Date: 5-14/09	Checked By:	Date: 5-4-09	

* 2.4 4.2	Work Instruction No. 311 Exclon COL Victoria Site MACTEC Engineering and Consulting, Inc. MACTEC Project 6468-07-1777
Issued To: Steve Ki	DLA 1(2/09
Issued By: Danie	el K AH
Valid From: 1/12	09 Date: 1/12/09 "
And the second sec	To: 12 31 09
Task Decorintian D	

ription: Perform SPT Energy Measurements

Applicable Technical Procedures or Plans, or other reference:

1. Geotechnical Work Plan (current revision; available at Site Office), and 2. ASTM D 4633-05 (copy attached.).

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in accordance with ASTM D-4633-05. Consult with Site Manager as to schedule for performing the measurements. Hammer weights have been checked by site personnel, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Manager. See Site Manager for current boring logs of holes drilled and use these to plan most effective field measurement program. Submit copies of calibration records for equipment to Project Principal for

Special Instructions-(note attachments where necessary): Confirm with Site Manager that approval of equipment calibration records have been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Manager or Project Principal

Report Format: Prepare standard report in accordance with ASTM D 4633 requirements.

Specific Ouality Assurance Procedures Applicable: QAP 20-1; QAP 25-1; QAP for Reporting Nuclear-Related Defects, or Noncompliances, per Federal Regulation 10CFR21 and Section 306 of the Energy Reorganization Act of 1974. Current revisions apply.

Hold Points or Witness Points: None

•	Records: All reco	rds annihit i u			
	Pariamad	as generated shall	be considered	OA Dent	
	Active wed and Ap	Droved him OT	in the second se	VA Records.	

Project Manager.	are is required for issuance)
Project Principal Engineer:	Date:
Site Manager/Coordinator:	Date:
Pages:1 plus attachment	Date: 1112/09
Attachments: ASTM D 4633-05	DCN: EXE917