

SEISMIC DATA

.

AVERAGE ARRIVAL TIME VERSUS WAVEFORM TRAVEL DISTANCE C-2102s

SHEAR WAVE INTERVAL VELOCITY VERSUS VERTICAL DEPTH C-2102s

Page 622 of 735

AVERAGE ARRIVAL TIME VERSUS WAVEFORM TRAVEL DISTANCE C-2104s

SHEAR WAVE INTERVAL VELOCITY VERSUS VERTICAL DEPTH C-2104s B

Page 624 of 735

AVERAGE ARRIVAL TIME VERSUS WAVEFORM TRAVEL DISTANCE C-2106s

SHEAR WAVE INTERVAL VELOCITY VERSUS VERTICAL DEPTH C-2106s

Page 626 of 735

AVERAGE ARRIVAL TIME VERSUS WAVEFORM TRAVEL DISTANCE C-2109s

DCN# EXE805

SHEAR WAVE INTERVAL VELOCITY VERSUS VERTICAL DEPTH C-2109s

Page 628 of 735

AVERAGE ARRIVAL TIME VERSUS WAVEFORM TRAVEL DISTANCE C-2202s

SHEAR WAVE INTERVAL VELOCITY VERSUS VERTICAL DEPTH C-2202s

Page 630 of 735

AVERAGE ARRIVAL TIME VERSUS WAVEFORM TRAVEL DISTANCE C-2204sB

•

AVERAGE ARRIVAL TIME VERSUS WAVEFORM TRAVEL DISTANCE C-2206s

SHEAR WAVE INTERVAL VELOCITY VERSUS VERTICAL DEPTH C-2206s

Page 634 of 735

AVERAGE ARRIVAL TIME VERSUS WAVEFORM TRAVEL DISTANCE C-2209s

SHEAR WAVE INTERVAL VELOCITY VERSUS VERTICAL DEPTH C-2209s

APPENDIX A

FUGRO'S CONE PENETROMETERS

APPENDIX A

FUGRO PENETROMETER TIPS DATA - TYPES FCKE

SPECIFICATIONS LOADCELLS		F5CKE	F10CKE	F7.5CKE F15CKE A15E2 5CKE
CONE LOADCELL				ATO 2.50RE
Base Area Apex Angle Full Range Load Limit Effect of 10 bar water pressure Output at zero load Full range output (FRO) Input resistance Output resistance Non linearity and hysteresis Calibration accuracy Rated bridge supply voltage Maximum bridge supply voltage Thermal zero shift Thermal Sensitivity shift Repeatability	cm ² DEG kN kN N mV ohm ca. ohm ca. %FRO Volt volt Volt Volt Volt Volt %FRO/10 ⁰ C %FRO	10 60 50 100 450 < ± 0.5 10 240 < 0.1 < 0.5 10 15 < 0.2 < 0.1 < 0.1	10 60 100 450 < ± 0.5 10 270 240 < 0.1 < 0.5 10 15 < 0.2 < 0.1 < 0.1	15 60 150 200 880 <±0.5 10 270 240 <0.1 <0.5 10 15 <0.2 <0.1 <0.1
SLEEVE + CONE LOADCELL				
Sleeve Area Full Range Load Limit Effect of 10 bar water pressure Output at zero load Full range output Input resistance Output resistance Non linearity and hysteresis Calibration accuracy Rated bridge supply voltage Maximum bridge supply voltage Thermal zero shift Thermal Sensitivity shift Repeatability	cm ² kN kN mV ohm ca. ohm ca. %FRO Volt Volt Volt Volt %FRO/10 ⁰ C %FRO	150 50 100 300 < ± 0.5 10 270 240 < 0.1 < 0.5 10 15 < 0.2 < 0.1 < 0.1	$ \begin{array}{r} 150\\ 100\\ 300\\ <\pm 0.5\\ 10\\ 270\\ 240\\ < 0.1\\ < 0.5\\ 10\\ 15\\ < 0.2\\ < 0.1\\ < 0.1\\ < 0.1 \end{array} $	200 150 200 280 < ± 0.5 10 270 240 < 0.1 < 0.5 10 15 < 0.2 < 0.1 < 0.1
GENERAL				
Friction output at full range load of cone Compensated temperature range Maximum temperature Insulation resistance Slope sensor built-in	%FRO ⁰ C ⁰ C 10 ⁸ ohm	 < 2 - 10 to - 80 > 5 on requ 	+ 40 est	

NOTES: The friction sleeve is located immediately above the cone.

Standard delivery includes: cone, calibration sheet, and connector tube. The accuracy during field use will depend on: field calibrations, treatment during testing, readout equipment, abrasion and maintenance.

TYPE F7.5CKEW/V

DIMENSIONS

CONE BASE AREA	(mm²)	:	1,500
SLEEVE AREA	(mm²)	: 20,000	
ά FACTOR		:	0.59

ugro

SPECIFICATIONS

CONE LOAD CELL

- FULL SCALE RANGE	(kN)	:	75
- OVERLOAD CAPACITY	(kN)	:	200

CONE PLUS SLEEVE LOAD CELL

- FULL SCALE RANGE	(kN)	:	75
- OVERLOAD CAPACITY	(kN)	:	200

PORE PRESSURE TRANSDUCER

- FULL SCALE RANGE	(Mpa)	:	5.0
- BURST PRESSURE	(Mpa)	:	12.5

NOTES:

- 1. LOAD CELLS/TRANSDUCERS MAY BE CALIBRATED FOR LOWER RANGES
- 2. UNEQUAL SLEEVE END AREAS
- 3. SUBTRACTION TYPE
- 4. ALL DIMENSIONS IN mm
- 5. BUILT-IN AMPLIFIERS
- 6. SLOPE SENSOR INCORPORATED
- 7. THREADED END : INTERNAL, CONICAL

TYPE F7.5CKEG/V

DIMENSIONS

CONE BASE AREA	(mm²)	: 1,	500
SLEEVE AREA	(mm²)	: 20,000	
ά FACTOR		:	0.59

SPECIFICATIONS

CONE LOAD CELL

- FULL SCALE RANGE	(kN)	:	75
- OVERLOAD CAPACITY	(kN)	:	200

CONE PLUS SLEEVE LOAD CELL

- FULL SCALE RANGE	(kN)	:	75
- OVERLOAD CAPACITY	(kN)	:	200

PORE PRESSURE TRANSDUCER

- FULL SCALE RANGE	(Mpa)	:	5.0
- BURST PRESSURE	(Mpa)	:	12.5

ELECTRICAL CONDUCTIVITY

- FULL SCALE RANGE	(S/m)	:	1.0
- MAXIMUM RANGE	(S/m)	:	5.0

NOTES:

- 1. LOAD CELLS/TRNSDUCERS MAY BE CALIBRATED FOR LOWER RANGES
- 2. UNEQUAL SLEEVE END AREAS
- 3. SUBTRACTION TYPE
- 4. ALL DIMENSIONS IN mm
- 5. BUILT-IN AMPLIFIERS
- 6. SLOPE SENSOR INCORPORATED
- 7. THREADED END : EXTERNAL. M28 x 2

TYPE F7.5CKE/V

DIMENSIONS

CONE BASE AREA	(mm²)	: 1	,500
SLEEVE AREA	(mm²)	: 2	0,000
ά FACTOR		:	0.59

SPECIFICATIONS

CONE LOAD CELL

- FULL SCALE RANGE	(kN)	:	75
- OVERLOAD CAPACITY	(kN)	:	200

CONE PLUS SLEEVE LOAD CELL

- FULL SCALE RANGE	(kN)	:	75
- OVERLOAD CAPACITY	(kN)	:	200

NOTES:

- 1. LOAD CELLS/TRANSDUCERS MAY BE CALIBRATED FOR LOWER RANGES
- 2. UNEQUAL SLEEVE END AREAS
- 3. SUBTRACTION TYPE
- 4. ALL DIMENSIONS IN mm
- 5. BUILT-IN AMPLIFIERS
- 6. SLOPE SENSOR INCORPORATED
- 7. THREADED END : INTERNAL, CONICAL

APPENDIX B

FUGRO'S DEPLOYMENT SYSTEMS

.

.

APPENDIX C

ZERO READINGS

CPT Zero Readings

Volume 2, Rev. 0 - 7/10/08

CPT	Date	Cone Type	Cone S/N	Tip Start	Tip Stop	Sleeve Start	Sleeve Stop	Piezo Start	Piezo End	Slope Start	Slope End
C-2101	12-Nov-2007	F7.5CKEW2/B	1701-1832	0.027087	0.027710	0.022327	0.022420	-0.004883	-0.004688	0.017848	0.018581
C-2102s	13-Nov-2007	F2.5CKEW2/B	1701-1788	0.029797	0.025757	0.038855	0.006510	-0.004873	-0.005762	0.010805	0.010625
C-2103	13-Nov-2007	F7.5CKEW2/B	1701-1832	0.029163	0.029663	0.023975	0.024170	-0.004688	-0.004688	0.017496	0.017747
C-2104s	14-Nov-2007	F2.5CKEW2/B	1701-1788	0.030286	0.028076	0.010559	-0.010783	-0.004336	-0.006966	0.010859	0.010586
C-2204sA	17-Nov-2007	F2.5CKEW2/B	1701-1788	0.032581	0.030151	-0.001575	-0.007935	-0.003184	-0.005762	0.010992	0.010729
C-2204sB	10-Jan-2008	F2.5CKEW2/B	1701-1788	0.032312	0.029215	0.003210	-0.001383	-0.004248	-0.006217	0.010855	0.011146
C-2105	13-Nov-2007	F7.5CKEW2/B	1701-1832	0.030017	0.032471	0.024133	0.018066	-0.004688	-0.003516	0.017434	0.017435
C-2106s	15-Nov-2007	F2.5CKEW2/B	1701-1788	0.032312	0.028483	0.000049	-0.012939	-0.003027	-0.005241	0.010898	0.010703
C-2106a	02-Dec-2007	F7.5CKEW2/B	1701-1831	0.029187	0.034709	0.024109	0.028809	-0.004004	-0.004199	0.013125	0.012839
C-2106b	03-Dec-2007	F7.5CKEW2/B	1701-1831	0.030518	0.028646	0.025586	0.021525	-0.003809	-0.003711	0.012828	0.013008
C-2106c	03-Dec-2007	F7.5CKEW2/B	1701-1831	0.029724	0.030518	0.023816	0.026001	-0.005234	-0.003678	0.012734	0.012930
C-2106d	04-Dec-2007	F7.5CKEW2/B	1701-1831	0.029163	0.028809	0.020129	0.019572	-0.003809	-0.003711	0.013047	0.013125
C-2106e	05-Dec-2007	F7.5CKEW2/B	1701-1831	0.031006	0.032715	0.022290	0.028524	-0.003740	-0.004395	0.013242	0.013620
C-2106f	05-Dec-2007	F7.5CKEW2/B	1701-1831	0.031006	0.032715	0.022290	0.028524	-0.003740	-0.004395	0.013242	0.013620
C-2107	29-Nov-2007	F7.5CKEW2/B	1701-1832	0.040771	0.034139	0.020801	0.013550	-0.004297	-0.004883	0.017191	0.017214
C-2108	30-Nov-2007	F7.5CKEW2/B	1701-1831	0.035266	0.041748	0.029028	0.031779	-0.004102	-0.003320	0.013156	0.013008
C-2109s	14-Nov-2007	F2.5CKEW2/B	1701-1788	0.028027	0.030680	-0.006860	-0.006836	-0.006416	-0.007194	0.010711	0.010625
C-2110	30-Nov-2007	F7.5CKEW2/B	1701-1831	0.027930	0.025757	0.031213	0.027669	-0.003906	-0.004199	0.012902	0.012852
C-2111	29-Nov-2007	F7.5CKEW2/B	1701-1832	0.035645	0.036418	0.017493	0.017090	-0.004395	-0.004297	0.017184	0.017201
C-2111a	29-Nov-2007	F7.5CKEW2/B	1701-1832	0.036487	0.035807	0.018408	0.018066	-0.004492	-0.004980	0.017469	0.017422
C-2111b	30-Nov-2007	F7.5CKEW2/B	1701-1831	0.027258	0.026449	0.030518	0.028320	-0.003809	-0.003841	0.012805	0.013724
C-2111c	30-Nov-2007	F7.5CKEW2/B	1701-1831	0.027539	0.026367	0.029688	0.021159	-0.003809	-0.003809	0.012734	0.012917
C-2111d	30-Nov-2007	F7.5CKEW2/B	1701-1831	0.026489	0.029622	0.021057	0.023682	-0.003809	-0.003516	0.012813	0.018750
C-2112	29-Nov-2007	F7.5CKEW2/B	1701-1832	0.037231	0.036174	0.020618	0.022868	-0.004482	-0.004785	0.016953	0.018464
C-2113	29-Nov-2007	F7.5CKEW2/B	1701-1832	0.040381	0.036051	0.020251	0.016927	-0.004199	-0.004655	0.017023	0.017227
C-2201	04-Dec-2007	F7.5CKEW2/B	1701-1831	0.030530	0.024902	0.022864	0.017985	-0.003125	-0.004102	0.013008	0.012813
C-2202s	15-Nov-2007	F2.5CKEW2/B	1701-1788	0.029419	0.027954	-0.010095	-0.012329	-0.004502	-0.004753	0.010781	0.010703
C-2203	28-Nov-2007	F7.5CKEW2/B	1701-1832	0.037305	0.040283	0.019312	0.020142	-0.004297	-0.004785	0.017488	0.017266
C-2204s	10-Jan-2008	F2.5CKEW2/B	1701-1788	0.032312	0.029215	0.003210	-0.001383	-0.004248	-0.006217	0.010855	0.011146
C-2205	28-Nov-2007	F7.5CKEW2/B	1701-1832	0.039832	0.036825	0.021960	0.018026	-0.004297	-0.004492	0.017141	0.01/643
C-2206s	17-Nov-2007	F2.5CKEW2/B	1701-1788	0.029675	0.031331	-0.006824	-0.007121	-0.005322	-0.005534	0.011547	0.010664
C-2206a	12-Dec-2007	F7.5CKEW2/B	1701-1831	0.037695	0.037557	0.031653	0.028931	-0.004102	-0.004102	0.012852	0.012//3
C-2206b	12-Dec-2007	F7.5CKEW2/B	1701-1831	0.033594	0.033285	0.028601	0.025309	-0.006104	-0.004199	0.012758	0.012773
C-2206c	13-Dec-2007	F7.5CKEW2/B	1701-1831	0.032556	0.034180	0.026978	0.027629	-0.003838	-0.004199	0.012852	0.012773
C-2206d	13-Dec-2007	F7.5CKEW2/B	1701-1831	0.034424	0.035238	0.030103	0.029093	-0.004102	-0.004102	0.012930	0.013008
C-2206e	14-Dec-2007	F7.5CKEW2/B	1701-1831	0.034314	0.033813	0.030676	0.028035	-0.004395	-0.004590	0.012773	0.012773
C-2206f	14-Dec-2007	F7.5CKEW2/B	1701-1831	0.034314	0.035767	0.029126	0.031006	-0.004492	-0.004590	0.012945	0.013073
C-2207	27-Nov-2007	F7.5CKEW2/B	1701-1832	0.037415	0.035075	0.023462	0.016561	-0.004199	-0.004492	0.017645	0.018281
C-2208	18-Nov-2007	F7.5CKEW2/B	1701-1832	0.033813	0.033732	0.021619	0.021200	-0.004600	-0.004688	0.017285	0.017318
C-2209s	16-Nov-2007	F2.5CKEW2/B	1701-1788	0.033911	0.027629	-0.002429	-0.012085	-0.000469	-0.004264	0.011074	0.010/68
C-2210	18-Nov-2007	F7.5CKEW2/B	1701-1832	0.035754	0.032959	0.023560	0.021729	-0.004688	-0.004785	0.017449	0.017461

CPT Zero Readings

CPT	Date	Cone Type	Cone S/N	Tip Start	Tip Stop	Sleeve Start	Sleeve Stop	Piezo Start	Piezo End	Slope Start	Slope End
C-2210a	18-Nov-2007	F7.5CKEW2/B	1701-1832	0.032043	0.037598	0.022815	0.021484	-0.004688	-0.004590	0.017090	0.016953
C-2211	18-Nov-2007	F7.5CKEW2/B	1701-1832	0.031836	0.034058	0.020996	0.021322	-0.005078	-0.004883	0.017348	0.019701
C-2212	18-Nov-2007	F7.5CKEW2/B	1701-1832	0.034778	0.033325	0.022241	0.021362	-0.004590	-0.004785	0.017102	0.017096
C-2213	27-Nov-2007	F7.5CKEW2/B	1701-1832	0.038184	0.037394	0.020129	0.018270	-0.004248	-0.004395	0.016984	0.017617
C-2214	29-Nov-2007	F7.5CKEW2/B	1701-1832	0.041748	0.037760	0.022473	0.017253	-0.004199	-0.004590	0.017059	0.017031
C-2215	28-Nov-2007	F7.5CKEW2/B	1701-1832	0.039929	0.039958	0.020386	0.019694	-0.004590	-0.004688	0.017039	0.016992
C-2216	04-Dec-2007	F7.5CKEW2/B	1701-1831	0.030396	0.027913	0.022534	0.019287	-0.004102	-0.004004	0.012930	0.012734

.

January 24, 2008 Report Number 1907-0075 6105 Rookin Road Houston, Texas 77074 Tel: 713-346-4000 Fax: 713-346-4002

Mactec Engineering and Consulting, Inc. 7041 Old Wake Forest Road Suite 103 Raleigh, North Carolina 27616

Attention: Mr. Scot Auger, P.E., PMP

CALIBRATION VERIFICATION REPORT FOR SEISMIC PIEZOCONE PENETRATION TESTING EXELON TEXAS COL VICTORIA, TEXAS MACTEC PROJECT #6468071777

Dear Mr. Auger:

Please find enclosed herewith the calibration verification results for the instruments used in the above referenced project. The data has been reviewed and has undergone the appropriate QA/QC process. These post calibrations checks were performed on cones F7.5CKEW2/B 1701-1832, F7.5CKESW2/B 1701-1788, and F7.5CKEW2/B 1701-1498. Post calibration checks on cone F7.5CKEW2/B 1701-1831 which was damaged attempting to perform a CPT through drill pipe.

Fugro's cone penetrometer manufacturing and calibration procedures include ISO 9001, ASTM D5778-2000 and European cone penetrometer standards. Cone penetrometers are tested and calibrated for the following:

Mechanical Calibration

- Cross Talk Check
- Dimension Check
- Seal/O-Ring Check

Electronic Calibration

- Temperature effect
- Pre and Post test voltage readings (zeros)
- Full scale output load readings
- Pore Pressure transducer calibration
- Slope indicator calibration

Calibration Verification Methodology

Manufactured and calibrated according to ISO 9001, the calibration values of the electric cone penetrometers used for this project were verified before and after fieldwork utilizing the following A2LA and/or ANSI/NCSL approved verification systems.

x Volume 2, Rev. 0 - 7/10/08 member of the Fugro group of comparison with offices throughout the world.

Tip and Friction (Up To 10,000 lbs.)

Load cell:	Indicator system
Calibrated by:	Interface (A2LA approved)
Calibration date:	March 9, 2007
Load cell model:	1211EX-10KB, Serial No. 113655
Capacity:	10,000 lbs.
Indicator:	Interface 9820-000-1, Serial No. M2635

Tip (Up To 20,000 lbs.)

Load cell: Calibrated by: Calibration date: Load cell model: Capacity: Geotac Applied Technical Services (A2LA approved) November 28, 2006 and March 14, 2008 560K 50,000K

ZHU 4/29/08

Pore Pressure Transducer

Digital Pressure IndicatorCalibrated by:GD Sensing (ANSI/NCSL approved)Manufactured by:EatonModel number:UPS 3000CCSerial number:A0813Calibration date:September 15, 2006

Cone Penetrometer Temperature

Digital ThermometerCalibrated by:Houston Precision (ANSI/NCSL approved)Manufactured by:Cole ParmerModel Number:Degi-sence Type KSerial Number:TD-001Calibration date:November 16, 2007

Utilizing the above systems each was load and pressure tested as follows:

Tip:	0-20,000 lb.
Friction:	0-7,500 lb.
Pore Pressure:	0:350 PSI
Temperature effect	30 Degrees Fahrenheit – 115 Degrees Fahrenheit

Under each load/pressure increment, the cone penetrometer readings are recorded in millivolts (mV). Load/pressure (pounds/psi) load increments and corresponding cone readings in mV are input into <u>HGL</u> <u>Instrument Verificaton</u> software to obtain linear regression and correlation coefficient (R²) values (See attached <u>HGL Instrument Verification</u> Forms).

Additionally, load/pressure increments and cone readings were also input into a calibration **Verification Certificate Program** to calculate each cone penetrometer's calibration value in MPa units (See attached **Calibration Verification Certificates** for each cone penetrometer). The last column in these forms represents the calibration values of tip, friction and pore pressure.