From: Sent: To: Subject: Hoc, PMT12 Wednesday, March 23, 2011 5:34 PM PMT03 Hoc FW: Hi-

From: Milligan, Patricia Sent: Wednesday, March 23, 2011 5:32 PM To: Hoc, PMT12 Subject: FW: Hi-

From: Gorman, Susan (CDC/OPHPR/DSNS) [mailto:spg4@cdc.gov]
Sent: Tuesday, February 01, 2011 5:38 PM
To: Milligan, Patricia; Manning, Ronald (HHS/ASPR/BARDA)
Cc: Young, Wayne (HHS/ASPR/BARDA)
Subject: RE: Hi-

Trish, I double checked, and all of our liquid KI expires by May 2012. After that, we will not carry liquid KI any **longer**. I will ask our leadership if they would approve a shipment to them, although it won't buy them much time as far as dating...once I get the answer to that, we can find out if they are still interested.

Sue

Susan E. Gorman, Pharm.D., M.S., DABAT, FAACT Associate Director for Science Division of Strategic National Stockpile Centers for Disease Control and Prevention

From: Milligan, Patricia [mailto:Patricia.Milligan@nrc.gov]
Sent: Tuesday, February 01, 2011 3:33 PM
To: Gorman, Susan (CDC/OPHPR/DSNS); Manning, Ronald (HHS/ASPR/BARDA)
Cc: Young, Wayne (HHS/ASPR/BARDA)
Subject: RE: Hi-

Hi Sue

They need 200 bottles and their supply expires in 2011. I am not so sure they'd be happy with a short extension. See her attached email. Give me a call if you want to talk about this..

Trish

From: Gorman, Susan (CDC/OPHPR/DSNS) [mailto:spg4@cdc.gov]
Sent: Tuesday, February 01, 2011 3:16 PM
To: Manning, Ronald (HHS/ASPR/BARDA); Milligan, Patricia
Cc: Young, Wayne (HHS/ASPR/BARDA)
Subject: RE: Hi-

BOBB / ISI

We still have some of the liquid KI and may be able to process a request for it however it does not have long dating on it – do you have any details – i.e. how many bottles/where etc? I can find out if leadership is willing to make a shipment before you let the requestor know. Also, as you know, once the product in SNS expires, it will not be replaced.

Sue

Susan E. Gorman, Pharm.D., M.S., DABAT, FAACT Associate Director for Science Division of Strategic National Stockpile Centers for Disease Control and Prevention

From: Manning, Ronald (HHS/ASPR/BARDA)
Sent: Tuesday, February 01, 2011 3:10 PM
To: Milligan, Patricia
Cc: Gorman, Susan (CDC/OPHPR/DSNS); Young, Wayne (HHS/ASPR/BARDA); Manning, Ronald (HHS/ASPR/BARDA)
Subject: RE: Hi-

Hi Trish -

I am copying Sue Gorman at CDC/SNS on this email. Sue can give you the most accurate answer. I am also copying Wayne Young, who is the BARDA project officer on this contract.

Regards,

Ron

From: Milligan, Patricia [mailto:Patricia.Milligan@nrc.gov]
Sent: Tuesday, February 01, 2011 12:44 PM
To: Manning, Ronald (HHS/ASPR/BARDA)
Subject: Hi-

Hi Ron

Happy new year!!! I hope all is well with you and that you are enjoying this lovely DC weather! I had a question regarding liquid KI replenishment from a community that rec'd liquid KI when it was offered by HHS. Will HHS be resupplying the liquid KI to the communities or was it a one time distribution? Can I have her contact you for information? NRC is only distributing tablets and not liquid.

Thanks

Trish

Patricia A. Milligan, CHP, RPh Sr. Technical Advisor - Preparedness & Response Office of Nuclear Security and Incident Response U.S. Nuclear Regulatory Commission MS T3 B46M Washington DC 20555 301-415-2223 patricia.milligan@nrc.gov
 From:
 Hayden, Elizabeth

 To:
 Burnell, Scott

 Subject:
 RE: new hires

 Date:
 Wednesday, March 23, 2011 9:13:00 AM

Oh brother. Are you pursuing this answer?

Beth Hayden Senior Advisor Office of Public Affairs U.S. Nuclear Regulatory Commission --- Protecting People and the Environment 301-415-8202 elizabeth.hayden@nrc.gov

-----Original Message-----From: Burnell, Scott Sent: Wednesday, March 23, 2011 9:10 AM To: JIM EFSTATHIOU JR., BLOOMBERG/ NEWSROOM: Cc: Hayden, Elizabeth Subject: RE: new hires

Hello Jim;

I don't believe we slice our HR data that thinly in terms of "where are they from/where did they go," but I'll see what sorts of statistics we can provide. What's your deadline? Thanks.

Scott Burnell Public Affairs Officer Nuclear Regulatory Commission

-----Original Message-----From: JIM EFSTATHIOU JR., BLOOMBERG/ NEWSROOM: [mailto:jefstathiou@bloomberg.net] Sent: Wednesday, March 23, 2011 8:58 AM To: Burnell, Scott Subject: new hires

Scott,

I'm trying to get some information on the background of employees at the NRC. Can you tell me how many came from industry, academia or elsewhere? Also, can you tell me how many people the agency has hired in the past few years to process new license applications, and their backgrounds? And finally, is there any way to say how many former NRC employees moved to industry jobs?

Thanks in advance for your help.

Jim

Jim Efstathiou Jr. Bloomberg News 731 Lexington Ave. New York, N.Y. 10022

Tel: 212 617 1647 Cell: 202 413 8189 E-mail: jefstathiou@bloomberg.net

BBBB / 152

 From:
 LIA07 Hoc

 Subject:
 1800 EDT (March 23, 2011) USNRC Earthquake/Tsunami Status Update

 Date:
 Wednesday, March 23, 2011 6:01:56 PM

 Attachments:
 USNRC Earthquake-Tsunami Update.032311.1800EDT.pdf

Attached, please find an 1800 EDT (March 23, 2011) status update from the US Nuclear Regulatory Commission's Emergency Operations Center regarding the impacts of the earthquake/tsunami.

Please note that this information is "Official Use Only" and is only being shared within the federal family.

Please call the Headquarters Operations Officer at 301-816-5100 with questions.

-Sara

4C

Sara K. Mroz Communications and Outreach Office of Nuclear Security and Incident Response US Nuclear Regulatory Commission Sara.Mroz@nrc.gov LIA07.HOC@nrc.gov (Operations Center)

153 BBBB /

 From:
 LIA07 Hoc

 Subject:
 0700 EDT (March 23, 2011) USNRC Earthquake/Tsunami Status Update Corrected Document

 Date:
 Wednesday, March 23, 2011 7:02:17 AM

 Attachments:
 NRC Status Update 3.23.11--0700 EDT.pdf

Please find attached a 0700 EDT (March 23, 2011) status update from the US Nuclear Regulatory Commission's Emergency Operations Center regarding the impacts of the earthquake/tsunami.

This update corrects some information sources, the PMT update, and the International Response

Please note that this information is "Official Use Only" and is only being shared within the federal family.

Please call the Headquarters Operations Officer at 301-816-5100 with questions.

-Jim

Jim Anderson Office of Nuclear Security and Incident Response US Nuclear Regulatory Commission James.anderson@nrc.gov LIA07.HOC@nrc.gov (Operations Center)

154 BBBBB/

From: Sent: To: Subject: Hoc, PMT12 Thursday, March 24, 2011 6:50 PM ET07 Hoc RE: FYI - Customs and Border Patrol protocols for screening people coming from Japan

Is this for information or is this to supplement the review we are doing for the White House to supplement CBP protocol?

From: ET07 Hoc
Sent: Thursday, March 24, 2011 6:42 PM
To: Hoc, PMT12
Subject: FW: FYI - Customs and Border Patrol protocols for screening people coming from Japan

From: LIA06 Hoc
Sent: Thursday, March 24, 2011 6:15 PM
To: ET01 Hoc; ET05 Hoc; ET07 Hoc; ET02 Hoc; ET06 Hoc
Subject: FW: FYI - Customs and Border Patrol protocols for screening people coming from Japan

FYI

Liaison Team Director U.S. Nuclear Regulatory Commission Operations Center

From: Virgilio, Rosetta
Sent: Thursday, March 24, 2011 6:13 PM
To: LIA04 Hoc; OST05 Hoc; LIA06 Hoc; LIA08 Hoc; Barker, Allan; Maier, Bill; Tifft, Doug; Woodruff, Gena; Logaras, Harral; McNamara, Nancy; Trojanowski, Robert; /o=USNRC/ou=First Administrative Group/cn=Recipients/cn=6bd3eb76-62865841-d1d223b9-1e5f5439; Browder, Rachel; Erickson, Randy; Janda, Donna; Lynch, James; Orendi, Monica
Cc: Turtil, Richard; Piccone, Josephine; Jackson, Deborah
Subject: FW: FYI - Customs and Border Patrol protocols for screening people coming from Japan

THE INFO BELOW AND ATTACHED ARE FYI ONLY - NOT FOR DISSEMINATION, PER CRCPD

Note the documents were transmitted to State health officials, public health preparedness directors, and environmental health directors to verify contact info. A CRCPD working group is also working on associated talking points.

From: Cuadrado, Leira
Sent: Thursday, March 24, 2011 4:33 PM
To: Virgilio, Rosetta
Subject: FW: FYI - Customs and Border Patrol protocols for screening people coming from Japan

From: Ruth McBurney [mailto:rmcburney@crcpd.org]
Sent: Thursday, March 24, 2011 4:08 PM
To: Cuadrado, Leira; Lewis, Robert
Subject: FW: FYI - Customs and Border Patrol protocols for screening people coming from Japan

BBBBB 155

Here is the information that went out earlier today to the radiation control programs. We have a work group working on follow-up talking points on how contaminated persons, clothing and luggage are to be handled by radiation control programs.

We will also copy you with these when they are developed.

Ruth

From: Ruth McBurney
Sent: Thursday, March 24, 2011 12:33 PM
Cc: 'Adela Salame-Alfie'
Subject: FYI - Customs and Border Patrol protocols for screening people coming from Japan

Dear Director and Associate Members,

Attached you will find the suite of documents that make up the Traveler Plan Protocol and Procedures for screening travelers leaving Japan for possible radioactive contamination. These documents were prepared by an interagency workgroup to make sure it was appropriate and addresses many concerns.

We realize that some of you may need additional guidance on how to handle people arriving with contamination greater than 20 x background. At the same time, we are aware that each state may handle things differently. Please reach out to Adela or me if you need further assistance.

Please verify the contact information for your state and notify CRCPD as soon as possible of any changes. These documents will be made available on the secure side of the website for Director and Associate Members.

Included with this email is a document that lists the airports receiving direct flights from Japan. While every jurisdiction should be prepared to manage these cases, clearly the 14 states/territories that receive direct flights from Japan would be more directly impacted.

Please be aware that these documents have been transmitted to state health officials, public health preparedness directors, and environmental health directors.

Please share with those within your agency/public health system who have a need to know but, for now, this probably should not be widely or publicly distributed/posted.

Ruth E. McBurney Executive Director CRCPD 502-227-4543, ext. 0

From: LIA07 Hoc Borchardt, Bill; Bradford, Anna; Cohen, Shari; Cooper, LaToya; Dyer, Jim; Flory, Shirley; Gibbs, Catina; Hanev, To: Catherine; Hudson, Sharon; Jaczko, Gregory; Johnson, Michael; Leeds, Eric; Loyd, Susan; Pace, Patti; Schwarz, Sherry; Sheron, Brian; Speiser, Herald; Sprogeris, Patricia; Taylor, Renee; Virgilio, Martin; Walls, Lorena; Weber, Michael Update for Go Books - 1800 EDT, March 24, 2011 Subject: Date: Thursday, March 24, 2011 6:21:25 PM Attachments: Talking Points 13.pdf OA Price-Anderson Act 3-24-2011.pdf TEPCO Press Release 145.pdf TEPCO Press Release 133.pdf TEPCO Press Release 134,pdf TEPCO Press Release 135.pdf TEPCO Press Release 136.pdf Hoc Hoc TEPCO Press Release 137.pdf TEPCO Press Release 138.pdf TEPCO Press Release 139.pdf TEPCO Press Release 140.pdf TEPCO Press Release 141.pdf TEPCO Press Release 142.pdf TEPCO Press Release 143.pdf TEPCO Press Release 144.pdf ET Chronology 3-24-11 1800.pdf USNRC Earthquake-Tsunami Update.032411.1800EDT.pdf March 24 1515EDT one pager (3).docx

Please find attached updated information for the "Go Books".

The updates include:

- The 1800 EDT, 03/24/11 Status Update
- The latest ET Chronology
- The latest TEPCO Press Releases (Numbers 133-145)
- NRC Talking Points (Talking Points 13 and Q&A Price-Anderson Act)
- "One Pager" (1515 EDT, 03/24/11)

Please let me know if you have any questions or concerns.

-Sara

Sara Mroz Communications and Outreach Office of Nuclear Security and Incident Response US Nuclear Regulatory Commission Sara.Mroz@nrc.gov LIA07.HOC@nrc.gov (Operations Center)

From: OST04 Hoc Sent: Thursday, March 24, 2011 6:11 PM To: LIA07 Hoc Subject: Status Update Attachments 18:00 EDT 3-23-2011

Information for the following Tabs

Talking Points (Talking points 13 & QA Price-Anderson Act)

BBB / 156

ET Chronology NRC Press Release – No new Updates (Last update 3/23) TEPCO Press Release (Numbers 133-145) Quake_TP_3_24.docx

OPA

TALKING POINTS

JAPAN NUCLEAR SITUATION

As of 3/24/2011 3:30 PM

Updates in Red

CONTENTS

1. The Safety of U.S. Nuclear Power Plants

2. Monitoring Radiation in the United States

3. The Situation in Japan

PART 1: THE SAFETY OF U.S. NUCLEAR POWER PLANTS

- The NRC is always looking to learn information that can be applied to U.S. reactors and we will analyze the information that comes from this incident. President Obama has asked the agency to conduct a comprehensive review of the safety of U.S. nuclear plants; the agency will do so.
- The NRC issued an Information Notice on March 18 to all of its operating nuclear power plants describing the effects of the March 11 earthquake and tsunami on Japanese nuclear power plants. The purpose of the Information Notice is to inform the plants of the most recent information available to the NRC. The NRC expects U.S. nuclear power plants will review the entire notice to determine how it applies to their facilities and consider actions, as appropriate.
- U.S. nuclear power plants are built to withstand environmental hazards, including earthquakes. Even those plants that are located outside of areas with extensive seismic activity are designed for safety in the event of such a natural disaster.
- The NRC requires that safety-significant structures, systems, and components be designed to take into account the most severe natural phenomena historically reported for the site and surrounding area. The NRC then adds a margin for error to account for the limitations on historical data. In other words, U.S. nuclear power plants are designed to be safe based on historical data to predict the area's maximum credible earthquake.
- In response to MSNBC.com report ranking US NPPs according to vulnerability to earthquakes: The NRC does not rank nuclear power plants according to their vulnerability to earthquakes. This "ranking" was developed by an MSNBC reporter using partial information and an even more partial understanding of how we evaluate plants for seismic risk. Each plant is evaluated individually according to the geology

of its site, not by a "one-size-fits-all" model - therefore such rankings or comparisons are highly misleading.

- In the 1980s and 1990s, the NRC required several changes to the BWR Mark I containments at U.S. plants to ensure they could continue to deal with severe events. The first issue involved the design's large circular tube, or "torus," which holds enough water to safely condense the large volumes of steam that could be released during a severe event. The NRC became aware in the mid-late 1970s that designers might have underestimated the forces the torus would have to withstand during an event. The NRC laid out an appropriate generic approach to resolving the issue in August 1982, and individual reactors carried out their plant-specific torus reinforcement efforts.
- The second issue involved the potential for containment failure following an extended loss of decay heat removal capability. Under the Mark I Containment Performance Improvement program that ran from the late 1980s into the early 1990s, all Mark I BWRs operating at that time installed hardened vent systems to provide an additional decay heat removal capability to protect against containment overpressure failure. The containment vent system could also be used to control hydrogen concentrations in containment. Two units, Browns Ferry 1 and 3, were in extended shutdown at that time, and hardened vents were installed before those reactors restarted. In addition most plants provide an alternate water injection capability that is independent of normal and emergency power supplies and enhanced the reliability of the automatic depressurization system to reduce the likelihood of a challenge to containment. Furthermore, in 2003, the Commission issued the "Hydrogen Rule" (10CFR50.44) that required all BWR Mark I plants to operate in an inert atmosphere to preclude the possibility of a hydrogen explosions in containment.
- The NRC recommendation related to a 50-mile evacuation zone for Americans near the affected nuclear power plants in Japan is consistent with the same kind of approach that

would be used in the United States should a comparable, although extremely unlikely, event take place here.

- In November 1976, a federal task force was formed to look at salient emergency planning issues for U.S. nuclear power plants. Out of that comprehensive evaluation came a recommendation that a 10-mile-radius EPZ would assure that "prompt and effective actions can be taken to protect the public in the event of an accident" at a plant. This was based on research showing the most significant impacts of an accident would be expected in the immediate vicinity of a plant and therefore any initial protective actions, such as evacuations or sheltering in place, should be focused there. That does not mean the protective actions could not expand beyond the 10-mile radius. Rather, emergency planners have always known such actions could be necessary if the situation warranted it. (See NUREG 0654/FEMA-REP-1.)
- Following the events of Sept. 11, 2001, NRC required all nuclear plant licensees to take additional steps to protect public health and safety in the event of a large fire or explosion. In accordance with NRC regulations, all nuclear power plants are required to maintain or restore cooling for the reactor core, containment building, and spent fuel pool under the circumstances associated with a large fire or explosion. These requirements include using existing or readily available equipment and personnel, having strategies for firefighting, operations to minimize fuel damage, and actions to minimize radiological release to the environment. In general, mitigative strategies are plans, procedures, and pre-staged equipment whose intent is to minimize the effects of adverse events. If needed, these mitigative strategies could also be used during natural phenomena such as earthquakes, tornadoes, floods, and tsunami.

PART 2: MONITORING RADIATION IN THE UNITED STATES

- The NRC is working closely with our federal partners to monitor radiation releases from the Japanese nuclear power plants. Given the results of the monitoring and distance between Japan and Hawaii, Alaska, U.S. Pacific Territories and the U.S. West Coast, the NRC expects the U.S. to avoid any harmful levels of radioactivity. Reports of radiation being detected in the United States are all far below levels that would present a health risk. Additional questions regarding monitoring of the radioactive release should be referred to DOE at 202 586 4940.
- We are aware that minute amounts of radioactive elements have been detected at the very sensitive monitoring equipment at a number of privately owned nuclear plants. The US Government is looking at the best vehicle for reporting to the public this and any other data gathered by government. Nothing detected so far comes anywhere near a level that might concern us. We remain convinced there will be no health impact on the United States.
- The Department of Energy has been designated the lead agency for communicating information to the states regarding monitoring of radiation heading toward or over the United States. The DOE's Lawrence Livermore National Laboratory (National Atmospheric Release Assessment Center) is monitoring weather patterns over the Pacific Ocean. The Environmental Protection Agency maintains air monitoring stations throughout the country and has reinforced its monitoring effort. DOE will provide aerial monitoring. Questions about this effort should be directed to DOE at 202 586 4940.
- The Environmental Protection Agency has increased its radiation monitoring in the western U.S. Data from the EPA's RadNet is available on the EPA's website.

- [Only if specifically asked] The NRC is aware that Diablo Canyon nuclear power plant in California, among others, have detected a very low level of radiation. The site believes that the source of the radiation is likely the Fukushimi Daiichi nuclear power plant in Japan. The amounts detected are barely detectable on the instruments and pose no danger to public health and safety. The NRC continues to believe, based on all available information, that no harmful levels of radiation will reach U.S. territory. This information has been shared with the U.S. Department of Energy and the U.S. Environmental Protection Agency. Additional questions regarding monitoring of the radioactive release should be referred to DOE at 202 586 4940.
- In accordance with established protocols, U.S. Customs and Border Protection (CBP) employs several types of radiation detection equipment in its operations at both air and sea ports, and uses this equipment, along with specific operational protocols, to resolve any security or safety risks that are identified with inbound travelers and cargo. Out of an abundance of caution, CBP has issued field guidance reiterating its operational protocols and directing field personnel to specifically monitor maritime and air traffic from Japan. CBP will continue to evaluate the potential risks posed by radiation contamination on inbound travelers and cargo and will adjust its detection and response protocols, in coordination with its interagency partners, as developments warrant.

PART 3: THE SITUATION IN JAPAN

- As of Sunday, March 20, 2011, the NRC continues to monitor the nuclear crisis in Japan stemming from the March 11 earthquake and tsunami. NRC's top priorities are the continued assessment of radiological conditions, dose predictions, and protective action recommendations. This effort focuses primarily on conditions in Japan around the vicinity of the Fukushima Daiichi nuclear power plant. The NRC is also working with DOE to model the flow of radiation across the Pacific Ocean toward the United States.
- A team of 10 NRC experts continues to assist Japanese efforts in Tokyo as part of a USAID-sponsored assistance effort. [If asked: One team member fell ill and returned to the US. Numbers in the team and names change; please check if asked.]
- The Commission was briefed by the NRC staff on the situation in Japan at a public meeting on Monday, March 21, 2011. A transcript for the public commission meeting held yesterday has been posted. The meeting included an overview of NRC actions related to the Japanese emergency and the possible short- and long-term activities for the NRC. The transcript can be found here: http://www.nrc.gov/reading-rm/doc-collections/commission/recent/2011/. And the slides from the meeting are located at: http://www.nrc.gov/reading-rm/doc-

collections/commission/slides/2011/20110321/staff-slides-03212011-meeting-rev1.pdf.

• Chairman Jaczko gave opening remarks at the meeting. He said, in part, "We have a responsibility to the American people to undertake a systematic and methodical review of the safety of our own domestic nuclear facilities, in light of the natural disaster and the resulting nuclear emergency in Japan. Beginning to examine all available information is an essential part of our effort to analyze the event and understand its impact on Japan and implications for the United States. Our focus is always on keeping plants and radioactive materials in this country safe and secure."

A copy of his full opening remarks can be found here: http://www.nrc.gov/readingrm/doc-collections/news/2011/11-054.pdf

- Based on calculations performed by NRC experts, we continue to believe that it is appropriate for U.S. residents within 50 miles of the Fukushima reactors to evacuate. Our recommendation is based on NRC guidelines for public safety that would be used in the United States under similar circumstances.
- The 10-mile EPZ reflects the area where projected doses from design basis accidents at nuclear power plants would not exceed the EPA's protective action guidelines, and we are confident that it would be adequate even for severe accidents. However, the 10-mile zone was always considered a base for emergency response that could be expanded if the situation warranted. The situation in Japan, with four reactors experiencing exceptional difficulties simultaneously, creates the need to expand the EPZ beyond the normal 10-mile radius, based on our limited data and conservative assumptions.
 - The NRC is closely monitoring information about the spent fuel pools as well as radiation levels at the Japanese nuclear power plants. Given the totality of the situation, the NRC's recommendation for U.S. residents within 50 miles of the Fukushima reactors to evacuate remains unchanged. That recommendation was based on actual radiation levels in the nuclear complex.
 - The Japanese government has formally asked for U.S. assistance in responding to nuclear power plant cooling issues triggered by an earthquake and tsunami on March 11.
 - The NRC is coordinating its actions with other federal agencies as part of the U.S. government response. The NRC's headquarters Operations Center was activated at the beginning of the event and has been monitoring the situation on a 24-hour basis ever since.

Frequently Asked Questions

1. What is the Price-Anderson Act?

In 1957, a federal law called the Price-Anderson Act was established to ensure that adequate money would be available to pay insurance claims following an accident at a commercial nuclear power plant. That law is still in place to protect those that live around nuclear power plants.

2. My insurance agent said that my homeowner's insurance does not cover nuclear accidents. Does Price-Anderson protect me?

Your homeowner's insurance policy does not cover nuclear accidents because Price-Anderson covers claims related to nuclear accidents. By law, owners of nuclear power plants are required to purchase \$375 million of offsite liability insurance for each reactor at the plant. If a nuclear accident causes damages of more than \$375 million, the insurance is supplemented by additional coverage that is shared by every nuclear power plant in the country. There are currently 104 reactors licensed to operate in the United States, so this secondary pool of money contains about \$12.6 billion. If all of this secondary money is used, Congress would determine whether to provide additional disaster relief.

3. The Price-Anderson Act is a federal law? Why does the government spend my tax dollars on providing nuclear insurance to big energy companies?

The Price-Anderson Act is a federal law, but your tax dollars do not pay for the insurance it requires owners of nuclear power plants to purchase. The extra insurance protection required for large commercial nuclear power companies is purchased at no cost to the public or the federal government.

4. My insurance company is a nationally known, reputable business that I trust. What insurance company does the nuclear plant use – a good one or the cheapest one they can find?

All U.S. nuclear power plant owners purchase their Price-Anderson insurance from American Nuclear Insurers (ANI), which is made of several large and reputable insurance companies. About half of the ANI companies are foreign insurance businesses. On average, a nuclear power plant owner pays about \$400,000 per year for Price-Anderson insurance at a single-unit reactor site. For power plants with more than one reactor, the total annual insurance cost is typically discounted, similar to automobile insurance for households with more than one car.

5. More than a million people live within 50 miles of Plant X. How is a \$375 million insurance policy supposed to cover all of us?

The Price-Anderson Act is a federal law that requires owners of nuclear power plants to purchase \$375 million of offsite liability insurance for each reactor at the plant. If a nuclear accident causes damages of more than \$375 million, the insurance is supplemented by additional coverage that is shared by every nuclear power plant in the country. There are currently 104 reactors licensed to operate in the United States, so this secondary pool of money

contains about \$12.6 billion. If all of this secondary money is used, Congress would determine whether to provide additional disaster relief.

6. Why does the NRC let a private insurance company determine the amount of insurance coverage? Why does this private company control public protection?

The intent of the Price-Anderson Act was to allow the government to regulate the safety of nuclear power while allowing the private insurance industry to provide financial protection. The NRC is the government agency that is responsible for ensuring that nuclear power plants are designed and operated in a way that protects public health and safety. The NRC is confident that the amount of insurance coverage determined by the private insurance company is adequate to provide financial compensation in the event of a nuclear accident.

7. The accidents in Japan affected the reactors and the spent fuel pools. Does the Price-Anderson Act cover all nuclear plant accidents or just some of them?

The Price-Anderson Act covers all property and liability claims resulting from nuclear accidents at commercial nuclear power plants. This includes any incident related to the reactor or the spent fuel pool. Price-Andersen also covers claims related to transporting nuclear fuel and nuclear waste in and out of the plant.

8. I'll have to find another place to stay if I have to evacuate my home during a nuclear accident. I can't afford to pay for a hotel or apartment for several months while the government tries to clean things up. How am I supposed to pay for that?

Insurance under the Price-Anderson Act covers bodily injury, sickness, disease or resulting death, property damage and loss, and reasonable living expenses for people who are evacuated from a nuclear accident. The Stafford Act is another federal law that provides disaster relief to state and local governments. If a nuclear accident is declared an emergency or major disaster by the President, the Stafford Act will also be available to provide assistance to accident victims. The Stafford Act allows the federal and state governments to share costs of temporary housing for up to 18 months. It also provides additional money for home repair and temporary mortgage or rental payments. Distribution of Stafford Act funding is done through the Federal Emergency Management Agency. Together, the Price-Anderson and Stafford Acts provide money for a variety of expenses following a nuclear accident.

9. Has Price-Anderson ever been used?

Only once. During the 1979 accident at the Three Mile Island Nuclear Power Plant, the Price-Anderson Act provided liability insurance to the public. The day after the accident, insurance company representatives established a local claims office in Pennsylvania. Advertisements were placed in local newspapers to inform residents of claims procedures. The insurance paid for the living expenses of families who decided to evacuate, although evacuation was not immediately ordered. When Pennsylvania's governor recommended the evacuation of pregnant women and families with young children who lived near the plant, the insurance paid for those evacuation expenses, too. In 1979, more than 3000 people received nearly \$1.2 million in evacuation claims. More than 600 people were also reimbursed for lost wages as a result of the accident. In the months after the accident, numerous lawsuits were filed alleging various injuries and property damages. To date, the Price-Anderson insurance has paid about \$71 million in claims and litigation costs associated with the Three Mile Island accident. All payments were made from the primary insurance coverage. Money from the secondary layer of insurance was not needed.

10. When does the Price-Anderson Act expire?

In 2005, the Price-Anderson Act was extended through December 31, 2025.

Press Releases

Press Release (Mar 24,2011) Detection of trace amounts of radioactive iodine around an exhaust stack and others of Kashiwazaki-Kariwa Nuclear Power Station		
TEPCO has measured exhaust air from an exhaust stack and vent of each building of Kashiwazaki-Kariwa nuclear power station with a filter for a week, and detected iodine 131 up to 2.4 X 10 ⁻⁴ (becquerel/cm ²) at the exhaust stacks of all buildings, the exhaust vents of service buildings and auxiliary buildings (Arahama-side) of Unit 3, 5 and 6.		
It slightly exceeded the upper limit (please refer to the Attachment for more information).		
Therefore, TEPCO checked operation conditions and works of all units, readings of high sensitivity off gas monitos", a periodical analysis result of iodine 131 contained in reactor water of Unit 1, 5, 6 and 7 in operation. However, any abnormality was detected.		
It is presumed that iodine 131 released into the atmosphere from Fukushima Daiichi Nuclear Power Station was collected and detected		

in Kahiwazaki-Kariwa Nuclear Power Station was collected and detected in Kahiwazaki-Kariwa Nuclear Power Station, since iodine 131 was detected in radioactivity measurement of the exhaust air of some units and no abnormality of iodine 131 in nuclear water was detected.

Readings of monitoring posts and dust radiation monitors are within the normal range and have little environmental impact. The monitoring posts are located at boundary of the station and measure an ambient dose rate. The dust radiation monitors'² are located beside the monitoring posts.

. Attachment: :measurement result of lodine 131 in Kashiwazaki-Kariwa Nuclear Power Station

- '1: High sensitivity off gas monitor Measurement equipment installed in an off-gas treatment system to detect minimal leakage of radioactive materials from fuel rods to the nuclear water early
- '2: Dust radiation monitor Measurement equipment to monitor radioactivity contained in dust which is collected around boundary of the nuclear power station. Three dust radiation monitors are installed beside the monitoring posts.

attachmentl:measurement result of iodice 131 in Fashawazaki-Karlwa Norlas: Power Station attachment2:Detection of trace amounts of redicactive iodine around an exhaust stack and others of Eashiwazaki-Kariwa Noclear Power

Bback to page fee

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 am March 24th)

[No update from the last release issued at 9:00 pm, March 23rd]

2

- Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 Reactor cold shutdown, stable water level, offsite power is available. 3
- 4
- Neator containment vessel.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint. Other N.A

🖾 back to pase lon

Press Releases

Press Release (Mar 24,2011) Status of TEPCO's Facilities and its services after Tohoku-Taiheiyou-Oki Earthquake (as of 9:00AM)

Due to the Tohoku-Taiheiyou-Oki Earthquake which occurred on March 11th 2011, TEPCO's facilities including our nuclear power stations have been severely damaged. We deeply apologize for the anxiety and inconvenience caused.

Below is the status of TEPCO's major facilities. *new items are underlined

[Nuclear Power Station] Pukushima Daiichi Nuclear Power Station: Units 1 to 3: shutdown due to earthquake (Units 4 to 6: outage due to regular inspection)

 The national government has instructed to evacuate for those local residents within 20km radius of the site periphery and to remain inde for those local residents between 20km and 30km radius of the site periphery. indoors

* Off-site power was connected to Unit 1 to 6.

* Unit 1

The explosive sound and white smoke was confirmed near Unit 1 when the big quake occurred at 3:36pm, March 12th. We have started injection of sea water at 8:20 pm, March 12th, and then boric acid which absorbs neutron into the reactor afterwards.

At approximately 2:30 am, March 23rd, we have started the injection of sea water into the reactor from feed water system.

 Unit 2 At 1:25 pm, March 14th, since the Reactor Core Isolation Cooling System has failed, it was determined that a specific incident stipulated in Clause 1, Article 15 of Act on Special Measures Concerning Nuclear Emergency Preparedness occurred (failure of reactor cooling function).
 At 5:17 pm, March 14th, while the water level in the reactor reached the top of the fuel rod, we have restarted the water injection with the valve omeration. operation.

At approximately 6:14 am, March 15th, the abnormal sound was confirmed near the suppression chamber and the pressure inside the chamber decreased afterwards. It was determined that there is a possibility that something happened in the suppression chamber. While sea water injection to the reactor continued, TEPCO employees and workers from other companies not in charge of injection work started tentative evacuation to a safe location. Sea water injection to the reactor continued.

On March 18th, power was delivered up to substation for backup power through offsite transmission line. We completed laying cable further to unit receiving facility in the building, and at 3:46 pm, March 20th the load-side power panel of the receiving facility started to be energized.

From 3: 05 pm to 5: 20 pm on March 20th, 40 tons of seawater was injected into Unit 2 by TEPCO employees.

At 6:20 on March 21st, white smoke was confirmed arising from the top of the reactor building. As of 7:11 am on March 22nd, smoke decreased to the level where we can hardly confirm.

From around 4 pm to 5 pm on March 22nd, approximately 18 tons of sea water was injected into the spent fuel pool by TEPCO employees.

* Unit 3

Unit 3
 At 6150 am, March 14th, while water injection to the reactor was under operation, the pressure in the reactor containment vessel increased to 530 kPa. As a result, at 7:44 am, it was determined that a specific incident stipulated in article 15, clause 1 occurred (abnormal increase of the pressure of reactor containment vessel). Afterwards, the pressure has gradually decreased (as of 9:05 am, 430 kPa).
 At approximately 11:01 am, March 14th, an explosion followed by white smoke occurred near Unit 3. 4 TSPC0 employees and 3 workers from other companies (all of them are conscious) have sustained injuries and they were already taken to the hospital by ambulances.

taken to the hospital by ambulances. As the temperature of water in the spent fuel pool rose, spraying water by helicopters with the support of the Self Defense Force was considered, however the operation on March 16th was cancelled.

At 6:15 am, March 17th, the pressure of the Suppression Chamber temporarily increased, but currently it is stable in a certain range. On March 20th, we were preparing to implement a measurement to reduce the pressure of the reactor containment vessel (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to take a measure immediately to discharge air containing radioactive material to outside. We will continue to monitor the status of the pressure of the reactor containment vessel. Monitoring will be continued be continued.

In order to cool spent fuel pool, water was sprayed by helicopters on March 17th with the cooperation of Self-Defense Forces.

At approximately past 7:00 pm, March 17th, Self-Defense Forces and the police had started spraying water by water cannon trucks upon our request for the cooperation. At 8:09 pm, March 17th, they had finished the operation.

At 2:00 pm, March 18th, spraying water by fire engines was started with the cooperation of Self-Defense Forces and the United States Armed Forces. At 2:45 pm, March 18th, they had finished the operation.

At approximately 0:30 am, March 19th, spraying water was started with the cooperation of Fire Rescue Task Forces of Tokyo Fire Department started spraying water. At approximately 1:10 am, March 19th, they finished the operation. They resumed spraying water at 2:10 pm. At approximately 3:40 am, March 20th, they finished the operation.

At approximately 9:30 pm, March 20th, spraying water was started with the cooperation of Fire Rescue Task Forces of Tokyo Fire Department. At approximately 3:58 am, March 21th, they finished the operation.

At approximately 3:55 pm, March 21st, light gray smoke was confirmed At approximately 3:35 pm, March 21st, light gray smoke was continued arising from the southeast side of the 5th floor roof of the Unit 3 building, and the situation was reported to the fire department at approximately 4:21 pm. The parameters of reactor pressure vessel, reactor containment vessel, and monitored environmental data remained at the same level. However, employees working around Unit 3 evacuated to a safe location. It is observed the smoke has been decreasing. On March 22nd, the color of smoke changed to somewhat white and it is slowly dissipating.

At approximately 3:10 pm on March 22nd, water discharge into Unit 3 by Tokyo Fire Department's Hyper Rescue and Osaka City Fire Department was conducted and completed at approximately 4:00 PM on the same day. At approximately 10:45 pm on March 22nd, lights in the main operation room

were restored. At 11:00 am on March 23rd, the injection of sea water to spent fuel pool was conducted, and finished approximately at 1:20 pm on the same day.

At 4:20 pm on March 23rd, light gray smoke was observed belching from Unit 3 building. The situation was reported to the fire department at 4:25 pm on March 23rd. The parameters of the reactor, the reactor containment vessel of Unit 3, and monitored figures around the site's immediate surroundings remained stable without significant change. To be safe, workers in the main control room of Unit 3 and around Unit 3 evacuated to a safe location. At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, TEPCO employees confirmed the smoke has disappeared. Accordingly, workers evacuation was lifted.

At approximately 5:35 am on March 24th, sea water injection through Fuel Pool Cooling and Filtering System was initiated.

* Unit 4

Unit 4 At approximately 6:00 am, March 15th, an explosive sound was heard and the damage in the 5th floor roof of Unit 4 reactor building was confirmed. At 9:38 am, the fire near the north-west part of 4th floor of Unit 4 reactor building was confirmed. At approximately 11:00 am, TEPCO employees confirmed that the fire was off.

At approximately 5:45 am on March 16th, a TEPCO employee discovered a fire at the northwest corner of the Nuclear Reactor Building. TEPCO immediately reported this incident to the fire department and the local government and proceeded with the extinction of fire. At approximately 6:15 am, TEPCO staff confirmed at the site that there are no time of fire. no signs of fire.

At approximately 8:21 am on March 20th, spraying water by fire engines was started with the cooperation of Self-Defense Forces and they finished the operation at approximately 9:40 am. At approximately 6:45 pm spraying water was started by Self-Defenses' water cannon trucks and finished at approximately 7:45 pm.

At approximately 6:30 am, March 21st, spraying water by fire engines was started with the cooperation of Self-Defense Forces and the United State Armed Forces. At approximately 8:40 am, March 21, they had finished the operation. On March 21st, cabling has been completed from temporary substation to the

main power center.

From approximately 5:20 pm on March 22nd, water discharge from the concrete pumping vehicle was conducted and ended at approximately 8:30 pm on the same day.

From approximately 10:00 am on March 23rd, water discharge from the concrete pumping vehicle was conducted and ended at approximately 1:00 pm on the same day.

* Unit 5 and 6 At 5 am on March 19th, we started the Residual Heat Removal System Pump (C) of Unit 5 in order to cool the spent fuel pool. At 10:14 pm, we started the Residual Heat Removal System Pump (B) of Unit 6 in order to cool the spent fuel pool.

Unit 5 has been in reactor cold shutdown since 2:30 pm on March 20th. Unit 6 has been in reactor cold shutdown since 7:27 pm on March 20th.

At Units 5 and 6, in order to prevent hydrogen gas from accumulating within the buildings, we have made three holes on the roof of the reactor building for each unit

At approximately 5:24 pm on March 23rd, the temporary Residual Heat Removal System Seawater Pump automatically stopped when its power source was switched. We plan to repair the pump while maintaining the appropriate the water level and the temperature in the reactor.

On March 18th, regarding the spent fuel in the common spent fuel pool, we have confirmed that the water level of the pool is secured. A detailed inspection is under preparation.
 common spent fuel pool: a spent fuel pool for common use set in a separate building in a plant site in order to preserve spent fuel which are transferred from the spent fuel pool in each Unit building.

On March 17th, we patrolled buildings for dry casks and found no signs of abnormal situation for the casks by visual observation. A detailed inspection is under preparation.
 dry casks a metropy of the casks of the casks of the casks.

dry cask: a measure to store spent fuel in a dry storage casks in storages. Fukushima Daiichi Nuclear Power Station started to utilize the measure from August 1995.

* In total 12 fire engines are lent for spraying water to the spent fuel pools and water injection to the nuclear reactors by various regional fire departments' as well as Tokyo Fire Department.

* On March 21st and 23rd, we detected cobalt, iodine and cesium from the seawater around discharge canal of Unit 1, 2, 3 and 4.

On March 20th and 22nd, we detected iodine, cesium and tellurium in the air collected at the site of Fukushima Daiichi Nuclear Power Station.

 * We will continuously endeavor to securing safety, and monitoring of the surrounding environment.

Fukushima Daini Nuclear Power Station:

* The national government has instructed evacuation for those local residents within 10km radius of the periphery.

In order to achieve cold shutdown, reactor cooling function was restored and cooling of reactors was conducted. As a result, all reactors achieved cold shutdown: Unit 1 at 5:00 pm, March 14th, Unit 2 at 6:00 pm, March 14th, Unit 3 at 0:15 pm, March 12th, Unit 4 at 7:15 mm, March 16th.

Since March 12th, we had been preparing measures for reducing the pressure of reactor containment vessels (partial discharge of air containing radioactive materials to outside), but on March 17th, we released such preparation in all Units.

* (Unit 1)

• (Unit 1) As it is confirmed that the temperature of the Emergency Equipment Cooling Water System *1 has increased, at 3:20 pm, March 15th, we stopped the Residual Heat Removal System (B) for the inspection. Subsequently, failure was detected in the power supply facility associated with the pumps of the Emergency Equipment Cooling Water System. At 4:25 pm, March 15th, after replacing the power facility, the pumps and the Residual Heat Removal System (B) have been reactivated.

(Unit 4)
 As it is confirmed that the pressure at the outlet of the pumps of the
 Emergency Equipment Cooling Water System*1 has been decreased, at 8:05 pm,
 March 15th, we stopped the Residual Heat Removal System (B) for the
 inspection. Subsequently, failure was detected in the power supply
 facility associated with the pumps of the Emergency Equipment Cooling
 Water System. At 9:25 pm, March 15th, after replacing the relevant
 facility, the pumps and the Residual Heat Removal System (B) have been
 reactivated.

*1:emergency water system in which cooling water (pure water) circulates which exchanged the heat with sea water in order to cool down bearing pumps and/or heat exchangers etc.

Kashiwazaki Kariwa Nuclear Power Station: Units 1, 5, 6, 7: normal operation (Units 2 to 4: outage due to regular inspection)

[Thermal Power Station]

Hirono Thermal Power Station Units 2 and 4: shutdown due to earthquake Hirono Thermal Power Station Unit 1: shutdown due to earthquake Kashima Thermal Power Station Unit 2: 3, 5, 6: shutdown due to earthquake <u>Higashi-Ohgishima Thermal Power Station Unit 1: currently being restarted</u>

[Hydro Power Station]

All the stations have been restored. (Facilities damaged by the earthquake are now properly under consideration)

[Transmission System, etc.] All substation failed due to the earthquake have been restored.

[Blackout in TEPCO's Service Area] All the blackouts are resolved.

[Supply and Demand Status within TEPCO's Service Area to Secure Stable Power Supply] Backup supply from Shinshinano Conversion Station: 600MW Backup supply from Sakuma Conversion Station: 300MW Backup supply from Higashi Shimizu Conversion Station: 100MW Backup supply from Hokkaido-Honshu Interconnection Facilities: 600MW

Considering the critical balance of our power supply capacity and expected power demand forward, in order to avoid unexpected blackout, TEPCO has been implementing rolling blackout (planned blackout alternates from one area to another) since Mar 14th. We will make our utmost to secure the stable power supply as early as possible. For customers who will be subject to rolling blackout, please be prepared for the announced blackout periods. Also for customers who are not subject to blackouts, TEPCO appreciates your continuous cooperation in reducing electricity usage by avoiding using unnecessary lighting and electrical equipment.

equipment.

[Others]

[Others] Please do NOT touch cut-off electric wires. In order to prevent fire, please make sure to switch off the electric appliances such as hair drier and to shut down the breaker of distribution board when you leave your house. For the customer who has in-house power generation, please secure fuel for

generator.

🖾 back to page fee

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daiichi Nuclear Power Station (as of 11:30 AM Mar 24th)

*new items are underlined

(

All 6 units of Fukushima Daiichi Nuclear Power Station have been shut down.

Unit 1(Shut down)

-Reactor has been shut down. However, the explosive sound and white smoke were confirmed after the big quake occurred at 3:36 pm Mar 12th. It was assumed to be hydrogen explosion.

-At approximately 2:30 am on March 23rd, seawater was started to be injected to the nuclear reactor through the feed water system. -At approximately 10:50 am on March 24th, white fog-like steam arising

from the roof part of the reactor building was observed. -At approximately 11:30 am on March 24th, lights in the main control room

was restored.

-We have been injecting sea water into the reactor pressure vessel.

Unit 2(Shut down)

-Reactor has been shut down and the level of reactor coolant had dropped and the reactor pressure had increased because the Reactor Core Isolation Cooling System stopped. Measures were taken to lower the pressure within the Reactor Containment Vessel and to inject sea water into the Reactor while carefully confirming safety. The level of reactor coolant and the pressure of the Reactor resumed.

-At approximately 6:00 am on March 15th, an abnormal noise began emanating from nearby Pressure Suppression Chamber and the pressure within this chamber decreased.

-At 6:20 pm on March 21st, white smoke was confirmed arising from the top of the reactor building. As of 7:11 am on March 22nd, smoke decreased to the level where we can hardly confirm

-We have been injecting sea water into the reactor pressure vessel.

Unit 3(Shut down)

-Reactor has been shut down. However, the explosive sound and white smoke were confirmed at 11:01am Mar 14th. It was assumed to be hydrogen explosion.

-At 8:30am on March 16th, fog like steam was confirmed arising from the reactor building.

-At approximately 6:15 am on March 17th the pressure of the Suppression Chamber has temporarily increased. We were preparing to implement a measurement to reduce the pressure of the reactor containment vessel (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to take a measure immediately to discharge air containing radioactive material to outside now. We will continue to monitor the status of the pressure of the reactor containment vessel.

status of the pressure of the reactor containment vessel. -At approximately 4:00 pm, March 21st, light gray smoke was confirmed arising from the floor roof of the Unit 3 building. On March 22nd, the color of smoke changed to somewhat white and it is slowly dissipating. -At approximately 10:45 pm on March 22nd, the light in the main control room was turned on.

-At around 4:20 pm on March 23rd, our staff confirmed light black smoke belching from the Unit 3 building. At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, our employee found no signs of smoke. -We have been injecting sea water into the reactor pressure vessel.

Unit 4 (outage due to regular inspection)

-Reactor has been shut down. However, at approximately 6 am on March 15th. We have confirmed the explosive sound and the sustained damage around the 5th floor rooftop area of the Nuclear Reactor Building. -On March 15th and 16th, we respectively confirmed the outbreak of fire at TEPCO: Press Release | Status of TEPCO's Facilities and its services after Tohoku-Taiheiyou-Oki Earthquake (as of 14:30... Page 1 of 4

Q Search

Press Releases Press Release (Mar 24,2011) Status of TEPCO's Facilities and its services after Tohoku-Taiheiyou-Oki Earthquake (as of 14:30PM) Due to the Tohoku-Taiheiyou-Oki Earthquake which occurred on March 11th 2011, TEPCO's facilities including our nuclear power stations have been severely damaged. We deeply apologize for the anxiety and inconvenience caused Below is the status of TEPCO's major facilities. *new items are underlined [Nuclear Power Station] Nuclear rower Station; Fukushima Dalichi Nuclear Power Station: Units 1 to 3: shutdown due to earthquake (Units 4 to 6: outage due to regular inspection) * The national government has instructed to evacuate for those local residents within 20km radius of the site periphery and to remain indoors for those local residents between 20km and 30km radius of the site periphery. * Off-site power was connected to Unit 1 to 6. Unit 3 The explosive sound and white smoke was confirmed near Unit 1 when the big quake occurred at 3:36pm, March 12th. We have started injection of sea water at 8:20 pm, March 12th, and then boric acid which absorbs neutron into the reactor afterwards. At approximately 2:30 am, March 23rd, we have started the injection of sea water into the reactor from feed water system. At approximately 11:30 am, March 24th, lights in the main control room were restored. * Unit 2 Unit 2 At 1:25 pm, March 14th, since the Reactor Core Isolation Cooling System has failed, it was determined that a specific incident stipulated in Clause 1, Article 15 of Act on Special Measures Concerning Nuclear Emergency Preparedness occurred (failure of reactor cooling function). At 5:17 pm, March 14th, while the water level in the reactor reached the top of the fuel rod, we have restarted the water injection with the valve comparison. operation. At approximately 6:14 am, March 15th, the abnormal sound was confirmed near the suppression chamber and the pressure inside the chamber decreased afterwards. It was determined that there is a possibility that something happened in the suppression chamber. While sea water injection to the reactor continued, TEPCO employees and workers from other companies not in charge of injection work started tentative evacuation to a safe location. Sea water injection to the reactor continued. On March 18th, power was delivered up to substation for backup power through offsite transmission line. We completed laying cable further to unit receiving facility in the building, and at 3:46 pm, March 20th the load-side power panel of the receiving facility started to be energized. From 3:05 pm to 5:20 pm on March 20th, 40 tons of seawater was injected into Unit 2 by TEPCO employees. At 6:20 on March 21st, white smoke was confirmed arising from the top of the reactor building. As of 7:11 am on March 22nd, smoke decreased to the level where we can hardly confirm. From around 4 pm to 5 pm on March 22nd, approximately 18 tons of sea water was injected into the spent fuel pool by TEPCO employees. * Unit 3 At 6:50 am, March 14th, while water injection to the reactor was under operation, the pressure in the reactor containment vessel increased to 530 kPa. As a result, at 7:44 am, it was determined that a specific incident stipulated in article 15, clause 1 occurred (abnormal increase of the pressure of reactor containment vessel). Afterwards, the pressure has gradually decreased (as of 9:05 am, 490 kPa). At approximately 11:01 am, March 14th, an explosion followed by white smoke occurred near Unit 3. 4 TEPCO employees and 3 workers from other companies (all of them are conscious) have sustained injuries and they were already taken to the hospital by ambulances. As the temperature of water in the spent fuel pool rose, spraying water by helicopters with the support of the Self Defense Force was considered, however the operation on March 16th was cancelled. * Unit 3 At 6:15 am, March 17th, the pressure of the Suppression Chamber At 6:15 am, March 1/th, the pressure of the Suppression Chamber temporarily increased, but currently it is stable in a certain range. On March 20th, we were preparing to implement a measurement to reduce the pressure of the reactor containment vessel (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to take a measure immediately to discharge air containing radioactive material to outside. We will continue to monitor the status of the pressure of the reactor

containment vessel. Monitoring will be continued. containment vessel. Monitoring will be continued. In order to cool spent fuel pool, water was sprayed by helicopters on March 17th with the cooperation of Self-Defense Forces. At approximately past 7:00 pm, March 17th, Self-Defense Forces and the police had started spraying water by water cannon trucks upon our reque for the cooperation. At 8:09 pm, March 17th, they had finished the operation. our request

At 2:00 pm, March 18th, spraying water by fire engines was started with the cooperation of Self-Defense Forces and the United States Armed Forces. At 2:45 pm, March 18th, they had finished the operation.

At approximately 0:30 am, March 19th, spraying water was started with the cooperation of Fire Rescue Task Forces of Tokyo Fire Department started spraying water. At approximately 1:10 am, March 19th, they finished the operation. They resumed spraying water at 2:10 pm. At approximately 3:40 am, March 20th, they finished the operation.

At approximately 9:30 pm, March 20th, spraying water was started with the cooperation of Fire Rescue Task Forces of Tokyo Fire Department. At approximately 3:58 am, March 21th, they finished the operation.

At approximately 3:55 pm, March 21st, light grav smoke was confirmed At approximately 3:35 pm, March 21st, light gray smoke was confirmed arising from the southeast side of the 5th floor roof of the Unit 3 building, and the situation was reported to the fire department at approximately 4:21 pm. The parameters of reactor pressure vessel, reactor containment vessel, and monitored environmental data remained at the same level. However, employees working around Unit 3 evacuated to a safe location. It is observed the smoke has been decreasing On March 22nd, the apple of employees working around the same levels. How work and the same level how the same level and the same levels are the same levels. But the same levels are appled to a safe the color of smoke changed to somewhat white and it is slowly dissipating.

At approximately 3:10 pm on March 22nd, water discharge into Unit 3 by Tokyo Fire Department's Hyper Rescue and Osaka City Fire Department was conducted and completed at approximately 4:00 PM on the same day. At approximately 10:45 pm on March 22nd, lights in the main operation were restored. room

Now were resolved. At 11:00 am on March 23rd, the injection of sea water to spent fuel pool was conducted, and finished approximately at 1:20 pm on the same day.

At 4:20 pm on March 23rd, light gray smoke was observed belching from Unit 3 building. The situation was reported to the fire department at 4:25 pm on March 23rd.

The parameters of the reactor, the reactor containment vessel of Unit 3, The parameters of the reactor, the reactor containment vessel of Unit 3, and monitored figures around the site's immediate surroundings remained stable without significant change. To be safe, workers in the main control room of Unit 3 and around Unit 3 evacuated to a safe location. At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, TEPCO employees confirmed the smoke has disappeared. Accordingly, workers evacuation was lifted.

At approximately 5:35 am on March 24th, sea water injection through Fuel Pool Cooling and Filtering System was initiated. On March 24th, it was confirmed that 3 workers from other companies who was in charge of cable laying work in the 1st floor and the underground floor of turbine building were exposed to the radiation dose of more than 170 mSv. 2 out of 3 are being transferred to the hospital as it was confirmed that their leg skin were contaminated.

* Unit 4

/

Unit 4 At approximately 6:00 am, March 15th, an explosive sound was heard and the damage in the 5th floor roof of Unit 4 reactor building was confirmed. At 9:38 am, the fire near the north-west part of 4th floor of Unit 4 reactor building was confirmed. At approximately 11:00 am, TEPCO employees confirmed that the fire was off.

At approximately 5:45 am on March 16th, a TEPCO employee discovered a fire at the northwest corner of the Nuclear Reactor Building. TEPCO immediately reported this incident to the fire department and the local government and proceeded with the extinction of fire. At approximately 6:15 am, TEPCO staff confirmed at the site that there are no signs of fire.

At approximately 8:21 am on March 20th, spraying water by fire engines was started with the cooperation of Self-Defense Forces and they finished the operation at approximately 9:40 am. At approximately 6:45 pm spraying water was started by Self-Defenses' water cannon trucks and finished at approximately 7:45 pm.

At approximately 6:30 am, March 21st, spraying water by fire engines was started with the cooperation of Self-Defense Forces and the United State Armed Forces. At approximately 8:40 am, March 21, they had finished the States operation. On March 21st, cabling has been completed from temporary substation to the

main power center.

From approximately 5:20 pm on March 22nd, water discharge from the concrete pumping vehicle was conducted and ended at approximately 8:30 pm on the same day.

From approximately $10:\dot{00}$ am on March 23rd, water discharge from the concrete pumping vehicle was conducted and ended at approximately 1:00 pm on the same day.

Unit 5 and 6 At 5 am on March 19th, we started the Residual Heat Removal System Pump (C) of Unit 5 in order to cool the spent fuel pool. At 10:14 pm, we started the Residual Heat Removal System Pump (B) of Unit 6 in order to cool the spent fuel pool.

Unit 5 has been in reactor cold shutdown since 2:30 pm on March 20th. Unit 6 has been in reactor cold shutdown since 7:27 pm on March 20th.

At Units 5 and 6, in order to prevent hydrogen gas from accumulating within the buildings, we have made three holes on the roof of the reactor building for each unit

At approximately 5:24 pm on March 23rd, the temporary Residual Heat Removal System Seawater Pump automatically stopped when its power source was switched. We plan to repair the pump while maintaining the appropriate the water level and the temperature in the reactor. <u>Repair work is being</u> readucted conducted.

On March 18th, regarding the spent fuel in the common spent fuel pool, we have confirmed that the water level of the pool is secured. A detailed inspection is under preparation.
 common spent fuel pool: a spent fuel pool for common use set in a

separate building in a plant site in order to preserve spent fuel which are transferred from the spent fuel pool in each Unit building.

- On March 17th, we patrolled buildings for dry casks and found no signs of abnormal situation for the casks by visual observation. A detailed inspection is under preparation.
 dry cask: a measure to store spent fuel in a dry storage casks in storages. Fukushima Daiichi Nuclear Power Station started to utilize
- the measure from August 1995.

* In total 12 fire engines are lent for spraying water to the spent fuel pools and water injection to the nuclear reactors by various regional fire departments* as well as Tokyo Fire Department.

 * On March 21st and 23rd, we detected cobalt, iodine and cesium from the seawater around discharge canal of Unit 1, 2, 3 and 4.

* On March 20th,21st and 23rd, we detected iodine, cesium and tellurium in the air collected at the site of Fukushima Daiichi Nuclear Power Station.

We will continuously endeavor to securing safety, and monitoring of the surrounding environment.

Fukushima Daini Nuclear Power Station: Units 1 to 4: shutdown due to earthquake * The national government has instructed evacuation for those local residents within 10km radius of the periphery.

In order to achieve cold shutdown, reactor cooling function was restored and cooling of reactors was conducted. As a result, all reactors achieved cold shutdown: Unit 1 at 5:00 pm, March 14th, Unit 2 at 6:00 pm, March 14th, Unit 3 at 0:15 pm, March 12th, Unit 4 at 7:15 am, March 16th.

Since March 12th, we had been preparing measures for reducing the pressure of reactor containment vessels (partial discharge of air containing radioactive materials to outside), but on March 17th, we released such preparation in all Units.

(Unit 1)

(Unit 1) As it is confirmed that the temperature of the Emergency Equipment Cooling Water System "i has increased, at 3:20 pm, March 15th, we stopped the Residual Heat Removal System (B) for the inspection. Subsequently, failure was detected in the power supply facility associated with the pumps of the Emergency Equipment Cooling Water System. At 4:25 pm, March 15th, after replacing the power facility, the pumps and the Residual Heat Removal System (B) have been reactivated.

• (Unit 4) As it is confirmed that the pressure at the outlet of the pumps of the Emergency Equipment Cooling Water System'l has been decreased, at 8:05 pm, March 15th, we stopped the Residual Heat Removal System (B) for the inspection. Subsequently, failure was detected in the power supply facility associated with the pumps of the Emergency Equipment Cooling Water System. At 9:25 pm, March 15th, after replacing the relevant facility, the pumps and the Residual Heat Removal System (B) have been reactivated.

*l:emergency water system in which cooling water (pure water) circulates which exchanged the heat with sea water in order to cool down bearing pumps and/or heat exchangers etc.

Kashiwazaki Kariwa Nuclear Power Station: Units 1, 5, 6, 7: normal operation (Units 2 to 4: outage due to regular inspection)

[Thermal Power Station] Hirono Thermal Power Station Units 2 and 4: shutdown due to earthquake Hitachinaka Thermal Power Station Unit 1: shutdown due to earthquake Kashima Thermal Power Station Units 2, 3, 5, 6: shutdown due to earthquake Higashi-Ohgishima Thermal Power Station Unit 1: restarted generation at 13:42 PM on March 24th

[Hydro Power Station]
* All the stations have been restored.
(Facilities damaged by the earthquake are now properly under consideration)

[Transmission System, etc.] All substation failed due to the earthquake have been restored.

[Blackout in TEPCO's Service Area] All the blackouts are resolved.

[Supply and Demand Status within TEPCO's Service Area to Secure Stable Power

[Supply and Demand Status within TEPCO's Service Area to Secure Stabl Supply] Backup supply from Shinshinano Conversion Station: 600MW Backup supply from Sakuma Conversion Station: 300MW Backup supply from Higashi Shinizu Conversion Station: 100MW Backup supply from Hokkaido-Honshu Interconnection Facilities: 600MW

Considering the critical balance of our power supply capacity and expected power demand forward, in order to avoid unexpected blackout, TEFCO has been implementing rolling blackout (planned blackout alternates from one area to another) since Mar 14th. We will make our utmost to secure the stable power supply as early as possible. For customers who will be subject to rolling blackout, please be prepared for the announced blackout periods. Also for customers who are not subject to blackouts, TEFCO appreciates your continuous cooperation in reducing electricity usage by avoiding using unnecessary lighting and electrical equipment.

equipment.

[Others]

Please do NOT touch cut-off electric wires. In order to prevent fire, please make sure to switch off the electric appliances such as hair drier and to shut down the breaker of distribution board when you leave your house. For the customer who has in-house power generation, please secure fuel for generator.

B back to page log

http://www.tepco.co.jp/en/press/corp-com/release/11032405-e.html

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 15:00 pm March 24th)

[No update from the last release issued at 9:00 am, March 24th]

- (No update from the last statust intervention of the search of the last status in the last status in the last status intervention of the search of

 - Reactor cold shutdown, stable water level, offsite power is available.
- available. No cooling water is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the pressure restraint. Other N.A.

C back to rage les

4

Press Releases

Press Release (Mar 24,2011) The results of nuclide analyses of radioactive materials in the air at the site of Fukushima Daiichi Nuclear Power Station (3rd release)

On March 22nd 2011, as part of monitoring activity of the surrounding environment, we conducted nuclide analysis of radioactive materials contained in the air which were collected on March 20th and 21st 2011 at the site of Fukushima Daiichi Nuclear Power Station, which was damaged by Tohoku-Chihou-Taiheiyo-Oki Earthquake. As a result, radioactive materials were detected as shown in the attachment. Therefore, we summarized the results and reported them to Nuclear and Industry Safety Agency as well as to the government of Fukushima Prefecture today. (previously announced)

On March 23rd, 2011, we conducted nuclide analysis of radioactive materials contained in the air which were collected on March 23rd, 2011 at the site of Fukushima Daiichi Nuclear Power Station. As a result, radioactive materials were detected as shown in the attachment. Therefore, we summarized the results and reported them to Nuclear and Industry Safety Agency as well as to the government of Fukushima Prefecture today.

We will continue the sampling survey same as this one.

attachmentl:The result of the nuclide analysis of radicactive materials in the air at the site of Fukushima balachi Nuclear Fouer Station (PEF 12.1KF) attachment2:The result of the nuclide analysis of radicactive materials in the air at the site of Fukushima Gaini Nuclear Fower Station (PDF 13.1KB) attachment3:Nuclide analysis of radicactive materials in the air Strucahlas Dalich Nuclear Power Station(Main Gate) (PDF 32.1KB) attachment4:Nuclide analysis of radicactive materials in the air Fukushima Dalich Nuclear Power Station(NF-1) (PDF 33.7KE)

E back to page top

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daiichi Nuclear Power Station (as of 14:00 PM Mar 24th)

*new items are underlined

All 6 units of Fukushima Daiichi Nuclear Power Station have been shut down.

Unit 1 (Shut down)

- Unit 1(Shut down)
 Reactor has been shut down. However, the explosive sound and white smoke were confirmed after the big quake occurred at 3:36 pm Mar 12th. It was assumed to be hydrogen explosion.
 At approximately 2:30 am on March 23rd, seawater was started to be injected to the nuclear reactor through the feed water system.
 At approximately 10:50 am on March 24th, white fog-like steam arising from the roof part of the reactor building was observed.
 At approximately 11:30 am on March 24th, lights in the main control room pare restored.

- room was restored. We have been injecting sea water into the reactor pressure vessel.

- We have been injecting out that any set of the set of the

- Unit 3(Shut down)
 Reactor has been shut down. However, the explosive sound and white
 smoke were confirmed at 11:01am Mar 14th. It was assumed to be hydrogen explosion.
- At 8:30am on March 16th, fog like steam was confirmed arising from
- At 8:30sm on March 16th, fog like steam was confirmed arising from the reactor building. At approximately 6:15 am on March 17th the pressure of the Suppression Chamber has temporarily increased. We were preparing to implement a measurement to reduce the pressure of the reactor containment vessel (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to take a measure immediately to discharge air containing radioactive material to outside now. We will continue to monitor the status of the pressure of the reactor containment vessel. At approximately 4:00 pm, March 21st, light gray smake was confirmed arising from the floor roof of the Unit 3 building. On March 22nd, the color of smoke changed to somewhat white and it is slowly dissipating.

- the color of smoke changed to somewhat white and it is slowly dissipating.
 At approximately 10:45 pm on March 22nd, the light in the main control room was turned on.
 At around 4:20 pm on March 23rd, our staff confirmed light black smoke belching from the Unit 3 building. At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, our employee found no signs of rmoket.
- of smoke. We have been injecting sea water into the reactor pressure vessel.

- Unit 4 (outage due to regular inspection) Reactor has been shut down. However, at approximately 6 am on March 15th. We have confirmed the explosive sound and the sustained damage around the 5th floor rooftop area of the Nuclear Reactor
- damage around the 5th floor roottop area of the nutreal Active Building. On March 15th and 16th, we respectively confirmed the outbreak of fire at the 4th floor of the northwestern part of the Nuclear Reactor Building. We immediately reported this matter to the fire department and the related authorities. TEPCO employees confirmed that each fire had already died down by itself. At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened.

- Unit 5(outage due to regular inspection)
 Preactor has been shut down and the sufficient level of reactor coolant to ensure safety is maintained.
 At 5 am, March 19th, we started the Residual Heat Removal System Pump (C) in order to cool the spent fuel pool.
 At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened.
 At 2:30 pm, March 20th, the reactor achieved reactor cold shutdown. At around 5:24 pm on March 23rd, when we switched the temporary Residual Heat Removal System Seawater Pump, it automatically stopped. We will repair the pump and maintain the reactor water level and the temperature in the reactor properly. Repair work is being conducted.

Unit 6(outage due to regular inspection)
- Reactor has been shut down and the sufficient level of reactor coolant
to ensure safety is maintained.

We are working on receiving external power supply to Units 5 and 6.
We completed the repair work on the emergency diesel generator (A).
At 10:14 pm, March 19th, we started the Residual Heat Removal System Pump (B) of Unit 6 in order to cool the spent fuel pool.
At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened.
At 7:27 pm, March 20th, the reactor achieved reactor cold shutdown.

- Today's work for cooling the spent fuel pools At approximately 5:35 am, we started injecting seawater into the fuel spent pool of Unit 3, using Fuel Pool Cooling and Filtering(clean up) system (FPC). We are considering further spraying at other units and others subject to the conditions of spent fuel pools.

- Casualty 2 workers of cooperative firm were injured at the occurrence of the earthquake, and were transported to the hospital and March 11th. 4 workers were injured and transported to the hospital after explosive sound and white smoke were confirmed around the Unit Ion March 11th. Presence of 2 TEPCO employees at the site is not confirmed on March 11th.
- Presence of 2 lbcub employees at the site is not confirmed on March 11th.
 1 TEPCO employee who was not able to stand by his own holding left chest with his hand, was transported to the hospital by an ambulance on March 12th.
 1 subcontract worker at the key earthquake-proof building was unconscious and transported to the hospital by an ambulance on March 12th.
- March 12th.
- The radiation exposure of 1 TEPCO employee, who was working inside
- The radiation exposure of 1 TEPCO employee, who was working inside the reactor building, exceeded 100mSv and he was transported to the hospital on March 12th.
 2 TEPCO employees felt bad during their operation in the central control rooms of Unit 1 and 2 while wearing full masks, and were transferred to Fukushima Daini Nuclear Power Station for consultation with a medical advisor on March 13th.
 11 workers were injured and transported to Fukushima Daini Nuclear Power Station etc. after explosive sound and white smoke were confirmed around the Unit 3. One of the workers was transported to the UKUSHIMA Medical University Hospital on March 14th.
 At approximately 10 pm on March 22nd, 1 worker who had been working on setting up a temporary power panel in the common pool was injured and transported to Fukushima Daini Nuclear Power Station where the industrial doctor is.
 At approximately 1 am on March 23rd, 1 worker who had been working on transported to Fukushima Daini Nuclear Power Station where the industrial doctor is.
- the industrial doctor is.
- the industrial doctor is. On March 24th, it was confirmed that 3 workers from other companies who were in charge of cable laying work in the 1st floor and the underground floor of turbine building were exposed to the radiation dose of more than 170 mSv. 2 out of 3 are being transferred to the hospital as it was confirmed that their leg skin were contaminated.

Others

We measured radioactive materials (iodine etc.) inside of the nuclear We measured radioactive materials (lodine etc.) inside of the nuclear power station area (outdoor) by monitoring car and confirmed that radioactive materials level is getting higher than ordinary level. As listed below, we have determined that specific incidents stipulated in article 15, clause 1 of Act on Special Measures Concerning Nuclear Emergency Preparedness (Abnormal increase in radiation dose measured at site boundary) have occurred. Determined at 4:17 m Mar 12th (Around Monitoring Post 4)

 Determined at 	4:17 pm Mar 12	th (Around Monitoring Post 4)
 Determined at 	8:56 am Mar 13	th (Around Monitoring Post 4)
•Determined at	2:15 pm Mar 13	th (Around Monitoring Post 4)
 Determined at 	3:50 am Mar 14	th (Around Monitoring Post 6)
 Determined at 	4:15 am Mar 14	th (Around Monitoring Post 2)
·Determined at	9:27 am Mar 14	th (Around Monitoring Post 3)
•Determined at	9:37 pm Mar 14	th (Around main entrance)
 Determined at 	6:51 am Mar 15	th (Around main entrance)
•Determined at	8:11 am Mar 15	th (Around main entrance)
 Determined at 	4:17 pm Mar 15	th (Around main entrance)
 Determined at 	11:05 pm Mar 1	.5th (Around main entrance)
·Determined at	8:58 am Mar 19	th (Around MP5)

·Determined at 8:58 am Mar 19th (Around MP5) From now on, if the measured figure fluctuates and goes above and below 500 micro Sv/h, we deem that as the continuous same event and will not regard that as a new specific incidents stipulated in article 15, clause 1 of the Act on Special Measures Concerning Nuclear Emergency Preparedness (Abnormal increase in radiation dose measured at site boundary) has occurred. In the interim, if we measure a manifestly abnormal figure and it is evident that the event is not the continuous same event, we will determine and notify.

- The national government has instructed evacuation for those local residents within 20km radius of the periphery and evacuation to inside for those residents from 20km to 30km radius of the periphery, because it's possible that radioactive materials are discharged.
 At approximately 10am on March 15th, we observed 400mSv/h at the inlam side of the Unit 3 reactor building and 100mSv/h at the inland side of the Unit 4 reactor building.
 We checked the status of spent fuel in the common pool, and confirmed that the water level secured. We are planning to conduct a detailed inspection.

- inspection. We found no signs of abnormal situation for the casks by visual observation during the patrol activity. A detailed inspection is under preparation.
- preparation. At Units 5 and 6, in order to prevent hydrogen gas from accumulating within the buildings, we have made three holes on the roof of the reactor building for each unit. In total 12 fire engines are lent for the water spraying to the spent fuel pools and water injection to the nuclear reactors by various
- fuel pools and water injection to the nuclear reactors by various regional fire departments as well as Tokyo Fire Department. <u>Also,</u> instruction regarding the setting and operation of large scale <u>decontamination system was provided by Niigata City Fire Headquarter</u> and Hamamatsu City Fire Headquarter.
 Koriyama Fire Department, Iwaki Fire Brigade Headquarters, Fire Headquarters, Usua City Fire Bureau, and Nigata City Fire Bureau.
 On March 21st and 22nd, we detected cobalt, iodine and cesium from the seawater around discharge cnal of Units 1, 2, 3 and 4.
 We detected iodine, cesium and tellurium in the air collected at the site of Fukushima Dalichi Nuclear Fower Station on March 20th, 21st and 22nd. ٠.
- and 22nd 21st
- Until March 22nd, Units 1 through 6 were started to be energized from

the external power source. We will continue to take all measures to ensure the safety and to continue monitoring the surrounding environment around the Power Station.

re back to base too

Q Soarch

Press Releases

Press Release (Mar 24,2011) Implementation Plan of Rolling Blackouts on and after March 25, 2011 Due to the power supply-demand balance, TEPCO has been implementing rolling blackout since Monday, March 14. We sincerely regret causing anxiety and inconvenience to our customers and the society. We appreciate your cooperation in conserving electricity consumption. For customers who will be subject to rolling blackouts, please be prepared for the announced blackout periods. Also, for the customers who are not subject to blackouts, we would appreciate your continuous cooperation in reducing electricity usage by turning off unnecessary lightings and electrical appliances. We would like to inform the implementation plan of rolling blackouts on and after March 25, 2011 as follows. <u>Implementation plan of rolling blackout on March 25 (Fri.)</u> Considering today's electricity supply-demand and tomorrow's weather, regional group and time periods for the planned blackout are as follows. Group 3 6:20-10:00 Group 4 9:20-13:00 Group 5 12:20-16:00 Group 3 13:50-17:30 Group 1 15:20-19:00 Group 4 16:50-20:30 Group 2 18:20-22:00 ...The necessity of the rolling blackouts will be judged depending on the supply-demand balance, and will be informed by 2 hours balance the start of blackouts. ···Rolling blackout will not be implemented. • The actual blackout period for each group is planned to be maximum of 3 hours during the relevant scheduled time period. • Starting and ending time of blackout periods may slightly differ. • Depending on the supply-demand balance of the day, planned blackouts may not be carried out. In case the electricity supply-demand balance becomes tighter than expected, we will reconsider the rolling blackout plan and inform you accordingly before we implement the revised plan. • A blackout may occur in the adjacent areas where the planned blackouts are carried out. <u>Implementation plan of rolling blackouts from Saturday, March 26 to</u> <u>Thursday, March 31</u> Please refer to the "exhibit" for detailed plan. The actual blackout period for each group is planned to be maximum of about 3 hours during the relevant scheduled time period. Starting and ending time of blackout periods will slightly differ day by day. Starting and ending time of blackout periods will slightly differ day by day. Depending on the supply-demand balance hereafter, planned blackouts may not be carried out. Moreover, in case the electricity supply-deman balance becomes tighter than expected, we will reconsider the rolling blackout plan and inform you accordingly before we implement the revised plan. A blackout may occur in the adjacent areas where the planned blackouts are carried out. demand [Others] [Others] In order to prevent fires, please make sure to switch off electric appliances such as hair driers when you leaving home. Please carefully pay attention to the traffic at the crossings in case the traffic lights are suddenly turned off. As for the building and apartment, please be aware that equipment and facility such as elevator, automatic door, automatic lock, and multilevel parking lot will not function. In particular, please avoid using elevators not to be trapped during the blackout. <Reference> oPrediction of demand and supply on March 24 Estimated Demand 38,500 MW (18:00-19:00) Supply Capacity 38,500 MW oPrediction of demand and supply on March 25 Estimated Demand 38,500 MW (18:00-19:00) Supply Capacity 38,500 MW *Prediction of demand Prediction of demand According to the weather forecast, the temperature will be higher than that of today. However, estimated temperature in the evening will be lower due to rain, so we assume estimated peak demand on March 25 will be 38,500MM which is same as today. *Estimated demand and supply capacity may change depending on the situation of the day.

C back to page lea

http://www.tepco.co.jp/en/press/corp-com/release/11032409-e.html

2

ess Release (Mar 24,2011) atus of the Inspection and	Restoration Works F	Performed	l after the Niigata-Chu	etsu-Oki Earthquake (as of March 24)	
are announcing the nconformances at TEP e Nigata-Chuetsu-Ok ease be advised that storation works sinc e support and cooper kushima Daini Nuclea hoku-Chihou-Taiheiyo shiwazaki-Kariwa Nuc	CO's Kashiwazaki- i Earthquake. we have been tem e March 11, 2011, ation to Fukushim r Power Station w -Oki Earthquake.	-Kariwa aporaril as we na Daiic which we We resu	Nuclear Power Staf y suspending a par have been fully di hi Nuclear Power 1 re damaged by the me restoration wo:	tion after rt of the edicated to Station and rks of	
spection/ Restoratio					
> Inspection and rest	toration complete	d betwee	en March 18 to Mar	rch 24,	
2011 (Completed on the	following date)				
- No notable activi	ty during this we	ek.			
Inspection and rest 31, 2011 (To be commenced o			between March 25	to March	
- No notable activi					
> Work Schedule of Ma April 16, 2011	ajor Inspection a	nd Resto	oration from March	a 30 to	
	the Main Incomenti	lon/ Res	toration of the Ka	echiważaki -	
- Work Schedule of Kariwa Nuclear Po Earthquake (durin eference) nconformances Found ter the Niigata-Chue ased on the "Public nspection and Restor	wer Station in Re g 4 Weeks) in the Inspection tsu-Oki Earthquak Announcement Rega	and Re and Re arding N	to the Niigata-Chi storation Works Po onconformance Four	uetsu-Oki Appendix erformed nd in the	
Kariwa Nuclear Po Earthquake (durin eference) nconformances Found ter the Niigata-Chue ased on the "Public	wer Station in Re g 4 Weeks) in the Inspectior tsu-Oki Earthquak Announcement Rega ation Works Perfc o Electric Power ement containing 2011.	and Re arding N- prmed af Company inciden	to the Niigata-Chi storation Works Po onconformance Four ter the Niigata-Ch , Incorporated (Th ts information rep	uetsu-Oki erformed nd in the huetsu-Oki EPCO) ported from	_
Kariwa Nuclear Po Earthquake (durin eference) nconformances Found ter the Niigata-Chue ased on the "Public nspection and Restor arthquake," the Toky rovides this announc arch 17 to March 23, > Incidents Informat:	wer Station in Re g 4 Weeks) in the Inspectior tsu-Oki Earthquak Announcement Rega ation Works Perfc o Electric Power ement containing 2011.	a and Re and Re arding N- prmed af Company inciden the Chue	to the Niigata-Chi storation Works Po onconformance Foun ter the Niigata-Cl , Incorporated (Ti ts information rep atsu-Oki Earthquak	uetsu-Oki erformed nd in the huetsu-Oki EPCO) ported from	7
Kariwa Nuclear Po Earthquake (durin eference) nconformances Found ter the Niigata-Chue ased on the "Public nspection and Restor arthquake," the Toky rovides this announc arch 17 to March 23, > Incidents Informat: From March	wer Station in Re g 4 Weeks) in the Inspectior tsu-Oki Earthquak Announcement Rega ation Works Perfé o Electric Power ement containing 2011. ion (relating to	a and Re and Re arding N prmed af Company inciden the Chue 2011	to the Niigata-Chi storation Works Po onconformance Fou ter the Niigata-Ci , Incorporated (Ti ts information rep atsu-Oki Earthqua) Number of Incid	uetsu-Oki Appendix erformed nd in the huetsu-Oki EPCO) ported from	7
Kariwa Nuclear Po Earthquake (durin eference) nconformances Found ter the Niigata-Chue ased on the "Public nspection and Restor arthquake," the Toky rovides this announc arch 17 to March 23, > Incidents Informat: From March	wer Station in Re g 4 Weeks) in the Inspectior tsu-Oki Earthquak Announcement Regg ation Works Perfc o Electric Power ement containing 2011. ion (relating to 17 to March 23,	a and Re and Re arding N prmed af Company inciden the Chue 2011	to the Niigata-Chi storation Works Po onconformance Fou ter the Niigata-Ci , Incorporated (Ti ts information rep atsu-Oki Earthqua) Number of Incid	uetsu-oki erformed nd in the huetsu-Oki sprCol ported from (e) enis by Announcemeni Categor	7
Kariwa Nuclear Po Earthquake (durin eference) nconformances Found ter the Niigata-Chue ased on the "Public nepection and Restor arthquake," the Toky rovides this announc artch 17 to March 23. From March 24. (Total figure fi No. of Reported	wer Station in Re g 4 Weeks) in the Inspectior tsu-Oki Earthquak Announcement Regg ation Works Perfc o Electric Power ement containing 2011. ion (relating to 17 to March 23,	a and Re and Re arding N prmed af Company inciden the Chue 2011	to the Niigata-Chi storation Works Pe onconformance Four ter the Niigata-Cl , Incorporated (Ti ts information rep stsu-Oki Earthqual Number of Incid (Total figu	uetsu-oki Appendix erformed nd in the huetsu-oki EPCO) ported from (e) ents by Announcement Categor ure from August 10, 2007)	7
Kariwa Nuclear Po Earthquake (durin eference) nconformances Found ter the Niigata-Chue ased on the "Public nepection and Restor arthquake," the Toky rovides this announc arch 17 to March 23, > Incidents Informat: From March (Total figure fi No. of	wer Station in Re g 4 Weeks) in the Inspection tsu-Oki Earthquak Announcement Regg ation Works Perfc o Electric Power 2011. ion (relating to 17 to March 23, from August 10, 1	a and Re and Re arding N prmed af Company inciden the Chue 2011	to the Niigata-Chi storation Works Pr onconformance Four ter the Niigata-Ch , Incorporated (Ti ts information rep atsu-Oki Earthqua} Number of Incid (Total figu I	uetsu-oki Appendix erformed nd in the huetsu-oki EPCO) ported from (e) ents by Announcement Categor ure from August 10, 2007) 0 (0)	¥
Kariwa Nuclear Po Earthquake (durin eference) nconformances Found ter the Niigata-Chue ased on the "Public nepection and Restor arthquake," the Toky rovides this announc arch 17 to March 23, > Incidents Informat: From March (Total figure fi No. of Reported Events <reports from="" march<="" td=""><td>wer Station in Re g 4 Weeks) in the Inspection tsu-Oki Earthquak Announcement Rega ation Works Perfc o Electric Power 2011. ion (relating to 17 to March 23, rom August 10, 0 (10) h 17 to March 23,</td><td>and Recent and Recent</td><td>to the Niigata-Chi storation Works Pe ter the Niigata-Ch , Incorporated (Ti ts information rep etsu-Oki Earthquak Nurmber of Incid (Total figu I II</td><td>uetsu-oki erformed nd in the huetsu-Oki EPCO) ported from (e) erfs by Announcement Categor ure from August 10, 2007) 0 (0) 0 (0)</td><td>× </td></reports>	wer Station in Re g 4 Weeks) in the Inspection tsu-Oki Earthquak Announcement Rega ation Works Perfc o Electric Power 2011. ion (relating to 17 to March 23, rom August 10, 0 (10) h 17 to March 23,	and Recent	to the Niigata-Chi storation Works Pe ter the Niigata-Ch , Incorporated (Ti ts information rep etsu-Oki Earthquak Nurmber of Incid (Total figu I II	uetsu-oki erformed nd in the huetsu-Oki EPCO) ported from (e) erfs by Announcement Categor ure from August 10, 2007) 0 (0) 0 (0)	×
Kariwa Nuclear Po Earthquake (durin eference) nconformances Found ter the Niigata-Chue ased on the "Public nespection and Restor arthquake," the Toky rovides this announc arch 17 to March 23, > Incidents Informat: From March (Total figure fi No. of Reported Events	wer Station in Re g 4 Weeks) in the Inspection tsu-Oki Earthquak Announcement Rega ation Works Perfc o Electric Power 2011. ion (relating to 17 to March 23, rom August 10, 0 (10) h 17 to March 23,	a and Re ce arding Normed af Company inciden the Chue 2011 2007)	to the Niigata-Chi storation Works Pe ter the Niigata-Ch , Incorporated (Ti ts information rep etsu-Oki Earthquak Nurmber of Incid (Total figu I II	uetsu-oki erformed nd in the huetsu-Oki EPCO) ported from (e) erfs by Announcement Categor ure from August 10, 2007) 0 (0) 0 (0)	¥]
Kariwa Nuclear Po Earthquake (durin eferance) nconformances Found ter the Niigata-Chue ased on the "Public nespection and Restor arthquake," the Toky rovides this announc arch 17 to March 23, > Incidents Informat: From March (Total figure fi No. of Reported Events <reports from="" marc<="" td=""><td>wer Station in Re g 4 Weeks) in the Inspection tsu-Oki Earthquak Announcement Rega zoll. ion (relating to 17 to March 23, from August 10, 0 (10) h 17 to March 23, Date of</td><td>a and Re ce arding Normed af Company inciden the Chue 2011 2007)</td><td>to the Niigata-Chi storation Works Pr onconformance Four ter the Niigata-Ch , Incorporated (TI ts information rep atsu-Oki Earthquak Number of Incid (Total figu I II III III</td><td>uetsu-oki erformed nd in the huetsu-oki EPCO) ported from (e) eris by Announcement Categor ure from August 10, 2007) 0 (0) 0 (0) 0 (10)</td><td>¥ </td></reports>	wer Station in Re g 4 Weeks) in the Inspection tsu-Oki Earthquak Announcement Rega zoll. ion (relating to 17 to March 23, from August 10, 0 (10) h 17 to March 23, Date of	a and Re ce arding Normed af Company inciden the Chue 2011 2007)	to the Niigata-Chi storation Works Pr onconformance Four ter the Niigata-Ch , Incorporated (TI ts information rep atsu-Oki Earthquak Number of Incid (Total figu I II III III	uetsu-oki erformed nd in the huetsu-oki EPCO) ported from (e) eris by Announcement Categor ure from August 10, 2007) 0 (0) 0 (0) 0 (10)	¥
Kariwa Nuclear Po Earthquake (durin eferance) nconformances Found ter the Niigata-Chue ased on the "Public nespection and Restor arthquake," the Toky rovides this announc arch 17 to March 23, > Incidents Informat: From March 1 (Total figure fi No. of Reported Events <reports from="" marc<br="">Category</reports>	wer Station in Re g 4 Weeks) in the Inspectior tsu-Oki Earthquak Announcement Regg o Electric Power ement containing 2011. ion (relating to 17 to March 23, rom August 10, 0 (10) h 17 to March 23, Date of Detection	a and Re ce arding Normed af Company inciden the Chue 2011 2007)	to the Niigata-Chi storation Works Pr onconformance Four ter the Niigata-Cli , Incorporated (Ti ts information rep atsu-Oki Earthqual Number of Incid (Total figu I II III III	uetsu-oki erformed nd in the huetsu-oki EPCO) ported from (e) eris by Announcement Category are from August 10, 2007) 0 (0) 0 (0) 0 (10) Status	

Rariwa Nuclear Power Station in Response to the Nilgara-Chuetsu-Oki Earthquaka (during 4 Weeks) (PDF 15.9NB)

Coack to page top

ſ

http://www.tepco.co.jp/en/press/corp-com/release/11032410-e.html

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daiichi Nuclear Power Station (as of 6:00 PM Mar 24th)

*new items are underlined

All 6 units of Fukushima Dailchi Nuclear Power Station have been shut down.

Unit 1 (Shut down)

Unit 1(Shut down) -Reactor has been shut down. However, the explosive sound and white smoke were confirmed after the big quake occurred at 3:36 pm Mar 12th. It was assumed to be hydrogen explosion. -At approximately 2:30 am on March 23rd, seawater was started to be injected to the nuclear reactor through the feed water system. -At approximately 10:50 am on March 24th, white fog-like steam arising from the roof part of the reactor building was observed. -At approximately 11:30 am on March 24th, lights in the main control room was restored.

restored. -We have been injecting sea water into the reactor pressure vessel.

Unit 2 (Shut down)

-At approximately 6:00 am on March 15th, an abnormal noise began emanating from nearby Pressure Suppression Chamber and the pressure within this

From nearby pressure Suppression Chamber and the pressure within this chamber decreased. -At 6:20 pm on March 21st, white smoke was confirmed arising from the top of the reactor building. As of 7:11 am on March 22nd, smoke decreased to the level where we can hardly confirm -We have been injecting sea water into the reactor pressure vessel.

Unit 3 (Shut down)

-Reactor has been shut down. However, the explosive sound and white smoke were confirmed at 11:01am Mar 14th. It was assumed to be hydrogen

explosion. -At 8:30am on March 16th, fog like steam was confirmed arising from the reactor building. -At approximately 6:15 am on March 17th the pressure of the Suppression

At approximately 6:15 am on March 17th the pressure of the Suppression Chamber has temporarily increased. We were preparing to implement a measurement to reduce the pressure of the reactor containment vessel (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to take a measure immediately to discharge air containing radioactive material to outside now. We will continue to monitor the status of the pressure of the reactor containment vessel. -At approximately 4:00 pm, March 21st, light gray smoke was confirmed arising from the floor roof of the Unit 3 building. On March 22nd, the color of smoke changed to somewhat white and it is slowly dissipating. -At approximately 10:45 pm on March 22nd, the light in the main control room was turned on. -At around 4:20 pm on March 23rd, our staff confirmed light black smoke belching from the Unit 3 building. At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, our employee found no signs of smoke. -We have been injecting sea water into the reactor pressure vessel.

Unit 4 (outage due to regular inspection) -Reactor has been shut down. However, at approximately 6 am on March 15th. We have confirmed the explosive sound and the sustained damage around the 5th floor rooftop area of the Nuclear Reactor Building. -On March 15th and 16th, we respectively confirmed the outbreak of fire at the 4th floor of the northwestern part of the Nuclear Reactor Building. We immediately reported this matter to the fire department and the related authorities. TEPCO employees confirmed that each fire had already died down by itself. -At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened.

reactor containment vessel happened.

Unit 5 (outage due to regular inspection) -Reactor has been shut down and the sufficient level of reactor coolant to ensure safety is maintained. -At 5 am, March 19th, we started the Residual Heat Removal System Pump (C) in order to cool the spent fuel pool. -At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened. -At 2:30 pm, March 20th, the reactor achieved reactor cold shutdown. At around 5:24 pm on March 23rd, when we switched the temporary Residual Heat Removal System Seawater Pump, it has stopped automatically. <u>At around 4:14 pm, March 14th, we started replaced pump and at around 4:35 pm, cooling of reactor has restarted.</u> cooling of reactor has restarted

Unit 6 (outage due to regular inspection)
-Reactor has been shut down and the sufficient level of reactor coolant to ensure safety is maintained.
-We are working on receiving external power supply to Units 5 and 6. We completed the repair work on the emergency diesel generator (A).
-At 10:14 pm. March 19th, we started the Residual Heat Removal System Pump (B) of Unit 6 in order to cool the spent fuel pool.
-At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened.
-At 7:27 pm, March 20th, the reactor achieved reactor cold shutdown.

Today's work for cooling the spent fuel pools -At approximately 5:35 am, we started injecting seawater into the fuel

spent pool of Unit 3, using Fuel Pool Cooling and Filtering(clean up)

spent pool of Unit 3, using Fuel Pool Cooling and Filtering(clean up) system (FFC) and finished at 4:05 pm. -At around 2:35 pm, spraying to unit 4 by concrete pump track and finished at around 5:30 pm. "Me are considering further spraying at other units and others subject to the conditions of spent fuel pools.

Casualty

Casualty -2 workers of cooperative firm were injured at the occurrence of the earthquake, and were transported to the hospital on March 11th. -4 workers were injured and transported to the hospital after explosive sound and white smoke were confirmed around the Unit lon March 11th. -Presence of 2 TEPCO employees at the site is not confirmed on March 11th. -1 TEPCO employee who was not able to stand by his own holding left chest with his hand, was transported to the hospital by an ambulance on March 12th. 12th.

12 th. 1 subcontract worker at the key earthquake-proof building was unconscious and transported to the hospital by an ambulance on March 12th. -The radiation exposure of 1 TEPCO employee, who was working inside the reactor building, exceeded 100mSv and he was transported to the hospital intervent building.

reactor building, exceeded 100mSv and he was transported to the hospital on March 12th. -2 TEPCO employees felt bad during their operation in the central control rooms of Unit 1 and 2 while wearing full masks, and were transferred to Fukushima baini Nuclear Power Station for consultation with a medical advisor on March 13th. -11 workers were injured and transported to Fukushima Daini Nuclear Power Station etc. after explosive sound and white smoke were confirmed around the Unit 3. One of the workers was transported to the FUKUSHIMA Medical University Hospital on March 14th. -At approximately 10 pm on March 22nd, 1 worker who had been working on setting up a temporary power panel in the common pool was injured and transported to Fukushima Daini Nuclear Power Station where the industrial doctor is.

doctor is.

doctor is.
At approximately 1 am on March 23rd, 1 worker who had been working on transporting a temporary power panel in the common pool was injured and transported to Fukushima Daini Nuclear Power Station where the industrial doctor is.
On March 24th, it was confirmed that 3 workers from other companies who were in charge of cable laying work in the lat floor and the underground floor of turbine building were exposed to the radiation dose of more than 170 mSv. 2 out of 3 are being transferred to the hospital as it was confirmed that their leg skin were contaminated. They were transferred to FUKUSHIMA Medical University Hospital.

-We measured radioactive materials (iodine etc.) inside of the nuclear

Others
-We measured radioactive materials (iodine etc.) inside of the nuclear
power station area (outdoor) by monitoring car and confirmed that
radioactive materials level is getting higher than ordinary level. As
listed below, we have determined that specific incidents stipulated in
article 15, clause 1 of Act on Special Measures Concerning Nuclear
Emergency Preparedness (Ahnormal increase in radiation dose measured at
site boundary) have occurred.
. Determined at 8:56 am Mar 12th (Around Monitoring Post 4)
. Determined at 2:15 pm Mar 12th (Around Monitoring Post 4)
. Determined at 2:15 pm Mar 13th (Around Monitoring Post 4)
. Determined at 2:15 gm Mar 13th (Around Monitoring Post 4)
. Determined at 4:15 am Mar 14th (Around Monitoring Post 2)
. Determined at 9:37 pm Mar 14th (Around Monitoring Post 3)
. Determined at 9:37 pm Mar 14th (Around Monitoring Post 4)
. Determined at 9:37 pm Mar 14th (Around Monitoring Post 4)
. Determined at 9:37 pm Mar 14th (Around Monitoring Post 4)
. Determined at 9:37 pm Mar 14th (Around Monitoring Post 2)
. Determined at 9:37 pm Mar 14th (Around main entrance)
. Determined at 1:05 pm Mar 15th (Around main entrance)
. Determined at 1:105 pm Mar 15th (Around main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Determined at 1:05 pm Mar 15th (Around Main entrance)
. Deter

-The national government has instructed evacuation for those local residents within 20km radius of the periphery and evacuation to inside for those residents from 20km to 30km radius of the periphery, because it's possible that radioactive materials are discharged.
-At approximately 10am on March 15th, we observed 400mSv/h at the inland side of the Unit 3 reactor building and 100mSv/h at the inland side of the Unit 3 reactor building.
-At around 10:37 am March 21st, water spraying to common spent fuel pool and finished at 3:30 pm (conducted by TEFCO).
-At 3:37 pm, March 24th, electricity supply to common spent fuel pool has started from external power.
-We found no signs of abnormal situation for the casks by visual observation during the patrol activity. A detailed inspection is under preparation.

The balance is a set of the se

-until March 22nd, Units I through 6 were started to be energized from the external power source. "Me will continue to take all measures to ensure the safety and to continue monitoring the surrounding environment around the Power Station.

El back to page len

http://www.tepco.co.jp/en/press/corp-com/release/11032412-e.html

υ

Press Releases

2

3

Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 24th)

[No update from the last release issued at 3:00 pm, March 24th]

- Unit Status

 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure contraint

 - Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 Reactor cold shutdown, stable water level, offsite power is available.
- Neactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Other N.A.

E back to pase los

		C	Search
	·		
	·		
ress	s Releases		
Pre	oss Release (Mar 24.2011)		
	int Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 24th)		
[Nc	o update from the last release issued at 3:00 pm, March 24th}		
Uni	it Status		
1	 Reactor cold shutdown, stable water level, offsite power is available. 		
	 No cooling water is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the pressure restraint. 		
2	 Maintain average water temperature at 100°C in the pressure restraint. Reactor cold shutdown, stable water level, offsite power is available. 		
2	 Maintain average water temperature at 100°C in the pressure restraint. Reactor cold shutdown, stable water level, offsite power is available. No cooling water is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the pressure 		
2 3	 Maintain average water temperature at 100°C in the pressure restraint. Reactor cold shutdown, stable water level, offsite power is available. No cooling water is leaked to the reactor containment vessel. 		
-	 Maintain average water temperature at 100°C in the pressure restraint. Reactor cold shutdown, stable water level, offsite power is available. No cooling water is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the pressure restraint. Reactor cold shutdown, stable water level, offsite power is 		

restraint.
Reactor cold shutdown, stable water level, offsite power is available.
No cooling water is leaked to the reactor containment vessel.
Maintain average water temperature at 100°C in the pressure restraint.
Other N.A.

🖾 back to pase lon

Press Releases Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 24th) [No update from the last release issued at 3:00 pm, March 24th] Unit Status Reactor cold shutdown, stable water level, offsite power is available. No cooling water is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the pressure straint restraint. restraint. Reactor cold shutdown, stable water level, offsite power is available. No cooling water is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the pressure restraint. Reactor cold shutdown, stable water level, offsite power is available. 2 3 Reactor cold shutdown, stable water level, offsite power is available. No cooling water is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the pressure restraint. Reactor cold shutdown, stable water level, offsite power is available. No cooling water is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the pressure restraint. 4 restraint. Other N.A.

🖾 back to page loo

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 24th)

[No update from the last release issued at 3:00 pm, March 24th]

2

- - Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
- restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the second stable. 3
- 4

No cooling water is leaked to the reactor containment vessel. • Maintain average water temperature at 100°C in the pressure restraint. Other N.A.

D back to page log

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 24th)

[No update from the last release issued at 3:00 pm, March 24th]

2

- No cooling water is leaked to the featbor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 Mo cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint. 3
- 4
- restraint. Other N.A.

🖾 back to page loo

http://www.tepco.co.jp/en/press/corp-com/release/11032413-e.html

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 24th)

[No update from the last release issued at 3:00 pm, March 24th]

2

3

4

- - Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.

 - available. No cooling water is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the pressure restraint. Reactor cold shutdown, stable water level, offsite power is .
- Nettor total sufficiency available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure

restraint. Other N.A.

🖸 back to page los

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 24th)

[No update from the last release issued at 3:00 pm, March 24th]

2

- Unit Status
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure control of the state of

 - Maintain average water temperature at 100 C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure maintain restraint.
- restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available. 3
- 4
- A reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.'
 Other N.A.

C back to page les

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 24th)

[No update from the last release issued at 3:00 pm, March 24th]

2

- Unit Status
 1 Reactor cold shutdown, stable water level, offsite power is
 available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure
 control of the state of the s
- Naintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint. 3
- restraint. Other N.A.

ts back to page les

http://www.tepco.co.jp/en/press/corp-com/release/11032413-e.html

I

Q Search

٩

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 24th)

[No update from the last release issued at 3:00 pm, March 24th]

.2

- 3
- 4
- Naintain average water temperature at 100°C in the pressure restraint.
 Naintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Maintain average water temperature at 100°C in the pressure restraint. restraint. Other N.A.

🖾 back to page lep

Press Releases

Press Release (Mar 24,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 24th)

[No update from the last release issued at 3:00 pm, March 24th]

2

- Unit Status 1 · Reactor cold shutdown, stable water level, offsite power is available. No cooling water is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the pressure vertraint
- 3
- Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint.
 Reactor cold shutdown, stable water level, offsite power is available.
 No cooling water is leaked to the reactor containment vessel.
 Reactor cold shutdown, stable water level, offsite power is available.
 Ro cooling water is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the pressure restraint. 4
- restraint. Other N.A.

🖾 back to page los

http://www.tepco.co.jp/en/press/corp-com/release/11032413-e.html

From: Sent: To: Subject: OST05 Hoc Thursday, March 24, 2011 1:51 PM LIA04 Hoc FW: Response to EPA drinking water limits question

FYI

From: Hoc, PMT12 Sent: Thursday, March 24, 2011 1:49 PM To: OST05 Hoc Subject: RE: Response to EPA drinking water limits question

This has been completed.

From: OST05 Hoc
Sent: Thursday, March 24, 2011 12:53 PM
To: PMT03 Hoc; Hoc, PMT12
Cc: OST05 Hoc; LIA04 Hoc
Subject: FW: Response to EPA drinking water limits question

PMT- forwarding this to PMT for response.

Thank you, -Maria Arribas-Colon

From: Henderson, Pamela
Sent: Thursday, March 24, 2011 10:19 AM
To: OST05 Hoc
Cc: McNamara, Nancy; LIA04 Hoc; LIA03 Hoc; PMT03 Hoc; Hoc, PMT12; Tifft, Doug
Subject: RE: Response to EPA drinking water limits question

Maria,

I believe that RASCAL would utilize NRC limits?

From the EPA website.... EPA bases drinking water limits on a dose of 4 mrem/year to total body or any critical organ. For I-131 the limit is 3 pCi/liter. For Cs-137 the limit is 200 pCi/liter.

From: OST05 Hoc
Sent: Thursday, March 24, 2011 10:12 AM
To: Tifft, Doug; Henderson, Pamela
Cc: McNamara, Nancy; OST05 Hoc; LIA04 Hoc; LIA03 Hoc
Subject: RE: Response to EPA drinking water limits question

Good morning Doug,

I just verified the numbers and the units with RASCAL folks in PMT, and it was confirmed that they are correct.

If you have any additional question on this, please contact PMT at (301) 816-5499.

BBBB | 157

Thank you, -Maria Arribas-Colon

From: Tifft, Doug
Sent: Thursday, March 24, 2011 7:59 AM
To: OST05 Hoc; LIA04 Hoc
Cc: Henderson, Pamela; McNamara, Nancy
Subject: RE: Response to EPA drinking water limits question

This doesn't sound right. I expected the units to be in pCi/L. And I'd also expect that the limits for one year olds would be lower than the limits for adults.

Would you mind double checking with your EPA contact what the EPA drinking water limit is for I-131 and Cs-137?

I've also got the question in to one of my Regional EPA contacts.

Thanks, -Doug

From: OST05 Hoc

Sent: Wednesday, March 23, 2011 7:45 PM
To: Henderson, Pamela; Barker, Allan; Browder, Rachel; Erickson, Randy; Logaras, Harral; Maier, Bill; McNamara, Nancy; Tifft, Doug; Trojanowski, Robert; Woodruff, Gena
Cc: OST05 Hoc; LIA04 Hoc; Easson, Stuart; Flannery, Cindy; Lukes, Kim; Maupin, Cardelia; Noonan, Amanda; Rautzen, William; Rivera, Alison; Ryan, Michelle; Turtil, Richard; Virgilio, Rosetta
Subject: Response to EPA drinking water limits question

Doug/Pam,

This email is in response to your question on the EPA drinking water standards limits for lodine-131 and Cesium-137. See below.

lodine-131 One year old: 167 Bq/Kg Adult: 2420 Bq/Kg

<u>Cesium-137</u> One year old: 2990 Bq/Kg Adult: 1360 Bq/Kg

Thank you, -Maria Arribas-Colon

2011/3/19 23:0

招島第二(2F) (事業者のモニタリングポスド)

3月19日								-											•			
モニタリングポスト	-18:20		18:A0			19:10		19:30	and the second se			20:10										21:50
$MP1(\mu Sv/h)$															16.610							
$MP2(\mu Sv/h)$	10.193	10.157	10,167	10.163	10.167	10.153	10.143	10.133	10.107	10.090	10.083	10.103	10.083	10.097	10.077	10.077	10.080	10.037	10.000	10.730	9.990	10.027
MP3(#Sv/h)															16.760							
$MP4(\mu Sv/h)$															11.513							
MP5(#Sv/h)															11.387							
MP6(#Sv/h)	12,960	12.967	12.937	12,930	12.887	12.917	12.863	12.933							12.837	12.827	12.787	12.807	12.800	12,770	12.793	12.787
MP7(µSv/h)	欠割	欠制。	欠割	欠辺	欠迥	欠渴	欠割				欠湖				欠割	欠别	欠測	欠别"	欠調	欠调	欠割	欠别
S. A	西	西北西	北西	西北西	西	西北西	西北西	西北西	西北西	西北西	西北西	西北西	北北西	北北西	北	南	南	南南西	西南西	西南西	西南西	西
回速(m/s)	2.6	3.5	1.8	2.5	3.7	2.7	5.3	6.5	5.5	4.7	. 2.6	1.4	1,6	1.8	0.9	3.2	1.9	°. 1.8	3.4	5.1	8.8	10.6

ĴŊ.			• •		
面目	3月19日				
	モニタリングポスト	- 22:00	22:10	-22:20	22:30
111	MP1(USv/h)	18.517	15.483	16.470	16.470
28208	MP2(# Sv/h)	10.017	10.003	9.997	9.973.
- HCB -	$MP3(\mu Sv/h)$	16.657	16.657	18.603	16.663
R	MP4(µSv/h)	11.457	1.1.457	11.447	11.443
03424	MP5(#Sv/h)	11,367	11.373	11.367	11.313
26	MPG(4Sv/h)	12.747	12.730	12.743	12.7.30
	$MP7(\mu Sv/h)$	欠測	欠周	欠測	欠渕
1.	影向	西北西	西	西南西	西
1 1	国速(m/s)	11.9	10.8	5.7	4.8
1					

いた

35208

假御

リエリーン 新·2F

夏有《五次 动物子和王

2011/3/19 23:0:

福島第二(2F)(事業者のモニタリングポスト)

(時52份

	•											•										
3月19日										م					•							_
モニタリングポスト	7:20			7:50	8:00	8:10	8:20	8:30	8:40	8:50	9:00	9:10	9:20	9:30	9:40	9:50	10:00	10.to	10:20	10:30	10:40	105
$MPI(\mu Sv/h)$	17.4	17.4	17.3	17.3	17.3	17.3	17.3	17.3	17.2	17.2	17.2	17,1	17.0	17.1	17.1	17.1	17.0	16.9	17.0	16.9	16.9	16.9
$MP2(\mu Sv/h)$	10.6	10.5	10.5	10.5	10.5	10.5	10.5	10.4	10.4	10.4	10.3	10.3	10,3	10.2	10.8	10.2	10.2	10.2	10.2	10.2	10:1	18.1
$MP3(\mu Sv/h)$	17.7	17.7	17.7	17.7	17.7	17.6	17.7	17.6	17:7	17.6	17.6	17.5	17A	17.4	17.5	17.4	17.4	17.4	17.4	17.3	17.3	17.3
MP4(µSv/h)	12.4	12.4	12,3	12.3	12.3	, 12.8	12:3	12.3	12.2	12.2	12.2	12.2	12.2	12.2	12.1	12.1	12.1	12.1	12.1	12.0	12.0	12.0
$MP5(\mu Sv/h)$	11:0	11.0	10,9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	· 10,8
$MP6(\mu Sv/h)$	欠別	欠到	欠測	欠汎	欠測	欠测	欠調	欠測	欠減	欠渕	欠别	欠测	欠測	欠週	欠烈	欠週	欠别·	欠測	欠割	欠測	欠测.	欠测
MP7(12Sv/h)	欠割	欠別	欠测	欠湖	欠調	欠測	欠潮	欠測	欠潮	欠測	欠别	欠割	欠润	欠測	欠測	欠到	欠別	欠周	欠測	欠測、	欠測	欠湖
風向	南南西	夏	南南西	南南西	PN .	南西	Ē	南西	A	南	開開來	南	南	南	N	度	國	南小	南	南南東	南東	南東
图速(m/s)	4.2	4.0	3.9	- 44	5.5	5.8	1.7	2,9	2.5	1.7	3.5	41	4,3	6.3	6.4	7.7.	6.8	7.1	7.8	8,1	4.6	5.
		•	•										`#								-	
3月19日		*							*	•					<u>.</u>		· · · ·	·	•			
モニタリングポスト	.11:00	11:10	11:20	11:30	11:40	11:50	12:00	12:10	12:20	12:30	12:40	12:50	13:00	13:10	13:20	13:30	13:40	13,50	14:00	14:10	14:20	
MPI(µSv/h)	16.9	16.9	16.9	16.9	16.8	16.9	16.8	16.8	15.8	16,8	16.8	16.8	16.8	16.8	16.8	16.8	76.8	16.8	16.7	18.8	15.7	16
$MP2(\mu Sv/h)$.10.8	10.6	10.6	10.6	10.6	10.6	10.6	1D.6	10.5	.10.5	10.5	10.4	10.5	10.5	104	10,4	10.4	10.4	10.4	10.2	10.3	.10
MP3(4SV/h)	17.3	17.2	17.2	17.1	17.1	17.1	17.1	17.0	17.0	-17.1	17.0	17.0	17.0	17.0	17.0	17.0	10.9	16.9	17.0	17.0	16.9	16
$MP4(\mu Sv/h)$	12.0	12.0	12.0	11.9	11.9	11.9	11.8	11.8	11.8	11.8	11.8	11.8	.11.8	11.8	11.8	11,7′	11.8	11.74	11.7	11.7	11.7	. 11
$MP5(\mu Sv/h)$	10.8	10.8	10,8	,10.8	10.8	10.8	10.8	18.6	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.7	10.7	10.8	10.7	10.7	10.7	10
MPG(#Sv/h)	欠制	欠迎	欠测	欠調	欠測	"欠刑	欠測	欠凋	欠别	欠退.	欠別	欠遇	欠测	欠划	欠測	欠割	欠潤	欠观	欠潤	欠测	欠别	欠说
$MP7(\mu Sv/h)$	欠鴉	欠別	欠调	欠测	欠刑	欠郡	欠別	欠泅	欠週	欠潮	欠別	欠调	欠迴	次刻	欠測	次测	欠測	欠測	欠酒	欠冽	次測	欠調
風向	南南東	南南东	南南東	東南	南南東	南南東	南南東	南南東	南南東	南南東	南南西	西	西	西	囲	西北西	西北西	西	西	西	西	25
图谜(m/s)	7.5	8.0	. 8.3	6.3	7.4	8.3	8.2	9.4	• 6.3	5.6	5.0	8.9	11.2	10.2	11.9	11.0	7.2	6.0	7,1	5.8	8.6	5
			4				•	•				_	7									
3月10日		*	•		<u> </u>														۰.	•.	·	
モニタリングポスト	14:40	14:50	15:00	15:10	15:20	15:30	15:40		16:00	16:10	16:20	16:30	16:40	16:50	17:00	17:10	17:20	17:30	17:40	17:50	18:00	18:1
MPI(#Sv/h)	.16.7	16.7	16.7	16.7	16.7	16.7	16,7	6.6	16.6	16.5	16.5	16.5	16.5	16.5	16.4	16.913	16,867	16.840	16.890	18.820	16.800	18.82
$MP2(\mu Sv/h)$	10.3	10.2	10.3	10.3	10.3	10.2	10,2	10.2	10.2	10.2	10.2	10.2	10:2	10.2	10.2	10.220	10.190	10.220	10.180	10.210	10,207	10.16
					100	16.9	16.9	18.9	16.9	16.9	16.8	16.8	16.9	16.8	16.8	17.027	17.067	17.003	17.040	17.027	17.007	18.99
MP3(μ Sv/h)	16.9	16.9	16.9	16.9	16,9	10.9	10.5	14.4			and the second se											
		16.9 11.7	16.9 1-1.7	16.9	10,9	10.5	11,6	11.8	11.5	11.6	11.6	11.5	11.6	11.5	11.5	11.633	11.640	11.683	11.680	11.647	11.650	11,66
MP3(μ Sv/h)	16.9		1-1.7 10.5	11.7 10.6	- 11.6 10.5	11.6 10.6	and the second se				11.6 • 10.4	11.5 10.4	11.6 10.4	11.5 10.4	10.3	and the second second			11.680 11.567		11.660	-
MP3(µSv/h) MP4(µSv/h)	16.9 11.7	11.7	1-1.7 10.5 欠測	11.7 10.6 欠測).11.6 10.5 (欠測)	11.6	11,6	11.8	11.5	11.6		the second s	and the second second	the second s	_	11.567	11.560	11.567				11.56
MP3(µSv/h) MP4(µSv/h) MP5(µSv/h)	16.9 11.7 10.6	11.7 10.6 欠別 欠別	11.7 10.5 欠測 欠測	11.7 10.6	-11.6 10.5 欠測 欠測	11.6 10.6 欠期 欠期	1·1,6 10.5	<u>11.8</u> 10.4	11.5 10.4 欠測 欠測	11.6 [°] 10.4	· 10A	10.4	10.4	10.4 欠測 欠別	10.3	11.567	11.560	1(.567	11.567	11.567	11,567	11.56 12.95
MP3(µSv/h) MP4(µSv/h) MP5(µSv/h) MP5(µSv/h)	16.9 11.7 10.6 欠划	11.7 10.6 欠別 欠別	1-1.7 10.5 欠測	11.7 10.6 欠測).11.6 10.5 (欠測)	11.6 10.6 欠測 欠測	11,6 10.5 欠別	11.8 10.4 欠潤 欠潤 西	11.5 10.4 欠潤 欠潤 西	11.6 10.4 欠別 欠別 西	·10A 欠測 欠测 西	10.4 欠别	10.4 欠測	10.4 欠測 欠別 西	10.3 欠潮	11.567 13.020	11.560 12.997	1(.567 19,003	11.567 12.970	11.567' 12.960	11,567	11.56 12.95 欠限
MP3(μSv/h) MP4(μSv/h) MP6(μSv/h) MP6(μSv/h) MP7(μSv/h)	16.9 11.7 10.6 欠卿 欠卿	11.7 10.6 欠別 欠別	11.7 10.5 欠測 欠測	11.7 10.5 欠測 欠測	-11.6 10.5 欠測 欠測	11.6 10.6 欠期 欠期	11,6 10.5 欠別 欠測	11.8 10.4 欠潤 欠潤	11.5 10.4 欠測 欠測	11.6 10.4 欠潮 欠剤	· 10.4 欠潤 欠潤	10.4 欠別 欠別	10.4 欠測 欠測	10.4 欠測 欠別 西	10.3 欠潮 欠期	11.567 13.020 欠別	11.560 12.997 欠測	11.567 13.003 次測	11.567 12.970 欠割 西	11.567′ 12.960 欠測 西	11,567 12.980 欠測 西	11.66 11.56 12.96 欠限 西北百 3.

÷.

福島第二(2F)(事業者のモニタリングポスト)

	3月18日								•	•											,			
	モニタリングポスト	22:00	22;10	22:20	22:30	22:40	22:50	23:00	23:10	23:20	23:30	23:40	23:50	-							•			•
	MPI(µSV/h)	18.5	18.5	18.5	18.4	18.4	18.4	18.3	18.3	18.3	18.3	18.2	18.2		•	• •	-							
	$MP2(\mu Sv/h)$	112	11.2	11.1	11.2	-11.1	11.1	11.2	11.1	11.1	11:1.	11.1	11.1	-										
	MP3(µSv/h)	18.8	18.8	18.8	18.8	18.7	18:7	18.7	18.7	18.7	18.7	18.7	18.8	•							•			1.5
1.	$MP4(\mu Sv/h)$	13.0	19.0	13.0	13.0	13.0	13.0	13.0	13.0	12.9	13.0	12.9	- 129		· .									
•,	MP5(µSv/h)	11.8	11.9	11.6	11.6	11.8	11.9	11.9	11.7	11.7	11.7	. 11.7	11.7		•								•	
	MP6(#Sv/h)	欠測	欠刑	欠測	欠測	欠測	.欠到	欠別	欠观	欠鴉	欠割	欠測	欠测				•				•	:	•	
	$MP7(\mu Sv/h)$	欠訓	欠潤	欠測	欠測	欠割	欠别	欠洩	欠涸	欠遇.	欠別	、欠測	欠週		<i>L</i> .		р 		•					
,	風向	西	Ð	西		西南西	南西	西南西	南西	南西	南西	常西	南		1	•				. •			•	
	風 速(m/s)	5.0	5.0	3.9	4.5	3.9	2.5	2.6	2.3	2.0	2.5	1.7	. 1.4	•				•	•					,•
<u>م</u> ه.					•																	\$		•
行目初	3月19日				-																•	<u></u>		
	モニタリングポスト	0:00			test test test test test test test test	0:40	0:50	1:00													3:10	and the second second second	3:30	
IFUR	$MP1(\mu Sv/h)$	18.2	-18.2	.18.2.	18.2	18.1	18.1	18.1	18.1	18.1	• 18.1	18,0	18.0	17.9	18.0	18.0	17.9	. 17.8	17,9	17.8	17.8	17.9	17.8	
YE	$MP2(\mu Sv/h)$	11.1	10.9.	11:0	11.0	11.0	10.8	10.9	10.9	10.9	10.8	10.9	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	•
لسابة	$MP3(\mu Sv/h)$	18.7	18.7	18.6	18.0	18.5	.18.5.	18.5	18.5	18.5	18,4	18.4	18.4	18.4	18,4	18.3	18.4	18.3	18.9	18:3	18.2	18.3	18.2	
8	$MP4(\mu Sv/h)$	12.9	12.9	12.9	12.9	12,8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.7	12.8	12.7	12.7	12.7	12.7	12.7	12.7	12.7	
06434	MP5(μ SV/h)	11.7	11.7	11.7	11.6	11.7	11.7	11.7	11.7	11.6		11.6	11.5	11.6	11.6	11.8	11.5	11.6	11.6	11.5	11.5	11.5	11.5	
5	$MP6(\mu Sv/h)$	・欠測・	欠測	欠測	欠測	欠别	欠測	欠恐	欠割	欠割	欠別	欠測	欠刑	欠烈	欠割	欠週	欠測	欠刑	欠刑	欠別	欠测	, 欠利	欠到	
	MP7(µSv/h)	欠測	欠測	欠劉	欠潟	欠別	欠測	欠割	欠測	欠割	欠辺	欠測	欠刑	欠別	欠測	欠潤	欠到	欠割	欠副	欠週	欠別	欠到	欠測	
	開向	南西	南西	南西	M	南	. P	南	- A	開南西		南南西		潮	· AA	南	. 1	莆.	南	南	南	兩	• 79	
	图速(m/s)	- 0.3	1.6	1.4	0,6	0.6	1.2	1.5	. 3.5	3.6	3.6	5.4	5.1	5.8	6.5	6.6	5.8.	5,6	4.9	44	3.5	4.1	5.8	
			•		•	•			•			•				•	:	•	· ,			,	٠	
1	3月19日				·							1			6 6 6	A 40	0.40		0.00					
1	モニタリングポスト	3:40		4:00						5:00				the second s			and the second			and the second second second				
	MP1(µSv/h)	17.8	the second s	17.7	17.7	17.6	17.0	in the second	17.6	17.8		17.6	The second s	17.6	the second second second	17.5	17.5	17.5	17.5	17.5	17.5	17.4.	17.4	,
	MP2(USV/h)	10.7		10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10,7	10.7	10.7	10.6	10.7	10.6	10.6	10.7	10.6	10.6	ł
	MP3(12SV/h)	18:2	18.2	18.2	18.1	18.0	18.0	the second s	17.9	18.0	17.9	17.9	17.9	17.8	17.9	17.8	17.8	17.8	· 17.8	17.8	17.7	17.7	17.8	
	$MP4(\mu Sv/h)$	12.7.	and the second data	12.8	12.6	12.6	12.6	12,6	12.6	12.5	12.6	12.6	125	12.5	12.5	12.5	12.5	12.4	12.4	12.4	12.4	12.4	12.4	
1212	$MP5(\mu Sv/h)$	11 <i>A</i>	11.5	11.4	11.4	11.5	11.4	11.4	11.4	11.4	- 11.3	11.3	11.3	.11.2	11.2	.11.2	11.1	11.1	11.1	11.2	11.1	11.0	11.0	
曲頭	$MP0(\mu Sv/h)$	欠測	欠利	欠制	欠刑	欠刑	欠測	欠割	欠週	欠測	欠割	次別	欠別	欠迎·		欠測	欠週	次割	欠別	欠汎	欠測	欠别	欠別	l
	$MP7(\mu Sv/h)$	欠川	欠潮	欠週	欠别	欠割	欠副		欠遇	欠測	欠刑	欠籾	欠别	欠測	欠利	欠別	次烈	欠到	欠調	欠刑	欠測	欠別	欠割	
10	服向	南南西	A	南	南	क्राक ट्य	南	() ()	R	the second s	南南西	and the second se			南南西		南南西	開	南	南	南	the second s	南南西	1
3A208	· ////////////////////////////////////	4,9	3.3	3.8	4.0	5.9	5.6	3,6	5.1	5.2	5.9	5.0	7.2	8.3	6.6	6.1	.6.1	6.2	7.7	6.4	6.5	6.0	5.7	
CE	5 1	•	·		•				۰.							· .								•
0	un de la seconda d				•					•	•			.,				÷					•	*
IE52		•	.,				•	· +,					2. S		;	••		•		-	P.5. #*			•
2	ت پ		•			7			•	-	•		•	•								ι.		

2011/3/19 23:1

福島第二(2F)(事業者のモニタリングポスト)

3A188									Y 10 U.L			1 1									Po. Inte	
モニタリングポスト	11:00	11:10	11:20	11:30	11:40	11:50	12:00	12:10	12:20	12:30	12:40	12:50	13:00	13:10	13:20	13:30	13:40	13:50	14:00	14:10	14:20	14:30
MP1(uSv/h)	19.4	19.4	19,4	19.3	19.3	19.3	19.3	19.2	19,2	19.2	.19.2	19.2	19.4	19.3	19.4	19.6	19.6	19.8	19.3	19.3	19.2	19.2
MP2(µSv/h)	11.7	11.7	11.7	11.7	11.7	11.7	11.6	11.6	11.6	11.6	11.6	11.6	11.7	11.7	11.9	11.8	12.0	12:2	11.7	11.7	11.6	11.6
MP3(USV/h)	19.8	19.8	19.8	19.8	19.6	19.7	19.7	19.5	19.6	19.5	19.6	19.5	19.6	19.5	19.8	19.8	20.0	19,9	19.7	19.6	19.6	19.5
MP4(usv/h)	13.8	13.8	13.7	13.8	13.8	13.7	.13.7	13.7	13.7	13.7	13.6	13.6	18.7	13.7	13.8	13.8	14.1	14.1	13.8	13.8	13.8.	13.7
MP5(µSv/h)	12.4	12.4	12.3	12.4	123	12.3	12.2	12.2	12,2	12.2	12.2	12.2	12.3	12.2	12.5	12.5	12.5	12.5	12.5	12.3	12.3	12.3
MP6(µSv/h)	欠割	欠潮	欠測	欠测	欠減	欠測	欠測	欠测	欠潮	欠測	欠測	欠測	欠測	欠測	欠測	欠潮	欠測	欠測	欠憲	欠遇	欠渊	欠測
MP7(usv/h)	欠測	欠潮	欠測	欠測	欠課	欠測	欠測	欠测	欠測	欠測	欠測	欠測	欠測	欠潮	欠測	欠調	欠測	欠測	欠測	欠割	欠測	欠测
風向	北西	西	南西	南南東	南南東	南	南南東	南東	南東	南東	南南東	南東	南東	南東	南東	南東	南東	南東	東南東	東南東	東	柬
風速(m/s)	2.7	1.9	2.1	5A	5.6	5.7	5,8	5.4	5.1	5.7	4.9	3.8	. 3.6	4.4	3.0	4.1	3.6	1.9	3.7	4.2	4.3	4,5
8月18日 モニタリングポスト	14:40	14:50	15:00	15-10	15:20	15:30	15:40	15:50	16:00	16:10	16:20	16:30	16:40	16:50	17:00	17:10	17:20	17:30	17:40	17:50	18:00	18:1
MP1(µSv/h)	19,1	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19.0	19.0	18.9	18.9	18,9	18.8	18.8	18.7	18.7	18.7	18.7	18.7	18.7	18.7
MP2(µSv/h)	11.6	11.6	11.6	11.6	11.6	11.6	11.5	11.5	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.3	-11.3	11.3	11.3	11.3	11.3	11.3
MPa(#Sv/h)	19.5	19.5	19,5	19,5	19.4	19.4	19.4	19.3	19.3	19.3	19.3	19.2	19.3	19.2	19.2	19.2	19.2	19.1	19,1	19.0	19.1	19.1
MP4(# Sv/h)	13.7	13.7	13.7	13.7	13.7	13.6	13.8	13.5	13.5	13.4	13.A	13.4	13.4	13.4	18.4	13.4	13.3	13.4	13.3	13.3.	13.4	13.3
MP5(µSv/h)	12.2	.12.2	12.3	12.2	12.2	12.0	12.0	12.0	12.0	12.0	12.0	11.9	11.9	11.9	. 11.9	11.9	11.9	11.9	11.9	11.9	11.9	11.8
MP6(µSv/h)	欠測	欠調	欠測	欠測	欠調	欠測	欠測	欠測	欠調	欠測	欠測	欠測	欠測	欠湯	欠測	欠測	欠謝	欠測	欠測	欠潮	欠别	欠测
MP7(#Sv/h)	欠測	欠湯	欠剐	欠割	欠潤	欠測	欠測	欠測	欠割	欠測	欠創	欠測	欠測	欠测	欠測	欠測	欠潤	欠測	欠别	欠测	欠潮	欠測
图向	東南東	南東	東南東	東南東	南東	南東	南南東	南	南東	東南東	南	南南東	南南東	. 啊 ·	南南東	南南東	南南東	南	南	南	南	附
風速(m/s)	3.3	3.1	2.9	2.8	3.3	2.5	3.0	1.7	2.2	0.6	2.2	2.4	1.4	23	3.9	2.4	2.0	2.0	1.7	3.3	2.5	2.2
3月18日		10.10	1 10.00	1. 10. 50		10.10	19:20	19:30	19:40	19:50	20:00	20:10	20:20	20.30	20:40	20:50	21:00	L	1 0100			
モニタリングポスト	18:20	Service and the service of the servi	And a second sec	No. of Concession, Name	Survey of the local division of the local di	19:10	States and a state of the state of the	And the second se	and the second se	State of the local division of the local div	And in case of the local data in the local data	Statements on the Statement of Statement		Party Charles	And in case of the local division in the loc	of the local division of the local division of the	Company of the local division of the local d	Statement of the local division in the local	And I wanted to be a second of the second of	States of the second seco	And in case of the local division of the loc	21:5
MP1(µSv/h)	18.7	18.7	18.7	18.7	18.7	18.7	18.6	18.5	18.5	18.7	18.6	18.6	18.6	18.6	18.6	18.6	18.6	18.6	18.5	18.5	18.5	18.5
MP2(4 Sv/h)	11.3	11.3	11.3	11.3	11.3	19.0	18.9	18.9	18.8	18.9	11.3	18.9	18.8	11.2	11:3	11.2	11.2	11.2	11.2	18.8	11.2	11.2
MP3(µSv/h)	19.0	13.3	13,3	18.3	13.3	13.3	13.3	13.3	13.2	13.3	13.2	18.3	13.2	13.2	13.2	13.2	13.2	13.1	13.1	18.8	18.8	18.9
MP4(µSv/h)	13.3	11.8	11.9	11.9	11.9	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	13.2	11.8	11.8	11.8	11.8	13.1	11.8	13.1	11.8
MP5(µSv/h) MP6(µSv/h)	11.9 欠測	欠測	欠 制	欠測	欠測	欠測	欠測	欠 測	欠測	欠湯	欠測	欠湯	欠割	欠測	欠測	欠測	欠調	欠湯	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	欠调	欠割	欠測
MP8(#SV/h)	and the owner of the local division of the l	欠割	欠割	欠測	欠測	欠潤	欠測	欠调	欠測	次海	欠測	欠潮	欠刑	欠制	欠割	交测	欠割	欠調	欠期	欠调	services in the service by the	欠割
MPT(LSV/R) 國助	欠潤	· Cav	南	1000	南	南	南西	南	南	南南西	南南西	南西	南西	西南西	南西	南西	西南西		of the second se	西南西	欠測 西南西	天殿
围速(m/s)	2.2	2.2	1.6	4,2	4.5	3.6	Statement Statements in case	3.1	2.2	3.8	3.7	5.0	5.8	1.7	32	2.5	5.1	5.6	5.8	6.T	5.9	5.6
Brayes (un e)	5.6	E.6	1 1.0	7.4		4.4	1 7/0	V.1	6.6	0.0		1 0.0	1 10	L		R., 4		1 0.0	1 4.0	54.1	. 9.4	2.0

※計算数 3日20日

()時57分

坐出社 3H70H

() 唐月 94

福島第二(2F) (事業者のモニタリングポスト)

モニタリングポスト	0:00	0.10	0:20	0:30	0:40	0:50	1:00	1:10	1:20	1:30	1:40	1:60	2:00	2:10	2:20	2:30	2:40	2:50	3:00	3:10	3:20	3:80
MPI(#Sv/h)	20.8	20.8	20.7	20.7	28.7	20.7	20.7	20.7	20.6	20.8	20.6	20,6	20.6	20.7	20.5	20.5	20.5	20.5	20.4	20.5	20.4	20.4
MP2(µSv/h)	点検中	点検中	点検中	点検中	点検中	点検中	点後中	点検中	点検中	点输中	点検中	点検中	点换中	点検中	点検中	点檢中	点検中	点换中	点検中	点検中	点検中	点検中
MP3(µSv/h)	21.3	21.3	21.3	21.3	21.2	21.1	21.0	21.1	21.1	21.1	21.0	21.0	20.9	21.0	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
$MP4(\mu Sv/h)$	14.8	14.8	14.8	14.8	14.7	14.7	14.7	14.6	14.6	14.7	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.5	14.6	14.6
$MP5(\mu Sv/h)$	13.4	13.4	13.4	13,4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13,4	13.4	13.4	13A	13.4	13.4	13.4	13.4	18A	13.4	13.4
MP6(µSv/h)	欠測	欠割	欠測	欠謝	欠課	欠測	欠測	欠測	欠測	欠測	欠割	欠渊	欠測	欠割	欠測	欠測	欠潤	欠測	欠調	欠測	欠潮	欠測
$MP7(\mu Sv/h)$	欠测	欠遇	欠測	欠潮	欠割	欠測	欠測	欠測	欠測	欠割	欠测	欠潤	欠別	欠测	欠測	欠測	欠测	欠渊	欠測	欠測	欠割	欠割
風向	西北西	西北西	西	西	西	西北西	北西	北西	北西	北西	北西	北西	北西	西北西	北西	北西	北北西	北北西	北	北	北	北西
風速(m/s)	5.2	8,1	8.0	7.7	6.8	7.0	7.3	6.1	5.6	6.4	6.5	6.7	7.7	7.2	6.0	5.2	5.1	2.3	3.4	3.9	3.9	3.1
				• •		•											•			1		
3月18日 ニタリングポスト	3:40	3:50	4:00	4:10	4:20	4:30	4:40	4:50	5:00	5:10	5:20	5:30	5:40	5:50	6:00	6:10	6:20	6:30	6:40	6:50	7:00	7:1
MP1(µSv/h)	20.3	20.3	20.4	20.3	20.3	20.3	20.3	20.2	20.3	20.2	20.2	20.2	20.2	20.2	20.2	20.2	20.1	20.1	20.1	20.1	20.0	20.
MP2(#Sv/h)	点検中	点换中	点後中	点後中	点検中	点线中	点换中	点検中	点検中	And the owner of the owner of the owner of	and the second se		点檢中	点検中	点検中	京検中	点按中	and the second s	点後中	点换中		and the second se
MP3(µSv/h)	20.9	20.9	20.8	20.8	20.8	20.8	20.8	20.7	20.7	20.7	20.5	20.5	20.6	20.5	20.5	20.5	20.5	20.5	三十二 20.4	20.4	20.4	Concession of the local division of the loca
MP4(µSv/h)	14.6	14.6	14.5	14.5	14.5	14.5	14.5	14.4	14.5	14.5	14.4	14.5	14.4	14.3	14.3	14.3	14.3	14.3	14.3	14.2	14.2	20.
MP5(µSv/h)	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13:4	13.4	13.4	13.3	13.3	13.0	13.0	12.9	12.8	14.3	12.7	12.5	14.
MP6(µSv/h)	欠測	欠測	欠割	欠潮	欠湯	欠潮	欠测	欠渊	欠测	欠測	欠测	欠割	次別	欠測	欠遇	欠測	欠測	欠測	欠潤	欠測	欠湯	欠课
MP7(USV/h)	欠測	欠割	欠測	欠潮	欠週	欠制	欠測	欠幾	欠漏	欠測	欠測	欠割	欠制	欠調	欠測	欠測	欠測	欠測	欠潮	欠则	欠測	欠限
配向	北北西	北西	北西	北西	北北西	北	it	北	北	北	北	12	it	北西	THE .	北北西	北北西	西北西	北西	北西	北西	11:11?
围速(m/s)	3.0	3.1	2.8	2.6	• 4.2	5.4	5.0	4.5	2.9	3.0	3.4	2.0	1.8	1.1	1.4	2.8	- 3.6	2.8	5.9	6.6	5.0	2,8
									10								1	-	1 0.0	0.0	U.M.	
3月18日						_		-				1,				۰°						
ニタリングポスト	7:20	In case of a second sec	and the second division of the second divisio	of the local division of the local divisione	STATUTOR OF THE OWNER WATER OF THE OWNER	And in case of the second s	8:20	8:30	of other designation of the local division o	Contraction of the second	9:00	and a local or size of the surface of	The second s	9:30	9:40	which is a loss the way to be the set	and the second se	A DESCRIPTION OF THE OWNER OF THE	A DECK OF THE R. P. LEWIS CO., NAME OF TAXABLE PARTY OF T	A DESCRIPTION OF THE OWNER	And in case of the second second	Contract of the local division of the local
$MP1(\mu Sv/h)$	20.1	20.0	- 20.0	20.0	20.0	19.8	19.8	19.8	19.7	19.8	19.8	19.7	19.7	19.7	19.7	19,7	19.7	19.6	19.5	19.5	19.5	19,
$MP2(\mu Sv/h)$	点検中	点秩中	点檢中	点検中	点檢中	State of Cold Street, Street, or other	点檢中	点検中	点検中	Contractive of the second	Contraction of the local distance of the loc	11.9	11.9	11.9	11.9	11.8	11.8	11.8	11.7	.11.7	11.8	-11
MP3(µSv/h)	20.3	20.4	20.4	20.3	20.3	20.3	20.2	20.8	20.1	20.2	20.1	20.1	20.1	20.0	20.0	20.0	19.9	19.9	19.9	19.9	19.9	19.
$MP4(\mu Sv/h)$	14.2	14.2	14.2	14.2	14.1	14.1	14.2	14.1	14.1	14.1	14.0	14.0	14.0	13.9	13.9	13.9	13.9	13.9	13.9	13.8	13.8	13
MP5(µSv/h)	12.0	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	125	.12.5	12.5	12.5	12.5	12.5	12
MP6(USV/h)	欠調	欠調	欠測	欠潤	欠湯	欠測	欠測	欠測	欠測	欠潮	欠測	欠測	欠潤	欠調	欠測	欠測	欠測	欠週	欠潤	欠測	欠調	欠源
MP7(12.Sv/h)	欠潤	欠測	欠測	欠制	欠湯	欠潤	欠測	欠割	欠測	欠渕	欠測	欠润.	欠調	欠潤	欠測	欠測	欠潮	欠測	欠測	欠湯	欠潤	欠課
周向	北西	北西	北	西北西	北北西	北西	北西	ät	北西	北北西	北北西	北北西	北北西	北北西	北北西	西北西	西北西	北西	北西	北西	北西	北西
國速(m/s)	1.3	14	1.7	2.8	5.5	5.8	4.4	3.2	3.9	72	5.6	4.9	7.6	5.0	5.8	6.1	5.7	4.1	4.0	3.4	3.2	3.9

受精制 3月20日 0時48分

出土理型 3月20日

3月20日 0時52分

2011/3/19. 23

各範疇所容の環境モニタリング結果

命の平常館の範囲	643	528M&							186			•	1	
			1200	1300	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22.00	28,00
	北海武权力限) 泊船置所	0.022	0.022	0.022	0.021	0.022	<u> </u>	0.022	D.022	0.022	D,022	0.022	. 0.0
24~0.050. 12~0.460	東北超力阻	<u>来调读于力</u> 完如历	2.5D 0.018	2.60	2.60	2.6D 0.017	2.50	2.50	2.50	2.50 D.016	2.50	240	240	2
33~0.050		USE ON ALL OF THE ASTRONOM	263.5	262	3414	3345	4485	5065	4064	3788	3811	0.017	0.016	10
	東京田力物 .	"信息第一原子力空军所 ^关 信息第二原子力空军所 ^关 相偏则到限子力完革所	19.7	19.6	19,7	19.5	19.3	19.2	19.1	19.0	18.9	419.1	393.9 18.8	
11~0.159		的位置的同子力是保留	1.052	9163	0.068	0.0631	0.063	C.OB3	0.062	1200	0.084	0.064	0.054	0.0
36~0.053	and the set of the sectories	· · · · · · · · · · · · · · · · · · ·		06051	0.669	0.668	0.654	0.660	0.653	0.649	0.651	0.646	0.545	0.6
39~0.110	日本原子力免伤期	東海第二兒童所 設備單電所	0.685	0.073	0.072	0.073	0.072	0.072	0.073	0.073	0.074	0.072	0.073	0.D
64-0.108	中部電力構	省网际子力弹动部 志賀原子力免疫防	0,058	0.068	0,068	D.068-	0.068	0.068	0.058	0.068	0.068	0.068	0.068	0.0
	北國和力和	志賀原子力発電所	0.031	DAN3	0.031	0.031	0.031	0.032	0.032 .	0.032	0.031	0.032	0.032	0.0
	中国国力潮	是但原子力党很厉	0,031	ncod	0.030	0,030	0,030	0.030	0.030	0.0301	0,031	0,030	0.091	<u>0.0</u>
70~0.077	American Arthur mail	表正於電所 高正射電所	0.071	0.071	0.079	0.071	0.072	0.071	0.071	0.072	0.072	0.072	- 0.070	
45~0.047	的函数力限)	高乐班保济	0.042	0,042	0.042	0.042	0,043	0.043	0,043	0.043	0.042	0.042	0,048	D.Q
35-0.040	misson J. Hel	大面架相所	0.034	0.034	0.014	0.034	0.033	0.034.	0.034	0.032	0.024	0.036	0.036	0.0
	四周常力编	伊方宛依有	0.014	0.013	0.014	0,014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0,
23~0.087 34~0.120	九州田力勝	玄海派于力 完徽所 川内原于力第国所	0,026	0.027	0.028	0.039	0.026	0.025	0.027	0.027	0.025	0.028	0.027	Q
	日本原型(株)	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	0,036	0.014	0.014	0.014	0.030	0.037	0.014	0.014	0.014	0.039	0.039	01
		1737777 492048949494777	. V4/14 I	<u>MAIHI</u>									0.013	. 0.0
09~0.071 高岛和一体子力第1	RIFICOUCIEL HARK	「大ヶ所」「単数車並所 別により石干別定時向のすれ	<u>0015</u> 及び割定位	0.016 1019120	0.016 ECSEE6	0.018 220187	0.010 1	0.015	<u>70.015 </u>	0.0151	0,015	0.015	0,015	01
9~0.071 18月7~康子·力晃)	RIFICOUCIEL HARK	六ヶ所 理論事業所				0.018 220012 J	,		0.015]	·				
的~0.071 国島第一成了力発 島の平常値の範囲	RIFICOUCIEL HARK	大ヶ所 理解率政府 況により有干別定時間のすれ 発電所名	及び割定位 (0:00 (0.022	の変更が 1100 0.022	2:00 0.022	2800127. 300 0.022	4.90	5.00 0.022	6:00 0.021	7:00	8:00	9:00 0.022	0.015	
29~0.071 1853~頃子力発 180平常位の顧用 23~0.027	新については、作業状 会社名 北海道取力税	大ヶ所 理解率政府 況により有干別定時間のすれ 発電所名	0:00 (),022 2,40	10535234 100 0.022 2.31	2.00 0.022 2.30	20097. 200 9.022 2.30	4500 0.022 2.30	5.00 0.022 2.30	119 E1 6:00 0.0211 2:20	7:00 0.022 2:20	8:00 0.022 2.20	9:00 0,022 2:30		
的~0.071 開設第一球子力発行 常の平常値の範囲 2 <u>3~0.027</u> 2 <u>4~0.0</u> 60 12~0.060	第所については、作業状 会社名	大小所 理解率茲所 況により有干別定時向のすれ 発電所名 泊発電所 友川原子力発電所 東遠原子力発電所	2029200 .000 0.022 2.40 0.017	109939234 100 0,022 2,30 0,018	200 2.00 0.022 2.30 0.017	200 0.022 2.30 0.017	4:00 0.022 2:30 0.017	3/ 5:00 0.022 2:30 0.017	119 E) 6:00 0.0211 2:20 0.016	7:00 0.022 2:20 -0.017	8:00 0.022 2.20 0.016	9:00 0.022 2:30 0.017		
99~0.071 第5第一頭子,力発 第の平常値の範囲 23~0.027 24~0.060 12~0.060 33~0.050	新については、作業状 会社名 北海道取力路 來北電力第	広か所 見叙率政所 別により石干別定時間のすれ 発電所名 泊発電所 女川原子力発電所 度通原子力発電所 声音の子力発電所	201912-01 0.022 2.40 0.017 - 3229	109222 0.022 2.30 0.015 3248	2:00 0.022 2:30 0.017 \$13.7	200 300 0.022 2.30 0.017 306.9	4300 0.022 2.30 0.017 301.7	5:00 0.022 2:30 0.017 2:07.5	119 E 6:00 0.021 2:20 0.016 293.8	7:00 0.022 2:20 -0.017 2:90.6	8.00 0.022 2.20 0.016 399	9:00 0.022 2:30 0.017 . \$64.5		
的~0.071 画版式~0.071 高の平常値の範囲 23~0.027 24~0.050 12~0.050 34~0.052	新については、作業状 会社名 北海道取力税	広か所 見叙率政所 別により石干別定時間のすれ 発電所名 泊発電所 女川原子力発電所 度通原子力発電所 声音の子力発電所	0.022 0.022 2.40 0.017 - 3229 18.7	100 0.022 2.30 0.015 3248 10.5	2:00 0.022 2:30 0.017 318.7 18.4	2019 300 0.022 2.30 0.017 306.9 18.3	4:00 0.022 2.30 0.017 301.7 18.2	- 3/ 5.00 2.30 0.022 2.30 0.017 2.075 78	6,00 6,00 7,20 7,20 0,016 293,8 - 17,9	7:00 0.022 2.20 0.017 2.90.6 17.7	8:00 0,022 2,20 0,016 399 17,7	3:00. 0.022 2:30 0.017 . 364.5 17.8		
19~0.071 国島第一頃子,力発 第の平常値の範囲 23~0.027 24~0.080 12~0.080 12~0.080 12~0.080 13~0.082 11~0.185	部所については、作業状 会社名 北海道取力部 來北留力朝 東京電力朝	広か所 見叙率政所 別により石干別定時間のすれ 発電所名 泊発電所 女川原子力発電所 度通原子力発電所 声音の子力発電所	2000 0.022 2.40 0.017 - 3229 18.7 - 0.064	100 0.022 2.30 0.018 3248 18.5 0.085	200 0.022 2.30 0.017 3.13.7 18.4 0.057	300 9.022 2.30 9.017 306.9 18.3 4.055	400 0.022 2.30 0.017 301.7 18.2 0.065	- 3/ 5:00 0.022 2:30 0.017 2:075 7:5 7:8 0.864	119 F1 6:00 0:0211 2:20 0:016 293.8 17.9 0:065	7:00 0.022 2.20 0.017 2.20.0 17:7 0.064	8:00 0,022 2,20 0,016 399 17,7 0,064	9:00. 0.022 2:30 0.017 . 364.5 V7.8 0.064		
19~0.071 11835~味子:力強1 3~0.027 3~0.027 14~0.050 1~0.052 1~0.052 1~0.053	新については、作業状 会社名 北海道取力路 來北電力第	広か所 見叙率政所 別により石干別定時間のすれ 発電所名 泊発電所 女川原子力発電所 度通原子力発電所 声音の子力発電所	.020 .020 .000 .0022 .240 .0.017 .3229 .0.064 .0.064	1.00 0.022 2.30 0.015 3245 18.5 0.085 0.642	200 0.022 2.30 0.017 313.7 18.4 0.0057 0.637	300 0.022 2.30 0.017 306.9 18.3 10.055 0.632	4500 0.022 2.30 0.017 301.7 18.2 0.065 0.630	- 3/ 5:00 0.022 2:30 0.017 2:075 78 0.0654 0.6528	119 6,00 0.021 7.20 0.016 293.8 17.9 0.065 0,628	7:00 0.022 2:20 -0.017 2:90.6 .17:7 0.064 - 0.625	8.00 9.022 2.20 0.016 333 17.7 0.064 0.621	9:00. 0,022 2:30 0,017 364.5 77.6 0,0517		
19~0.071 18537~頃子:力発 13~0.027 13~0.027 13~0.050 13~0.050 13~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 10~0.	部所については、作業状 会社名 北海道電力部 取北留力部 東京電力部 日本原子力現電期	大ヶ所 理解率政所 況により有干別定時向のすれ 発電所名 泊発電所 左川原子力発電所 変通原子力発電所 高急算一原子力発電所 減気第二原子力発電所 減気第二原子力発電所 消気第二原子力発電所 素適気子が変更所 素適気子が変更所 素適気子が変更所	0.022 0.022 0.022 0.022 0.017 0.017 0.054 0.054 0.054 0.054 0.078	100 0.922 2.30 0.018 3248 10.5 0.085 0.642 0.073	2,00 0,022 2,30 0,017 313.7 18,4 0,057 0,057 0,074	20327 300 0.022 2.30 0.017 306.9 18.3 0.017 0.052 0.074	4300 0.022 2.30 0.017 301.7 18.2 0.655 0.630 0.073	- 3/ 5.00 0.022 2.30 0.017 2075 18 0.054 0.054 0.072	919F 6:00 0.021 7:20 0.016 293.8 17.9 0.065 0.028 0.028	7:00 0.022 2:20 0.017 2:00.6 17:7 0.064 - 0.625 0.073	<u>800</u> 9,022 2,20 0,016 339 17.7 0,0621 0,073	9:00. 0.022 2:30 U.017 364.5 177.6 0.0612 0.612		
19~0.071 1853~667.77発 20平常値の範囲 2~0.050 2~0.050 1~0.052 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055	部所については、作業状 会社名 北海道取力部 東記電力期 東京電力期 日本原子力発電期 車舗電力期		.0.00 9.022 2.40 0.017 - 3229 18.7 9.064 0.074 0.064 0.074 0.064	100 2 2 30 0,922 2,30 0,015 3248 10,5 0,055 0,542 0,055 0,543 0,058	2.00 0.022 2.30 0.017 318.7 18.4 0.057 0.074 0.088	300 9.022 2.30 0.017 306.9 18.3 -0.017 306.9 18.3 -0.017 0.024 0.032 0.024 0.088	400 0.022 2.30 0.017 301.7 18.2 0.055 0.630 0.075 0.068	- 3/ 5:00 0.022 2:30 0.017 2:07.5 78 0.055 0.075 0.072 0.058	919 <u>F</u> 6:00 0.021 2:20 0:016 2:33.8 17.9 0.055 0.628 0.074 0.058	7:00 0.022 2.20 0.017 2.90.6 37.7 0.064 0.625 0.073 0.058	8:00 9.022 2.20 0.016 333 17.7 0.0624 0.621 0.073 0.068	9:00 0,022 2:30 0,017 3,564,5 17,5 0,617 0,617 0,0573 0,058		
19~0.071 1853~667.77発 20平常値の範囲 2~0.050 2~0.050 1~0.052 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055 1~0.055	部所については、作業状 会社名 北海道取力部 東記電力期 東京電力期 日本原子力発電期 車舗電力期		2007 2000 0022 200 0017 0229 18.7 0.064 0.641 0.064 0.064 0.064 0.064 0.0568 0.035	100 2 2 30 0,022 2,30 0,015 3248 18,5 0,055 0,642 0,073 0,055 0,042 0,073	2:00 0.022 2:30 0.017 18.4 0.057 0.637 0.074 0.058 0.088 0.088	300 0.022 2.30 0.017 306.9 18.3 -0.055 0.632 0.074 0.088 0.033	4:00 0.022 2.30 0.017 301.7 18.2 0.065 0.630 0.073 0.068 0.058	- 3/ 5:00 0.022 2:30 0.017 2:07.5 18 0.054 0.928 0.072 0.058 0.072 0.058	919 6,00 0,021 2,20 0,016 293,8 17,9 0,055 0,628 0,074 0,056 0,058 0,074 0,058	7:00 0.022 2.20 0.017 2.90.8 37.7 0.064 - 0.625 0.073 9.068 0.032	8:00 - 0.922 2.20 0.016 3393 17.7 0.064 0.621 0.621 0.621 0.621 0.625 0.068 0.033	9:00 		
19~0.071 1853~0.773 13~0.027 13~0.027 13~0.027 13~0.050 13~0.050 13~0.055 10	部所については、作業状 会社名 北海道電力部 取北留力部 東京電力部 日本原子力現電期		.000 9.022 2.40 0.017 - 3229 18.7 9.064 0.074 0.074 0.064	100 2 2 30 0,922 2,30 0,015 3248 10,5 0,055 0,542 0,055 0,543 0,058	2.00 0.022 2.30 0.017 318.7 18.4 0.057 0.074 0.088	300 9.022 2.30 0.017 306.9 18.3 -0.017 306.9 18.3 -0.017 0.024 0.032 0.024 0.088	400 0.022 2.30 0.017 301.7 18.2 0.055 0.630 0.075 0.068	- 3/ 5:00 0.022 2:30 0.017 2:07.5 78 0.055 0.075 0.072 0.058	919 <u>F</u> 6:00 0.021 2:20 0:016 2:33.8 17.9 0.055 0.628 0.074 0.058	7:00 0.022 2.20 0.017 290.8 17:7 0.064 0.625 0.073 0.055 0.032 0.032 0.032	8:00 9.022 2.20 0.016 333 17.7 0.0624 0.621 0.073 0.068	9:00 0,022 2:30 0,017 3,564,5 17,5 0,617 0,617 0,0573 0,058		
9~0.071 1553~(京子・万発) 3~0.027 4~0.060 2~0.060 3~0.050 6~0.052 1~0.159 5~0.159 9~0.108 9~0.108 9~0.132 3~0.132	部所については、作業状 会社名 北海道取力部 東記電力期 東京電力期 日本原子力発電期 車舗電力期		2.07295200 0.022 2.40 0.017 - 3229 18.77 0.064 0.078 0.07	100 2 2 30 100 2 30 0,922 2,30 0,922 2,30 0,922 10,5 0,922 0,922 0,922 0,922 0,973 0,955 0,973 0,973 0,973 0,973 0,922 0,925 0,92	2.00 0.022 2.30 0.022 2.30 0.017 318.7 18.4 0.057 0.074 0.074 0.033 0.033 0.033	300 9.022 2.30 9.022 2.30 9.017 306.9 18.3 10.055 0.027 0.027 0.028 0.031 0.031 0.031 0.072 0.044	4:00 0.022 2.30 0.017 3:01.7 18.2 0.065 0.030 0.075 0.068 0.038 0.028 0.028 0.073 0.069	- 3/ 5.00 0.022 2.30 0.017 2.015 78 0.654 0.675 0.656 0.072 0.058 0.072 0.058 0.072 0.058	919 <u>9</u> 6,00 0,021 2,20 0,016 293,8 17,9 0,055 0,628 0,628 0,074 0,068 0,433 0,043	7:00 0.022 2.20 0.017 2.200.8 17.7 0.054 0.023 0.055 0.073 0.058 0.032 0.032 0.028 0.028 0.028	8:00 9.022 2.20 0.016 3333 17.7 0.064 0.021 0.063 0.033 0.068 0.033 0.0274 0.043	9:00 		
9~0.071 国家第一時子,万勢1 第二年 第二年 第二年 第二年 第二年 第二年 第二年 第二年	名所については、作な状 会社名 北海道取力略 來北省力朝 東京電力朝 日本原子力與名明 中部電力前 北國家力崩 中国家力崩 範囲家力納		X 72972 01 .0:00 .0:022 .2:40 0.017 .3229 16.77 0.064 .0.064 .0.064 .0.064 .0.064 .0.058 .0.064 .0.058	100 2 2 30 100 2 2 30 0,022 2,30 0,015 3248 3248 10,52 0,085 0,085 0,085 0,043 0,072 0,043 0,043 0,0736	2.00 0.022 2.30 0.017 313.7 18,4 0.057 0.637 0.057 0.053 0.033 0.033 0.033	2011 300 0.022 2.30 0.017 306.9 18.3 0.017 0.032 0.074 0.083 0.033 0.033 0.033 0.033 0.034 0.036	4.90 0.922 2.30 0.017 301.7 18.2 0.655 0.630 0.055 0.630 0.058 0.058 0.038 0.038 0.018 0.0143 0.0143	- 3/ 5.00 0.022 2.30 0.017 2075 T8 0.054 0.072 0.058 0.072 0.058 0.072 0.058 0.033	219F 6,10 0.021 2,20 0.016 293.8 . 17.9 0.065 0.628 0.055 0.628 0.055 0.628 0.055 0.628 0.055 0.628 0.055 0.055 0.055 0.055 0.055 0.056 0.050 0.036	7:00 0.022 2:20 0.017 2:00.0 17:7 0.064 0.625 0.032 0.052 0.032 0.032 0.032 0.032 0.032	6,02 2,20 0,022 2,20 0,016 339 17,7 0,064 0,021 0,023 0,033 0,033 0,024 0,024 0,025	9:00 		
19~0.071 185年~頃子、分野 185年~頃子、分野 13~0.027 13~0.027 13~0.050 13~0.050 13~0.055 130 10~0.055 130 10~0.055 130 10~0.055 10~0.	部所については、作業状 会社名 北海道電力器 取北電力器 用な原子力発電器 車部電力器 12232カ第 12232カ第 12232カ第 12232カ第 12232カ第 12232カ第 12232カ第 12232	大小所 理解率或所 況により有干別定時間のずれ 発電所名 泊発電所 友川原子力発電所 素通店子力発電所 満島車。店子力発電所 消費運動;力強電所 和約別別位子力発電所 第四級子力発電所 通知成子力発電所 通知成子力発電所 通知成子力発電所 通知成子力発電所 使加発電所	X 172952 01 .0:00 0.022 2.40 0.017 - 3229 18.7 0.0641 - 0.078 D.068 D.036 0.037 0.035 0.035 0.031	100 2 2 2 3 0,922 2,30 0,015 3248 18,5 0,085 0,642 0,073 0,088 0,038 0,036 0,036 0,036 0,036 0,036	2,00 0,022 2,30 0,017 313.7 18.4 0,057 0,074 0,074 0,074 0,074 0,074 0,074 0,074 0,074 0,072 0,042 0,014	203129 200 0.022 2.30 0.017 306.9 18.3 0.052 0.074 0.083 0.033 0.031 0.072 0.045 0.035 0.045 0.036	4.90 0.022 2.30 0.017 301.7 18.2 0.659 0.630 0.073 0.068 0.038 0.038 0.028 0.028 0.035 0.014	3/ 5.00 0.022 2.30 0.017 2075 78 0.064 0.075 0.058 0.077 0.058 0.077 0.058 0.077 0.058 0.077 0.058 0.071 0.042 0.071 0.042 0.042 0.044	919 6,00 0.021 2.20 0.016 293.8 17.9 0.055 0.628 0.074 0.058 0.074 0.058 0.033 0.033 0.043 0.035 0.035	7:00 0.022 2.20 0.017 2:00.6 37:7 0.063 0.032 0.032 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.036 0.032 0.036 0.042 0.036	8:00 0,022 2.20 0.016 339 17.7 0.068 0.021 0.073 0.068 0.033 0.031 0.074 0.043 0.043 0.043 0.043	9:00. 0.022 2:30 0.017 5645 77.8 0.0612 0.073 0.068 0.032 0.032 0.032 0.033 0.033 0.033		
19~0.071 19~0.071 19、10、11 19、10、11 10、11 11、11、11 11、11、11 11、11、11 11、11、11 11	名所については、作な状 会社名 北海道取力略 來北省力朝 東京電力朝 日本原子力現名朝 申請電力前 北陸省力明 中間電力前 取西電力執 四面電力執		X 7 29 52 67 . 0.002 2.40 0.017 - 3229 18.7 0.0641 - 0.073 0.073 0.034 0.033 0.033 0.033 0.033 0.033 0.043 0.043 0.043 0.043 0.044 0.043 0.043 0.044 0.043 0.044 0.044 0.043 0.044	100 2 2 30 0,022 2,30 0,016 3248 18,5 0,065 0,045 0,045 0,073 0,068 0,073 0,068 0,073 0,068 0,036 0,032 0,032 0,032 0,032 0,025	2,90 0,022 2,30 0,022 2,30 0,017 313.7 18,4 0,057 0,017 0,074 0,033 0,033 0,033 0,033 0,033 0,033 0,034 0,034 0,014 0,014 0,027	2011 300 0,022 2,30 0,017 306.9 18.3 0,025 0,074 0,088 0,033 0,074 0,088 0,033 0,017 0,017 0,018 0,013 0,013 0,027 0,027	4500 0.022 2.30 0.017 301.7 18.2 0.055 0.030 0.075 0.058 0.038 0.038 0.028 0.0128 0.013 0.043 0.014 0.028	- 3/ 5.00 0.022 2.30 0.017 2075 18 0.084 0.084 0.084 0.072 0.058 0.030 0.058 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.021	419 <u>F</u> 6:00 0.021 2:20 0.016 293.8 17.9 0.055 0.028 0.057 0.058 0.058 0.057 0.058 0.057 0.058 0.058 0.057 0.058 0.057 0.058 0.057 0.058 0.058 0.053 0.055 0.053 0.055 0.05	7:00 0.022 2.20 0.017 0.054 0.625 0.073 0.058 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.034 0.034 0.044 0.025	500 9,022 2,20 0,016 339 17.7 0,621 0,621 0,073 0,068 0,033 0,033 0,074 0,043 0,035 0,035 0,031 0,021	9:00. 0.022 2:30 U.017 364.5 77.6 0.612 0.0612 0.053 0.058 0.053 0.058 0.053 0.058	10:00	
93~0.071 数数第一成了力発 数数第一成了力発 23~0.027 24~0.080 12~0.080 12~0.080 33~0.052 11~0.153 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.053 33~0.054 33~0.054 33~0.054 33~0.054 33~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0.055 30~0	名所については、作な状 会社名 北海道取力略 來北省力朝 東京電力朝 日本原子力與名明 中部電力前 北國家力崩 中国家力崩 範囲家力納		2.40 0.022 2.40 0.017 - 3229 18.7 0.064 0.073 0.064 0.073 0.064 0.073 0.064 0.073 0.064 0.073 0.064 0.0172 0.043 0.0172 0.043 0.0172 0.043 0.0172 0.043	100 2 2 30 100 2 2 30 0,922 2,30 0,922 2,30 0,922 10,52 0,925 0	2:00 0.022 2:30 0.022 2:30 0.017 818.7 18.4 0.057 0.074 0.088 0.033 0.033 0.033 0.034 0.035 0.015 0.022 0.025 0.022 0.025 0.022 0.025	300 9.022 2.30 9.017 306.9 18.3 0.017 306.9 18.3 0.027 0.027 0.027 0.027 0.023 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.027 0.045	4:00 0.022 2.30 0.017 301.7 18.2 0.065 0.030 0.075 0.068 0.038 0.073 0.068 0.038 0.028 0.073 0.043 0.014 0.029 0.043	- 3/ 5.70 0.022 2.30 0.017 2.075 78 0.0528 0.072 0.058 0.072 0.058 0.072 0.058 0.072 0.058 0.072 0.058 0.074 0.020 0.021 0.020 0.021 0.020 0.022	919 <u>H</u> 6:00 0.021 2:20 0.016 2:33.8 17.9 0.055 0.628 0.433 0.058 0.433 0.058 0.433 0.058 0.433 0.043 0.035 0.025 0.026 0.026	7:00 0.522 2:20 0.017 2:90.8 17.7 0.054 0.625 0.075 0.075 0.058 0.032 0.028 0.032 0.028 0.032 0.028 0.021 0.042 0.036 0.014 0.028 0.036 0.033	8:00 9.022 2.20 0.016 333 17.7 0.0621 0.073 0.063 0.033 0.033 0.033 0.033 0.035 0.043 0.043 0.043 0.043 0.043 0.035 0.035	9:00 0.022 2:30 U.017 364.5 77.6 0.0617 0.0617 0.0673 0.068 0.028 0.020 0.014 0.026 0.025	10:00	
19~0.071 国際第一成子.75発 国際第一成子.75発 第の平常値の範囲 23~0.027 24~0.050 33~0.050 33~0.055 33~0.055 35~0.055 35~0.055 35~0.150 35~0.130 70~0.137 73~0.07 73~0.047 35~0.047	名所については、作な状 会社名 北海道取力略 來北省力朝 東京電力朝 日本原子力現名朝 申請電力前 北陸省力明 中間電力前 取西電力執 四面電力執		X 7 29 52 67 . 0.002 2.40 0.017 - 3229 18.7 0.0641 - 0.073 0.073 0.034 0.033 0.033 0.033 0.033 0.033 0.043 0.043 0.043 0.043 0.044 0.043 0.043 0.044 0.043 0.044 0.044 0.043 0.044	100 2 2 30 0,022 2,30 0,016 3248 18,5 0,065 0,045 0,045 0,073 0,068 0,073 0,068 0,073 0,068 0,036 0,032 0,032 0,032 0,032 0,025	2,90 0,022 2,30 0,022 2,30 0,017 313.7 18,4 0,057 0,017 0,074 0,033 0,033 0,033 0,033 0,033 0,033 0,034 0,034 0,014 0,014 0,027	2011 300 0,022 2,30 0,017 306.9 18.3 0,025 0,074 0,088 0,033 0,074 0,088 0,033 0,017 0,017 0,018 0,013 0,013 0,027 0,027	4500 0.022 2.30 0.017 301.7 18.2 0.055 0.030 0.075 0.058 0.038 0.038 0.028 0.0128 0.013 0.043 0.014 0.028	- 3/ 5.00 0.022 2.30 0.017 2075 18 0.084 0.084 0.072 0.058 0.072 0.058 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.042 0.0414 0.027	419 <u>F</u> 6:00 0.021 2:20 0.016 293.8 17.9 0.055 0.028 0.057 0.058 0.058 0.057 0.058 0.057 0.058 0.058 0.057 0.058 0.057 0.058 0.057 0.058 0.058 0.053 0.055 0.053 0.055 0.05	7:00 0.022 2.20 0.017 0.054 0.625 0.073 0.058 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.034 0.034 0.044 0.025	500 9,022 2,20 0,016 339 17.7 0,621 0,621 0,073 0,068 0,033 0,033 0,074 0,043 0,035 0,035 0,031 0,021	9:00. 0.022 2:30 U.017 364.5 77.6 0.612 0.0612 0.053 0.058 0.053 0.058 0.053 0.058	10:00	0.Q

·(t) 9. 時時点

3/19

新期 初初日 0448分

出载13月20日

.)调5.2分

2011/3/19 23:0

۰.

• .•

. •

測定(症(μSV/h)) 2978.0 2972.0 2965.0 2961.0 2967.0 2946.0 2941.0 2987.0 2931.0 2924.0 2917.0 2912.0 2909.0 2906.0 2906.0 2895.0 2891.0 2883.0 2880.0 2880.0 2876.0 2 中性子 ND	90.9 4 91.0 4	西約西約	西北西南部	は して して 数	(2号 (2号	[例) †近)	— 5月 P-8个	(MF t (N	付近() 讨近前	育館 正門(2 1 # @) (E) +c	5 + ⊏ 91.	約0. 9西新	り北西 号機。	号機よ 近) (2	計上(2 P-5作	略本()近()	① 羽 5円作	®₽	副所	測定均	-(1F)	59 5 -			9日	3月1	
測定値(μSV/h) 2978.0 2972.0 2965.0 2981.0 2967.0 2946.0 2941.0 2937.0 2931.0 2924.0 2917.0 2912.0 2909.0 2906.0 2906.0 2895.0 2891.0 2883.0 2880.0 2880.0 2876.0 2 中性子 ND	·						<u> </u>																						制定場所	
中性子 ND	22:20 2 55.0 28				50										20:50	20:40	20:30			0 293	20:0								ミニタリンクカー 創定(Jusy/h)	
國向 一 西 西 西 西 西 西 西 西 西 西 西 西 西 西 西 西 西 西	ND N															N.D	N.D	D	D	. N	N.D		NO	N.D	N.D	N.D	N.D	ND	中性子	••
	西	i i	面前西	北東	西片	西北	Ā	ŀ	西	ð														đ			DHA		國向	
	1.0	╧	0:8	1.2	2	2	2.0	8	1.8	• 2.3	<u>.</u>	3,4			3.1	26	25	.2.6 [3.1	<u> </u>	2.1		2.1	2.6	21	3.2	4.1	4.A	BASE (m/s)	•••
						Ŷ	•				;							•				•	•						-	
	٠		•			•	,			د		• •			· · .		-		•						•;					
	*		•			·									. 1					•	,			•	a	٠	<i>.</i>		*	** .
			•					, ł/		:	.,					•						,	•	*,	•	·.			•	
	•								•			4			•		- ·					· · ·	· •			*	• • *			•
			• '														· •.	•				۰.						2		
	•		. *			. ,	•		•-	•								٠									•			
	-	÷*		•																•									1	
					•					÷		۰.				•			•,		,			•		٠			-	
							•			•					·						. •							. •		÷
		-	~	•							-			•									•			•		,		÷.,
				·		· -	•		•		٠					•		•							•			•		۲
						•							,	£			•			٠	•								· ·	1 -
						-		•	•							٠												- 4		
	•	.'	٠							•		.*	•														, -	2		
	ĸ		•							•											•					• •	•			
					:																								•	
																•	•	6					• 7			•	ė			•••
								•	. • 		,	•									+				•	•'				
									,			•										2	÷		· · ·	-	,			
	••		•		,	••	•			•	۶.					,	•							•		•			-	
			•			٠	•		-	•											* • ,		÷ 1					• "	-	· ·
								÷	. •		•		· ·		•	•.		•	•		4	_				•	•	+	. *	2
									÷						•					•	,		. 4		•	•	•	•		
	د هادر ا	·· ·						•		· ·				•					•.		· · ·	•	• • •					-		ر. غربد ۶۰.
		•		•				•	*				·· .			• •						<u>с</u> н								· .
			·.			•				•						•	·								•		•			ал. 2
			•	`							•	•		•		-														
- · · · ·	` ' ‡		••,			•	•		•			•.										·	•				•	•1	5 <u>6</u>	`
and a manage of the second	1 + E-uni - + + + +++++++++++++++++++++++++++++			• •			- a		•		•			• •			•	•			-	•	14	•			5	•	بارية إلامه	ierent e in
4 · · · · · · · · · · · · · · · · · · ·						•	.+											··•#							-					• •

•

stail 38200 06523

•

3月1	9 日	÷	•	福島第	—(1F)	- 割定 -	場所	8西	①専務 門付近	本館北 (MP-5	(2号 機 。 5付近)(kU北西 2号樹J	約0.5 り西約	キロ) 1.1キ	」) (2)	体育的	的近() 付近前	VP-5	東 側)(対近)(2号機よ 2号機よ	り西北西 り西南西	1850. 9	9+ 0+
		<u></u>																					
定場所	3:40	3:50	4:00	4:10	4:20	4:30	4:40	4:50	5:00	5:10	5:20	(B) 5:30	5:40	5:50	6:00	6:10	6:20	6:30	6:40	6:50	7:00	7:10	F;
定值(µ Sv/h)	303.6	309.1	\$01.7	301.3	300,5	,299.2	299.2	298.5	297.5	296A	295.B	295.1	295.4	294.3	297.8	293.6	292,6	292.9	29.1.5	290.9	290.6	289.8	28
住子	ND 開劇東	N.D TG-11-2H	<u>ND</u> 東	N.D 西	「四北西	ND 有來	N.D.	ND R	N.D 南	<u>N.D</u> 爾	ND R	ND 北西	N.D R	N.D 雨束	ND 西	ND 南東	ND 東北東	N.D 東南東	<u>N0</u> 南南東	N.O III	ND 北西	ND	N
EUX(m/s)	0.9	0.6	0.6	0.5		0.6	0.6	0A	0.5	0.5	0.9	0.9	0.9	0.6	0.9	0.7	0.5	04	0.3	_	0.7	西 - 0.3	5
					r.		•			-			• •			;	•						
定場所	مىرىكى ب ىرىمە						·					(3)											
ニタリングカー	7:30	7:40	. 7:50			8:20		8:40				9:20	9:30	9:40	9:50						a second seco	11:00	
定值(µSv/h) 性子	288.9 N.D.	288.6 N.D	287.2 N.D.	399.0 'ND	830.8 ND	670.6 N.D	431.9 N.D	190.5. N.D	522.5 N.D	364.5 N.D	338.5 N.D	323.8 ND	425.2 N.D	657.3 N.D	358.3 N.D	346.1 ND	341.2 ND	338.4 N.D	334.3 ND	130.2 N.O	327.1 ND	322.6 ND	34 N
風向	西南西	兩西	南東	北北東	西北西	西北西	東	東北東	東北東	北東	取.	束	東	Į.	AR	南東	南	南東	T	南南東		南西	
民速(m/s)	0.0	0.6	0.6	0.9	0.5	0.3	0.4	0,0	, 0.6	0.9	1.6	2.1	2.0	1.5	1.8	1.8	1.8	1.]].	7 7.5	1.5	1.6	Ŀ
·	• • •	• R	,	*		·		-			*	•	.*				*					•	•
定場所	(3)												• (V.				
ニタリングガー 定価(µ5v/h)	11:20	11:30 313.1	测定位置	11:40	11:50	12:00 3682.0	the second s		12:30	: 12:40 3704.0		13:00 3629.0	13:10	13:20	13:30 3529.0	13:40	and the local division of the local division		_	the second s	the second s	and the second se	33
性子	N.D.	N.D	安更	ND	ND	·NO	N.D	N.D	ND	ND	ND	N.D.	N.D	ND	N.D.	ND	ND	N.D	ND	N.D	ND	ND	N
<u></u> <u> </u>	西北西	南西 3.4	¥13	西北西 4.0		西 6.8	西 5.7	西北西	西 5.7		西南西 6:1	北西 4.2	西	北西	M	25	南南西		北京			南南西	
#198 (IIV S)	<u>Z</u> ,5	3.4		4.0		0.0-	0,1	0.0	1 2./	5.9	1 9.1	4.2	3,7	5.3	4.3	5.1	4.9	5,	3 3,	4 4.6	4,9	3,1	L
		*															· · ·	·		-	-		
定場所 ニタリングカー	15:00	15:10	15:20	15:30	15:40	15:50	16:00	16:10	16:20	16:30	16:40	16:50	17:00	17:10	17:20	17:30	ITA	17:50	18:0	0 18:10	18:20	18:30	1
定值(µSv/h)	3279.0	3281.0	3229.0	3194.0	3474.0	3167,0	3165.0	3137.0	3135.0	3126.0	3111.0	3089.0	3078.0	3071.0	3058.0	3051.0	3033.0	30240	3020.0	3007.0		2998.0	29
<u>性子</u> 图向	ND 75	<u>ND</u> 西	<u>ND</u> 西	ND 南西	ND 南西	N.D TAT	N.D 北西	ND 西	ND 西	N.D BERME	N.D 西阿西	N.D. Tei	N.D	ND 西	ND 北西	N.D	N.D 75	N.D'	ND E	N.D.	N.D	N.D	N i
周辺(m/s)	4.9	4.8	3.4	3.8	4.8	•3.9	2.4	4.8	5.0	4.5		. 5.1	5.7	45	4.1	3.3	3.8			and the second se	and the second se		-
213 485 46	8-11-7034	296 HUH	1-16-26-1) 5±1	n sete	4-56861	- 220	n o mi	ジャスチ	where the	1. Fran	12.5h			•		•		>		······	•	•
a An an	MHOL457	V40. V4			10 100	·1~/6134/1	49. A M	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			•	12/20/			•		• •		•	<u>.</u>			
t* *				•	•	-														· •		•	•
	,	ē.			, t			÷	•.			•••				•			•				
	·••	,		۰	*						•								• •	:		•	
۰.									• ·													-	
•														*									
•												-	•		-				•'	•			
•			•	-		•					·•	•			-		•						
. ,			, -	•	•	•			•					•		•							
•					*					• •				•	-	. •	•`				•		
t,																į.				` *			

ř

•

间出出。

北陆刻 3月70日 0年5 2分

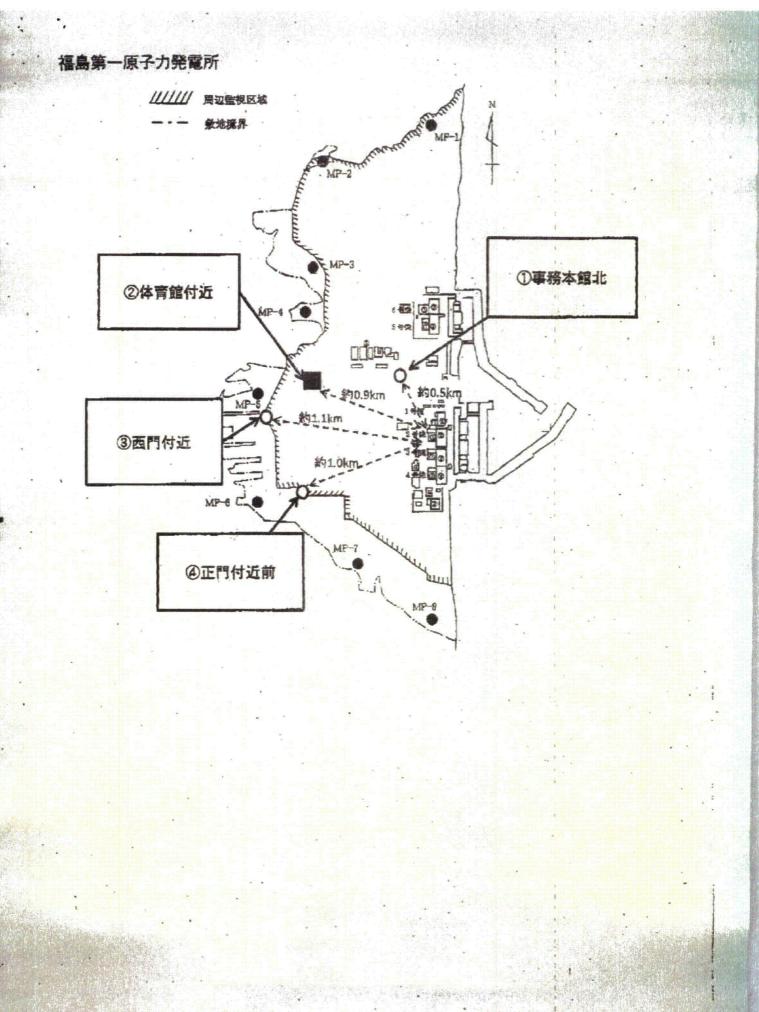
а Ла

2011/3/19 .23:

定場所											N Constant of Constants	0						-				-	
ニタリングカー	14:45	14:50	14:55	15:00	15:10	15:20	15:30	15:40	15:50	16:00	16:10	of the other day is the other day is the	16:30	16:40	16:50	17:00	17.10	17-90	17:30	17:40	17:50	10.00	
尼 值(#Sv/h)	8357.0	3339.0	3346.0	3345.0	3368.0	3582.0	4076.0	3823.0	4396.0	4485.0		4535.0		Statement of the local division of the local	4735.0	the state of the s	5033.0	4952.0		4182.0	No. of Concession, Name	18:00	COLUMN SALES
性子	ND	N.D	ND	ND	N.D	ND	ND	ND	N.D	ND	N.D	N.D	ND	ND	ND	ND	ND	MD	- N.D	N.D	ND	4084.0	
國向	南南東	東南東	南	南東	南	南南東	南南東	Concernation of the local designs	南南东	南南南	States and	đ	南南東	स	南南東	國	CONTRACTOR OF THE OWNER OWNER OF THE OWNER	南南東	11.0		南南西	N.D	N.
國速(m/s)	- 1.6	1,5	1.5	14	· 1.7	1.9	2.3	2.1	2.2	2.4	2.0	25	1.8	2.1	21	.20	2.1	3.1	2.3	1.8	1.8		1
States.													1.00				6.1		6.0	1.0	1.0	1.2	-
		1.11					9	4	•		*							•					
定場所						0			and a state of the same of the									3	•				-
ニタリングカー	18:20	18:30	18:40	18:50	19:0D	19:10	19:20	19:30	19:40	19:50	20:00	測定	20:10	20:20	20:30	20:40	20:50	21:00	21:10	- 21:20	21:30	21:40	
主印 $(\mu Sv/h)$		and the second strength and the second strength of the second streng	3885.0	3832.0	3788.0	3745.0	3728.0	3699.0	3669.0	3634.0	3611.0	位置	447.6	441.2	434.5	429:2	428.9	4191	414.2	409.4	405.2	401.6	
生子	' ND	NO	ND	N.D	N.D	N.D	N.D	ND	ND	ND	' ND	変更	N.D	NO	ND	ND	ND	ND	ND	ND	N.D	N.D	N
國向	南	南南西	南南西	南南西	西	南西	南西	南南西	前	西南西	西南西	¥10	南	26	西北西	and the second division of the local divisio	西南西	Newsold	đi	E.		北北西	
風速(m/s)	1.2	1.5	1.5	14	1.5	1.3	1.4	1.4	1.3	1.5	1.3		3.0	0.5	0.7	0.8	0.6	.0.5	0.6	0.3	0.3	0.4	E
																						Met	
	<u> 1995 m</u>		-							_	-											82	5.4
定場所					3				·			0							- 				
ニタリングカー	22:00	22:10	22:20	22:30	22:40	22:50	23:00	23:10	23:20	渊定	23:30		23:50										
已回(µSv/h)	393.9	389.2	385.9	382.9	379.6	375.9	873.6	371.2	368.9	位置		3256.0											
17 ·	ND	ND	N.D	ND	ND	N.D	ND	ND	ND	変更	N.D	ND	N.D										
國向	南西	南西	西	29	南西	西	北	北西	西南西	*11	西南西		西南西										
履速(m/s)	0.5	0.7	0.5	0.5	0.4	0.4	0,3	0A	0.3		2,8	1.2	1.2		*	2			. *				
(RI 1997) AND																							

1001/C. PO1/1	and the second designed of	the second second		-			Kan manage		- the second second					and the second second				Q	30			a Martin	Raw Barris
モニタリングカー	0:00	0:10	0:20	0:30	0:40	0:50	1:00	1:10	1:20	1:30	-1:40	1:50	测定	2:00	2:10	2:20	2:30	2.60	2:50	3:00	3:10	2.00	-
测定值(#Sv/h)	3228.0	3224.0	3219.0	3231.0	3342.0	3284.0	3248.0	3279.0	3247.0	3195.0	3188.0	3181.0	位置	3137	-3122	3711	210.0	2081	200 8	0000	20e 0	anes	20.4
PARTY IN THE REAL PROPERTY INTO THE REAL PROPERTY I	n.p	Market	ND I	ND I	I QIN	ND	ND I	N.D	ND	I ND	ND	I ND	37.64	ND I	MD	MO	ND	NO	MIN	AT IN	AIP I	NAME OF BELLEVILLE	Contraction in the local
自己的	西南西	西南西	南西	南西	西南西	26	西南西	西南西	西南西	西南西	南西	天南天	\$12	31	11	WW	This M	No. da de	14.10	1944	IN.U	N.D.	RU
胞速(m/s)	14	14	12	21	0.9	1.4	18	7.3	13	14	1.6	1 9	an r w	3.0	10.0	111	CO MEES	COMING.	Harling	MACER	(FICE	用用果	<u></u>
And a state of the	Local States				NIN I		LAN B	Prof. 1	144	1.77	1.0	1.0		211	0.01	0.3	0.0	0.3	<u>U.4</u>	. 0.6	0.7	0.7	D

. ...


※10 西門付近 (MP-5付近)(2号機より西約1.1キロ) ※定点で測定するため移動 ※11 審務本館北(2号機より北西約0.5キロ) ※放水活動による効果を測定するためにより近傍へ移動 ※12 西門付近 (MP-5付近)(2号機より西約1.1キロ) ※定点で測定するため移動

0時52分

.

8月1	8日	日福島				測定場所		①事務本館北(2号機より北西約0.5キロ) ③西門付近(MP-5付近)(2号機より西約1.1キロ) ④正門付近前(MP-6付近)(2号機より西南西約1.0キロ															
测定场所						1.1						(3)					,					-	-
モニタリングカー	0:90	0:10	0:20	0:30	0:40	0:50	1:00	1:10	1:20	1:30	1:40	1:50	2:00	2:10	2:20	2:30	2:40	2:50	3:00	3:10	3:20	3:30	3
測定值(µSv/h)	287.0	287.3	286.6	286.4	286.3	286.0	285.6	285.5	285.2	284.9	284.6	284.4	284.0	283.7	283.7	283.5	283.0	282.9	282.6	282.2	282.1	281.6	281
中性子	ND	N.D	ND	NO	ND	N.D	ND	ND	N.D	N.D	·N.D	N.D	N.D	N.D.	N.D	ND	ND	ND	ND	NO	ND	N.D	NO
風向	西	西	西	西	北西	西北西	北西	北西	北西	北西	1t	北西	北西	北東	北東	北東	北北東	北西	M	西北西		M	112
圆速(m/s)	1.4.	1.0	1.0	0.8	0.9	1,0	1.6	4.5	1.7	1.4	. 0.9	0,6	1.0	0.5	0.2	0.2	0.2	0.2	0.2	0.3	0.4	0.7	160
				(6	+ ,		*							*	10.5
測定場所												(3)				-					and a state of the		N^{er}testening
モニタリングカー	. 3:50	4:00	4:10	4:20	4:30	4:40	4:50	5:00	5:10	5:20	5:30	5:40	5:50	6:00	6:10	6:20	6:30	6:40	6:50	7:00	7:10	7:20	7
测定值(µSv/h)	281.1	281.1	280.9	280.7	280.2	280.0	279.8	279.4	279.3	279.0	278.9	278.9	277.1	274.0	274.0	273.8	274.1	272.7	273.A	272.4	271.7	271.6	271
中性子	N.D	ND	ND	ND'	ND	N.D	ND	ND	N.D	ND	N.D	ND	ND	ND	ND	NO	ND	NO	ND	ND	ND	ND	NC
- <u>A</u>	束	西	西	12	北西:	t.	北東	北北東	北北西	· 11	北西	北西	42	北東	西	北	The second	北西	西	T	北	北	1 24
图速(m/s)	0.4	0.5	0.5	0.4	0.2	0.6	0.5	0.5	0.5	0.6	0.7	1.0	1.0	1.3	1.6	1.4	1.2	1.5	1.6	2.3	2.1	1.9	
割定場所 モニタリングカー 割定値(μ Sv/h) 申性子 風向 風速(m/s)	7:40 271.1 ND 北西 2.9	7:50 271.2 ND HL 3.Q	- 8:00 270.5 ND 1229 2.7	8:10 270.3 N.D 北西 2.9	8:20 269.9 N.D D 3.4	6:50 269.9 N.D 西 3.7	8:40 269.8 ND 26 3.3	8:50 269.2 N.D 1126 2.5	9:00 268.7 N.D 26 11 25 2.6	9:10 267.6 N.D 西北西 2.8	9:20 268.9 N.D 75 2.3	(3) 9:30 267.5 ND E 3.3	.9:40 267.0 ND ES 2.9	9:50 256.9 ND 西北西 3.1	10:00 266.7 N.D 312-12-25 2.0	10:16 268.4 ND 29 1.8	10:20 266.1 N.D 北西 2.2	10:30 265.7 ND 北西 2.5	10:40 265.4 N.D 4L 2.3	10-50 264.8 N.D 附西 1.8	11:00 265.0 N.D 79	11:10 264.4 ND 4L	11 264 NE 327
 満定場所 モニタリングカー 潮記値(μ.Sv/h) 中性子 風向 	11:30 264.1 ND 南西	11:40 264.4 N.D 南西	11:50 263.4 N.D 西日上西	12:00 263.5 N.D -#	12:10 263:1 ND 西	12:20 262.9 N.D 南東	⑧ 12.30 263.3 ND 東	12;40 254.3 ND 南	12:50 261.3 小LD 南東	13.00 262.0 NLD	13:10 261.9 N.D 東南東	13:20 262.7 N.D 南東	13:30 264.1 N.D 東	測定 位置 ※9	N.D	14:00 3414.0 ND 南南東	34:10 3382.0 ND 南東	14:15 3371.0 N.D 東南家	① 14:20 3362.0 ND 南	14:25 3357.0 N.D 東南東	14:30 3352.0 N.D 南東	_14:35 3342.0 N.D 柄南東	3348 . N.L
國達(m/s)	1.5	1.7	1.6	1.7	1.3	1.2	1.1	1.8	2.7	3.0	2.6	2.5	2.0		.1.8	2.0	17	1.6	1.7	1.9	1.9	17	Contraction of

※9 事務本館北(2号機より北西約0.5キロ)※放水活動による効果を測定するためにより近傍へ移動

MSIR

From: Subject: Date: Attachments: LIA07 Hoc 1 1 20 1 0600 EDT (March 24, 2011) USNRC Earthquake/Tsunami Status Update Thursday, March 24, 2011 6:23:44 AM NRC Status Update 3.24.11--0600 EDT.pdf

Please find attached a 0600 EDT (March 24, 2011) status update from the US Nuclear Regulatory Commission's Emergency Operations Center regarding the impacts of the earthquake/tsunami.

Please note that this information is "Official Use Only" and is only being shared within the federal family.

BBBB / 158

Please call the Headquarters Operations Officer at 301-816-5100 with questions.

-Jim

Jim Anderson Office of Nuclear Security and Incident Response US Nuclear Regulatory Commission James.anderson@nrc.gov LIA07.HOC@nrc.gov (Operations Center)

 From:
 LIA07 Hoc

 To:
 LIA07 Hoc; Borchardt, Bill; Bradford, Anna; Cohen, Shari; Cooper, LaToya; Dyer, Jim; Flory, Shirley; Gibbs, Catina; Haney, Catherine; Hudson, Sharon; Jaczko, Gregory; Johnson, Michael; Leeds, Eric; Loyd, Susan; Pace, Patti; Schwarz, Sherry; Sheron, Brian; Speiser, Herald; Taylor, Renee; Virgilio, Martin; Walls, Lorena; Weber, Michael

 Subject:
 Correction to Update for "Go Books," 0600 3/24/11

 Date:
 Thursday, March 24, 2011 6:42:14 AM

 Attachments:
 NRC Status Update 3.24.11--0600 EDT.pdf

Please find attached a corrected 032411 0600 EDT Status Update. The previous version was incorrectly labeled as a "Draft."

Thank you,

-Jim

Jim Anderson

Office of Nuclear Security and Incident Response US Nuclear Regulatory Commission <u>LIA07.HOC@nrc.gov</u> James.anderson@nrc.gov

BBBB / 159

From: Cc: Subject: Date: Attachments: LIA07 Hoc LIA07 Hoc Corrected 0600 EDT (March 24, 2011) USNRC Earthquake/Tsunami Status Update Thursday, March 24, 2011 6:40:12 AM NRC Status Update 3.24.11--0600 EDT.pdf

Please find attached a 0600 EDT (March 24, 2011) status update from the US Nuclear Regulatory Commission's Emergency Operations Center regarding the impacts of the earthquake/tsunami. This corrects the previous version that was incorrectly marked draft.

Please note that this information is "Official Use Only" and is only being shared within the federal family.

Please call the Headquarters Operations Officer at 301-816-5100 with questions.

-Jim

Jim Anderson Office of Nuclear Security and Incident Response US Nuclear Regulatory Commission James.anderson@nrc.gov LIA07.HOC@nrc.gov (Operations Center)

160 BBBB/

 From:
 LIA07 Hoc

 Subject:
 1800 EDT (March 24, 2011) USNRC Earthquake/Tsunami Status Update

 Date:
 Thursday, March 24, 2011 6:00:04 PM

 Attachments:
 USNRC Earthquake-Tsunami Update.032411.1800EDT.pdf

Attached, please find an 1800 EDT (March 24, 2011) status update from the US Nuclear Regulatory Commission's Emergency Operations Center regarding the impacts of the earthquake/tsunami.

Please note that this information is "Official Use Only" and is only being shared within the federal family.

Please call the Headquarters Operations Officer at 301-816-5100 with questions.

-Sara

Sara K. Mroz Communications and Outreach Office of Nuclear Security and Incident Response US Nuclear Regulatory Commission Sara.Mroz@nrc.gov LIA07.HOC@nrc.gov (Operations Center)

161 BBBB/

To: Cc: Subject: PMT03 Hoc OST05 Hoc; LIA04 Hoc FW: Response to EPA drinking water limits question

PMT- Could you please get back to RI on this? Contacts: Doug Tifft and Pamela Henderson

Thank you, -Maria

From: Henderson, Pamela
Sent: Thursday, March 24, 2011 10:19 AM
To: OST05 Hoc
Cc: McNamara, Nancy; LIA04 Hoc; LIA03 Hoc; PMT03 Hoc; Hoc, PMT12; Tifft, Doug
Subject: RE: Response to EPA drinking water limits question

Maria,

I believe that RASCAL would utilize NRC limits?

From the EPA website.... EPA bases drinking water limits on a dose of 4 mrem/year to total body or any critical organ. For I-131 the limit is 3 pCi/liter. For Cs-137 the limit is 200 pCi/liter.

From: OST05 Hoc
Sent: Thursday, March 24, 2011 10:12 AM
To: Tifft, Doug; Henderson, Pamela
Cc: McNamara, Nancy; OST05 Hoc; LIA04 Hoc; LIA03 Hoc
Subject: RE: Response to EPA drinking water limits question

Good morning Doug,

I just verified the numbers and the units with RASCAL folks in PMT, and it was confirmed that they are correct.

If you have any additional question on this, please contact PMT at (301) 816-5499.

Thank you, -Maria Arribas-Colon

From: Tifft, Doug
Sent: Thursday, March 24, 2011 7:59 AM
To: OST05 Hoc; LIA04 Hoc
Cc: Henderson, Pamela; McNamara, Nancy
Subject: RE: Response to EPA drinking water limits question

This doesn't sound right. I expected the units to be in pCi/L. And I'd also expect that the limits for one year olds would be lower than the limits for adults.

Would you mind double checking with your EPA contact what the EPA drinking water limit is for I-131 and Cs-137?

BBBB / 162

^{*} I've also got the question in to one of my Regional EPA contacts.

Thanks, -Doug

From: OST05 Hoc
Sent: Wednesday, March 23, 2011 7:45 PM
To: Henderson, Pamela; Barker, Allan; Browder, Rachel; Erickson, Randy; Logaras, Harral; Maier, Bill; McNamara, Nancy; Tifft, Doug; Trojanowski, Robert; Woodruff, Gena
Cc: OST05 Hoc; LIA04 Hoc; Easson, Stuart; Flannery, Cindy; Lukes, Kim; Maupin, Cardelia; Noonan, Amanda; Rautzen, William; Rivera, Alison; Ryan, Michelle; Turtil, Richard; Virgilio, Rosetta
Subject: Response to EPA drinking water limits question

Doug/ Pam,

This email is in response to your question on the EPA drinking water standards limits for lodine-131 and Cesium-137. See below.

lodine-131 One year old: 167 Bq/Kg Adult: 2420 Bq/Kg

<u>Cesium-137</u> One year old: 2990 Bq/Kg Adult: 1360 Bq/Kg

Thank you, -Maria Arribas-Colon From: Sent: To: Subject: Attachments:

۷.

PMT03 Hoc Friday, March 25, 2011 8:14 PM eoc_environmental_unit@epa.gov FW: US Nuclear Plant Reported Measurements US Nuclear Plant Reported Measurements 03252011.xlsx

The message to 'eoc_environmentalunit@epa.gov' was returned undeliverable...

From: PMT03 Hoc Sent: Friday, March 25, 2011 8:11 PM To: 'eoc_environmentalunit@epa.gov'; 'eoc_manager@epa.gov' Subject: US Nuclear Plant Reported Measurements

Ryan Craffey Protective Measures Team, USNRC

BBBB / 163

OFFICIAL USE ONLY				
Date	Plant	Isotope	Concentration	
3/18/2011	San Onofre	I-131	1.4E-13 uCi/cc	
3/18/2011	Diablo Canyon	I-131	3.8 to 6E-13 uCi/cc	
3/19/2011	San Onofre	I-131	6.5E-13 to 7.0E-13 uCi/cc	
3/19/2011	Palo Verde	Cs-134	2.22E-13 uCi/cc	
3/19/2011	Palo Verde	Cs-137	3.58E-13 uCi/cc	
3/19/2011	Palo Verde	I-131	1.54E-12 uCi/cc	
3/20/2011	San Onofre	I-131	2.0E-12 uCi/cc	
3/20/2011	Palo Verde	Cs-134	3.87E-13 uCi/cc	
3/20/2011	Palo Verde	I-131	2.50E-12 uCi/cc	
3/21/2011	Nine Mile Point	I-131	19.1 pCi/L (rainwater)	
3/21/2011	Palo Verde	I-131	6.70E-13 uCi/cc	
3/21/2011	Palo Verde	Cs-134	2.06E-13 uCi/cc,	
3/21/2011	Palo Verde	Cs-137	2.71E-13 uCi/cc	
	San Onofre	I-131	7.0 to 8.0E-13 uCi/cc	
3/22/2011	San Onofre	Cs-137	1.25E-13 uCi/cc	
3/22/2011	Columbia	I-131	6.74E-13 uCi/cc	
3/22/2011	Nine Mile Point	I-131	18 pCi/L (rainwater)	
3/22/2011	Ginna	I-131	26.8 pCi/L (rainwater)	
3/22/2011	Palo Verde	I-131	2.01E-12 uCi/cc	
3/22/2011	Palo Verde	Cs-137	2.93E-13 uCi/cc	
3/22/2011	Palo Verde	Cs-134	2.76E-13 uCi/cc	
3/23/2011	Millstone	l ≟131	25.6 pCi/L (rainwater)	
3/23/2011	San Onofre	I-131	5E-13 to 6E-13 uCi/cc	
3/23/2011	San Onofre	Cs-137	7E-14 uCi/cc	
3/23/2011	Palo Verde	I-131	7.42E-13 uCi/cc	
3/23/2011	πMI	I-131	95 pCi/L (rainwater)	
1. Get "Department" model what wearen "	Palo Verde	I-131	6.30E-13 uCi/cc	
	Oyster Creek	I-131	127 pCi/L (rainwater)	
	San Onofre	1-131	3.0E-13 to 6.0E-13 uCi/cc	
3/24/2011		I-131	47 pCi/L (rainwater)	
A REAL PROPERTY AND A REAL PROPERTY.	South Texas	I-131	2.6E-13 uCi/cc	

I-131 Reporting Levels NUREG-1201 and NUREG-1302

	I-131	Units	I-131
Drinking Water	2	pCi/L	2.00E-09
Non-Drinking Water	20	pCi/L	2.00E-08
Air	0.9	pCi/m3	9.00E-13

3/25/2011 San Onofree 4. 1-131 90E-13 to 1E-12 uCi/cc 3/25/2011 San Onofree 6. Cs 137 1E-13 to 3E-13 uCi/cc

OFFICIAL USE ONLY

Units

÷

uCi/ml uCi/ml uCi/cc

.

From: Sent: To: Cc: Subject: OST05 Hoc Thursday, March 24, 2011 12:53 PM PMT03 Hoc; Hoc, PMT12 OST05 Hoc; LIA04 Hoc FW: Response to EPA drinking water limits question

PMT- forwarding this to PMT for response.

Thank you, -Maria Arribas-Colon

From: Henderson, Pamela
Sent: Thursday, March 24, 2011 10:19 AM
To: OST05 Hoc
Cc: McNamara, Nancy; LIA04 Hoc; LIA03 Hoc; PMT03 Hoc; Hoc, PMT12; Tifft, Doug
Subject: RE: Response to EPA drinking water limits question

Maria,

I believe that RASCAL would utilize NRC limits?

From the EPA website.... EPA bases drinking water limits on a dose of 4 mrem/year to total body or any critical organ. For I-131 the limit is 3 pCi/liter. For Cs-137 the limit is 200 pCi/liter.

From: OST05 Hoc
Sent: Thursday, March 24, 2011 10:12 AM
To: Tifft, Doug; Henderson, Pamela
Cc: McNamara, Nancy; OST05 Hoc; LIA04 Hoc; LIA03 Hoc
Subject: RE: Response to EPA drinking water limits question

Good morning Doug,

I just verified the numbers and the units with RASCAL folks in PMT, and it was confirmed that they are correct.

If you have any additional question on this, please contact PMT at (301) 816-5499.

Thank you, -Maria Arribas-Colon

From: Tifft, Doug
Sent: Thursday, March 24, 2011 7:59 AM
To: OST05 Hoc; LIA04 Hoc
Cc: Henderson, Pamela; McNamara, Nancy
Subject: RE: Response to EPA drinking water limits question

This doesn't sound right. I expected the units to be in pCi/L. And I'd also expect that the limits for one year olds would be lower than the limits for adults.

Would you mind double checking with your EPA contact what the EPA drinking water limit is for I-131 and Cs-137?

BBBB / 164

I've also got the question in to one of my Regional EPA contacts.

Thanks, -Doug

From: OST05 Hoc

Sent: Wednesday, March 23, 2011 7:45 PM

To: Henderson, Pamela; Barker, Allan; Browder, Rachel; Erickson, Randy; Logaras, Harral; Maier, Bill; McNamara, Nancy; Tifft, Doug; Trojanowski, Robert; Woodruff, Gena

Cc: OST05 Hoc; LIA04 Hoc; Easson, Stuart; Flannery, Cindy; Lukes, Kim; Maupin, Cardelia; Noonan, Amanda; Rautzen, William; Rivera, Alison; Ryan, Michelle; Turtil, Richard; Virgilio, Rosetta **Subject:** Response to EPA drinking water limits question

Doug/Pam,

This email is in response to your question on the EPA drinking water standards limits for lodine-131 and Cesium-137. See below.

<u>Iodine-131</u> One year old: 167 Bq/Kg Adult: 2420 Bq/Kg

<u>Cesium-137</u> One year old: 2990 Bq/Kg Adult: 1360 Bq/Kg

Thank you, -Maria Arribas-Colon From: Cc: Subject: Date: Attachments: LIA07 Hoc LIA07 Hoc 0430 EDT (March 25, 2011) USNRC Earthquake/Tsunami Status Update Friday, March 25, 2011 5:00:12 AM NRC Status Update 3.25.11--0430.pdf

Attached, please find a 0430 EDT (March 25, 2011) status update from the US Nuclear Regulatory Commission's Emergency Operations Center regarding the impacts of the earthquake/tsunami. Please note that the NRC has moved the publication time of this document from 0600 to 0430 to better serve the needs of its team in Japan.

Please note that this information is "Official Use Only" and is only being shared within the federal family.

Please call the Headquarters Operations Officer at 301-816-5100 with questions.

-Jim

Jim Anderson Office of Nuclear Security and Incident Response US Nuclear Regulatory Commission James.anderson@nrc.gov LIA07.HOC@nrc.gov (Operations Center)

BBBB / 165

From: Sent: Cc: Subject: Attachments: LIA07 Hoc Friday, March 25, 2011 5:00 AM LIA07 Hoc 0430 EDT (March 25, 2011) USNRC Earthquake/Tsunami Status Update NRC Status Update 3.25.11--0430.pdf

Attached, please find a 0430 EDT (March 25, 2011) status update from the US Nuclear Regulatory Commission's Emergency Operations Center regarding the impacts of the earthquake/tsunami. Please note that the NRC has moved the publication time of this document from 0600 to 0430 to better serve the needs of its team in Japan.

Please note that this information is "Official Use Only" and is only being shared within the federal family.

1

Please call the Headquarters Operations Officer at 301-816-5100 with questions.

-Jim

Jim Anderson Office of Nuclear Security and Incident Response US Nuclear Regulatory Commission James.anderson@nrc.gov LIA07.HOC@nrc.gov (Operations Center)

BBBB / 166

	From:	LIA07 Hoc
	To:	<u>Borchardt, Bill; Bradford, Anna; Cohen, Shari; Cooper, LaToya; Dyer, Jim; Flory, Shirley; Gibbs, Catina; Haney,</u>
		Catherine; Hudson, Sharon; Jaczko, Gregory; Johnson, Michael; Leeds, Eric; Loyd, Susan; Pace, Patti; Schwarz,
•		<u>Sherry;</u> <u>Sheron, Brian;</u> <u>Speiser, Herald;</u> <u>Sprogeris, Patricia;</u> <u>Taylor, Renee;</u> <u>Virgilio, Martin;</u> <u>Walls, Lorena;</u>
		Weber, Michael
	Subject:	Update for Go Books - 1800 EDT, March 25, 2011
,	Date:	Friday, March 25, 2011 6:55:45 PM
	Attachments:	TEPCO Press Release 152.pdf
N		TEPCO Press Release 162.pdf
WII # Hoc		TEPCO Press Release 161.pdf
		TEPCO Press Release 160.pdf
100-		TEPCO Press Release 159.pdf
		TEPCO Press Release 158.pdf
1/20/		TEPCO Press Release 157.pdf
HO		TEPCO Press Release 156.pdf
11 -		TEPCO Press Release 155.pdf
		TEPCO Press Release 154.pdf
		TEPCO Press Release 153.pdf GI-199 TP & OA 3-25-11.pdf
		ET Chronology 3-25-11 1800.pdf
		March 25 1500 EDT one pager (3).doc
		USNRC Earthquake-Tsunami Update 032511 1800EDT,PDF

Please find attached updated information for the "Go Books".

The updates include:

- The 1800 EDT, 03/25/11 Status Update
- The latest ET Chronology
- The latest TEPCO Press Releases (Numbers 152-162)
- NRC Talking Points (GI-199)
- "One Pager" (1500 EDT, 03/25/11)

Please let me know if you have any questions or concerns.

-Sara

Sara Mroz

Communications and Outreach

Office of Nuclear Security and Incident Response

US Nuclear Regulatory Commission

Sara.Mroz@nrc.gov

LIA07.HOC@nrc.gov (Operations Center)

BBBB / 167

Press Releases

Press Release (Mar 25,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 am March 25th)

[No update from the last release issued at 9:00 pm, March 24th]

- (No update from the last release issued at 9:00 pm, March 24th]
 Unit Status

 Reactor cold shutdown, stable water level, offsite power is available.
 No reactor coolant is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the Pressure Suppression Chamber.

 Reactor cold shutdown, stable water level, offsite power is available.
 No reactor coolant is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the Pressure Suppression Chamber.
 Reactor cold shutdown, stable water level, offsite power is available.
 No reactor coolant is leaked to the reactor containment vessel.
 Reactor cold shutdown, stable water level, offsite power is available.
 No reactor coolant is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the Pressure Suppression Chamber.
 Reactor cold shutdown, stable water level, offsite power is available.
 No reactor coolant is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the Pressure Suppression Chamber.
 No reactor coolant is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the Pressure Suppression Chamber.

Elback to ease lee

Press Releases

Press Release (Mar 25,2011) Implementation Plan of Rolling Blackouts on and after March 26, 2011

Due to the tight power supply-demand balance, TEPCO has been Due to the tight power supply-demand balance, TERCO has been implementing rolling blackout since Monday, March 14. We sincerely regret causing anxiety and inconvenience to our customers and the society. We appreciate your cooperation in conserving electricity consumption.

For customers who will be subject to rolling blackouts, please be For customers who will be subject to rolling blackouts, please be prepared for the announced blackout periods. Also, for the customers who are not subject to blackouts, we would appreciate your continuous cooperation in reducing electricity usage by turning off unnecessary lightings and electrical appliances. We would like to inform the implementation plan of rolling blackouts on and after March 26, 2011 as follows. Since today, we will, in principle, inform each 5 sub-group divided from each existing 5 group (Group 1 to 5) on the rolling blackout non the following day.

on the rolling blackout plan on the following day.

o<u>Implementation plan of rolling blackout on March 26 (Sat.) and</u> <u>March 27 (Sun.)</u> On March 26, Saturday, no rolling-blackout will be implemented in any time periods based on the today's power demand, the weather forecast on March 26 and the trend of the power supply. On March 27, Sunday, no rolling-blackout will be implemented in any time periods based on the trend of the current power supply and demand.

oImplementation plan of rolling blackout on March 28 (Mon.) and

- oImplementation plan of rolling blackout on March 28 (Mon.) and <u>April 1 (Fri.)</u>
 Please refer to the appendix for details.
 The actual blackout period for each Group is planned to be maximum about 3 hours during the relevant scheduled time period.
 Each blackout period for each Group differs every day and starting and ending time of blackout periods may slightly differ.
 Depending on the supply-demand balance of the day, planned blackouts may not be carried out. In case the electricity supply-demand balance becomes tighter than expected, we will reconsider the rolling blackout plan and inform you accordingly before we implement the revised plan.
 A blackouts are carried out

[Others]

Others;
In order to prevent fires, please make sure to switch off electric appliances such as hair driers when you leaving home.
Please carefully pay attention to the traffic at the crossings in case the traffic lights are suddenly turned off.
As for the buildings and apartments, please be aware that equipments and facilities such as elevators, automatic doors, automatic locks, and multilevel parking lots will not function. In particular, please avoid using elevators during the scheduled blackouts

blackouts.

«Reference>

oPrediction of demand and supply on March 25 Estimated Demand 35,000 MW (18:00-19:00) 37.500 MW Supply Capacity

```
oPrediction of demand and supply on March 26
Estimated Demand 35,000 MW (18:00-19:00)
                                          37,500 MW
            Supply Capacity
```

*Prediction of demand

According to the weather forecast, the temperature tomorrow on March 26 will be lower than that of today. However, tomorrow is Saturday and we assume the estimated peak demand on March 26 will be 35,000MW, lower than that on weekdays. *Estimated demand and supply capacity may change depending on the situation of the day.

attachment:Weekly Rolling Blackout Plan from Mar 26th (Sat) to Apr 1st (Pri) (PDF 63KB)

C back to page 16B

Press Releases

Press Release (Mar 25,2011) Plant Status of Fukushima Daiichi Nuclear Power Station (as of 10:30 PM Mar 25th)

*new items are underlined

All 6 units of Fukushima Daiichi Nuclear Power Station have been shut down.

Unit 1 (Shut down)

-Reactor has been shut down. However, the explosive sound and white smoke were confirmed after the big quake occurred at 3:36 pm Mar 12th. It was assumed to be hydrogen explosion.

Assumed to enjoying exposition. -At approximately 2:30 am on March 23rd, seawater was started to be injected to the nuclear reactor through the feed water system.

-At approximately 10:50 am on March 24th, white fog-like steam arising from the roof part of the reactor building was observed. -At approximately 11:30 am on March 24th, lights in the main control room

We as restored. -We had been injecting sea water into the reactor, but from 3:37 pm on March 25th, we started injecting fresh water into it.

Unit 2(Shut down)

-At approximately 6:00 am on March 15th, an abnormal noise began emanating from nearby Pressure Suppression Chamber and the pressure within this chamber decreased.

-At 6:20 pm on March 21st, white smoke was confirmed arising from the top of the reactor building. As of 7:11 am on March 22nd, smoke decreased to the level to nearly non-existent.

-We have been injecting sea water into the reactor.

Unit 3(Shut down)

Reactor has been shut down. However, the explosive sound and white smoke were confirmed at 11:01am Mar 14th. It was assumed to be hydrogen

explosion. -At 8:30am on March 16th, fog like steam was confirmed arising from the reactor building.

-At approximately 6:15 am on March 17th the pressure of the Suppression -At approximately 6:15 am on March 17th the pressure of the Suppression Chamber has temporarily increased. We were preparing to implement a measurement to reduce the pressure of the reactor containment vessel (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to take a measure immediately to discharge air containing radioactive material to cutside now. We will continue to monitor the status of the pressure of the reactor containment vessel. -At approximately 4:00 pm, March 21st, light gray smoke was confirmed arising from the floor roof of the Unit 3 building. On March 22nd, the color of smoke changed to somewhat white and it is slowly dissipating. -At approximately 10:45 pm on March 22nd, the light in the main control room was turned on.

room was turned on.

-At around 4:20 pm on March 23rd, our staff confirmed light black smoke belching from the Unit 3 building. At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, our employee found no signs of smoke. -We had been injecting sea water into the reactor pressure vessel, but from 6:02 pm on March 25th, we started injecting fresh water into it.

Unit 4 (outage due to regular inspection)

-Reactor has been shut down. However, at approximately 6 am on March 15th. We have confirmed the explosive sound and the sustained damage around the 5th floor rooftop area of the Nuclear Reactor Building. -On March 15th and 16th, we respectively confirmed the outbreak of fire at the 4th floor of the northwestern part of the Nuclear Reactor Building.

We immediately reported this matter to the fire department and the related authorities. TEPCO employees confirmed that each fire had already died down by itself.

-At this moment, we do not consider any reactor coolant leakage inside the reactor happened.

Unit 5 (outage due to regular inspection)

-Reactor has been shut down and the sufficient level of reactor coolant to

-Reactor has been shut down and the sufficient level of reactor coolant to ensure safety is maintained. -At 5 am, March 19th, we started the Residual Heat Removal System Pump (C) in order to cool the spent fuel pool. -At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened. -At 2:30 pm, March 20th, the reactor achieved reactor cold shutdown. At around 5:24 pm on March 23rd, when we switched the temporary Residual Heat Removal System Seawater Pump, it has stopped automatically. At around 4:14 pm, March 24th, we started replaced pump and at around 4:35 pm, cooling of reactor has restarted.

Unit 6 (outage due to regular inspection)

-Reactor has been shut down and the sufficient level of reactor coolant to

-Reactor has been shut down and the sufficient level of reactor coolant to ensure safety is maintained.
-We are working on receiving external power supply to Units 5 and 6. We completed the repair work on the emergency diesel generator (A).
-At 10:14 pm, March 19th, we started the Residual Heat Removal System Pump (B) of Unit 6 in order to cool the spent fuel pool.
-At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened.
-At 7:27 pm, March 20th the reactor achieved reactor cool d shutdown

-At 7:27 pm, March 20th, the reactor achieved reactor cold shutdown. -In relation to the two seawater side pumps of the Residual Heat Removal System, we changed the power source from temporary to permanent at 3:38 PM and 3:42PM, Mar 25 respectively. They are operating normally.

Today's work for cooling the spent fuel pools

rocay's work for cooling the spent fuel pools -At :05 am, March 25th, we started injecting seawater into the spent fuel pool of Unit 4, using Fuel Pool Cooling and Filtering(clean up) system (FPC) and finished at 10:20 am. <u>At 10:30 am, March 25th, we started</u> injecting seawater into the spent fuel pool of Unit 2, using Fuel Pool Cooling and Filtering (clean up) system (FPC) and finished it at 0:19 pm of the same day. -Straying at the spent fuel pool of Unit 2 he Yourself Give File

of the same day. -Spraying at the spent fuel pool of Unit 3 by Kawasaki City Fire Department was carried out from 1:28 pm to 4:00 pm on March 25th. -<u>From 7:05 PM to 10:07 PM, Mar 25, water discharge by concrete pumping</u> <u>vehicle to the spent fuel pool of Unit 4 was conducted</u>. -We are considering further spraying at other units and others subject to the conditions of spent fuel pools.

Casualty

-2 workers of cooperative firm were injured at the occurrence of the -2 workers of cooperative film were injured at the occurrence of the earthquake, and were transported to the hospital on March 11th. -Presence of 2 TEPCO employees at the site is not confirmed on March 11th. -1 TEPCO employee who was not able to stand by his own holding left chest with his hand, was transported to the hospital by an ambulance on March 1000 12th.

-4 workers were injured and transported to the hospital after explosive sound and white smoke were confirmed around the Unit lon March 12th.

 -1 subcontract worker at the key earthquake-proof building was unconscious and transported to the hospital by an ambulance on March 12th.
 -The radiation exposure of 1 TEPCO employee, who was working inside the reactor building, exceeded 100mSv and he was transported to the hospital March 12th.

-2 TEPCO employees felt bad during their operation in the central control rooms of Unit 1 and 2 while wearing full masks, and were transferred t Fukushima Daini Nuclear Power Station for consultation with a medical advisor on March 13th. -11 workers were injured and transported to Fukushima Daini Nuclear Power

Station etc. after explosive sound and white smoke were confirmed around the Unit 3. One of the workers was transported to the FUKUSHIMA Medical University Hospital on March 14th.

-At approximately 10 pm on March 22nd, 1 worker who had been working on setting up a temporary power panel in the common pool was injured and transported to Fukushima Daini Nuclear Power Station where the industrial doctor is.

-At approximately 1:30 am on March 23rd, 1 worker who had been working on transporting a temporary power panel in the common pool was injured and transported to Fukushima Daini Nuclear Power Station where the industrial

-On March 24th, it was confirmed that 3 workers from cooperative companies -On March 24th, it was confirmed that 3 workers from cooperative companies who were in charge of cable laying work in the 1st floor and the underground floor of turbine building were exposed to the radiation dose of more than 170 mSv. 2 of them were confirmed that their leg skin were contaminated. Although they were decontaminated, since it there were possibility of beta ray burn injury, they were transferred to Fukushima Medical University Hospital. The third worker was also transferred to Fukushima Medical University Hospital today (March 25). The 3 workers are now been transferred to National Institute of Radiological Sciences in Chiba Prefecture. Chiba Prefecture.

Regarding this event, TEPCO has reported to related government ministries and agencies on measures to be taken to assure appropriate radiation dose control and radiation exposure related operations. Before today's restoration work, we will make notification to

the concerned parties and continue to take all possible measures to future management.

Others

-We measured radioactive materials (iodine etc.) inside of the nuclear We measured radioactive materials (lodine etc.) inside of the nuclear power station area (outdoor) by monitoring car and confirmed that radioactive materials level is getting higher than ordinary level. As listed below, we have determined that specific incidents stipulated in article 15, clause 1 of Act on Special Measures Concerning Nuclear Emergency Preparedness (Abnormal increase in radiation dose measured at

Emergency Preparedness (Abnormal increase in radiation dose site boundary) have occurred. Determined at 4:17 pm Mar 12th (Around Monitoring Post 4) Determined at 8:56 am Mar 13th (Around Monitoring Post 4) Determined at 2:15 pm Mar 13th (Around Monitoring Post 4) Determined at 2:50 am Mar 14th (Around Monitoring Post 6) Determined at 4:15 am Mar 14th (Around Monitoring Post 2) Determined at 9:27 am Mar 14th (Around Monitoring Post 3) Determined at 9:37 pm Mar 14th (Around monitoring Post 3) Determined at 6:51 am Mar 15th (Around main entrance) Determined at 8:11 am Mar 15th (Around main entrance) Determined at 8:11 am Mar 15th (Around main entrance)
Determined at 4:17 pm Mar 15th (Around main entrance)
Determined at 11:05 pm Mar 15th (Around main entrance)
Determined at 8:58 am Mar 19th (Around MP5)
From now on, if the measured figure fluctuates and goes above and below
500 micro Sv/h, we deem that as the continuous same event and will not
regard that as a new specific incidents stipulated in article 15, clause 1
of the Act on Special Measures Concerning Nuclear Emergency Preparedness
(Abnormal increase in radiation dose measured at eite bundary) bas (Abnormal increase in radiation dose measured at site boundary) has occurred. In the interim, if we measure a manifestly abnormal figure a it is evident that the event is not the continuous same event, we will determine and notify.

-The national government has instructed evacuation for those local

residents within 20km radius of the periphery and evacuation to inside for those residents from 20km to 30km radius of the periphery, because it's possible that radioactive materials are discharged. -At approximately 10am on March 15th, we observed 400mSv/h at the inland side of the Unit 3 reactor building and 100mSv/h at the inland side of the Unit 4 concise building and 100mSv/h at the inland side of

side of the Unit 3 reactor building and 100mSv/h at the iniand side or the Unit 4 reactor building. -At around 10:37 am March 21st, water spraying to common spent fuel pool and finished at 3:30 pm (conducted by TEFCO). -At around 3:37 pm, March 24th, electricity supply to common spent fuel pool has started from external power source. At around 6:05 pm, fuel pool cooling pump was started to cool the pool. -We found no signs of abnormal situation for the casks by visual observation during the patrol activity. A detailed inspection is under preparation.

We found no signs of account entropy of the properties of account of the properties of the pr

C back to page top

Press Releases

Press Release (Mar 25,2011) Plant Status of Fukushima Dalichi Nuclear Power Station (as of 4:30 PM Mar 25th)

*new items are underlined

All 6 units of Fukushima Daiichi Nuclear Power Station have been shut down.

Unit 1 (Shut down)

-Reactor has been shut down. However, the explosive sound and white smoke were confirmed after the big quake occurred at 3:36 pm Mar 12th. It was assumed to be hydrogen explosion.

At approximately 2:30 am on March 23rd, seawater was started to be

injected to the nuclear reactor through the feed water system. -At approximately 10:50 am on March 24th, white fog-like steam arising from the roof part of the reactor building was observed. -At approximately 11:30 am on March 24th, lights in the main control room

restored. We had injected sea water into the reactor pressure vessel, but at 3:37 pm on March 25th, we have started to inject fresh water into it.

Unit 2(Shut down)

-At approximately 6:00 am on March 15th, an abnormal noise began emanating from nearby Pressure Suppression Chamber and the pressure within this chamber decreased.

-At 6:20 pm on March 21st, white smoke was confirmed arising from the top of the reactor building. As of 7:11 am on March 22nd, smoke decreased to the level where we can hardly confirm

-We have been injecting sea water into the reactor pressure vessel.

Unit 3(Shut down)

Reactor has been shut down. However, the explosive sound and white smoke were confirmed at 11:01am Mar 14th. It was assumed to be hydrogen explosion. -At 8:30am on March 16th, fog like steam was confirmed arising from the reactor building.

reactor building. -At approximately 6:15 am on March 17th the pressure of the Suppression Chamber has temporarily increased. We were preparing to implement a measurement to reduce the pressure of the reactor containment vessel (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to take a measure immediately to discharge air containing radioactive material to outside now. We will continue to monitor the status of the pressure of the reactor containment vessel. -At approximately 4:00 pm, March 21st, light gray smoke was confirmed arising from the floor roof of the Unit 3 building. On March 22nd, the color of smoke changed to somewhat white and it is slowly dissipating. -At approximately 10:45 pm on March 22nd, the light in the main control room was turned on.

-At approximately 10:45 pm on warch 22nd, the light in the main control room was turned on. -At around 4:20 pm on March 23rd, our staff confirmed light black smoke belching from the Unit 3 building. At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, our employee found no signs of smoke. -We have been injecting sea water into the reactor pressure vessel.

Unit 4 (outage due to regular inspection) -Reactor has been shut down. However, at approximately 6 am on March 15th. We have confirmed the explosive sound and the sustained damage around the

We inwe that the explosive sound and the sustained damage around the 5th floor rooftop area of the Nuclear Reactor Building. -On March 15th and 16th, we respectively confirmed the outbreak of fire at the 4th floor of the northwestern part of the Nuclear Reactor Building. We immediately reported this matter to the fire department and the related authorities. TEPCO employees confirmed that each fire had already died down by itself. -At this moment, we do not consider any reactor coolant leakage inside the

reactor containment vessel happened.

Unit 5 (outage due to regular inspection)

Unit 5 (outage due to regular inspection) -Reactor has been shut down and the sufficient level of reactor coolant to ensure safety is maintained. -At 5 am, March 19th, we started the Residual Heat Removal System Pump (C) in order to cool the spent fuel pool. -At this moment, we do not consider any reactor coolant leakage inside the encoder container to react a set of the spent the spent of the set of the spent the spent the spent the spent to cool the spent the spent the spent the spent the spent to cool the spent the spent the spent to cool the spent the spent to cool the spent to cool the spent the spent to cool the spent to cool the spent to cool the spent the spent to cool the spe

-At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened. -At 2:30 pm, March 20th, the reactor achieved reactor cold shutdown. At around 5:24 pm on March 23rd, when we switched the temporary Residual Heat Removal System Seawater Pump, it has stopped automatically. At around 4:14 pm, March 24th, we started replaced pump and at around 4:35 pm, cooling of reactor has restarted.

Unit 6 (outage due to regular inspection)

-Reactor has been shut down and the sufficient level of reactor coolant to ensure safety is maintained.

-We are working on receiving external power supply to Units 5 and 6. We -we are working on receiving external power supply to Units 5 and 6. We completed the repair work on the emergency dissel generator (A).
 -At 10:14 pm, March 19th, we started the Residual Heat Removal System Pump (B) of Unit 6 in order to cool the spent fuel pool.
 -At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened.
 -At 7:27 pm, March 20th, the reactor achieved reactor cold shutdown.

Today's work for cooling the spent fuel pools

At :05 am, March 25th, we started injecting seawater into the fuel spent pool of Unit 4, using Fuel Pool Cooling and Filtering(Clean up) system (FPC) and finished at 10:20 am. <u>At 10:30 am, March 25th, we started</u> <u>injecting seawater into the spent fuel pool of Unit 2, using Fuel Pool</u> Cooling and Filtering (clean up) system (FPC) and finished it at 0:19 pm of the same day.

Spraying at the spent fuel pool of Unit 3 by Kawasaki City Fire Department was carried out from 1:28 pm to 4:00 pm on March 25th. We are considering further spraying at other units and others subject to

the conditions of spent fuel pools.

Casualty

-2 workers of cooperative firm were injured at the occurrence of the - and were transported to the hospital on March 11th.
 - 4 workers were injured and transported to the hospital after explosive

sound and white smoke were confirmed around the Unit Ion March 11th. -Presence of 2 TEPCO employees at the site is not confirmed on March 11th. -1 TEPCO employee who was not able to stand by his own holding left chest with his hand, was transported to the hospital by an ambulance on March 12th.

-1 subcontract worker at the key earthquake-proof building was unconscious and transported to the hospital by an ambulance on March 12th.
 -The radiation exposure of 1 TEPCO employee, who was working inside the reactor building, exceeded 100mSv and he was transported to the hospital

on March 12th.

-2 TEPCO employees felt bad during their operation in the central control rooms of Unit 1 and 2 while wearing full masks, and were transferred to Fukushima Daini Nuclear Power Station for consultation with a medical advisor on March 13th. -11 workers were injured and transported to Fukushima Daini Nuclear Power

Station etc. after explosive sound and white smoke were confirmed around the Unit 3. One of the workers was transported to the FUKUSHIMA Medical University Hospital on March 14th.

-At approximately 10 pm on March 22nd, 1 worker who had been working on setting up a temporary power panel in the common pool was injured and transported to Fukushima Daini Nuclear Power Station where the industrial doctor is.

-At approximately 1 am on March 23rd, 1 worker who had been working on transporting a temporary power panel in the common pool was injured and transported to Fukushima Daini Nuclear Power Station where the industrial doctor is.

-On March 24th, it was confirmed that 3 workers from cooperative companies -On March 24th, it was confirmed that 3 workers from cooperative companies who were in charge of cable laying work in the 1st floor and the underground floor of turbine building were exposed to the radiation dose of more than 170 mSv. 2 of them were confirmed that their leg skin were contaminated. Although they were decontaminated, since it there were possibility of beta ray burn injury, they were transferred to Fukushima Medical University Hospital. The third worker was also transferred to Fukushima Medical University Hospital today (March 25). The 3 workers are now been transferred to National Institute of Radiological Sciences in Chiba Prefecture. Regarding this event, TEPCO has reported to related government ministries

Regarding this event, TEPCO has reported to related government ministries and agencies on measures to be taken to assure appropriate radiation dose control and radiation exposure related operations.

Before today's restoration work, we will make notification to the concerned parties and continue to take all possible measures to future management.

Others

-We measured radioactive materials (iodine etc.) inside of the nuclear

```
We measured radioactive materials (iodine etc.) inside of the nuclear
power station area (outdoor) by monitoring car and confirmed that
radioactive materials level is getting higher than ordinary level. As
listed below, we have determined that specific incidents stipulated in
article 15, clause 1 of Act on Special Measures Concerning Nuclear
Emergency Preparedness (Abnormal increase in radiation dose measured at
site boundary) have occurred.
Determined at 4:17 pm Mar 12th (Around Monitoring Post 4 )
Determined at 2:15 pm Mar 13th (Around Monitoring Post 4 )
Determined at 2:15 pm Mar 13th (Around Monitoring Post 4 )
Determined at 3:50 am Mar 14th (Around Monitoring Post 2 )
Determined at 4:15 am Mar 14th (Around Monitoring Post 3 )
Determined at 9:37 pm Mar 14th (Around main entrance )
Determined at 8:51 am Mar 15th (Around main entrance )

    Determined at 6:51 am Mar 15th (Around main entrance)
    Determined at 8:11 am Mar 15th (Around main entrance)
    Determined at 4:17 pm Mar 15th (Around main entrance)
    Determined at 11:05 pm Mar 15th (Around Main entrance)
    Determined at 11:05 pm Mar 15th (Around MPS)
    From now on, if the measured figure fluctuates and goes above and below 500 micro Sv/h, we deem that as the continuous same event and will not regard that as new specific incidents stipulated in article 15, clause 1 of the Act on Special Measures Concerning Nuclear Emergency Preparedness (Abnormal Increase in radiation dose measured at site bundary) bas occurred in the secure of the secu
```

increase in radiation dose measured at site boundary) has occurred. In the interim, if we measure a manifestly abnormal figure and it is evident that the event is not the continuous same event, we will determine and notify.

-The national government has instructed evacuation for those local residents within 20km radius of the periphery and evacuation to inside for those residents from 20km to 30km radius of the periphery, because it's possible that radioactive materials are discharged.

possible that radioactive materials are discharged. -At approximately 10am on March 15th, we observed 400mSv/h at the inland side of the Unit 3 reactor building and 100mSv/h at the inland side of the Unit 4 reactor building. -At around 10:37 am March 21st, water spraying to common spent fuel pool and finished at 3:30 pm (conducted by TEPCO).

-At around 3:37 pm, March 24th, electricity supply to common spent fuel pool has started from external power source. At around 6:05 pm, fuel pool cooling pump was started to cool the pool. -We found no signs of abnormal situation for the casks by visual observation during the patrol activity. A detailed inspection is under prenartice

preparation.

Preparation. -At Units 5 and 6, in order to prevent hydrogen gas from accumulating within the buildings, we have made three holes on the roof of the reactor building for each unit. -In total 12 fire engines are lent for the water spraying to the spent fuel

-In total 12 fire engines are lent for the water spraying to the spent fuel pools and water injection to the nuclear reactors by various regional fire departments* as well as Tokyo Fire Department. Also, instruction regarding the setting and operation of large scale decontamination system was provided by Niigata City Fire Headquarter and Hamamatsu City Fire Headquarter.
*: Koriyama Fire Department, Iwaki Fire Brigade Headquarters, Fire Headquarters of Sukagawa District Wide Area Fire-fighting Association, Yonezawa City Fire Headquarters, Utsunomiya City Fire Headquarters, Fire Headquarters of Aizu-Wakamatsu Wide area municipal association, Saitama City Fire Bureau, and Niigata City Fire Bureau.
-Until March 22nd, Units 1 through 6 were started to be energized from the external power source.
-We will continue to take all measures to ensure the safety and to continue monitoring the surrounding environment around the Power Station.

C back to page les

Press Releases

Press Release (Mar 25,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 3:00 pm March 25th)

[No update from the last release issued at 9:00 am, March 25th]

- Unit Status \cdot Reactor cold shutdown, stable water level, offsite power is available. No reactor coolant is leaked to the reactor containment vessel.
 - Maintain average water temperature at 100 $^\circ\mathrm{C}$ in the Pressure Suppression Chamber.
- Suppression tnameer.
 Reactor cold shutdown, stable water level, offsite power is available.
 No reactor coolant is leaked to the reactor containment vessel.
 Maintain average water temperature at 100°C in the Pressure Suppression Chamber.
 Parater cold shutdown stable water temperature infinite second s 2

- 3 Reactor cold shutdown, stable water level, offsite power is .
 - •
 - available.
- No reactor coolant is leaked to the reactor containment vessel. Maintain average water temperature at 100°C in the Pressure Suppression Chamber. Other N.A.

Stack to page too

4

Press Release (Mar 25,2011)	
Special Measures for the electricity bills for the customers who have suffered from the Tohoku-Chih	
We sincerely express our best wish for all the customers who have suffered from the Tohoku-Chihou-Taiheiyo-Oki Earthquake ("Earthquake")	
If requested from customers who suffered from the Earthquake in the areas where the Disaster Relief Act was applied, we will offer special measures for the electricity bills for such customers (previously announce on March 15th, 16th and 18th).	
Further to the additional application of Disaster Relief Act to 4 municipalities in Chiba Prefectures, we have decided to expand areas to those we apply exceptional conditions of electricity supply (Special Measures for the customers who have seriously suffered from Tohoku-Chihou-Taiheiyo-Oki Earthquake) to General Supply Provisions, based on a proviso of Section I of Article 21 of Electricity Business Act., have applied to Ministry of Economy, Trade and Industry for and have acquired an additional approval. The contents are as follows.	
<pre> All the customers> All the customers who have suffered from the Earthquake since March 11th in the areas shown below to which the Disaster Relief Act is applied in relation to the Earthquake and who applied for the special measures: Ibaraki Prefecture; Mito city, Hitachi city, Tsuchiura city, Takhagi city, Shinotsuma city, Joso city, Hitachiota city, Takhagi city, Kitalbaraki city, Kasama city, Toride city, Ushiku city, Tsukuba city, Hitachinaka city, Kasima city, Itako city, Hitachiomiya city, Kasumigaura city, Sakuragawa city, Kamisu city, Namegata city, Hokota city, Tsukubamirai city, Omitama city, Ibaraki town, Oarai town, Shirosato town, Tokai village, Daigo town, Ami town, Naka city, Mito village, Kawachi village, Chikusei city, Inashiki city, Tone town Tochigi Prefecture; Utsunomiya city, Oyama city, Moka city, Otawara city, Yaita city, Nasushiobara city, Mashiko town, Motegi town, Ichikai town, Haga town, Takanezawa town, Nasu town, Nakagawa town Chiba Prefecture; Asahi city, Katori city, Yantake city, Tsukumo town, Chiba city (Mihama ward), Narashino city, Yachiyo town, Yuuki city, Koga city Tochigi Prefecture; Nikko city, Kanuma city, Shimotsuke city, Shioya town, Mibu town, Kaminokawa town, Tochigi city, Nogi town Chiba Prefecture; Nikko city, Kashiwa city, Choshi city, Tohnosyo town, Narita city, Yandiwa town, Shibayama town, Yokoshibahikari town, Kanzaki town, Oamishirasato town, Shibayama town, Yokoshibahikari town, Kanzaki town, Taka coty, Kashiwa city, Chuo ward, Hanamigawa ward, Inage ward), Ichikawa city, Funabashi city, Yachiyo city </pre>	
Tokyc; Edogawa ward <special measures=""> 1.Deferring the due date for 1 month As to the electricity bill for February 2011 (whose due date is March 11 or afterward), March 2011, and April 2011, the due date* is deferred for 1 month. *The due date is 30 days after the next day of meter-reading.</special>	
2.Exemption from payment for the months of no electricity use If you have been used no electricity since the occurrence of damage from the Earthquake, we do not charge any amount for the 6 month after the month when the damage of the Earthquake has risen.	
3.Exemption from the payment for the construction If you have been used no electricity, terminate the contract of electricity since the occurrence of damage from the Earthquake, and applied for a new electricity contract by the end of September, 2011, basically we do not charge any amount for the construction.	
4.Exemption from the payment for temporary construction If you applied for an contract of temporary electricity for the purpose of restore the damaged areas by the end of September, 2011, we do not charge any amount for the temporarily construction.	
5.Exemption from payment of the basic fee for the broken facilities due to the Earthquake If customers' electricity facilities partly broke down due to the Earthquake, we do not charge basic fees for the broken facilities unless	

٦

If you apply for changing the position of an electricity meter or a service wire by the end of September 2011, basically we do not charge any amount for the first part of the construction.

E back to page ito

Press Releases

Press Release (Mar 25,2011) The improvement of implementation of rolling blackout (introduction of subdivision of each group)

TEPCO has been implementing the rolling blackout since March 14 due to the tightening power supply-demand balance caused by the Tohoku-Taiheiyou-Oki Earthquake. We sincerely regret causing anxiety and inconvenience to our customers and the society. We appreciate your cooperation in conserving electricity consumption.

As previously informed on March 22nd, we have recently divided the area subject to the rolling blackout into 5 groups and announced the schedule of blackout based on such groups. Hereafter from March 26th, we will ramify each existing group further into 5 sub groups based on prefecture.

This is to enable our customers to predict the blackout more accurately as the blackout is currently implemented within the group entirely and partially depending on the actual demand-supply balance.

This improvement is to enable our customers to figure out the areas of rolling blackout more easily, therefore the concept of the rolling blackout, the existing groups and the period of blackout will remain unchanged.

Sub groups take turn for the blackout so that the unequal treatment among customers will be avoided.

Please refer to the attachment on our website for the detailed region of the groups.

[Ramification of groups]

First Period Second Period Third Period Fourth Period Fifth Period Group1 Group2 Group3 Group4 Group5

Group 1-A Group 2-A	Group 3-A	Group 4-A	Group 5-A
Group 1-B Group 2-E	Group 3-B	Group 4-8	Group 5-B
Group 1-C Group 2-C	Group 3-C	Group 4-C	Group 5-C
Group 1-D Group 2-D	Group 3-D	Group 4-D	Group 5-D
Group 1-E Group 2-E	Group 3-E	Group 4-E	Group 5-E

TEPCO plans to introduce additional measures to improve our operation such as the following example for the better announcement of blackout forecast. (actual introduction will be determined after successfully installing the group ramification.)

[forecast mark: example]

TEPCO will continue to do its utmost to secure the stable supply of electricity. We apology for the inconvenience caused and appreciate your continuous cooperation in conservation of electricity and your understanding for the rolling blackout. attachmentl:Datail of rollig blackout area for each group(FDF 46.6KB) attachment2:Rolling blackout which segmentalizes areas(image)(PDF 49.7KB)

B back to page foo

Press Releases

Press Release (Mar 25,2011) Power Supply and Demand Outlook in This Summer and Measures

1.Supply and Demand Situation and its Outlook Because many of our nuclear power stations and thermal power stations are severely damaged and forced to shut down due to the Tohoku-Chihou-Taiheiyo-Oki Earthquake, TEPCO has made every endeavor to ensure a stable power supply now. The power supply capacity for this summer in TEPCO is estimated at around 46.50 million kW as of this moment. In the meantime, given the prospect for influence of the earthquake and energy-saving effect, the peak demand for this summer in TEPCO is expected to be around 55.00 million kW (daily peak at generation end), which is 5.00 million kW less than that in the same season of last year. (The estimation of the average peak demand in weekday is estimated at around 48.00 million kW.)

Of the average peak demand in weekday is estimated at around work mailing kW.) For this reason, since it is expected that the power supply capacity will be much less than the peak demand in this summer, TEPCO will concentrate our efforts in strengthening the capacity for power supply, and will also vigorously pursue demand-side measures for further energy saving.

<Power Supply and Demand Outlook in this summer> (Unit: million kW)

	March 24, 2011 (past record)	End of July, 2011
Demand (Daily peak at generation end)	37.29	55.00
Supply Capacity	36.50 (38.50)	46.50 (※)
Reserve Capacity	▲ 0.50 (1.50)	▲ 8.50 (※)

Figure in parenthesis includes pumped hydropower generation.

* Power supply capacity of pumped hydropower generation varies with trend in power supply and

demand, thus, TEPCO will continuously monitor and examine it.

2.Additional Fower Supply Capacity (included in the supply capacity as of end of July, 2011 in the above) (1)Recovery from shutdown caused by the earthquake disaster [7.60 million

- kW1 Unit No.1 to No. 6 at Kashima Thermal Power Station, Unit No.1 at
- Unit No.1 to NO. b at Kashima inermal Power Station, Unit NO.1 at Hitachinaka Thermal Power Station, etc.
 (2) Restart of operation of thermal power generation units under long-term scheduled shutdown [0.90 million kW]
 Unit No.1 to NO. 4 at Yokosuka Thermal Power Station
 (3) Recovery from periodical inspection [3.70 million kW]
 Unit No.1-1 at Shinagawa Thermal Power Station, Unit No.7-2 of

Unit No.1-1 at Shinagawa Thermal Power Station, Unit No.7-2 of Yokohama Thermal Power Station, etc. (4)Installation of gas turbine, etc. [0.40 million kW] (5)Others [\$2.60 million kW] Decrease of output from existing thermal power stations in summer (due to increase of ambient temperature), etc.

TEPCO will continuously consider additional measure for further strengthening the power supply capacity.

3.Demand-Side Measures

While asking all of our customers to cooperate in energy saving, TEPCO will continue to improve power supply and demand situation, utilizing supply and demand adjustment contract.

We sincerely regret causing anxiety and inconvenience to our customers, and appreciate your continuous cooperation in conserving electricity consumption.

KS back to page tep

1

http://www.tepco.co.jp/en/press/corp-com/release/11032510-e.html

Q Soarch

Press Releases Press Release (Mar 25,2011) Status of TEPCO's Facilities and its services after Tohoku-Taiheiyou-Oki Earthquake (as of 3:00PM) Due to the Tohoku-Taiheiyou-Oki Earthquake which occurred on March 11th 2011, TEPCO's facilities including our nuclear power stations have been severely damaged. We deeply apologize for the anxiety and inconvenience caused. Below is the status of TEPCO's major facilities. *new items are underlined [Nuclear Power Station] Tukushima Daiichi Nuclear Power Station: Units 1 to 3: shutdown due to earthquake (Units 4 to 6: outage due to regular inspection) * The national government has instructed to evacuate for those local residents within 20km radius of the site periphery and to remain indoors for those local residents between 20km and 30km radius of the site periphery. *Off-site power was connected to Unit 1 to 6. *Unit 1 The explosive sound and white smoke was confirmed near Unit 1 when the big quake occurred at 3:36pm, March 12th. We have started injection of sea water at 8:20 pm, March 12th, and then boric acid which absorbs neutron into the reactor afterwards. At approximately 2:30 am, March 23rd, we have started the injection of sea water into the reactor from feed water system. At approximately 10:50 on March 24th, white smoke was confirmed arising from the top of the reactor building. At approximately 11:30 am, March 24th, lights in the main control room were restored. *Unit 2 At 1:25 pm, March 14th, since the Reactor Core Isolation Cooling System has failed, it was determined that a specific incident stipulated in Clause 1, Article 15 of Act on Special Measures Concerning Nuclear Emergency Preparedness occurred (failure of reactor cooling function). At 5:17 pm, March 14th, while the water level in the reactor reached the top of the fuel rod, we have restarted the water injection with the valve operation. At approximately 6:14 am, March 15th, the abnormal sound was confirmed near the suppression chamber and the pressure inside the chamber decreased afterwards. It was determined that there is a possibility that something happened in the suppression chamber. While sea water injection to the reactor continued, TEFCO employees and workers from other companies not in charge of injection work started tentative evacuation to a safe location. Sea water injection to the reactor continued. On March 18th, power was delivered up to substation for backup power through offsite transmission line. We completed laying cable further to unit receiving facility in the building, and at 3:46 pm, March 20th the load-side power panel of the receiving facility started to be energized. From 3: 05 pm to 5: 20 pm on March 20th, 40 tons of seawater was injected into Unit 2 by TEPCO employees. At 6:20 on March 21st, white smoke was confirmed arising from the top of the reactor building. As of 7:11 am on March 22nd, smoke decreased to the level where we can hardly confirm. From around 4 pm to 5 pm on March 22nd, approximately 18 tons of sea water was injected into the spent fuel pool by TEPCO employees. From 10:30 am on March 25th, sea water injection through Fuel Pool Cooling and Filtering System was initiated. *Unit 3 At 6:50 am, March 14th, while water injection to the reactor was under operation, the pressure in the reactor containment vessel increased to 530 kPa. As a result, at 7:44 am, it was determined that a specific incident stipulated in article 15, clause 1 occurred (abnormal increase of the pressure of reactor containment vessel). Afterwards, the pressure

has gradually decreased (as of 9:05 am, 490 kPa).

At approximately 11:01 am, March 14th, an explosion followed by white smoke occurred near Unit 3. 4 TEPCO employees and 3 workers from other companies (all of them are conscious) have sustained injuries and they were already taken to the hospital by ambulances. As the temperature of water in the spent fuel pool rose, spraying water by helicopters with the support of the Self Defense Force was considered, however the operation on March 16th was cancelled.

At 6:15 am, March 17th, the pressure of the Suppression Chamber At 6:15 am, March 17th, the pressure of the Suppression Chamber temporarily increased, but currently it is stable in a certain range. On March 20th, we were preparing to implement a measurement to reduce the pressure of the reactor containment vessel (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to take a measure immediately to discharge air containing radioactive material to outside. We will continue to monitor the status of the pressure of the reactor containent vessel. Monitoring will be continued containment vessel. Monitoring will be continued.

In order to cool spent fuel pool, water was sprayed by helicopters on March 17th with the cooperation of Self-Defense Forces.

At approximately past 7:00 pm, March 17th, Self-Defense Forces and the police had started spraying water by water cannon trucks upon our request for the cooperation. At 8:09 pm, March 17th, they had finished the operation.

At 2:00 pm, March 18th, spraying water by fire engines was started with the cooperation of Self-Defense Forces and the United States Armed Forces. At 2:45 pm, March 18th, they had finished the operation.

At approximately 0:30 am, March 19th, spraying water was started with the cooperation of Fire Rescue Task Forces of Tokyo Fire Department started spraying water. At approximately 1:10 am, March 19th, they finished the operation. They resumed spraying water at 2:10 pm. At approximately 3:40 am, March 20th, they finished the operation.

At approximately 9:30 pm, March 20th, spraving water was started with the cooperation of Fire Rescue Task Forces of Tokyo Fire Department. At approximately 3:58 am, March 21th, they finished the operation.

At approximately 3:55 pm, March 21st, light gray smoke was confirmed arising from the southeast side of the 5th floor roof of the Unit 3 arising from the soluteast side of the off froor of the dunit 3 building, and the situation was reported to the fire department at approximately 4:21 pm. The parameters of reactor pressure vessel, reactor containment vessel, and monitored environmental data remained at the same level. However, employees working around Unit 3 evacuated to a safe location. It is observed the smoke has been decreasing. On March 22nd, the color of smoke changed to somewhat white and it is slowly dissipating.

At approximately 3:10 pm on March 22nd, water discharge into Unit 3 by Tokyo Fire Department's Hyper Rescue and Osaka City Fire Department was conducted and completed at approximately 4:00 PM on the same day.

At approximately 10:45 pm on March 22nd, lights in the main operation were restored. room

At 11:00 am on March 23rd, the injection of sea water to spent fuel pool was conducted, and finished approximately at 1:20 pm on the same day.

At 4:20 pm on March 23rd, light gray smoke was observed belching from Unit 3 building. The situation was reported to the fire department at 4:25 pm on March 23rd. The parameters of the reactor, the reactor containment vessel of Unit 3,

and monitored figures around the site's immediate surroundings remained stable without significant change. To be safe, workers in the main control room of Unit 3 and around Unit 3 evacuated to a safe location.

At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, TEPCO employees confirmed the smoke has disappeared. Accordingly, workers evacuation was lifted.

From approximately 5:35 am on March 24th, sea water injection through Fuel Pool Cooling and Filtering System was initiated and finished at approximately 4:05 pm on the same day.

*Unit 4

*Unit 4 At approximately 6:00 am, March 15th, an explosive sound was heard and the damage in the 5th floor roof of Unit 4 reactor building was confirmed. At 9:38 am, the fire near the north-west part of 4th floor of Unit 4 reactor building was confirmed. At approximately 11:00 am, TEPCO employees confirmed that the fire was off.

At approximately 5:45 am on March 16th, a TEPCO employee discovered a fire at the northwest corner of the Nuclear Reactor Building. TEPCO immediately reported this incident to the fire department and the local government and proceeded with the extinction of fire. At approximately 6:15 am, TEPCO staff confirmed at the site that there are no signs of fire.

At approximately 8:21 am on March 20th, spraying water by fire engines was started with the cooperation of Self-Defense Forces and they finished the operation at approximately 9:40 am. At approximately 6:45 pm spraying water was started by Self-Defenses' water cannon trucks and finished at approximately 7:45 pm.

At approximately 6:30 am, March 21st, spraying water by fire engines was started with the cooperation of Self-Defense Forces and the United States Armed Forces. At approximately 8:40 am, March 21, they had

finished the operation. On March 21st, cabling has been completed from temporary substation to the main power center.

From approximately 5:20 pm on March 22nd, spraying water from the concrete pumping vehicle was conducted and ended at approximately 8:30 pm on the same day.

From approximately 10:00 am on March 23rd, spraying water from the concrete pumping vehicle was conducted and ended at approximately 1:00 pm on the same day.

From approximately 2:35 pm on March 24th, spraying water by the concrete pumping vehicle was conducted and ended at approximately 5:30 pm on the concrete same day.

From 6:05 am on March 25th, seawater injection through Fuel Pool Cooling and Filtering System was initiated and finished at approximately 10:20 am on the same day.

*Unit 5 and 6

(C) of Unit 5 in order to cool the spent fuel pool. At 10:14 pm, we started the Residual Heat Removal System Pump (B) of Unit 6 in order to cool the spent fuel pool.

Unit 5 has been in reactor cold shutdown since 2:30 pm on March 20th. Unit 6 has been in reactor cold shutdown since 7:27 pm on March 20th.

At Units 5 and 6, in order to prevent hydrogen gas from accumulating within the buildings, we have made three holes on the roof of the reactor building for each unit

At approximately 5:24 pm on March 23rd, the temporary Residual Heat Removal System Seawater Pump automatically stopped when its power source was switched. We plan to repair the pump while maintaining the appropriate the water level and the temperature in the reactor. At around 4:14 pm, March 24th, we started replaced pump and at around 4:35 pm, cooling of reactor has restarted.

*On March 18th, regarding the spent fuel in the common spent fuel pool, we have confirmed that the water level of the pool is secured. At around 10:37 am March 21st, water spraying to common spent fuel pool and finished at 3:30 pm. At around 6:05 pm, fuel pool cooling pump was started to cool the pool. *common spent fuel pool: a spent fuel pool for common use set in a separate building in a plant site in order to preserve spent fuel which are transferred from the spent fuel pool in each Unit building.

 $^{*}On$ March 17th, we patrolled buildings for dry casks and found no signs of abnormal situation for the casks by visual observation. A detailed

inspection is under preparation. *dry cask: a measure to store spent fuel in a dry storage casks in storages. Fukushima Daiichi Nuclear Power Station started to utilize the measure from August 1995.

* In total 13 fire engines are lent for spraying water to the spent fuel pools and water injection to the nuclear reactors by various regional fire departments* as well as Tokyo Fire Department. Also, instruction garding the setting and operation of large scale decontamination system was provided.

* On March 24, 2011, it was confirmed that 3 workers from cooperative companies who were in charge of cable laying work in the 1st floor and the underground floor of turbine building were exposed to the radiation dose of more than 170mSv. 2 of them were confirmed that their leg skins were contaminated. Although they were decontaminated by laundering, they were transferred to Fukushima Medical University hospital because there is possibility that they get a burn injury by beta ray. On March 25th, remaining worker was also transferred to Fukushima Medical University hospital. All 3 workers are now being transferred to National Institute of Radiological Sciences in Chiba Prefecture. We will assess radiation dose of 2 worker's leg skin by beta ray. We thoroughly instruct our employees and workers of cooperative companies to recognize APD alarm and evacuate when the alarm rings. We will explain this event, together with appropriate measures to be taken, to the government and to people concerned in order to fully secure the safety in relation to radiation dose management and operations associated with radiation exposure. * On March 24, 2011, it was confirmed that 3 workers from cooperative

 * On March 21st, 23rd and 24th, we detected cobalt, iodine, cesium and tellurium from the seawater around discharge canal of Unit 1, 2, 3 and 4.

 * On March 21st, 23rd and 24th, we detected iodine, cesium and tellurium in the air collected at the site of Fukushima Daiichi Nuclear Power Station.

*We will continuously endeavor to securing safety, and monitoring of the surrounding environment.

Fukushima Daini Nuclear Power Station:

Units 1 to 4: shutdown due to earthquake The national government has instructed evacuation for those local residents within 10km radius of the periphery.

* In order to achieve cold shutdown, reactor cooling function was restored and cooling of reactors was conducted. As a result, all reactors achieved cold shutdown: Unit 1 at 5:00 pm, March 14th, Unit 2 at 6:00 pm, March 14th, Unit 3 at 0:15 pm, March 12th, Unit 4 at 7:15 am, March 16th.

*Since March 12th, we had been preparing measures for reducing the pressure of reactor containment vessels (partial discharge of air containing radioactive materials to outside), but on March 17th, we released such preparation in all Units.

*(Unit 1)

it is confirmed that the temperature of the Emergency Equipment Cooling Water System *1 has increased, at 3:20 pm, March 15th, we

stopped the Residual Heat Removal System (B) for the inspection. Stopped the Kesidual Heat Kemoval System (B) for the inspection. Subsequently, failure was detected in the power supply facility associated with the pumps of the Emergency Equipment Cooling Water System. At 4:25 pm, March 15th, after replacing the power facility, the pumps and the Residual Heat Removal System (B) have been reactivated.

*(Unit 4)

As it is confirmed that the pressure at the outlet of the pumps of the Emergency Equipment Cooling Water System*¹ has been decreased, at 8:05 pm, March 15th, we stopped the Residual Heat Removal System (B) for o:up pm, March 10th, we stopped the Residual Heat Removal System (B) ff the inspection. Subsequently, failure was detected in the power supply facility associated with the pumps of the Emergency Equipment Cooling Water System. At 9:25 pm, March 15th, after replacing the relevant facility, the pumps and the Residual Heat Removal System (B) have been reactivated.

*1:emergency water system in which cooling water (pure water) circulates which exchanged the heat with sea water in order to cool down bearing pumps and/or heat exchangers etc.

Kashiwazaki Kariwa Nuclear Power Station: Units 1, 5, 6, 7: normal operation (Units 2 to 4: outage due to regular inspection)

[Thermal Power Station]

Hirono Thermal Power Station Units 2 and 4: shutdown due to earthquake Hitachinaka Thermal Power Station Unit 1: shutdown due to earthquake Kashima Thermal Power Station Units 2, 3, 5, 6: shutdown due to earthquake

[Hydro Power Station]

All the stations have been restored. (Facilities damaged by the earthquake are now properly under consideration)

[Transmission System, etc.] All substation failed due to the earthquake have been restored.

[Blackout in TEPCO's Service Area] All the blackouts are resolved.

[Supply and Demand Status within TEPCO's Service Area to Secure Stable

Power Supply] Backup supply from Shinshinano Conversion Station: 600MW Backup supply from Sakuma Conversion Station: 300MW Backup supply from Higashi Shimizu Conversion Station: 100MW Backup supply from Hokkaido-Honshu Interconnection Facilities: 600MW

Considering the critical balance of our power supply capacity and expected power demand forward, in order to avoid unexpected blackout, expected power demand forward, in order to avoid unexpected blackout, TEPCO has been implementing rolling blackout (planned blackout alternates from one area to another) since Mar 14th. We will make our utmost to secure the stable power supply as early as possible. For customers who will be subject to rolling blackout, please be prepared for the announced blackout periods. Also for customers who are not subject to blackouts, TEPCO appreciates your continuous cooperation in reducing electricity usage by avoiding using unnecessary lighting and electrical equipment electrical equipment.

[Others]

Please do NOT touch cut-off electric wires. In order to prevent fire, please make sure to switch off the electric appliances such as hair driers when you leave your house. For the customer who has in-house power generation, please secure fuel for generator.

E back to page ing

Press Releases

Press Release (Mar 25,2011) Detection of radioactive materials from the seawater around the discharge canal of Fukushima Dailchi Nuclear Power Station(5th release)

On March 21st 2011, radioactive materials were detected from the seawater around the discharge canal (south) of Fukushima Dalichi Nuclear Power Station which was damaged by the 2011 Tohoku-Tahleiyou-Oki Earthquake. This is the result of the sampling survey of radioactive materials in the seawater which was implemented as a part of monitoring activity of surrounding environment. We had informed the result to Nuclear and Industrial Safety Agency (NISA) and Fukushima prefecture. (previously announced)

On March 24th 2011, we had conducted re-sampling survey to examine the effect of radioactive materials in the seawater. We had informed the result to Nuclear and Industrial Safety Agency (NISA) and the government of Fukushima Prefecture, because radioactive materials were detected as shown in the attachment.

We will continue to conduct same kind of sampling survey.

attachment1:The result of the nuclide analysis of the seawater (Around the discharge canal (south) of Fukushima Falichi Muclear Power Station)(PDF 34,1KE) attachment2:The result of the nuclide snalysis of the seawater (Around the discharge canal (north) of Units 5 and 4 Fukushima Dalichi Nuclear Power Station) (PDF 34,0KB) attachment3:The result of the nuclide analysis of the seawater (Around the discharge canal (north) of Units 3 and 4 of Fukushima Dalmi Nuclear Power Station) (PDF 34,0KB) attachment4:The result of the nuclide analysis of the seawater (Around Iwasawa Coast) (PDF 33,9KB) attachment5:Radioactivity Fensity of Seawater(PDF 72,8KB)

to back to page tep

Press Releases

Press Release (Mar 25,2011) Plant Status of Fukushima Dailchi Nuclear Power Station (as of 0:30 PM Mar 25th)

*new items are underlined

All 6 units of Fukushima Daiichi Nuclear Power Station have been shut down.

Unit 1 (Shut down)

- Reactor has been shut down. However, the explosive sound and white smoke were confirmed after the big quake occurred at 3:36 pm Mar 12th. It was assumed to be hydrogen explosion. At approximately 2:30 am on March 23rd, seawater was started to be
- injected to the nuclear reactor through the feed water system. At approximately 10:50 am on March 24th, white fog-like steam arising
- from the roof part of the reactor building was observed.
- 4 At approximately 11:30 am on March 24th, lights in the main control room was restored.
- We have been injecting sea water into the reactor pressure vessel.

Unit 2 (Shut down)

- At approximately 6:00 am on March 15th, an abnormal noise began emanating from nearby Pressure Suppression Chamber and the pressure within this chamber decreased.
- At 6:20 pm on March 21st, white smoke was confirmed arising from the top of the reactor building. As of 7:11 am on March 22nd, smoke decreased to the level where we can hardly confirm
- We have been injecting sea water into the reactor pressure vessel.

Unit 3(Shut down)

- Reactor has been shut down. However, the explosive sound and white smoke were confirmed at 11:01am Mar 14th. It was assumed to be hydrogen explosion.
- At 8:30am on March 16th, fog like steam was confirmed arising from the
- reactor building. At approximately 6:15 am on March 17th the pressure of the Suppression Chamber has temporarily increased. We were preparing to implement a measurement to reduce the pressure of the reactor containment vessel (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to take a measure immediately to discharge air containing radioactive material to outside now. We will continue to monitor the
- status of the pressure of the reactor containment vessel. At approximately 4:00 pm, March 21st, light gray smoke was confirmed arising from the floor roof of the Unit 3 building. On March 22nd, the color of smoke changed to somewhat white and it is slowly dissipating.
- alsspating. At approximately 10:45 pm on March 22nd, the light in the main control room was turned on. At around 4:20 pm on March 23rd, our staff confirmed light black smoke belching from the Unit 3 building. At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, our employee found no signs of smoke.
- We have been injecting sea water into the reactor pressure vessel.

Unit 4 (outage due to regular inspection)

- Reactor has been shut down. However, at approximately 6 am on March 15th. We have confirmed the explosive sound and the sustained damage
- around the 5th floor rooftop area of the Nuclear Reactor Building. On March 15th and 16th, we respectively confirmed the outbreak of fire at the 4th floor of the northwestern part of the Nuclear Reactor Building. We immediately reported this matter to the fire department and the related authorities. TEPCO employees confirmed that each fire
- had already died down by itself. At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened.

Unit 5 (outage due to regular inspection)

- Reactor has been shut down and the sufficient level of reactor coolant to ensure safety is maintained. At 5 am, March 19th, we started the Residual Heat Removal System Pump (C) in order to cool the spent fuel pool. At this moment, we do not consider any reactor coolant leakage inside
- -
- At this meator containment vessel happened. At 2:30 pm, March 20th, the reactor achieved reactor cold shutdown. At around 5:24 pm on March 23rd, when we switched the temporary Residual Heat Removal System Seawater Pump, it has stopped automatically. At around 4:14 pm, March 24th, we started replaced pump and at around 4:35 pm, cooling of reactor has restarted.

Unit 6 (outage due to regular inspection)

- Reactor has been shut down and the sufficient level of reactor coolant

- to ensure safety is maintained.
- to ensure safety is maintained.
 We are working on receiving external power supply to Units 5 and 6. We completed the repair work on the emergency diesel generator (A).
 At 10:14 pm, March 19th, we started the Residual Heat Removal System Pump (B) of Unit 6 in order to cool the spent fuel pool.
 At this moment, we do not consider any reactor coolant leakage inside the reactor containment vessel happened.
 At 7:27 pm, March 20th, the reactor achieved reactor cold shutdown.

Today's work for cooling the spent fuel pools

- At approximately 6:05 am, March 25th, we started injecting seawater into the fuel spent pool of Unit 4, using Fuel Pool Cooling and Filtering (clean up) system (FPC) and finished at 10:20 am. At approximately 10:30 am, March 25th, we started injecting seawater into the fuel spent pool of Unit 2, using Fuel Pool Cooling and Filtering(clean up) system (FPC).
- We are considering further spraying at other units and others subject to the conditions of spent fuel pools.

Casualty

- 2 workers of cooperative firm were injured at the occurrence of the
- 2 workers of the cooperative film were injured at the occurrence of the earthquake, and were transported to the hospital on March 11th. 4 workers were injured and transported to the hospital after explosive sound and white smoke were confirmed around the Unit Ion March 11th. Presence of 2 TEPCO employees at the site is not confirmed on March 11th. 1 TEPCO employee who was not able to stand by his own holding left chest with his hand, was transported to the hospital by an ambulance on March 12th.
- I subcontract worker at the key earthquake-proof building was unconscious and transported to the hospital by an ambulance on March 12th. The radiation exposure of 1 TEFCO employee, who was working inside the reactor building, exceeded 100mSv and he was transported to the hospital on March 12th.
- 2 TEPCO employees felt bad during their operation in the central control rooms of Unit 1 and 2 while wearing full masks, and were transferred to Fukushima Daini Nuclear Power Station for consultation with a medical advisor on March 13th.
- 11 workers were injured and transported to Fukushima Daini Nuclear Power Station etc. after explosive sound and white smoke were confirmed around the Unit 3. One of the workers was transported to the FUKUSHIMA Medical University Hospital on March 14th. At approximately 10 pm on March 22nd, 1 worker who had been working on
- setting up a temporary power panel in the common pool was injured and transported to Fukushima Daini Nuclear Power Station where the industrial doctor is.
- At approximately 1 am on March 23rd, 1 worker who had been working on transporting a temporary power panel in the common pool was injured and transported to Fukushima Daini Nuclear Power Station where the
- transported to Fukushima Daini Nuclear Power Station where the industrial doctor is. On March 24th, it was confirmed that 3 workers from cooperative companies who were in charge of cable laying work in the 1st floor and the underground floor of turbine building were exposed to the radiation dose of more than 170 mSv. 2 of them were confirmed that their leg skin were contaminated. Although they were decontaminated, since it is judged that there is possibility of beta ray burn injury, they were transferred to Fukushima Medical University Rospital. The third person also transferred to National Institute of Radiological Sciences in Chiba Prefecture today (March 25). After medical examination at Fukushima Prefecture today (March 25). After medical examination at Fukushima Medical University Hospital, they will be transferred to National Institute of Radiological Sciences in Chiba Prefecture today (March 25). Regarding this event, Fukushima Labour Bureau gave TEPCO verbal Instructions.After writing up lessons and future measures, taking Instructions.Atter writing up lessons and luture measures, taking comments of Fukushima Labour Bureau to heart, TEPCO will report related government ministries and agencies to make assurance doubly sure thoroughness of radiation control and exposure to radiation. Before today's restoration work, we will make notification to the concerned parties and continue to take all possible measures to future measures to future management.

determine and notify.

We measured radioactive materials (iodine etc.) inside of the nuclear We measured radioactive materials (loaine etc.) inside of the holder power station area (outdoor) by monitoring car and confirmed that radioactive materials level is getting higher than ordinary level. As listed below, we have determined that specific incidents stipulated in article 15, clause 1 of Act on Special Measures Concerning Nuclear Emergency Preparedness (Abnormal increase in radiation dose measured at Emergency Preparedness (Abnormal increase in radiation dose site boundary) have occurred. .Determined at 4:17 pm Mar 12th (Around Monitoring Post 4) .Determined at 2:15 pm Mar 13th (Around Monitoring Post 4) .Determined at 2:15 pm Mar 13th (Around Monitoring Post 4) .Determined at 2:15 0m Mar 14th (Around Monitoring Post 6) .Determined at 4:15 am Mar 14th (Around Monitoring Post 2) .Determined at 9:27 am Mar 14th (Around Monitoring Post 2) .Determined at 9:27 am Mar 14th (Around Monitoring Post 3) .Determined at 9:27 am Mar 14th (Around main entrance) .Determined at 6:51 am Mar 15th (Around main entrance) .Determined at 8:11 am Mar 15th (Around main entrance) .Determined at 11:05 pm Mar 15th (Around main entrance) .Determined at 11:05 pm Mar 19th (Around Main entrance) .Determined at 11:05 pm Mar 19th (Around MS) .Pom now on, if the measured figure fluctuates and goes above For now on, if the measured figure fluctuates and goes above and below 500 micro Sv/h, we deem that as the continuous same event and will not regard that as a new specific incidents stipulated in article 15, clause 1 of the Act on Special Measures Concerning Nuclear Emergency Preparedness (Abnormal increase in radiation dose measured at site boundary) has occurred. In the interim, if we measure a manifestly abnormal figure and it is evident that the event is not the continuous same event, we will

- The national government has instructed evacuation for those local The hational government has instructed evaluation for those local residents within 20km radius of the periphery and evacuation to inside for those residents from 20km to 30km radius of the periphery, because it's possible that radioactive materials are discharged. At approximately 10am on March 15th, we observed 400mSv/h at the inland side of the Unit 3 reactor building and 100mSv/h at the inland side of

the Unit 4 reactor building.

- the Unit 4 reactor building.
 At around 10:37 am March 21st, water spraying to common spent fuel pool and finished at 3:30 pm (conducted by TEPCO).
 At around 3:37 pm, March 24th, electricity supply to common spent fuel pool has started from external power source. At around 6:05 pm, fuel pool cooling pump was started to cool the pool.
 We found no signs of abnormal situation for the casks by visual observation during the patrol activity. A detailed inspection is under preparation.

- The round no sign of administration observation during the patrol activity. A detailed inspection is under preparation.
 At Units 5 and 6, in order to prevent hydrogen gas from accumulating within the buildings, we have made three holes on the roof of the reactor building for each unit.
 In total 12 fire engines are lent for the water spraying to the spent fuel pools and water injection to the nuclear reactors by various regional fire departments* as well as Tokyo Fire Department. Also, instruction regarding the setting and operation of large scale decontamination system was provided by Niigata City Fire Headquarter and Hamanatsu City Fire Headquarter.
 *: Koriyama Fire Department, Iwaki Fire Brigade Headquarters, Fire Headquarters of Sukagawa District Wide Area Fire-fighting Association, Yonezawa City Fire Bureau, and Niigata City Fire Bureau.
 Until March 22nd, Units 1 through 6 were started to be energized from the external power source.

- We will continue to take all measures to ensure the safety and to continue monitoring the surrounding environment around the Power Station.

🖾 back to page top

GI-199 Safety Risk Assessment Background Information

Talking Points

• The NRC's GI-199 safety risk assessment was completed in August 2010. It is publically available. <u>http://pbadupws.nrc.gov/docs/ML1002/ML100270582.html</u>

• The purpose of the GI-199 safety risk assessment was to perform a conservative, screening-level assessment to determine whether additional seismic safety review was needed for nuclear plants in the Central and Eastern United States (CEUS).

• Updates to seismic data and models indicate increased seismic hazard estimates for some operating nuclear power plant sites in CEUS.

The results of this assessment are not final estimates of plant-specific seismic risk.

The NRC does not rank plants by seismic risk.

• The NRC continues to conclude that all plants have adequate seismic safety margin and continue to operate safely.

<u>Q&A</u>

1. What is GI-199?

Generic Issue 199 investigates the safety implications of updated earthquake-related data and models. These updated data and models suggest that the probability for earthquake ground shaking above the seismic design basis for some nuclear power plants in the Central and Eastern United States (CEUS) is still low, but larger than previous estimates.

2. Are the NRC reviews/analyses based on 2004 seismic data from USGS? Is there other updated earthquake information and modeling?

In 2004, preliminary results from United States Geological Survey (USGS) work indicated an increase in the probability of exceeding the Safe Shutdown Earthquake (SSE) for 29 nuclear power sites in the CEUS. The probability increases identified by USGS were primarily due to recent developments in the modeling of earthquake ground motion in the CEUS. USGS published updated data in 2008, which is what was used in the NRC's GI-199 safety risk assessment.

3. The NRC report talks about "screening reviews." What does that mean?

In December 2007, NRC completed a limited scope screening analysis, which is used by the NRC staff to decide whether an issue requires additional review. The screening compared the new seismic data with earlier seismic evaluations conducted by the NRC staff. The limited scope screening analysis concluded that seismic designs of plants in the CEUS continue to provide adequate safety margins. However, because the NRC recognized that this new seismic data could reduce available safety margins, the NRC staff conducted further analysis by performing NRC's GI-199 safety risk assessment.

4. Does the GI-199 study examine all nuclear power plants?

The GI-199 safety risk assessment is limited to all plants in the CEUS. Although plants at the Columbia, Diablo Canyon, Palo Verde, and San Onofre sites are not included in the GI-199 safety risk assessment, the NRC Information Notice on GI-199 is addressed to all operating power plants in the U.S. (as well as all independent spent fuel storage installation licensees). The NRC will also consider inclusion of operating reactors in the Western U.S. in its future generic communication information requests.

5. Does the GI-199 study consider spent fuel pools?

Spent fuel pools (SFPs) were not specifically evaluated as part of GI-199 safety risk assessment. However, based on their design characteristics, the NRC concludes that SFPs remain safe. SFPs are constructed of reinforced concrete, several feet thick, with a stainless steel liner to prevent leakage and maintain water quality. SFPs are inherently structurally-rugged and are designed to the same seismic requirements as the nuclear plant.

6. Is the NRC performing any inspections for GI-199?

The NRC is not currently performing inspections that are directly related to GI-199. However, on March 23, 2011, the NRC directed its inspectors to assess the actions taken by nuclear plant licensees in response to events at the Fukushima Daiichi nuclear station in Japan. NRC inspectors were given direction in the form of a Temporary Instruction (TI), which is one of the processes that NRC inspectors use to perform inspections following specific events. Using TI 2515/183, NRC inspectors will verify that important equipment and materials are adequate and properly staged, tested, and maintained in order to respond to a severe earthquake, flooding event, or loss of all electrical power. This inspections perform daily at every nuclear power plant. Inspection activities for TI 2515/183 are expected to be completed by April 29, 2011. The results will be issued in a publically available inspection report by May 13, 2011

7. What happens next with GI-199?

The NRC is developing a Generic Letter (GL) to request information from all nuclear plants in the CEUS, which is a total of 96 operating reactors. The GL is scheduled to be issued for public comment in the late spring 2011. In addition its internal review processes, the NRC will also present the GL to the Advisory Committee on Reactor Safeguards (ACRS) both before and after the public comment period. The GL should be issued by end of 2011, near the time when new seismic models become available. These new seismic models are being developed by NRC, DOE, and EPRI. In addition the USGS will review the model. Information requested in the GL will likely require 3 to 6 months for nuclear plant licensees to prepare. NRC's review will be on-going as information is collected. Based on NRC's review of that information, a determination will be made regarding required changes at nuclear plants.

8. What if the GI-199 is wrong and an unexpected earthquake happens?

Following the events of September 11, 2001, NRC required all nuclear plant licensees to take additional steps to protect public health and safety in the event of a large fire or explosion. If needed, these additional steps could also be used during natural phenomena such as earthquakes, tornadoes, floods, and tsunami. In general, these additional steps are plans, procedures, and pre-staged equipment whose intent is to minimize the effects of adverse events. In accordance with NRC regulations, all nuclear power plants are required to maintain or restore cooling for the reactor core, containment building, and spent fuel pool under the circumstances associated with a large fire or explosion. These requirements include using existing or readily available equipment and personnel, having strategies for firefighting, operations to minimize fuel damage, and actions to minimize radiological release to the environment.

Date: March 25, 2011

Lee, Richard

From: Sent: To: Subject: Basu, Sudhamay Friday, March 25, 2011 5:14 PM Lee, Richard Fukushima Unit 1

Richard,

Here is a tally of information from different sources.

GRS is quoting the Japanese TV station saying "presumably" 70% fuel assemblies damaged. Japan government spokesman Edano acknowledged there may have been a core meltdown. Japan Atomic Industrial Forum (JAIF) is saying there is core damage, but is not quoting any number. TEPCO is silent on core damage

Sud

168 BBBB

N

Lee, Richard

From: Sent: To: Subject: Lee, Richard Friday, March 25, 2011 7:55 AM Scott, Michael; Gibson, Kathy; Voglewede, John; Santiago, Patricia RE: QUESTION FROM JAPAN

Mike:

Charlie Tinkler is our hydrogen expert. So is Allen Notafrensesco. I do not know who did the slide show.

Richard

From: Scott, Michael Sent: Friday, March 25, 2011 5:44 AM To: Gibson, Kathy; Lee, Richard; Voglewede, John; Santiago, Patricia Subject: QUESTION FROM JAPAN

I seem to remember someone sending out a slide show on hydrogen since I've been in RES. I can't remember who our expert was, but I need to get a copy of the slide show he or she had developed on the subject. Can any of you recall?

Thanks

Mike

BBBB/ 169

From: Sent: To: Attachments: PMT09 Hoc Friday, March 25, 2011 9:48 AM PMT03 Hoc RE: Q about shelf-life for KI Tablets - Can you find your document summarizing shelflife extension for KI; RE: Emailing: boardfile.htm

170 BBBB/

From:LIA05 HocSent:Friday, March 25, 2011 7:01 PMTo:Dan Feighert; Andrew Seward; Harry Sherwood; John Simpson; Michelle Ralston;
Steve Horwitz; Tim Greten; Vanessa E. QuinnSubject:NRC Status Update 1800 25 march 2011Attachments:NRC Status Update 3.25.11--1800.pdf

1

Please find the attached.

Ken Wierman Nightshift 1500-2300 FEMA REP Liaison NRC Operations Center (301) 816-5187

*****FOR OFFICIAL USE-ONLY***** DO NOT RELEASE OUTSIDE OF THE FEDERAL FAMILY

T 2. #5

Bensi, Michelle

From: Sent: To: Subject: Attachments:

Bensi, Michelle Friday, March 25, 2011 5:49 PM Kammerer, Annie SONGS Q&A attached SONGS QAs_3-25-11_MBedit.docx

See attached file.

BBBB/ 172

1

What does the Japanese Earthquake Mean to San Onofre?

Chiller Piccher

1) Could an earthquake and tsunami the size of the one in Japan happen at San Onofre?

The March 2011 Tohoku earthquake occurred on a subduction zone, which is the type of tectonic region that produces earthquakes of the largest magnitude. A subduction zone is a tectonic plate boundary where one tectonic plate is pushed under another plate. Severe tsunamis like the one experienced in Japan are only produced by earthquakes occurring at this type of plate boundary. The only subduction zone affecting the continental US is the Cascadia subduction zone, which lies off the coasts of Oregon, Washington, and the northernmost portion of California. Consequently, an earthquake and tsunami as large as the one experienced in Japan could only happen in that coastal region of the continental US.

No. This earthquake occurred on a "subduction zone", which is the type of tectonic region that produces the largest magnitudes earthquake. A subduction zone is a tectonic plate boundary where one tectonic plate is pushed under another plate. Subduction zone earthquakes are also required to produce the kind of massive tsunami seen in Japan. In the continental US, the only subduction zone is the Cascadia subduction zone which lies off the coast of far northern California, Oregon and Washington. So, a continental earthquake and tsunami as large as in Japan could only happen there.

Earthquakes occurring outside of the Cascadia subduction zone are not expected to exceed a magnitude of approximately 8.25. Earthquakes of this magnitude would only occur on the largest fault lines, such as the San Andreas fault, which is 50 miles away from San Onofre. Outside of the Cascadia subduction zone, earthquakes are not expected to exceed a magnitude of approximately 8.25; and that would only occur on the largest fault lines, such as the San Andreas fault, which is 50 miles away onshore. Furthermore, the San Andreas is an onshore fault and thus not capable of producing a tsunami.

2) What magnitude earthquake are currently operating US nuclear plants such as SONGS San Onofre designed to?

Structures, systems and components respond to the specific *ground motion* experienced during an earthquake. Ground motion intensity is a function of the magnitude of an earthquake, the distance from the fault to the site, and other geologic characteristics. Nuclear plants, and in fact all engineered structures, are designed based on ground motions, not earthquake magnitudes. Each nuclear power plant in the United States is designed for a ground motion intensity that is determined on a site-specific basis.

Each reactor is designed for a different ground motion that is determined on a site specific basis. Ground motion is a function of both the magnitude of an earthquake and the distance from the fault to the site; and it is ground motion that causes damage. So, Nuclear plants, and in fact all engineered structures, are actually designed based on ground motion levels, not earthquake magnitudes. The existing nuclear plants were designed using a "deterministic" or "scenario earthquake" approach that accounted for the largest earthquakes expected in the area around the plant. The existing nuclear plants were designed based on a "deterministic" or "scenario earthquake" basis that accounted for the largest earthquakes expected in the area around the plant. The scenario earthquake at <u>SONGSSan</u> <u>Onofre</u> is a magnitude 7 approximately 5 miles from the main plant. This <u>The scenario</u> earthquake results in a ground motion that has a peak ground acceleration of 0.67g, that is 67% of the acceleration of gravity. Comment [MB1]: Edited to match DCNPP

3) Could San Onofre withstand an earthquake of the magnitude of the Japanese earthquake?

H-<u>San Onofree</u> could-is designed to withstand the ground shaking experienced by the Japanese nuclear plants. <u>As discussed above, it is the ground motions, not the magnitude, that structures, systems, and components "feel" (note: the strength of ground motion is a function of the earthquake magnitude and other factors). As discussed above, it is actually ground motions that structures, systems, and components "feel". At this time, We we do not have direct recordings of ground motion at the Japanese reactors. However, we do have estimates of shaking that come from a ShakeMap produced by the K-NET system. The ground motion at the Japanese nuclear reactors is believed to be somewhat on the order of the 0.67g, or possibly slightly higher, Thus the ground shaking is similar to or slightly higher than that the peak ground acceleration to which. San Onofre peak ground acceleration has been analyzed to. However, US nuclear plants have additional-seismic margin beyond the design basis ground motion, as demonstrated by the results of the Individual Plant Examination of External Events program carried out by the NRC in the mid-90s.</u>

It should be noted that, the Fukushima plant itself withstood the ground shaking resulting from the Tohoku earthquake. Preliminary information suggests that important safety systems performed their required function in the period between the occurrence of the earthquake and the impact of the tsunami. It appears that the emergency diesel generators successfully started once offsite power was lost following the earthquake. Therefore, the tsunami appears to have played a key role in the loss of power sources at the site (including the diesel generators), ultimately resulting in a condition known as station blackout. The station blackout has been a critical factor in the ongoing problems the Fukushima plant also withstood the earthquake. In the hour or so after the earthquake the Fukushima plant's safety systems, including the diesel generators, performed as expected and effectively shut down the reactor. The cause of the problems at the plant stemmed from the loss of emergency power that appears to be the direct result of the subsequent tsunami, which far exceeded the design basis tsunami for the Fukushima plant.

4) Is possible to have a tsunami at San Onofre that is capable of damaging the plant?

The <u>plant grade of</u> San Onofre Units 2 and 3 plant grade is elevation +30.0 feet MLLW. San Onofre has <u>a</u> reinforced concrete cantilevered retaining seawall and screen well perimeter wall designed to withstand the design basis earthquake, followed by the maximum predicted tsunami with coincident storm wave action. The controlling tsunami for San Onofre, occurring during simultaneous high tide and storm surge, produces a maximum runup to elevation +15.6 feet MLLW at the Unit 2 and 3 seawall. When storm waves are superimposed, the predicted maximum runup is to elevation +27 MLLW. Tsunami protection for the <u>SONGSSan Onofre</u> site is provided by a reinforced concrete seawall constructed to elevation +30.0 MLLW. A tsunami larger than this is extremely unlikely.

5) Has the earthquake hazard at San Onofre been reviewed like Diablo Canyon nuclear power plant is doing? Are they planning on doing an update before relicensing?

Relicensing does not evaluate seismic hazard or other siting issues. Seismic safety is part of NRC's ongoing licensing activities. If an immediate safety concern immergedimmerges, the issue would beis addressed as part of NRC's response by the NRC, regardless of relicensing status.

-The closest active fault to the plant is approximately five miles offshore from San Onofre, <u>where</u> a system of folds and faults exists called the offshore zone of deformation (OZD). The OZD includes the Newport-Inglewood-Rose Canyon fault system. The Cristianitos fault is ½ mile southeast <u>of San Onofre</u>, but is an inactive fault. Other faults such as the San Andreas and San Jacinto, which can generate a

Comment [MB2]: This wording was taken from the wording used in the public FAQ (that Annie has already approved, at least preliminarily). I have copied if here for consistency. larger magnitude earthquakes, are sufficiently far enough away that they would produce ground motions at San Onofre that are much less severe than earthquakes in the OZD for San Onofre.

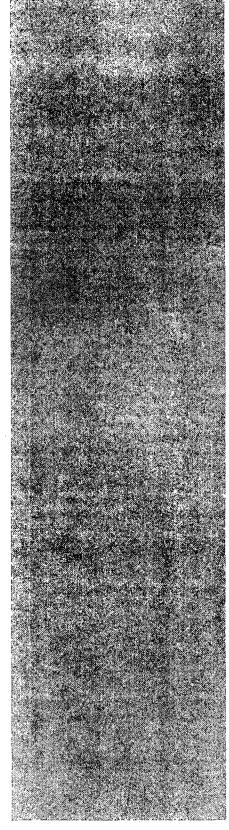
Notwithstanding the above, the NRC is considering extending the Generic Issue 199 program to all operating reactors. (Generic Issue 199 currently focuses on plants in the central and eastern United States.) This extension would require a reassessment of hazard for San Onofre using the latest probabilistic seismic hazard assessment approaches. Based on a preliminary assessment using the source model developed by the USGS for the national seismic hazard maps, the annual probability of occurrence of a 0.67g ground motion at the San Onofre site is only slightly higher than is than the annual probability of occurrence that is recommended for new nuclear plants.

6) How do we know that the emergency diesel generators in San Onofre will not fail to operate like in Japan?

Emergency Diesel Generators (EDGs) are installed in a seismically qualified structure and are seismic Category Lequipment. Even if these EDGs did fail, plants can safely shutdown using station blackout power source law 10 CFR 50.63. In addition, in the 1980s, the NRC instituted a rule that requires nuclear power plants to further assure that a loss of both offsite and onsite emergency AC power systems (a condition known as a station blackout) would not adversely affect public health and safety. As a result of this rule all plants have (1) established station blackout coping and recovery procedures; (2) completed training for these procedures; (3) implemented modifications as necessary to cope with a station blackout; and (4) ensured a 4-16 hour coping capability. Subsequently, studies conducted by the NRC have shown that the hardware and procedures that have been implemented to meet the station blackout requirements have resulted in a significant risk reduction and have further enhanced defense in-depth. In 1988 the NRC concluded that additional regulatory requirements were justified in order to provide further assurance that a loss of both offsite and onsite emergency ac power systems would not adversely affect public health and safety and the station blackout rule was enacted. Studies conducted by the NRC since this rule has been in effect confirms that the hardware and procedures that have been implemented to meet the station blackout requirements have resulted in significant risk reduction and have further enhanced defense in depth. However, we NRC plans to carefully evaluate the lessons learned from the events in Japan to determine if enhancements to the station blackout rule are warranted.

7) Was there any damage to San Onofre from either the earthquake or the resulting tsunami?

There was no damage at the San Onofre nuclear plant from either the earthquake or tsunami.


8) What about emergency planning for San Onofre. Does it consider tsunami?

FEMA reviews off-site evacuation plans every 2 years during a biennial emergency preparedness exercise. During the same exercise, NRC evaluates on-site evacuation plans. Population studies are done every 10 years, and evacuation time estimates are re-evaluated at that time. FEMA reviews these evacuation plans, and will only accept the plans if there is "reasonable assurance" that the off-site facilities and infrastructure are capable of protecting public health and safety in the event of an emergency at FEMA reviews off site evacuation plans formally every 2 years during a biennial emergency preparedness exercise. NRC evaluates on site evacuation plans during the same exercise. Population studies are formally done every 10 years, and evacuation time estimates are re-evaluated at that time. FEMA reviews these evacuation plans, and will conclude their acceptability through a finding of "reasonable assurance" that the off site facilities and infrastructure is capable of protecting public

Comment [MB3]: Larger than what? Comment [MB4]: Recommended or required? Comment [MB5]: Changed to have consistent vording with the public FAQ Comment [MB6]: Wording revised to match DCNPP document

health and safety in the event of an emergency at San Onofre. The next such exercise is planned for April 12, 2011.

 The San Onofre emergency plan initiates the emergency response organization and results in declaration of emergency conditions via their Emergency Action Levels. The facility would then-make protective action recommendations to the Governor, who would then decide on what protective actions would be ordered for the residents around San Onofre. The consideration of tsunami would be contained in the <u>State state</u> and local (<u>Citycity</u>, <u>Countycounty</u>) emergency plans, which are reviewed by FEMA.

Bensi, Michelle

Autor in the

From:

Sent: To:

di iri de 11 .. 11 0.0

and a state score state day. • Bensi, Michelle Friday, March 25, 2011 5:14 PM Kammerer, Annie Subject: Public FAQ Attachments: Frequently asked questions related to the March 11 2011 Earthquake and Tsunami 3-24-2011.docx

For your review: Attached are the edits, comments, and additions for the public FAQ. -Shelby

Willi

BBBB

173

NRC frequently asked questions related to the March 11, 2011 Japanese Earthquake and Tsunami

3-1925-11 (DRAFT) Version

Compiled by Annie Kammerer, Jon Ake, and Cliff Munson for submission to OPA and NRR. We would appreciate getting an edited word file back to assure that the public comments and the internal document are consistent.

Printed 4/26/2011 9:16 AM3/24/2011 7:01 PMDraft - OUO

Draft - 000

List of Questions

	1)	Can an earthquake and tsunami as large as happened in Japan also happen here?1		
	2) that	Did the Japanese underestimate the size of the maximum credible earthquake and tsunami could affect the plants?		
	3)	How high was the tsunami at the Fukushima nuclear plants? <u>1</u>		
	4)	Was the damage to the Japanese nuclear plants mostly from the earthquake or the tsunami? $\underline{24}$		
	5)	Have any lessons for US nuclear plants been identified?21		
	6)	Was there any damage to US reactors from either the earthquake or the resulting tsunami?2		
	7)	How many US reactors are located in active earthquake zones?2		
	8)	What level of earthquake hazard are the US reactors designed for?2		
	9)	What magnitude earthquake are currently operating US nuclear plants designed to?32		
	10) US?	Have events in Japan changed our perception of earthquake risk to the nuclear plants in the $\underline{3^2}$		
	11)	Can significant damage to a nuclear plant like we see in Japan happen in the US due to an		
	eart	hquake? Are the Japanese nuclear plants similar to US nuclear plants? <u>3</u> 2		
	12)	What is the likelihood of the design basis or "SSE" ground motions being exceeded over the		
life of a nuclear plant?				
	13)	Which reactors are along coastal areas that could be affected by a tsunami? <u>4</u> 3		
	14)	What is magnitude anyway? What is the Richter Scale? What is intensity? <u>4</u> 3		
	15)	How do magnitude and ground motion relate to each other? <u>5</u> 4		
	16)	What is Generic Issue 199 about? <u>5</u> 4		
	17)	Does GI-199 provide rankings of US nuclear plants in terms of safety? <u>5</u> 4		
	18)	What are the current findings of GI-199? <u>5</u> 4		
	19)	What do you mean by "increased estimates of seismic hazards" at nuclear plant sites?55		
	20) only	Does the Seismic Core Damage represent a measurement of the risk of radiation release or the risk of core damage (not accounting for additional containment)?		
	21)	Where can I get current information about Generic Issue 199?		
	22)	Could an accident sequence like the one at Japan's Fukushima Daiichi nuclear plants happen		
	in th	ne US? <u>65</u>		

Printed 4/26/2011 9:16 AM3/24/2011 7:01 PMDraft - OUO

Page i

1) Can an earthquake and tsunami as large as happened in Japan also happen here?

This Tohoku earthquake occurred on a "subduction zone", which is the type of tectonic region that produces earthquakes of the largest magnitude. A subduction zone is a tectonic plate boundary where one tectonic plate is pushed under another plate. Severe tsunamis like the one experienced in Japan are only produced by earthquakes occurring at this type of plate boundary. Subduction zone earthquakes are also required to produce the kind of massive tsunami seen in Japan. The only subduction zone affecting the continental US is the Cascadia subduction zone, which lies off the coasts of Oregon, Washington, and the northernmost portion of California. Consequently, a continental earthquake and tsunami as large as the one experienced in Japan could only happen in that coastal region. In the continental US, the only subduction zone is the Cascadia subduction zone which lies off the coast of northern California, Oregon and Washington. So, a continental earthquake and tsunami as large as in Japan could only happen there. The only nuclear plant near the Cascadia subduction zone is the Columbia Generating Station. This plant is located a large distance from both the coast (approximately 225 miles) and the subduction zone (approximately 300 miles). Because of the distance between the plant and the Cascadia subduction zone, the strength of ground motion expected at the plant is far lower than the ground motion experienced at the Fukushima plants. The large distance between the Columbia Generating Station and the coast also precludes the possibility of a tsunami affecting the plant.), so the ground motions estimated at the plant are far lower than those seen at the Fukushima plants. This distance also precludes the possibility of a tsunami affecting the plant. Outside of the Cascadia subduction zone, earthquakes are not expected to exceed a magnitude of approximately 8, which is significantly smaller than the magnitude of the Tohoku earthquake. Magnitude is measured on a log scale and so a magnitude 9 earthquake produces about ten times stronger shaking and releases about 31 times more energy than a magnitude 8 earthquake.

2) Did the Japanese underestimate the size of the maximum credible earthquake and tsunami that could affect the plants?

The magnitude of the earthquake was somewhat greater than was expected for that the part of the subduction zone on which the [NAME]Tohoku earthquake occured. However, the Japanese nuclear plants were recently reassessed using ground motion levels similar to those that are believed to have occurred at the sites during the [NAME] Tohoku earthquake. The ground motions against which the Japanese nuclear plants were reviewed reassessed were expected to result from earthquakes that were of smaller magnitude, but that were much closer to the sites. The NRC does not currently have information on the maximum tsunami height that was expected at the sites.

3) How high was the tsunami at the Fukushima nuclear plants? <u>Was it higher than was expected?</u>

The tsunami modeling team at the National Oceanic and Atmospheric Administration's Pacific Marine Environmental Lab have estimated the wave height just offshore <u>(at the 5 meter bathymetric line)</u> to be approximately 8 meters in height at Fukushima Daiichi and approximately 7 meters in Fukushima Daini. This <u>estimate</u> is based on recordings from NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys and a high resolution numerical model developed for the tsunami warning system. If plant recordings exist they were not yet provided to the NRC. A recent estimate released by TEPCO indicates that the tsunami water at the Fukushima Daiichi site reached a height of 14 meters. The report also indicates that the design basis tsunami height was 5.7 meters and that the emergency diesel generators were located 10-13 meters above sea levels. This data was provided by TEPCO and has not been confirmed by the NRC.

Printed 4/26/2011 9:16 AM3/24/2011 7:01 PMDraft - OUO

Formatted: Highlight

Formatted: Highlight

Comment [MB1]: Added earthquake name and took out references to tsunami (moved those to the next question)

Page 1

Comment [MB2]: Added more recent information (info verified by Annie)

4) Was the damage to the Japanese nuclear plants mostly from the earthquake or the tsunami?

Because this event happened occurred in Japan, it is will be hard for NRC staff to make the assessment necessary to understand exactly what happened at this timeuntil comprehensive assessments can be performed. Preliminary information suggests that important safety systems performed their required function in the period between the occurrence of the earthquake and the impact of the tsunami. It appears that the emergency diesel generators successfully started once offsite power was lost. In the nuclear plants there may have been some damage from the shaking, and the earthquake caused the loss of offsite power. HoweverTherefore, the tsunami appears to have played a key role in the loss of other power sources at the site (including the diesel generators), producing ultimately resulting in a condition known as station blackout₇, which The station blackout has been is a critical factor in the ongoing problems.

5) Have any lessons for US nuclear plants been identified?

The NRC is in the process of following and reviewing the events in real time. This will undoubtedly lead to the identification of issues that warrant further study. However, a complete understanding of lessons learned will require more information than is currently available to NRC staff.

6) Was there any damage to US reactors from either the earthquake or the resulting tsunami?

No.

7) How many US reactors are located in active earthquake zones?

Although we often think of the US as having "active" and "non-active" earthquake zones, earthquakes can actually happen almost anywhere. Seismologists typically separate the US into low, moderate, and high seismicity zones. The NRC requires that every nuclear plant be designed for site-specific ground motions that are appropriate for their its locations. In addition, the NRC has specified a minimum ground motion level to which nuclear plants must be designed.

8) What level of earthquake hazard are the US reactors designed for?

Each reactor is designed for a different ground motion level that is determined on a site-specific basis. The existing nuclear plants were designed on using a "deterministic" or "scenario earthquake" basis approach that accounted for the largest earthquakes expected in the area around the plant, without consideration of the likelihood of the earthquakes consideredoccurring. New reactors are designed using probabilistic techniques that characterize both the ground motion levels and associated uncertainty in the definition of the seismic hazard at the proposed site. These probabilistic techniques account for the ground motions that may result from all potential seismic sources in the region around the site. Technically speaking, this is new nuclear plants are designed for the ground motion with an annual frequency of occurrence of 1×10^{-4} /year₃₇ but tThis can be thought of as the ground motion that occurs every 10,000 years, on average. One important aspect is that they account for beyond-design basis events. NRC's Generic Issue 199 (GI-199) project is using the latest state-of-the-art probabilistic techniques used for new nuclear plants to review the seismic safety of the existing plants. [see questions 16 to 21 for more information about GI-199]

Printed 4/26/2011 9:16 AM3/24/2011 7:01 PMDraft - OUO

Page 2

Comment [MB3]: Updated to reflect more

Comment [MB4]: It seems strange to me to says "uncertainty at the proposed site." It made me ask

uncertainty in what?" I tried to add some words,

that while vague, add a little more info.

recent information

9) What magnitude earthquake are currently operating US nuclear plants designed to?

Ground motion is a function of both the magnitude of an earthquake, and the distance from the fault to the site, and other geologic characteristics. Nuclear plants, and in fact all engineered structures, are actually designed based on ground motion levels, not earthquake magnitudes. The existing nuclear plants were designed based onusing a "deterministic" or "scenario earthquake" basis approach that accounted for the largest earthquakes expected in the area around the plant. A margin is further added to the predicted ground motions to provide added robustness.

10) Have events in Japan changed our perception of earthquake risk to the nuclear plants in the US?

The NRC continues to determine that US nuclear plants are safe. This The events transpiring in Japan following the Tohoku earthquake does not change the NRC's perception of earthquake hazard (i.e., ground motion levels) at US nuclear plants. It is too early to tell what the lessons will be learned from this earthquake are. The NRC will look closely at all aspects of the response of the Fukushima plants to the earthquake and tsunami to determine if any actions need to be taken in US nuclear plants and if any changes are necessary to NRC regulations.

11) Can significant damage to a nuclear plant like we see in Japan happen in the US due to an earthquake? Are the Japanese nuclear plants similar to US nuclear plants?

All US nuclear plants are built to withstand environmental hazards, including earthquakes and tsunamis. <u>Fe</u>ven those nuclear plants that are located within areas with low and moderate seismic activity are designed for safety in the event of such a natural disasters. The NRC requires that safety significant structures, systems, and components be designed to take into account even rare and extreme seismic and tsunami events. In addition to the design of the plants, significant effort goes intois devoted to emergency response planning and severe accident management. This approach is called defense-indepth.

The Japanese facilities <u>at Fukushima</u> are similar in design to some US facilities. However, the NRC has required modifications to the <u>US</u> plants-since they were <u>designed and</u> built. <u>Examples of these</u> <u>modifications</u>, <u>including include</u> design changes to control hydrogen and pressure in the containment. The NRC has also required requires plants to have additional equipment and measures in place to mitigate damage stemming from large fires and explosions <u>resulting</u> from a beyond-design-basis event. The measures include providing core and spent fuel pool cooling and an additional means to power other equipment on site.

In addition, in the 1980s, the NRC instituted a rule that required nuclear power-plants to further assure that a loss of both offsite and onsite emergency AC power systems (a condition known as a station blackout) would not adversely affect public health and safety. As a result of this rule, all plants have (1) established station blackout coping and recovery procedures; (2) completed training for these procedures; (3) implemented modifications as necessary to cope with a station blackout; and (4) ensured a 4-16 hour coping capability. Subsequently, studies conducted by the NRC have shown that the hardware and procedures that have been implemented to meet the station blackout requirements have resulted in a significant risk reduction and have further enhanced defense-in-depth.

12) What is the likelihood of the design basis or "SSE" ground motions being exceeded over the life of a nuclear plant?

The ground motions that are used as seismic design bases at US nuclear plants are called the Safe Shutdown Earthquake (SSE) ground motions (SSE). <u>It is important to remember that structures, systems</u>

Printed 4/26/2011 9:16 AM3/24/2011 7:01 PMDraft-000

Page 3

Comment [MB5]: Seems redundant to first

Comment [MB6]: Not past tense if the

Comment [MB7]: Added station blackout reference (at recommendation of NEI). This text is from the commission briefing document.

Comment [MB8]: Is there more than one GM

design basis? The original s plural, half singular.

requirement is still in place

sentence

and components are required to have "adequate margin," meaning that they must continue be able withstand shaking levels that are above the plant's design basis.

In the mid to late 1990s, the NRC staff reviewed the potential for ground motions beyond the design basis as part of the Individual Plant Examination of External Events (IPEEE). From this review, the staff determined that seismic designs of operating nuclear plants in the US have adequate safety margins for withstanding earthquakes. Currently, the NRC is in the process of conducting GI-199 to again assess the resistance of US nuclear plants to earthquakes. Based on NRC's preliminary analyses to date, the mean probability of ground motions exceeding the SSE over the life of the plant, for the plants in the Central and Eastern United States, is less than about 1%.Based on NRC's analyses to date, the probability of ground motions exceeding the SSE for the plants in the Central and Eastern United States is less than 2%, with values ranging from a low of 0.1% to a high of 6%.

It is important to remember that structures, systems and components are required to have "adequate margin," meaning that they must continue be able withstand shaking levels that are above the plant's design basis-

13) Which reactors are along coastal areas that could be affected by a tsunami?

Many nuclear plants are located in coastal areas that could potentially be affected by a tsunami. Two nuclear plants, Diablo Canyon and San Onofre, are on the Pacific Coast, which is known to have a tsunami hazard. Two nuclear plants on the Gulf Coast, South Texas and Crystal River, could also be affected by tsunami. There are many nuclear plants on the Atlantic Coast or on rivers that may be affected by a tidal bore resulting from a tsunami. These include St. Lucie, Turkey Point, Brunswick, Oyster Creek, Millstone, Pilgrim, Seabrook, Calvert Cliffs, Salem/Hope Creek, and Surry. Tsunami on the Gulf and Atlantic Coasts occur, but are very rare. Generally the flooding anticipated from hurricane storm surge exceeds the flooding expected from a tsunami for nuclear plants on the Atlantic and Gulf Coast. Regardless, all nuclear plants are designed to withstand a tsunami.

14) What is magnitude anyway? What is the Richter Scale? What is intensity?

An earthquake's magnitude is a measure of the strength of the earthquake as determined from seismographic observations. Magnitude is essentially an objective, quantitative measure of the size of an earthquake. The magnitude can be expressed in various ways based on seismographic records (e.g., Richter Local Magnitude, Surface Wave Magnitude, Body Wave Magnitude, and Moment Magnitude). Currently, the most commonly used magnitude measurement is the Moment Magnitude, Mw, which is based on the strength of the rock that ruptured, the area of the fault that ruptured, and the average amount of slip. Moment magnitude is, therefore, a direct measure of the energy released during an earthquake. Because of the logarithmic basis of the scale, each whole number increase in magnitude represents a tenfold increase in measured amplitude... As an estimate of energy, each whole number step in the magnitude scale corresponds to the release of about 31 times more energy than the amount associated with the preceding whole number value.

The Richter magnitude scale was developed in 1935 by Charles F. Richter of the California Institute of Technology and was based on the behavior of a specific seismograph that was manufactured at that time. The instruments are no longer in use and the magnitude scale is, therefore, no longer used in the technical community. However, the Richter Scale is a term that is so commonly used by the public that scientists generally just answer questions about "Richter" magnitude by substituting moment magnitude without correcting the misunderstanding. Like moment magnitude, the Richter Scale is a tenfold increase in measured amplitude and about 31 times more energy.

Printed 4/26/2011 9:16 AM3/24/2011 7:01 PMDraft - OUO

Page 4

Comment [MB9]: Modified based on edits made during the construction of the commission briefing

Comment [MB10]: Do you want to say something about plants being designed to resist the hurricane? It isn't said here explicitly.

their FSARs that "the plant isn't affected by tsunami" and then don't say much more. I don't

know if I would classify this as "designed for

vithstand them.

Comment [MB11]: I don't know how confident I

feel in this statement. I believe some plants says in

tsunami" – maybe you want to clarify by saying that all plants affected by tsunami are designed to

document

The intensity of an earthquake is a qualitative assessment of <u>the</u> effects of the earthquake at a particular location. The intensity assigned is based on observed effects on humans, on human-built structures, and on the earth's surface at a particular location. The most commonly used scale in the US is the Modified Mercalli Intensity (MMI) scale, which has values ranging from I to XII in the order of severity. MMI of I indicates an earthquake that was not felt except by a very few, whereas MMI of XII indicates total damage of all works of construction, either partially or completely. While an earthquake has only one magnitude, intensity depends on the effects at each particular location.

15) How do magnitude and ground motion relate to each other?

The ground motion experienced at a particular location is a function of the magnitude of the earthquake, the distance from the fault to the location of interest, and other elements such as the geologic materials through which the waves pass.

16) What is Generic Issue 199 about?

GI-199 investigates the safety and risk implications of updated earthquake-related data and models on existing nuclear plants. For some nuclear plants in the Central and Eastern United States, These these updated data and models suggest that the probability for that earthquake ground motion above-will exceed the seismic design basis for some nuclear plants in the Central and Eastern United States, although is while still low, is larger than previously estimates estimated.

17) Does GI-199 provide rankings of US nuclear plants in terms of safety?

The NRC does not rank nuclear plants by seismic risk. The objective of the GI-199 Safety/Risk Assessment was to perform a conservative, screening level assessment to evaluate if whether further investigations of seismic safety for operating reactors in the central and eastern US (CEUS) are warranted, consistent with NRC directives. The results of the GI-199 safety risk assessment should not be interpreted as definitive estimates of plant-specific seismic risk because some analyses were very conservative making the calculated risk higher than in reality. The nature of the information used in the analyses, (both seismic hazard data and plant-level fragility information) make these estimates useful only as a screening tool.

18) What are the current findings of GI-199?

Currently operating nuclear plants in the US remain safe, with no need for immediate action. This determination is based on NRC staff reviews of updated seismic hazard information and the conclusions of the first stage of GI-199. Existing nuclear plants were designed, with considerable margin, to be able to withstand the ground motions from the "deterministic" or "scenario earthquake" that accounted for the largest earthquakes expected in the area around the plant. The results of the GI-199 assessment demonstrate that the probability of exceeding the design basis ground motion may have increased at some sites, but only by a relatively small amount. In addition, the probabilities of seismic core damage are lower than the guidelines for taking immediate action. Although there is not an immediate safety concern, the NRC is focused on assuring safety during even very rare and extreme events. Therefore, the NRC has determined that assessment of updated seismic hazards and plant performance should continue.

19) What do you mean by "increased estimates of seismic hazards" at nuclear plant sites?

Seismic hazard (earthquake hazard) represents the chance (or probability) that a specific level of ground motion could be observed or exceeded at a given location. Our estimates of seismic hazard at some Central and Eastern United States locations, have changed based on results from recent research,

Printed 4/26/2011 9:16 AM3/24/2011 7:01 PMDraft -000

Page 5

indicating that earthquakes occurred more often in some locations than previously estimated. Our estimates of seismic hazard have also changed because the models used to predict the level of ground motion, as caused by a specific magnitude earthquake at a certain distance from a site, changed have improved. The increased estimates of seismic hazard at some locations in the Central and Eastern United States were discussed in a memorandum to the Commission, dated July 26, 2006. (The memorandum is available in the NRC Agencywide Documents Access and Management System [ADAMS] under Accession No. ML052360044).

20) Does the Seismic Core Damage <u>Frequency</u> represent a measurement of the risk of radiation release or only the risk of core damage (not accounting for additional containment)?

Seismic core damage frequency is the probability of damage to the core resulting from a seismic initiating event. It does not imply either a meltdown or the loss of containment, which would bise required necessary for radiological release to occur. The likelihood of radiation release is far lower than the core damage frequency.

21) Where can I get current information about Generic Issue 199?

The public NRC Generic Issues Program (GIP) website (<u>http://www.nrc.gov/about-nrc/regulatory/gen-issues.html</u>) contains program information and documents, background and historical information, generic issue status information, and links to related programs. The latest Generic Issue Management Control System quarterly report, which has regularly updated GI-199 information, is publicly available at <u>http://www.nrc.gov/reading-rm/doc-collections/generic-issues/quarterly/index.html</u>. Additionally, the US Geological Survey provides data and results that are publicly available at <u>http://earthquake.usgs.gov/hazards/products/conterminous/2008/</u>.

22) Could an accident sequence like the one at Japan's Fukushima Daiichi nuclear plants happen in the US?

It is difficult to answer this question until we have a better understanding of the precise problems and conditions that faced the operators at Fukushima Daiichi. We do know, however, that Fukushima Daiichi Units 1-3 lost all offsite power and emergency diesel generators. This situation is called "station blackout." US nuclear power plants are designed to cope with a station blackout event that involves a loss of offsite power and onsite emergency power. The Nuclear Regulatory Commission's detailed regulations address this scenario. US nuclear power-plants are designed to cope with a station blackout event that involves a loss of offsite power and onsite emergency power. The Nuclear Regulatory Commission's detailed regulations address this scenario. US nuclear power-plants are designed to cope with a station blackout event that involves a loss of offsite power and onsite emergency power. In addition to design features, US nuclear plants are required to conduct a "coping" assessment, perform modifications if necessary, and develop a strategy to demonstrate to the NRC that they could can maintain the plant in a safe condition during a station blackout scenario. These assessments, proposed modifications to the plant, and operating procedures were reviewed and approved by the NRC. Several plants added additional AC power sources to comply with this regulation. Additional information about the NRC's station blackout rule is contained in question #11.

In addition, US nuclear plant designs and operating practices since <u>in response to</u> the terrorist events of September 11, 2001, <u>the NRC issued an Interim Compensatory Measures (ICM) Order are</u> designed<u>requiring licensees</u> to <u>take certain actions to</u> mitigate severe accident scenarios such as aircraft impact.<u>-which These scenarios</u> include the complete loss of offsite power and all on-site emergency power sources.

Printed 4/26/2011 9:16 AM3/24/2011 7:01 PMDraft - OUO

Page 6

Formatted: No underline

Comment [MB12]: Better to say can??? I don't

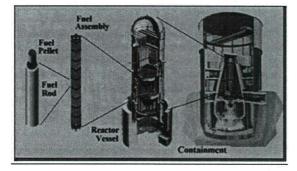
know.

Draft - 000

US nuclear plant designs include consideration of seismic events and tsunamis'. It is important not to extrapolate earthquake and tsunami data from one location of the world to another when evaluating these natural hazards. These catastrophic natural events are very region and location specific, based on tectonic and geological fault line locations.

THE FOLLOWING QUESTIONS ARE TENTATIVE!

23) Are the spent fuel pools designed to resist earthquake shaking?


Spent fuel pools are constructed of reinforced concrete, several feet thick, with a stainless steel liner to prevent leakage and maintain water quality. Due to their configuration, spent fuel pools are inherently structurally-rugged and are designed to the same seismic requirements and ground motion levels as the nuclear plant.

24) Does the NRC have a research program that is designed to look at seismic and tsunami issues?

Insert answer here.

25) What prevents radiation from being released into the environment?

There are three barriers to prevent the release of radiation into the environment. The first barrier is a tube around the reactor fuel rod known as cladding. The second next barrier to release is the reactor vessel and associated pumps and piping. This is a closed loop system that prevents radioactive material from being released from the core. The third barrier is the containment structure. This is a steel-lined concrete structure. The containment structure prevents the release of radioactive material into the environment in the event of an accident.

Printed <u>4/26/2011 9:16 AM3/24/2011 7:01 PM</u> Draft - OUO	l
---	---

Comment [MB13]:	How does	this info	apply to	
the question?					

- Formatted: Highlight
- -- Formatted: Heading 3

Formatted: Heading 3

Comment [MB14]: Annie to answer this question.

Comment [MB15]: Someone will need to decid
this answer should really be included in this
ocument (or if the document should stick to
eismic questions). If it is to be included, someone
vill need to review this answer.

Formatted: Heading 3

Formatted: Centered

Page 7

 From:
 LIA07_Hoc

 Subject:
 1800 EDT (March 25, 2011) USNRC Earthquake/Tsunami Status Update

 Date:
 Friday, March 25, 2011 6:50:39 PM

 Attachments:
 USNRC Earthquake-Tsunami Update 032511 1800EDT.pdf

Attached, please find an 1800 EDT (March 25, 2011) status update from the US Nuclear Regulatory Commission's Emergency Operations Center regarding the impacts of the earthquake/tsunami.

Please note that this information is "Official Use Only" and is only being shared within the federal family.

Please call the Headquarters Operations Officer at 301-816-5100 with questions.

-Sara

1)C

Sara K. Mroz Communications and Outreach Office of Nuclear Security and Incident Response US Nuclear Regulatory Commission Sara.Mroz@nrc.gov LIA07.HOC@nrc.gov (Operations Center)

BBBB/ 174

From: Sent: To: Subject: PMT03 Hoc Saturday, March 26, 2011 12:58 AM Hinson, Charles PMT Dose Assessor

Charlie,

We have you scheduled to work with Tony Huffert, Saturday, 3/26, from 7am-3pm. There is a slot still unfilled on Sunday, 3/27, where Tony is still scheduled by himself. I'll speak with you when you arrive this morning to see if you could work that shift also.

1

BBBB/ 175

Thanks.

Lou

From: Sent: To: Cc: Subject: PMT03 Hoc Saturday, March 26, 2011 1:23 AM Costa, Arlon; Chowdhury, Prosanta OST02 HOC; OST01 HOC PMT Coordinator

Arlon, Prosanta,

We're almost complete on the PMT Coordinator roster for next week, but there are two slots needing filled next Saturday, April 2nd, if you're available. The slots are 7am-3pm and 3pm-11pm (and actually 11pm-7am Sunday which I will take if it remains unfilled). If each of you can fill one of these slots, that would be great. Please respond by copying OST01 and OST02, to be placed on the roster.

1

Hope to see you then.

Thanks.

Lou

176 BBBB

, Lee, Richard	\	· · · · · · · · · · · · · · · · · · ·			
From: Sent: To: Subject: Attachments:	Lee, Richard Friday, March 25 'powess@crossn FW: Garwin com ATT00001gif		ll of 03/24. To Binkley li	st of 03/24.	•
Another one.)			
From: Sheron, Brian Sent: Friday, March To: Lee, Richard Subject: FW: Garwi	25, 2011 12:44 PM	Group call of 03/24. To Bink	ley list of 03/24.		
Sent: Friday, March To: Binkley, Steve Cc: Brinkman, Bill; H 'jholdren@ostp.eop.g Lyons, Peter; 'phillip Steven; Koonin, Stev	lurlbut, Brandon; Sheron gov'; Kelly, John E (NE); finck@inl.gov'; 'rgarwin@ en; 'Steven_AFetter@d	n.com] , Brian; Poneman, Daniel; 'l 'john.grossenbacher@inl.gc Dostp.eop.gov'; 'RJBudnitz@ ostp.eop.gov'; DAgostino, T o call of 03/24. To Binkley li	ov'; Owens, Missy; 'peter Dbl.gov'; 'ronaldo.szilarc homas	son@nuc.berkeley	

Some observations by Dick Garwin:

1. GET DATA ON VENTING AS IT HAPPENS. I believe it was John Kelly who said that if one watched Japanese TV one could hear a statement from TEPCO that they were about to vent, and there would be a TV image of the accompanying "white smoke" (steam). It would be very valuable to us all to have this information in the next report rather than "3 days later." There must be millions of Japanese people at home, glued to their TV, a few of whom could be asked/paid to send an email or IM or twitter recounting the venting statement. That way we would have redundant, timely reporting that could be provided in a section of the 12-hr SITREP or elsewhere.

2. DETAILS OF HARDENED VENT PIPE. We have heard of the "hardened vent pipe" to the plant stack. Could we have details of that, please, sa well a of any filters in the stack? Bob Budnitz and I were two of the authors of the 1975 Report to the Amerian Physical Society of the study group on light-water-reactor safety,"[<u>http://rmp.aps.org/pdf/RMP/v47/iS1/pS1_1</u>] as was Frank von Hippel, who just published an OpEd in the New York Times [http://www.nytimes.com/2011/03/24/opinion/24Von-Hippel.html]. On page S110 of the Report we find,

BBBB/

Similarly, in PWR accidents where the containment might fall due to melt—through by the core, rather than by overpresence the total filseion product release is assumed to be reduced greatly as a result of the filtering action of the soll (Draft WASH—1400, Appendix V).

These possible effects suggest that emphasis be placed on containment designs which ensure that, in case of containment failure, fission products would be semilibed and/or filtered before their release. Thus, for example, a BWR containment might be designed to fail in a controlled way via pressure release valves which vented from the pressure-suppression peol or through large stabilized-bed filters. The remaining gases could then be filtered through the standay gas treatment system.

The von Hippel OpEd states, "Even before Three Mile Island, a group of nuclear engineers had proposed that filtered vents be attached to buildings around reactors, which are intended to contain the gases released from overheated fuel. If the pressure inside these containment buildings increased dangerously — as has happened repeatedly at Fukushima — the vents would release these gases after the filters greatly reduced their radioactivity. France and Germany installed such filters in their plants, but the Nuclear Regulatory Commission declined to require them. Given the influence of America's example, had the commission demanded the addition of filtered vents, they would likely have been required worldwide, including in Japan." Perhaps TEPCO has installed such filters. Does any of the Science Group know? Can we provide some expedient filters that will handle the temperature and heat load?

3. MOVING FLUIDS BY PUMPING OR VALVING AIR. We mentioned moving fluids by periodically pressurizing containments or other vessels. This requires pipe access to the fluid to be moved. A generic pump of this kind would be a tank with an inlet valve and an outlet valve, with air space above the fluid. Closing the outlet valve, opening the inlet valve and venting the air (through a filter) would allow the pump volume to be largely filled with fluid. Closing the inlet, opening the outlet and pumping air into the head space would expel the fluid. If the fluid evolves hydrogen, then nitrogen should be used for pressurizing.

4. PREPARING FOR MASSIVE REPLUMBING. In the control of the Macondo well at 5000-ft water depth, remotely operatec vehicles (ROV) were essential. But so were the ingenious and powerful hydraulically powered wrenches, not much bigger than the massive bolts and nuts they were to unscrew or reinsert. Our labs, industry, and counterparts on the Japanese side should amass and test this capability, together with waterjet cutters and other tools suitable for remote operation. It might even be desirable to bore holes through concrete containment under modest internal pressure, without leaking much of the contents.

I believe that that sort of operation is routine in the oil industry-- with structures under much higher pressure. Perhaps a US-Japanese technical working group could be created for this task.

5. MITIGATING CORROSION FROM SALT. In addition to the super-important impact of massive salt accumulation on the ability to cool the reactor, there was early recognition of the corrosive effects of salt. A note from a retired Canadian engineer experienced in both nuclear power and desalination is attached. Most of this we know and are acting on, but I was ignorant of the zirconium corrosion hazard. I pass this to those in contact with our experts, for whatever new it may add.

the second s

Withhard

Bensi, Michelle

From: Sent: To: Subject: Attachments: Bensi, Michelle Friday, March 25, 2011 2:22 PM Kammerer, Annie Diablo Q&As Diablo Canyon QAs_MBedit_3-25.docx

Annie,

I have attached the Diablo Canyon Q&As with edits. You will see that I have replaced big chunks of words in the Diablo doc with the exact text used in the public FAQs (based on the revisions we made yesterday). I thought it would be good to have the wording be consistent between the documents.

With regard to the SONGS doc: Some of the questions are common between the SONGS and Diablo documents. I will not edit the common questions until I get back your revisions on the Diablo questions (so that the answers will use the same wording).

1

I am working on the public FAQs now.

Shelby

BBBB/ 178

What does the Japanese Earthquake Mean to Diablo Canyon?

Exapettion ----

1) Could an earthquake and tsunami the size of the one in Japan happen at Diablo Canyon?

No. This earthquake occurred on a "subduction zone", which is the type of tectonic region that produces the largest magnitudes earthquake. A subduction zone is a tectonic plate boundary where one tecton blate is pushed under another plate. Subduction zone carthquakes are also required to produce the kind of massive tsunami seen in Japan. In the continental US, the only subduction zone is the Cascadia subduction zone which lies off the coast of far northern California, Oregon and Washington. So, a continental earthquake and tsunami as large as in Japan could only happen there.

The Tohoku earthquake occurred on a subduction zone, which is the type of tectonic region that produces earthquakes of the largest magnitude. A subduction zone is a tectonic plate boundary where one tectonic plate is pushed under another plate. Severe tsunamis like the one experienced in Japan are only produced by earthquakes occurring at this type of plate boundary. The only subduction zone affecting the continental US is the Cascadia subduction zone, which lies off the coasts of Oregon. Washington, and the northernmost portion of California. Consequently, a continental earthquake and tsunami as large as the one experienced in Japan could only happen in that coastal region.

Diablo Canyon Nuclear Power Plant is located outside of the Cascadia subduction zone. Outside of the Cascadia subduction zone, e Earthquakes occurring outside of the Cascadia subduction zone are not expected to exceed a magnitude of approximately 8.25; and that would only Earthquakes of this magnitude would only occur on the largest fault lines, such as the San Andreas fault, which is 50 miles away from Diablo Canyon Nuclear Power Plant. Furthermore, the San Andreas is an onshore fault and thus not capable of producing a tsunami.

2) What magnitude earthquake are currently operating US nuclear plants such as Diablo **Canvon designed to?**

Structural damage is caused by the intensitystrength of ground motion experienced during an earthquake. Ground motion intensity is a function of the magnitude of an earthquake, the distance from the fault to the site, and other geologic characteristics. Nuclear plants, and in fact all engineered structures, are designed based on ground motion-intensity levels, not earthquake magnitudes. Each reactor nuclear power plant in the United States is designed for a different ground motion intensity that is determined on a site-specific basis. Ground motion is a function of both the magnitude of an earthquake and the distance from the fault to the site; and it is ground motion that causes damage. So, Nuclear plants, and in fact all engineered structures, are actually designed based on ground motion levels not earthquake magnitudes.

The existing nuclear plants were designed based using on a "deterministic" or "scenario earthquake" basis approach that accounted for the largest earthquakes expected in the area around the plant. The scenario earthquake at Diablo Canyon is a magnitude 7.5 on the Hosgri Fault, which is located 3 miles from the main plant. This earthquake is expected to results in a ground motion that has a peak ground acceleration of 0.75g, that is (-75% of the acceleration of gravity).

3) Could the newly discovered Shoreline Fault produce a larger "Scenario-scenario Earthquakeearthquake"?

Diablo Canyon Nuclear Power Plant was designed for a "scenario earthquake" occurring on the Hosgri Fault. The Shoreline Fault is smaller than the Hosgri Fault, and the maximum magnitude expected on the Shoreline Fault is smaller than the maximum magnitude expected on the Hosgri Fault. The NRC's

Comment [MB1]: Changed wording to be consistent with the public FAQ document.

Comment [MB2]: Can you make this statement a little "stronger" by saying the only fault that is capable of producing such large EQs and that is located near DCNPP is the San Andreas? If not, then this answer is incomplete and you would really need to list other large faults.

Formatted: Font: Italic 5.41

Comment [m3]: This isn't "perfectly" accurate because the actual numerical numbers may be the same for some plants (e.g. PGA=0.1g).

preliminary analyses indicate that the ground motions from the largest earthquakes expected on the smaller. Shoreline Fault do will not exceed the ground motions <u>expected from an earthquake from on</u> the Hosgri Fault... <u>Diablo Canyon for which the plant</u> has already been analyzed for a large earthquake on the Hosgri Fault and been found to be safe.

NRC is currently reviewing the Final Report on the Shoreline Fault<u>, that which</u> was submitted to the NRC earlier this year. <u>As part of the review</u>, <u>T</u>the NRC is performing an independent analysis of potential ground motions based the data contained in the report and other information. Much of the data on the Shoreline Fault comes from the USGS in Menlo Park.

4) Could Diablo Canyon withstand an earthquake of the magnitude of the Japanese earthquake?

Ht-Diablo Canyon Nuclear Power Plant could is designed to withstand the level of ground shaking experienced by the Japanese nuclear plants <u>during the Tohoku earthquake</u>. As discussed above, it is actually the ground motions, not the magnitude, that structures, systems, and components "feel" <u>(note:</u> the strength of ground shaking is a function of the earthquake magnitude and other factors). At this time, Ww e do not have direct recordings of <u>the</u> ground motion at the Japanese reactors. However, we do have estimates of shaking that come from a ShakeMap produced by the the K-NET system. <u>Based on</u> the available information, #the ground motion at the Japanese nuclear reactors is believed to be somewhat smaller than the 0.75g peak ground acceleration that Diablo Canyon has been analyzed todesigned to withstand. Dor <u>Consequently</u>, the NRC believes that Diablo Canyon could withstand the ground shaking experienced by the Fukushima plant.

In fact<u>Furthermore</u>, the Fukushima plant also withstood the <u>ground shaking resulting from the Tohoku</u> earthquake. Preliminary information suggests that important safety systems performed their required function in the period between the occurrence of the earthquake and the impact of the tsunami. It appears that the emergency diesel generators successfully started once offsite power was lost. Therefore, the tsunami appears to have played a key role in the loss of power sources at the site (including the diesel generators), ultimately resulting in a condition known as station blackout. The station blackout has been a critical factor in the ongoing problems. In the hour or so after the earthquake the Fukushima plant's safety systems, including the diesel generators, performed as expected and effectively shut down the reactor. The cause of the problems at the plant stemmed from the loss of emergency power that appears to be the direct result of the subsequent tsunami, which far exceeded the design basis tsunami for the Fukushima plant.

5) Is Diablo Canyon's equipment vulnerable to tsunami?

Nuclear plants are designed to withstand provide protection against natural phenomena such as tsunami and, earthquakes. Diablo Canyon's main plant is located above the flood level associated with the maximum expected isunami. The intake structures and Auxiliary Sea Water System at Diablo canyon are designed for combination of tsunami and storm wave activity.

6) How do we know that the emergency diesel generators in Diablo Canyon and SONGS will not fail to operate like in Japan?

Emergency Diesel Generators (EDGs) are installed in a seismically qualified structure(s). In addition; in the 1980s, the NRC instituted a rule that required nuclear power plants to further assure that a loss of both offsite and onsite emergency AC power systems (a condition known as a station blackout) would not adversely affect public health and safety. As a result of this rule all plants have (1) established station blackout coping and recovery procedures; (2) completed training for these procedures; (3)

Comment [MB4]: Is this true? Was it designed for this or was it reviewed for this level? I don't like saying "could withstand" in such a certain way

saving "could withstand" in such a certain way. There is always uncertainty when working with earthquakes b/c no single GM IM is a full descriptor of ground shaking (which of course you know! ©)

Comment [MB5]: We have received other information about the GM intensity at the plants, however the information is in gal, and I am not familiar with that system. Please see the further table in the "useful tables" section of the seismic Q&A document.

Comment [MB6]: This wording was taken from the wording used in the public FAQ (that Annie has already approved, at least preliminarily). I have copied it here for consistency.

Comment [MB7]: What do you mean by "main plant?? This is used throughout the document. Do you mean the reactor and aux bldg?

Comment [MB8]: Do you mean to say it is above any tsunami that could affect the plant ever? That's a pretty certain statement. implemented modifications as necessary to cope with a station blackout; and (4) ensured a 4-16 hour coping capability. Subsequently, studies conducted by the NRC have shown that the hardware and procedures that have been implemented to meet the station blackout requirements have resulted in a significant risk reduction and have further enhanced defense-in-depth.

Even if these EDGs did fail, plants can safely shutdown using station blackout power source law 10 CFR 50.63. In 1988 the NRC concluded that additional regulatory requirements were justified in order to provide further assurance that a loss of both offsite and onsite emergency ac power systems would not adversely affect public health and safety and the station blackout rule was enacted. Studies conducted by the NRC since this rule has been in effect confirms that the hardware and procedures that have been implemented to meet the station blackout requirements have resulted in significant risk reduction and have further enhanced defense in depth. However, we plan to carefully evaluate the lessons learned from the events in Japan to determine if enhancements to the station blackout rule are warranted.

7) Was there any damage to Diablo Canyon from either the earthquake or the resulting tsunami?

A small tsunami did hit the region around Diablo Canyon. There was no damage at the nuclear plant.

8) How do we know the evacuation routes in the region around Diablo Canyon are realistic?

FEMA reviews off-site evacuation plans formally-every 2 years during a biennial emergency preparedness exercise. During the same exercise, NRC evaluates on-site evacuation plans-during the same exercise. Population studies are formally-done every 10 years, and evacuation time estimates are re-evaluated at that time. FEMA reviews these evacuation plans, and will conclude their acceptability through a finding of only accept the plans if there is "reasonable assurance" that the off-site facilities and infrastructure is-are capable of protecting public health and safety in the event of an emergency at DCNPP.

Comment [MB9]: Changes to have consistent wording with the public FAQ

Lee, Richard

From:	Lee, Richard
Sent:	Saturday, March 26, 2011 3:28 PM
To:	Aissa, Mourad; Algama, Don
Subject:	FW: ANS Technical Brief: MOX Fuel & Fukushima
Attachments:	ANS-Technical-Brief-MOX-Fukushima.pdf

Fyi. I think we concur with ANS position.

-----Original Message-----From: Gibson, Kathy Sent: Saturday, March 26, 2011 1:45 PM To: Lee, Richard; Tinkler, Charles Subject: Fw: ANS Technical Brief: MOX Fuel & Fukushima

I'm using you guys as the clearinghouses for all the stuff I get so you can draw whatever conclusions are appropriate based on all the relevant information coming in.

----- Original Message -----From: Hoxie, Chris To: Gibson, Kathy Sent: Sat Mar 26 13:26:25 2011 Subject: FW: ANS Technical Brief: MOX Fuel & Fukushima

Do you get these? Anyway, briefly it says the fact that its MOX at Japan is not a big deal....

-----Original Message----From: ANS Broadcasts <u>[mailto:broadcasts@ans.org]</u> Sent: Saturday, March 26, 2011 5:02 AM To: Hoxie, Chris Subject: ANS Technical Brief: MOX Fuel & Fukushima

The ANS Special Committee on Nuclear Non-Proliferation has prepared the attached Technical Brief on The Impact of Mixed Oxide Fuel Use on Accident Consequences at Fukushima Daiichi.

For additional Fukushima resources, visit the "Featured Content" box on the front page of the American Nuclear Society's website:

http://www.ans.org/

B000/ 11

From: Sent: To: Subject: ET02 Hoc

Saturday, March 26, 2011 10:13 PM RST01 Hoc; RST12 Hoc; RST09 Hoc FW: http://www.youtube.com/watch?v=5teJiklZIJU All 4 units are steaming now

From: ET02 Hoc Sent: Saturday, March 26, 2011 9:56 PM To: ET02 Hoc Subject: http://www.youtube.com/watch?v=5teJiklZlJU

BBBB/ 180

Ralanesa

Bano, Mahmooda

From: Sent: To: Cc: Subject: Scott, Michael Saturday, March 26, 2011 2:15 AM LIA02 Hoc LIA03 Hoc; Casto, Chuck; Monninger, John; Dorman, Dan RE: ACTION - Decommissioning,7ype Information for Ops Center

I think this is more what they were looking for, rather than the licensing discussion previously sent. Please advise me when this is fully vetted and can be released to the Japanese. Thanks.

From: LIA02 Hoc Sent: Friday, March 25, 2011 12:25 PM To: Scott, Michael Cc: LIA03 Hoc Subject: FW: ACTION - Decommissioning Type Information for Ops Center

Some more information.

Steve

-----Original Message-----From: Richards, Stuart Sent: Wednesday, March 23, 2011 6:51 PM To: Camper, Larry; Bowman, Gregory; Rini, Brett Subject: FW: ACTION - Decommissioning Type Information for Ops Center

fyi - Stu

From: Rahimi, Meraj Sent: Wednesday, March 23, 2011 5:50 PM To: Ordaz, Vonna; Benner, Eric; ET05 Hoc; RST01 Hoc; Richards, Stuart Cc: White, Bernard; Mohseni, Aby; Davis, Jack; Weaver, Doug; Doolittle, Elizabeth; Waters, Michael; Kinneman, John; Bailey, Marissa; Tschiltz, Michael Subject: RE: ACTION - Decommissioning Type Information for Ops Center

Here is the proposed SFST/FCCS/HLW coordinated response:

We would not recommend early entombment considerations due to the high thermal loads and associated negative effects on entombment material properties. In fact, we believe it might not be prudent to entomb at all. We believe that Japan should consider waiting until the core or spent fuel debris can be cooled sufficiently and then removed similar to TMI. We would initially recommend pumping continuously borated water into the molten core or spent Longer term, if entombment is considered by Japan, it is our opinion that fuel pool. entombment would be less problematic (with respect to criticality issues) if the entombment is around the molten core or pool, rather than directly onto the fuel and in the primary containment vessel. We believe that heat transfer will be a significant challenge and thus it would be best if the entombment was built with low and high vents that would enable the transfer of heat through air convection. If the entombment is considered by pouring some type of material on the molten core or spent fuel pool the system reactivity and heat transfer capability is highly dependent on the material of use. We believe, the temperature in the reactor core or the dried spent fuel pool is too high for the concrete to cure. Both concrete (especially wet) and sand would be a neutron moderator and could raise criticality

BBBB/ 191

concerns. Whatever is used should be carefully evaluated. Due to the unknown configuration in the core, any medium should conservatively be heavily borated. Another option maybe the use of sand with boron frits which would turn into glass when contacted with the molten core. This would immobilize the radionuclides. However, the temperature at which the sand is added must be at the point that the glass can solidified. This may require longer cooling time.

In the interim while options are considered, it might be advisable to confine the core or the pool with filtered flexible enclosure.

Meraj Rahimi Chief of Criticality, Shielding, and Dose Assessment Branch Division of Spent Fuel Storage and Transportation Office of Nuclear Materials Safety and Safeguard U.S. Nuclear Regulatory Commission 6003 Executive Blvd., Suite 301 Rockville, MD 20852 Phone: 301-492-3338 Fax: 301-492-3348 e-mail: meraj.rahimi@nrc.gov

From: Ordaz, Vonna Sent: Wednesday, March 23, 2011 3:21 PM To: Benner, Eric Cc: White, Bernard; Mohseni, Aby; Davis, Jack; Weaver, Doug; Rahimi, Meraj; Doolittle, Elizabeth; Waters, Michael; Kinneman, John; Bailey, Marissa; Tschiltz, Michael Subject: ACTION - Decommissioning Type Information for Ops Center Importance: High

Eric,

5

SFST has the lead to coordinate a response with HLW and FCSS, and respond to the Reactor Safety Team, the ET Response Coordinator, and Stu Richards in the Operations Center with a CC to Dan Dorman by 6pm.

Thanks, Vonna

From: Ordaz, Vonna Sent: Wednesday, March 23, 2011 3:13 PM To: Richards, Stuart; Weaver, Doug; Mohseni, Aby; Davis, Jack Cc: RST01 Hoc; Bowman, Gregory; Hickman, John; Lee, Richard; Rini, Brett; Case, Michael; McConnell, Keith; Watson, Bruce; Camper, Larry; Deegan, George; Waters, Michael Subject: RE: Decommissioning Type Information

Thanks, Stu. We'll get back to you.

Vonna

From: Richards, Stuart Sent: Wednesday, March 23, 2011 2:32 PM To: Weaver, Doug; Mohseni, Aby; Davis, Jack Cc: RST01 Hoc; Bowman, Gregory; Hickman, John; Lee, Richard; Rini, Brett; Case, Michael; McConnell, Keith; Watson, Bruce; Camper, Larry; Deegan, George; Ordaz, Vonna; Waters, Michael Subject: RE: Decommissioning Type Information Importance: High

Dan Dorman has asked the Ops Center to respond to a number of questions related to the Japanese event.

Can NMSS respond to the following?

8. What should they be considering with respect to criticality prevention and decay heat removal during the entombment period?

The goal is to provide the response to the Ops Center by 6 pm tonight.

I will forward you the original request, which may help.

Thanks Stu

From: Deegan, George Sent: Wednesday, March 23, 2011 2:05 PM To: Richards, Stuart; Camper, Larry Cc: RST01 Hoc; Bowman, Gregory; Hickman, John; Lee, Richard; Rini, Brett; Case, Michael; McConnell, Keith; Watson, Bruce Subject: RE: Decommissioning Type Information

Stu- As your email came in, Brett Rini and I were speaking with one another. I indicated that FSME will be working on #7 (licensing requirements) and #9 (whatever relevant info we can pull together from the TMI event), but that the best shop for criticality type issues (Question #8) is probably NMSS.

From: Richards, Stuart Sent: Wednesday, March 23, 2011 1:51 PM To: Camper, Larry Cc: Deegan, George; RST01 Hoc; Bowman, Gregory; Hickman, John; Lee, Richard; Rini, Brett; Case, Michael Subject: RE: Decommissioning Type Information

Larry

RES might be able to help you with Question #8. Richard Lee in DSA is our POC on this one.

We can provide you some thoughts on enclosures, but I agree that a good answer will take a lot of time and a lot more information on the status of the units.

Stu

From: Camper, Larry Sent: Wednesday, March 23, 2011 12:49 PM To: Dorman, Dan Cc: Deegan, George; RST01 Hoc; Bowman, Gregory; Hickman, John Subject: Decommissioning Type Information

Dan,

Greetings! Trust you are holding up well over there! Regarding your message of earlier today, we will be able to provide feedback on Question number 6 today by the 18:00 timeframe. Questions 6,8 and 9 will require a bit of review and interface with RES but we will start that process today. Standby for a better timeline on those. The staff did some work on the entombment issue via a couple of SECY's but the approach died out because it became clear that industry was not going to utilize it in the US. Of course, the situation in Japan is quite different etc. Regardless, our earlier work should be of some benefit but we just have to resurrect it and review etc. In thinking ahead just a bit, I suspect that we will need to put together some sort of Task Force or think tank type group to analyze possible paths forward for the overall decommissioning of the site and for the related waste management etc. Of course, we have some time to think about this issue but not too long etc.

ζ

From:	OST01 HOC
Sent:	Saturday, March 26, 2011 12:32 PM
To:	PMT02 Hoc; PMT11 Hoc; Hoc, PMT12; PMT01 Hoc
Subject:	FW: Skin Dose Coefficients per Tony Huffert's Request
Attachments:	SkinDose_WaterImmersion.xls; DecayChains.TXT

Importance:

High

From: HOO Hoc Sent: Saturday, March 26, 2011 12:29 PM To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03 HOC Subject: FW: Skin Dose Coefficients per Tony Huffert's Request Importance: High

From: Eckerman, Keith F. [mailto:eckermankf@ornl.gov] Sent: Saturday, March 26, 2011 12:26 PM To: HOO Hoc Subject: Re: Skin Dose Coefficients per Tony Huffert's Request Importance: High

Attached are the skin and effective (ICRP 60 wTs) dose rate coefficients for water immersion; i.e., swimming. See the Excel file SkinDose_WaterImmersion.XLS. Please note:

1. The values reflect no consideration of protective clothing.

2. The values are for the individual radioisotope with no consideration of their decay chain. That is the Sr-90 value does not include Y-90, Cs-137 values does not include Ba-137m, etc.

Also attached is a file (DecayChains.TXT) listing of the decay chains. That file can be opened via MS Notebook or any ASCI editor.

The values are based on the nuclear decay data of ICRP 107 and the computational methods of Federal Guidance Report 12 & 13.

1

Keith F. Eckerman, Ph.D. **Dosimetry Research Team** P.O. Box 2008 MS6495 Oak Ridge National Laboratory Oak Ridge , TN 37871-6495

Phone: (865) 574-6251 FAX: (865) 574-3266 E-mail: eckermankf@ornl.gov Web site: http://ordose.ornl.gov/

BBBB / 182

Ne-24 ______Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ne-24 3.38m 1.000E+00 Na-24 2 Na-24 14.9590h 1.000E+00 Mg-24\$ Mg-28 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Mg-28
 20.915h
 1.000E+00
 Al-28

 2 Al-28
 2.2414m
 1.000E+00
 Si-28\$
 Si-32 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Si-32
 132y
 1.000E+00
 P-32

 2 P-32
 14.263d
 1.000E+00
 S-32\$
 S-38 **---**-> Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 S-38 170.3m 1.000E+00 Cl-38 2 Cl-38 37.24m 1.000E+00 Ar-38\$ Cl-34m , ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Cl-34m 32.00m 4.460E-01 Cl-34 5.540E-01 S-34\$ 2 Cl-34 1.5264s 1.000E+00 S-34\$ C1-39 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Cl-39
 55.6m
 1.000E+00 Ar-39

 2 Ar-39
 269y
 1.000E+00 K-39\$
 Ar-42 ----- Daughter

Decay Chains of the ICRP-07 Collection

Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ar-4232.9y1.000E+00 K-422 K-4212.360h1.000E+00 Ca-42\$ Ar-43 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ar-435.37m1.000E+00K-432 K-4322.3h1.000E+00Ca-43\$ Ar-44 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ar-44 11.87m 1.000E+00 K-44 2 K-44 22.13m 1.000E+00 Ca-44\$ K-45 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 K-45 17.3m 1.000E+00 Ca-45 1 K-45 17.3m 1.000E+00 Ca-45 2 Ca-45 162.67d 1.000E+00 Sc-45\$ Ca-47 Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ca-47 4.536d 1.000E+00 Sc-47 2 Sc-47 3.3492d 1.000E+00 Ti-47\$ Ca-49 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ca-49 8.718m 1.000E+00 Sc-49 2 Sc-49 57.2m 1.000E+00 Ti-49\$ Sc-44m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sc-44m 58.61h 9.880E-01 Sc-44 1.200E-02 Ca-44\$

2. Sc-44 3.97h 1.000E+00 Ca-44\$ Ti-44 🛶 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Ti-44
 60.0y
 1.000E+00
 Sc-44

 2 Sc-44
 3.97h
 1.000E+00
 Ca-44\$
 Ti-52 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Ti-52
 1.7m
 1.000E+00
 V-52

 2 V-52
 3.743m
 1.000E+00
 Cr-52\$
 Cr-48 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Cr-48 21.56h 1.000E+00 V-48 2 V-48 15.9735d 1.000E+00 Ti-48\$ Cr-49 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Cr-49
 42.3m
 1.000E+00
 V-49

 2 V-49
 330d
 1.000E+00
 Ti-49\$
 Cr-56 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Cr-565.94m1.000E+00Mn-562 Mn-562.5789h1.000E+00Fe-56\$ Mn-51 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Mn-51
 46.2m
 1.000E+00 Cr-51

 2 Cr-51
 27.7025d
 1.000E+00 V-51\$
 Mn-52m ----- Daughter

Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Mn-52m 21.1m 1.750E-02 Mn-52 9.825E-01 Cr-52\$ 2 Mn-52 5.591d 1.000E+00 Cr-52\$ Fe-52 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Fe-528.275h1.000E+00Mn-52m2 Mn-52m21.1m1.750E-02Mn-529.825E-013 Mn-525.591d1.000E+00Cr-52\$ Fe-53 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Fe-53 8.51m 1.000E+00 Mn-53 2 Mn-53 3.7E+6y 1.000E+00 Cr-53\$ Fe-53m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Fe-53m2.526m1.000E+00Fe-532 Fe-538.51m1.000E+00Mn-533 Mn-533.7E+6y1.000E+00Cr-53\$ Fe-60 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 nuclide

 1 Fe-60
 1.5E+6y
 1.000E+00
 Co-60m

 2 Co-60m
 10.467m
 9.976E-01
 Co-60
 2.400E-03
 Ni-60\$

 3 Co-60
 5.2713y
 1.000E+00
 Ni-60\$

 Fe-61 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Fe-61
 5.98m
 1.000E+00
 Co-61

 2 Co-61
 1.650h
 1.000E+00
 Ni-61\$
 Fe-62 ---- Daughter Products -----

Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Fe-62
 68s
 1.000E+00
 Co-62

 2 Co-62
 1.50m
 1.000E+00
 Ni-62\$
 Co-55 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Co-5517.53h1.000E+002 Fe-552.737y1.000E+00 Co-58m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Co-58m 9.04h 1.000E+00 Co-58 2 Co-58 70.86d 1.000E+00 Fe-58\$ Cò-60m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Co-60m 10.467m 9.976E-01 Co-60 2.400E-03 Ni-60\$ 2 Co-60 5.2713y 1.000E+00 Ni-60\$ Ni-56 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ni-56 6.075d 1.000E+00 Co-56 2 Co-56 77.23d 1.000E+00 Fe-56\$ Ni-57 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ni-57 35.60h 1.000E+00 Co-57 2 Co-57 271.74d 1.000E+00 Fe-57\$ Ni-66 Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ni-6654.6h1.000E+00Cu-662 Cu-665.120m1.000E+00Zn-66\$

Cu-57 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide
 1 Cu-57
 0.1963s
 1.000E+00
 Ni-57

 2 Ni-57
 35.60h
 1.000E+00
 Co-57

 3 Co-57
 271.74d
 1.000E+00
 Fe-57\$
 Cu-59 ----- Daughter Products -----Nuclide Halflife f1. Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Cu-59
 81.5s
 1.000E+00
 Ni-59

 2 Ni-59
 1.01E+5y
 1.000E+00
 Co-59\$
 Cu-69 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Cu-692.85m1.000E+00Zn-692 Zn-6956.4m1.000E+00Ga-69\$ Zn-60 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Zn-60
 2.38m
 1.000E+00
 Cu-60

 2 Cu-60
 23.7m
 1.000E+00
 Ni-60\$
 Zn-61 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Zn-6189.1s1.000E+00Cu-612 Cu-613.333h1.000E+00Ni-61\$ Zn-62 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Zn-629.186h1.000E+00Cu-622 Cu-629.673m1.000E+00Ni-62\$ Zn-69m ----- Daughter

Products -----١. Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Zn-69m 13.76h 9.997E-01 Zn-69 3.300E-04 Ga-69\$ 2 Zn-69 56.4m 1.000E+00 Ga-69\$ Zn-72 ----- Daughter Products ------Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Zn-72 46.5h 1.000E+00 Ga-72 2 Ga-72 14.10h 1.000E+00 Ge-72\$ Ga-65 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Ga-65
 15.2m
 1.000E+00
 Zn-65

 2 Zn-65
 244.06d
 1.000E+00
 Cu-65\$
 Ge-66 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ge-662.26h1.000E+00Ga-662 Ga-669.49h1.000E+00Zn-66\$ Ge-67 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ge-67 18.9m 1.000E+00 Ga-67 2 Ga-67 3.2612d 1.000E+00 Zn-67\$ Ge-68 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ge-68 270.95d 1.000E+00 Ga-68 2 Ga-68 67.71m 1.000E+00 Zn-68\$ Ge-77 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ge-77 11.30h 1.000E+00 As-77

2 As-77 38.83h 1.000E+00 Se-77\$ Ge-78 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ge-7888m1.000E+00As-782 As-7890.7m1.000E+00Se-78\$ As-68 Products ----- Daughter Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 As-68
 151.6s
 1.000E+00
 Ge-68

 2 Ge-68
 270.95d
 1.000E+00
 Ga-68

 3 Ga-68
 67.71m
 1.000E+00
 Zn-68\$
 As-69 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 As-69
 15.23m
 1.000E+00 Ge-69

 2 Ge-69
 39.05h
 1.000E+00 Ga-69\$
 As-71 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 As-71 65.28h 1.000E+00 Ge-71 2 Ge-71 11.43d 1.000E+00 Ga-71\$ As-79 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4NuclideNuclide1 As-799.01m9.719E-01Se-79m2.812E-02Se-792 Se-79m3.92m9.994E-01Se-795.600E-04Br-79\$3 Se-792.95E+5y1.000E+00Br-79\$ Se-70 ----- Daughter Products ----- ' Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Se-70 41.1m 1.000E+00 As-70 2 As-70 52.6m 1.000E+00 Ge-70\$

Se-71

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Se-714.74m1.000E+00As-712 As-7165.28h1.000E+00Ge-713 Ge-7111.43d1.000E+00Ga-71\$ Se-72 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Se-728.40d1.000E+00As-722 As-7226.0h1.000E+00Ge-72\$ Se-73 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Se-737.15h1.000E+00As-732 As-7380.30d1.000E+00Ge-73\$ Se-73m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 Nuclide

 1 Se-73m
 39.8m
 7.260E-01
 Se-73
 2.740E-01
 As-73

 2 Se-73
 7.15h
 1.000E+00
 As-73
 As-73

 3 As-73
 80.30d
 1.000E+00
 Ge-73\$

 Se-79m. ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Se-79m 3.92m 9.994E-01 Se-79 5.600E-04 Br-79\$ 2 Se-79 2.95E+5y 1.000E+00 Br-79\$ Se-81m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Se-81m 57.28m 9.995E-01 Se-81 5.200E-04 Br-81\$ 2 Se-81 18.45m 1.000E+00 Br-81\$ Se-83 ----- Daughter

Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Se-8322.3m1.000E+00Br-832 Br-832.40h9.984E-01Kr-83m1.552E-03Kr-83\$3 Kr-83m1.83h1.000E+00Kr-83\$ Se-83m ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Se-83m70.1s1.000E+00 Br-832 Br-832.40h9.984E-01 Kr-83m1.552E-03 Kr-83\$3 Kr-83m1.83h1.000E+00 Kr-83\$ Se-84 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Se-843.1m1.000E+00Br-842 Br-8431.80m1.000E+00Kr-84\$ Br-72 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Br-72
 78.6s
 1.000E+00
 Se-72

 2 Se-72
 8.40d
 1.000E+00
 As-72

 3 As-72
 26.0h
 1.000E+00
 Ge-72\$
 Br-7.3 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 fill
 Br-75 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Br-7596.7m1.000E+00Se-752 Se-75119.779d1.000E+00As-75\$

Br-76m

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Br-76m1.31s9.970E-01 Br-763.000E-03 Se-76\$2 Br-7616.2h1.000E+00 Se-76\$ Br-77m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Br-77m4.28m1.000E+00 Br-772 Br-7757.036h1.000E+00 Se-77\$ Br-80m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Br-80m 4.4205h 1.000E+00 Br-80 2 Br-80 17.68m 9.170E-01 Kr-80\$ 8.300E-02 Se-80\$ Br-82m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Br-82m 6.13m 9.760E-01 Br-82 2.400E-02 Kr-82\$ 1 Br-82m6.13m9.760E-01 Br-822 Br-8235.30h1.000E+00 Kr-82\$ Br-83 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Br-832.40h9.984E-01 Kr-83m1.552E-03 Kr-83\$2 Kr-83m1.83h1.000E+00 Kr-83\$ Br-85 . (----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Br-85
 2.90m
 9.978E-01 Kr-85m
 2.211E-03 Kr-85

 2 Kr-85m
 4.480h
 2.140E-01 Kr-85
 7.860E-01 Rb-85\$

 3 Kr-85
 10.756y
 1.000E+00 Rb-85\$

 Kr-74 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

Nuclidef4Nuclide1 Kr-7411.50m1.000E+00Br-742 Br-7425.4m1.000E+00Se-74\$ Kr-75 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Kr-754.29m1.000E+00Br-752 Br-7596.7m1.000E+00Se-753 Se-75119.779d1.000E+00As-75\$ Kr-76 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Kr-76
 14.8h
 8.114E-03
 Br-76m
 9.919E-01
 Br-76

 2 Br-76m
 1.31s
 9.970E-01
 Br-76
 3.000E-03
 Se-76\$

 3 Br-76
 16.2h
 1.000E+00
 Se-76\$

 Kr-77 Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 nuclide

 1 Kr-77
 74.4m
 9.613E-02 Br-77m
 9.039E-01 Br-77

 2 Br-77m
 4.28m
 1.000E+00 Br-77

 3 Br-77
 57.036h
 1.000E+00 Se-77\$

 Kr-81m ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Kr-81m 13.10s 1.000E+00 Kr-81 2.500E-05 Br-81\$ 2 Kr-81 2.29E+5y 1.000E+00 Br-81\$ Kr-85m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Kr-85m4.480h2.140E-01 Kr-857.860E-01 Rb-85\$2 Kr-8510.756y1.000E+00 Rb-85\$ Kr-87 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

プレス発表資料

福島第一原子力発電所の20km以遠のモニタリング結果について

平成23年4月8日 13時00分現在 文 部 科 学 省

〇文部科学省が集計した結果

*1 GM(ガイガーミューラー計測管)における値

*2 電離箱における値

- *3 Nal(ヨウ化ナトリウム)シンチレータにおける値 *4 測定時間内における測定値の変動範囲

場所(福島第1発電所からの距離)	測定日時	数値(マイクロシーベルト/時) (記載のない限り屋外)	天候	実施者
測定エリア【1】 (約60km北西)	4月8日8時31分	0.8 *2	降雨なし	文部科学省
測定エリア【2】 (約55km北西)	4月8日9時10分	3.5 * ²	降雨なし	日本原子力研究開発機構
測定エリア【3】 (約45km北西)	4月8日10時20分	2.8 ^{*2}	降雨なし	日本原子力研究開発機構
測定エリア 【4】 (約50km北西)	4月8日9時29分	2.3 * ²	 降雨なし	文部科学省
測定エリア【5】 (約45km北)	4月8日11時03分	0.5 * ²	 降雨なし	日本原子力研究開発機構
測定エリア【6】 (約35km北)	4月8日11時25分	0.6 *2	降雨なし	日本原子力研究開発機構
測定エリア【7】 (約35km北)	4月8日11時39分	0.7 *²	降雨なし	日本原子力研究開発機構
測定エリア【10】 (約40km北西)	4月8日9時43分	1.7 *²	降雨なし	文部科学省
測定エリア【11】(約40km北西)	4月8日9時54分	1.9 *2	降雨なし	文部科学省
測定エリア【12】 (約40km西)	4月8日10時32分	0.7 ^{*2}	降雨なし	文部科学省
測定エリア【13】 (約40km西)	4月8日10時39分	1.0 *²	降雨なし	文部科学省
測定エリア【14】 (約35km西)	4月8日10時49分	0.8 ^{*2}	降雨なし	文部科学省
測定エリア【15】 (約35km西)	4月8日10時59分	1.3 *2	降雨なし	文部科学省
測定エリア【20】 (約45km北西)	4月8日10時18分	1.3 *2	降雨なし	文部科学省
測定エリア【31】(約30km西北西)	4月8日10時51分	9.0 ^{*2}	降雨なし	文部科学省

1 Kr-87 76.3m 1.000E+00 Rb-87 2 Rb-87 4.923E10y 1.000E+00 Sr-87\$ Kr-88 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Kr-88
 2.84h
 1.000E+00
 Rb-88

 2 Rb-88
 17.78m
 1.000E+00
 Sr-88\$
 Kr-89 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Kr-89
 3.15m
 1.000E+00 Rb-89
 1 Kr-893.15m1.000E+00Rb-892 Rb-8915.15m1.000E+00Sr-893 Sr-8950.53d1.000E+00Y-89\$ Rb-77 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Lide f4 Nuclide

 Nuclide
 f4
 Nuclide

 1 Rb-77
 3.77m
 1.000E+00 Kr-77

 2 Kr-77
 74.4m
 9.613E-02 Br-77m
 9.039E-01 Br-77

 3 Br-77m
 4.28m
 1.000E+00 Br-77
 4 Br-77

 4 Br-77
 57.036h
 1.000E+00 Se-77\$

 Rb-78m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Rb-78m
 5.74m
 1.000E-01 Rb-78
 9.000E-01 Kr-78\$

 2 Rb-78
 17.66m
 1.000E+00 Kr-78\$
 17.66m
 Rb-79 ----- Daughter Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rb-79 22.9m 1.000E+00 Kr-79 1 Rb-7922.9m1.000E+00 Kr-792 Kr-7935.04h1.000E+00 Br-79\$ Rb-81 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rb-81 4.576h 9.569E-01 Kr-81m 4.309E-02 Kr-81

2 Kr-81m 13.10s 1.000E+00 Kr-81 2.500E-05 Br-81\$ 3 Kr-81 2.29E+5y 1.000E+00 Br-81\$

Rb-81m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rb-81m 30.5m 9.760E-01 Rb-81 2.135E-04 Kr-81m 2.379E-02 Kr-81 2 Rb-81 4.576h 9.569E-01 Kr-81m 4.309E-02 Kr-81 3 Kr-81m 13.10s 1.000E+00 Kr-81 2.500E-05 Br-81\$ 4 Kr-81 2.29E+5y 1.000E+00 Br-81\$ Rb-83 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Rb-8386.2d7.429E-01 Kr-83m2.571E-01 Kr-83\$2 Kr-83m1.83h1.000E+00 Kr-83\$ Rb-84m ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rb-84m 20.26m 1.000E+00 Rb-84 2 Rb-84 32.77d 9.620E-01 Kr-84\$ 3.800E-02 Sr-84\$ Rb-86m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rb-86m 1.017m 1.000E+00 Rb-86 2 Rb-86 18.642d 1.000E+00 Sr-86\$ 5.200E-05 Kr-86\$ Rb-89 ----- Daughter Products ----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Rb-8915.15m1.000E+00 Sr-892 Sr-8950.53d1.000E+00 Y-89\$ Rb-90 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rb-90 158s 1.000E+00 Sr-90

2 Sr-90 28.79y 1.000E+00 Y-90 3 Y-90 64.10h 1.000E+00 Zr-90\$

Rb-90m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Rb-90m
 258s
 2.600E-02 Rb-90
 9.740E-01 Sr-90

 2 Rb-90
 158s
 1.000E+00 Sr-90

 3 Sr-90
 28.79y
 1.000E+00 Y-90

 4 Y-90
 64.10h
 1.000E+00 Zr-90\$

 Sr-79 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sr-792.25m1.000E+00Rb-792 Rb-7922.9m1.000E+00Kr-793 Kr-7935.04h1.000E+00Br-79\$ Sr-80 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sr-80 106.3m 1.000E+00 Rb-80 2 Rb-80 33.4s 1.000E+00 Kr-80\$ Sr-81 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sr-8122.3m1.442E-03Rb-81m9.986E-01Rb-812 Rb-81m30.5m9.760E-01Rb-812.135E-04Kr-81m 2.379E-02 Kr-81 3 Rb-814.576h9.569E-01 Kr-81m4.309E-02 Kr-814 Kr-81m13.10s1.000E+00 Kr-812.500E-05 Br-81\$ 5 Kr-81 2.29E+5y 1.000E+00 Br-81\$ Sr-82 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Sr-8225.36d1.000E+00Rb-822 Rb-821.273m1.000E+00Kr-82\$ Sr-83 ---- Daughter

Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sr-8332.41h1.000E+00Rb-832 Rb-8386.2d7.429E-01Kr-83m2.571E-01Kr-83\$3 Kr-83m1.83h1.000E+00Kr-83\$ Sr-85m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sr-85m 67.63m 8.660E-01 Sr-85 1.340E-01 Rb-85\$ 2 Sr-85 64.84d 1.000E+00 Rb-85\$ Sr-87m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sr-87m 2.815h 3.000E-03 Rb-87 9.970E-01 Sr-87\$ 2 Rb-87 4.923E10y 1.000E+00 Sr-87\$ Sr-90 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 · Nuclidef4Nuclide1 Sr-9028.79y1.000E+00 Y-902 Y-9064.10h1.000E+00 Zr-90\$ Sr-91 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Sr-919.63h5.825E-01 Y-91m4.175E-01 Y-912 Y-91m49.71m1.000E+00 Y-913 Y-9158.51d1.000E+00 Zr Sr-92 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Sr-92
 2.66h
 1.000E+00
 Y-92

 2 Y-92
 3.54h
 1.000E+00
 Zr-92\$
 Sr-93 Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Sr-93
 7.423m
 1.000E+00 Y-93

 2 Y-93
 10.18h
 1.000E+00 Zr-93

 3 Zr-93
 1.53E+6y
 9.750E-01 Nb-93m
 2.500E-02 Nb-93\$
 4 Nb-93m 16.13y 1.000E+00 Nb-93\$ Sr-94 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Sr-9475.3s1.000E+00 Y-942 Y-9418.7m1.000E+00 Zr-94\$ Y-81 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Y-81
 70.4s
 1.000E+00
 Sr-81

 2 Sr-81
 22.3m
 1.442E-03
 Rb-81m
 9.986E-01
 Rb-81

 3 Rb-81m
 30.5m
 9.760E-01
 Rb-81
 2.135E-04
 Kr-81m

 2.379E-02
 Kr-81
 4.526
 5.56
 5.56

 4 Rb-814.576h9.569E-01 Kr-81m4.309E-02 Kr-815 Kr-81m13.10s1.000E+00 Kr-812.500E-05 Br-81\$6 Kr-812.29E+5y1.000E+00 Br-81\$ Y-83 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Y-83
 7.08m
 1.000E+00
 Sr-83

 2 Sr-83
 32.41h
 1.000E+00
 Rb-83

 3 Rb-83
 86.2d
 7.429E-01
 Kr-83m
 2.571E-01
 Kr-83\$

 4 Kr-83m
 1.83h
 1.000E+00
 Kr-83\$

 Y-83m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 . Nuclide

 1 Y-83m
 2.85m
 4.000E-01 Y-83
 6.000E-01 Sr-83

 2 Y-83
 7.08m
 1.000E+00 Sr-83

 3 Sr-83
 32.41h
 1.000E+00 Rb-83

 4 Rb-83
 86.2d
 7.429E-01 Kr-83m
 2.571E-01 Kr-83\$

 5 Kr-83m
 1.83h
 1.000E+00 Kr-83\$

 Y-85 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3

Nuclidef4Nuclide1 Y-852.68h1.000E+00Sr-85m2 Sr-85m67.63m8.660E-01Sr-853 Sr-8564.84d1.000E+00Rb-85\$ 1.340E-01 Rb-85\$ Y-85m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Y-85m4.86h4.000E-02 Sr-85m9.600E-01 Sr-85 1 Y-85m4.86h4.000E-02Sr-85m9.600E-01Sr-852 Sr-85m67.63m8.660E-01Sr-851.340E-01Rb-85\$ 3 Sr-85 64.84d 1.000E+00 Rb-85\$ Y-86m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Y-86m48m9.931E-01 Y-866.900E-03 Sr-86\$2 Y-8614.74h1.000E+00 Sr-86\$ Y-87 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Y-87 79.8h 1.000E+00 Sr-87m 1 Y-87 79.8h 1.000E+00 Sr-87m 2 Sr-87m 2.815h 3.000E-03 Rb-87 9.970E-01 Sr-87\$ 3 Rb-87 4.923E10y 1.000E+00 Sr-87\$ Y-87m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1Y = 87m13.37h9.843E=01Y=871.570E=02Sr=87\$2Y=8779.8h1.000E+00Sr=87m3Sr=87m2.815h3.000E=03Rb=879.970E=01Sr=87\$3Sr=87m2.815h3.000E=03Rb=879.970E=01Sr=87\$Sr=87\$4Rb=874.923E10y1.000E+00Sr=87\$ Y-90m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Y-90m3.19h1.000E+00Y-901.800E-05Zr-90\$2 Y-9064.10h1.000E+00Zr-90\$ Y-91m ----- Daughter Products -----

f1 Nuclide f2 Nuclide f3 Nuclide Halflife Nuclidef4Nuclide1 Y-91m49.71m1.000E+00 Y-912 Y-9158.51d1.000E+00 Zr-91\$ Y-93 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Y-93 10.18h 1.000E+00 Zr-93 2 Zr-93 1.53E+6y 9.750E-01 Nb-93m 2.500E-02 Nb-93\$ 3 Nb-93m 16.13y 1.000E+00 Nb-93\$ Y-95 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Y-95
 10.3m
 1.000E+00
 Zr-95

 2 Zr-95
 64.032d
 1.080E-02
 Nb-95m
 9.892E-01
 Nb-95

 3 Nb-95m
 3.61d
 9.440E-01
 Nb-95
 5.600E-02
 Mo-95\$

 4 Nb-95
 34.991d
 1.000E+00
 Mo-95\$

 Zr-85 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 NuclidefillNuclidefillNuclide1Zr-857.86m9.684E-01Y-85m3.159E-02Y-852Y-85m4.86h4.000E-02Sr-85m9.600E-01Sr-853Y-852.68h1.000E+00Sr-85m4.84bSr-85m4Sr-85m67.63m8.660E-01Sr-851.340E-01Rb-8555Sr-8564.84d1.000E+00Rb-855 1.340E-01 Rb-85\$ Zr-86 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Zr-8616.5h1.000E+00 Y-86 1 Zr-86 2 Y-86 16.5h 1.000E+00 Y-86 14.74h 1.000E+00 Sr-86\$ Zr-87 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 12r-871.68h9.970E-01Y-87m2.964E-03Y-872Y-87m13.37h9.843E-01Y-871.570E-02Sr-87\$3Y-8779.8h1.000E+00Sr-87m4Sr-87m2.815h3.000E-03Rb-879.970E-01Sr-87\$

Zr-88 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Zr-88
 83.4d
 1.000E+00
 Y-88

 2 Y-88
 106.65d
 1.000E+00
 Sr-88\$
 Zr-89m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide
 f2
 Nuclide

 1 Zr-89m
 4.161m
 9.377E-01 Zr-89
 6.230E-02 Y-89\$

 2 Zr-89
 78.41h
 1.000E+00 Y-89\$
 Zr-93 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Zr-93 1.53E+6y 9.750E-01 Nb-93m 2.500E-02 Nb-93\$ 2 Nb-93m 16.13y 1.000E+00 Nb-93\$ Zr-95 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Zr-9564.032d1.080E-02Nb-95m9.892E-01Nb-952 Nb-95m3.61d9.440E-01Nb-955.600E-02Mo-95\$3 Nb-9534.991d1.000E+00Mo-95\$ Zr-97 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Zr-97
 16.744h
 1.000E+00
 Nb-97

 2 Nb-97
 72.1m
 1.000E+00
 Mo-975
 72.1m 1.000E+00 Mo-97\$ Nb-87. ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Nb-873.75m1.000E+00Zr-872 Zr-871.68h9.970E-01Y-87m2.964E-033 Y-87m13.37h9.843E-01Y-871.570E-024 Y-8779.8h1.000E+00Sr-87m

5 Rb-87 4.923E10y 1.000E+00 Sr-87\$

Ч

5 Sr-87m 2.815h 3.000E-03 Rb-87 9.970E-01 Sr-87\$ 6 Rb-87 4.923E10y 1.000E+00 Sr-87\$ Nb-88 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Nb-88
 14.5m
 1.000E+00
 Zr-88

 2 Zr-88
 83.4d
 1.000E+00
 Y-88

 3 Y-88
 106.65d
 1.000E+00
 Sr-88\$
 Nb-88m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1
 Nb-88m
 7.78m
 1.000E+00
 Zr-88

 2
 Zr-88
 83.4d
 1.000E+00
 Y-88

 3
 Y-88
 106.65d
 1.000E+00
 Sr-88\$
 Nb-89 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Nb-89 2.03h 1.228E-02 Zr-89m 9.877E-01 Zr-89 1 Nb-892.03h1.228E-02Zr-89m9.877E-01Zr-892 Zr-89m4.161m9.377E-01Zr-896.230E-02Y-89\$3 Zr-8978.41h1.000E+00Y-89\$ Nb-89m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Nb-89m
 66m
 1.000E+00 Zr-89m
 1 Nb-89m66m1.000E+00Zr-89m2 Zr-89m4.161m9.377E-01Zr-896.230E-02Y-89\$3 Zr-8978.41h1.000E+00Y-89\$ Nb-91m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Nb-91m 60.86d 9.660E-01 Nb-91 3.400E-02 Zr-91\$ 2 Nb-91 680y 1.000E+00 Zr-91\$ Nb-94m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

6.263m 9.950E-01 Nb-94 5.000E-03 Mo-94\$ 1 Nb-94m 2 Nb-94 2.03E+4y 1.000E+00 Mo-94\$ Nb-95m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Nb-95m 3.61d 9.440E-01 Nb-95 5.600E-02 Mo-95\$ 2 Nb-95 34.991d 1.000E+00 Mo-95\$ Nb-99 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Nb-9915.0s1.000E+00 Mo-992 Mo-9965.94h8.773E-01 Tc-99m1.227E-01 Tc-993 Tc-99m6.015h1.000E+00 Tc-993.700E-05 Ru-99\$ 4 Tc-99 2.111E+5y 1.000E+00 Ru-99\$ Nb-99m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Nb-99m
 2.6m
 2.000E-02 Nb-99
 9.800E-01 Mo-99
 1 Nb-99m2.6m2.000E-02 Nb-999.800E-01 Mo-992 Nb-9915.0s1.000E+00 Mo-993 Mo-9965.94h8.773E-01 Tc-99m4 Tc-99m6.015h1.000E+00 Tc-993.700E-05 Ru-99\$ 5 Tc-99 2.111E+5y 1.000E+00 Ru-99\$ Mo-89 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Mo-892.11m1.000E+00 Nb-892 Nb-892.03h1.228E-02 Zr-89m9.877E-01 Zr-893 Zr-89m4.161m9.377E-01 Zr-896.230E-02 Y-89\$4 Zr-8978.41h1.000E+00 Y-89\$ Mo-90 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Mo-905.56h1.000E+002 Nb-9014.60h1.000E+00Zr-90\$ Mo-91 ----- Daughter

Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Mo-9115.49m3.423E-04Nb-91m9.997E-01Nb-912 Nb-91m60.86d9.660E-01Nb-913.400E-02Zr-91\$3 Nb-91680y1.000E+00Zr-91\$ Mo-91m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Mo-91m 64.6s 5.000E-01 Mo-91 5.000E-01 Nb-91m 1 Mo-91m64.6s5.000E-01 Mo-915.000E 01 Mo-912 Mo-9115.49m3.423E-04 Nb-91m9.997E-01 Nb-913 Nb-91m60.86d9.660E-01 Nb-913.400E-02 Zr-91\$4 Nb-91680y1.000E+00 Zr-91\$ Mo-93 ·---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Mo-93 4.0E+3y 8.800E-01 Nb-93m 1.200E-01 Nb-93\$ 2 Nb-93m 16.13y 1.000E+00 Nb-93\$ Mo-93m ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Mo-93m
 6.85h
 9.988E-01 Mo-93
 1.200E-03 Nb-93\$

 2 Mo-93
 4.0E+3y
 8.800E-01 Nb-93m
 1.200E-01 Nb-93\$

 3 Nb-93m
 16.13y
 1.000E+00 Nb-93\$

 Mo-99 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Mo-9965.94h8.773E-01 Tc-99m1.227E-01 Tc-992 Tc-99m6.015h1.000E+00 Tc-993.700E-05 Ru-99\$ 3 Tc-99 2.111E+5y 1.000E+00 Ru-99\$ Mo-101 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Mo-101 2 Tc-101 14.61m 1.000E+00 Tc-101 14.2m 1.000E+00 Ru-101\$

Mo-102

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Mo-102 2 Tc-102 11.3m 1.000E+00 Tc-102 5.28s 1.000E+00 Ru-102\$ Tc-91 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4NuclideNuclide1 Tc-913.14m6.979E-03Mo-91m9.930E-01Mo-912 Mo-91m64.6s5.000E-01Mo-915.000E-01Nb-91m3 Mo-9115.49m3.423E-04Nb-91m9.997E-01Nb-914 Nb-91m60.86d9.660E-01Nb-913.400E-02Zr-91\$5 Nb-91680y1.000E+00Zr-91\$State Tc-91m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 NuclidefillNuclidefillNuclide1 Tc-91m3.3m9.798E-01Mo-91m2.024E-02Mo-912 Mo-91m64.6s5.000E-01Mo-915.000E-01Nb-91m3 Mo-9115.49m3.423E-04Nb-91m9.997E-01Nb-914 Nb-91m60.86d9.660E-01Nb-913.400E-02Zr-91\$5 Nb-91680y1.000E+00Zr-91\$5 Tc-93 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Tc-93
 2.75h
 1.000E+00 Mo-93

 2 Mo-93
 4.0E+3y
 8.800E-01 Nb-93m
 1.200E-01 Nb-93\$

 3 Nb-93m
 16.13y
 1.000E+00 Nb-93\$

 Tc-93m ----- Daughter Products -----Nuclide Halflife f1. Nuclide f2 Nuclide £3

 Nuclide
 f4
 Nuclide

 1 Tc-93m
 43.5m
 7.660E-01 Tc-93
 2.340E-01 Mo-93

 2 Tc-93
 2.75h
 1.000E+00 Mo-93

 3 Mo-93
 4.0E+3y
 8.800E-01 Nb-93m
 1.200E-01 Nb-93\$

 4 Nb-93m
 16.13y
 1.000E+00 Nb-93\$

 Tc-95m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

Nuclidef4Nuclide1 Tc-95m61d3.880E-02 Tc-959.612E-01 Mo-95\$2 Tc-9520.0h1.000E+00 Mo-95\$ Tc-96m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 NuclideNuclide1 Tc-96m51.5m2 Tc-964.28d1.000E+00Mo-96\$ Tc-97m----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Tc-97m90.1d1.000E+00 Tc-972 Tc-972.6E+6y1.000E+00 Mo-97\$ Tc-99m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Tc-99m 6.015h 1.000E+00 Tc-99 3.700E-05 Ru-99\$ 2 Tc-99 2.111E+5y 1.000E+00 Ru-99\$ Tc-102m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Tc-102m 4.35m 2.000E-02 Tc-102 9.800E-01 Ru-102\$ 2 Tc-102 5.28s 1.000E+00 Ru-102\$ Tc-105 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Tc-105
 7.6m
 1.000E+00
 Ru-105

 2 Ru-105
 4.44h
 1.000E+00
 Rh-105

 3 Rh-105
 35.36h
 1.000E+00
 Pd-105\$
 Ru-92 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclidef4Nuclide1 Ru-923.65m1.000E+00Tc-922 Tc-924.25m1.000E+00Mo-92\$

Ru-94 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ru-9451.8m1.000E+00Tc-94m2 Tc-94m52.0m1.000E+00Mo-94\$ Ru-95 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ru-951.643h2.613E-02Tc-95m9.739E-01Tc-952 Tc-95m61d3.880E-02Tc-959.612E-01Mo-95\$3 Tc-9520.0h1.000E+00Mo-95\$ Ru-97 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 f4
 Nuclide

 1 Ru-97
 2.9d
 4.218E-04 Tc-97m
 9.996E-01 Tc-97

 2 Tc-97m
 90.1d
 1.000E+00 Tc-97

 3 Tc-97
 2.6E+6y
 1.000E+00 Mo-97\$

 Ru-103 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ru-103 39.26d 9.876E-01 Rh-103m 1.245E-02 Rh-103\$ 2 Rh-103m 56.114m 1.000E+00 Rh-103\$ Ru-105 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ru-105 4.44h 1.000E+00 Rh-105 1 Ru-105 4.44h 1.000E+00 Rh-105 2 Rh-105 35.36h 1.000E+00 Pd-105\$ Ru-106 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ru-106 373.59d 1.000E+00 Rh-106 2 Rh-106 29.80s 1.000E+00 Pd-106\$ Ru-107

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ru-1073.75m1.000E+00 Rh-1072 Rh-10721.7m1.000E+00 Pd-1073 Pd-1076.5E+6y1.000E+00 Ag-107\$ Ru-108 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ru-1084.55m1.000E+00 Rh-1082 Rh-10816.8s1.000E+00 Pd-108\$ Rh-94 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Rh-94
 70.6s
 1.000E+00 Ru-94

 2 Ru-94
 51.8m
 1.000E+00 Tc-94m

 3 Tc-94m
 52.0m
 1.000E+00 Mo-94\$
 Rh-95 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 NuclideHallingInNuclidef4Nuclide1 Rh-955.02m1.000E+00Ru-952 Ru-951.643h2.613E-02Tc-95m3 Tc-95m61d3.880E-02Tc-954 Tc-9520.0h1.000E+00Mo-95\$ Rh-95m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 f1
 Nuclide
 f2
 Nuclide

 1
 Rh-95m
 1.96m
 8.800E-01
 Rh-95
 1.200E-01
 Ru-95

 2
 Rh-95
 5.02m
 1.000E+00
 Ru-95
 3
 Ru-95
 1.643h
 2.613E-02
 Tc-95m
 9.739E-01
 Tc-95

 4
 Tc-95m
 61d
 3.880E-02
 Tc-95
 9.612E-01
 Mo-95\$

 5
 Tc-95
 20.0h
 1.000E+00
 Mo-95\$

 Rh-96m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rh-96m 1.51m 6.000E-01 Rh-96 4.000E-01 Ru-96\$

2 Rh-96 9.90m 1.000E+00 Ru-96\$ Rh-97 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Rh-97
 30.7m
 1.000E+00 Ru-97

 2 Ru-97
 2.9d
 4.218E-04 Tc-97m
 9.996E-01 Tc-97

 3 Tc-97m
 90.1d
 1.000E+00 Mo-97\$

 4 Tc-97
 2.6E+6y
 1.000E+00 Mo-97\$

 Rh-97m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 fill
 Nuclide
 fill
 Nuclide

 1 Rh-97m
 46.2m
 5.600E-02 Rh-97
 9.440E-01 Ru-97

 2 Rh-97
 30.7m
 1.000E+00 Ru-97

 3 Ru-97
 2.9d
 4.218E-04 Tc-97m
 9.996E-01 Tc-97

 4 Tc-97m
 90.1d
 1.000E+00 Tc-97

 5 Tc-97
 2.6E+6y
 1.000E+00 Mo-97\$

 Rh-100m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rh-100m 4.6m 9.830E-01 Rh-100 1.700E-02 Ru-100\$ 1 Rh-100m4.6m9.830E-01 Rh-1002 Rh-10020.8h1.000E+00 Ru-100\$ Rh-101m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Rh-101m4.34d6.400E-02 Rh-1019.360E-01 Ru-101\$2 Rh-1013.3y1.000E+00 Ru-101\$ Rh-102m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rh-102m3.742y2.330E-03Rh-1029.977E-01Ru-102\$2 Rh-102207d7.800E-01Ru-102\$2.200E-01Pd-102\$ Rh-104m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

1 Rh-104m4.34m9.987E-01 Rh-1041.300E-03 Pd-104\$2 Rh-10442.3s9.955E-01 Pd-104\$4.500E-03 Ru-104\$ Rh-107 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Rh-10721.7m1.000E+00Pd-1072 Pd-1076.5E+6y1.000E+00Ag-107\$ Rh-109 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Rh-10980s1.000E+00 Pd-109 2 Pd-109 13.7012h 1.000E+00 Ag-109\$ Pd-96 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Pd-96122s1.000E+00 Rh-96m2 Rh-96m1.51m6.000E-01 Rh-964.000E-01 Ru-96\$3 Rh-969.90m1.000E+00 Ru-96\$ 3 Rh-96 Pd-97 · _____ Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Pd-97
 3.10m
 1.162E-02
 Rh-97m
 9.884E-01
 Rh-97

 2 Rh-97m
 46.2m
 5.600E-02
 Rh-97
 9.440E

 3 Rh-97
 30.7m
 1.000E+00
 Ru-97

 4 Ru-97
 2.9d
 4.218E-04
 Tc-97m
 9.996E-01
 Tc-97

 5 Tc-97m
 90.1d
 1.000E+00
 Mo-97\$

 6 Tc-97
 2.6E+6y
 1.000E+00
 Mo-97\$

 Pd-98 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Pd-98
 17.7m
 1.000E+00 Rh-98

 2 Rh-98
 8.7m
 1.000E+00 Ru-98\$
 Pd-99 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

Nuclidef4Nuclide1 Pd-9921.4m9.665E-01 Rh-99m3.353E-02 Rh-992 Rh-99m4.7h1.000E+00 Ru-99\$3 Rh-9916.1d1.000E+00 Ru-99\$ Pd-100 Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pd-100 3.63d 1.000E+00 Rh-100 2 Rh-100 20.8h 1.000E+00 Ru-100\$ Pd-101 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pd-1018.47h9.973E-01 Rh-101m2.700E-03 Rh-1012 Rh-101m4.34d6.400E-02 Rh-1019.360E-01 Ru-101\$3 Rh-1013.3y1.000E+00 Ru-101\$ Pd-103 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pd-103 16.991d 9.988E-01 Rh-103m 1.251E-03 Rh-103\$ 2 Rh-103m 56.114m 1.000E+00 Rh-103\$ Pd-109m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide _____f3 Nuclide f4 Nuclide 1 Pd-109m 4.69m 1.000E+00 Pd-109 2 Pd-109 13.7012h 1.000E+00 Ag-109\$ Pd-111 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Pd-11123.4m9.976E-01 Ag-111m2.437E-03 Ag-1112 Ag-111m64.8s9.930E-01 Ag-1117.000E-03 Cd-111\$3 Ag-1117.45d1.000E+00 Cd-111\$ Pd-112 Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

21.03h 1.000E+00 Ag-112 3.130h 1.000E+00 Cd-112\$ 1 Pd-112 2 Ag-112 Pd-114 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Pd-1142.42m1.000E+00 Ag-1142 Ag-1144.6s1.000E+00 Cd-114\$ Ag-99 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Ag-99
 124s
 1.000E+00 Pd-99

 2 Pd-99
 21.4m
 9.665E-01 Rh-99m
 3.353E-02 Rh-99

 3 Rh-99m
 4.7h
 1.000E+00 Ru-99\$

 4 Rh-99
 16.1d
 1.000E+00 Ru-99\$

 Ag-100m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ag-100m2.24m1.000E+00Pd-1002 Pd-1003.63d1.000E+00Rh-1003 Rh-10020.8h1.000E+00Ru-100\$ Ag-101 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3

 Nuclide
 f4
 Nuclide

 1 Ag-101
 11.1m
 1.000E+00 Pd-101

 2 Pd-101
 8.47h
 9.973E-01 Rh-101m
 2.700E-03 Rh-101

 3 Rh-101m
 4.34d
 6.400E-02 Rh-101
 9.360E-01 Ru-101\$

 4 Rh-101
 3.3y
 1.000E+00 Ru-101\$

 Ag-102m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 nuclide

 1 Ag-102m
 7.7m
 4.900E-01 Ag-102
 5.100E-01 Pd-102\$

 2 Ag-102
 12.9m
 1.000E+00 Pd-102\$

 Ag-103 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

Nuclidef4Nuclide1 Ag-10365.7m1.000E+00 Pd-1032 Pd-10316.991d9.988E-01 Rh-103m1.251E-03 Rh-103\$1.000E+00 Rh-103\$ 3 Rh-103m 56.114m 1.000E+00 Rh-103\$ Ag-104m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ag-104m33.5m7.000E-04 Ag-1049.993E-01 Pd-104\$2 Ag-10469.2m1.000E+00 Pd-104\$ Aq-105m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ag-105m 7.23m 9.966E-01 Ag-105 3.400E-03 Pd-105\$ 1 Ag-105m 7.23m 9.966E-01 Ag-105 2 Ag-105 41.29d 1.000E+00 Pd-105\$ Ag-108m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3
 Nuclide
 f4
 Nuclide

 1 Ag-108m
 418y
 8.700E-02 Ag-108
 9.130E-01 Pd-108\$

 2 Ag-108
 2.37m
 9.715E-01 Cd-108\$
 2.850E-02 Pd-108\$
 Ag-110m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ag-110m 249.76d 1.360E-02 Ag-110 9.864E-01 Cd-110\$ 2 Ag-110 24.6s 9.970E-01 Cd-110\$ 3.000E-03 Pd-110\$ Ag-111m ----- Daughter Products ------Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ag-111m 64.8s 9.930E-01 Ag-111 7.000E-03 Cd-111\$ 2 Ag-111 7.45d 1.000E+00 Cd-111\$ Ag-113 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Ag-113 5.37h 1.739E-02 Cd-113m 9.826E-01 Cd-113 2 Cd-113m 14.1y 1.400E-03 Cd-113 9.986E-01 In-113\$

3 Cd-113 7.7E+15y 1.000E+00 In-113\$

Aq-113m ----- Daughter Products ------Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Ag-113m
 68.7s
 6.400E-01 Ag-113
 3.600E-01 Cd-113

 2 Ag-113
 5.37h
 1.739E-02 Cd-113m
 9.826E-01 Cd-113

 3 Cd-113m
 14.1y
 1.400E-03 Cd-113
 9.986E-01 In-113\$

 4 Cd-113
 7.7E+15y
 1.000E+00 In-113\$

 Ag-115 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ag-115 20.0m 9.421E-01 Cd-115 5.787E-02 Cd-115m

 1 Ag-115
 20.0m
 9.421E-01 Cd-115
 5.787E-02 Cd-115m

 2 Cd-115
 53.46h
 1.000E+00 In-115m

 3 Cd-115m
 44.6d
 1.058E-04 In-115m
 9.999E-01 In-115

 4 In-115m
 4.486h
 9.500E-01 In-115
 5.000E-02 Sn-115\$

 5 In-115 4.41E+14y 1.000E+00 Sn-115\$ Ag-117 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Ag-117
 73.6s
 8.470E-01
 Cd-117
 1.530E-01
 Cd-117m

 1 Ag-117
 73.6s
 8.470E-01
 Cd-117
 1.530E-01
 Cd-11/m

 2 Cd-117
 2.49h
 9.151E-01
 In-117m
 8.493E-02
 In-117

 3 Cd-117m
 3.36h
 9.983E-03
 In-117m
 9.900E-01
 In-117

 4 In-117m
 116.2m
 4.710E-01
 In-117
 5.290E-01
 Sn-117\$

 5 In-117
 43.2m
 3.532E-03
 Sn-117m
 9.965E-01
 Sn-117\$

 6 Sn-117m
 13.76d
 1.000E+00
 Sn-117\$

 Cd-101 Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 fill
 Nuclide
 fill
 Nuclide

 Nuclide
 1
 Cd-101
 1.36m
 1.000E+00
 Ag-101

 2
 Ag-101
 11.1m
 1.000E+00
 Pd-101

 3
 Pd-101
 8.47h
 9.973E-01
 Rh-101m
 2.700E-03
 Rh-101

 4
 Rh-101m
 4.34d
 6.400E-02
 Rh-101
 9.360E-01
 Ru-101\$

 5
 Rh-101
 3.3y
 1.000E+00
 Ru-101\$

 Cd-102 _____ Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Cd-102 5.5m 9.462E-01 Ag-102m 5.376E-02 Ag-102

2 Ag-102m 7.7m 4.900E-01 Ag-102 5.100E-01 Pd-102\$ 3 Ag-102 12.9m 1.000E+00 Pd-102\$ Cd-103 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 f2
 Nuclide

 1 Cd-103
 7.3m
 1.000E+00 Ag-103
 g-103
 g-103
 65.7m
 1.000E+00 Pd-103
 g-103
 16.991d
 9.988E-01 Rh-103m
 1.251E-03 Rh-103\$

 4 Rh-103m 56.114m 1.000E+00 Rh-103\$ Cd-104 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Cd-104
 57.7m
 1.000E+00 Ag-104m

 2 Ag-104m
 33.5m
 7.000E-04 Ag-104
 9.993E-01 Pd-104\$

 3 Ag-104
 69.2m
 1.000E+00 Pd-104\$

 Cd-105 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 f2
 Nuclide

 1 Cd-105
 55.5m
 8.296E-01 Ag-105m
 1.704E-01 Ag-105

 2 Ag-105m
 7.23m
 9.966E-01 Ag-105
 3.400E-03 Pd-105\$

 3 Ag-105
 41.29d
 1.000E+00 Pd-105\$

 Cd-113m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Cd-113m 14.1y 1.400E-03 Cd-113 9.986E-01 In-113\$ 2 Cd-113 7.7E+15y 1.000E+00 In-113\$ Cd-115 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Cd-115 53.46h 1.000E+00 In-115m 2 In-115m 4.486h 9.500E-01 In-115 5.000E-02 Sn-115\$ 3 In-115 4.41E+14y 1.000E+00 Sn-115\$ Cd-115m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Cd-115m44.6d1.058E-04In-115m2 In-115m4.486h9.500E-01In-1155.000E-02Sn-115\$ 3 In-115 4.41E+14y 1.000E+00 Sn-115\$ Cd-117 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Cd-117 2.49h 9.151E-01 In-117m 8.493E-02 In-117 1 Cd-1172.49h9.151E-01In-117m8.493E-02In-1172 In-117m116.2m4.710E-01In-1175.290E-01Sn-117\$3 In-11743.2m3.532E-03Sn-117m9.965E-01Sn-117\$4 Sn-117m13.76d1.000E+00Sn-117\$ Cd-117m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Cd-117m3.36h9.983E-03In-117m9.900E-01In-1172 In-117m116.2m4.710E-01In-1175.290E-01Sn-117\$3 In-11743.2m3.532E-03Sn-117m9.965E-01Sn-117\$4 Sn-117m13.76d1.000E+00Sn-117\$ Cd-118 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Cd-118
 50.3m
 1.000E+00
 In-118

 2 In-118
 5.0s
 1.000E+00
 Sn-118\$
 Cd-119 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 11
 Nuclide
 12
 Nuclide

 Nuclide
 1
 Cd-119
 2.69m
 9.009E-01
 In-119m
 9.909E-02
 In-119

 2
 In-119m
 18.0m
 5.600E-02
 In-119
 9.440E-01
 Sn-119\$

 3
 In-119
 2.4m
 9.477E-03
 Sn-119m
 9.905E-01
 Sn-119\$

 4
 Sn-119m
 293.1d
 1.000E+00
 Sn-119\$

 Cd-119m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Cd-119m2.20m2.133E-03In-119m9.979E-01In-1192 In-119m18.0m5.600E-02In-1199.440E-01Sn-119\$3 In-1192.4m9.477E-03Sn-119m9.905E-01Sn-119\$4 Sn-119m293.1d1.000E+00Sn-119\$

In-103 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 ff
 Nuclide
 ff
 Nuclide

 1 In-103
 60s
 1.000E+00
 Cd-103

 2 Cd-103
 7.3m
 1.000E+00
 Ag-103

 3 Ag-103
 65.7m
 1.000E+00
 Pd-103

 4 Pd-103
 16.991d
 9.988E-01
 Rh-103m
 1.251E-03
 Rh-103\$

 5 Rh-103m
 56.114m
 1.000E+00
 Rh-103\$

 In-105 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1
 In-105
 5.07m
 1.000E+00
 Cd-105

 2
 Cd-105
 55.5m
 8.296E-01
 Ag-105m
 1.704E-01
 Ag-105

 3
 Ag-105m
 7.23m
 9.966E-01
 Ag-105
 3.400E-03
 Pd-105\$

 4
 Ag-105
 41.29d
 1.000E+00
 Pd-105\$
 1.000E+00
 Pd-105\$

 In-107 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 In-10732.4m1.000E+00 Cd-1072 Cd-1076.50h1.000E+00 Ag-107\$ In-109 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 In-1094.2h1.000E+00 Cd-1092 Cd-109461.4d1.000E+00 Ag-109\$ In-109m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 In-109m1.34m1.000E+00In-1092 In-1094.2h1.000E+00Cd-1093 Cd-109461.4d1.000E+00Ag-109\$ In-111 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

1 In-111 2.8047d 5.000E-05 Cd-111m 1.000E+00 Cd-111\$ 2 Cd-111m 48.50m 1.000E+00 Cd-111\$ · • In-111m ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 In-111m
 7.7m
 1.000E+00 In-111

 2 In-111
 2.8047d
 5.000E-05 Cd-111m
 1.000E+00 Cd-111\$

 . 3 Cd-111m 48.50m 1.000E+00 Cd-111\$ In-112m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 In-112m 20.56m 1.000E+00 In-112 2 In-112 14.97m 5.600E-01 Cd-112\$ 4.400E-01 Sn-112\$ In-114m Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 In-114m49.51d9.675E-01In-1143.250E-02Cd-114\$2 In-11471.9s9.950E-01Sn-114\$5.000E-03Cd-114\$ In-115m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 In-115m 4.486h 9.500E-01 In-115 5.000E-02 Sn-115\$ 2 In-115 4.41E+14y 1.000E+00 Sn-115\$ In-117 ----- Daughter Products ----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 In-117 43.2m 3.532E-03 Sn-117m 9.965E-01 Sn-117\$ 1 In-117 43.2m 3.532E-03 Sn-117m 2 Sn-117m 13.76d 1.000E+00 Sn-117\$ In-117m ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 In-117m116.2m4.710E-01In-1175.290E-01Sn-117\$2 In-11743.2m3.532E-03Sn-117m9.965E-01Sn-117\$3 Sn-117m13.76d1.000E+00Sn-117\$

In-119 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 In-1192.4m9.477E-03 Sn2 Sn-119m293.1d1.000E+00 Sn-119\$ In-119m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 In-119m18.0m5.600E-02In-1199.440E-01Sn-119\$2 In-1192.4m9:477E-03Sn-119m9.905E-01Sn-119\$3 Sn-119m293.1d1.000E+00Sn-119\$ In-121 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 fill
 Nuclide
 fill
 Nuclide

 1
 In-121
 23.1s
 1.135E-01
 Sn-121m
 8.865E-01
 Sn-121

 2
 Sn-121m
 43.9y
 7.760E-01
 Sn-121
 2.240E-01
 Sb-121\$

 3
 Sn-121
 27.03h
 1.000E+00
 Sb-121\$

 In-121m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclidef1Nuclidef2Nuclide1 In-121m3.88m1.200E-02 In-1219.880E-01 Sn-1212 In-12123.1s1.135E-01 Sn-121m8.865E-01 Sn-1213 Sn-121m43.9y7.760E-01 Sn-1212.240E-01 Sb-121\$4 Sn-12127.03h1.000E+00 Sb-121\$ Sn-106 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sn-106 2 In-106m 1.92m 1.000E+00 In-106m 5.2m 1.000E+00 Cd-106\$ Sn-108 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sn-108 10.30m 1.000E+00 In-108m 2 In-108m 39.6m 1.000E+00 Cd-108\$

Sn-109 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Sn-109
 18.0m
 2.827E-01
 In-109m
 7.173E-01
 In-109

 2 In-109m
 1:34m
 1.000E+00
 In-109

 3 In-109
 4.2h
 1.000E+00
 Cd-109

 4 Cd-109
 461.4d
 1.000E+00
 Ag-109\$

 Sn-110 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sn-110 4.11h 1.000E+00 In-110m 2 In-110m 69.1m 1.000E+00 Cd-110\$ Sn-111 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclidef4Nuclide1 Sn-11135.3m2.074E-03In-111m2 In-111m7.7m1.000E+00In-111 3 In-111 2.8047d 5.000E-05 Cd-111m 1.000E+00 Cd-111\$ 4 Cd-111m 48.50m 1.000E+00 Cd-111\$ Sn-113 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sn-113 115.09d 1.000E+00 In-113m 2.235E-05 In-113\$ 2 In-113m 1.6579h 1.000E+00 In-113\$ Sn-113m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Sn-113m 21.4m 9.110E-01 Sn-113 8.900E-02 In-113\$ 2 Sn-113 115.09d 1.000E+00 In-113m 2.235E-05 In-113\$ 3 In-113m 1.6579h 1.000E+00 In-113\$ Sn-121m ----- Daughter Products ----- . Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Sn-121m43.9y7.760E-01Sn-1212.240E-01Sb-121\$

Sn-125 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 f4
 Nuclide

 1 Sn-125
 9.64d
 1.000E+00
 Sb-125
 2.314E-01
 Te-125m
 7.686E-01
 Te-125\$

 3 Te-125m
 57.40d
 1.000E+00
 Te-125\$
 Te-125\$

 Sn-125m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 i2
 Nuclide

 Nuclide
 1 Sn-125m
 9.52m
 1.000E+00
 Sb-125
 2.314E-01
 Te-125m
 7.686E-01
 Te-125\$

 3 Te-125m
 57.40d
 1.000E+00
 Te-125\$
 Te-125\$

 Sn-126 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sn-126 2.30E+5y 1.000E+00 Sb-126m 2 Sb-126m 19.15m 1.400E-01 Sb-126 8.600E-01 Te-126\$ 3 Sb-126 12.35d 1.000E+00 Te-126\$ Sn-127 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Sn-127
 2.10h
 1.000E+00
 Sb-127

 2 Sb-127
 3.85d
 1.768E-01
 Te-127m
 8.232E-01
 Te-127

 3 Te-127m
 109d
 9.760E-01
 Te-127
 2.400E-02
 I-127\$

 4 Te-127
 9.35h
 1.000E+00
 I-127\$

 Sn-127m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Sn-127m
 4.13m
 1.000E+00
 Sb-127

 2 Sb-127
 3.85d
 1.768E-01
 Te-127m
 8.232E-01
 Te-127

 3 Te-127m
 109d
 9.760E-01
 Te-127
 2.400E-02
 I-127\$

 4 Te-127
 9.35h
 1.000E+00
 I-127\$

 Sn-128 ---- Daughter Products -----

2 Sn-121 27.03h 1.000E+00 Sb-121\$

· 40

Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sn-12859.07m1.000E+00Sb-128m2 Sb-128m10.4m3.600E-02Sb-1289.640E-01Te-128\$3 Sb-1289.01h1.000E+00Te-128\$ Sn-129 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1Sn-1292.23m1.000E+00Sb-1292Sb-1294.40h2.262E-01Te-129m7.738E-01Te-1293Te-129m33.6d6.300E-01Te-1293.700E-01I-1294Te-12969.6m1.000E+00I-129I-1295I-1291.57E+7y1.000E+00Xe-129\$ Sn-130 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sn-1303.72m1.000E+00Sb-130m2 Sb-130m6.3m1.000E+00Te-130\$ Sn-130m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 f3 Nuclide

 Nuclide
 f4
 Nuclide
 i2
 Nuclide

 1 Sn-130m
 1.7m
 8.600E-01
 Sb-130
 1.399E-01
 Sb-130m

 2 Sb-130
 39.5m
 1.000E+00
 Te-130\$
 Sb-130m
 6.3m
 1.000E+00
 Te-130\$

 Sb-111 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Sb-11175s1.000E+00Sn-111

 1 Sb-111
 75s
 1.000E+00 Sn-111

 2 Sn-111
 35.3m
 2.074E-03 In-111m
 9.979E-01 In-111

 3 In-111m
 7.7m
 1.000E+00 In-111
 1.000E+00 In-111

 4 In-111 2.8047d 5.000E-05 Cd-111m 1.000E+00 Cd-111\$ 5 Cd-111m 48.50m 1.000E+00 Cd-111\$ Sb-113 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sb-113 6.67m 2.243E-01 Sn-113m 7.757E-01 Sn-113 2 Sn-113m 21.4m 9.110E-01 Sn-113 8.900E-02 In-113\$

3 Sn-113 115.09d 1.000E+00 In-113m 2.235E-05 In-113\$ 4 In-113m 1.6579h 1.000E+00 In-113\$ Sb-122m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sb-122m 4.191m 1.000E+00 Sb-122 2 Sb-122 2.7238d 9.759E-01 Te-122\$ 2.410E-02 Sn-122\$ Sb-124m ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 NuclideNuclide1 Sb-124m93s2 Sb-12460.20d1.000E+00Te-124\$ Sb-124n ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Sb-124n
 20.2m
 1.000E+00 Sb-124m

 2 Sb-124m
 93s
 7.500E-01 Sb-124
 2.500E-01 Te-124\$

 3 Sb-124
 60.20d
 1.000E+00 Te-124\$

 Sb-125 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sb-125 2.75856y 2.314E-01 Te-125m 7.686E-01 Te-125\$ 2 Te-125m 57.40d 1.000E+00 Te-125\$ Sb-126m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sb-126m 19.15m 1.400E-01 Sb-126 8.600E-01 Te-126\$ 2 Sb-126 12.35d 1.000E+00 Te-126\$ Sb-127 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sb-1273.85d1.768E-01Te-127m8.232E-01Te-1272 Te-127m109d9.760E-01Te-1272.400E-02I-127\$3 Te-1279.35h1.000E+00I-127\$

Sb-128m

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Sb-128m10.4m3.600E-02Sb-1289.640E-01Te-128\$2 Sb-1289.01h1.000E+00Te-128\$ Sb-129 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Sb-129
 4.40h
 2.262E-01
 Te-129m
 7.738E-01
 Te-129

 2 Te-129m
 33.6d
 6.300E-01
 Te-129
 3.700E-01
 I-129

 3 Te-129
 69.6m
 1.000E+00
 I-129
 I-129\$

 4 I-129
 1.57E+7y
 1.000E+00
 Xe-129\$

 Sb-131 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 Nuclide

 1
 Sb-131
 23.03m
 8.207E-02
 Te-131m
 9.179E-01
 Te-131

 2
 Te-131m
 30h
 2.220E-01
 Te-131
 7.780E-01
 I-131

 3
 Te-131
 25.0m
 1.000E+00
 I-131
 4
 I-131
 8.02070d
 1.176E-02
 Xe-131m
 9.882E-01
 Xe-131\$

 5 Xe-131m 11.84d 1.000E+00 Xe-131\$ Sb-133 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1Sb-1332.5m1.734E-01Te-133m8.266E-01Te-1332Te-133m55.4m1.750E-01Te-1338.250E-01I-1333Te-13312.5m1.000E+00I-1334I-13320.8h2.885E-02Xe-133m9.711E-015Xe-133m2.19d1.000E+00Xe-1336Xe-1335.243d1.000E+00Cs-133\$ Te-113 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 nuclide

 1 Te-113
 1.7m
 1.000E+00
 Sb-113

 2 Sb-113
 6.67m
 2.243E-01
 Sn-113m
 7.757E-01
 Sn-113

 3 Sn-113m
 21.4m
 9.110E-01
 Sn-113
 8.900E-02
 In-113\$

 4 Sn-113 115.09d 1.000E+00 In-113m 2.235E-05 In-113\$ 5 In-113m 1.6579h 1.000E+00 In-113\$

Te-114

Te-114					Daughter	
Products			 Nu al i d-	£0	Nuclide	fo
Nuclide f4	Halfilfe Nucli	II ide	NUCIIde	ΙZ	NUCIIAE	13
Nuclide f4 1 Te-114 2 Sb-114	15.2m 3.49m	1.000E+00 1.000E+00	Sb-114 Sn-114\$			
	51154	1.0001.00	511 11 14			
Te-115					Daughter	
Products Nuclide	Halflife	 f1	 Nuclide	f2	Nuclide	£3
Nuclide f4	Nucli	ide				
Nuclide f4 1 Te-115 2 Sb-115	5.8m 32.1m	1.000E+00 1.000E+00	Sb-115 Sn-115\$			
Te-115m						
					Daughter	
Products Nuclide				£2	Nuclide	f3
Nuclide f4 1 Te-115m 2 Sb-115	6./m 32.1m	1.000E+00 1.000E+00	SD-115 Sn-115\$			
Te-116						
					Daughter	
Products Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3
Nuclide f4 1 Te-116) Nucl:	ide	sh_116			
2 Sb-116	15.8m	1.000E+00	Sn-116\$			
Te-117						
					Daughter	
Nuclide	Halflife	f1		f2	Nuclide	f3
Nuclide f4 1 Te-117	Nucl:	ide	Sh-117			
2 Sb-117	2.80h	1.000E+00	Sn-117\$			
Te-118						
Products					Daughter	
Nuclide	Halflife		Nuclide	f2	Nuclide	£3
Nuclide f4 1 Te-118		ide 1.000E+00	Sh-118			
2 Sb-118	3.6m	1.000E+00	Sn-118\$			
Te-119						
Products					Daughter	

Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Te-119 2 Sb-119 38.19h 1.000E+00 Sb-119 Sn-119\$ Te-119m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Te-119m4.70d1.000E+00 1 Te-119m 4.70d 1.000E+00 Sb-119 2 Sb-119 38.19h 1.000E+00 Sn-119\$ Te-121m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Te-121m154d8.860E-01Te-1211.140E-01Sb-121\$2 Te-12119.16d1.000E+00Sb-121\$ Te-123m ----- Daughter Products _ -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Te-123m 119.25d 1.000E+00 Te-123 2 Te-123 6.00E+14y 1.000E+00 Sb-123\$ Te-127m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Te-127m 109d 9.760E-01 Te-127 2.400E-02 I-127\$ 2 Te-127 9.35h 1.000E+00 I-127\$ Te-129 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Te-12969.6m1.000E+00 2 I-129 1.57E+7y 1.000E+00 Xe-129\$ Te-129m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Te-129m 33.6d 6.300E-01 Te-129 3.700E-01 I-129 2 Te-129 69.6m 1.000E+00 I-129

Te-131 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3

 Nuclide
 f4
 Nuclide

 1 Te-131
 25.0m
 1.000E+00
 I-131

 2 I-131
 8.02070d
 1.176E-02
 Xe-131m
 9.882E-01
 Xe-131\$

 3 Xe-131m
 11.84d
 1.000E+00
 Xe-131\$

 Te-131m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Te-131m
 30h
 2.220E-01
 Te-131
 7.780E-01
 I-131

 2 Te-131
 25.0m
 1.000E+00
 I-131

 3 I-131
 8.02070d
 1.176E-02
 Xe-131m
 9.882E-01
 Xe-131\$

 4 Xe-131m 11.84d 1.000E+00 Xe-131\$ Te-132 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Te-132 3.204d 1.000E+00 I-132 2 I-132 2.295h 1.000E+00 Xe-132\$ Te-133 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Te-133
 12.5m
 1.000E+00
 I-133

 2 I-133
 20.8h
 2.885E-02
 Xe-133m
 9.711E-01
 Xe-133

 3 Xe-133m
 2.19d
 1.000E+00
 Xe-133

 4 Xe-133
 5.243d
 1.000E+00
 Cs-133\$

 Te-133m : ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Te 1 Te 2 Te-133 12.5m 1.000E+00 I-133 3 I-133 20.8h 2.885E-02 Xe-133m 9.711E-01 Xe-133 4 Xe-133m 2.19d 1.000E+00 Xe-133 5 Xe-133 5.243d 1.000E+00 Cs-133\$ Te-134 ----- Daughter

3 I-129 1.57E+7y 1.000E+00 Xe-129\$

Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Te-134 41.8m 1.000E+00 I-134 2 I-134 52.5m 1.000E+00 Xe-134\$ I - 118----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 I-118 13.7m 1.000E+00 Te-118

 1
 I-118
 13.7m
 1.000E+00
 10

 2
 Te-118
 6.00d
 1.000E+00
 Sb-118

 3
 Sb-118
 3.6m
 1.000E+00
 Sn-118\$

 I-118m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1I-118m8.5m1.000E+00Te-1182Te-1186.00d1.000E+00Sb-1183Sb-1183.6m1.000E+00Sn-118\$ I-119 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 I-119 19.1m 9.905E-01 Te-119 9.542E-03 Te-119m 1I-11919.1m9.905E-01Te-1192Te-11916.05h1.000E+00Sb-1193Te-119m4.70d1.000E+00Sb-1194Sb-11938.19h1.000E+00Sn-119\$ I-121 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 f4
 Nuclide

 1 I-121
 2.12h
 2.863E-03
 Te-121m
 9.971E-01
 Te-121

 2 Te-121m
 154d
 8.860E-01
 Te-121
 1.140E-01
 Sb-121\$

 3 Te-121
 19.16d
 1.000E+00
 Sb-121\$

 I-123 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 I-123 13.27h 4.442E-05 Te-123m 1.000E+00 Te-123 2 Te-123m 119.25d 1.000E+00 Te-123

3 Te-123 6.00E+14y 1.000E+00 Sb-123\$

I-130m

1 1501	Daughter
Products	Daughter
Nuclide Halflife f1	Nuclide f2 Nuclide f3
Nuclidef4Nuclide1 I-130m8.84m8.400E-02 I-13012.36h1.000E+0	1 I-130 1.600E-01 Xe-130\$ 0 Xe-130\$
I-131	
	Daughter
Nuclide Halflife f1	Nuclide f2 Nuclide f3
Nuclide f4 Nuclide 1 I-131 8.02070d 1.176E-0 2 Xe-131m 11.84d 1.000E+0	2 Xe-131m 9.882E-01 Xe-131\$
I-132m	
Products	Daughter
Nuclide Halflife fl	Nuclide f2 Nuclide f3
Nuclidef4Nuclide1 I-132m1.387h8.600E-02 I-1322.295h1.000E+0	1 I-132 1.400E-01 Xe-132\$ 0 Xe-132\$
I-133	Daughter
Products	Daughter
Nuclide Halflife f1 Nuclide f4 Nuclide	Nuclide f2 Nuclide f3
1 I-133 20.8h 2.885E-0	2 Xe-133m 9.711E-01 Xe-133
2 Xe-133m 2.19d 1.000E+0 3 Xe-133 5.243d 1.000E+0	0 Xe-133 0 Cs-133\$
I-134m	
Products	Daughter
Nuclide Halflife fl	Nuclide f2 Nuclide f3
Nuclide f4 Nuclide 1 I-134m 3.60m 9.770E-0	1 I-134 2.300E-02 Xe-134\$
2 I-134 52.5m 1.000E+0	0 Xe-134\$
I - 135	
 Products	Daughter
Nuclide Halflife fl	Nuclide f2 Nuclide f3
	1 Xe-135m 8.343E-01 Xe-135
2 Xe-135m 15.29m 9.940E-0 3 Xe-135 9.14h 1.000E+0	
4 Cs-135 2.3E+6y 1.000E+0	

Xe-120

----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Xe-120
 40m
 1.000E+00
 I-120

 2 I-120
 81.6m
 1.000E+00
 Te-120\$
 Xe-121 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3

 Nuclide
 f4
 Nuclide

 1 Xe-121
 40.1m
 1.000E+00
 I-121

 2 I-121
 2.12h
 2.863E-03
 Te-121m
 9.971E-01
 Te-121

 3 Te-121m
 154d
 8.860E-01
 Te-121
 1.140E-01
 Sb-121\$

 4 Te-121
 19.16d
 1.000E+00
 Sb-121\$

 Xe-122 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Xe-122
 20.1h
 1.000E+00
 I-122

 2 I-122
 3.63m
 1.000E+00
 Te-122\$
 Xe-123 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Xe-123
 2.08h
 1.000E+00
 I-123

 2 I-123
 13.27h
 4.442E-05
 Te-123m
 1.000E+00
 Te-123

 3 Te-123m
 119.25d
 1.000E+00
 Te-123

 4 Te-123 6.00E+14y 1.000E+00 Sb-123\$ Xe-125 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Xe-125 16.9h 1.000E+00 I-125 2 I-125 59.400d 1.000E+00 Te-125\$ Xe-127m ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Xe-127m 69.2s 1.000E+00 Xe-127 2 Xe-127 36.4d 1.000E+00 I-127\$

Xe-133m

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Xe-133m2.19d1.000E+00Xe-1332 Xe-1335.243d1.000E+00Cs-133\$ Xe-135 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Xe-135 9.14h 1.000E+00 Cs-135 2 Cs-135 2.3E+6y 1.000E+00 Ba-135\$ Xe-135m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Xe-135m 15.29m 9.940E-01 Xe-135 2 Xe-135 9.14h 1.000E+00 Cs-135 3 Cs-135 2.3E+6y 1.000E+00 Ba-135\$ 15.29m 9.940E-01 Xe-135 6.000E-03 Cs-135 Xe-137 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Xe-137 3.818m 1.000E+00 Cs-137 2 Cs-137 30.1671y 9.440E-01 Ba-137m 5.600E-02 Ba-137\$ 3 Ba-137m 2.552m 1.000E+00 Ba-137\$ Xe-138 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Xe-13814.08m1.000E+00Cs-1382 Cs-13833.41m1.000E+00Ba-138\$ Cs-121 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 fill
 fill

Cs-121m

					Daughter	
Products Nuclide Ha			Nuclido	fo	Nuclido	£3
Nuclide f4	Nucli	ide				гJ
1 Cs-121m	122s	1.700E-01	Cs-121	8.300E-01	Xe-121	
2 Cs-121	155s	1.000E+00	Xe-121			
3 Xe-121 4 I-121				0 0715 01	To-121	
4 1-121 5 Te-121m	2.12n 154d	2.863E-03	Te-121m Te-121	1.140E-01	Sb - 121S	
6 T <u>e</u> -121	19.16d	1.000E+00	Sb-		52 111	
Cs-123				· ·	Daughter	
Products					Daugiter	
Nuclide Ha	lflife	f1		f2	Nuclide	f3
	Nucl:					
1 Cs-123	5.88m	1.000E+00	Xe-123			
2 Xe-123 3 I-123 4 Te-123m 1	2.08n 13 27h	1.000E+00	1 = 123 To -123 m	1 0005+00	To-123	
3 I = I Z 3 4 T = -123 m = 1	19 25d	4.442E-05	Te-123m	1.0006+00	16-123	
5 Te-123 6.0	0E+14v	1.000E+00	Sb-1235			
5 10 125 0.0	оцітту	1.0001.00	00 1204			
Cs-125					_	
Dueduete					Daughter	
Products Nuclide Ha				f2	Nuclide	f3
Nuclide f4	Nucli	ide				-0
Nuclide f4 1 Cs-125 2 Xe-125	45m	1.000E+00	Xe-125			
2 Xe-125	16.9h	1.000E+00	I-125			
3 I-125 5	9.400d	1.000E+00	Te-125\$			
Cs-127					·	
					Daughter	
Products	·					_
Nuclide Ha			Nuclide	f2	Nuclide	f3
Nuclide f4 1 Cs-127	NUCL:		Vo. 127			
2 Xe-127	6.25H 36 4d	1.000E+00	T = 127			
2 76-12/	J0.40	1.0001.00	I IZIQ			
Cs-130m						
					Daughter	
Products Nuclide Ha		 £1	Nuclido	f)	Nuclide	f3
Nuclide f4			NUCTICE	12	Nucriae	10
1 Cs-130m	3.46m	9.984E-01	Cs-130	1.600E-03	Xe-130\$	
2 Cs-130	29.21m	9.840E-01	Xe-130\$	1.600E-0	2 Ba-130\$	
C = 124m						
Cs-134m					Daughter	· ·
Products						
Nuclide Ha	lflife	fl	Nuclide	f2	Nuclide	f3

Nuclide f4 Nuclide 1 Cs-134m 2.903h 1.000E+00 Cs-134 2 Cs-134 2.0648y 1.000E+00 Ba-134\$ 3.000E-06 Xe-134\$ Cs-135m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Cs-135m53m1.000E+00Cs-1352 Cs-1352.3E+6y1.000E+00Ba-135\$ Cs-137 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Cs-137 30.1671y 9.440E-01 Ba-137m 5.600E-02 Ba-137\$ 2 Ba-137m 2.552m 1.000E+00 Ba-137\$ Cs-138m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Cs-138m 2.91m 8.100E-01 Cs-138 1.900E-01 Ba-138\$ 1 Cs-138m 2.91m 8.100E-01 Cs-138 2 Cs-138 33.41m 1.000E+00 Ba-138\$ Cs-139 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Cs-139 9.27m 1.000E+00 Ba-139 1 Cs-139 9.27m 1.000E+00 Ba-139 2 Ba-139 83.06m 1.000E+00 La-139\$ Cs-140 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Cs-140
 63.7s
 1.000E+00 Ba-140

 2 Ba-140
 12.752d
 1.000E+00 La-140

 3 La-140
 1.6781d
 1.000E+00 Ce-140\$
 Ba-124 ----- Daughter Products ----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ba-124 11.0m 1.000E+00 Cs-124 2 Cs-124 30.8s 1.000E+00 Xe-124\$

Ba-126					Daughter	
Products Nuclide Nuclide f4 1 Ba-126 2 Cs-126	Nucli 100m	Lde 1.000E+00	Cs-126		Nuclide	£3
Ba-127					Daughter	
Products Nuclide Nuclide f4 1 Ba-127 2 Cs-127 3 Xe-127	Halflife Nucli 12.7m 6.25h	f1 ide 1.000E+00 1.000E+00	Nuclide Cs-127 Xe-127		Nuclide	f3
Ba-128					Daughter	
Products Nuclide Nuclide f4 1 Ba-128 2 Cs-128	Halflife Nucl 2.43d	f1 ide 1.000E+00	Nuclide Cs-128		Nuclide	f3
Ba-129					Daughter	
Products Nuclide Nuclide f4 1 Ba-129 2 Cs-129	Halflife Nucl: 2.23h	f1 ide 1.000E+00	Nuclide Cs-129		Daughter Nuclide	£3
Ba-129m	-				Daughter	
Products Nuclide Nuclide f4 1 Ba-129m 2 Cs-129	Halflife Nucl: 2.16h	f1 ide 1.000E+00	Nuclide Cs-129		Nuclide	
Ba-131					Daughtor	
Products Nuclide Nuclide f4 1 Ba-131 2 Cs-131	Nucl: 11.50d			f2	Daughter Nuclide	f3
Ba-131m					Daughter	

Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ba-131m 14.6m 1.000E+00 Ba-131 2 Ba-131 11.50d 1.000E+00 Cs-131 3 Cs-131 9.689d 1.000E+00 Xe-131\$ Ba-133m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ba-133m 38.9h 9.999E-01 Ba-133 9.600E-05 Cs-133\$ 2 Ba-133 10.52y 1.000E+00 Cs-133\$ Ba-140 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ba-140 12.752d 1.000E+00 La-140 2 La-140 1.6781d 1.000E+00 Ce-140\$ Ba-141 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ba-14118.27m1.000E+00La-1412 La-1413.92h1.000E+00Ce-1413 Ce-14132.508d1.000E+00Pr-141\$ Ba-142 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Ba-142
 10.6m
 1.000E+00
 La-142

 2 La-142
 91.1m
 1.000E+00
 Ce-142\$
 La-128 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1
 La-128
 5.18m
 1.000E+00
 Ba-128

 2
 Ba-128
 2.43d
 1.000E+00
 Cs-128

 3
 Cs-128
 3.640m
 1.000E+00
 Xe-128\$
 La-129 ----- Daughter Products -----

Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 La-129
 11.6m
 9.238E-01
 Ba-129
 7.616E-02
 Ba-129m

 2 Ba-129
 2.23h
 1.000E+00
 Cs-129

 3 Ba-129m
 2.16h
 1.000E+00
 Cs-129

 4 Cs-129
 32.06h
 1.000E+00
 Xe-129\$

 La-131 ----- Daughter Products -----Nuclide Halflife fi Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 La-131 59m 1.000E+00 Ba-131 1 La-131 59m 1.000E+00 Ba-131 2 Ba-131 11.50d 1.000E+00 Cs-131 3 Cs-131 9.689d 1.000E+00 Xe-131\$ La-132m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 La-132m 24.3m 7.600E-01 La-132 2.400E-01 Ba-132\$ 2 La-132 4.8h .1.000E+00 Ba-132\$ La-133 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 La-133 3.912h 1.000E+00 Ba-133 2 Ba-133 10.52y 1.000E+00 Cs-133\$ La-141 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 La-141 3.92h 1.000E+00 Ce-141 2 Ce-141 32.508d 1.000E+00 Pr-141\$ La-143 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1
 La-143
 14.2m
 1.000E+00
 Ce-143

 2
 Ce-143
 33.039h
 1.000E+00
 Pr-143

 3
 Pr-143
 13.57d
 1.000E+00
 Nd
 Ce-130 ----- Daughter Products -----

Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ce-130 22.9m 1.000E+00 La-130 2 La-130 8.7m 1.000E+00 Ba-130\$ Ce-131 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ce-13110.2m1.000E+00La-1312 La-13159m1.000E+00Ba-1313 Ba-13111.50d1.000E+00Cs-1314 Cs-1319.689d1.000E+00Xe-131\$ Ce-132 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ce-132 3.51h 1.000E+00 La-132 2 La-132 4.8h 1.000E+00 Ba-132\$ Ċe-133 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ce-133 97m 1.000E+00 La-133 1 Ce-13397m1.000E+00La-1332 La-1333.912h1.000E+00Ba-1333 Ba-13310.52y1.000E+00Cs-133\$ Ce-133m Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Ce-133m
 4.9h
 1.000E+00 La-133

 2 La-133
 3.912h
 1.000E+00 Ba-133

 3 Ba-133
 10.52y
 1.000E+00 Cs-133\$

 Ce-134 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Ce-134
 3.16d
 1.000E+00
 La-134

 2 La-134
 6.45m
 1.000E+00
 Ba-134\$
 Ce-135 ----- Daughter Products -----

Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Ce-135
 17.7h
 1.000E+00
 La-135

 2 La-135
 19.5h
 1.000E+00
 Ba-135\$
 Ce-137 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ce-1379.0h1.000E+00La-1372 La-1376.0E+4y1.000E+00Ba-137\$ Ce-137m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Ce-137m 34.4h 9.922E-01 Ce-137 7.800E-03 La-137 2 Ce-137 9.0h 1.000E+00 La-137 3 La-137 6.0E+4y 1.000E+00 Ba-137\$ Ce-143 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ce-143 33.039h 1.000E+00 Pr-143 2 Pr-143 13.57d 1.000E+00 Nd-143\$ Ce-144 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ce-144 284.91d 9.770E-03 Pr-144m 9.902E-01 Pr-144 2 Pr-144m 7.2m 9.993E-01 Pr-144 7.000E-04 Nd-144 3 Pr-144 17.28m 1.000E+00 Nd-144 4 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Ce-145 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ce-1453.01m1.000E+00 Pr-1452 Pr-1455.984h1.000E+00 Nd-145\$ Pr-134 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

Nuclidef4Nuclide1 Pr-13411m1.000E+00Ce-1342 Ce-1343.16d1.000E+00La-1343 La-1346.45m1.000E+00Ba-134\$ Pr-134m ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Pr-134m17m1.000E+00Ce-1342 Ce-1343.16d1.000E+00La-1343 La-1346.45m1.000E+00Ba-134\$ Pr-135 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Pr-135
 24m
 1.000E+00
 Ce-135

 2 Ce-135
 17.7h
 1.000E+00
 La-135

 3 La-135
 19.5h
 1.000E+00
 Ba-135\$
 Pr-137 . ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclidef4Nuclide1 Pr-1371.28h1.000E+00Ce-1372 Ce-1379.0h1.000E+00La-1373 La-1376.0E+4y1.000E+00Ba-137\$ Pr-139 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pr-139 4.41h 1.000E+00 Ce-139 2 Ce-139 137.641d 1.000E+00 La-139\$ Pr-142m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pr-142m 14.6m 1.000E+00 Pr-142 2 Pr-142 19.12h 9.998E-01 Nd-142\$ 1.640E-04 Ce-142\$ Pr-144 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pr~144 17.28m 1.000E+00 Nd-144 2 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Pr-144m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pr-144m 7.2m 9.993E-01 Pr-144 7.000E-04 Nd-144 1 Pr-144m 7.2m 9.993E-01 Pr-144 2 Pr-144 17.28m 1.000E+00 Nd-144 3 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Pr-147 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1
 Pr-147
 13.4m
 1.000E+00
 Nd-147

 2
 Nd-147
 10.98d
 1.000E+00
 Pm-147

 3
 Pm-147
 2.6234y
 1.000E+00
 Sm-147

 4
 Sm-147
 1.060E11y
 1.000E+00
 Nd-143\$

 Nd-134 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4. Nuclide

 1 Nd-134
 8.5m
 1.000E+00
 Pr-134m

 2 Pr-134m
 17m
 1.000E+00
 Ce-134

 3 Ce-134
 3.16d
 1.000E+00
 La-134

 4 La-134
 6.45m
 1.000E+00
 Ba-134\$

 Nd-135 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Nd-13512.4m1.000E+00Pr-1352 Pr-13524m1.000E+00Ce-1353 Ce-13517.7h1.000E+00La-1354 La-13519.5h1.000E+00Ba-135\$ Nd-136 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Nd-13650.65m1.000E+00Pr-1362 Pr-13613.1m1.000E+00Ce-136\$

Nd-137

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1
 Nd-137
 38.5m
 1.000E+00
 Pr-137

 2
 Pr-137
 1.28h
 1.000E+00
 Ce-137

 3
 Ce-137
 9.0h
 1.000E+00
 La-137

 4
 La-137
 6.0E+4y
 1.000E+00
 Ba-137\$

 Nd-138 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Nd-1385.04h1.000E+00Pr-1382 Pr-1381.45m1.000E+00Ce-138\$ Nd-139 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Nd-13929.7m1.000E+00Pr-1392 Pr-1394.41h1.000E+00Ce-139 3 Ce-139 137.641d 1.000E+00 La-139\$ Nd-139m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Nd-139m5.50h1.180E-01 Nd-1398.820E-01 Pr-1392 Nd-13929.7m1.000E+00 Pr-1393 Pr-1394.41h1.000E+00 Ce-1394 Ce-139137.641d1.000E+00 La-139\$ Nd-140 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Nd-1403.37d1.000E+00Pr-1402 Pr-1403.39m1.000E+00Ce-140\$ Nd-141m ' ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3

 Nuclide
 fill
 Nuclide

 1 Nd-141m
 62.0s
 9.997E-01 Nd-141
 3.200E-04 Pr-141\$

 2 Nd-141
 2.49h
 1.000E+00 Pr-141\$

Nd-147

.

NG 147					Daughter	
Products						
	Halflife Nucli		Nuclide	f2	Nuclide	f3
1 Nd-147			Pm-147			
2 Pm-147	2.6234y	1.000E+00	Sm-147			
2 Pm-147 3 Sm-147 1	L.060E11y	1.000E+00	Nd-143\$			
Nd-149				×	Daughtag	
Products					Daughter	
Nuclide	Halflife	f1 `	Nuclide		Nuclide	f3
Nuclide f4 1 Nd-149	Nucli	ide	D. 140			
1 Na-149 2 Pm-149	1.728n 53.08h	1.000E+00	Pm-149 Sm-1495			
2 IM 119	55.0011	1.0001100	0111 - 197			
Nd-151					Deverteen	
Products					Daughter	
Nuclide	Halflife	f1		f2	Nuclide	f3
Nuclide f4	Nucli	ide	- 1-1			
1 Nd-151	12.44m	1.000E+00	Pm-151 Sm-151			
2 Pm-151 3 Sm-151	20.4011 90v	1.000E+00 1.000E+00	$E_{11} - 151S$			
5 DA 101	201	1.0002.00	24 2027			
Nd-152					Daughter	
Products					Daugitter	
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3 '
Nuclide f4	Nucli 11 4m	ide	Dm = 152			
Nuclide f4 1 Nd-152 2 Pm-152	4.12m	1.000E+00	Sm-152\$			
Pm-136					Daughter	
Products					Daugitter	
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3
Nuclide f4 1 Pm-136	Nucl:	ide	N.J. 126			
2 Nd-136	50 65m	1.000E+00	NG-136			
3 Pr-136		1.000E+00				
		·				•
Pm-137m			_		Daughter	
Products					Duugneer	
Nuclide	Halflife		Nuclide	f2	Nuclide	f3
Nuclide f4			Nd_107			
1 Pm-137m 2 Nd-137	2.4m 38.5m	1.000E+00 1.000E+00				
3 Pr-137		1.000E+00				
4 Ce-137	9.0h					

Pm-139 ----- Daughter Products ----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Pm-139
 4.15m
 1.000E+00 Nd-139

 2 Nd-139
 29.7m
 1.000E+00 Pr-139

 3 Pr-139
 4.41h
 1.000E+00 Ce-139

 4 Ce-139
 137.641d
 1.000E+00 La-139\$

 Pm-140 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1
 Pm-140
 9.2s
 1.000E+00
 Nd-140

 2
 Nd-140
 3.37d
 1.000E+00
 Pr-140

 3
 Pr-140
 3.39m
 1.000E+00
 Ce-140\$
 Pm-140m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pm-140m5.95m1.000E+00 Nd-1402 Nd-1403.37d1.000E+00 Pr-1403 Pr-1403.39m1.000E+00 Ce-140\$ Pm-141 ----- Daughter Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pm-14120.90m1.665E-03Nd-141m9.983E-01Nd-1412 Nd-141m62.0s9.997E-01Nd-1413.200E-04Pr-141\$3 Nd-1412.49h1.000E+00Pr-141\$ Pm-144 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pm-144 363d 1.000E+00 Nd-144 2 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Pm-146 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

5 La-137 6.0E+4y 1.000E+00 Ba-137\$

1 Pm-146 5.53y 3.400E-01 Sm-146 6.600E-01 Nd-146\$ 2 Sm-146 1.03E+8y 1.000E+00 Nd-142\$ Pm-147 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pm-147 2.6234y 1.000E+00 Sm-147 2 Sm-147 1.060E11y 1.000E+00 Nd-143\$ Pm-148 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Pm-148
 5.368d
 1.000E+00 Sm-148

 2 Sm-148
 7E+15y
 1.000E+00 Nd-144
 3 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Pm-148m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3

 Nuclide
 f4
 Nuclide

 1 Pm-148m
 41.29d
 4.200E-02 Pm-148
 9.580E-01 Sm-148

 2 Pm-148
 5.368d
 1.000E+00 Sm-148

 3 Sm-148
 7E+15y
 1.000E+00 Nd-144

 4 Nd-144
 2.29E+15y
 1.000E+00 Ce-140\$

 Pm-151 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pm-151 28.40h 1.000E+00 Sm-151 2 Sm-151 90y 1.000E+00 Eu-151\$ Pm-153 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pm-153 5.25m 1.000E+00 Sm-153 1 Pm-153 5.25m 1.000E+00 Sm-153 2 Sm-153 46.50h 1.000E+00 Eu-153\$ Sm-139 ---- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sm-139 2.57m 1.000E+00 Pm-139

2 Pm-1394.15m1.000E+00 Nd-1393 Nd-13929.7m1.000E+00 Pr-1394 Pr-1394.41h1.000E+00 Ce-139 5 Ce-139 137.641d 1.000E+00 La-139\$ Sm-140 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Sm-140
 14.82m
 1.000E+00 Pm-140

 2 Pm-140
 9.2s
 1.000E+00 Nd-140

 3 Nd-140
 3.37d
 1.000E+00 Pr-140

 4 Pr-140
 3.39m
 1.000E+00 Ce-140\$

 Sm-141 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide £3

 Nuclide
 f4
 Nuclide

 1 Sm-141
 10.2m
 1.000E+00 Pm-141

 2 Pm-141
 20.90m
 1.665E-03 Nd-141m
 9.983E-01 Nd-141

 3 Nd-141m
 62.0s
 9.997E-01 Nd-141
 3.200E-04 Pr-141\$

 4 Nd-141
 2.49h
 1.000E+00 Pr-141\$

 Sm-141m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 fill
 Nuclide
 fill
 Nuclide
 fill
 Nuclide

 Nuclide
 1
 Sm-141m
 22.6m
 3.100E-03
 Sm-141
 9.969E-01
 Pm-141

 2
 Sm-141
 10.2m
 1.000E+00
 Pm-141

 3
 Pm-141
 20.90m
 1.665E-03
 Nd-141m
 9.983E-01
 Nd-141

 4
 Nd-141m
 62.0s
 9.997E-01
 Nd-141
 3.200E-04
 Pr-141\$

 5
 Nd-141
 2.49h
 1.000E+00
 Pr-141\$

 Sm-142 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sm-142 72.49m 1.000E+00 Pm-142 2 Pm-142 40.5s 1.000E+00 Nd-142\$ Sm-143 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sm-143 2 Pm-143 265d 1.000E+00 Nd-143\$

Sm-143m

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 Nuclide

 1 Sm-143m
 66s
 9.976E-01
 Sm-143
 2.400E-03
 Pm-143

 2 Sm-143
 8.75m
 1.000E+00
 Pm-143
 3
 Pm-143
 265d
 1.000E+00
 Nd-143\$

 Sm-145 ----- Daughter Products ------Nuclide Halflife fl Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Sm-145
 340d
 1.000E+00
 Pm-145

 2 Pm-145
 17.7y
 1.000E+00
 Nd-145\$
 2.800E-09
 Pr-141\$
 Sm-148 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sm-148 7E+15y 1.000E+00 Nd-144 2 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Sm-155 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Sm-155
 22.3m
 1.000E+00
 Eu-155

 2 Eu-155
 4.7611y
 1.000E+00
 Gd-155\$
 Sm-156 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Sm-156 9.4h 1.000E+00 Eu-156 2 Eu-156 15.19d 1.000E+00 Gd-156\$ Sm-157 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Sm-1578.03m1.000E+00Eu-1572 Eu-15715.18h1.000E+00Gd-157\$ Eu-142 ----- Daughter Products -----

Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Eu-142
 2.34s
 1.000E+00 Sm-142

 1 Eu-142
 2.34s
 1.000E+00 Sm-142

 2 Sm-142
 72.49m
 1.000E+00 Pm-142

 3 Pm-142
 40.5s
 1.000E+00 Nd-142\$

 Eu-142m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Eu-142m 1.223m 1.000E+00 Sm-142 2 Sm-142 72.49m 1.000E+00 Pm-142 3 Pm-142 40.5s 1.000E+00 Nd-142\$ Eu-143 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Eu-1432.59m1.207E-03Sm-143m9.988E-01Sm-1432 Sm-143m66s9.976E-01Sm-1432.400E-03Pm-1433 Sm-1438.75m1.000E+00Pm-143Pm-1434 Pm-143265d1.000E+00Nd-143\$ Eu-145 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide
 nuclide

 1
 Eu-145
 5.93d
 1.000E+00
 Sm-145

 2
 Sm-145
 340d
 1.000E+00
 Pm-145

 3
 Pm-145
 17.7y
 1.000E+00
 Nd-145\$
 2.800E-09
 Pr-141\$

 Eu-146 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Eu-146 4.61d 1.000E+00 Sm-146 2 Sm-146 1.03E+8y 1.000E+00 Nd-142\$ Eu~147 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Eu-147 24.1d 1.000E+00 Sm-147 2.200E-05 Pm-143 2 Sm-147 1.060E11y 1.000E+00 Nd-143\$ 3 Pm-143 265d 1.000E+00 Nd-143\$

Eu~148

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Eu-148 54.5d 1.000E+00 Sm-148 9.400E-09 Pm-144 2 Sm-148 7E+15y 1.000E+00 Nd-144 3 Pm-144 363d 1.000E+00 Nd-144 4 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Eu-150m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Eu-150m 12.8h 8.900E-01 Gd-150 1.100E-01 Sm-150\$ 1 Eu-150m 12.8h 8.900E-01 Gd-150 2 Gd-150 1.79E+6y 1.000E+00 Sm-146 3 Sm-146 1.03E+8y 1.000E+00 Nd-142\$ Eu-152 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Eu-152 13.537y 2.790E-01 Gd-152 7.210E-01 Sm-152\$ 2 Gd-152 1.08E+14y 1.000E+00 Sm-148 3 Sm-148 7E+15y 1.000E+00 Nd-144 4 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Eu-152m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Eu-152m 9.3116h 7.200E-01 Gd-152 2.800E-01 Sm-152\$ 2 Gd-152 1.08E+14y 1.000E+00 Sm-148 3 Sm-148 7E+15y 1.000E+00 Nd-144 4 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Eu-152n ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Eu-152n96m1.000E+00Eu-152 1 Eu-152n 96m 1.000E+00 Eu-152 2 Eu-152 13.537y 2.790E-01 Gd-152 7.210E-01 Sm-152\$ 3 Gd-152 1.08E+14y 1.000E+00 Sm-148 4 Sm-148 7E+15y 1.000E+00 Nd-144 5 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Eu-154m ----- Daughter Products -----

Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Eu-154m 46.0m 1.000E+00 Eu-154 2 Eu-154 8.593y 9.998E-01 Gd-154\$ 2.000E-04 Sm-154\$ Eu-159 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Eu-15918.1m1.000E+002 Gd-15918.479h1.000E+00 Gd-142 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Gd-142
 70.2s
 1.000E+00 Eu-142

 2 Eu-142
 2.34s
 1.000E+00 Sm-142

 3 Sm-142
 72.49m
 1.000E+00 Pm-142

 4 Pm-142
 40.5s
 1.000E+00 Nd-142\$

 Gd-143m _____ Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Gd-143m110.0s1.000E+00Eu-1432 Eu-1432.59m1.207E-03Sm-143m9.988E-01Sm-1433 Sm-143m66s9.976E-01Sm-1432.400E-03Pm-1434 Sm-1438.75m1.000E+00Pm-143265d1.000E+00Nd-143\$ Gd-144 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Gd-144 4.47m 1.000E+00 Eu-144 2 Eu-144 10.2s 1.000E+00 Sm-144\$ Gd-145 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Gd-145
 23.0m
 1.000E+00
 Eu-145

 2 Eu-145
 5.93d
 1.000E+00
 Sm-145

 3 Sm-145
 340d
 1.000E+00
 Pm-145

 4 Pm-145
 17.7y
 1.000E+00
 Nd-145\$
 2.800E-09
 Pr-141\$

Gd-145m

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Gd-145m
 85s
 9.430E-01 Gd-145
 5.700E-02 Eu-145

 2 Gd-145
 23.0m
 1.000E+00 Eu-145

 3 Eu-145
 5.93d
 1.000E+00 Sm-145

 4 Sm-145
 340d
 1.000E+00 Pm-145

 5 Pm-145
 17.7y
 1.000E+00 Nd-145\$
 2.800E-09 Pr-141\$

 Gd-146 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Gd-146
 48.27d
 1.000E+00
 Eu-146

 2 Eu-146
 4.61d
 1.000E+00
 Sm-146

 3 Sm-146
 1.03E+8y
 1.000E+00
 Nd-142\$

 Gd-147 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Gd-14738.1h1.000E+00 Eu-1472 Eu-14724.1d1.000E+00 Sm-1472.200E-05 Pm-143 3 Sm-147 1.060E11y 1.000E+00 Nd-143\$ 4 Pm-143 265d 1.000E+00 Nd-143\$ Gd-149 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Gd-149 2 Eu-149 93.1d 1.000E+00 Eu-149 93.1d 1.000E+00 Sm-149\$ Gd-150 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Gd-150 1.79E+6y 1.000E+00 Sm-146 2 Sm-146 1.03E+8y 1.000E+00 Nd-142\$ Gd-151 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Gd-151 124d 1.000E-08 Sm-147 1.000E+00 Eu-151\$

Gd-152 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Gd-152 1.08E+14y 1.000E+00 Sm-148 2 Sm-148 7E+15y 1.000E+00 Nd-144 3 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Gd-162 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Gd-162
 8.4m
 1.000E+00
 Tb-162

 2 Tb-162
 7.60m
 1.000E+00
 Dy-162\$

 Tb-146 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1
 Tb-146
 23s
 1.000E+00
 Gd-146

 2
 Gd-146
 48.27d
 1.000E+00
 Eu-146

 3
 Eu-146
 4.61d
 1.000E+00
 Sm-146
 . 4 Sm-146 1.03E+8y 1.000E+00 Nd-142\$ Tb-147 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 uclide f4 Nuclide

 Nuclide
 f4
 Nuclide

 1 Tb-147
 1.64h
 1.000E+00 Gd-147

 2 Gd-147
 38.1h
 1.000E+00 Eu-147

 3 Eu-147
 24.1d
 1.000E+00 Sm-147
 2.200E-05 Pm-143

 4 Sm-147 1.060E11y 1.000E+00 Nd-143\$ 5 Pm-143 265d 1.000E+00 Nd-143\$ Tb-147m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1
 Tb-147m
 1.87m
 1.000E+00
 Gd-147

 2
 Gd-147
 38.1h
 1.000E+00
 Eu-147

 3
 Eu-147
 24.1d
 1.000E+00
 Sm-147
 2.200E-05
 Pm-143

 4 Sm-147 1.060E11y 1.000E+00 Nd-143\$ 5 Pm-143 265d 1.000E+00 Nd-143\$

2 Sm-147 1.060E11y 1.000E+00 Nd-143\$

Tb-148

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Tb-14860m1.000E+00 Gd-1482 Gd-14874.6y1.000E+00 Sm-144\$ Tb-148m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Tb-148m
 2.20m
 1.000E+00 Gd-148

 2 Gd-148
 74.6y
 1.000E+00 Sm-144\$
 Tb-149 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide

 1 Tb-149
 4.118h
 8.330E-01 Gd-149
 1.670E-01 Eu-145

 2 Gd-149
 9.28d
 1.000E+00 Eu-149

 3 Eu-145
 5.93d
 1.000E+00 Sm-145

 4 Eu-149
 93.1d
 1.000E+00 Sm-149\$

 5 Sm-145
 340d
 1.000E+00 Pm-145

 6 Pm-145
 17.7y
 1.000E+00 Nd-145\$
 2.800E-09 Pr-141\$

 Tb-149m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 NuclideHallineIfNuclideIzNuclideNuclide1Tb-149m4.16m9.998E-01Gd-1492.200E-04Eu-1452Gd-1499.28d1.000E+00Eu-1493Eu-1455.93d1.000E+00Sm-1453Eu-1455.93d1.000E+00Sm-145Sm-145340d1.000E+00Pm-1455Sm-145340d1.000E+00Pm-1452.800E-09Pr-141\$6Pm-14517.7y1.000E+00Nd-145\$2.800E-09Pr-141\$ Tb-150 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Tb-150
 3.48h
 1.000E+00 Gd-150
 7.000E-06 Eu-146

 2 Gd-150
 1.79E+6y
 1.000E+00 Sm-146

 3 Eu-146
 4.61d
 1.000E+00 Sm-146

 4 Sm-146
 1.03E+8y
 1.000E+00 Nd-142\$

 Tb-150m ----- Daughter Products -----

Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Tb-150m5.8m1.000E+00 Gd-150 2 Gd-150 1.79E+6y 1.000E+00 Sm-146 3 Sm-146 1.03E+8y 1.000E+00 Nd-142\$ Tb-151 Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Tb-151 17.609h 1.000E+00 Gd-151 9.500E-05 Eu-147 2 Gd-151 124d 1.000E-08 Sm-147 1.000E+00 Eu-151\$ 3 Eu-147 24.1d 1.000E+00 Sm-147 2.200E-05 Pm-143 4 Sm-147 1.060E11y 1.000E+00 Nd-143\$ 5 Pm-143 265d 1.000E+00 Nd-143\$ Tb-151m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1
 Tb-151m
 25s
 9.340E-01
 Tb-151
 6.600E-02
 Gd-151

 2
 Tb-151
 17.609h
 1.000E+00
 Gd-151
 9.500E-05
 Eu-147

 3
 Gd-151
 124d
 1.000E-08
 Sm-147
 1.000E+00
 Eu-151\$

 4
 Eu-147
 24.1d
 1.000E+00
 Sm-147
 2.200E-05
 Pm-143

 5 Sm-147 1.060E11y 1.000E+00 Nd-143\$ 6 Pm-143 265d 1.000E+00 Nd-143\$ Tb-152 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Tb-152 17.5h 1.000E+00 Gd-152 2 Gd-152 1.08E+14y 1.000E+00 Sm-148 3 Sm-148 7E+15y 1.000E+00 Nd-144 4 Nd-144 2.29E+15y 1.000E+00 Ce-140\$ Tb-152m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Tb-152m
 4.2m
 7.880E-01 Tb-152
 2.120E-01 Gd-152

 2 Tb-152
 17.5h
 1.000E+00 Gd-152

 3 Gd-152
 1.08E+14y
 1.000E+00 Sm-148

 4 Sm-148
 7E+15y
 1.000E+00 Nd-144

 5 Nd-144
 2.29E+15y
 1.000E+00 Ce-140\$

 Tb-153 ----- Daughter

Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Tb-153 2.34d 1.000E+00 Gd-153 2 Gd-153 240.4d 1.000E+00 Eu-153\$ Tb-156m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Tb-156m24.4h1.000E+00 Tb-1562 Tb-1565.35d1.000E+00 Gd-156\$ Tb-156n ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Tb-156n5.3h1.000E+00Tb-1562 Tb-1565.35d1.000E+00Gd-156\$ Tb-165 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Tb-165
 2.11m
 8.903E-01
 Dy-165m
 1.097E-01
 Dy-165
 1 Tb-1652.11m8.903E-01Dy-165m1.097E-01Dy-1652 Dy-165m1.257m9.776E-01Dy-1652.240E-02Ho-165\$3 Dy-1652.334h1.000E+00Ho-165\$ Dy-148 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1
 Dy-148
 3.3m
 1.000E+00
 Tb-148

 2
 Tb-148
 60m
 1.000E+00
 Gd-148

 3
 Gd-148
 74.6y
 1.000E+00
 Sm-144\$

 Dy-149 Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 NuclideHalflifef1Nuclidef2NuclideNuclide1Dy-1494.20m5.668E-01Tb-1494.332E-01Tb-149m2Tb-1494.118h8.330E-01Gd-1491.670E-01Eu-1453Tb-149m4.16m9.998E-01Gd-1492.200E-04Eu-1454Gd-1499.28d1.000E+00Eu-1495.93d1.000E+00Sm-1455Eu-1455.93d1.000E+00Sm-1455.93d1.000E+00Sm-149\$7Sm-145340d1.000E+00Pm-1455.93d1.000E+00Sm-149\$

8 Pm-145 17.7y 1.000E+00 Nd-145\$ 2.800E-09 Pr-141\$ Dy-150 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Dy~150
 7.17m
 6.400E-01
 Tb-150
 3.600E-01
 Gd-146

 2 Tb~150
 3.48h
 1.000E+00
 Gd-150
 7.000E-06
 Eu-146

 3 Gd~146
 48.27d
 1.000E+00
 Eu-146

 4 Gd-150 1.79E+6y 1.000E+00 Sm-146 5 Eu-146 4.61d 1.000E+00 Sm-146 6 Sm-146 1.03E+8y 1.000E+00 Nd-142\$ Dy-151 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Dy-151 17.9m 4.102E-01 Tb-151m 5.338E-01 Tb-151 5.600E-02 Gd-147

 2 Tb-151m
 25s
 9.340E-01
 Tb-151
 6.600E-02
 Gd-151

 3 Tb-151
 17.609h
 1.000E+00
 Gd-151
 9.500E-05
 Eu-147

 4 Gd-147
 38.1h
 1.000E+00
 Eu-147

 5 Gd-151
 124d
 1.000E-08
 Sm-147
 1.000E+00
 Eu-151\$

 6 Eu-147
 24.1d
 1.000E+00
 Sm-147
 2.200E-05
 Pm-143

 7 Sm-147 1.060E11y 1.000E+00 Nd-143\$ 8 Pm-143 265d 1.000E+00 Nd-143\$ Dy-152 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Dy-152
 2.38h
 9.990E-01
 Tb-152
 1.000E-03
 Gd-148

 2 Tb-152
 17.5h
 1.000E+00
 Gd-152

 3 Gd-148
 74.6y
 1.000E+00
 Sm-144\$

 4 Gd-152
 1.08E+14y
 1.000E+00
 Sm-148

 5 Sm-148
 7E+15y
 1.000E+00
 Nd-144

 6 Nd-144
 2.29E+15y
 1.000E+00
 Ce-140\$

 Dy-153 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Dy-1536.4h1.000E+00Tb-1532 Tb-1532.34d1.000E+00Gd-1533 Gd-1499.28d1.000E+00Eu-1494 Gd-153240.4d1.000E+00Eu-153\$5 Eu-14993.1d1.000E+00Sm-149\$ 6.4h 1.000E+00 Tb-153 9.400E-05 Gd-149

Dy-154 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Dy-154 3.0E+6y 1.000E+00 Gd-150 2 Gd-150 1.79E+6y 1.000E+00 Sm-146 3 Sm-146 1.03E+8y 1.000E+00 Nd-142\$ Dy-155 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Dy-1559.9h1.000E+002 Tb-1555.32d1.000E+00Gd-155\$ Dy-157 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Dy-1578.14h1.000E+002 Tb-15771y1.000E+00Gd-157\$ Dy-165m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3

 Nuclide
 f4
 Nuclide
 Nuclide

 1 Dy-165m
 1.257m
 9.776E-01 Dy-165
 2.240E-02 Ho-165\$

 2 Dy-165
 2.334h
 1.000E+00 Ho-165\$

 Dy-166 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Dy-166 81.6h 1.000E+00 Ho-166 2 Ho-166 26.80h 1.000E+00 Er-166\$ Dy-167 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Dy-167
 6.20m
 1.000E+00
 Ho-167

 2 Ho-167
 3.1h
 1.000E+00
 Er-167\$
 Dy-168 ----- Daughter Products -----

Nuclide f4		de		f2	Nuclide	f3
1 Dy-168 2 Ho-168						
Ho-150]	Daughter	
Products				· • •		
	Halflife		Nuclide	±2	Nuclide	f3
Nuclide f4		de	D 150			
1 Ho-150	/6.8s	1.000E+00	Dy-150	2 (000 01		
2 Dy-150 3 Tb-150	/.1/m 2.40b	6.400E-01	TD = 150	3.600E-01	Ga = 146	
4 Gd-146	3.48 ⁿ	1.000E+00	Ga = 150	7.000E-06	Eu-146	
5 Gd~150	40.27U	1.0005+00	Eu = 140			
6 Eu-146	1.79E+0y	1.000E+00	Sm = 140 Sm = 146			
7 Sm-146						
/ 511-140	T.03E10A	1.0001.00				
.Ho-153						
					Daughter	
Products			·			
	Halflife	fl	Nuclide	f2	Nuclide	f3
Nuclide f4						
1 Ho-153	2.01m	9.995E-01	Dy-153	5.100E-04	Tb-149m	
2 Dy-153						
3 Tb-149m				2.200E-04	Eu-145	
4 Tb-153	2.34d	1.000E+00	Gd-153			
5 Gd-149	9.28d	1.000E+00	Eu-149			
6 Gd-153 7 Eu-149	240.4d	1.000E+00	Eu-153\$			
7 Eu-149	93.1d	1.000E+00	Sm-149\$			
8 Eu-145						
9 Sm-145						
10 Pm-145	17.7y	1.000E+00	Nd-145\$	2.800E-0	9 Pr-141\$	
150.						
Ho-153m					Daughtor	
Products					Daughter	
	Halflife		Nuclide	f2	Nuclide	£3
Nuclide f4			nuorrae	+- +-	Muoliuo	10
1 Ho-153m	9.3m		Dv-153	1.800E-03	Tb-149	
2 Dy-153	6.4h	1.000E+00	-			
3 TD-149	4.118h	8.330E-01		1.670E-01	Eu-145	
4 Tb-153	2.34d			,		
5 Gd-149	9.28d	1.000E+00	Eu-149			
6 Gd-153		1.000E+00	Eu-153\$			
7 Eu-149		1.000E+00				
8 Eu-145		1.000E+00				
9 Sm-145		1.000E+00				
10 Pm-145	17.7y	1.000E+00	Nd-145\$	2.800E-0	9 Pr-141\$	
Ho-154						
					Daughter	

Products -----Nuclide Halflife f1 Nuclide f2 · Nuclide f3 Nuclide f4 Nuclide 1 Ho~15411.76m9.998E-01Dy-1541.900E-04Tb-1502 Dy~1543.0E+6y1.000E+00Gd-1503.48h1.000E+00Gd-1507.000E-06Eu-146

 4
 Gd-150
 1.79E+6y
 1.000E+00
 Sm-146

 5
 Eu-146
 4.61d
 1.000E+00
 Sm-146

 6
 Sm-146
 1.03E+8y
 1.000E+00
 Nd-142\$

 Ho-154m ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 fill
 Nuclide
 fill
 Nuclide

 Nuclide
 1
 Ho-154m
 3.10m
 1.000E+00
 Dy-154
 1.000E-05
 Tb-150m

 2
 Dy-154
 3.0E+6y
 1.000E+00
 Gd-150
 Gd-150

 3
 Tb-150m
 5.8m
 1.000E+00
 Gd-150

 4
 Gd-150
 1.79E+6y
 1.000E+00
 Sm-146

 5
 Sm-146
 1.03E+8y
 1.000E+00
 Nd-142\$

 Ho-155 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ho-15548m1.000E+00 Dy-1552 Dy-1559.9h1.000E+00 Tb-1553 Tb-1555.32d1.000E+00 Gd-155\$ Ho-157 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ho-15712.6m1.000E+00Dy-1572 Dy-1578.14h1.000E+00Tb-1573 Tb-15771y1.000E+00Gd-157\$ Ho-159 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ho-159 33.05m 1.000E+00 Dy-159 2 Dy-159 144.4d 1.000E+00 Tb-159\$ Ho-162m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

1 Ho-162m 67.0m 6.200E-01 Ho-162 3.800E-01 Dy-162\$ 2 Ho-162 15.0m 1.000E+00 Dy-162\$ Ho-164m ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide.1 Ho-164m38.0m1.000E+00 Ho-1642 Ho-16429m6.000E-01 Dy-164\$4.000E-01 Er-164\$ Ho-168m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3' Nuclide f4 Nuclide

 1 Ho-168m
 132s
 1.000E+00
 Ho-168

 2 Ho-168
 2.99m
 1.000E+00
 Er-168\$

 Er-154 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Er-154 3.73m 9.953E-01 Ho-154 4.700E-03 Dy-150

 1
 E1-154
 3.73m
 9.953E-01
 Ho-154
 4.700E-03
 Dy-150

 2
 Ho-154
 11.76m
 9.998E-01
 Dy-154
 1.900E-04
 Tb-150

 3
 Dy-150
 7.17m
 6.400E-01
 Tb-150
 3.600E-01
 Gd-146

 4
 Dy-154
 3.0E+6y
 1.000E+00
 Gd-150
 3.600E-01
 Gd-146

 4
 Dy-154
 3.0E+6y
 1.000E+00
 Gd-150
 7.000E-06
 Eu-146

 6
 Gd-150
 1.79E+6y
 1.000E+00
 Sm-146
 Sm-146
 Eu-146

 7
 Gd-146
 48.27d
 1.000E+00
 Sm-146
 Sm-146
 Sm-146

 9
 Sm-146
 1.03E+8y
 1.000E+00
 Nd-1425
 Sm-146

 9 Sm-146 1.03E+8y 1.000E+00 Nd-142\$ Er-156 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Er-15619.5m1.000E+00 Ho-1562 Ho-15656m1.000E+00 Dy-156\$ Er-159 ----- Daughter Products * -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Er-159 36m 1.000E+00 Ho-159 1 Er-15936m1.000E+00 Ho-1592 Ho-15933.05m1.000E+00 Dy-1593 Dy-159144.4d1.000E+00 Tb-159\$

Er-161

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Er-161 3.21h 1.000E+00 Ho-161 2 Ho-161 2.48h 1.000E+00 Dy-161\$ Er-163 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Er-163
 75.0m
 1.000E+00
 Ho-163

 2 Ho-163
 4570y
 1.000E+00
 Dy-163\$
 Er-171 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Er-171 7.516h 1.000E+00 Tm-171 2 Tm-171 1.92y 1.000E+00 Yb-171\$ Er-172 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Er-17249.3h1.000E+00Tm-1722 Tm-17263.6h1.000E+00Yb-172\$ Er-173 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Er-173 2 Tm-173 1.434m 1.000E+00 Tm-173 8.24h 1.000E+00 Yb-173\$ Tm-161 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1
 Tm-161
 30.2m
 1.000E+00
 Er-161

 2
 Er-161
 3.21h
 1.000E+00
 Ho-161

 3
 Ho-161
 2.48h
 1.000E+00
 Dy-161\$
 Tm-163 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

Nuclidef4Nuclide1 Tm-1631.810h1.000E+00Er-1632 Er-16375.0m1.000E+00Ho-1633 Ho-1634570y1.000E+00Dy-163\$ Tm-165 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Tm-165 30.06h 1.000E+00 Er-165 2 Er-165 10.36h 1.000E+00 Ho-165\$ Tm-175 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Tm-175 15.2m 1.000E+00 Yb-175 2 Yb-175 4.185d 1.000E+00 Lu-175\$ Yb-162 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Yb-16218.87m1.000E+00 Tm-1622 Tm-16221.70m1.000E+00 Er-162\$ Yb-163 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Yb-163
 11.05m
 1.000E+00 Tm-163

 2 Tm-163
 1.810h
 1.000E+00 Er-163

 3 Er-163
 75.0m
 1.000E+00 Ho-163

 4 Ho-163
 4570y
 1.000E+00 Dy-163\$

 Yb-164 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Yb-16475.8m1.000E+00 Tm-1642 Tm-1642.0m1.000E+00 Er-164\$ Yb-165 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide

1 Yb-1659.9m1.000E+00Tm-1652 Tm-16530.06h1.000E+00Er-1653 Er-16510.36h1.000E+00Ho-165\$ Yb-166 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Yb-16656.7h1.000E+00 Tm-1662 Tm-1667.70h1.000E+00 Er-166\$ Yb-167 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Yb-16717.5m1.000E+00 Tm-1672 Tm-1679.25d1.000E+00 Er-167\$ Yb-177 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Yb-1771.911h1.000E+00Lu-1772 Lu-1776.647d1.000E+00Hf-177\$ Yb-178 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Yb-17874m1.000E+00Lu-1782 Lu-17828.4m1.000E+00Hf-178\$ Yb-179 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Yb-1798.0m1.000E+00

 1 Yb-179
 8.0m
 1.000E+00
 Lu-179

 2 Lu-179
 4.59h
 1.000E+00
 Hf-179\$

 Lu-165 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Lu-16510.74m1.000E+00Yb-1652 Yb-1659.9m1.000E+00Tm-1653 Tm-16530.06h1.000E+00Er-165

Lu-167 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Lu-167
 51.5m
 1.000E+00
 Yb-167

 2 Yb-167
 17.5m
 1.000E+00
 Tm-167

 3 Tm-167
 9.25d
 1.000E+00
 Er-167\$

 Lu-169 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Lu-169 34.06h 1.000E+00 Yb-169 1 Lu-169 34.06h 1.000E+00 Yb-169 2 Yb-169 32.026d 1.000E+00 Tm-169\$ Lu-169m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1Lu-169m160s1.000E+00Lu-1692Lu-16934.06h1.000E+00Yb-1693Yb-16932.026d1.000E+00Tm-169\$ Lu-171m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Lu-171m 79s 1.000E+00 Lu-171 2 Lu-171 8.24d 1.000E+00 Yb-171\$ Lu-172m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Lu-172m
 3.7m
 1.000E+00
 Lu-172
 2 Lu-172 6.70d 1.000E+00 Yb-172\$ Lu-174m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Lu-174m142d9.938E-01 Lu-1746.200E-03 Yb-174\$2 Lu-1743.31y1.000E+00 Yb-174\$

4 Er-165 10.36h 1.000E+00 Ho-165\$

Lu-177m

					Daughter	
Products					Duugneer	
Nuclide	Halflife	f1		f2	Nuclide	f3
Nuclide f4			T., 177	7 9 2 0 1 0	1 11 - 1 7 7 6	
1 Lu-177m 2 Lu-177					1 HI-1//Ş	
2 114 177	0.04/0	1.0001.00	111 I <i>II</i> 4			
Lu-181						
					Daughter	
Products	Halflife			f2	Nuclide	'F3
Nuclide f4	Nucl	ide	NUCITUE	12	NUCTICE	10
Nuclide f4 1 Lu-181	3.5m	_1.000E+00	Hf-181			
2 Hf-181	42.39d	1.000E+00	Ta-181\$			
Hf-167					Daughter	
Products					Daughter	
Nuclide	Halflífe	f1	Nuclíde	f2	Nuclide	£3
Nuclide f4	Nucl	ide	* 167			
1 Hf-167 2 Lu-167						
3 Yb-167	17.5m	1.000E+00	Tm-167			
4 Tm-167	9.25d	1.000E+00	Er-167\$			
Hf-169					Deverthe	
Products					Daughter	
	Halflife			f2	Nuclide	f3
Nuclide f4	Nucl	ide				
1 Hf-169	3.24m	3.096E-02	Lu-169m	9.690E-0	1 Lu-169	
2 Lu - 169m 3 Lu - 169	16US 34 06b	1.000E+00	Lu-169 Vh-169			
2 Lu-169m 3 Lu-169 4 Yb-169	32.026d	1.000E+00	Tm-169\$			
Hf-170						
Products					Daughter	
	Halflife			f2	Nuclide	f3
Nuclide f4	Nucl	ide				
1 Hf-170	16.01h	1.000E+00	Lu-170			·
2 Lu-170	2.012d	1.000E+00	Yb-170\$			
Hf-172						
III I/2					Daughter	
Products					-	
	Halflife		Nuclide	f2	Nuclide	£3
Nuclide f4 1 Hf-172			Tu-170m			
1 HI = 172 2 Lu - 172m	⊥.07y 3.7m	1.000E+00 1.000E+00	Lu = 172m			
3 Lu-172	. 6.70d	1.000E+00	Yb-172\$			

Hf-173 Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Hf-173 23.6h 1.000E+00 Lu-173 2 Lu-173 1.37y 1.000E+00 Yb-173\$ Hf-182 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Hf-182 9E+6y 1.000E+00 Ta-182 2 Ta-182 114.43d 1.000E+00 W-182\$ Hf-182m ----- Daughter Products ----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Hf-182m 61.5m 4.200E-01 Hf-182 8.928E-02 Ta-182m 4.907E-01 Ta-182 2 Hf-182 9E+6y 1.000E+00 Ta-182 3 Ta-182m 15.84m 1.000E+00 Ta-182 4 Ta-182 114.43d 1.000E+00 W-182\$ Hf-183 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Hf-183 2 Ta-183 1.067h 1.000E+00 Ta-183 5.1d 1.000E+00 W-183\$ Hf-184 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Hf-184 4.12h 1.000E+00 Ta-184 2 Ta-184 8.7h 1.000E+00 W-184\$ Ta-170 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ta-1706.76m1.000E+002 Hf-17016.01h1.000E+003 Lu-1702.012d1.000E+00

Ta-172

Ta-172					Davahtar	
Products					Daughter	
Nuclide Ha	lflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f4 1 Ta-172 2 Hf-172 3 Lu-172m	36.8m	1.000E+00	Hf-172			
2 Hf-172	1.87v	1.000E+00	Lu-172m			
3 Lu-172m	3.7m	1.000E+00	Lu-172			
4 Lu-172	6.70d	1.000E+00	Yb-172\$			
Ta-173						
Products					Daughter	
Nuclide Ha			Nuclido	f2	Nuclide	f٦
Nuclide f4			Nucrice	12	NUCTICE	10
1 Ta-173	3.14h	1.000E+00	Hf-173		•	
2 Hf-173						
3 Lu-173						
Ta-174						
					Daughter	
				50	Nualiala	£ 2
Nuclide Ha Nuclide f4			Nuclide	IΖ	Nuclide	13
1 Ta-174			Hf-174			
2 Hf-174 2.						
2 111 174 2.	оптол	1.0001.00	10 1/04			
Ta-175						
					Daughter	
11000000						~~
Nuclide Ha			Nuclide	£2	Nuclide	Í3
Nuclide f4 1 Ta-175			Hf-175			
2 Hf-175						
2 111 175	, o u	1.0001.00	10 1/04			
Ta-182m						
					Daughter	
				_		
Nuclide Ha			Nuclide	f2	Nuclide	£3
Nuclide f4			m. 100			
1 Ta-182m		1.000E+00				
2 Ta-182 1	114.450	1.000E+00	W-1023			
Ta-185						
					Daughter	
rroddoco				50		£0
Nuclide Ha			NUCLIDE	f2	Nuclide	f3
Nuclide f4 1 Ta-185		ide 1.000E+00	W-185			
2 W-185		1.000E+00 1.000E+00				
2 11 100	, J . 10	1.00001.00	TC T004			

W-177		<u></u>			Daughtor	
Products Nuclide Nuclide f4 1 W-177 2 Ta-177	Halflife Nucli 132m	f1 f1 1.000E+00	Nuclide	f2	Nuclide	£3
W-178					Daughter	
Products Nuclide Nuclide f4 1 W-178 2 Ta-178	Halflife	 f1	Nuclide		Nuclide	f3
M-179			•			
Products	- `				Daughter	
Nuclide Nuclide f4 1 W-179 2 Ta-179	Halflife Nucl: 37.05m 1.82y	f1 ide 1.000E+00 1.000E+00	Nuclide Ta-179 Hf-179\$	f2	Nuclide	f3
W-179m					, Deverbter	
Products Nuclide Nuclide f4 1 W-179m 2 W-179 3 Ta-179	Halflife Nucl: 6.40m 37.05m	f1 ide 9.972E-01 1.000E+00	 Nuclide W-179 Ta-179	f2	Daughter Nuclide 3 Ta-179	f3
W-185m					Daughter	
Products Nuclide Nuclide f4 1 W-185m 2 W-185	Halflife Nucl 1.597m	f1 ide 1.000E+00	Nuclide W-185		Nuclide	f3
W-187						
Products				-	Daughter	
Nuclide Nuclide f4 1 W-187 2 Re-187	23.72h	ide 1.000E+00	Re-187	f2	Nuclide	f3
W-188					Daughter	
Products					Judgitter	

Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 W-188 69.78d 1.000E+00 Re-188 2 Re-188 17.0040h 1.000E+00 Os-188\$ W-190 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 W-19030.0m1.000E+00 Re-1902 Re-1903.1m1.000E+00 Os-190\$ Re-178 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Re-178
 13.2m
 1.000E+00 W-178

 2 W-178
 21.6d
 1.000E+00 Ta-178

 3 Ta-178
 9.31m
 1.000E+00 Hf-178\$
 Re-179 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Re-179
 19.5m
 2.392E-01
 W-179m
 7.608E-01
 W-179

 2 W-179m
 6.40m
 9.972E-01
 W-179
 2.800E-03
 Ta-179

 3 W-179
 37.05m
 1.000E+00
 Ta-179
 Ta-179

 4 Ta-179
 1.82y
 1.000E+00
 Hf-179\$

 Re-181 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Re-18119.9h1.000E+00 W-1812 W-181121.2d1.000E+00 Ta-181\$ Re-184m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Re-184m
 169d
 7.540E-01
 Re-184
 2.460E-01
 W-184\$

 2 Re-184
 38.0d
 1.000E+00
 W-184\$
 Re-186 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Re-186 3.7183d 9.253E-01 Os-186 7.470E-02 W-186\$ 2 Os-186 2.0E+15y 1.000E+00 W-182\$ Re-186m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Re-186m 2.00E+5y 1.000E+00 Re-186 2 Re-186 3.7183d 9.253E-01 Os-186 7.470E-02 W-186\$ 3 Os-186 2.0E+15y 1.000E+00 W-182\$ Re-188m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Re-188m 18.59m 1.000E+00 Re-188 2 Re-188 17.0040h 1.000E+00 Os-188\$ Re-189 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide l Re-189 24.3h 1.221E-01 Os-189m 8.779E-01 Os-189\$ 2 Os-189m 5.8h 1.000E+00 Os-189\$ Re-190m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Re-190m3.2h4.560E-01 Re-1905.440E-01 Os-190\$2 Re-1903.1m1.000E+00 Os-190\$ Os-180 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide l Os-180 21.5m 1.000E+00 Re-180 2 Re-180 2.44m 1.000E+00 W-180\$ Os-181 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Os-181105m1.000E+00Re-1812 Re-18119.9h1.000E+00W-181

Os-182 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Os-18222.10h1.000E+00Re-182m2 Re-182m12.7h1.000E+00W-182\$ Os-183 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Os-183
 13.0h
 1.000E+00
 Re-183

 2 Re-183
 70.0d
 1.000E+00
 W-183\$
 Os-183m ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Os-183m9.9h1.500E-01 Os-1838.500E-01 Re-1832 Os-18313.0h1.000E+00 Re-1833 Re-18370.0d1.000E+00 W-183\$ Os-191m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Os-191m 13.10h 1.000E+00 Os-191 2 Os-191 15.4d 1.000E+00 Ir-191\$ Os-193 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Os-19330.11h3.476E-032 Ir-193m10.53d1.000E+00Ir-193s Os-194 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Os-194 6.0y 1.000E+00 Ir-194 2 Ir-194 19.28h 1.000E+00 Pt-194\$

3 W-181 121.2d 1.000E+00 Ta-181\$

Os-196

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Os-19634.9m1.000E+00Ir-1962 Ir-19652s1.000E+00Pt-196\$ Ir-180 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ir-180 1.5m 1.000E+00 Os-180 1 Ir-1801.5m1.000E+00Os-1802 Os-18021.5m1.000E+00Re-1803 Re-1802.44m1.000E+00W-180\$ Ir-182 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1
 Ir-182
 15m
 1.000E+00
 Os-182

 2
 Os-182
 22.10h
 1.000E+00
 Re-182m

 3
 Re-182m
 12.7h
 1.000E+00
 W-182\$

 Ir-183 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 filline
 filline

 Ir-185 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ir-185 14.4h 1.000E+00 Os-185 2 Os-185 93.6d 1.000E+00 Re-185\$ Ir-186 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ir-186 16.64h 1.000E+00 Os-186 2 Os-186 2.0E+15y 1.000E+00 W-182\$

Ir-186m

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ir-186m 1.92h 2.500E-01 Ir-186 7.500E-01 Os-186 2 Ir-186 16.64h 1.000E+00 Os-186 3 Os-186 2.0E+15y 1.000E+00 W-182\$ Ir-189 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ir-18913.2d7.426E-02 Os-189m9.257E-01 Os-189\$2 Os-189m5.8h1.000E+00 Os-189\$ Ir-190m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ir-190m 1.120h 1.000E+00 Ir-190 2 Ir-190 11.78d 1.000E+00 Os-190\$ Ir-190n ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ir-190n3.087h9.140E-010s-190m8.600E-02Ir-1902 Os-190m9.9m1.000E+00Os-190\$3 Ir-19011.78d1.000E+00Os-190\$ Ir-192m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Ir-192m1.45m9.998E-01Ir-1921.750E-04Pt-192\$2 Ir-19273.827d9.513E-01Pt-192\$4.870E-02Os-192\$ Ir-192n ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ir-192n 241y 1.000E+00 Ir-192 2 Ir-192 73.827d 9.513E-01 Pt-192\$ 4.870E-02 Os-192\$ Ir-195m ----- Daughter Products -----

Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Ir-195m 3.8h 4.369E-01 Pt-195m 5.000E-02 Ir-195 5.131E-01 Pt-195\$ 2 Pt-195m 4.02d 1.000E+00 Pt-195\$ 3 Ir-195 2.5h 1.000E+00 Pt-195\$ Pt-184 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Pt-184
 17.3m
 1.000E+00
 Ir-184
 1.700E-05
 Os-180

 2 Ir-184
 3.09h
 1.000E+00
 Os-184\$
 Os-180
 21.5m
 1.000E+00
 Re-180

 4 Re-180
 2.44m
 1.000E+00
 W-180\$
 W-180\$

 Pt-186 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pt-186 2.08h 8.194E-01 Ir-186m 1.806E-01 Ir-186 1.000E-06 Os-182

 2
 Ir-186m
 1.92h
 2.500E-01
 Ir-186
 7.500E-01
 Os-186

 3
 Ir-186
 16.64h
 1.000E+00
 Os-186

 4
 Os-182
 22.10h
 1.000E+00
 Re-182m

 5
 Os-186
 2.0E+15y
 1.000E+00
 W-182\$

 6 Re-182m 12.7h 1.000E+00 W-182\$ Pt-187 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pt-187 2.35h 1.000E+00 Ir-187 2 Ir-187 10.5h 1.000E+00 Os-187\$ Pt-188 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pt-188 10.2d 1.000E+00 Ir-188 2.900E-07 Os-184\$ 2 Ir-188 41.5h 1.000E+00 Os-188\$ Pt-189 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pt-189 10.87h 1.000E+00 Ir-189

2 Ir-189 13.2d 7.426E-02 Os-189m 9.257E-01 Os-189\$ 3 Os-189m 5.8h 1.000E+00 Os-189\$ Pt-190 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pt-190 6.50E+11y 1.000E+00 Os-186 2 Os-186 2.0E+15y 1.000E+00 W-182\$ Pt-193m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pt-193m 4.33d 1.000E+00 Pt-193 2 Pt-193 50y 1.000E+00 Ir-193\$ Pt-197m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pt-197m 95.41m 9.670E-01 Pt-197 3.300E-02 Au-197\$ 2 Pt-197 19.8915h 1.000E+00 Au-197\$ Pt-199 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Pt-19930.80m1.000E+00 Au-1992 Au-1993.139d1.000E+00 Hg-199\$ Pt-200 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Pt-20012.5h1.000E+00 Au-2002 Au-20048.4m1.000E+00 Hg-200\$ Pt-202 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Pt-202
 44h
 1.000E+00
 Au-202

 2 Au-202
 28.8s
 1.000E+00
 Hg-202\$

Au-186

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Au-186 2 Pt-186 2.08h 8.194E-01 Ir-186m 1.806E-01 Ir-186 1.000E-06 Os-182 3 Ir-186m 1.92h 2.500E-01 Ir-186 7.500E-01 Os-186 4 Ir-186 16.64h 1.000E+00 Os-186 5 Os-182 22.10h 1.000E+00 Re-182m 6 Os-186 2.0E+15y 1.000E+00 W-182\$ 7 Re-182m 12.7h 1.000E+00 W-182\$ Au-187 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide IncludeNuclide1 Au-1878.4m2 Pt-1872.35h3 Ir-18358m4 Ir-18710.5h5 Os-183m9.9h1.500E+00Os-1836 Os-18313.0h7 Re-18370.0d10.5h1.000E+00Weilling10.5h10.00E+0010.5h10.00E+0010.5h10.00E+0110.5h10.00E+0010.5h10.00E+0010.5h10.00E+0010.00E+ Au-190 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Au-190 42.8m 1.000E+00 Pt-190 2 Pt-190 6.50E+11y 1.000E+00 Os-186 3 Os-186 2.0E+15y 1.000E+00 W-182\$ Au-191 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Au-191 3.18h 1.000E+00 Pt-191 1 Au-191 3.18h 1.000E+00 Pt-191 2 Pt-191 2.802d 1.000E+00 Ir-191\$ Au-193 _ ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Au-193 2 Pt-193 17.65h 1.000E+00 Pt-193 50y 1.000E+00 Ir-193\$

Au-193m

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclidef1Nuclidef2Nuclide1 Au-193m3.9s9.997E-01 Au-1933.000E-04 Pt-193m2 Au-19317.65h1.000E+00 Pt-1933 Pt-193m4.33d1.000E+00 Pt-1934 Pt-19350y1.000E+00 Ir-193\$ Au-195m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Au-195m 30.5s 1.000E+00 Au-195 2 Au-195 186.098d 1.000E+00 Pt-195\$ Au-196m · ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Au-196m 9.6h 1.000E+00 Au-196 2 Au-196 6.183d 9.280E-01 Pt-196\$ 7.200E-02 Hg-196\$ Au-198m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3
 Nuclide
 f4
 Nuclide

 1 Au-198m
 2.27d
 1.000E+00
 Au-198

 2 Au-198
 2.69517d
 1.000E+00
 Hg-198\$
 Au-200m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 NuclideNuclide1 Au-200m18.7h2 Au-20048.4m1.000E+00Hg-200\$ Hg-190 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Hg-19020.0m1.000E+002 Au-19042.8m1.000E+00Pt-190 3 Pt-190 6.50E+11y 1.000E+00 Os-186 4 Os-186 2.0E+15y 1.000E+00 W-182\$

Hg-191m

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Hg-191m50.8m1.000E+00Au-1912 Au-1913.18h1.000E+00Pt-1913 Pt-1912.802d1.000E+00Ir-191\$ Hg-192 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Hg-192
 4.85h
 1.000E+00
 Au-192

 2 Au-192
 4.94h
 1.000E+00
 Pt-192\$
 Hg-193 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclidef1Nuclidef2Nuclide1 Hg-1933.80h3.541E-02Au-193m9.646E-01Au-1932 Au-193m3.9s9.997E-01Au-1933.000E-04Pt-193m3 Au-19317.65h1.000E+00Pt-193Pt-193m4.33d1.000E+00Pt-1935 Pt-19350y1.000E+00Ir-193\$StateStateState Hg-193m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Hg-193m 11.8h 7.100E-02 Hg-193 8.920E-01 Au-193m 3.703E-02 Au-193 2 Hg-1933.80h3.541E-02Au-193m9.646E-01Au-1933 Au-193m3.9s9.997E-01Au-1933.000E-04Pt-193m4 Au-19317.65h1.000E+00Pt-1935 Pt-193m4.33d1.000E+00Pt-1936 Pt-19350y1.000E+00Ir-193\$ Hg-194 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Hg-194440y1.000E+00 Au-1942 Au-19438.02h1.000E+00 Pt-194\$ Hg-195 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Hg-195 10.53h 1.000E+00 Au-195 2 Au-195 186.098d 1.000E+00 Pt-195\$ Hg-195m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Hg-195m41.6h5.420E-01 Hg-1954.580E-01 Au-1952 Hg-19510.53h1.000E+00 Au-1953 Au-195186.098d1.000E+00 Pt-195\$ Hg-197m ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclidef4Nuclide1 Hg-197m23.8h9.140E-01 Hg-1978.600E-02 Au-197\$2 Hg-19764.94h1.000E+00 Au-197\$ Hg-206 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Hg-2068.15m1.000E+00 Tl-206 1 Hg-206 8.15m 1.000E+00 Tl-206 2 Tl-206 4.200m 1.000E+00 Pb-206\$ Hq-207 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Hg-207
 2.9m
 1.000E+00
 T1-207

 2 T1-207
 4.77m
 1.000E+00
 Pb-207\$
 Tl-190 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide . 1 Tl-190 2.6m 1.000E+00 Hg-190 1T1-1902.6m1.000E+00Hg-1902Hg-19020.0m1.000E+00Au-1903Au-19042.8m1.000E+00Pt-1904Pt-1906.50E+11y1.000E+00Os-1865Os-1862.0E+15y1.000E+00W-182\$ · . T1-190m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Tl-190m
 3.7m
 1.000E+00 Hg-190

 2 Hg-190
 20.0m
 1.000E+00 Au-190

 3 Au-190
 42.8m
 1.000E+00 Pt-190
 4 Pt-190 6.50E+11y 1.000E+00 Os-186 5 Os-186 2.0E+15y 1.000E+00 W-182\$ T1-194 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1
 T1-194
 33.0m
 1.000E+00
 Hg-194

 2
 Hg-194
 440y
 1.000E+00
 Au-194

 3
 Au-194
 38.02h
 1.000E+00
 Pt-194\$
 Tl-194m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1
 T1-194m
 32.8m
 1.000E+00
 Hg-194

 2
 Hg-194
 440y
 1.000E+00
 Au-194

 3
 Au-194
 38.02h
 1.000E+00
 Pt-194\$
 Tl-195 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 T1-195
 1.16h
 3.436E-03 Hg-195m
 9.966E-01 Hg-195

 2 Hg-195m
 41.6h
 5.420E-01 Hg-195
 4.580E-01 Au-195

 3 Hg-195
 10.53h
 1.000E+00 Au-195
 4 Au-195

 4 Au-195
 186.098d
 1.000E+00 Pt-195\$

 T1-197 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Tl-197 2.84h 1.000E+00 Hg-197 1 Tl-197 2.84h 1.000E+00 Hg-197 2 Hg-197 64.94h 1.000E+00 Au-197\$ Tl-198m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Tl-198m 1.87h 4.600E-01 Tl-198 5.400E-01 Hg-198\$ 2 Tl-198 5.3h 1.000E+00 Hg-198\$

T1-206m

				[aughter	
Nuclide	Halflife			f2	Nuclide	f3
Nuclide f4	Nucli	ide				
1 T1-206m 2 T1-206	3./4m 4 200m	1.000E+00 1.000E+00	T1 - 206 Pb - 2065			
2 11 200	1.2001	1.0001.00	10 2004			
T1-209				-		
Products				I	Jaughter	
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f4	Nucl	ide	51 000			
Nuclide f4 1 T1-209 2 Pb-209	2.161m 3 253b	1.000E+00 1.000E+00	Pb-209 Bi-2095			
2 ED-209	5.25511	1.0001.00	DI 2099			
T1-210				-		
Products				- 1	Daughter	
Nuclide	Halflife	fl	Nuclide	f2	Nuclide	£3
Nuclide f4 1 Tl-210	Nucl:	ide				
1 T1-210	1.30m	1.000E+00	Pb-210	1 0000 00	U~ 206	
2 Pb-210 3 Bi-210	22.20y	1.0005+00	B1 = 210	1.900E-06	ну-206 т1-206	
3 BI - 210	9.015u 9.15m	1 0005+00	r0-210 m1-206	1.5208-00	11-200	
4 Hg-206 5 Po-210	139 3764	1.000E+00	Pb = 2065	•		
6 T1-206	4 200m	1.000E+00	Pb = 2065			
0 11 200	4.2001	1.0001/00	10 2009			
Pb-194					- 1	
Products					Jaughter	
Nuclide	Halflife	fl	Nuclide	f2	Nuclide	f3
Nuclide f4						
1 Pb-194			Tl-194	7.300E-08	Hg-190	
2 Tl-194	33.Om	1.000E+00	Hg-194		-	
3 Ha-190	20.Om	1.000E+00	Au-190			
4 Hg-194	440y	1.000E+00	Au-194			
4 Hg-194 5 Au-194 6 Au-190	38.02h	1.000E+00	Pt-194\$			
6 Au-190	42.8m	1.000E+00	Pt-190			
7 Pt-190 0	5.50E+11y	1.000E+00	Os-186			
8 Os-186	2.0E+15y	1.000E+00	W-182\$			
Pb-195m			·			·
Products					Daughter	
	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f4	Nucl					
1 Pb-195m		1.000E+00				
2 Tl-195				9.966E-01		
3 Hg-195m		5.420E-01		4.580E-01	Au-195	
2	10.53h	1.000E+00	Au-195			
5 Au-195	186.098d					

Pb-196

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Pb-19637m1.000E+00T1-1962 T1-1961.84h1.000E+00Hg-196\$ Pb-197 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Pb-1978m1.000E+00T1-1972 T1-1972.84h1.000E+00Hg-1973 Hg-19764.94h1.000E+00Au-197\$ Pb-197m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1
 Pb-197m
 43m
 1.900E-01
 Pb-197
 8.100E-01
 T1-197

 2
 Pb-197
 8m
 1.000E+00
 T1-197

 3
 T1-197
 2.84h
 1.000E+00
 Hg-197

 4
 Hg-197
 64.94h
 1.000E+00
 Au-197\$

 Pb-198 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pb-198 2.4h 1.000E+00 Tl-198 2 Tl-198 5.3h 1.000E+00 Hg-198\$ Pb-199 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Pb-19990m1.000E+00 T1-199 1 Pb-19990m1.000E+00Tl-1992 Tl-1997.42h1.000E+00Hg-199\$ Pb-200 ----- Daughter Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 'Nuclide f4 Nuclide 1 Pb-200 21.5h 1.000E+00 Tl-200 2 Tl-200 26.1h 1.000E+00 Hg-200\$

Pb-201

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pb-201 9.33h 1.000E+00 Tl-201 2 Tl-201 72.912h 1.000E+00 Hg-201\$ Pb-201m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Pb-201m61s1.000E+00 Pb-201 1 Pb-201m61s1.000E+00Pb-2012 Pb-2019.33h1.000E+00T1-2013 T1-20172.912h1.000E+00Hg-201\$ Pb-202 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pb-202 5.25E+4y 9.900E-01 T1-202 1.000E-02 Hg-198\$ 2 T1-202 12.23d 1.000E+00 Hg-202\$ Pb-202m ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3

 Nuclide
 fill
 Nuclide
 fill
 Nuclide

 Nuclide
 1
 Pb-202m
 3.53h
 9.050E-01
 Pb-202
 9.500E-02
 T1-202

 2
 Pb-202
 5.25E+4y
 9.900E-01
 T1-202
 1.000E-02
 Hg-198\$

 3
 T1-202
 12.23d
 1.000E+00
 Hg-202\$

 Pb-210 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Pb-210
 22.20y
 1.000E+00
 Bi-210
 1.900E-08
 Hg-206

 2 Bi-210
 5.013d
 1.000E+00
 Po-210
 1.320E-06
 TI-206

 3 Hg-206
 8.15m
 1.000E+00
 TI-206

 4 Po-210 138.376d 1.000E+00 Pb-206\$ 5 Tl-206 4.200m 1.000E+00 Pb-206\$ Pb-211 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1
 Pb-211
 36.1m
 1.000E+00
 Bi-211

 2
 Bi-211
 2.14m
 9.972E-01
 T1-207
 2.760E-03
 Po-211

 3
 T1-207
 4.77m
 1.000E+00
 Pb-207\$

4 Po-211 0.516s 1.000E+00 Pb-207\$ Pb-212 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1
 Pb-212
 10.64h
 1.000E+00
 Bi-212

 2
 Bi-212
 60.55m
 6.406E-01
 Po-212
 3.594E-01
 T1-208

 3
 Po-212
 2.99E-7s
 1.000E+00
 Pb-208\$

 4
 T1-208
 3.053m
 1.000E+00
 Pb-208\$

 Pb-214 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Pb-214
 26.8m
 1.000E+00
 Bi-214

 2 Bi-214
 19.9m
 9.998E-01
 Po-214
 2.100E-04
 T1-210
 3 Po-214 1.643E-4s 1.000E+00 Pb-210

 4
 T1-210
 1.30m
 1.000E+00
 Pb-210

 5
 Pb-210
 22.20y
 1.000E+00
 Bi-210
 1.900E-08
 Hg-206

 6
 Bi-210
 5.013d
 1.000E+00
 Po-210
 1.320E-06
 T1-206

 7
 Hg-206
 8.15m
 1.000E+00
 T1-206

 8
 Po-210
 138.376d
 1.000E+00
 Pb-206\$

 9
 T1-206
 4.200m
 1.000E+00
 Pb-206\$

 Bi-197 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 Nuclide
 Nuclide
 Nuclide

 Nuclide
 1
 Bi-197
 9.3m
 4.390E-01
 Pb-197m
 5.610E-01
 Pb-197

 2
 Pb-197m
 43m
 1.900E-01
 Pb-197
 8.100E-01
 T1-197

 3
 Pb-197
 8m
 1.000E+00
 T1-197

 4
 T1-197
 2.84h
 1.000E+00
 Hg-197

 5
 Hg-197
 64.94h
 1.000E+00
 Au-197\$

 Bi-200 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Bi-20036.4m1.000E+00Pb-2002 Pb-20021.5h1.000E+00T1-2003 T1-20026.1h1.000E+00Hg-200\$ Bi-201 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

1 Bi-201108m4.517E-01Pb-201m5.483E-01Pb-2012 Pb-201m61s1.000E+00Pb-2013 Pb-2019.33h1.000E+00T1-2014 T1-20172.912h1.000E+00Hg-201\$ Bi-202 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Bi-202 1.72h 1.000E+00 Pb-202 2 Pb-202 5.25E+4y 9.900E-01 T1-202 1.000E-02 Hg-198\$ 3 T1-202 12.23d 1.000E+00 Hg-202\$ • Bi-203 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Bi-203 11.76h 1.000E+00 Pb-203 2 Pb-203 51.873h 1.000E+00 Tl-203\$ Bi-204 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Bi-204 11.22h 9.853E-02 Pb-204m 9.015E-01 Pb-204\$ 2 Pb-204m 67.2m 1.000E+00 Pb-204\$ Bi-205 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Bi-205
 15.31d
 1.000E+00
 Pb-205

 2 Pb-205
 1.53E+7y
 1.000E+00
 T1-205\$
 Bi-210 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Bi-210 5.013d 1.000E+00 Po-210 1.320E-06 T1-206 2 Po-210 138.376d 1.000E+00 Pb-206\$ 3 T1-206 4.200m 1.000E+00 Pb-206\$ Bi-210m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

1 Bi-210m 3.04E+6y 1.000E+00 Tl-206 2 Tl-206 4.200m 1.000E+00 Pb-206\$ Bi-211 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Bi-211
 2.14m
 9.972E-01
 T1-207
 2.760E-03
 Po-211

 2 T1-207
 4.77m
 1.000E+00
 Pb-207\$
 3
 Po-211
 0.516s
 1.000E+00
 Pb-207\$

 Bi-212 ----- Daughter Products -------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Bi-212 60.55m 6.406E-01 Po-212 3.594E-01 T1-208 2 Po-212 2.99E-7s 1.000E+00 Pb-208\$ 3 T1-208 3.053m 1.000E+00 Pb-208\$ Bi-212n ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Bi-212n 7.0m 1.000E+00 Po-212m 1 Bi-212n7.0m1.000E+00Po-212m2 Po-212m45.1s9.993E-01Pb-208\$ Bi-213 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Bi-213
 45.59m
 9.791E-01
 Po-213
 2.090E-02
 TI-209

 2 Po-213
 4.2E-6s
 1.000E+00
 Pb-209

 3 T1-209
 2.161m
 1.000E+00
 Pb-209

 4 Pb-209
 3.253h
 1.000E+00
 Bi-209\$

 Bi-214 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 Halfflife
 Fi
 8 T1-206 4.200m 1.000E+00 Pb-206\$

Bi-215

B1-215				Daughter	
Products Nuclide Halflife				-	f3
Nuclide f4 Nucl	ide		12	Nucitae	15
1 Bi-215 7.6m	1.000E+00				
2 Po-215 1.781E-3s					
3 Pb-211 36.1m 4 Bi-211 2.14m			2 7608-03	$P_{0} = 211$	
5 T1-207			2.700E-05	F0-211	
6 Po-211 0.516s	1.000E+00	Pb-207\$			
Bi-216					
Products				Daughter	
Products Nuclide Halflife			f2	Nuclide	f3
Nuclide f4 Nucl		Nucriae	1 22	Nucliuc	±0 .
1 Bi-216 2.17m	1.000E+00	Po-216		`	
2 Po-216 0.145s 3 Pb-212 10.64h 4 Bi-212 60.55m 5 Po-212 2.99E-7s	1.000E+00	Pb-212			
3 Pb-212 10.64h	1.000E+00	Bi-212	2 5040 01		
4 B1-212 60.55m 5 Po-212 2 99F-7e	6.406E-01	PO-212 Pb-2085	3.594E-01	T1-208	
6 T1-208 3.053m	1.000E+00	Pb-208\$			
Po-203				Daughter	
Products				Daugitter	
Nuclide Halflife	fl	Nuclide	f2	Nuclide	f3
Nuclide f4 Nucl	ide				
1 Po-203 36.7m 2 Bi-203 11.76h	9.989E-01	B1 - 203	1.100E-03	PD-199	
3 Pb-199 90m					
4 Pb-203 51.873h					
5 Tl-199 7.42h					
Po-204					
				Daughter	
Products			60	NT . 1 ! 1	60
Nuclide Halflife Nuclide f4 Nucl		Nuclide	I2	Nuclide	I3
	9.934E-01	Bi-204	6.600E-03	8 Pb-200	
	9.853E-02				
3 Pb-200 · 21.5h	1.000E+00	T1-200			
4 Pb-204m 67.2m	1.000E+00 1.000E+00	Pb-204\$			
5 T1-200 26.1h	1.000E+00	Hg-200\$			
Po-205					
Products				Daughter	
Products Nuclide Halflife		Nuclide	f2	Nuclide	f3
Nuclide f4 Nucl				nacriae	20

1 Po-205 2 Bi-205 3 Pb-201 4 Pb-205 1.66h 9.990E-01 Bi-205 4.000E-04 Pb-201 15.31d 1.000E+00 Pb-205 9.33h 1.000E+00 T1-201 1.53E+7y 1.000E+00 T1-205\$ 5 Pb-201 1.53E+7y 1.000E+00 Pb-205 1.53E+7y 1.53E+7y 1.55E+7y 1.55E 5 T1-201 72.912h 1.000E+00 Hg-201\$ Po-206 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Po-206
 8.8d
 9.455E-01
 Bi-206
 5.450E-02
 Pb-202

 2 Bi-206
 6.243d
 1.000E+00
 Pb-206\$
 1.000E
 3 Pb-202 5.25E+4y 9.900E-01 T1-202 1.000E-02 Hg-198\$ 4 T1-202 12.23d 1.000E+00 Hg-202\$ Po-207 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Po-2075.80h9.998E-01Bi-2072.100E-04Pb-2032 Bi-20732.9y1.000E+00Pb-207\$3Pb-2033 Pb-20351.873h1.000E+00T1-203\$ Po-208 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 f4
 Nuclide

 1 Po-208
 2.898y
 2.230E-05
 Bi-208
 1.000E+00
 Pb-204\$

 2 Bi-208
 3.68E+5y
 1.000E+00
 Pb-208\$

 Po-209 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3
 Nuclide
 f4
 Nuclide

 1 Po-209
 102y· 9.952E-01 Pb-205
 4.800E-03 Bi-209\$

 2 Pb-205
 1.53E+7y
 1.000E+00 T1-205\$
 Po-213 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Po-213 4.2E-6s 1.000E+00 Pb-209 2 Pb-209 3.253h 1.000E+00 Bi-209\$ Po-214 ----- Daughter Products -----

Nuclide Halflife		Nuclide	f2	Nuclide	f3
Nuclidef4Nucl1Po-2141.643E-4s2Pb-21022.20y3Bi-2105.013d4Hg-2068.15m5Po-210138.376d6T1-2064.200m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Bi-210 Po-210 Tl-206 Pb-206\$	1.900E-08 1.320E-06		
Po-215				Daughter	
Products				-	
Nuclide Halflife		Nuclide	f2	Nuclide	£3
Nuclide f4 Nucl 1 Po-215 1.781E-3s		Pb-211			
2 Pb-211 36.1m 3 Bi-211 2.14m 4 T1-207 4.77m 5 Po-211 0.516s	1.000E+00 9.972E-01 1.000E+00	Bi-211 Tl-207 Pb-207\$	2.760E-03	Po-211	
Po-216					
Products				Daughter	
Products			f2	Nuclide	£3
Nuclide f4 Nucl	ide				20
1 Po-216 0.145s 2 Pb-212 10.64h	1.000E+00	Pb-212			
2 PD-212 10.64h 3 Bi-212 60.55m	1.000E+00 6.406E-01	B1-212 Po-212	3.594E-01	T1-208	
4 Po-212 2.99E-7s	1.000E+00	Pb-208\$			-
5 T1-208 3.053m	1.000E+00	Pb-208\$			
Po-218					
				Daughter	
Products			f2	Nuclide	£3
Nuclide f4 Nucl	ide				
1 Po-218 3.10m 2 Pb-214 26.8m			2.000E-04	At-218	
2 Pb-214 26.8m 3 At-218 1.5s	9.990E-01	Bi-214 Bi-214	1.000E-03	Rn-218	
4 Bi-214 19.9m					
.5 Rn-218 3.5E-2s	1.000E+00	Po-214			
	1.000E+00 1.000E+00				
	1.000E+00		1.900E-08	Hg-206	
	1.000E+00		1.320E-06	T1-206	
10 Hg-206 8.15m 11 Po-210 138.376d					
12 T1-206 4.200m	1.000E+00	Pb-206\$			
At-204		× 1			
Products				Daughter	

,

Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1Clide14Nuclide1 At-2049.2m9.620E-01Po-2043.800E-02Bi-2002 Po-2043.53h9.934E-01Bi-2046.600E-03Pb-2003 Bi-20036.4m1.000E+00Pb-200Pb-204Pb-2044 Bi-20411.22h9.853E-02Pb-204m9.015E-01Pb-204\$5 Pb-20021.5h1.000E+00T1-200Fb-204\$Fb-2046 Pb-204m67.2m1.000E+00Pb-204\$Pb-204\$7 T1-20026.1h1.000E+00Hg-200\$Fb-200 At-205 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 At-205
 26.2m
 9.000E-01
 Po-205
 1.000E-01
 Bi-201

 2 Po-205
 1.66h
 9.990E-01
 Bi-205
 4.000E-04
 Pb-201

 3 Bi-201
 108m
 4.517E-01
 Pb-201m
 5.483E-01
 Pb-201

 4 Bi-205
 15.31d
 1.000E+00
 Pb-205

 5Pb-201m61s1.000E+00Pb-2016Pb-2019.33h1.000E+00T1-2017Pb-2051.53E+7y1.000E+00T1-205\$8T1-20172.912h1.000E+00Hg-201\$ At-206 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 At-206
 30.6m
 9.911E-01
 Po-206
 8.900E-03
 Bi-202

 2 Po-206
 8.8d
 9.455E-01
 Bi-206
 5.450E-02
 Pb-202

 3 Bi-202
 1.72h
 1.000E+00
 Pb-202

 4 Bi-206
 6.243d
 1.000E+00
 Pb-206\$

 5 Pb-202
 5.25E+4y
 9.900E-01
 T1-202
 1.000E-02
 Hg-198\$

 6 Tl-202 12.23d 1.000E+00 Hg-202\$ At-207 ----- Daughter Products -----Nuclide Halflife fl Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 At-2071.80h9.140E-01Po-2078.600E-02Bi-2032 Po-2075.80h9.998E-01Bi-2072.100E-04Pb-2033 Bi-20311.76h1.000E+00Pb-2034 Bi-20732.9y1.000E+00Pb-207\$5 Pb-20351.873h1.000E+00T1-203\$ At-208 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

1 At-2081.63h9.945E-01Po-2085.500E-03Bi-2042 Po-2082.898y2.230E-05Bi-2081.000E+00Pb-204\$3 Bi-20411.22h9.853E-02Pb-204m9.015E-01Pb-204\$4 Bi-2083.68E+5y1.000E+00Pb-208\$Fb-208\$ 5 Pb-204m 67.2m 1.000E+00 Pb-204\$ At-209 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 At-2095.41h9.590E-01Po-2094.100E-02Bi-2052 Po-209102y9.952E-01Pb-2054.800E-03Bi-209\$3 Bi-20515.31d1.000E+00Pb-2054 Pb-2051.53E+7y1.000E+00T1-205\$ At-210 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 1
 Nuclide

 1 At-210
 8.1h
 9.982E-01 Po-210
 1.750E-03 Bi-206

 2 Po-210
 138.376d
 1.000E+00 Pb-206\$

 3 Bi-206
 6.243d
 1.000E+00 Pb-206\$

 At-211 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 At-211
 7.214h
 5.820E-01 Po-211
 4.180E-01 Bi-207

 2 Po-211
 0.516s
 1.000E+00 Pb-207\$

 3 Bi-207
 32.9y
 1.000E+00 Pb-207\$

 At-215 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 At-215 1.00E-4s 1.000E+00 Bi-211 2 Bi-211 2.14m 9.972E-01 T1-207 2.760E-03 Po-211 3 T1-207 4.77m 1.000E+00 Pb-207\$ 3 T1-2074.77m1.000E+00Pb-207\$4 Po-2110.516s1.000E+00Pb-207\$ At-216 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide fá Nuclide 1 At-216 3.00E-4s 1.000E+00 Bi-212 2 Bi-212 60.55m 6.406E-01 Po-212 3.594E-01 T1-208 3 Po-212 2.99E-7s 1.000E+00 Pb-208\$

4 T1-208 3.053m 1.000E+00 Pb-208\$

At-217

At-217				D 1	
Products				Daughter	
Nuclide Halflife		Nuclide	f2	Nuclide	£3
Nuclide f4 Nucl		nuorrae			10
1 At-217 3.23E-2s		Bi-213			
2 Bi-213 45.59m			2.090E-02	T1-209	
3 Po-213 4.2E-6s					
4 T1-209 2.161m	1.000E+00	Pb-209			
5 Pb-209 3.253h	1.000E+00	Bi-209\$			
At-218					
Dreducto				Daughter	
	f1		f2	Nuclide	£3
Nuclide f4 Nucl		Nucride	12	Nuclide	1.5
	9.990E-01	Bi-214	1.000E-03	Bn-218	
2 Bi-214 19.9m					
3 Rn-218 3.5E-2s	1.000E+00	Po-214			
3 Rn-218 3.5E-2s 4 Po-214 1.643E-4s	1.000E+00	Pb-210			
5 Tl-210 1.30m	1.000E+00	Pb-210			
6 Pb-210 22.20y	1.000E+00	Bi-210	1.900E-08	Hg-206	
7 Bi-210 5.013d	1.000E+00	Po-210	1.320E-06	T1-206	•
8 Hg-206 8.15m	1.000E+00	T1-206			
9 Po-210 138.376d	1.000E+00	Pb-206\$			
10 T1-206 4.200m	1 0005+00	Dh-2065			
10 11-200 4.2001	1.0005+00	FD-2009			
	1.0005+00				
At-219				Doughtor	
At-219				Daughter	
At-219 Products				-	f3
At-219 Products Nuclide Halflife	 f1			Daughter Nuclide	f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl	f1 ide	Nuclide		-	f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s	f1 ide 9.700E-01	Nuclide Bi-215		-	f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s 2 Bi-215 7.6m 3 Po-215 1.781E-3s	f1 ide 9.700E-01 1.000E+00 1.000E+00	Nuclide Bi-215 Po-215 Pb-211		-	f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s 2 Bi-215 7.6m 3 Po-215 1.781E-3s 4 Pb-211 36.1m	f1 ide 9.700E-01 1.000E+00 1.000E+00 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211	f2	Nuclide	f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s 2 Bi-215 7.6m 3 Po-215 1.781E-3s 4 Pb-211 36.1m 5 Bi-211 2.14m	f1 ide 9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207	f2	Nuclide	f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s 2 Bi-215 7.6m 3 Po-215 1.781E-3s 4 Pb-211 36.1m 5 Bi-211 2.14m 6 T1-207 4.77m	f1 ide 9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$	f2	Nuclide	f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s 2 Bi-215 7.6m 3 Po-215 1.781E-3s 4 Pb-211 36.1m 5 Bi-211 2.14m 6 T1-207 4.77m	f1 ide 9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$	f2	Nuclide	f3
At-219 Products	f1 ide 9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$	f2	Nuclide	f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s 2 Bi-215 7.6m 3 Po-215 1.781E-3s 4 Pb-211 36.1m 5 Bi-211 2.14m 6 T1-207 4.77m	f1 ide 9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$	f2 2.760E-03	Nuclide Po-211	f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s 2 Bi-215 7.6m 3 Po-215 1.781E-3s 4 Pb-211 36.1m 5 Bi-211 2.14m 6 T1-207 4.77m 7 Po-211 0.516s At-220	f1 ide 9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$	f2 2.760E-03	Nuclide	f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s 2 Bi-215 7.6m 3 Po-215 1.781E-3s 4 Pb-211 36.1m 5 Bi-211 2.14m 6 T1-207 4.77m 7 Po-211 0.516s At-220 Products	f1 ide 9.700E-01 1.000E+00 1.000E+00 9.972E-01 1.000E+00 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 Tl-207 Pb-207\$ Pb-207\$	f2 2.760E-03	Nuclide Po-211 Daughter	
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s 2 Bi-215 7.6m 3 Po-215 1.781E-3s 4 Pb-211 36.1m 5 Bi-211 2.14m 6 T1-207 4.77m 7 Po-211 0.516s At-220 Products Nuclide Halflife	f1 ide 9.700E-01 1.000E+00 1.000E+00 9.972E-01 1.000E+00 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$	f2 2.760E-03	Nuclide Po-211	f3 f3
At-219 Products Nuclide Halflife Nuclide f4 Nucl 1 At-219 56s 2 Bi-215 7.6m 3 Po-215 1.781E-3s 4 Pb-211 36.1m 5 Bi-211 2.14m 6 T1-207 4.77m 7 Po-211 0.516s At-220 Products Nuclide Halflife Nuclide f4 Nucl	f1 ide 9.700E-01 1.000E+00 1.000E+00 9.972E-01 1.000E+00 1.000E+00 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$ Pb-207\$	f2 2.760E-03 f2	Nuclide Po-211 Daughter Nuclide	
At-219 Products	f1 ide 9.700E-01 1.000E+00 1.000E+00 9.972E-01 1.000E+00 1.000E+00 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$ Pb-207\$ Pb-207\$	f2 2.760E-03	Nuclide Po-211 Daughter Nuclide	
At-219 Products	f1 ide 9.700E-01 1.000E+00 1.000E+00 9.972E-01 1.000E+00 1.000E+00 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$ Pb-207\$ Pb-207\$	f2 2.760E-03 f2	Nuclide Po-211 Daughter Nuclide	
At-219 Products	f1 ide 9.700E-01 1.000E+00 1.000E+00 9.972E-01 1.000E+00 1.000E+00 1.000E+00 f1 ide 9.200E-01 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$ Pb-207\$ Pb-207\$ Nuclide Rn-220 Po-216 Po-216	f2 2.760E-03 f2	Nuclide Po-211 Daughter Nuclide	
At-219 Products	f1 ide 9.700E-01 1.000E+00 1.000E+00 9.972E-01 1.000E+00 1.000E+00 1.000E+00 f1 ide 9.200E-01 1.000E+00 1.000E+00	Nuclide Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$ Pb-207\$ Pb-207\$ Pb-207\$	f2 2.760E-03 f2	Nuclide Po-211 Daughter Nuclide	

6 Bi-212 7 Po-212 8 Tl-208	60.55m 2.99E-7s 3.053m	6.406E-01 1.000E+00 1.000E+00	Po-212 Pb-208\$ Pb-208\$	3.594E-01	Tl-208	
Rn-207				I	Daughter	
Products						60
Nuclide f4	Halflife Nucli	t1 ide	Nuclide	£2	Nuclide	f3
1 Rn-207 2 At-207 3 Po-203 4 Po-207 5 Bi-203 6 Bi-207 7 Pb-203 8 Pb-199 9 T1-199	9.25m 1.80h 36.7m 5.80h 11.76h	7.900E-01 9.140E-01 9.989E-01 9.998E-01 1.000E+00	Po-207 Bi-203 Bi-207 Pb-203	8.600E-02 1.100E-03 2.100E-04	Bi-203 Pb-199	
	, , , , , , , , , , , , , , , , , , , ,	110001.00				
Rn-209				I	Daughter	
Products	 -				-	52
Nuclide Nuclide f4 1 Rn-209 2 At-209 3 Po-205 4 Po-209 5 Bi-205 6 Pb-205 7 Pb-201 8 T1-201	1.66h 102y 15.31d 1.53E+7y	ide 8.300E-01 9.590E-01 9.990E-01 9.952E-01 1.000E+00 1.000E+00	At-209 Po-209 Bi-205 Pb-205 Pb-205 T1-205\$	1.700E-01 4.100E-02 4.000E-04	Po-205 Bi-205 Pb-201	f3
Rn-210					Daughter	
					-	
	Halflife Nucl:		Nuclide	f2	Nuclide	£3
1 Rn-210 2 Po-206 3 At-210 4 Bi-206 5 Pb-202 6 T1-202 7 Po-210	2.4h 8.8d 8.1h 6.243d 5.25E+4y 12.23d	9.600E-01	Bi-206 Bi-206 Pb-206\$ Tl-202 Hg-202\$	5.450E-02	Pb-202 Po-210	
Rn-211						
Products]	Daughter	
Nuclide f4	Halflife Nucl:	fl		f2	Nuclide	£3
1 Rn-211	14.6h	7.260E-01	At-211	2.740E-01	Po-207	

111 [·]

2 At-211 3 Po-207 4 Po-211 5 Bi-207 5 Bi-207 6 Pb-203 7 .214h 5 .820E-01 Po-211 9 .998E-01 Bi-207 9 .998E-01 Bi-207 1 .000E+00 Pb-207\$ 5 1.873h 1 .000E+00 Tl-203\$ 4 .180E-01 Bi-207 2 .100E-04 Pb-203 9 .998E-01 Pb-207\$ 5 .800 1 .000E+00 Tl-203\$ Rn-212 ----- Daughter Products -----

 Nuclide
 Halflife
 f1
 Nuclide
 f2
 Nuclide

 Nuclide
 f4
 Nuclide
 Nuclide</ f3 3 Bi-208 3.68E+5y 1.000E+00 Pb-208\$ Rn-215 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rn-215 2 Po-211 2 Po-215 2 P Rn-216 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rn-216 4.5E-5s 1.000E+00 Po-212 2 Po-212 2.99E-7s 1.000E+00 Pb-208\$ Rn-217 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Rn-217 5.40E-4s 1.000E+00 Po-213 2 Po-213 4.2E-6s 1.000E+00 Pb-209 3 Pb-209 3.253h 1.000E+00 Bi-209\$ Rn-218 ---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3

 Nuclide
 Halling
 If
 Nuclide
 Halling
 If
 Nuclide
 Halling
 If
 Nuclide
 Halling
 Hallin 7 T1-206 4.200m 1.000E+00 Pb-206\$

Rn-219	÷ .				
Products				Daughter	
Nuclide Halflife	fl	Nuclide	f2	Nuclide	f3
Nuclide f4 Nucl 1 Rn-219 3.96s	ide 1 0005+00	Po-215			
2 Po-215 1.781E-3s	1.000E+00	Pb-211			
3 Pb-211 36.1m	1.000E+00	Bi-211	0 7600 00	D- 011	
4 Bi-211 2.14m 5 Tl-207 4.77m	9.972E-01 1.000E+00	Pb-207\$	2./60E-03	PO-211	
6 Po-211 0.516s	1.000E+00	Pb-207\$			
Rn-220					
				Daughter	
Products Nuclide Halflife			f2	Nuclide	f3
Nuclide f/ Nucl	ide				
1 Rn-220 55.6s 2 Po-216 0.145s 3 Pb-212 10.64h 4 Bi-212 60.55m 5 Po-212 2.99E-7s 6 Tl<208	1.000E+00	Po-216 Pb-212			
3 Pb-212 10.64h	1.000E+00	Bi-212			
4 Bi-212 60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
5 PO-212 2.99E-78 6 T1-208 3.053m	1.000E+00 1.000E+00	PD-208\$ Pb-208\$			
Rn-222				Daughter	
Products				-	6.2
Nuclide Halflife Nuclide f4 Nucl	II ide	Nuclide	IΖ	Nuclide	Ι3
1 Rn-222 3.8235d	1.000E+00			,	
2 Po-218 3.10m 3 Pb-214 26.8m			2.000E-04	At-218	
4 At-218 1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218	
5 Bi-214 19.9m	9.998E-01	Po-214	2.100E-04	T1-210	
6 Rn-218 3.5E-2s 7 Po-214 1.643E-4s 8 Tl-210 1.30m	1.000E+00	PO-214 Pb-210			
8 T1-210 1.30m	1.000E+00	Pb-210			
9 Pb-210 22.20y 10 Bi-210 5.013d	1.000E+00	Bi-210 Po-210	1.900E-08 1.320E-06	Hg-206 Tl-206	
	1.000E+00		1.5201 00	11 200	
	1.000E+00				
13 T1-206 4.200m	1.000E+00	PD-2065			
Rn-223				Decembras	
Products				Daughter	
Nuclide Halflife		Nuclide	f2	Nuclide	£3
Nuclide f4 Nucl 1 Rn-223 24.3m	ide 1.000E+00	Fr-223			
2 Fr-223 22.00m	1.000E+00	Ra-223	6.000E-05	At-219	
3 Ra-223 11.43d	1.000E+00	Rn-219			

4 At-219 5 Rn-219 6 Bi-215 7 Po-215 8 Pb-211 9 Bi-211 10 T1-207 11 Po-211	7.6m 1.781E-3s 36.1m 2.14m 4.77m	1.000E+00 1.000E+00 1.000E+00 9.972E-01 1.000E+00	Po-215 Pb-211 Bi-211 Tl-207 Pb-207\$	2.760E-03	Po-211	
'Fr-212					Daughtor	
Products					Daughter	
	Halflife Nucl	f1 ide				£3
2 Rn-212	23.9m	1.000E+00	Po-208	•		
3 At-208 4 Po-208	1.63h	9.945E-01	Po-208	5.500E-03 1.000E+00		
5 Bi-208	3.68E+5v	1.000E+00	Pb-208\$			
6 Bi-204 7 Pb-204m	11.22h 67.2m	9.853E-02 1.000E+00	Pb-204m Pb-204\$	9.015E-01	Pb-204\$	
Fr-219					Daughter	
Products					Daughter	
Nuclide $f4$	Nucl	f1 ide				£3
1 Fr-219 2 At-215 3 Bi-211 4 T1-207 5 Po-211	2.0E-2s 1.00E-4s 2.14m 4.77m	1.000E+00 1.000E+00 9.972E-01 1.000E+00	At-215 Bi-211 T1-207 Pb-207\$ Pb-207\$	2.760E-03	Po-211	
Fr-220						
Products					Daughter	
Nuclide f4	Halflife	f1	Nuclide	f2	Nuclide	£3
1 Fr-220 2 At-216 3 Ra-220	27.4s 3.00E-4s	9.965E-01 1.000E+00	Bi-212	3.500E-03	Ra-220	
4 Bi-212 5 Rn-216	60.55m 4.5E-5s	6.406E-01 1.000E+00	Po-212 Po-212	3.594E-01	T1-208	
6 Po-212 7 Tl-208		1.000E+00 1.000E+00	Pb-208\$ Pb-208\$			
Fr-221	•	_ 			Daughter	·
Products			 Nu ol		-	£0
Nuclide f4 1 Fr-221			Nuclide At-217	f2	Nuclide	f3

2 At-217 3.23E-2s 3 Bi-213 45.59m 4 Po-213 4.2E-6s 5 T1-209 2.161m 6 Pb-209 3.253h	9.791E-01 1.000E+00 1.000E+00	Po-213 Pb-209 Pb-209	2.090E-02	T1-209	
Fr-222]	Daughter	
Products				Duugneer	
Nuclide Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f4 Nucl 1 Fr-222 14.2m	ide				
1 Fr-222 14.2m	1.000E+00	Ra-222			
2 Ra-222 38.0s	1.000E+00	Rn-218			
3 Rn-218 3.5E-2s					
4 Po-214 1.643E-4s			1 9005-09	H~-206	
5 Pb-210 22.20y	1.000E+00	$B_1 = 210$	1.320E-06	пу-200 т1-206	
$7 H_{d} = 206$ $8 15m^{-1}$	1.000E+00	TU-210	1.5206-00	11-200	
8 Po-210 138 376d	1 000E+00	Pb - 2065			
6 Bi-210 5.013d 7 Hg-206 8.15m 8 Po-210 138.376d 9 T1-206 4.200m	1.000 ± 00	Pb-206\$			
, <u>, , , , , , , , , , , , , , , , , , </u>	1.0001.00	1.0 2007			
Fr-223					
•				Daughter	
Products				-	
Nuclide Halflife	fl	Nuclide	f2	Nuclide	£3
Nuclidef4Nucl1Fr-22322.00m2Ra-22311.43d3At-21956s	ide				
1 Fr-223 22.00m	1.000E+00	Ra-223	6.000E-05	At-219	
2 Ra-223 11.43d	1.000E+00	Rn-219			
3 At-219 56s	9.700E-01	B1-215			
4 Rn-219 3.96s					
5 Bi-215 7.6m					
6 Po-215 1.781E-3s					
7 Pb-211 36.1m 8 Bi-211 2 14m	9 972F-01	B1-211 T1-207	2 7605-03	$P_{0} = 211$	
8 Bi-211 2.14m 9 Tl-207 4.77m 10 Po-211 0.516s	1 000E+00	Pb - 2075	2.7001 05	10 211	
$10 \text{ Po-}211 \qquad 0.516\text{ s}$	1.000E+00	Pb-207\$			
10 10 211 010105	110002.00				
Fr-224					
				Daughter	
Products				-	
Nuclide Halflife		Nuclide	f2	Nuclide	f3
Nuclide f4 Nucl					
	1.000E+00				
2 Ra-224 3.66d	1.000E+00				
3 Rn-220 55.6s	1.000E+00				
4 Po-216 0.145s	1.000E+00				
5 Pb-212 10.64h	1.000E+00		3 5040-01	m1_200	
6 Bi-212 60.55m 7 Po-212 2.99E-7s			3.594E-01	11-200	
	1.000E+00 1.000E+00				
5 II 200 5.055m	T.000E+00	10 2009			

Fr-227

					Daughter	
Products					_	
Nuclide H	Halflife	f1	Nuclide	f2	Nuclide	f3
Nuclide f4	Nucl:	ide 1.000E+00	D- 007			
1 Fr-227	2.4/m 42.2m	1.000E+00 1.000E+00	Ra-227			
2 Ra-227 3 Ac-227	42.2III	1.000E+00	AC=227	1 2005 02	Fr-223	
4 Th-227	21.//ZY	9.002E-UI	$P_{2} = 223$	1.3006-02	FI-225	
5 Fr - 223				6.000E-05	a+-219	
6 Ra-223		1.000E+00		0.0001 00	AL ZIJ	
7 Rn-219						
8 At-219		9.700E-01				
9 Bi-215	7.6m	1.000E+00				
10 Po-215 1	.781E-3s	1.000E+00	Pb-211			
11 Pb-211	36.1m	1.000E+00	Bi-211			
12 Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211	
13 Tl-207						
14 Po-211	0.516s	1.000E+00	Pb-207\$			
Ra-219						
					Daughter	
12000000				50		£ 2
Nuclide 14		f1	Nucitae	EZ .	Nuclide	f3
1 Ra-219	10mc		Pn = 215			
2 Rn - 215						
3 Po-211						
	0.0100	1.0002.00	12 10 14			
Ra-220						
					Daughter	
Products	-					
Nuclide I	Halflife	fl	Nuclide	£2	Nuclide	£3
Nuclide f4						
1 Ra-220						
2 Rn-216						
3 Po-212 2	2.99E-7s	1.000E+00	Pb-208\$			
Ra-221				_		
Ra-221					Daughter	
Products				:	Daughter	
			Nuclide	f2	Nuclide	£3
Nuclide f4	Nucl					
1 Ra-221		1.000E+00	Rn-217			
	5.40E-4s	1.000E+00	Po-213			
3 Po-213						
4 Pb-209	3.253h	1.000E+00	Bi-209\$			
Ra-222						
f f					Daughter	
Products Nuclide I				fo	Nual-de	· f 2
Nuclide 1 Nuclide f4			Nuclide	f2	Nuclide	f3
Nucriae 14	Nucl:	rue				

1 Ra-222 38.0s 2 Rn-218 3.5E-2s 3 Po-214 1.643E-4s 4 Pb-210 22.20y 5 Bi-210 5.013d 6 Hg-206 8.15m 7 Po-210 138.376d 8 T1-206 4.200m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Po-214 Pb-210 Bi-210 Po-210 T1-206 Pb-206\$	1.900E-08 1.320E-06	Hg-206 T1-206	
Ra-223				Daughter	
Products				Duugneer	
	fl	Nuclide	f2	Nuclide	f3
Nuclide f4 Nucl		•			
1 Ra-223 11.43d					
2 Rn-219 3.96s	1.000E+00	Po-215			
3 Po-215 1.781E-3s	1.000E+00	Pb-211			
4 Pb-211 36.1m 5 Bi-211 2.14m 6 T1-207 4.77m	1.000E+00	B1-211	0 7000 00	D 011	
5 B1-211 2.14m	9.9/2E-01	T1-207	2.760E-03	Po-211	
7 Po-211 0.516s	1.000E+00	PD-2075			
7 PO-211 0.5165	1.0006+00	PD-2075			
Ra-224				_	
Products				Daughter	
		Nuclide	£0	Numlia	<i>ב</i> 2
Nuclide Halflife Nuclide f4 Nucl		NUCIIde	ΓZ	Nuclide	I3
$1 \text{ Ra} - 224 \qquad 3.66d$	1 0005+00	Pn-220			
2 Rn-220 55.6s	1 000E+00	$P_0 = 216$			
3 Po-216 0.145s					
	1.000E+00				
5 Bi-212 60.55m			3 594E-01	TI-208	
6 Po-212 2.99E-7s	1.000E+00	Pb-2085	5.5541 01	17 200	
7 T1-208 3.053m	1.000E+00	Pb-208\$			
Ra-225					
				Daughter	
IIOUUOUD					
Nuclide Halflife		Nuclide	f2	Nuclide	f3
Nuclide f4 Nucl					
1 Ra-225 14.9d					
	1.000E+00				
	1.000E+00				
	9.999E-01 9.791E-01		2 0000 02	m1 000	
	9.791E-01 1.000E+00		2.090E-02	11-203	
	1.000E+00				
	1.000E+00				
	T.000E100	DT 2033			
Ra-226				_	
Droducto	·			Daughter	
Products					

	Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuc	lide f4	l Nucl	ide				
1	Ra-226	1600y	1.000E+00	Rn-222			
2	Rn-222	3.8235d	1.000E+00	Po-218			
3	Po-218	3.10m	9.998E-01	Pb-214	2.000E-04	At-218	
4	Pb-214	26.8m	1.000E+00	Bi-214			
5	At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218	
6	Bi-214	19.9m	9.998E-01	Po-214	2.100E-04	T1-210	
7	Rn-218	3.5E-2s	1.000E+00	Po-214			
8	Po-214	1.643E-4s	1.000E+00	Pb-210			
9	Tl-210	1.30m	1.000E+00	Pb-210			
10	Pb-210	22.20y	1.000E+00	Bi-210	1.900E-08	Hg-206	
	Bi-210		1.000E+00		1.320E-06	T1-206	
12	Hg-206	8.15m	1.000E+00	т1-206			
13	Po-210	138.376d	1.000E+00	Pb-206\$			
14	Tl-206	4.200m	1.000E+00	Pb-206\$			

.

Ra-227

Rd-227	•					
				I	Daughter	
Products	· · · · · · · · · · · · · · · · · · ·	·				
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f4	Nucl	ide				
1 Ra-227	42.2m	1.000E+00	Ac-227			
2 Ac-227	21.772y	9.862E-01	Th-227	1.380E-02	Fr-223	
3 Th-227	18.68d	1.000E+00	Ra-223			
4 Fr-223	22.00m	1.000E+00	Ra-223	6.000E-05	At-219	
5 Ra-223	11.43d	1.000E+00	Rn-219			
6 Rn-219	3.96s	1.000E+00	Po-215			
7 At-219	56s	9.700E-01	Bi-215 .			
8 Bi-215	7.6m	1.000E+00	Po-215			
9 Po-215	1.781E-3s	1.000E+00	Pb-211			
10 Pb-211	36.1m	1.000E+00	Bi-211			
11 Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211	
12 Tl-207	4.77m	1.000E+00	Pb-207\$			
13 Po-211	, 0.516s	1.000E+00	Pb-207\$			

Ra-228

]	Daughter	
Prod	ducts					2	
	Nuclide	Halflife	fl	Nuclide	£2	Nuclide	£3
Nucl	lide f4	Nucl	ide				
1	Ra-228	5.75y	1.000E+00	Ac-228			
2	Ac-228	6.15h	1.000E+00	Th-228			
3	Th-228	1.9116y	1.000E+00	Ra-224			
4	Ra-224	3.66d	1.000E+00	Rn-220			
5	Rn-220	55.6s	1.000E+00	Po-216			
6	Po-216	0.145s	1.000E+00	Pb-212			
7	Pb-212	10.64h	1.000E+00	Bi-212			
8	Bi-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
9	Po-212	2.99E-7s	1.000E+00	Pb-208\$			
10	T1-208	3.053m	1.000E+00	Pb-208\$			

•

Ra-230

Ra-250					Doughton	
Products					Daughter	
	Halflife	fl	Nuclide	f2	Nuclide	f3
	Nucl					
1 Ra-230	93m	1.000E+00	Ac-230			
2 Ac-230	122s	1.000E+00	Th-230			
3 Th-230 '	7.538E+4y	1.000E+00	Ra-226			
3 Th-230 4 Ra-226 5 Rn-222	1600y	1.000E+00	Rn-222			
5 Rn-222	3.8235d	1.000E+00	Po-218			
6 Po-218	3.10m	9.998E-01	Pb-214	2.000E-04	At-218	
7 Pb-214						
8 At-218						
9 Bi-214				2.100E-04	Tl-210	
10 Rn-218						
11 Po-214	1.643E-4s	1.000E+00	Pb-210		•	
12 T1-210	1.30m	1.000E+00	Pb-210			
13 Pb-210	22.20y	1.000E+00	B1-210	1.900E-08	Hg-206	
12 Tl-210 13 Pb-210 14 Bi-210 15 Hg-206	5.013d	1.000E+00	Po-210	1.320E-06	T1-206	
16 Po-210	0.15m	1.000E+00	T1-206			
17 Tl-206	4.2001	1.0006+00	PD-2065			
Ac-223						
					Daughter	
Products					Daagneer	
	Halflife	f1	Nuclide	f2	Nuclide	f3
Nuclide f4						
1 Ac-223	2.10m	9.900E-01	Fr-219			
2 Fr-219	2.0E-2s	1.000E+00	At-215			
3 At-215	1.00E-4s	1.000E+00	Bi-211			
4 Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211	
5 T1-207	4.77m	1.000E+00	Pb-207\$			
6 Po-211	0.516s	1.000E+00	Pb-207\$			
Ac-224				· .		
Products					Daughter	
riouuceb		f1		f2	Nuclide	£β
Nuclide f4	Nucl	ide	Nucliue	12	NUCLICE	13
1 Ac-224	2 78h	9 090E - 01	Ba-224	9 100E-02	Fr-220	•
2 Ra-224	3.66d	1.000E+00		9.1000 02	11 220	
3 Fr-220	27.4s	9.965E-01		3.500E-03	Ba-220	
4 Rn-220	55.6s	1.000E+00		0.0001 00		
5 Po-216	0.145s	1.000E+00				`
6 Pb-212	10.64h	1.000E+00				
7 At-216	3.00E-4s	1.000E+00				
8 Bi-212		6.406E-01		3.594E-01	T1-208	
9 Ra-220	1.79E-2s	1.000E+00				
10 Rn-216	4.5E-5s	1.000E+00				,
11 Po-212	2.99E-7s	1.000E+00	Pb-208\$			
12 Tl-208	3.053m	1.000E+00	Pb-208\$			

Ac-225

.

				I	Daughter	
Products					2	
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f4	Nucli				:	
1 Ac-225	10.0d	1.000E+00	Fr-221			-
2 Fr-221	4.9m	1.000E+00	At-217			
3 At-217	3.23E-2s	9.999E-01	Bi-213			
4 Bi-213				2.090E-02	T1-209	
5 Po-213						
6 T1-209	2.161m	1.000E+00	Pb-209			
7 Pb-209	3.253h	1.000E+00	Bi-2095			
10 200	0.200.	1.0002.00	D1 1007			
Ac-226						
110 220				T	Daughter	
Products				1	Judgheer	
	Halflife	f1	Nuclide	f2	Nuclide	£3
	Nucli		Nucriae	12	Nucliuc	10
1 Ac-226			Th-226	1.700E - 01	Ba-226	
6.000E-05 Fr-		0.0001 01	111 220	1.,001 01		
2 Th-226	30 57m	$1 000E \pm 00$	Ba-222			,
2 Th-226 3 Ra-226 4 Fr-222	16001	1.000E+00	Rn = 222			
4 Fr - 222	$14 \ 2m$	1.000E+00	Ra-222			
5 Ra-222	38.05	1.000E+00	Rn - 218			
6 Rn-222	3 82354	1.000 ± 100	$P_{0} = 218$			
7 Po-218				9 9985-01	Ph-214	
8 At-218						
9 Rn-218	2 5E-2a	1.000E 05	$R_{0} = 214$	J.JJ0E 01	DI ZIA	
10 ph 214	J.JE-25	1.000E+00	PO = 214			
10 PD = 214 11 D = 214	20.0m	9.998E-01	$D_1 = 214$	2.100E-04	m1_210	
10 Pb-214 11 Bi-214 12 Po-214 1	19.9m	9.996E-UI	PO-214	2.1006-04	11-210	
12 PO-214 1	1 20-	1.000E+00	PD=210			
13 T1-210				1 0000 00	U~ 20¢	
14 Pb-210	22.20y	1.000E+00	B1-210			
15 Bi-210	5.013a	1.000E+00	PO-210	1.320E-06	TI-206	
16 Hg-206	8.15m	1.000E+00	T1-206			
17 Po-210	138.376d	1.000E+00	Pb-2065			
18 Tl-206	4.200m	1.000E+00	PD-2065			
N = 007						
Ac-227					Davenhtari	
Droducto				-]	Daughter	
Products			 Nu - 1 i -l -	£0	Nie – I dala	£0
	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f4	Nucl		m) 007	1 2005 00	H 000	
1 Ac-227	21.772y			1.380E-02	Fr-223	
2 Th-227	18.68d			c		
3 Fr-223	22.00m	1.000E+00		6.000E-05	At-219	
4 Ra-223	11.43d	1.000E+00				
5 Rn-219		1.000E+00				
6 At-219	_56s					
7 Bi-215	7.6m					
8 Po-215 1	.781E-3s	1.000E+00	Pb-211			

9 Pb-2	11 36.1m	1.000E+00	Bi-211			
10 Bi-2	11 2.14m	9.972E-01	T1-207	2.760E-03	Po-211	
11 Tl-2	07 4.77m	1.000E+00	Pb-207\$	•		
12 Po-2	11 0.516s	1.000E+00	Pb-207\$			

Ac-228

					[]	Daughter	
Prod	ducts						
	Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3
Nuc	lide f4	Nucl	ide				
1	Ac-228	6.15h	1.000E+00	Th-228			
2	Th-228	1.9116y	1.000E+00	Ra-224			
3	Ra-224	3.66d	1.000E+00	Rn-220			
4	Rn-220	55.6s	1.000E+00	Po-216			
5	Po-216	0.145s	1.000E+00	Pb-212			
6	Pb-212	10.64h	1.000E+00	Bi-212			
7	Bi-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
8	Po-212	2.99E-7s	1.000E+00	Pb-208\$			
9	T1-208	3.053m	1.000E+00	Pb-208\$			

Ac-230

						Daughter	
Proc	lucts					2	
	Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3
Nucl	lide f4	1 Nucl	ide				
1	Ac-230	122s	1.000E+00	Th-230			
2	Th-230	7.538E+4y	1.000E+00	Ra-226			
3	Ra-226	1600y	1.000E+00	Rn-222			
4	Rn-222	3.8235d	1.000E+00	Po-218			
5	Po-218	3.10m	9.998E-01	Pb-214	2.000E-04	At-218	
6	Pb-214	26.8m	1.000E+00	Bi-214			
7	At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218	
8	Bi-214	19.9m	9.998E-01	Po-214	2.100E-04	T1-210	
9	Rn-218	3.5E-2s	1.000E+00	Po-214			
10	Po-214	1.643E-4s	1.000E+00	Pb-210			
11	Tl-210	1.30m	1.000E+00	Pb-210			
12	Pb-210	22.20y	1.000E+00	Bi-210	1.900E-08	Hg-206	
13	Bi-210	5.013d	1.000E+00	Po-210	1.320E-06	T1-206	
14	Hg-206	8.15m	1.000E+00	T1-206			
15	Po-210	138.376d	1.000E+00	Pb-206\$			
16	Tl-206	4.200m	1.000E+00	Pb-206\$			

Ac-231

----- Daughter _____ Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Ac-231
 7.5m
 1.000E+00
 Th-231

 2 Th-231
 25.52h
 1.000E+00
 Pa-231

 3 Pa-231
 3.276E+4y
 1.000E+00
 Ac-227

 4 Ac-227 21.772y 9.862E-01 Th-227 18.68d 1.000E+00 Ra-223 1.380E-02 Fr-223 5 Th-227

-	Fr-223		1.000E+00		6.000E-05	At-219
	Ra-223		1.000E+00			
8	Rn-219	3.96s	1.000E+00	Po-215		
9	At-219	56s	9.700E-01	Bi-215		
10	Bi-215	7.6m	1.000E+00	Po-215		
11	Po-215	1.781E-3s	1.000E+00	Pb-211		
12	Pb-211	36.1m	1.000E+00	Bi-211		
13	Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211
14	T1-207	4.77m	1.000E+00	Pb-207\$		
15	Po-211	0.516s	1.000E+00	Pb-207\$		

Ac-232

						Daughter	
Prod	lucts -					2	
	Nuclide	Halflife	£1	Nuclide	£2	Nuclide	f3
Nucl	.ide f	4 Nucl	ide				
1	Ac-232	119s	1.000E+00	Th-232			
. 2	Th-232	1.405E10y	1.000E+00	Ra-228			
3	Ra-228	5.75y	1.000E+00	Ac-228			
4	Ac-228	6.15h	1.000E+00	Th-228			
5	Th-228	1.9116y	1.000E+00	Ra-224			
6	Ra-224	3.66d	1.000E+00	Rn-220			
7	Rn-220	55.6s	1.000E+00	Po-216			
8	Po-216	0.145s	1.000E+00	Pb-212			
9	Pb-212	10.64h	1.000E+00	Bi-212			
10	Bi-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
11	Po-212	2.99E-7s	1.000E+00	Pb-208\$			
12	T1-208	3.053m	1.000E+00	Pb-208\$			

Ac-233

AC-255				<u>-</u>	Daughter	
Products -					Daughter	
Nuclide	Halflife	fl	Nuclide	f2	Nuclide	£3
Nuclide f	4 Nucl	ide				
1 Ac-233	145s	1.000E+00	Th-233			
2 Th-233	22.3m	1.000E+00	Pa-233			
	26.967d					
4 U-233	1.592E+5y					
5 Th-229	7.34E+3y	1.000E+00	Ra-225			
6 Ra-225	14.9d	1.000E+00	Ac-225			
7 Ac-225	10.0d	1.000E+00	Fr-221			
8 Fr-221	4.9m	1.000E+00	At-217			
9 At-217	3.23E-2s	9.999E-01	Bi-213			
10 Bi-213	45.59m	9.791E-01	Po-213	2.090E-02	T1-209	
11 Po-213	4.2E-6s	1.000E+00	Pb-209			
12 T1-209	2.161m	1.000E+00	Pb-209			
13 Pb-209	3.253h	1.000E+00	Bi-209\$			
Th-223						
					Daughter	
Products -					Daughter	
	Halflife	f1	Nuclide	f2	Nuclide	f3

Nuclidef4Nuclide1 Th-2230.60s1.000E+00Ra-2192 Ra-21910ms1.000E+00Rn-2153 Rn-2152.30us1.000E+00Po-2114 Po-2110.516s1.000E+00Pb-207\$ Th-224 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclidef4Nuclide1 Th-2241.05s1.000E+00 Ra-220 2 Ra-220 1.79E-2s 1.000E+00 Rn-216 3 Rn-216 4.5E-5s 1.000E+00 Po-212 4 Po-212 2.99E-7s 1.000E+00 Pb-208\$ Th-226 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide uclidef4Nuclide1Th-22630.57m1.000E+00Ra-2222Ra-22238.0s1.000E+00Rn-2183Rn-2183.5E-2s1.000E+00Po-2144Po-2141.643E-4s1.000E+00Pb-2105Pb-21022.20y1.000E+00Bi-2101.900E-086Bi-2105.013d1.000E+00Po-2101.320E-067Hg-2068.15m1.000E+00Tl-2068Po-210138.376d1.000E+00Pb-206\$9Tl-2064.200m1.000E+00Pb-206\$ Th-227 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 Th-227
 18.68d
 1.000E+00
 Ra-223

 2 Ra-223
 11.43d
 1.000E+00
 Rn-219

 3 Rn-219
 3.96s
 1.000E+00
 Po-215

 4 Po-215
 1.781E-3s
 1.000E+00
 Pb-211

 5 Pb-211
 36.1m
 1.000E+00
 Bi-211

 6 Bi-211
 2.14m
 9.972E-01
 Tl-207
 2.760E-03
 Po-211

 7 Tl-207
 4.77m
 1.000E+00
 Pb-207\$
 8
 Po-211
 0.516s
 1.000E+00
 Pb-207\$

 Th-228 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Th-228 1.9116y 1.000E+00 Ra-224 2 Ra-224 3.66d 1.000E+00 Rn-220

4 Po-2160.145s1.000E+00Pb-2125 Pb-21210.64h1.000E+00Bi-2126 Bi-21260.55m6.406E-01Po-2123.594E-017 Po-2122.99E-7s1.000E+00Pb-208\$8 T1-2083.053m1.000E+00Pb-208\$	
Th-229	
Products Daughter	
Nuclide Halflife f1 Nuclide f2 Nuclide Nuclide f4 Nuclide	£3
1 Th-229 7.34E+3y 1.000E+00 Ra-225 2 Ra-225 14.9d 1.000E+00 Ac-225 3 Ac-225 10.0d 1.000E+00 Fr-221 4 Fr-221 4.9m 1.000E+00 At-217	
5 At-217 3.23E-2s 9.999E-01 Bi-213	
6 Bi-213 45.59m 9.791E-01 Po-213 2.090E-02 T1-209 7 Po-213 4 2E-6s 1 000E+00 Pb-209	
7 Po-213 4.2E-6s 1.000E+00 Pb-209 8 T1-209 2.161m 1.000E+00 Pb-209 9 Pb-209 3.253h 1.000E+00 Bi-209\$	
9 Pb-209 3.253h 1.000E+00 Bi-209\$	
Th-230	
Products Daughter	
Nuclide Halflife f1 Nuclide f2 Nuclide	£3
Nuclide f4 Nuclide 1 Tb_{230} 7 539F+4y 1 000F+00 Pa_226	
1 Th-230 7.538E+4y 1.000E+00 Ra-226 2 Ra-226 1600y 1.000E+00 Rn-222 3 Rn-222 3.8235d 1.000E+00 Po-218 4 Po-218 3.10m 9.998E-01 Pb-214 2.000E-04 At-218	
3 Rn-222 3.8235d 1.000E+00 Po-218	
4 Po-218 3.10m 9.998E-01 Pb-214 2.000E-04 At-218	
$f = D_{1} - 0.14$ $- 0.0 - 0$	
5 Pb-214 26.8m 1.000E+00 Bi-214 6 At-218 1.5s 9 990E-01 Bi-214 1.000E-03 Bp-218	
6 At-218 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218	
6 At-2181.5s9.990E-01Bi-2141.000E-03Rn-2187 Bi-21419.9m9.998E-01Po-2142.100E-04T1-2108 Rn-2183.5E-2s1.000E+00Po-214	
6 At-2181.5s9.990E-01Bi-2141.000E-03Rn-2187 Bi-21419.9m9.998E-01Po-2142.100E-04T1-2108 Rn-2183.5E-2s1.000E+00Po-214	
6 At-218 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218 7 Bi-214 19.9m 9.998E-01 Po-214 2.100E-04 Tl-210 8 Rn-218 3.5E-2s 1.000E+00 Po-214 9 Po-214 1.643E-4s 1.000E+00 Pb-210 10 Tl-210 1 30m 1 000E+00 Pb-210	
6 At-218 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218 7 Bi-214 19.9m 9.998E-01 Po-214 2.100E-04 T1-210 8 Rn-218 3.5E-2s 1.000E+00 Po-214 2.100E-04 T1-210 9 Po-214 1.643E-4s 1.000E+00 Pb-210 1.30m 1.000E+00 Pb-210 10 T1-210 1.30m 1.000E+00 Pb-210 1.900E-08 Hg-206	
6 At-218 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218 7 Bi-214 19.9m 9.998E-01 Po-214 2.100E-04 Tl-210 8 Rn-218 3.5E-2s 1.000E+00 Po-214 9 Po-214 1.643E-4s 1.000E+00 Pb-210 10 Tl-210 1 30m 1 000E+00 Pb-210	
6 At-2181.5s9.990E-01Bi-2141.000E-03Rn-2187 Bi-21419.9m9.998E-01Po-2142.100E-04T1-2108 Rn-2183.5E-2s1.000E+00Po-2142.100E-04T1-2109 Po-2141.643E-4s1.000E+00Pb-21010T1-2101.30m10 T1-2101.30m1.000E+00Pb-2101.900E-08Hg-20611 Pb-21022.20y1.000E+00Bi-2101.900E-08Hg-20612 Bi-2105.013d1.000E+00Po-2101.320E-06T1-20613 Hg-2068.15m1.000E+00Pb-206\$T1-20614 Po-210138.376d1.000E+00Pb-206\$T1-206	
6 At-2181.5s9.990E-01Bi-2141.000E-03Rn-2187 Bi-21419.9m9.998E-01Po-2142.100E-04T1-2108 Rn-2183.5E-2s1.000E+00Po-2142.100E-04T1-2109 Po-2141.643E-4s1.000E+00Pb-2101.000E+00Pb-21010 T1-2101.30m1.000E+00Pb-2101.900E-08Hg-20611 Pb-21022.20y1.000E+00Bi-2101.900E-08Hg-20612 Bi-2105.013d1.000E+00Po-2101.320E-06T1-20613 Hg-2068.15m1.000E+00T1-206T1-206	
6 At-2181.5s9.990E-01Bi-2141.000E-03Rn-2187 Bi-21419.9m9.998E-01Po-2142.100E-04T1-2108 Rn-2183.5E-2s1.000E+00Po-2142.100E-04T1-2109 Po-2141.643E-4s1.000E+00Pb-21010T1-2101.30m10 T1-2101.30m1.000E+00Pb-2101.900E-08Hg-20611 Pb-21022.20y1.000E+00Bi-2101.900E-08Hg-20612 Bi-2105.013d1.000E+00Po-2101.320E-06T1-20613 Hg-2068.15m1.000E+00Pb-206\$T1-20614 Po-210138.376d1.000E+00Pb-206\$T1-206	
6 At-218 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218 7 Bi-214 19.9m 9.998E-01 Po-214 2.100E-04 T1-210 8 Rn-218 3.5E-2s 1.000E+00 Po-214 9 Po-214 1.643E-4s 1.000E+00 Pb-210 10 T1-210 1.30m 1.000E+00 Pb-210 11 Pb-210 22.20y 1.000E+00 Bi-210 1.900E-08 Hg-206 12 Bi-210 5.013d 1.000E+00 Po-210 1.320E-06 T1-206 13 Hg-206 8.15m 1.000E+00 Pb-2065 15 T1-206 4.200m 1.000E+00 Pb-2065 Th-231 Daughter	
6 At-218 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218 7 Bi-214 19.9m 9.998E-01 Po-214 2.100E-04 T1-210 8 Rn-218 3.5E-2s 1.000E+00 Po-214 9 Po-214 1.643E-4s 1.000E+00 Pb-210 10 T1-210 1.30m 1.000E+00 Pb-210 11 Pb-210 22.20y 1.000E+00 Bi-210 1.900E-08 Hg-206 12 Bi-210 5.013d 1.000E+00 Po-210 1.320E-06 T1-206 13 Hg-206 8.15m 1.000E+00 Pb-2065 15 T1-206 4.200m 1.000E+00 Pb-2065 Th-231 Th-231 Products Daughter	F3
6 At-218 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218 7 Bi-214 19.9m 9.998E-01 Po-214 2.100E-04 T1-210 8 Rn-218 3.5E-2s 1.000E+00 Po-214 9 Po-214 1.643E-4s 1.000E+00 Pb-210 10 T1-210 1.30m 1.000E+00 Pb-210 11 Pb-210 22.20y 1.000E+00 Bi-210 1.900E-08 Hg-206 12 Bi-210 5.013d 1.000E+00 Po-210 1.320E-06 T1-206 13 Hg-206 8.15m 1.000E+00 Pb-2065 15 T1-206 4.200m 1.000E+00 Pb-2065 Th-231 Daughter	f3
6 At-218 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218 7 Bi-214 19.9m 9.998E-01 Po-214 2.100E-04 T1-210 8 Rn-218 3.5E-2s 1.000E+00 Po-214 9 Po-214 1.643E-4s 1.000E+00 Pb-210 10 T1-210 1.30m 1.000E+00 Pb-210 11 Pb-210 22.20y 1.000E+00 Bi-210 1.900E-08 Hg-206 12 Bi-210 5.013d 1.000E+00 Po-210 1.320E-06 T1-206 13 Hg-206 8.15m 1.000E+00 Pb-206\$ 15 T1-206 4.200m 1.000E+00 Pb-206\$ Th-231 Th-231 Th-231 Products	f3
6 At-218 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218 7 Bi-214 19.9m 9.998E-01 Po-214 2.100E-04 T1-210 8 Rn-218 3.5E-2s 1.000E+00 Po-214 9 Po-214 1.643E-4s 1.000E+00 Pb-210 10 T1-210 1.30m 1.000E+00 Pb-210 11 Pb-210 22.20y 1.000E+00 Bi-210 1.900E-08 Hg-206 12 Bi-210 5.013d 1.000E+00 Po-210 1.320E-06 T1-206 13 Hg-206 8.15m 1.000E+00 Pb-2065 15 T1-206 4.200m 1.000E+00 Pb-2065 Th-231 Th-231 Th-231 Th-231 Th-231 Products Daughter Nuclide Halflife f1 Nuclide f2 Nuclide Nuclide f4 Nuclide	f3

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000E+00 1.000E+00 9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01 1.000E+00	Rn-219 Po-215 Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$			
Th-232					
Products		_		Daughter	
Nuclide Halflife	fl	Nuclide	f2	Nuclide	£3
Nuclide f4 Nucl	ide			X	
1Th-2321.405E10y2Ra-2285.75y3Ac-2286.15h4Th-2281.9116y5Ra-2243.66d6Rn-22055.6s7Po-2160.145s8Pb-21210.64h9Bi-21260.55m10Po-2122.99E-7s11T1-2083.053m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 6.406E-01 1.000E+00	Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 Pb-208\$		T1-208	
Th-233					
Products				Daughter	
Nuclide Halflife			f2	Nuclide	f3
Nuclide f4 Nucl	ide				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.999E-01 9.791E-01	U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213	2.090E-02	2 T1-209	
11 Tl-209 2.161m	1.000E+00	Pb-209		•	
12 Pb-209 3.253h	1.000E+00	Bi-209\$			
Th-234					
Products				Daughter	
Nuclide Halflife Nuclide f4 Nucl	f1		f2	Nuclide	f3
1 Th-234 24.10d		Pa-234m			

3 4 5 6	Th-230 Ra-226	1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d	1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	U-234 Th-230 Ra-226 Rn-222	9.984E-01	U-234
8	Po-218	3.10m	9.998E-01	Pb-214	2.000E-04	At-218
9	Pb-214	26.8m	1.000E+00	Bi-214		
10	At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218
11	Bi-214	19.9m	9.998E-01	Po-214	2.100E-04	Tl-210
12	Rn-218	3.5E-2s	1.000E+00	Po-214		
13	Po-214	1.643E-4s	1.000E+00	Pb-210		
14	Tl-210	1.30m	1.000E+00	Pb-210		
15	Pb-210	22.20y	1.000E+00	Bi-210	1.900E-08	Hg-206
16	Bi-210	5.013d	1.000E+00	Po-210	1.320E-06	
17	Hg-206	8.15m	1.000E+00	T1-206	•	
18	Po-210	138.376d	1.000E+00	Pb-206\$		
19	T1-206	4.200m	1.000E+00	Pb-206\$		

Th-235

---- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Th-235 7.1m 1.000E+00 Pa-235 2 Pa-235 24.5m 9.999E-01 U-235m 1.011E-04 U-235 3 U-235m 26m 1.000E+00 U-235 7.04E+8y 1.000E+00 Th-231 4 U-235 5[.]Th-231 25.52h 1.000E+00 Pa-231 6 Pa-231 3.276E+4y 1.000E+00 Ac-227 21.772y 9.862E-01 Th-227 7 Ac-227 1.380E-02 Fr-223 18.68d 1.000E+00 Ra-223 22.00m 1.000E+00 Ra-223 8 Th-227 9 Fr-223 6.000E-05 At-219 10 Ra-223 11.43d 1.000E+00 Rn-219 11 Rn-219 3.96s 1.000E+00 Po-215 12 At-219 56s 9.700E-01 Bi-215 7.6m 1.000E+00 Po-215 13 Bi-215 14 Po-215 1.781E-3s 1.000E+00 Pb-211 36.1m 1.000E+00 Bi-211 2.14m 9.972E-01 T1-207 2.760E-03 Po-211 15 Pb-211 16 Bi-211 17 Tl-207 4.77m 1.000E+00 Pb-207\$ 18 Po-211 0.516s 1.000E+00 Pb-207\$

Th-236

Products ------ Daughter Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Th-236 37.5m 1.000E+00 Pa-236 2 Pa-236 9.1m 1.000E+00 U-236 3 U-236 2.342E+7y 1.000E+00 Th-232 4 Th-232 1.405E10y 1.000E+00 Ra-228

6 7 8 9 10 11 12 13	Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212	6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s	1.000E+00 1.000E+00 1.000E+00 1.000E+00 6.406E-01 1.000E+00	Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 Pb-208\$	3.594E-01	T1-208
	T1-208		1.000E+00 1.000E+00	•		

Pa-227

					Daughter	
Products					-	
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f	A Nucl:	ide				
1 Pa-227	38.3m	8.500E-01	Ac-223	1.500E-01	Th-227	
2 Ac-223	2.10m	9.900E-01	Fr-219			
3 Th-227	18.68d	1.000E+00	Ra-223			
4 Fr-219	2.0E-2s	1.000E+00	At-215			
5 At-215	1.00E-4s	1.000E+00	Bi-211			
6 Ra-223	11.43d	1.000E+00	Rn-219			
7 Rn-219	3.96s	1.000E+00	Po-215			
8 Po-215	1.781E-3s	1.000E+00	Pb-211			
9 Pb-211	36.1m	1.000E+00	Bi-211			
10 Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211	
11 Tl-207	4.77m	1.000E+00	Pb-207\$			
12 Po-211	0.516s	1.000E+00	Pb-207\$			

Daughtor

Data alb to a c

Pa-228

]	Daughter	
Pro	ducts						
	Nuclide	Halflife	f1	Nuclide	f2 -	Nuclide	£3
Nuc	lide f4	Nucl	ide				
1	Pa-228	22h	9.800E-01	Th-228	2.000E-02	Ac-224	
2	Th-228	1.9116y	1.000E+00	Ra-224			
3	Ac-224	2.78h	9.090E-01	Ra-224	9.100E-02	Fr-220	
4	Ra-224	3.66d	1.000E+00	Rn-220			
5	Rn-220	55.6s	1.000E+00	Po-216	•		
6	Po-216	0.145s	1.000E+00	Pb-212			
7	Pb-212	10.64h	1.000E+00	Bi-212			
8	Fr-220	27.4s	9.965E-01	At-216	3.500E-03	Ra-220	
9	At-216	3.00E-4s	1.000E+00	Bi-212			
10	Bi-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
11	Ra-220	1.79E-2s	1.000E+00	Rn-216			
12	Rn-216	4.5E-5s	1.000E+00	Po-212			
13	Po-212	2.99E-7s	1.000E+00	Pb-208\$			
14	T1-208	3.053m	1.000E+00	Pb-208\$			
Pa-2	229						

Products ----- Daughter

Nuclide Nuclide f4	Halflife Nucl	f1 ide	Nuclide	f2	Nuclide	£3
Nuclide f4 1 Pa-229 2 Th-229 3 Ra-225 4 Ac-225 5 Fr-221 6 At-217 7 Bi-213 8 Po-213 9 T1-209 10 Pb-209	7 245.2	1 000 - 00				
5 $Fr-221$	4.9m	1.000E+00	At-217			
7 Bi-213	45.59m	9.791E-01	Po-213	2.090E-02	T1-209	
8 Po-213	4.2E-6s	1.000E+00	Pb-209			
9 T1-209	2.161m	1.000E+00	Pb-209			
10 Pb-209	3.253h	1.000E+00	Bi-209\$			
Pa-230						
Products					Daughter	
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f4	Nucl	ide				•
1 Pa-230	17.4d	9.160E-01	Th-230	8.400E-02	U-230	
3.200E-05 Ac- 2 Th-230	-226 7 5385±4.0	1 0005+00	D226			
3 U-230	20.8d	1.000E+00 1.000E+00	Th-226			
4 Ac-226				8.300E-01	Th-226	
6 000E-05 Er	-222					
5 Ra-226	1600y	1.000E+00	Rn-222			
6 Rn-222	3.8235d	1.000E+00	Po-218	0 000- 04		
5 Ra-226 6 Rn-222 7 Po-218 8 Pb-214	3.10m 26.9m	9.998E-01	Pb = 214 $p_{1} = 214$	2.000E-04	At-218	
9 At-218	1.55	9.990E-01	$B_1 - 214$ Bi - 214	1.000E-03	Bn-218	
10 Bi-214	19.9m	9.998E-01	Po-214	2.100E-04	T1-210	
11 Th-226	30.57m	1.000E+00	Ra-222			
12 Fr-222	14.2m	1.000E+00	Ra-222			
13 Ra-222	38.0s	1.000E+00	Rn-218			
12 Fr-222 13 Ra-222 14 Rn-218 15 Po-214	3.3E-25 1 643F-4e	1.000E+00	PO-214 Pb-210			
16 T1-210	1.30m	1.000E+00 1.000E+00	Pb-210		•	
17 Pb-210	22.20y	1.000E+00	Bi-210	1.900E-08	Hq-206	
18 Bi-210	5.013d	1.000E+00	Po-210	1.320E-06	TI-206	
19 Hg-206	8.15m	1.000E+00	T1-206			
20 Po-210						
21 T1-206	4.200m	1.000E+00	Pb-206\$			
Pa-231						
Products]	Daughter	
Nuclide	Halflife	f1	Nuclide	£2	Nuclide	f3

.

Nuclide	e Halflife	ti -	Nuclide	±2	Nuclide	f:
Nuclide f	4 Nucl	ide				
1 Pa-231	3.276E+4y	1.000E+00	Ac-227			
2 Ac-227	21.772y	9.862E-01	Th-227	1.380E-02	Fr-223	
3 Th-227	18.68d	1.000E+00	Ra-223			
4 Fr-223	22.00m	1.000E+00	Ra-223	6.000E-05	At-219	
5 Ra-223	11.43d	1.000E+00	Rn-219			

6Rn-2193.96s7At-21956s8Bi-2157.6m9Po-2151.781E-3s10Pb-21136.1m11Bi-2112.14m12T1-2074.77m13Po-2110.516s	9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01 1.000E+00	Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$	2.760E-03	Po-211	
Pa-232				, Dave k + a	
Products Nuclide Halflife			•	Daughter Nuclide	f3
Nuclidef4Nuclide1Pa-2321.31d2U-23268.9y3Th-2321.405E10y4Ra-2285.75y5Ac-2286.15h6Th-2281.9116y7Ra-2243.66d8Rn-22055.6s9Po-2160.145s10Pb-21210.64h11Bi-21260.55m12Po-2122.99E-7s	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	U-232 Th-228 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 Pb-208\$	3.000E-05	Th-232	
Pa-233				Daughter	
Products Nuclide Halflife Nuclide f4 Nucli 1 Pa-233 26.967d	f1	Nuclide			f3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000E+00 1.000E+00 1.000E+00 1.000E+00	Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 Pb-209 Pb-209	2.090E-02	T1-209	
Pa-234					
Products Nuclide Halflife Nuclide f4 Nucli 1 Pa-234 6.70h 2 U-234 2.455E+5y	f1 ide 1.000E+00	Nuclide U-234		Daughter Nuclide	f3

•

-							
		7.538E+4y					
		1600y					
		3.8235d					
		3.10m			2.000E-04	At-218	
		26.8m					
	At-218		9.990E-01				
		19.9m			2.100E-04	T1-210	
10	Rn-218	3.5E-2s	1.000E+00	Po-214			
11	Po-214	1.643E-4s					
	T1-210						
13	Pb-210	22.20y	1.000E+00	Bi-210	1.900E-08	Hg-206	
14	Bi-210	5.013d	1.000E+00	Po-210	1.320E-06	T1-206	
15	Hg-206	8.15m	1.000E+00	T1-206			
16	Pó-210	138.376d	1.000E+00	Pb-206\$			
17	T1-206	4.200m	1.000E+00	Pb-206\$			
Pa-2	234m						
					I	Daughter	
Prod	lucts						
		Halflife		Nuclide	f2	Nuclide	
		4 Nucl:					
	Pa-234m		1.600E-03		9.984E-01	U-234	
2	Pa-234	6.70h	1.000E+00	U-234			
3	U-234	2.455E+5y 7.538E+4y	1.000E+00	Th-230			
4	Th-230	7.538E+4y	1.000E+00	Ra-226			
5	Ra-226	1600y	1.000E+00	Rn-222			
		3.8235d					
		3.10m			2.000E-04	At-218	
		26.8m					
9	At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218	
10	Bi-214	19.9m	9 9985-01	$P_{0} - 214$	2 100 E - 04	TI-210	

£3

htor

10	Bi-214	19.9m	9.998E-01	Po-214	2.100E-04 T1-2	10
11	Rn-218	3.5E-2s	1.000E+00	Po-214		
12	Po-214	1.643E-4s	1.000E+00	Pb-210		
13	T1-210	1.30m	1.000E+00	Pb-210		
14	Pb-210	22.20y	1.000E+00	Bi-210	1.900E-08 Hg-2	06
15	Bi-210	5.013d	1.000E+00	Po-210	1.320E-06 T1-2	06
	Hg-206		1.000E+00	T1-206		
17	Po-210	138.376d	1.000E+00	Pb-206\$		
18	T1-206	4.200m	1.000E+00	Pb-206\$		

Pa-235

					I	Jaughter	
Pro	ducts						
	Nuclide	Halflife	fl	Nuclide	f2	Nuclide	£3
Nuc.	lide f4	4 Nucli	ide				
1	Pa-235	24.5m	9.999E-01	U-235m	1.011E-04	U-235	
2	U-235m	26m	1.000E+00	U-235			
3	U-235	7.04E+8y	1.000E+00	Th-231			
4	Th-231	25.52h	1.000E+00	Pa-231			
5	Pa-231	3.276E+4y	1.000E+00	Ac-227			
6	Ac-227	21.772y	9.862E-01	Th-227	1.380E-02	Fr-223	
7	Th-227	18.68d	1.000E+00	Ra-223			

			•				
9 Ra- 10 Rn- 11 At-	-223 -219 -219	22.00m 11.43d 3.96s 56s 7.6m	1.000E+00 1.000E+00 9.700E-01	Rn-219 Po-215 Bi-215	6.000E-05	At-219	
13 Po- 14 Pb- 15 Bi- 16 Tl-	-215 -211 -211 -207	7.6m 1.781E-3s 36.1m 2.14m 4.77m 0.516s	1.000E+00 1.000E+00 9.972E-01 1.000E+00	Pb-211 Bi-211 Tl-207 Pb-207\$	2.760E-03	Po-211	
Pa-236							
					-	Daughter	
Product					50		
Nuc Nuclide		Halflife		Nuclide	Í2	Nuclide	±3
		Nucli 9.1m		11-236			
2 U-2	36	2.342E+7v	1.000E+00	0 200 Th-232			
3 Th-	232	2.342E+7y 1.405E10y 5.75y 6.15h	1.000E+00	Ra-228			
4 Ra-	228	5.75y	1.000E+00	Ac-228			
5 Ac-	228	6.15h	1.000E+00	Th-228			
6 Th-	·228	1.9116y	1.000E+00	Ra-224			
/ Ra-	224	3.66d	1.000E+00	Rn-220			
		55.6s					
9 Po-	-216	0.145s	1.000E+00	Pb-212			
10 Pb-	212	10.64h	1.000E+00	Bi-212	2 5045 01	m 1 000	
12 B1-	212	60.55m	6.406E-01	PO-212	3.594E-01	T1-208	
12 PO-	212	10.64h 60.55m 2.99E-7s 3.053m	1.000E+00	PD-2085			
10 11	200	5.0551	1.0006+00	FD-7005			
Pa-237							
Product	·			-		Daughter	
Nuc	lide	Halflife	f1	Nuclide	f2	Nuclide	f٦
Nuclide	e f4	Nucli 8.7m 6.75d	 Lde	nuorruo	10	Muolluc	15
1 Pa-	237	8.7m	1.000E+00	U-237			
2 U-2	37	6.75d	1.000E+00	Np-237	· .		
3 Np-	237	2.144E+6y	1.000E+00	Pa-233			
		26.967d					
5 U-2		1.592E+5y					
6 Th-		7.34E+3y					
7 Ra-			1.000E+00				
8 Ac- 9 Fr-		10.0d 4.9m	1.000E+00 1.000E+00				
10 At-			9.999E-01				
10 AC 11 Bi-		45.59m	9.791E-01		2.090E-02	T1-209	
12 Po-		4.2E-6s					
13 T1-		2.161m					
14 Pb-	209	3.253h	1.000E+00				
U-227							

Daughter

Products ------Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide

 1 U-227
 1.1m
 1.000E.00
 1.000E.00

 2 Th-223
 0.60s
 1.000E+00
 Ra-219

 1 000E+00
 Rn-215

 10ms 1.000E+00 Rn-215 2.30us 1.000E+00 Po-211 4 Rn-215 5 Po-211 0.516s 1.000E+00 Pb-207\$ U-228 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide
 1 U-228
 9.1m
 9.750E-01
 1.220

 2 Th-224
 1.05s
 1.000E+00
 Ra-220

 1 000E+00
 Rn-216
 9.1m 9.750E-01 Th-224 3 Ra-220 1.79E-2s 1.000E+00 Rn-216 4 Rn-216 4.5E-5s 1.000E+00 Po-212 5 Po-212 2.99E-7s 1.000E+00 Pb-208\$ U-230 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 U-230 20.8d 1.000E+00 Th-226 2 Th-226 30.57m 1.000E+00 Ra-222 3 Ra-222 38.0s 1.000E+00 Rn-218 4 Rn-218 3.5E-2s 1.000E+00 Po-214 5 Po-214 1.643E-4s 1.000E+00 Pb-210

 6 Pb-210
 22.20y
 1.000E+00
 Bi-210
 1.900E-08
 Hg-206

 7 Bi-210
 5.013d
 1.000E+00
 Po-210
 1.320E-06
 TI-206

 8 Hg-206
 8.15m
 1.000E+00
 TI-206

 9 Po-210
 138.376d
 1.000E+00
 Pb-206\$

 10 T1-206 4.200m 1.000E+00 Pb-206\$ U-231 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 U-231 4.2d 1.000E+00 Pa-231 4.000E-05 Th-227 2 Pa-231 3.276E+4y 1.000E+00 Ac-227 3 Ac-227 21.772y 9.862E-01 Th-227 1.380E-02 Fr-223 4 Th-227 18.68d 1.000E+00 Ra-223 5 Fr-223 22.00m 1.000E+00 Ra-223 6.000E-05 At-219

 5
 FF-223
 22.00m
 1.000E+00
 Ra-223

 6
 Ra-223
 11.43d
 1.000E+00
 Rn-219

 7
 Rn-219
 3.96s
 1.000E+00
 Po-215

 8
 At-219
 56s
 9.700E-01
 Bi-215

 9
 Bi-215
 7.6m
 1.000E+00
 Po-215

 10 Po-215 1.781E-3s 1.000E+00 Pb-211 11 Pb-211 36.1m 1.000E+00 Bi-211

12 Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211
13 Tl-207	4.77m	1.000E+00	Pb-207\$		
14 Po-211	0.516s	1.000E+00	Pb-207\$		

U-232

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 U-232 68.9y 1.000E+00 Th-228 2 Th-228 1.9116y 1.000E+00 Ra-224 3.66d 1.000E+00 Rn-220 3 Ra-224 4 Rn-220 55.6s 1.000E+00 Po-216 5 Po-216 0.145s 1.000E+00 Pb-212 10.64h 1.000E+00 Bi-212 60.55m 6.406E-01 Po-212 2.99E-7s 1.000E+00 Pb-208\$ 6 Pb-212 7 Bi-212 3.594E-01 T1-208 8 Po-212 9 T1-208 3.053m 1.000E+00 Pb-208\$ U-233 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 U-233 1.592E+5y 1.000E+00 Th-229 2 Th-229 7.34E+3y 1.000E+00 Ra-225 3 Ra-225 14.9d 1.000E+00 Ac-225 10.0d 1.000E+00 Fr-221 4 Ac-225 5 Fr-221 4.9m 1.000E+00 At-217 6 At-217 3.23E-2s 9.999E-01 Bi-213 45.59m 9.791E-01 Po-213 4.2E-6s 1.000E+00 Pb-209 7 Bi-213 2.090E-02 T1-209 8 Po-213 2.161m 1.000E+00 Pb-209 9 T1-209 10 Pb-209 3.253h 1.000E+00 Bi-209\$ U-234 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 f4 Nuclide Nuclide 1 U-234 2.455E+5y 1.000E+00 Th-230 2 Th-230 7.538E+4y 1.000E+00 Ra-226 3 Ra-226 1600y 1.000E+00 Rn-222 4 Rn-222 3.8235d 1.000E+00 Po-218 5 Po-218 3.10m 9.998E-01 Pb-214 2.000E-04 At-218 26.8m 1.000E+00 Bi-214 6 Pb-214 1.5s 9.990E-01 Bi-214 7 At-218 1.000E-03 Rn-218 8 Bi-214 19.9m 9.998E-01 Po-214 2.100E-04 T1-210 9 Rn-218 3.5E-2s 1.000E+00 Po-214 10 Po-214 1.643E-4s 1.000E+00 Pb-210 11 Tl-210 1.30m 1.000E+00 Pb-210 12 Pb-210 22.20y 1.000E+00 Bi-210 1.900E-08 Hg-206

13Bi-2105.0114Hg-2068.115Po-210138.3716T1-2064.20	L5m 1.000E+00 76d 1.000E+00	T1-206 Pb-206\$	1.320E-06	T1-206	
U-235					
Products				Daughter	
Nuclide Halfli Nuclide f4 N	Nuclide		f2	Nuclide	f3
1 U-235 7.04E+ 2 Th-231 25.5					
3 Pa-231 3.276E+	4y 1.000E+00	Ac-227	1 2005 02	Em 000	
4 Ac-227 21.77 5 Th-227 18.6	58d 1.000E+00	Ra-223	1.380E-02	FI-225	
5 Th-227 18.6 6 Fr-223 22.0 7 Ra-223 11.4 8 Rn-219 3.9	0m 1.000E+00	Ra-223 Rn-219	6.000E-05	At-219	
8 Rn-219 3.9	96s 1.000E+00	Po-215			
9 At-219 5 10 Bi-215 7.	6s 9.700E-01	Bi-215			
11 Po-215 1.781E-	-3s 1.000E+00	Pb-211			
12 Pb-211 36. 13 Bi-211 2.1	.1m 1.000E+00 4m 9.972E-01	Bi-211 Tl-207	2.760E-03	Po-211	
14 T1-207 4.7 15 Po-211 0.51	7m 1.000E+00	Pb-207\$			
15 Po-211 0.51	l6s 1.000E+00	Pb-207\$			
11 00 Em					
U-235m			-	- •.	
			1	Daughter	
Products Nuclide Halfli	 fe f1			-	f3
Products Nuclide Halfli Nuclide f4 N	fe fl Nuclide	Nuclide	f2	-	f3
Products Nuclide Halfli Nuclide f4 N	fe fl Nuclide	Nuclide	f2	-	f3
Products Nuclide Halfli Nuclide f4 N 1 U-235m 2 2 U-235 7.04E+ 3 Th-231 25.5	fe f1 Juclide 26m 1.000E+00 -8y 1.000E+00 52h 1.000E+00	Nuclide U-235 Th-231 Pa-231	f2	-	f3
Products Nuclide Halfli Nuclide f4 N 1 U-235m 2 2 U-235 7.04E+ 3 Th-231 25.5 4 Pa-231 3.276E+	fe f1 Juclide 26m 1.000E+00 -8y 1.000E+00 52h 1.000E+00 -4y 1.000E+00	Nuclide U-235 Th-231 Pa-231 Ac-227	£2	Nuclide	f3
Products Nuclide Halfli Nuclide f4 N 1 U-235m 2 2 U-235 7.04E+ 3 Th-231 25.5 4 Pa-231 3.276E+ 5 Ac-227 21.77	fe f1 Juclide 26m 1.000E+00 -8y 1.000E+00 52h 1.000E+00 -4y 1.000E+00 72y 9.862E-01	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227	£2	Nuclide	f3
Products Nuclide Halfli Nuclide f4 N 1 U-235m 2 2 U-235 7.04E+ 3 Th-231 25.5 4 Pa-231 3.276E+ 5 Ac-227 21.77 6 Th-227 18.6 7 Fr-223 22.0	fe f1 Juclide 26m 1.000E+00 52h 1.000E+00 52h 1.000E+00 72y 9.862E-01 58d 1.000E+00 00m 1.000E+00	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223	f2 1.380E-02	Nuclide Fr-223	f3
Products	fe f1 Juclide 26m 1.000E+00 52h 1.000E+00 52h 1.000E+00 72y 9.862E-01 58d 1.000E+00 00m 1.000E+00 13d 1.000E+00	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Rn-219	f2 1.380E-02	Nuclide Fr-223	f3
Products	fe f1 Juclide 26m 1.000E+00 52h 1.000E+00 52h 1.000E+00 72y 9.862E-01 58d 1.000E+00 00m 1.000E+00 13d 1.000E+00	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Rn-219 Po-215	f2 1.380E-02	Nuclide Fr-223	f3
Products Nuclide Halfli Nuclide f4 N 1 U-235m 2 2 U-235 7.04E+ 3 Th-231 25.5 4 Pa-231 3.276E+ 5 Ac-227 21.77 6 Th-227 18.6 7 Fr-223 22.0 8 Ra-223 11.4 9 Rn-219 3.9 10 At-219 5	fe f1 Juclide 26m 1.000E+00 8y 1.000E+00 52h 1.000E+00 72y 9.862E-01 58d 1.000E+00 00m 1.000E+00 1.000E+00 96s 1.000E+00 56s 9.700E-01	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Rn-219 Po-215 Bi-215	f2 1.380E-02	Nuclide Fr-223	f3
Products Nuclide Halfli Nuclide f4 N 1 U-235m 2 2 U-235 7.04E+ 3 Th-231 25.5 4 Pa-231 3.276E+ 5 Ac-227 21.77 6 Th-227 18.6 7 Fr-223 22.0 8 Ra-223 11.4 9 Rn-219 3.9 10 At-219 5 11 Bi-215 7. 12 Po-215 1.781E-	fe f1 Juclide 26m 1.000E+00 -8y 1.000E+00 52h 1.000E+00 72y 9.862E-01 58d 1.000E+00 00m 1.000E+00 96s 1.000E+00 56s 9.700E-01 .6m 1.000E+00 -3s 1.000E+00	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Po-215 Pb-211	f2 1.380E-02	Nuclide Fr-223	f3
Products	fe f1 Juclide 26m 1.000E+00 52h 1.000E+00 52h 1.000E+00 72y 9.862E-01 58d 1.000E+00 66s 1.000E+00 66s 9.700E-01 66m 1.000E+00 -3s 1.000E+00 1m 1.000E+00	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Po-215 Pb-211 Bi-211	f2 1.380E-02 6.000E-05	Nuclide Fr-223 At-219	f3
Products	fe f1 Juclide 26m 1.000E+00 52h 1.000E+00 52h 1.000E+00 72y 9.862E-01 58d 1.000E+00 66s 1.000E+00 66s 1.000E+00 66s 9.700E-01 66m 1.000E+00 -3s 1.000E+00 1m 1.000E+00 1m 9.972E-01	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Po-215 Pb-211 Bi-211 T1-207	f2 1.380E-02	Nuclide Fr-223 At-219	f3
Products	fe f1 Juclide 26m 1.000E+00 8y 1.000E+00 52h 1.000E+00 72y 9.862E-01 58d 1.000E+00 96s 1.000E+00 66s 9.700E-01 66m 1.000E+00 56s 9.700E-01 67m 1.000E+00 47m 1.000E+00	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Po-215 Pb-211 Bi-211 Tl-207 Pb-207\$	f2 1.380E-02 6.000E-05	Nuclide Fr-223 At-219	f3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	fe f1 Juclide 26m 1.000E+00 8y 1.000E+00 52h 1.000E+00 72y 9.862E-01 58d 1.000E+00 96s 1.000E+00 66s 9.700E-01 66m 1.000E+00 56s 9.700E-01 67m 1.000E+00 47m 1.000E+00	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$	f2 1.380E-02 6.000E-05	Nuclide Fr-223 At-219	f3
Products	fe f1 Juclide 26m 1.000E+00 8y 1.000E+00 52h 1.000E+00 72y 9.862E-01 58d 1.000E+00 96s 1.000E+00 66s 9.700E-01 66m 1.000E+00 56s 9.700E-01 67m 1.000E+00 47m 1.000E+00	Nuclide U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Pb-211 Bi-211 Tl-207 Pb-207\$ Pb-207\$	f2 1.380E-02 6.000E-05 2.760E-03	Nuclide Fr-223 At-219	f3

ł

				-		
3 Ra-228 4 Ac-228 5 Th-228 6 Ra-224 7 Rn-220 8 Po-216 9 Pb-212 10 Bi-212 11 Po-212	4 Nucl 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 6.406E-01 1.000E+00	Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 Pb-208\$	3.594E-01	T1-208	
U-237						
Products -					Daughter	
	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f 1 U-237 2 Np-237 3 Pa-233 4 U-233 5 Th-229 6 Ra-225 7 Ac-225 8 Fr-221 9 At-217 10 Bi-213 11 Po-213 12 T1-209	4 Nucl 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y 14.9d 10.0d 4.9m 3.23E-2s 45.59m 4.2E-6s 2.161m 3.253h	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.999E-01 9.791E-01 1.000E+00 1.000E+00 1.000E+00	Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 Pb-209 Pb-209			15
U-238				i	Daughter	·
Products -					buugheer	
	Halflife 4 Nucl		Nuclide	f2	Nuclide	£3
	4 Nucl 4.468E+9y		Th-234	5.450E-07	SF	
2 Th-234	24.10d	1.000E+00	Pa-234m			
7 Ra-226	6.70h 2.455E+5y 7.538E+4y 1600y	1.000E+00 1.000E+00 1.000E+00	U-234 Th-230 Ra-226 Rn-222	9.984E-01	U-234	
8 Rn-222 9 Po-218	3.8235d 3.10m	1.000E+00 9.998E-01	Pb-214	2.000E-04	At-218	
10 Pb-214 11 At-218 12 Bi-214 13 Rn-218 14 Po-214	19.9m	1.000E+00 9.990E-01 9.998E-01 1.000E+00 1.000E+00	Bi-214 Po-214 Po-214	1.000E-03 2.100E-04		

. 135

15 Tl-210 16 Pb-210 17 Bi-210 18 Hg-206 19 Po-210 20 Tl-206	1.30m 22.20y 5.013d 8.15m 138.376d 4.200m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-210 Bi-210 Po-210 T1-206 Pb-206\$ Pb-206\$	1.900E-08 1.320E-06	Hg-206 T1-206	
U-239				_		
Droo du at a'	•			l	Daughter	
Products -	Halflife			f2	Nuclide	f3
Nuclide f	4 .Nucl	ide	Nucliuc	12	Nucliue	15
Nuclide f 1 U-239	23.45m	1.000E+00	Np-239			
2 Np - 239	2.3565d	1.000E+00	Pu-239			
3 Du-220	2 /11EL/17	0.004 E - 01	11_225m	6.000E-04	U-235	
4 U-235m	2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m	1.000E+00	U-235			
5 U-235	7.04E+8y	1.000E+00	Th-231			
6 Th-231	25.52h	1.000E+00	Pa-231			
7 Pa-231	3.276E+4y	1.000E+00	Ac-227	1 0007 00		
8 AC-227	21.772y	9.862E-UI	Tn-227	1.380E-02	Fr-223	
9 In - 227 10 $\text{Er} - 223$	10.000 22 00m	1.000E+00	Ra=223	6 0008-05	λ+_21Q	
10 FI-223	11.43d	1.000E+00	Rn-219	0.0001 05	AC 21)	
12 Rn-219	3.96s	1.000E+00	Po-215			
13 At-219	56s	9.700E-01	Bi-215			
14 Bi-215	56s 7.6m	1.000E+00	Po-215			
15 Po-215	1.781E-3s	1.000E+00	Pb-211			
16 Pb-211	36.1m	1.000E+00	Bi-211			
17 Bi-211	1.781E-3s 36.1m 2.14m 4.77m	9.972E-01	T1-207	2.760E-03	Po-211	
18 T1-207	4.77m	1.000E+00	Pb-207\$			
19 Po-211	0.516s	1.000E+00	Pb-207\$			
U-240						
					Daughter	
Products -					, , , , , , , , , , , , , , , , , , ,	
	Halflife				Nuclide	f3
Nuclide f 1 U-240	4 Nucl	ide				
1 U-240	14.1h	1.000E+00	Np-240m	0 000- 01		
	7.22m			9.989E-01	Pu-240	
3 Np-240	61.9m	1.000E+00		5.750E-08	CE	
4 Pu-240 5 U-236	6564y 2.342E+7y	1.000E+00 1.000E+00		5.750E-08	51	
6 Th-232	1.405E10y	1.000E+00				
7 Ra-228	5.75y	1.000E+00				
8 Ac-228	6.15h	1.000E+00				
9 Th-228	1.9116y	1.000E+00				
10 Ra-224	3.66d	1.000E+00				
11 Rn-220	55.6s	1.000E+00				
12 Po-216	0.145s	1.000E+00				
13 Pb-212	10.64h	1.000E+00		0 504- 01	m1 000	
14 Bi-212	60.55m	6.406E-01		3.594E-01	TI-208	
15 Po-212	2.99E-7s	1.000E+00	PD-208\$			

16 Tl-208 3.053m 1.000E+00 Pb-208\$

U-242

0-242				
]	Daughter	
Products				
Nuclide Halflife f1	Nuclide	f2	Nuclide	f3
Nuclide f4 Nuclide				
1 U-242 16.8m 1.000E+00	Np-242			
2 Np-242 2.2m 1.000E+00	Pu-242			
3 Pu-242 3.75E+5y 1.000E+00	U-238	5.540E-06	SF	
4 U-238 4.468E+9y 1.000E+00	Th-234	5.450E-07	SF	
5 Th-234 24.10d 1.000E+00	Pa-234m			
6 Pa-234m 1.17m 1.600E-03			U-234	
7 Pa-234 6.70h 1.000E+00				
8 U - 234 2.455E + 5V 1.000E + 000E	Th-230			
8 U-234 2.455E+5y 1.000E+00 9 Th-230 7.538E+4y 1.000E+00	Ba-226			
10 Ra-226 1600y 1.000E+00	Rn = 220		•	
11 Rn - 222 $3.8235 d 1.000E + 000 c$	$P_{0} = 218$			
12 Po-218 3.10m 9.998E-01		2.000E-04	$\lambda + -218$	
13 Pb-214 26.8m 1.000E+00		2.000E-04	AL-210	
$14 \ \text{A} + -218 \qquad 1 \ \text{Sc} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	D1 - 214 $D_{1} - 214$	1 0005-02	D	
14 At-2181.5s9.990E-0115 Bi-21419.9m9.998E-01	$D_1 = 214$ $D_2 = 214$	1.000E-03	RII-210	
16 Pp = 219 $3 FP = 20 1 0.00 FL = 0.0$	PO = 214	2.1006-04	11-210	
16 Rn-218 3.5E-2s 1.000E+00 17 Po-214 1.643E-4s 1.000E+00	P0-214			
17 PO-214 1.643E-45 1.000E+00	Pb-210			
18 T1-210 1.30m 1.000E+00	PD-210	1 0000 00		
19 Pb-210 22.20y 1.000E+00	B1-210	1.900E-08	Hg-206	
20 Bi-210 5.013d 1.000E+00	Po-210	1.320E-06	T1-206	
21 Hg-206 8.15m 1.000E+00	T1-206			
22 Po-210 138.376d 1.000E+00	Pb-206\$			
23 T1-206 4.200m 1.000E+00	Pb-206\$		•	
Np-232			_	
]	Daughter	
Products				
Nuclide Halflife f1	Nuclide	f2	Nuclide	£3
Nuclide f4 Nuclide				
1 Np-232 14.7m 1.000E+00	U-232			
2 U-232 68.9y 1.000E+00	Th-228			
2 U-232 68.9y 1.000E+00 3 Th-228 1.9116y 1.000E+00 4 Ra-224 3.66d 1.000E+00	Ra-224			•
4 Ra-224 3.66d 1.000E+00	Rn-220			
5 Rn-220 55.6s 1.000E+00	Po-216			
6 Po-216 0.145s 1.000E+00	Pb-212			
7 Pb-212 10.64h 1.000E+00	Bi-212			
8 Bi-212 60.55m 6.406E-01	Po-212	3.594E-01	T1-208	
9 Po-212 2.99E-7s 1.000E+00				
10 T1-208 3.053m 1.000E+00	Pb-208\$			
·				
Np-233				
·]	Daughter	
Products				
Nuclide Halflife f1	Nuclide	f2	Nuclide	£3
Nuclide f4 Nuclide				

	Np-233 U-233	36.2m 1.592E+5y	1.000E+00 1.000E+00		1.000E-05	Pa-229
3	Pa-229 Th-229	1.50d 7.34E+3y	9.952E-01 1.000E+00	Th-229	4.800E-03	Ac-225
	Ra-225	14.9d	1.000E+00			
6	Ac-225	10.0d	1.000E+00	Fr-221		
7	Fr-221	4.9m	1.000E+00	At-217		
8	At-217	3.23E-2s	9.999E-01	Bi-213		
9	Bi-213	45.59m	9.791E-01	Po-213	2.090E-02	T1-209
10	Po-213	4.2E-6s	1.000E+00	Pb-209		
11	T1-209	2.161m	1.000E+00	Pb-209		· .
12	Pb-209	3.253h	1.000E+00	Bi-209\$		

. /

Np-234

]	Daughter	
Prod	ducts		 _				
	Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3
Nuc	lide f	4 Nucl:	ide				
1	Np-234	4.4d	1.000E+00	U-234			
2	U-234	2.455E+5y	1.000E+00	Th-230			
3	Th-230	7.538E+4y	1.000E+00	Ra-226			
4	Ra-226	1600y	1.000E+00	Rn-222			
5	Rn-222	3.8235d	1.000E+00	Po-218			
6	Po-218	3.10m	9.998E-01	Pb-214	2.000E-04	At-218	
7	Pb-214	26.8m	1.000E+00	Bi-214			
8	At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218	
9	Bi-214	19.9m	9.998E-01	Po-214	2.100E-04	T1-210	
10	Rn-218	3.5E-2s	1.000E+00	Po-214			
11	Po-214	1.643E-4s	1.000E+00	Pb-210			
12	T1-210	1.30m	1.000E+00	Pb-210			
13	Pb-210	22.20y	1.000E+00	Bi-210	1.900E-08	Hg-206	
14	Bi-210	5.013d	1.000E+00	Po-210	1.320E-06	TĪ-206	
15	Hg-206	8.15m	1.000E+00	T1-206			
16	Po-210	138.376d	1.000E+00	Pb-206\$			
17	T1-206	4.200m	1.000E+00	Pb-206\$			

Np-235

_____ Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide . 1 Np-235 396.1d 3.993E-03 U-235m 9.960E-01 U-235 2.600E-05 Pa-231 2 U-235m 26m 1.000E+00 U-235 3 U-235 7.04E+8y 1.000E+00 Th-231 1.000E+00 Pa-231 1.000E+00 Ac-227 4 Th-231 25.52h 3.276E+4y 5 Pa-231 6 Ac-227 21.772y 9.862E-01 Th-227 1.380E-02 Fr-223 7 Th-227 18.68d 1.000E+00 Ra-223 8 Fr-223 22.00m 6.000E-05 At-219 1.000E+00 Ra-223 9 Ra-223 11.43d 1.000E+00 Rn-219 10 Rn-219 3.96s 1.000E+00 Po-215

11 At-219	56s	9.700E-01	Bi-215		
12 Bi-215	7.6m	1.000E+00	Po-215		
13 Po-215	1.781E-3s	1.000E+00	Pb-211		
14 Pb-211	36.1m	1.000E+00	Bi-211		
15 Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211
16 Tl-207	4.77m	1.000E+00	Pb-207\$		
17 Po-211	0.516s	1.000E+00	Pb-207\$		

Np-236

1					Daughter	
Products -					2	
Nuclide	e Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f	f4 Nucl	ide				
1 Np-236	1.54E+5y	8.730E-01	U-236	1.250E-01	Pu-236	
1.600E-03 H	Pa-232					
	2.342E+7y					
3 Pu-236	2.858y	1.000E+00	U-232	1.370E-09	SF	
4 Pa-232	1.31d	3.000E-05	Th-232	1.000E+00	U-232	
	1.405E10y					
6 Ra-228	5.75y	1.000E+00	Ac-228			
	6.15h					
	68.9y					
9 Th-228	1.9116y	1.000E+00	Ra-224			
10 Ra-224	3.66d	1.000E+00	Rn-220			
	55.6s					
12 Po-216	0.145s	1.000E+00	Pb-212			
	10.64h					
14 Bi-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
15 Po-212						
16 Tl-208	3.053m	1.000E+00	Pb-208\$			

Np-236m

1						Daughter	
Pro	ducts		 _				
	Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3
Nuc	clide f	4 Nucl	ide				
• 1	Np-236m	22.5h	5.200E-01	U-236	4.800E-01	Pu-236	
2	2 U-236	2.342E+7y	1.000E+00	Th-232			
3	8 Pu-236	2.858y	1.000E+00	U-232	1.370E-09	SF	
4	l Th-232	1.405E10y					
5	Ra-228	5.75y	1.000E+00	Ac-228			
e	5 Ac-228	6.15h	1.000E+00	Th-228			
	∕ U-232		1.000E+00				
		1.9116y					
		3.66d					
10) Rn-220	55.6s	1.000E+00	Po-216			
	. Po-216		1.000E+00	Pb-212			
12	2 Pb-212	10.64h	1.000E+00	Bi-212			
13	8 Bi-212		6.406E-01		3.594E-01	T1-208	
14	Po-212	2.99E-7s	1.000E+00	Pb-208\$			
15	5 T1-208	3.053m	1.000E+00	Pb-208\$			

Np-237

Prod	ducts					5 –	
	Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3
Nuc	lide f	4 Nucl:	ide				
1	Np-237	2.144E+6y	1.000E+00	Pa-233			
2	Pa-233	26.967d	1.000E+00	U-233			
3	U-233	1.592E+5y	1.000E+00	Th-229			
4	Th-229	7.34E+3y	1.000E+00	Ra-225	•		
5	Ra-225	14.9d	1.000E+00	Ac-225			
6	Ac-225	10.0d	1.000E+00	Fr-221			
7	Fr-221	4.9m	1.000E+00	At-217			
8	At-217	3.23E-2s	9.999E-01	Bi-213			
9	Bi-213	45.59m	9.791E-01	Po-213	2.090E-02	T1-209	
10	Po-213	4.2E-6s	1.000E+00	Pb-209			
11	T1-209	2.161m	1.000E+00	Pb-209			
12	Pb-209	3.253h	1.000E+00	Bi-209\$			

Daughter

Np-238

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Np-238 2.117d 1.000E+00 Pu-238 2 Pu-238 87.7y 1.000E+00 U-234 1.850E-09 SF 3 U-234 2.455E+5y 1.000E+00 Th-230 4 Th-230 7.538E+4y 1.000E+00 Ra-226 1600y 5 Ra-226 1.000E+00 Rn-222 6 Rn-222 3.8235d 1.000E+00 Po-218 7 Po-218 3.10m 9.998E-01 Pb-214 2.000E-04 At-218 26.8m 1.000E+00 Bi-214 8 Pb-214 9 At-218 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218 19.9m 9.998E-01 Po-214 10 Bi-214 2.100E-04 T1-210 11 Rn-218 3.5E-2s 1.000E+00 Po-214 12 Po-214 1.643E-4s 1.000E+00 Pb-210 13 Tl-210 1.30m 1.000E+00 Pb-210 14 Pb-210 22[.]20y 1.000E+00 Bi-210 1.900E-08 Hg-206 5.013d 1.000E+00 Po-210 1.320E-06 T1-206 15 Bi-210 16 Hg-206 8.15m 1.000E+00 T1-206 17 Po-210 138.376d 1.000E+00 Pb-206\$ 18 Tl-206 4.200m 1.000E+00 Pb-206\$

Np-239

----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 1 Np-239 2.3565d 1.000E+00 Pu-239 2 Pu-239 2.411E+4y 9.994E-01 U-235m 6.000E-04 U-235 3 U-235m 26m 1.000E+00 U-235 7.04E+8y 1.000E+00 Th-231 4 U-235 5 Th-231 25.52h 1.000E+00 Pa-231

7 8 9 10 11 12 13 14 15 16 17	Ac-227 Th-227 Fr-223 Ra-223 Rn-219 At-219 Bi-215 Pb-211 Bi-211 T1-207	11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m 2.14m	9.862E-01 1.000E+00 1.000E+00 1.000E+00 9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01 1.000E+00	Th-227 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Pb-211 Bi-211 Tl-207 Pb-207\$	1.380E-02 6.000E-05	At-219	
Np-2	240				1	Daughter	
Prod	ducts				-	Judgitter	•
		Halflife	fl	Nuclide	f2	Nuclide	£3
Nucl	lide f						
1	Np-240	61.9m	1.000E+00	Pu-240			
2	Pu-240	6564y	1.000E+00	U-236	5.750E-08	SF	
3	U-236	2.342E+7y 1.405E10y 5.75y	1.000E+00	Th-232			
4	Th-232	1.405E10y	1.000E+00	Ra-228			
- 5	Ra-228	5.75y	1.000E+00	Ac-228	~		
6	Ac-228	6.15h	1.000E+00	Th-228			
		1.9116y					
		3.66d					
		55.6s					
10	Po-216	0.145s					
	Pb-212		1.000E+00		2 5047 04		
12	Bi-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
		2.99E-7s					
14	T1-208	3.053m	1.000E+00	PD-2085			
Np-2	240m						
MP 2	24011				1	Daughter	
Proc	ducts				. 1	Daughter	
	Nuclide	Halflife	f1	Nuclide	£2	Nuclide	f3
Nucl	lide f						
1	Np-240m	7.22m	1.100E-03	Np-240	9.989E-01	Pu~240	
	Np-240	61.9m	1.000E+00				
	Pu-240	6564y	1.000E+00		5.750E-08	SF	
4	U-236	2.342E+7y	1.000E+00	Th-232			
5	Th-232	1.405E10y	1.000E+00	Ra-228			
6	Ra-228	5.75y	1.000E+00	Ac-228			•
	Ac-228	6.15h	1.000E+00	Th-228			
	Th-228		1.000E+00	Ra-224			
	Ra-224	3.66d	1.000E+00				
	Rn-220	55.6s	1.000E+00				
	Po-216	0.145s	1.000E+00			,	
	Pb-212	10.64h			.		
13	Bi-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208	

14 Po-212	2.99E-7s	1.000E+00	Pb-208\$
15 T1-208	3.053m	1.000E+00	Pb-208\$

Np-241

Np-241					.	
Products					Daughter	
11044000	Halflife		Nuclide	f2	Nuclide	f3
				12	NUCITUE	10
Nuclide f 1 Np-241	13.9m	1.000E+00	Pu-241			
2 Pu-241	14.35y	1.000E+00	Am-241	2.450E-05	U-237	
3 Am-241	432.2y	1.000E+00	Np-237			
4 U-237	6.75d	1.000E+00	Np-237.			
5 Np-237	2.144E+6v	1.000E+00	Pa-233			
6 Pa-233	26.967a	1.000E+00	U-233			
7 U-233	1.592E+5y	1.000E+00	Th-229			
8 Th-229	7.34E+3y	1.000E+00	Ra-225			
9 Ra-225	26.967d 1.592E+5y 7.34E+3y 14.9d	1.000E+00	Ac-225			
10 Ac-225	10.0d	1.000E+00	Fr-221			
11 Fr-221 12 At-217	4.9m	1.000E+00	At-217			
12 At-217	3.23E-2s	9.999E-01	Bi-213			
13 Bi-213 14 Po-213	45.59m	9.791 [.] E-01	Po-213	2.090E-02	T1-209	
14 Po-213	4.2E-6s	1.000E+00	Pb-209	·		
15 T1-209 16 Pb-209	2.161m	1.000E+00	Pb-209			
16 Pb-209	3.253h	1.000E+00	Bi-209\$			
Np-242						
Products				I	Daughter	
Nuclide	Halflife	f1	Nuclide	f2	Nuclido	£٦
		f1 ide	Nuclide	f2	Nuclide	£3
Nuclide f	4 Nucl	ide				f3
Nuclide f	4 Nucl	ide				f3
Nuclide f	4 Nucl	ide				£3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238	4 Nucl 2.2m 3.75E+5y 4.468E+9y	ide 1.000E+00 1.000E+00 1.000E+00	Pu-242 U-238 Th-234			£3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-242 U-238 Th-234 Pa-234m	5.540E-06 5.450E-07	SF SF	£3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.600E-03	Pu-242 U-238 Th-234 Pa-234m Pa-234		SF SF	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234 6 Pa-234 7 U-234	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00	Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230	5.540E-06 5.450E-07 9.984E-01	SF SF U-234	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234 6 Pa-234 7 U-234	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00	Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230	5.540E-06 5.450E-07 9.984E-01	SF SF U-234	£3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234 6 Pa-234 7 U-234	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00	Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230	5.540E-06 5.450E-07 9.984E-01	SF SF U-234	£3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234 6 Pa-234 7 U-234	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00	Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230	5.540E-06 5.450E-07 9.984E-01	SF SF U-234	£3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m	ide 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01	Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214	5.540E-06 5.450E-07 9.984E-01	SF SF U-234	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m	ide 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214	5.540E-06 5.450E-07 9.984E-01	SF SF U-234	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m	ide 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214	5.540E-06 5.450E-07 9.984E-01	SF SF U-234 At-218	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214 13 At-218 14 Bi-214	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m	ide 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.990E-01 9.998E-01	Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214	5.540E-06 5.450E-07 9.984E-01 2.000E-04	SF SF U-234 At-218 Rn-218	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214 13 At-218 14 Bi-214 15 Rn-218	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s	ide 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00	Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214	5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	SF SF U-234 At-218 Rn-218	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214 13 At-218 14 Bi-214 15 Rn-218 16 Po-214	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s 1.643E-4s	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Pb-210	5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	SF SF U-234 At-218 Rn-218	£3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214 13 At-218 14 Bi-214 15 Rn-218 16 Po-214 17 Tl-210	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s 1.643E-4s 1.30m	ide 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00	Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Pb-210 Pb-210	5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03 2.100E-04	SF SF U-234 At-218 Rn-218 T1-210	£3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214 13 At-218 14 Bi-214 15 Rn-218 16 Po-214 17 Tl-210 18 Pb-210	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s 1.643E-4s 1.30m 22.20y	ide 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00	Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Pb-210 Pb-210 Bi-210	5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03 2.100E-04 1.900E-08	SF SF U-234 At-218 Rn-218 T1-210 Hg-206	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214 13 At-218 14 Bi-214 15 Rn-218 16 Po-214 17 Tl-210 18 Pb-210 19 Bi-210	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s 1.643E-4s 1.30m 22.20y 5.013d	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00	Pu-242 U-238 Th-234 Pa-234 Pa-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Po-214 Pb-210 Pb-210 Bi-210 Po-210	5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03 2.100E-04	SF SF U-234 At-218 Rn-218 T1-210 Hg-206	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214 13 At-218 14 Bi-214 15 Rn-218 16 Po-214 17 Tl-210 18 Pb-210 19 Bi-210 20 Hg-206	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s 1.643E-4s 1.30m 22.20y 5.013d 8.15m	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00	Pu-242 U-238 Th-234 Pa-234m Pa-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Po-214 Po-214 Pb-210 Pb-210 Pb-210 Pb-210 Pb-210 Po-210 T1-206	5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03 2.100E-04 1.900E-08	SF SF U-234 At-218 Rn-218 T1-210 Hg-206	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214 13 At-218 14 Bi-214 15 Rn-218 16 Po-214 17 Tl-210 18 Pb-210 19 Bi-210 20 Hg-206 21 Po-210	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s 1.643E-4s 1.30m 22.20y 5.013d 8.15m 138.376d	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00	Pu-242 U-238 Th-234 Pa-234m Pa-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Po-214 Po-214 Pb-210 Pb-206 Pb-206 Pb-206	5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03 2.100E-04 1.900E-08	SF SF U-234 At-218 Rn-218 T1-210 Hg-206	f3
Nuclide f4 1 Np-242 2 Pu-242 3 U-238 4 Th-234 5 Pa-234m 6 Pa-234 7 U-234 8 Th-230 9 Ra-226 10 Rn-222 11 Po-218 12 Pb-214 13 At-218 14 Bi-214 15 Rn-218 16 Po-214 17 Tl-210 18 Pb-210 19 Bi-210 20 Hg-206	4 Nucl 2.2m 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s 1.643E-4s 1.30m 22.20y 5.013d 8.15m	ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00	Pu-242 U-238 Th-234 Pa-234m Pa-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Po-214 Po-214 Pb-210 Pb-206 Pb-206 Pb-206	5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03 2.100E-04 1.900E-08	SF SF U-234 At-218 Rn-218 T1-210 Hg-206	f3

Np-242m

np z izm				Doughtor	
Products			j	Daughter	
Nuclide Halflife	f1	Nuclide	f2	Nuglido	£3
Nuclide f4 Nucl:		NUCLICE	12	NUCLICE	13
1 Np-242m 5.5m	1 0005+00	$P_{11} = 242^{\circ}$			
$2 P_{11} - 242 = 3 75E + 5y$	1 000E+00	11-238	5 5405-06	۲ 2	
$3 \text{ II}_{-238} \text{ A A68F+9v}$	1 0005+00	0200 TTD-234	5.340E-00	ST CF	
2 Pu-242 3.75E+5y 3 U-238 4.468E+9y 4 Th-234 24.10d	1.000E+00	$P_{2} = 234$ m	J.450E-07	51	
5 Pa-234m 1.17m	1 600E-03	$P_{2} = -234$	9 984F-01	11-234	
6 Pa-234 $6.70h$	1.000E = 03	II_{-234}	9.904E-01	0-234	
7 U-234 2.455E+5y					
8 Th-230 7.538E+4y					
9 Ba - 226 1600v	1 000E+00	Rn = 220			
10 Bn - 222 $3 8235d$	1 000E+00	$P_{0} = 218$			
$11 P_{O} - 218 \qquad 3.10m$	9 998F-01	Pb - 210	2 0005-04	λ+_010	
9 Ra-226 1600y 10 Rn-222 3.8235d 11 Po-218 3.10m 12 Pb-214 26.8m	$1 000 \text{F} \pm 00$	PD-214 Bi-214	2.000E-04	AL-210	
13 At-218 1.5s	9 990E-01	$B_{1} = 214$	1 0005-03	P_{n-219}	
14 Bi-214 19.9m	9.998 = 01	$P_{0} = 214$	2 100E-03	π^{-210}	
15 Rn-218 3.5E-2s			2.1000-04	11-210	
16 Po-214 1.643E-4s					
10 10 214 1.045E 43 17 Tl-210 1.30m	1 0005+00	Pb = 210			
18 Pb-210 22 20v	1 000E+00	$B_{1} = 210$	1 9005-08	Ha-206	
18Pb-21022.20y19Bi-2105.013d20Hg-2068.15m21Po-210138.376d	1.0000100	$P_{0} - 210$	1 320E~06	ng 200 ml-206	
20 Hg = 206 8 15m	1.000E+00	$T_{1} = 206$	1.5201 00	11 200	
21 Po-210 138.376d	1.000E+00	Pb-2065			
22 T1-206 4.200m	1.000E+00	Pb-206\$			
	1.00001.00	1.0 2004			
Pu-232			•		
- ·				Daughter	
Products			-		
Nuclide Halflife	fl	Nuclide	f2	Nuclide	£3
Nuclide f4 Nucl: 1 Pu-232 33.7m	ide				
1 Pu-232 33.7m	7.700E-01	Np-232	2.300E-01	U-228	
2 Np-232 14.7m	1.000E+00	u-232			
3 U-228 9.1m					
4 U-232 68.9v	1.000E+00	Th-228			
5 Th-228 1.9116y 6 Ra-224 3.66d 7 Rn-220 55.6s	1.000E+00	Ra-224			
6 Ra-224 3.66d	1.000E+00	Rn-220			
7 Rn-220 55.6s	1.000E+00	Po-216			
8 Po-216 0.145s	1.000E+00	Pb-212			
9 Pb-212 10.64h	1.000E+00				
10 Bi-212 60.55m	6.406E-01		3.594E-01	T1-208	
11 Th-224 1.05s	1.000E+00				
12 Ra-220 1.79E-2s	1.000E+00				
13 Rn-216 4.5E-5s	1.000E+00			•	
14 Po-212 2.99E-7s	1.000E+00				
15 T1-208 3.053m					
Pu-234					

(

Pu-234

Daughter

`

Products -						
Nuclide	Halflife	fl	Nuclide	f2	Nuclide	£3
Nuclide f	4 Nucl:	ide				
1 Pu-234	8.8h	9.400E-01	Np-234	6.000E-02	U-230	
2 Np-234 3 U-230	4.4d	1.000E+00	U-234			
3 U-230	20.8d	1 000E+00	Th-226			
4 U-234	2.455E+5y	1.000E+00	Th-230			
5 Th-230	7.538E+4y	1.000E+00	Ra-226			
6 Ra-226	1600y	1.000E+00	Rn-222			
	3.8235d					
8 Po-218	3.10m	9.998E-01	Pb-214	2.000E-04	At-218	
9 Pb-214	26.8m	1.000E+00	Bi-214	1 000- 00		
10 At-218	1.58	9.990E-01	B1-214	1.000E-03	Rn-218	
11 Bi-214	1.5s 19.9m 30.57m	9.998E-01	Po-214	2.100E-04	T1-210	
12 Th-226	30.5/m	1.000E+00	Ra-222			
13 Ra-222	38.0s					
14 Rn-218	3.5E-2S	1.000E+00				
	1.643E-4s					
16 T1-210	1.30m			1 0000 00	U. 206	
17 PD - 210 19 Di - 210	22.20y	1.000E+00 1.000E+00	B1 = 210	1.900E-08	HG-206	
10 BI = 210 $10 \text{ H} \approx = 206$	5.013d 8.15m 138.376d	1.000E+00	PO-210	1.320E-06	11-206	
19 Hy = 200	138 3764	1.000E+00	11-200			
20 F0-210 21 T1-206	4.200m	1.000E+00	Pb = 2005			
21 11 200	4.2001	1.0000100	10 2009			
Pu-235 [·]						
ru-zoo						
Fu=235]	Daughter	
Products -]	Daughter	
Products -	 Halflife				Daughter Nuclide	f3
Products - Nuclide Nuclide f	Halflife 4 Nucl	f1 ide	Nuclide	f2	Nuclide	£3
Products - Nuclide Nuclide f 1 Pu-235	Halflife 4 Nucl 25.3m	f1 ide 1.000E+00	Nuclide	f2 2.700E-05	Nuclide U-231	£3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235	Halflife 4 Nucl 25.3m 396.1d	f1 ide 1.000E+00	Nuclide	f2 2.700E-05	Nuclide U-231	f3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P	Halflife 4 Nucl 25.3m 396.1d a-231	f1 ide 1.000E+00 3.993E-03	Nuclide Np-235 U-235m	f2 2.700E-05 9.960E-01	Nuclide U-231 U-235	£3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d	f1 ide 1.000E+00 3.993E-03 1.000E+00	Nuclide Np-235 U-235m Pa-231	f2 2.700E-05	Nuclide U-231 U-235	f3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235	f2 2.700E-05 9.960E-01	Nuclide U-231 U-235	£3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231	f2 2.700E-05 9.960E-01	Nuclide U-231 U-235	£3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52b	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231	f2 2.700E-05 9.960E-01	Nuclide U-231 U-235	f3
Products - Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227	f2 2.700E-05 9.960E-01 4.000E-05	Nuclide U-231 U-235 Th-227	f3
Products - Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227	f2 2.700E-05 9.960E-01 4.000E-05	Nuclide U-231 U-235 Th-227	f3
Products - Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223	f2 2.700E-05 9.960E-01 4.000E-05 1.380E-02	Nuclide U-231 U-235 Th-227 Fr-223	£3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227 10 Fr-223	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223	f2 2.700E-05 9.960E-01 4.000E-05	Nuclide U-231 U-235 Th-227 Fr-223	£3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227 10 Fr-223 11 Ra-223	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219	f2 2.700E-05 9.960E-01 4.000E-05 1.380E-02	Nuclide U-231 U-235 Th-227 Fr-223	£3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227 10 Fr-223 11 Ra-223 12 Rn-219	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215	f2 2.700E-05 9.960E-01 4.000E-05 1.380E-02	Nuclide U-231 U-235 Th-227 Fr-223	£3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227 10 Fr-223 11 Ra-223 12 Rn-219 13 At-219	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.700E-01	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215	f2 2.700E-05 9.960E-01 4.000E-05 1.380E-02	Nuclide U-231 U-235 Th-227 Fr-223	f3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227 10 Fr-223 11 Ra-223 12 Rn-219 13 At-219 14 Bi-215	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Ra-219 Po-215 Bi-215 Po-215	f2 2.700E-05 9.960E-01 4.000E-05 1.380E-02	Nuclide U-231 U-235 Th-227 Fr-223	f3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227 10 Fr-223 11 Ra-223 12 Rn-219 13 At-219 14 Bi-215 15 Po-215	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Po-215 Pb-211	f2 2.700E-05 9.960E-01 4.000E-05 1.380E-02	Nuclide U-231 U-235 Th-227 Fr-223	f3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227 10 Fr-223 11 Ra-223 12 Rn-219 13 At-219 14 Bi-215 15 Po-215 16 Pb-211	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 9.700E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Pb-211 Bi-211	f2 2.700E-05 9.960E-01 4.000E-05 1.380E-02 6.000E-05	Nuclide U-231 U-235 Th-227 Fr-223 At-219	f3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227 10 Fr-223 11 Ra-223 12 Rn-219 13 At-219 14 Bi-215 15 Po-215 16 Pb-211 17 Bi-211	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m 2.14m	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.972E-01	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Pb-211 Bi-211 Tl-207	f2 2.700E-05 9.960E-01 4.000E-05 1.380E-02	Nuclide U-231 U-235 Th-227 Fr-223 At-219	f3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227 10 Fr-223 11 Ra-223 12 Rn-219 13 At-219 14 Bi-215 15 Po-215 16 Pb-211 17 Bi-211 18 T1-207	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m 2.14m 4.77m	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01 1.000E+00	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Pb-211 Bi-211 Tl-207 Pb-207\$	f2 2.700E-05 9.960E-01 4.000E-05 1.380E-02 6.000E-05	Nuclide U-231 U-235 Th-227 Fr-223 At-219	£3
Products - Nuclide Nuclide f 1 Pu-235 2 Np-235 2.600E-05 P 3 U-231 4 U-235m 5 U-235 6 Th-231 7 Pa-231 8 Ac-227 9 Th-227 10 Fr-223 11 Ra-223 12 Rn-219 13 At-219 14 Bi-215 15 Po-215 16 Pb-211 17 Bi-211	Halflife 4 Nucl 25.3m 396.1d a-231 4.2d 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m 2.14m	f1 ide 1.000E+00 3.993E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.972E-01	Nuclide Np-235 U-235m Pa-231 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Pb-211 Bi-211 Tl-207 Pb-207\$	f2 2.700E-05 9.960E-01 4.000E-05 1.380E-02 6.000E-05	Nuclide U-231 U-235 Th-227 Fr-223 At-219	f3

Pu-236

144

,

				I	Daughter	
Products Nuclide	Halflife	 f1	Nuclide	f2	Nuclide	£3
	Nucl					
1 Pu-236	2.858y	1.000E+00	U-232	1.370E-09	SF	
2 U-232 3 Th-228 4 Ra-224 5 Rn-220	68.9y	1.000E+00	Th-228			
3 Th-228	1.9116y	1.000E+00	Ra-224			
4 Ra-224	3.66d	1.000E+00	Rn-220			
5 Rn-220	55.6s	1.000E+00	Po-216			
	0.145s					
7 Pb-212	10.64h	1.000E+00	Bi-212		-1 000	
8 B1-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
9 PO-212	2.99E-7s	1.000E+00	PD-2085			
10 T1-208	3.053m	1.000E+00	PD-2085			
Pu-237						
Droducto]	Daughter	
	Halflife			f2	Nuclide	£3
	Nucl					
1 Pu-237	45.2d	1.000E+00	Np-237	4.200E-05	U-233	
2 Np-237	2.144E+6y	1.000E+00	Pa-233			
3 Pa-233	2.144E+6y 26.967d 1.592E+5y	1.000E+00	U-233			
4 U-233	1.592E+5y	1.000E+00	Th-229			
5 Th-229	7.34E+3y	1.000E+00	Ra-225			
	14.9d					
7 Ac-225	10.0d	1.000E+00	Fr-221			
8 Fr - 221	4.9m	1.000E+00	At-217			
9 At-21/	3.23E-2s	9.999E-01	B1-213		m1 200	
10 B1-213	45.59m	9./91E-01	PO-213	2.090E-02	11-209	
11 PO-213 12 TI-200	4.2E-0S	1.000E+00	PD = 209			
10 Bi-213 11 Po-213 12 T1-209 13 Pb-209	2.101m 3.253b	1.000E+00	PD = 209			
15 16 207	5.2551	1.0001100	D1 2099			
Pu-238						
Products					Daughter	
	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f4						
1 Pu-238			U-234	1.850E-09	SF	
	2.455E+5y					
	7.538E+4y		Ra-226			
4 Ra-226	1600y	1.000E+00	Rn-222			
5 Rn-222	3.8235d	1.000E+00	Po-218			
6 Po-218	3.10m			2.000E-04	At-218	
7 Pb-214	26.8m	1.000E+00				
8 At-218	1.5s	9.990E-01		1.000E-03		
9 Bi-214	19.9m	9.998E-01		2.100E-04	T1-210	
10 Rn-218	3.5E-2s					
	1.643E-4s			*		
12 Tl-210 13 Pb-210	1.30m 22.20y	1.000E+00 1.000E+00		1.900E-08	Ha-206	
T2 ED-ST0	22.209	T.000E+00	DT. STO	T. 200E-00	119 200	

14 Bi-2105.013015 Hg-2068.15116 Po-210138.376017 T1-2064.2001	n 1.000E+00 d 1.000E+00	T1-206 Pb-206\$	1.320E-06	T1-206	
Pu-239					
Products			I	Daughter	
Nuclide Halflif			f2	Nuclide	f٦
	clide	NUCTIUC	12	Nucliuc	10
1 Pu-239 2.411E+4		U-235m	6.000E-04	U-235	
2 II-235m 26	- n 1 000E+00	11-235			
3 U-235 7.04E+8	y 1.000E+00	Th-231			
4 Th-231 25.52	n 1.000E+00	Pa-231			
3 U-235 7.04E+8 4 Th-231 25.52 5 Pa-231 3.276E+4 6 Ac-227 21.772	y 1.000E+00	Ac-227			
6 Ac-227 21.772	y 9.862E-01	Th-227	1.380E-02	Fr-223	
7 Th-227 18.68				7.4 010	
8 Fr-223 22.00			6.000E-05	At-219	
9 Ra-223 11.43 10 Rn-219 3.96	1 1.000E+00	$R_{1} = 219$ $P_{0} = 215$			
11 At = 219 5.90	3 9700E+00	Bi - 215			
11 At-219 56 12 Bi-215 7.6 13 Po-215 1.781E-3	n = 1.000E+00	Po-215			
13 Po-215 1.781E-3	s 1.000E+00	Pb-211			
14 Pb-211 36.1	n 1.000E+00	Bi-211			
15 Bi-211 2.14	n 9.972E-01	T1-207	2.760E-03	Po-211	
16 Tl-207 4.77	n 1.000E+00	Pb-207\$			
17 Po-211 0.516	s 1.000E+00	Pb-207\$			
D 040					
Pu-240			,	Daughtar	
Products				Daughter	
Nuclide Halflif		Nuclide	f2	Nuclide	f٦
Nuclide f4 Nu					
1 Pu-240 6564	y 1.000E+00	U-236	5.750E-08	SF	
2 U-236 2.342E+7	y 1.000E+00	Th-232			
3 Th-232 1.405E10	y 1.000E+00	Ra-228			
4 Ra-228 5.75	y 1.000E+00	Ac-228			
4 Ra-228 5.75 5 Ac-228 6.15 6 Th-228 1.9116	h 1.000E+00	Th-228			
6 Th-228 1.9116	y 1.000E+00	Ra-224			
7 Ra-224 3.66					
8 Rn-220 55.6 9 Po-216 0.145	S I.0006+00	PO-210			
	= 1 000F+00	Ph-212			
IN Ph-212 IN 64				· .	
10 Pb-212 10.64 11 Bi-212 60.55	h 1.000E+00	Bi-212	3.594E-01	T1-208	
11 Bi-212 60.55	h 1.000E+00 n 6.406E-01	Bi-212 Po-212	3.594E-01	T1-208	
11 Bi-212 60.55	h 1.000E+00 n 6.406E-01 s 1.000E+00	Bi-212 Po-212 Pb-208\$	3.594E-01	T1-208	
11 Bi-212 60.55 12 Po-212 2.99E-7	h 1.000E+00 n 6.406E-01 s 1.000E+00	Bi-212 Po-212 Pb-208\$	3.594E-01	T1-208	
11 Bi-212 60.55 12 Po-212 2.99E-7	h 1.000E+00 n 6.406E-01 s 1.000E+00 n 1.000E+00	Bi-212 Po-212 Pb-208\$ Pb-208\$			
11 Bi-212 60.55 12 Po-212 2.99E-7 13 T1-208 3.053 Pu-241	h 1.000E+00 n 6.406E-01 s 1.000E+00	Bi-212 Po-212 Pb-208\$ Pb-208\$		T1-208 Daughter	
11 Bi-212 60.55 12 Po-212 2.99E-7 13 Tl-208 3.053 Pu-241 Products	h 1.000E+00 n 6.406E-01 s 1.000E+00 n 1.000E+00	Bi-212 Po-212 Pb-208\$ Pb-208\$		Daughter	£2
11 Bi-212 60.55 12 Po-212 2.99E-7 13 T1-208 3.053 Pu-241 Products Nuclide Halflif	h 1.000E+00 n 6.406E-01 s 1.000E+00 n 1.000E+00	Bi-212 Po-212 Pb-208\$ Pb-208\$			£3

2 3 4 5 6 7 8 9 10 11 12 13 14	Pu-241 Am-241 U-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 T1-209 Pb-209	432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y 14.9d 10.0d 4.9m 3.23E-2s 45.59m 4.2E-6s 2.161m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.999E-01	Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 Pb-209 Pb-209	2.450E-05 2.090E-02	·	
Pu-2	242						
					I	Daughter	
Proc	ducts		 f1	 Nu -1 - 1 -	دە		60
Nucl	Nuclide Lide f4	Halflife Nucli		Nuclide	f2	Nuclide	f3
	Pu-242		1.000E+00	11-230	5 5408-06	C.F.	
	U-238	4.468E+9y			5.450E-07		
	Th-234	2/ 10d	1.000E+00	1n - 2.34	J.450E-07	51	
	Pa-234m		1.600E+00		9.984E-01	11-234	
	Pa-234		1.000E+00		9904E-01	0-234	
	U-234	2.455E+5y	1.000E+00	Th = 230			
	Th-230	7.538E+4y	1.000 ± 00	Ra-226			
	Ra-226		1.000E+00				
	Rn-222	3.8235d	1.000E+00				
	Po-218		9.998E-01		2.000E-04	At-218	
	Pb-214	26.8m	1.000E+00				
	At-218		9.990E-01		1.000E-03	Rn-218	
13	Bi-214		9.998E-01		2.100E-04		
14	Rn-218		1.000E+00				
15	Po-214	1.643E-4s	1.000E+00	Pb-210			
	Tl-210		1.000E+00				
	Pb-210		1.000E+00		1.900E-08	Hg-206	
	Bi-210		1.000E+00		1.320E-06	T1-206	
	Hg-206		1.000E+00				
	Po-210		1.000E+00				
21	T1-206	4.200m	1.000E+00	Pb-206\$			
Pu-2	243) an abt a r	

Daughter Products ------ Daughter Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Pu-243 4.956h 1.000E+00 Am-243 2 Am-243 7.37E+3y 1.000E+00 Np-239 3 Np-239 2.3565d 1.000E+00 Pu-239 4 Pu-239 2.411E+4y 9.994E-01 U-235m 6.000E-04 U-235

6 U-235 7.04E+8 7 Th-231 25.52 8 Pa-231 3.276E+4 9 Ac-227 21.772 10 Th-227 18.68 11 Fr-223 22.00	h 1.000E+00 y 1.000E+00 y 9.862E-01 d 1.000E+00 d 1.000E+00 d 1.000E+00 s 1.000E+00 s 9.700E-01 m 1.000E+00 s 1.000E+00 m 9.972E-01 m 1.000E+00	$\begin{array}{c} Th-231\\ Pa-231\\ Ac-227\\ Th-227\\ Ra-223\\ Ra-223\\ Rn-219\\ Po-215\\ Bi-215\\ Po-215\\ Pb-211\\ Bi-211\\ Bi-211\\ Tl-207\\ Pb-207\$ \end{array}$	1.380E-02 6.000E-05 2.760E-03	At-219	
Pu-244				Daughter	
Products			-	-	
Nuclide Halflif		Nuclide	f2	Nuclide	£3
1 Pu-244 8.00E+7	clide y 9.988E-01 h 1.000E+00		1.210E-03	SF	
2 17 0 4 0 0 0 0	4 4 6 6 - 6 6			Pu-240	
10Th-2281.911611Ra-2243.6612Rn-22055.613Po-2160.14514Pb-21210.6415Bi-21260.5516Po-2122.99E-7	h 1.000E+00 y 1.000E+00 d 1.000E+00 s 1.000E+00 s 1.000E+00 h 1.000E+00 m 6.406E-01	Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 Pb-208\$	5.750E-08 3.594E-01		
Pu-245]	Daughter	
Products				-	c o
1 Pu-245 10.5 2 Am-245 2.05 3 Cm-245 8.5E+3 4 Pu-241 14.35 5 Am-241 432.2	clide h 1.000E+00 h 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 d 1.000E+00	Cm-245 Pu-241 Am-241 Np-237 Np-237	f2 6.100E-09 2.450E-05		£3

,

¢.

9 U-233 10 Th-229 11 Ra-225	7.34E+3y 14.9d 10.0d 4.9m 3.23E-2s	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.999E-01	Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213.	2.090E-02	' T1-209	
Pu-246					Daughter	
Products						
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f	4 Nucl	ide				
1 Pu-246	10.84d	1.000E+00	Am-246m			
2 Am-246m	25.0m 4.76E+3y	1.000E+00	Cm-246			
3 Cm-246	4.76E+3y	9.997E-01	Pu-242	2.630E-04	SF	
4 Pu-242	3.75E+5y	1.000E+00	U-238	5.540E-06	SF	1
5 U-238	4.468E+9y	1.000E+00	Th-234	5.450E-07	SF	
6 Th-234	24.10d	1.000E+00	Pa-234m	0.0040.01	11 0 2 4	
7 Pa-234m 8 Pa-234	1.1/m C 70b	1.600E-03		9.9846-01	0-234	
8 Pa-234	6.70n 2.455E+5y	1.000E+00	U-234 mb 220			
30-234	Z.455E+5Y	1.000E+00	n = 230			
10 III - 230	1600v	1.000E+00	Ra = 220			
12 Pn = 220	3 82354	1.000E+00	$R_{0} = 218$			
10 Th-230 11 Ra-226 12 Rn-222 13 Po-218 14 Pb-214	3.02330 3.10m	9 9985-01	Pb - 210	2 000E - 04	At-218	
14 Pb-214	26.8m	1.000E+00	Bi-214	2.0001 01	110 210	
15 At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218	
16 Bi-214	19.9m	9.998E-01	Po-214	2.100E-04		
17 Rn-218	3.5E-2s	1.000E+00	Po-214			
18 Po-214	3.5E-2s 1.643E-4s	1.000E+00	Pb-210			
	1.30m					
20 Pb-210	22.20v	1.000E+00	Bi-210	1.900E-08	Hg-206	
21 Bi-210	5.013d 8.15m 138.376d	1.000E+00	Po-210	1.320E-06	T1-206	
22 Hg-206	8.15m	1.000E+00	T1-206	·		
23 Po-210	138.376d	1.000E+00	Pb-206\$			
24 Tl-206	4.200m	1.000E+00	Pb-206\$			

Am-237

Daughter _____ Products ----------Nuclide Halflife fl Nuclide f2 Nuclide £3 Nuclide f4 Nuclide 73.0m 9.998E-01 Pu-237 2.500E-04 Np-233 1 Am-237 2 Pu-237 4.200E-05 U-233 45.2d 1.000E+00 Np-237 3 Np-233 36.2m 1.000E+00 U-233 1.000E-05 Pa-229 4 Np-237 2.144E+6y 1.000E+00 Pa-233 26.967d 1.000E+00 U-233 5 Pa-233

6	U-233	1.592E+5y	1.000E+00	Th-229		
7	Pa-229	1.50d	9.952E-01	Th-229	4.800E-03	Ac-225
8	Th-229	7.34E+3y	1.000E+00	Ra-225		
9	Ra-225	14.9d	1.000E+00	Ac-225		
10	Ac-225	10.0d	1.000E+00	Fr-221		
11	Fr-221	4.9m	1.000E+00	At-217		
12	At-217	3.23E-2s	9.999E-01	Bi-213		
13	Bi-213	45.59m	9.791E-01	Po-213	2.090E-02	Tl-209
14	Po-213	4.2E-6s	1.000E+00	Pb-209		
15	T1-209	2.161m	1.000E+00	Pb-209		
16	Pb-209	3.253h	1.000E+00	Bi-209\$		

Am-238

11111 2					-	Daughter	
Prod	lucts				-	Judgiteer	
1100		Halflife	f1	Nuclide	f2	Nuclide	f3
Nucl	ide f4	Nucl:	ide			,	
1	Am-238	98m 87.7y 4.4d 2.455E+5y	1.000E+00	Pu-238	1.000E-06	Np-234	
2	Pu-238	87.7v	1.000E+00 1.000E+00	U-234	1.850E-09	SF	
3	Np-234	4.4d	1.000E+00	U-234			
4	U-234	2.455E+5y	1.000E+00	Th-230			
5	Th-230	7.538E+4y	1.000E+00	Ra-226			
6	Ra-226	1600v	1.000E+00	Rn-222			
7	Rn-222	1600y 3.8235d	1.000E+00	Po-218			
8	Po-218	3.1Om	9.998E-01	Pb-214	2.000E-04	At-218	
9	Pb-214	26.8m	1.000E+00	Bi-214			
10	At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218	
11	At-218 Bi-214	19.9m	9.998E-01	Po-214	2.100E-04		
12	Rn-218	3.5E-2s	1.000E+00	Po-214			
13	Po-214	1.643E-4s	1.000E+00	Pb-210			
14	T1-210	1.30m	1.000E+00	Pb-210		•	
15	Pb-210	22.20v	1.000E+00	Bi-210	1.900E-08	Hg-206	
16	Bi-210	5.013d 8.15m 138.376d	1.000E+00	Po-210	1.320E-06		
17	Hg-206	8.15m	1.000E+00	T1-206			
18	Po-210	138.376d	1.000E+00	Pb-206\$			
19	T1-206	4.200m	1.000E+00	Pb-206\$			
Am-2	39						
						Daughter	
Proc	lucts						
		Halflife	fl	Nuclide	f2	Nuclide	£3
Nucl		A Nucl:					
	Am-239	11.9h	9.999E-01	Pu-239	1.000E-04	Np-235	
2	Pu-239	2.411E+4v	9.994E-01	U-235m	6.000E-04	U-235	
3	Np-235	396.1d	3.993E-03	U-235m	9.960E-01	U-235	
)0Ē-05 Pa						
4	U-235m	26m	1.000E+00	U-235			
5	U-235	7.04E+8y	1.000E+00	Th-231			
6	Th-231	25.52h	1.000E+00	Pa-231			
7	Pa-231	3.276E+4y	1.000E+00	Ac-227			
8	Ac-227	25.52h 3.276E+4y 21.772y	9.862E-01	Th-227	1.380E-02	Fr-223	
9	Th-227	18.68d	1.000E+00	Ra-223			

10 Fr-223 11 Ra-223	22.00m 11.43d	1.000E+00 1.000E+00		6.000E-05	At-219
12 Rn-219	3.96s	1.000E+00	Po-215		
13 At-219	56s	9.700E-01	Bi-215	•	
14 Bi-215	7.6m	1.000E+00	Po-215		
15 Po-215	1.781E-3s	1.000E+00	Pb-211		
16 Pb-211	36.1m	1.000E+00	Bi-211'		
17 Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211
18 Tl-207	4.77m	1.000E+00	Pb-207\$		
19 Po-211	0.516s	1.000E+00	Pb-207\$		

Am-240 Daughter -----Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Am-240 50.8h 1.000E+00 Pu-240 1.900E-06 Np-236 2 Pu-240 6564y 1.000E+00 U-236 5.750E-08 SF 3 Np-236 1.54E+5y 8.730E-01 U-236 1.600E-03 Pa-232 1.250E-01 Pu-236 2.342E+7y 4 U-236 1.000E+00 Th-232 3.000E-05 Th-232 5 Pa-232 1.31d 1.000E+00 U-232 6 Th-232 1.405E10y 1.000E+00 Ra-228 7 Ra-228 5.75y 1.000E+00 Ac-228 8 Ac-228' . 6.15h 1.000E+00 Th-228 9 Pu-236 2.858y 1.000E+00 U-232 1.370E-09 SF 10 U-232 68.9y 1.000E+00 Th-228 11 Th-228 1.9116y 1.000E+00 Ra-224 12 Ra-224 3.66d 1.000E+00 Rn-220 13 Rn-220 55.6s 1.000E+00 Po-216 14 Po-216 0.145s 1.000E+00 Pb-212

15 Pb-212	10.64h	1.000E+00	Bi-212		
16 Bi-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208
17 Po-212	2.99E-7s	1.000E+00	Pb-208\$		
18 Tl-208	3.053m	1.000E+00	Pb-208\$		

Am-241

_____ ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 f4 Nuclide Nuclide 1 Am-241 432.2y 1.000E+00 Np-237 2 Np-237 2.144E+6y 1.000E+00 Pa-233 3 Pa-233 26.967d 1.000E+00 U-233 4 U-233 1.592E+5y 1.000E+00 Th-229 7.34E+3y 5 Th-229 1.000E+00 Ra-225 6 Ra-225 14.9d 1.000E+00 Ac-225 7 Ac-225 10.0d 1.000E+00 Fr-221 8 Fr-221 4.9m 1.000E+00 At-217 9 At-217 3.23E-2s 9.999E-01 Bi-213 10 Bi-213 45.59m 9.791E-01 Po-213 2.090E-02 T1-209 1.000E+00 Pb-209 11 Po-213 4.2E-6s

12 T1-209	2.161m	1.000E+00	Pb-209
13 Pb-209	3.253h	1.000E+00	Bi-209\$

Am-242

				1	Daughter	
Products					Judgiteer	
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3
Nuclide f4	A Nucl:	ide				
1 Am-242	16.02h	8.270E-01	Cm-242	1.730E-01	Pu-242	
2 Cm-242	162.8d 3.75E+5y 87.7y	1.000E+00	Pu-238	6.370E-08	SF	
3 Pu-242	3.75E+5y	1.000E+00	U-238	5.540E-06	SF	
4 Pu-238	87.7y	1.000E+00	U-234	1.850E-09	SF	
5 U-238	4.468E+9y	1.000E+00		5.450E-07		
	24.10d		Pa-234m			
7 Pa-234m	1.17m	1.600E-03	Pa-234	9.984E-01	U-234	
8 Pa-234	6.70h	1.000E+00	U-234			
	2.455E+5y		Th-230			
10 Th-230	7.538E+4y	1.000E+00	Ra-226			
11 Ra-226	7.538E+4y 1600y	1.000E+00	Rn-222	•		
12 Rn-222	3.8235d	1.000E+00	Po-218			
13 Po-218	3.10m	9.998E-01	Pb-214	2.000E-04	At-218	
	26.8m				•	
15 At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218	
16 Bi-214	19.9m	9.998E-01	Po-214	2.100E-04	Tl-210	
17 Rn-218		1.000E+00	Po-214			
18 Po-214	1.643E-4s					
19 Tl-210	1.30m	1.000E+00	Pb-210			
20 Pb-210	22.20y	1.000E+00		1.900E-08	Hq-206	
	5.013d	1.000E+00	Po-210	1.320E-06	T1-206	
	8.15m					
23 Po-210	138.376d	1.000E+00				
	4.200m					
Am-242m	•					
~ 1 .		~~]	Daughter	
Products				50	N	د م
		f1	Nuclide	ΓZ	Nuclide	£3
Nuclide f			N		N 000	
1 Am-242m	141Y	9.955E-01	Am = 242	4.500E-03	NP-238	
	16.02h			1.730E-01	Pu-242	
3 NP-238	2.117d	1.000E+00	Pu-238	C 2705 00	0.17	
4 Cm-242	162.8d 3.75E+5y	1.000E+00	Pu-238	5.540E-08	SF	
	87.7y					
	4.468E+9y			5.450E-07	SF	
8 Th-234	24.10d				11 004	
9 Pa-234m				9.984E-01	0-234	
10 Pa-234	6.70h	1.000E+00		•		
11 U-234	2.455E+5y	1.000E+00				
12 Th-230	7.538E+4y	1.000E+00				
13 Ra-226	1600y	1.000E+00				
14 Rn-222	3.8235d	1.000E+00	10-718			

				· ·		
	3.10m 26.8m			2.000E-04	At-218	
17 At-218		9.990E-01		1.000E-03	Bn-218	
	19.9m			2.100E-04		
19 Rn-218	3.5E-2s	1.000E+00		212002 01	1. 210	
20 Po-214		1.000E+00				
21 Tl-210	1.30m	1.000E+00				
22 Pb-210	22.20y	1.000E+00	Bi-210	1,900E-08	Ha-206	
23 Bi-210	5.013d	1.000E+00	Po-210	1.320E-06	T1-206	
24 Hq-206	. 8.15m	1.000E+00	T1-206			
25 Po-210	138.376d	1.000E+00				
	4.200m					
Am-243				•		
Products				1	Daughter	
Nuclide	Halflife		Nuclide	f2	Nuclide	f3
Nuclide f			NUCITUE	12	Nuclide	13
	7.37E+3y		Np-239			
2 Np-239		1.000E+00				
3 Pu-239	2.411E+4v	9,994E-01	U-235m	6.000E-04	U-235	
4 U-235m	2.411E+4y 26m 7.04E+8y 25.52h	1.000E+00	U-235		0 200	
5 U-235	7.04E+8y	1.000E+00	Th-231			
6 Th-231	25.52ĥ	1.000E+00	Pa-231			
7 Pa-231	3.276E+4y	1.000E+00	Ac-227			
8 Ac-227	21.772y	9.862E-01	Th-227	1.380E-02	Fr-223	
	18.68d		Ra-223			
10 Fr-223	22.00m			6.000E-05	At-219	
11 Ra-223	11.43d	1.000E+00	Rn-219			
12 Rn-219	3.96s					
13 At-219	565					
14 Bi-215	7.6m	1.000E+00				
15 Po-215	1.781E-3s					
16 Pb-211		1.000E+00				
17 Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211	
18 T1-207		1.000E+00	Pb-207\$			
19 Po-211	0.5168	1.000E+00	Pb-207\$			
Am-244						
AIII-244			1 A.	Ţ	Daughter	
Products					Jaughter	
Nuclide	Halflife	f1	Nuclide	£2	Nuclide	f3
Nuclide f			Mucride	L Z .	Nucriae	15
1 Am-244	10.1h		Cm-244			
2 Cm-244		1.000E+00		1.371E-06	SF	
3 Pu-240	6564v	1.000E+00	U-236	5.750E-08		
4 U-236	2.342E+7v	1.000E+00	Th-232	1.002.00		
5 Th-232	1.405E10y	1.000E+00	Ra-228			
6 Ra-228	5.75v	1.000E+00	Ac-228			
7 Ac-228		1.000E+00				
8 Th-228		1.000E+00				
9 Ra-224		1.000E+00				

.

11 12	Po-216 Pb-212	55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m	1.000E+00 1.000E+00	Pb-212 Bi-212	3.594E-01	T1-208	
Am-2	244m				1	Daughter	
Prod	ducts	·			1	Judgiteer	
	Nuclide	Halflife	f1		f2	Nuclide	f3
Nuc	lide f4	A Nucli	ide				
	Am-244m		9.996E-01				
2	Cm-244	18.10y	1.000E+00	Pu-240	1.371E-06 5.750E-08	SF	
3	Pu-240	6564y	1.000E+00	U-236	5.750E-08	SF	
4	U-236	2.342E+7y	1.000E+00	Th-232			
5	Th-232	1.405E10y	1.000E+00	Ra-228			
67	Ra-228	5.75y	1.000E+00	Ac-228			
/ Q	AC-220	6.15h	1.000E+00	Tn = 228			
o Q	$P_{2} = 224$	1.9116y	1.000E+00	Ra = 224 Pn = 220			
10	Rn = 224	3.66d 55.6s	1 000E+00	$R_{0} = 216$		•	
11	Po-216	0.145s	1.000E+00	Pb-212			,
12	Pb-212	10.64h	1.000E+00	Bi-212			
		60.55m			3.594E-01	T1-208	
		2.99E-7s					
		3.053m					
Am-2	245						
					'I	Daughter	
Proc	ducts					2	
		Halflife		Nuclide	f2	Nuclide	£3
	lide f4	Nucli	lde	~ ^ ^ *			
		2.05h				6 -	
2.	Cm = 245	8.5E+3y	1.000E+00	Pu-241	6.100E-09		
	Pu = 241 $\Delta m = 2/11$	14.35Y	1.000E+00	AIII = 241 Nr = 237	2.450E-05	0-237	
5	II-237	14.35y 432.2y 6.75d	1.000E+00	Np = 237			
6	Np - 237	2.144E+6y	1.000E+00	$P_{a} = 233$			
7	Pa-233	26.967d	1.000E+00	U = 233			
	U-233	1.592E+5y	1.000E+00				
	Th-229		1.000E+00				
	Ra-225	-	1.000E+00				
	Ac-225	10.0d	1.000E+00				
	Fr-221	4.9m	1.000E+00	At-217			
	At-217		9.999E-01				
	Bi-213		9.791E-01		2.090E-02	T1-209	
	Po-213	4.2E-6s	1.000E+00				
	T1-209	2.161m	1.000E+00				
1/	Pb-209	3.253h	1.000E+00	в1-209\$			

.

Am-246

.

.

	_]	Daughter	
Products	·				ć o
Nuclide Halflife	11 tdo	Nuclide	£2	Nuclide	£3
Nuclide f4 Nucl 1 Am-246 39m 2 Cm-246 4.76E+3y 3 Pu-242 3.75E+5y 4 U-238 4.468E+9y 5 Th 224	1 000 <u><u><u></u></u></u>	Cm = 246			
2 Cm = 246 4 76E + 3V	9 997F-01	$P_{11} = 240$	2 6305-04	٩F	
$3 P_{11} - 242 \qquad 3.75E + 5v$	1 000E+00	11-238	5 540E-06	SF	
4 U - 238 4 . 468E + 9V	1.000E+00	Th-234	5.450E-07	SF	
5 Th-234 24.10d	1.000E+00	Pa-234m	011001 07	01	
6 Pa-234m 1.17m	1.600E-03	Pa-234	9.984E-01	U-234	
7 Pa-234 = 6 70h	1 0005+00	11-234			
8 U-234 2.455E+5y	1.000E+00	Th-230			
9 Th-230 7.538E+4y	1.000E+00	Ra-226			
10 Ra-226 1600y	1.000E+00	Rn-222			
8 U-234 2.455E+5y 9 Th-230 7.538E+4y 10 Ra-226 1600y 11 Rn-222 3.8235d	1.000E+00	Po-218			
12 Po-218 3.10m 13 Pb-214 26.8m	9.998E-01	Pb-214	2.000E-04	At-218	
13 PD-214 26.8m	1.000E+00	B1 - 214	1 0000 02	D= 010	
14 At-218 1.5s 15 Bi-214 19.9m		Do 214	2 1005 04	m1 010	
$16 \text{ Bn} - 218 \qquad 3 5 \text{F} - 2 \text{s}$	9.998E-01	PO=214	2.1006-04	11-210	
$17 P_0 - 214 + 1.643E - 4s$	1 000E+00	Pb-210			
13 B1-214 19.9m 16 Rn-218 3.5E-2s 17 Po-214 1.643E-4s 18 T1-210 1.30m 19 Pb-210 22.20y 20 Bi-210 5.013d 21 Hg-206 8.15m 22 Po-210 138.376d 23 T1-206 4.200m	1.000E+00	Pb-210			
19 Pb-210 22.20y	1.000E+00	Bi-210	1.900E-08	Ha-206	
20 Bi-210 5.013d	1.000E+00	Po-210	1.320E-06	T1-206	
21 Hg-206 8.15m	1.000E+00	T1-206			
22 Po-210 138.376d	1.000E+00	Pb-206\$			
23 T1-206 4.200m	1.000E+00	Pb-206\$			
23 11 200 4.200m	1.000E+00	Pb-206\$			
Am-246m				Daughter	
Am-246m Products]	Daughter	
Am-246m Products Nuclide Halflife	f1]	Daughter	f3
Am-246m Products Nuclide Halflife Nuclide f4 Nucl	f1	Nuclide]	Daughter	f3
Am-246m Products Nuclide Halflife Nuclide f4 Nucl 1 Am-246m 25.0m	f1 ide 1.000E+00	Nuclide Cm-246] f2	Daughter Nuclide	f3
Am-246m Products Nuclide Halflife Nuclide f4 Nucl 1 Am-246m 25.0m 2 Cm-246 4 76F+3y	f1 ide 1.000E+00	Nuclide Cm-246 Pu-242	f2	Daughter Nuclide	£3
Am-246m Products Nuclide Halflife Nuclide f4 Nucl 1 Am-246m 25.0m 2 Cm-246 4 76F+3y	f1 ide 1.000E+00	Nuclide Cm-246 Pu-242	f2	Daughter Nuclide	f3
Am-246m Products Nuclide Halflife Nuclide f4 Nucl 1 Am-246m 25.0m 2 Cm-246 4 76F+3y	f1 ide 1.000E+00	Nuclide Cm-246 Pu-242	f2	Daughter Nuclide	f3
Am-246m Products Nuclide Halflife Nuclide f4 Nucl 1 Am-246m 25.0m 2 Cm-246 4 76F+3y	f1 ide 1.000E+00	Nuclide Cm-246 Pu-242	f2	Daughter Nuclide	f3
Am-246m Products Nuclide Halflife Nuclide f4 Nucl 1 Am-246m 25.0m 2 Cm-246 4.76E+3y 3 Pu-242 3.75E+5y 4 U-238 4.468E+9y 5 Th-234 24.10d 6 Pa-234m 1.17m	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.600E-03	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Daughter Nuclide	f3
Am-246m Products Nuclide Halflife Nuclide f4 Nucl 1 Am-246m 25.0m 2 Cm-246 4.76E+3y 3 Pu-242 3.75E+5y 4 U-238 4.468E+9y 5 Th-234 24.10d 6 Pa-234m 1.17m 7 Pa-234 6.70h	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Daughter Nuclide	£3
Am-246m Products Nuclide Halflife Nuclide f4 Nucl 1 Am-246m 25.0m 2 Cm-246 4.76E+3y 3 Pu-242 3.75E+5y 4 U-238 4.468E+9y 5 Th-234 24.10d 6 Pa-234m 1.17m	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 U-234 Th-230	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Daughter Nuclide	f3
Am-246m Products	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Daughter Nuclide	f3
Am-246m Products	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 W-234 Th-230 Ra-226 Rn-222 Po-218	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Daughter Nuclide SF SF SF U-234	f3
Am-246m Products	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Daughter Nuclide SF SF SF U-234	f3
Am-246m Products Nuclide Halflife Nuclide f4 Pu-242 3.75E+5y 4 U-238 4.468E+9y 5 Th-234 24.10d 6 Pa-234 6.70h 8 U-234 2.455E+5y 9 Th-230 7.538E+4y 10 Ra-226 1600y 11 Rn-222 3.8235d 12 Po-218 3.10m 13 Pb-214 26.8m <	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04	Daughter Nuclide SF SF U-234 At-218	f3
Am-246m Products	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.990E-01	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Daughter Nuclide SF SF U-234 At-218 Rn-218	f3
Am-246m Products Nuclide Halflife Nuclide f4 Nucl 1 Am-246m 25.0m 2 Cm-246 4.76E+3y 3 Pu-242 3.75E+5y 4 U-238 4.468E+9y 5 Th-234 24.10d 6 Pa-234m 1.17m 7 Pa-234 6.70h 8 U-234 2.455E+5y 9 Th-230 7.538E+4y 10 Ra-226 1600y 11 Rn-222 3.8235d 12 Po-218 3.10m 13 Pb-214 26.8m 14 At-218 1.5s 15 Bi-214 19.9m	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 9.998E-01	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04	Daughter Nuclide SF SF U-234 At-218 Rn-218	f3
Am-246m Products Nuclide Halflife Nuclide f4 Pu-242 3.75E+5y 5 Th-234 24.10d 6 Pa-234m 1.17m 7 Pa-234 6.70h 8 U-234 2.455E+5y 9 Th-230 7.538E+4y 10 Ra-226 1600y 11 Rn-222 3.8235d 12 Po-218 3.10m 13 Pb-214 26.8m	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Daughter Nuclide SF SF U-234 At-218 Rn-218	f3
Am-246m Products Nuclide Halflife Nuclide f4 Pu-242 3.75E+5y 5 Th-234 24.10d 6 Pa-234m 1.17m 7 Pa-234 2.455E+5y 9 Th-230 7.538E+4y 10 Ra-226 1600y 11 Rn-222 3.8235d 12 Po-218 3.10m 13 Pb-214 26.8m 14 At-218 1.5s	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Pb-210	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Daughter Nuclide SF SF U-234 At-218 Rn-218	f3
Am-246m Products Nuclide Halflife Nuclide f4 Pu-242 3.75E+5y 5 Th-234 24.10d 6 Pa-234m 1.17m 7 Pa-234 6.70h 8 U-234 2.455E+5y 9 Th-230 7.538E+4y 10 Ra-226 1600y 11 Rn-222 3.8235d 12 Po-218 3.10m 13 Pb-214 26.8m	f1 ide 1.000E+00 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Pb-210 Pb-210	f2 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Daughter Nuclide SF SF U-234 At-218 Rn-218 T1-210	f3

20 21 22 23	Bi-210 Hg-206 Po-210 Tl-206	5.013d 8.15m 138.376d 4.200m	1.000E+00 1.000E+00 1.000E+00 1.000E+00	Po-210 T1-206 Pb-206\$ Pb-206\$	1.320E-06	T1-206	
Am-2	247					Daughter	
Proc	lucts					Jaughter	
	-	Halflife	fl	Nuclide	f2	Nuclide	f3
Nucl		Nucli					
1	Am-247	23.Om	1.000E+00	Cm-247			
2	Cm-247	1.56E+7y	1.000E+00	Pu-243			
3	Pu-243	4.956h	1.000E+00	Am-243			
4	Am-243	7.37E+3y	1.000E+00	Np-239			
		2.3565d					
6	Pu-239	2.411E+4y			6.000E-04	U-235	
. /	U-235m	26m	1.000E+00				
8	U-235 Th-231	7.04E+8y	1.000E+00 1.000E+00	Tn=231			
10	$P_{2} = 231$	3.276E+4y	1.000E+00	Pa=231			
11	Ac-227	21 772 v	9.862E-01	TC 227 Th-227	1.380E-02	Fr-223	
	Th-227	18,68d	1.000E+00	Ra-223	1.5001 02	11 225	
		22.00m			6.000E-05	At-219	
	Ra-223		1.000E+00				
		3.96s					
16	At-219	56s	9.700E-01				
17	At-219 Bi-215	7.6m	1.000E+00	Po-215			
		1.781E-3s					
		36.1m					•
	Bi-211		9.972E-01		2.760E-03	Po-211	
		4.77m					
22	Po-211	0.516s	1.000E+00	Pb-207\$			
Cm-2	238					-	
Droc	lucts					Daughter	
FLOC		Halflife		Nuclide	£2	Nuclide	f3
Nucl				Nucriae	12	Nucliuc	10
	Cm-238		9.616E-01	Am-238	3.840E-02	Pu-234	
-	Am-238	98m	1.000E+00		1.000E-06		1
	Pu-234	8.8h	9.400E-01		6.000E-02		
	Pu-238	87.7y	1.000E+00	u-234	1.850E-09		
5	Np-234	4.4d	1.000E+00	U-234			
	U-234	2.455E+5y	1.000E+00				
	Th-230	7.538E+4y	1.000E+00				
	Ra-226	1600y	1.000E+00				
	Rn-222	3.8235d	1.000E+00		0 000- 01		
	Po-218	3.10m	9.998E-01		2.000E-04	At-218	
	Pb-214 At-218	26.8m	1.000E+00 9.990E-01		1 0000 00	Dm 010	
	AL-218 Bi-214	1.5s 19.9m	9.990E-01 9.998E-01		1.000E-03 2.100E-04		
	U-230	20.8d	1.000E+00		2.1000-04	⊥⊥ [_] ∠⊥V	

16 Ra-222 17 Rn-218 18 Po-214 19 Tl-210 20 Pb-210 21 Bi-210 22 Hg-206 23 Po-210	30.57m 38.0s 3.5E-2s 1.643E-4s 1.30m 22.20y 5.013d 8.15m 138.376d 4.200m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Rn-218 Po-214 Pb-210 Pb-210 Bi-210 Po-210 Tl-206 Pb-206\$	1.900E-08 1.320E-06	Hg-206 T1-206	
Cm-239					Daughter	
Products -					Daughter	
Nuclide		f1	Nuclide	f2	Nuclide	£3
	4 Nucl					
1 Cm-239	2.9h	1.000E+00	Am-239			
2 Am-239	11.9h 2.411E+4y 396.1d	9.999E-01	Pu-239	1.000E-04	Np-235	
3 Pu-239	2.411E+4y	9.994E-01	U-235m	6.000E-04	U-235	
4 Np-235	396.1d	3.993E-03	U-235m	9.960E-01	U-235	
2.600E-05 Pa	a-231					
5 U-235m	26m 7.04E+8y	1.000E+00	U-235			
6 U-235	7.04E+8y	1.000E+00	Th-231			
/ Th-231	25.52h	1.000E+00	Pa-231			
8 Pa-231	3.276E+4y	1.000E+00	Ac-227			
9 Ac-227	21.772y	9.862E-01	Th-227	1.380E-02	Fr-223	
10 Th-227		1.000E+00	Ra-223			
11 Fr-223	22.00m 11.43d	1.000E+00	Ra-223	6.000E-05	At-219	
12 Ra-223	11.43d	1.000E+00				
	3.96s					
14 At-219		9.700E-01				
	7.6m					
16 Po-215	1.781E-3s	1.000E+00				
17 Pb-211	36.1m	1.000E+00	Bi-211			
18 Bi-211	36.1m 2.14m 4.77m	9.972E-01	T1-207	2.760E-03	Po-211	
19 TI-207	4.77m 0.516s	1.000E+00	Pb-207\$			
20 Po-211	0.516s	1.000E+00	Pb-207\$			
a : 0.40						
Cm-240						
					Daughter	
Products -				60		
Nuclide			Nuclide	f2	Nuclide	f3
Nuclide f				2 0000 00	0.17	
1 Cm - 240		9.970E-01				
2 Pu-236		1.000E+00 1.000E+00		1.3/06-09	31	
3 U - 232						
4 Th-228 5 Ra-224		1.000E+00 1.000E+00				
5 Ra = 224 6 Rn = 220		1.000E+00				

3.594E-01 T1-208

1.000E+00 Po-216

1.000E+00 Pb-212

10.64h 1.000E+00 Bi-212 60.55m 6.406E-01 Po-212

6 Rn-220

7 Po-216

8 Pb-212 9 Bi-212

55.6s

0.145s

10 Po-212	2.99E-7s	1.000E+00	Pb-208\$	
11 Tl-208	3.053m	1.000E+00	Pb-208\$	

Cm-241

	241	•					
D	-]				I	Daughter	
Prod					50		60
	Nuclide	Halflife	ŢŢ	Nuclide	12	Nuclide	£3
NUC.	Lide I	4 Nucl 32.8d 432.2y 45.2d	lde		1 000- 00	5 007	
T	Cm-241	32.8d	9.900E-01	Am-241	1.000E-02	Pu-237	
2	Am-241	432.2y	1.000E+00	Np-237			
3	Pu-237	45.2d	1.000E+00	Np-237	4.200E-05	U-233	
4	Np-237	2.144E+6y	1.000E+00	Pa-233			
5	Pa-233	26.967d	1.000E+00	U-233			
		1.592E+5y					
		7.34E+3y					
8	Ra-225	14.9d	1.000E+00	Ac-225			
9	Ac-225	10.0d	1.000E+00	Fr-221			
10	Fr-221	10.0d 4.9m	1.000E+00	At-217			
11	At-217	3.23E-2s	9.999E-01	Bi-213			
12	Bi-213	45.59m	9.791E-01	Po-213	2.090E-02	Tl-209	
13	Po-213	4.2E-6s	1.000E+00	Pb-209			
14	T1-209	2.161m	1.000E+00	Pb-209			
15	Pb-209	45.59m 4.2E-6s 2.161m 3.253h	1.000E+00	Bi-209\$			
Cm-2	242						
					I	Daughtan	
D					-	Daughter	
Prod						0	
	Nuclide	Halflife	 f1			0	f3
Nuc	Nuclide lide f	Halflife 4 Nucl	f1 ide	Nuclide	f2	Nuclide	f3
Nuci 1	Nuclide lide f Cm-242	Halflife 4 Nucl 162.8d	f1 ide 1.000E+00	Nuclide Pu-238	f2 6.370E-08	Nuclide SF	f3
Nuci 1 2	Nuclide lide f Cm-242 Pu-238	Halflife 4 Nucl 162.8d 87.7v	f1 ide 1.000E+00 1.000E+00	 Nuclide Pu-238 U-234	f2 6.370E-08 1.850E-09	Nuclide SF	£3
Nuci 1 2	Nuclide lide f Cm-242 Pu-238	Halflife 4 Nucl 162.8d 87.7v	f1 ide 1.000E+00 1.000E+00	 Nuclide Pu-238 U-234	f2 6.370E-08 1.850E-09	Nuclide SF	£3
Nuci 1 2	Nuclide lide f Cm-242 Pu-238	Halflife 4 Nucl 162.8d 87.7v	f1 ide 1.000E+00 1.000E+00	 Nuclide Pu-238 U-234	f2 6.370E-08 1.850E-09	Nuclide SF	£3
Nuci 1 2	Nuclide lide f Cm-242 Pu-238	Halflife 4 Nucl 162.8d 87.7v	f1 ide 1.000E+00 1.000E+00	 Nuclide Pu-238 U-234	f2 6.370E-08 1.850E-09	Nuclide SF	f3
Nuci 1 2	Nuclide lide f Cm-242 Pu-238	Halflife 4 Nucl 162.8d 87.7v	f1 ide 1.000E+00 1.000E+00	 Nuclide Pu-238 U-234	f2 6.370E-08 1.850E-09	Nuclide SF	f3
Nuc 1 2 3 4 5 6 7	Nuclide lide f Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218	Halflife 4 Nucl 162.8d 87.7y 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01	Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214	f2 6.370E-08 1.850E-09	Nuclide SF SF	f3
Nuc 1 2 3 4 5 6 7	Nuclide lide f Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218	Halflife 4 Nucl 162.8d 87.7y 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01	Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214	f2 6.370E-08 1.850E-09	Nuclide SF SF	f3
Nuc: 1 2 3 4 5 6 7 8	Nuclide lide f Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214	Halflife 4 Nucl 162.8d 87.7y 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00	Nuclide Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214	f2 6.370E-08 1.850E-09 2.000E-04	Nuclide SF SF At-218	f3
Nuc: 1 2 3 4 5 6 7 8 9	Nuclide lide f Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 At-218	Halflife 4 Nucl 162.8d 87.7y 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.990E-01	Nuclide Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214	f2 6.370E-08 1.850E-09 2.000E-04 1.000E-03	Nuclide SF SF At-218 Rn-218	f3
Nuc: 1 2 3 4 5 6 7 8 9 10	Nuclide lide f Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 At-218 Bi-214	Halflife 4 Nucl 162.8d 87.7y 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.990E-01 9.998E-01	Nuclide Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214	f2 6.370E-08 1.850E-09 2.000E-04 1.000E-03	Nuclide SF SF At-218 Rn-218	f3
Nuc: 1 2 3 4 5 6 7 8 9 10 11	Nuclide lide f Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 At-218 Bi-214 Rn-218	Halflife 4 Nucl 162.8d 87.7y 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.990E-01 9.998E-01 1.000E+00	Nuclide Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214	f2 6.370E-08 1.850E-09 2.000E-04 1.000E-03	Nuclide SF SF At-218 Rn-218	f3
Nuc: 1 2 3 4 5 6 7 8 9 10 11 12	Nuclide lide f Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 At-218 Bi-214 Rn-218	Halflife 4 Nucl 162.8d 87.7y 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s 1.643E-4s	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.990E-01 9.998E-01 1.000E+00	Nuclide Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Po-214 Po-214 Pb-210	f2 6.370E-08 1.850E-09 2.000E-04 1.000E-03	Nuclide SF SF At-218 Rn-218	f3

14Pb-21022.20y1.000E+00Bi-2101.900E-08Hg-20615Bi-2105.013d1.000E+00Po-2101.320E-06T1-20616Hg-2068.15m1.000E+00T1-20617Po-210138.376d1.000E+00Pb-206\$

4.200m

Cm-243

18 T1-206

					Daughter	
Products						
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3

1.000E+00 Pb-206\$

Nuclide 1	E4 Nucl	ide				
1 Cm-243	29.1y	2.400E-03	Am-243	9.976E-01	Pu-239	
2 Am-243	7.37E+3y	1.000E+00	Np-239			
3 Np-239	2.3565d	1.000E+00	Pu-239			
4 Pu-239	2.411E+4y	9.994E-01	U-235m	6.000E-04	U-235	
5 U-235m	26m	1.000E+00	U-235			
6 U-235	7.04E+8y	1.000E+00	Th-231			
7 Th-231	25.52h	1.000E+00	Pa-231			
8 Pa-231	3.276E+4y 21.772y 18.68d	1.000E+00	Ac-227			
9 Ac-227	21.772y	9.862E-01	Th-227	1.380E-02	Fr-223	
10 Th-227	18.68d	1.000E+00	Ra-223	<		
	22.00m			6.000E-05	At-219	
12 Ra-223		1.000E+00				
13 RH = 219 14 A = -219	3.96s	1.000E+00	P0-215			
14 AL - 219 15 Bi - 215	56s 7.6m 1.781E-3s 36.1m	9.700E-01 1 000F+00	$B_{1} = 215$			
16 Po-215	1 781E-3s	1.000E+00	Pb-211			
17 Pb-211	36.1m	1.000E+00	Bi-211			
18 Bi-211	2.14m	9.972E-01	T_{1-207}	2.760E-03	Po-211	
19 T1-207	4.77m	1.000E+00	Pb-207\$	21,001 00	10 211	
20 Po-211	0.516s	1.000E+00	Pb-207\$			
Cm-244						
				l	Daughter	
	e Halflife		Nuclide	f2	Nuclide	£3
Nuclido f						
Nuclide f			·	1 0715 06		
1 Cm-244	18.10y	1.000E+00	Pu-240			
1 Cm-244 2 Pu-240	18.10y 6564y	1.000E+00 1.000E+00	Pu-240 U-236			
1 Cm-244 2 Pu-240 3 U-236	18.10y 6564y 2.342E+7y	1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th - 232			
1 Cm-244 2 Pu-240 3 U-236 4 Th-232	18.10y 6564y 2.342E+7y 1.405E10y	1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ba-228			
1 Cm-244 2 Pu-240 3 U-236 4 Th-232	18.10y 6564y 2.342E+7y 1.405E10y	1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ba-228			
1 Cm-244 2 Pu-240 3 U-236 4 Th-232	18.10y 6564y 2.342E+7y 1.405E10y	1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ba-228			
1 Cm-244 2 Pu-240 3 U-236 4 Th-232	18.10y 6564y 2.342E+7y 1.405E10y	1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ba-228			•
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220			
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216			
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212			
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216	$18.10y \\ 6564y \\ 2.342E+7y \\ 1.405E10y \\ 5.75y \\ 6.15h \\ 1.9116y \\ 3.66d \\ 55.6s \\ 0.145s \\ 10.64h \\$	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212	5.750E-08	SF	
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212	$18.10y \\ 6564y \\ 2.342E+7y \\ 1.405E10y \\ 5.75y \\ 6.15h \\ 1.9116y \\ 3.66d \\ 55.6s \\ 0.145s \\ 10.64h \\ 60.55m \\ 2.99E-7s \\ \end{array}$	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 6.406E-01	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212	5.750E-08	SF	
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212	$18.10y \\ 6564y \\ 2.342E+7y \\ 1.405E10y \\ 5.75y \\ 6.15h \\ 1.9116y \\ 3.66d \\ 55.6s \\ 0.145s \\ 10.64h \\ 60.55m \\ 2.99E-7s \\ \end{array}$	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 6.406E-01	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 Pb-208\$	5.750E-08	SF	
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212 14 T1-208	$18.10y \\ 6564y \\ 2.342E+7y \\ 1.405E10y \\ 5.75y \\ 6.15h \\ 1.9116y \\ 3.66d \\ 55.6s \\ 0.145s \\ 10.64h \\ 60.55m \\ 2.99E-7s \\ \end{array}$	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 Pb-208\$	5.750E-08	SF	
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212	$18.10y \\ 6564y \\ 2.342E+7y \\ 1.405E10y \\ 5.75y \\ 6.15h \\ 1.9116y \\ 3.66d \\ 55.6s \\ 0.145s \\ 10.64h \\ 60.55m \\ 2.99E-7s \\ \end{array}$	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 Pb-208\$	5.750E-08	SF T1-208	
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212 14 T1-208 Cm-245	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-208\$ Pb-208\$	5.750E-08	SF	
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212 14 T1-208 Cm-245 Products	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-2085 Pb-2085	5.750E-08 3.594E-01	SF T1-208 Daughter	
1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212 14 T1-208 Cm-245 Products - Nuclide	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-2085 Pb-2085	5.750E-08 3.594E-01	SF T1-208	f3
<pre>1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212 14 Tl-208 Cm-245 Products - Nuclide f</pre>	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m	1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-208\$ Pb-208\$	5.750E-08 3.594E-01 f2	SF T1-208 Daughter Nuclide	f3
<pre>1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212 14 Tl-208 Cm-245 Products - Nuclide f 1 Cm-245</pre>	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m Halflife 4 Nucl 8.5E+3y	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-208\$ Pb-208\$ Pb-208\$	5.750E-08 3.594E-01 f2 6.100E-09	SF T1-208 Daughter Nuclide SF	f3
<pre>1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212 14 T1-208 Cm-245 Products - Nuclide f 1 Cm-245 2 Pu-241</pre>	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m Halflife 4 Nucl 8.5E+3y	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-208\$ Pb-208\$ Pb-208\$	5.750E-08 3.594E-01 f2 6.100E-09	SF T1-208 Daughter Nuclide SF	f3
<pre>1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212 14 T1-208 Cm-245 Products Cm-245 Products 1 Cm-245 2 Pu-241 3 Am-241</pre>	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m Halflife 4 Nucl 8.5E+3y	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-208\$ Pb-208\$ Pb-208\$	5.750E-08 3.594E-01 f2 6.100E-09	SF T1-208 Daughter Nuclide SF	f3
<pre>1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212 14 T1-208 Cm-245 Products Cm-245 Products 1 Cm-245 2 Pu-241 3 Am-241 4 U-237</pre>	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m Halflife 4 Nucl 8.5E+3y 14.35y 432.2y 6.75d	1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-2085 Pb-2085 Pb-2085 Pb-2085 Pb-2085	5.750E-08 3.594E-01 f2 6.100E-09	SF T1-208 Daughter Nuclide SF	f3
<pre>1 Cm-244 2 Pu-240 3 U-236 4 Th-232 5 Ra-228 6 Ac-228 7 Th-228 8 Ra-224 9 Rn-220 10 Po-216 11 Pb-212 12 Bi-212 13 Po-212 14 T1-208 Cm-245 Products Cm-245 Products 1 Cm-245 2 Pu-241 3 Am-241 4 U-237</pre>	18.10y 6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m 2.99E-7s 3.053m Halflife 4 Nucl 8.5E+3y	1.000E+00 1.000E+00	Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-2085 Pb-2085 Pb-2085 Pb-2085 Pb-2085	5.750E-08 3.594E-01 f2 6.100E-09	SF T1-208 Daughter Nuclide SF	f3

•						
7 U-233 8 Th-229 9 Ra-225 10 Ac-225 11 Fr-221 12 At-217 13 Bi-213 14 Po-213 15 T1-209	7.34E+3y 14.9d 10.0d 4.9m 3.23E-2s 45.59m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.999E-01 9.791E-01 1.000E+00 1.000E+00	Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 Pb-209 Pb-209	2.090E-02	T1-209	
Cm-246					Daughtor	
Products -					Daughter	
	Halflife	f1	Nuclide	f2	Nuclide	f3
	4.76E+3y		$D_{11} = 2.4.2$	2 6305-04	° F	
$2 P_{11} - 242$	3.75E+5y	9.997E-01 1 000E+00	11-238	5 540E-04	21 27	
3 U - 238	4.468E+9V	1.000E+00	Th-234	5.450E-07	SF	
4 Th-234	4.468E+9y 24.10d	1.000E+00	Pa-234m	0.1001 0/		
5 Pa-234m	1.17m	1.600E-03	Pa-234	9.984E-01	U-234	
6 Pa-234	6.70h	1.000E+00	U-234			
7 U-234	2.455E+5y	1.000E+00	Th-230			
8 Th-230	7.538E+4y	1.000E+00	Ra-226			
9 Ra-226	2.455E+5y 7.538E+4y 1600y	1.000E+00	Rn-222			•
10 Rn-222	3.8235d	1.000E+00	Po-218			
11 Po-218		9.998E-01		2.000E-04	At-218	
12 Pb-214		1.000E+00		1 0005 00		
13 At-218		9.990E-01				
14 Bi-214	19.9m	9.998E-01	PO=214	2.100E-04	11-210	
15 Rn - 210 16 Po-214	3.5E-2s 1.643E-4s	1 000E+00	P0-214			
17 T1-210		1.000E+00		- '		
	22.20y			1.900E-08	Ha-206	
20 Hq - 206	5.013d 8.15m	1.000E+00	T1 - 206	1.0201 00	11 200	
21 Po-210	138.376d	1.000E+00	Pb-206\$			
22 Tl-206	4.200m	1.000E+00				
Cm-247	x					
Ducher					Daughter	

D	1						
	lucts						
	Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3
Nucl	ide f4	Nucl:	ide	•			
1	Cm-247	1.56E+7y	1.000E+00	Pu-243			
2	Pu-243	4.956h	1.000E+00	Am-243			
3	Am-243	7.37E+3y	1.000E+00	Np-239			
4	Np-239	2.3565d	1.000E+00	Pu-239			
5	Pu-239	2.411E+4y	9.994E-01	U-235m	6.000E-04	U-235	
6	U-235m	26m	1.000E+00	U-235			
7	U-235	7.04E+8y	1.000E+00	Th-231			

11 Th-227 12 Fr-223 13 Ra-223 14 Rn-219 15 At-219 16 Bi-215 17 Po-215 18 Pb-211 19 Bi-211 20 Tl-207	25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m 2.14m 4.77m 0.516s	1.000E+00 1.000E+00 1.000E+00 9.700E-01 1.000E+00 1.000E+00 1.000E+00 9.972E-01 1.000E+00	Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$	6.000E-05 2.760E-03	At-219	
Cm-248						
Products -					Daughter	
	e Halflife			f2	Nuclide	£3
	4 Nucl		nuorrao		, indefine	10
1 Cm-248	3.48E+5y	9.161E-01	Pu-244	8.390E-02	SF	
2 P11-244	8 00E + 7v	9 988E-01	11-240	1 210E~03	SF	
3 U-240	14.1h	1.000E+00	Np-240m			
4 Np-240m	14.1h 17.22m	1.100E-03	Np-240	9.989E-01	Pu-240	
5 ND-240	61.9m	1.000E+00	$P_{11} = 240$			
7 11 - 236	6564y 2.342E+7y 1.405E10y	1.000E+00	U-236 Th-232	5./50E-08	SF	
8 Th-232	1 405E10v	1 000E+00	$R_{a} = 228$			
9 Ra-228	5.75y	1.000E+00	Ac-228			
10 Ac-228	6.15h	1.000E+00	Th-228			
11 Th-228	1,9116v	1.000E+00	Ra-224		•	
12 Ra-224	3.66d 55.6s 0.145s 10.64h 60.55m	1.000E+00	Rn-220			
13 Rn-220	55.6s	1.000E+00	Po-216	•		
14 Po-216	0.145s	1.000E+00	Pb-212			
15 Pb-212	10.64h	1.000E+00	Bi-212	2 5040 01	m l 000	
10 B1 - 212 17 Po - 212	2.99E-7s	6.406E-01	PO=212	3.5946-01	TT-208	
18 T1-208	2.99E-7S 3 053m	1.000E+00	PD-2003		-	
10 11 200	5.0551	1.0001100	10 2009			
Cm-249						
				I	Daughter	
Products -						
			Nuclide	f2	Nuclide	£3
Nuclide f 1 Cm-249			DI- 040			
1 Cm - 249 2 Bk - 249		1.000E+00 1.000E+00		1.450E-05	Am-245	
3 Cf-249		1.000E+00		1.450E-05 5.020E-09		
4 Am-245		1.000E+00		0.0201 09	~1	
5 Cm-245	8.5E+3v	1.000E+00	Pu-241	6.100E-09	SF	
6 Pu-241	14.35y	1.000E+00	Am-241	2.450E-05		
7 Am-241	432.2y	1.000E+00 1.000E+00 1.000E+00	Np-237			
8 U-237	6.75d	1.000E+00	Np-237			

9 Np-237 2.144E+6y 10 Pa-233 26.967d 11 U-233 1.592E+5y 12 Th-229 7.34E+3y 13 Ra-225 14.9d 14 Ac-225 10.0d 15 Fr-221 4.9m 16 At-217 3.23E-2s 17 Bi-213 45.59m 18 Po-213 4.2E-6s 19 T1-209 2.161m 20 Pb-209 3.253h Cm-250	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.999E-01 9.791E-01 1.000E+00 1.000E+00	U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 Pb-209 Pb-209	2.090E-02	T1-209	
]	Daughter	
Products Nuclide Halflife Nuclide f4 Nucl	f1 ide			Nuclide	£3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.800E-01 1.000E+00 1.000E+00 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00	Am-246m Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234m Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Pb-210 Pb-210 Bi-210 Pb-206 Pb-206 Pb-206	7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03 2.100E-04 1.900E-08 1.320E-06	SF SF SF U-234 At-218 Rn-218 T1-210 Hg-206	
Nuclide Halflife Nuclide f4 Nucl	f1 ide	Nuclide	f2	Nuclide	f3

2 Bk-251 3 Cf-251 4 Cm-247 5 Pu-243 6 Am-243 7 Np-239 8 Pu-239 9 U-235m 10 U-235 11 Th-231 12 Pa-231 13 Ac-227 14 Th-227 15 Fr-223 16 Ra-223 17 Rn-219 18 At-219 19 Bi-215 20 Po-215 21 Pb-211 22 Bi-211 23 T1-207	900y 1.56E+7y 4.956h 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m	1.000E+00 1.000E+00	Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235m U-235m U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Ra-223 Ra-215 Po-215 Pb-211 Bi-211 T1-207 Pb-207\$	1.380E-02 6.000E-05	Fr-223 At-219	
Bk-245						
Products -			- .]	Daughter	
Nuclide	Halflife		Nuclide		-	£3
Nuclide Nuclide f 1 Bk-245 2 Cm-245 3 Pu-241 4 Am-241 5 U-237 6 Np-237 7 Pa-233 8 U-233 9 Th-229 10 Ra-225 11 Ac-225 12 Fr-221 13 At-217 14 Bi-213 15 Po-213 16 T1-209 17 Pb-209	4 Nucl 4.94d 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y 14.9d 10.0d 4.9m 3.23E-2s 45.59m	ide 9.988E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.999E-01 9.791E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Cm-245 Pu-241 Am-241 Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 Pb-209 Pb-209	f2 1.200E-03 6.100E-09	Nuclide Am-241 SF U-237	f3
Nuclide Nuclide f 1 Bk-245 2 Cm-245 3 Pu-241 4 Am-241 5 U-237 6 Np-237 7 Pa-233 8 U-233 9 Th-229 10 Ra-225 11 Ac-225 12 Fr-221 13 At-217 14 Bi-213 15 Po-213 16 Tl-209	4 Nucl 4.94d 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y 14.9d 10.0d 4.9m 3.23E-2s 45.59m 4.2E-6s 2.161m	ide 9.988E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.999E-01 9.791E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Cm-245 Pu-241 Am-241 Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 Pb-209 Pb-209	f2 1.200E-03 6.100E-09 2.450E-05 2.090E-02	Nuclide Am-241 SF U-237	f3

ζ

Nuclide f4	Nucl	ide				
1 Bk-246	1.80d	1.000E+00	Cm-246			
2 Cm-246	4.76E+3y	9.997E-01	Pu-242	2.630E-04	SF	
3 Pu-242	3.75E+5y	1.000E+00	U-238	5.540E-06	SF	
	4.468E+9y				SF	
5 Th-234	24.10d	1.000E+00	Pa-234m			
6 Pa-234m	1.17m	1.600E-03		9.984E-01	U-234	
7 Pa-234	6.70h	1.000E+00	U-234			
7 Pa-234 8 U-234 9 Th-230 10 Ra-226	2.455E+5y	1.000E+00	Th-230			
9 Th-230	7.538E+4y	1.000E+00	Ra-226			
10 Ra-226	1600y	1.000E+00	Rn-222			
11 Rn-222	3.8235d	1.000E+00	Po-218			
12 Po-218				2.000E-04	At-218	
13 Pb-214	26.8m	1.000E+00	B1-214	1 0007 00	5 010	
14 At-218 15 Bi-214 16 Rn-218 17 Po-214	1.55	9.990E-01	B1-214	1.000E-03	Rn-218	
15 B1 - 214	19.9m	9.998E-01	Po-214	2.100E-04	T1-210	
10 RN-218	3.5E-2S	1.000E+00	PO-214			
17 PO-214	1.643E-45 1.30m	1.000E+00	PD-210			
18 T1-210 19 Pb-210				1 0000 00	Um 206	
19 PD = 210	22.20y	1.0006+00	B1 = 210	1 2205 06	ng-206	
20 Bi-210 21 Hg-206	2.013,0 8.15m	1 0005+00	PO-210	1.3206-00	11-206	
22 Po-210	138 3764	1 0005+00	Pb = 2065		,	
23 T1-206	4.200m	1 000E+00	Pb-206\$			
20 11 200	4.2001	1.0001.00	10 2009			
Bk-247						
				I	Daughter	
Products					-	
Products Nuclide	Halflife	f1			Daughter Nuclide	f3
Products Nuclide Nuclide f4	Halflife	f1 ide	Nuclide		-	f3
Products Nuclide Nuclide f4 1 Bk-247	Halflife Nucl: 1.38E+3y	f1 ide 1.000E+00	Nuclide Am-243	f2	Nuclide	f3
Products Nuclide Nuclide f4 1 Bk-247	Halflife Nucl: 1.38E+3y	f1 ide 1.000E+00	Nuclide Am-243	f2	Nuclide	f3
Products Nuclide Nuclide f4 1 Bk-247	Halflife Nucl: 1.38E+3y	f1 ide 1.000E+00	Nuclide Am-243	f2	Nuclide	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y	f1 ide 1.000E+00 1.000E+00 1.000E+00 9.994E-01	Nuclide Am-243 Np-239 Pu-239 U-235m	f2	Nuclide	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m	f1 ide 1.000E+00 1.000E+00 1.000E+00 9.994E-01 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235	f2	Nuclide	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y	f1 ide 1.000E+00 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231	f2	Nuclide	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h	f1 ide 1.000E+00 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231	f2	Nuclide	£3
Products Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y	f1 ide 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227	f2 6.000E-04	Nuclide U-235	f3
Products Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y	f1 ide 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01	Nuclide Am-243 Np-239 Pu-239 U-235 U-235 Th-231 Pa-231 Ac-227 Th-227	f2 6.000E-04 1.380E-02	Nuclide U-235	f3
Products Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227 10 Th-227	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d	f1 ide 1.000E+00 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3
Products Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227 10 Th-227 11 Fr-223	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m	f1 ide 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3
Products Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227 10 Th-227	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d	f1 ide 1.000E+00 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227 10 Th-227 11 Fr-223 12 Ra-223	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d	f1 ide 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227 10 Th-227 11 Fr-223 12 Ra-223 13 Rn-219	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s	f1 ide 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227 10 Th-227 11 Fr-223 12 Ra-223 13 Rn-219 14 At-219 15 Bi-215	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s	f1 ide 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.700E-01	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Po-215	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227 10 Th-227 11 Fr-223 12 Ra-223 13 Rn-219 14 At-219 15 Bi-215 16 Po-215 17 Pb-211	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m	f1 ide 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Ra-219 Po-215 Bi-215 Pb-211	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227 10 Th-227 11 Fr-223 12 Ra-223 13 Rn-219 14 At-219 15 Bi-215 16 Po-215 17 Pb-211 18 Bi-211	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m 2.14m	f1 ide 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Ra-219 Po-215 Bi-215 Pb-211 Bi-211	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223 At-219	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227 10 Th-227 11 Fr-223 12 Ra-223 13 Rn-219 14 At-219 15 Bi-215 16 Po-215 17 Pb-211 18 Bi-211 19 T1-207	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m 2.14m 4.77m	f1 ide 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Pb-211 Bi-211 Tl-207	f2 6.000E-04 1.380E-02 6.000E-05	Nuclide U-235 Fr-223 At-219	f3
Products Nuclide Nuclide f4 1 Bk-247 2 Am-243 3 Np-239 4 Pu-239 5 U-235m 6 U-235 7 Th-231 8 Pa-231 9 Ac-227 10 Th-227 11 Fr-223 12 Ra-223 13 Rn-219 14 At-219 15 Bi-215 16 Po-215 17 Pb-211 18 Bi-211	Halflife Nucl: 1.38E+3y 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y 25.52h 3.276E+4y 21.772y 18.68d 22.00m 11.43d 3.96s 56s 7.6m 1.781E-3s 36.1m 2.14m	f1 ide 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.700E-01 1.000E+00 1.000E+00 9.700E-01 1.000E+00 9.972E-01	Nuclide Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215 Pb-211 Bi-211 T1-207 Pb-207\$	f2 6.000E-04 1.380E-02 6.000E-05	Nuclide U-235 Fr-223 At-219	f3

Bk-248m

				1	Daughter	
Products						
	Halflife		Nuclide	f2	Nuclide	£3
Nuclide f4						
1 Bk-248m	23.7h	7.000E-01 1.000E+00	Cf-248	3.000E-01	Cm-248	
2 Cf-248	334d	1.000E+00	Cm-244	2.900E-05	SF	
3 Cm-248	3.48E+5y 18.10y	9.161E-01	Pu-244	8.390E-02	SF	
4 Cm-244	18.10y	1.000E+00	Pu-240	1.371E-06	SF	
5 Pu-244	8.00E+7y	9.988E-01	U-240	1.210E-03	SF	
6 U-240	14.1h	1.000E+00	Np-240m			
7 Np-240m	7.22m	1.100E-03	Np-240	9.989E-01	Pu-240	
8 Np-240	61.9m	1.000E+00	Pu-240			
8 Np-240 9 Pu-240 10 U-236 11 Th-232	6564y	1.000E+00	U-236	5.750E-08	SF	
10 0-236	2.342E+7y	1.000E+00	Th-232			
11 Th-232	1.405E10y	1.000E+00	Ra-228			
12 Ra-228	5.75y	1.000E+00	Ac-228			
13 Ac-228						
14 Th-228	1.9116y	1.000E+00				
15 Ra-224	3.66d	1.000E+00	Rn-220			
16 Rn-220	55.6s	1.000E+00	Po-216			
17 Po-216	0.145s	1.000E+00	Pb-212			•
18 Pb-212 19 Bi-212	10.64h	1.000E+00	Bi-212			
19 Bi-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
20 Po-212	2.99E-7s	1.000E+00	Pb-208\$			
21 Tl-208	3.053m	1.000E+00	Pb-208\$			
Bk-249						
Bk-249				I	Daughter	
Bk-249 Products				I	Daughter	
Products Nuclide	Halflife	f1		-	Daughter Nuclide	f3
Products Nuclide Nuclide f4	Halflife Nucl:	f1 ide	Nuclide	f2	-	f3
Products Nuclide Nuclide f4	Halflife Nucl: 330d	f1 ide 1.000E+00	Nuclide Cf-249	f2 1.450E-05	Nuclide	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249	Halflife Nucl 330d 351y	f1 ide 1.000E+00 1.000E+00	 Nuclide Cf-249 Cm-245	f2 1.450E-05	Nuclide Am-245	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245	Halflife Nucl 330d 351y 2.05h	f1 ide 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245	f2 1.450E-05 5.020E-09	Nuclide Am-245 SF	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245	Halflife Nucl 330d 351y 2.05h	f1 ide 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245	f2 1.450E-05 5.020E-09	Nuclide Am-245 SF	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241	Halflife Nucl: 330d 351y 2.05h 8.5E+3y 14.35y	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241	Halflife Nucl: 330d 351y 2.05h 8.5E+3y 14.35y	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237 9 Pa-233 10 U-233	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233 U-233 Th-229	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237 9 Pa-233 10 U-233 11 Th-229	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233 U-233 Th-229	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237 9 Pa-233 10 U-233 11 Th-229 12 Ra-225	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233 U-233 Th-229 Ra-225	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237 9 Pa-233 10 U-233 11 Th-229 12 Ra-225 13 Ac-225	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237 9 Pa-233 10 U-233 11 Th-229 12 Ra-225	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y 14.9d	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237 9 Pa-233 10 U-233 11 Th-229 12 Ra-225 13 Ac-225 14 Fr-221 15 At-217	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y 14.9d 10.0d 4.9m 3.23E-2s	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.999E-01	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237 9 Pa-233 10 U-233 11 Th-229 12 Ra-225 13 Ac-225 14 Fr-221	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y 14.9d 10.0d 4.9m	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.999E-01	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213	f2 1.450E-05 5.020E-09 6.100E-09	Nuclide Am-245 SF SF U-237	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237 9 Pa-233 10 U-233 11 Th-229 12 Ra-225 13 Ac-225 14 Fr-221 15 At-217 16 Bi-213 17 Po-213	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y 14.9d 10.0d 4.9m 3.23E-2s	f1 ide 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213	f2 1.450E-05 5.020E-09 6.100E-09 2.450E-05	Nuclide Am-245 SF SF U-237	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237 9 Pa-233 10 U-233 11 Th-229 12 Ra-225 13 Ac-225 14 Fr-221 15 At-217 16 Bi-213 17 Po-213 18 T1-209	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y 14.9d 10.0d 4.9m 3.23E-2s 45.59m 4.2E-6s	f1 ide 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 Pb-209	f2 1.450E-05 5.020E-09 6.100E-09 2.450E-05	Nuclide Am-245 SF SF U-237	f3
Products Nuclide Nuclide f4 1 Bk-249 2 Cf-249 3 Am-245 4 Cm-245 5 Pu-241 6 Am-241 7 U-237 8 Np-237 9 Pa-233 10 U-233 11 Th-229 12 Ra-225 13 Ac-225 14 Fr-221 15 At-217 16 Bi-213 17 Po-213	Halflife Nucl 330d 351y 2.05h 8.5E+3y 14.35y 432.2y 6.75d 2.144E+6y 26.967d 1.592E+5y 7.34E+3y 14.9d 10.0d 4.9m 3.23E-2s 45.59m 4.2E-6s	f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+01 9.999E-01 9.791E-01 1.000E+00	Nuclide Cf-249 Cm-245 Cm-245 Pu-241 Am-241 Np-237 Np-237 Pa-233 U-233 Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 Pb-209 Pb-209	f2 1.450E-05 5.020E-09 6.100E-09 2.450E-05	Nuclide Am-245 SF SF U-237	f3

Bk-250

.

]	Daughter	
Products				•	
Nuclide Halflife		Nuclide	f2	Nuclide	f3
Nuclide f4 Nucl					
	1.000E+00				
2 Cf-250 13.08y	9.992E-01	Cm-246	7.700E-04		
3 Cm-246 4.76E+3y	9.997E-01	Pu-242	2.630E-04	SF	
4 Pu-242 3.75E+5y	1.000E+00	0-238	5.540E-06		
5 U-238 4.468E+9y			5.450E-07	SF	
6 Th-234 24.10d			0 0045 01	11 0 0 4	
7 Pa-234m 1.17m	1.600E-03	Pa-234	9.984E-01	0-234	
8 Pa-234 6.70h 9 U-234 2.455E+5y 10 Th-230 7.538E+4y	1.000E+00	U-234 Th-220			
10 mb = 230 7 538m + 4m	1.000E+00	$P_{2} = 226$			
11 Ra-226 1600y	1.000E+00	Ra = 220 Rn = 222			
$12 \text{ Rn} - 222 \qquad 3.8235 \text{d}$	1.000E+00	$P_0 = 21.8$			
	9.998E-01		2.000E-04	A+-218	
	1.000E+00		2.0001 01	MC 210	
15 At-218 1.5s			1.000E-03	Bn-218	
	9.998E-01		2.100E-04		
	1.000E+00		2.1001 01	11 210	
18 Po-214 1.643E-4s	1.000E+00	Pb-210			
19 T1-210 1.30m					
20 Pb-210 22.20y			1.900E-08	Ha-206	
21 Bi-210 5.013d			1.320E-06		
22 Hg-206 8.15m	1.000E+00	T1-206			
	1 000-00				
23 Po-210 138.376d	1.000E+00	PD-206\$			
	1.000E+00 1.000E+00	Pb-206\$ Pb-206\$			
24 T1-206 4.200m	1.000E+00 1.000E+00	Pb-206\$ Pb-206\$			
23 PO-210 138.376d 24 Tl-206 4.200m Bk-251	1.000E+00 1.000E+00	Pb-206\$ Pb-206\$	1	Daughter	
24 T1-206 4.200m	1.000E+00 1.000E+00	Pb-206\$ Pb-206\$	1	Daughter	
24 T1-206 4.200m Bk-251	1.000E+00	Pb-206\$ Pb-206\$ Nuclide		Daughter Nuclide	f3
24 T1-206 4.200m Bk-251 Products	1.000E+00	Pb-206\$ 		-	£3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m	1.000E+00 f1 ide 1.000E+00	Pb-206\$		-	£3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m	1.000E+00 f1 ide 1.000E+00	Pb-206\$		-	£3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m	1.000E+00 f1 ide 1.000E+00	Pb-206\$		-	f3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243		-	£3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239		-	£3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y 6 Np-239 2.3565d	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239		-	f3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y 6 Np-239 2.3565d 7 Pu-239 2.411E+4y	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.994E-01	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235m		Nuclide	f3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y 6 Np-239 2.3565d 7 Pu-239 2.411E+4y 8 U-235m 26m	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+01	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235m U-235	£2	Nuclide	£3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y 6 Np-239 2.3565d 7 Pu-239 2.411E+4y 8 U-235m 26m 9 U-235 7.04E+8y	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235m U-235 Th-231	£2	Nuclide	f3 ,
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y 6 Np-239 2.3565d 7 Pu-239 2.411E+4y 8 U-235m 26m 9 U-235 7.04E+8y 10 Th-231 25.52h	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231	£2	Nuclide	£3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y 6 Np-239 2.3565d 7 Pu-239 2.411E+4y 8 U-235m 26m 9 U-235 7.04E+8y 10 Th-231 25.52h 11 Pa-231 3.276E+4y	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.994E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235m U-235 Th-231 Pa-231 Ac-227	£2 6.000E-04	Nuclide U-235	£3 ,
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y 6 Np-239 2.3565d 7 Pu-239 2.411E+4y 8 U-235m 26m 9 U-235 7.04E+8y 10 Th-231 25.52h 11 Pa-231 3.276E+4y 12 Ac-227 21.772y	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.862E-01	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235 Th-231 Pa-231 Ac-227 Th-227	£2	Nuclide U-235	£3
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y 6 Np-239 2.3565d 7 Pu-239 2.411E+4y 8 U-235m 26m 9 U-235 7.04E+8y 10 Th-231 25.52h 11 Pa-231 3.276E+4y 12 Ac-227 21.772y 13 Th-227 18.68d	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3 ,
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y 6 Np-239 2.3565d 7 Pu-239 2.411E+4y 8 U-235m 26m 9 U-235 7.04E+8y 10 Th-231 25.52h 11 Pa-231 3.276E+4y 12 Ac-227 21.772y 13 Th-227 18.68d 14 Fr-223 22.00m	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223	£2 6.000E-04	Nuclide U-235 Fr-223	f3 ,
24 T1-206 4.200m Bk-251 Products	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Rn-219	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3 ,
24 T1-206 4.200m Bk-251 Products Nuclide Halflife Nuclide f4 Nucl 1 Bk-251 55.6m 2 Cf-251 900y 3 Cm-247 1.56E+7y 4 Pu-243 4.956h 5 Am-243 7.37E+3y 6 Np-239 2.3565d 7 Pu-239 2.411E+4y 8 U-235m 26m 9 U-235 7.04E+8y 10 Th-231 3.276E+4y 12 Ac-227 21.772y 13 Th-227 18.68d 14 Fr-223 22.00m 15 Ra-223 11.43d 16 Rn-219 3.96s	1.000E+00 f1 ide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3
24 T1-206 4.200m Bk-251 Products	1.000E+00 f1 ide 1.000E+00	Pb-206\$ Nuclide Cf-251 Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235 Th-231 Pa-231 Ac-227 Th-227 Ra-223 Ra-223 Ra-223 Rn-219 Po-215 Bi-215	f2 6.000E-04 1.380E-02	Nuclide U-235 Fr-223	f3

19Po-2151.781E-3s20Pb-21136.1m21Bi-2112.14m22T1-2074.77m23Po-2110.516s	1.000E+00 9.972E-01 1.000E+00	Bi-211 Tl-207 Pb-207\$	2.760E-03	Po-211	
Cf-244				Daughtor	
Products			-	Daughter	
Nuclide Halflife	fl	Nuclide	f2	Nuclide	f3
Nuclide f4 Nucl 1 Cf-244 19.4m	Lide				
1 Cf-244 19.4m 2 Cm-240 27d	1.000E+00	Cm-240	3 0005-09	C F	
3 Pu-236 2.858y					
4 U-232 68.9y	1.000E+00	Th-228	1.0700 00	01	
4 U-232 68.9y 5 Th-228 1.9116y	1.000E+00	Ra-224			
6 Ra-224 3.66d 7 Rn-220 55.6s 8 Po-216 0.145s 9 Pb-212 10.64h	1.000E+00	Rn-220			
7 Rn-220 55.6s	1.000E+00	Po-216			
8 PO-216 0.1458 9 Pb-212 10 64b	1.000E+00	PD-212 Bi-212			
10 Bi-212 60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
11 Po-212 2.99E-7s	1.000E+00	Pb-208\$			
12 T1-208 3.053m	1.000E+00	Pb-208\$			
Cf-246					
				Daughter	
Products					
Products Nuclide Halflife	f1				f3
Products Nuclide Halflife Nuclide f4 Nuc.	f1 f1	 Nuclide	f2	Nuclide	f3
Products Nuclide Halflife Nuclide f4 Nuclide 1 Cf-246 35.7h	f1 lide 1.000E+00	Nuclide Cm-242	f2 2.500E-06	Nuclide SF	f3
Products Nuclide Halflife Nuclide f4 Nuc 1 Cf-246 35.7h 2 Cm-242 162.8d	f1 Lide 1.000E+00 1.000E+00	 Nuclide Cm-242 Pu-238	f2 2.500E-06 6.370E-08	Nuclide SF SF	f3
Products Nuclide Halflife Nuclide f4 Nuc 1 Cf-246 35.7h 2 Cm-242 162.8d 3 Pu-238 87.7y 4 U-234 2.455E+5y	f1 Lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00	 Nuclide Cm-242 Pu-238 U-234 Th-230	f2 2.500E-06 6.370E-08	Nuclide SF SF	£3
Products Nuclide Halflife Nuclide f4 Nuc 1 Cf-246 35.7h 2 Cm-242 162.8d 3 Pu-238 87.7y 4 U-234 2.455E+5y	f1 Lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00	 Nuclide Cm-242 Pu-238 U-234 Th-230	f2 2.500E-06 6.370E-08	Nuclide SF SF	f3
Products Nuclide Halflife Nuclide f4 Nuc 1 Cf-246 35.7h 2 Cm-242 162.8d 3 Pu-238 87.7y 4 U-234 2.455E+5y	f1 Lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00	 Nuclide Cm-242 Pu-238 U-234 Th-230	f2 2.500E-06 6.370E-08	Nuclide SF SF	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	 Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218	f2 2.500E-06 6.370E-08 1.850E-09	Nuclide SF SF SF	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01	 Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214	f2 2.500E-06 6.370E-08 1.850E-09	Nuclide SF SF SF	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04	Nuclide SF SF SF At-218	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.990E-01	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04	Nuclide SF SF SF At-218 Rn-218	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.990E-01 9.998E-01 1.000E+00	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04 1.000E-03	Nuclide SF SF SF At-218 Rn-218	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 9.998E-01 1.000E+00 1.000E+00	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Po-214 Pb-210	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04 1.000E-03	Nuclide SF SF SF At-218 Rn-218	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Pb-210 Pb-210	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04 1.000E-03 2.100E-04	Nuclide SF SF SF At-218 Rn-218 T1-210	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Pb-210 Pb-210 Bi-210	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04 1.000E-03 2.100E-04 1.900E-08	Nuclide SF SF SF At-218 Rn-218 T1-210 Hg-206	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Pb-210 Pb-210 Bi-210 Po-210	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04 1.000E-03 2.100E-04	Nuclide SF SF SF At-218 Rn-218 T1-210 Hg-206	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Po-214 Po-214 Pb-210 Pb-210 Bi-210 Pb-210 Bi-210 Pb-210 Pb-210 Fb-206 Pb-206\$	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04 1.000E-03 2.100E-04 1.900E-08	Nuclide SF SF SF At-218 Rn-218 T1-210 Hg-206	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Po-214 Po-214 Pb-210 Pb-210 Bi-210 Pb-210 Bi-210 Pb-210 Pb-210 Fb-206 Pb-206\$	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04 1.000E-03 2.100E-04 1.900E-08	Nuclide SF SF SF At-218 Rn-218 T1-210 Hg-206	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Pb-210 Pb-210 Pb-210 Bi-210 Pb-210 Pb-210 Fb-206 Pb-206\$	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04 1.000E-03 2.100E-04 1.900E-08 1.320E-06	Nuclide SF SF SF At-218 Rn-218 T1-210 Hg-206	f3
Products	f1 lide 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cm-242 Pu-238 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Pb-210 Pb-210 Pb-210 Bi-210 Pb-210 Pb-210 Pb-210 Pb-210 Pb-210 Pb-206\$ Pb-206\$	f2 2.500E-06 6.370E-08 1.850E-09 2.000E-04 1.000E-03 2.100E-04 1.900E-08 1.320E-06	Nuclide SF SF SF At-218 Rn-218 T1-210 Hg-206	f3

Nuclide Halflif					f3
Nuclide f4 Nu 1 Cf-247 3.11 2 Bk-247 1.38E+3	- 1 0000.00	A 040			
2 BR-247 1.38E+3 3 Cm-243 29.1 4 Am-243 7.37E+3 5 Np-239 2.3565	y 1.000E+00 y 2.400E-03 y 1.000E+00	Am-243 Am-243 Np-239	9.976E-01	Pu-239	
6 Pu-239 2.411E+4	7 9.994E-01	U-235m	6.000E-04	U-235	
7 U-235m 26 8 U-235 7.04E+8 9 Th-231 25.52 10 Pa-231 3.276E+4	y 1.000E+00	Ac-227			
11 Ac-227 21.772 12 Th-227 18.68	y 9.862E-01 d 1.000E+00	Th-227 Ra-223	1.380E-02	Fr-223	
13 Fr-22322.0014 Ra-22311.43	n 1.000E+00 d 1.000E+00	Ra-223 Rn-219		At-219	
15 Rn-2193.9616 At-2195617 Bi-2157.6	s 9.700E-01	Bi-215			
18 Po-215 1.781E-3	s 1.000E+00	Pb-211			
19 Pb-211 36.1 20 Bi-211 2.14 21 T1-207 4.77 22 Po-211 0.516	n 9.972E-01 n 1.000E+00	T1-207 Pb-207\$	2.760E-03	Po-211	
Cf-248		10 2074			
				Daughter	
					f3
Nuclide Halflif Nuclide f4 Nu	e fl clide	Nuclide	f2	Nuclide	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334	e f1 clide d 1.000E+00	Nuclide	f2	Nuclide	£3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334	e f1 clide d 1.000E+00	Nuclide	f2	Nuclide	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334	e f1 clide d 1.000E+00	Nuclide	f2	Nuclide	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334	e f1 clide d 1.000E+00	Nuclide	f2	Nuclide	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334 2 Cm-244 18.10 3 Pu-240 6564 4 U-236 2.342E+7 5 Th-232 1.405E10 6 Ra-228 5.75 7 Ac-228 6.15	e f1 clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 h 1.000E+00	 Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228	f2	Nuclide	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334 2 Cm-244 18.10 3 Pu-240 6564 4 U-236 2.342E+7 5 Th-232 1.405E10 6 Ra-228 5.75 7 Ac-228 6.15 8 Th-228 1.9116	e f1 clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 h 1.000E+00 y 1.000E+00	Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224	f2	Nuclide	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334 2 Cm-244 18.10 3 Pu-240 6564 4 U-236 2.342E+7 5 Th-232 1.405E10 6 Ra-228 5.75 7 Ac-228 6.15 8 Th-228 1.9116 9 Ra-224 3.66	e f1 clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 h 1.000E+00 y 1.000E+00 d 1.000E+00	Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Ra-224 Rn-220	f2	Nuclide	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334 2 Cm-244 18.10 3 Pu-240 6564 4 U-236 2.342E+7 5 Th-232 1.405E10 6 Ra-228 5.75 7 Ac-228 6.15 8 Th-228 1.9116 9 Ra-224 3.66	f1 clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 h 1.000E+00 h 1.000E+00 d 1.000E+00 s 1.000E+00	 Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216	f2	Nuclide	f3
NuclideHalflifNuclidef4Nu1Cf-2483342Cm-24418.103Pu-24065644U-2362.342E+75Th-2321.405E106Ra-2285.757Ac-2286.158Th-2281.91169Ra-2243.6610Rn-22055.611Po-2160.14512Pb-21210.64	e fl clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 d 1.000E+00 d 1.000E+00 s 1.000E+00 n 1.000E+00 n 1.000E+00	Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212	f2 2.900E-05 1.371E-06 5.750E-08	Nuclide SF SF SF	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334 2 Cm-244 18.10 3 Pu-240 6564 4 U-236 2.342E+7 5 Th-232 1.405E10 6 Ra-228 5.75 7 Ac-228 6.15 8 Th-223 1.9116 9 Ra-224 3.66 10 Rn-220 55.6 11 Po-216 0.145 12 Pb-212 10.64 13 Bi-212 60.55	e fl clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 d 1.000E+00 d 1.000E+00 s 1.000E+00 n 1.000E+00 n 6.406E-01	Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212	f2 2.900E-05 1.371E-06 5.750E-08	Nuclide SF SF SF	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334 2 Cm-244 18.10 3 Pu-240 6564 4 U-236 2.342E+7 5 Th-232 1.405E10 6 Ra-228 5.75 7 Ac-228 6.15 8 Th-228 1.9116 9 Ra-224 3.66 10 Rn-220 55.6 11 Po-216 0.145 12 Pb-212 10.64 13 Bi-212 60.55 14 Po-212 2.99E-7	e fl clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 d 1.000E+00 d 1.000E+00 s 1.000E+00 n 1.000E+00 n 6.406E-01	 Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 Pb-208\$	f2 2.900E-05 1.371E-06 5.750E-08	Nuclide SF SF SF	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334 2 Cm-244 18.10 3 Pu-240 6564 4 U-236 2.342E+7 5 Th-232 1.405E10 6 Ra-228 5.75 7 Ac-228 6.15 8 Th-228 1.9116 9 Ra-224 3.66 10 Rn-220 55.6 11 Po-216 0.145 12 Pb-212 10.64 13 Bi-212 60.55 14 Po-212 2.99E-7	e f1 clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 d 1.000E+00 d 1.000E+00 s 1.000E+00 n 6.406E-01 s 1.000E+00 n 1.000E+00	Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-208\$ Pb-208\$	f2 2.900E-05 1.371E-06 5.750E-08 3.594E-01	Nuclide SF SF SF	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334 2 Cm-244 18.10 3 Pu-240 6564 4 U-236 2.342E+7 5 Th-232 1.405E10 6 Ra-228 5.75 7 Ac-228 6.15 8 Th-228 1.9116 9 Ra-224 3.66 10 Rn-220 55.6 11 Po-216 0.145 12 Pb-212 10.64 13 Bi-212 60.55 14 Po-212 2.99E-7 15 T1-208 3.053 Cf-249	e f1 clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 d 1.000E+00 d 1.000E+00 s 1.000E+00 n 6.406E-01 s 1.000E+00 n 1.000E+00	Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-208\$ Pb-208\$	f2 2.900E-05 1.371E-06 5.750E-08	Nuclide SF SF SF	f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334 2 Cm-244 18.10 3 Pu-240 6564 4 U-236 2.342E+7 5 Th-232 1.405E10 6 Ra-228 5.75 7 Ac-228 6.15 8 Th-228 1.9116 9 Ra-224 3.66 10 Rn-220 55.6 11 Po-216 0.145 12 Pb-212 10.64 13 Bi-212 60.55 14 Po-212 2.99E-7 15 T1-208 3.053 Cf-249 Products	e f1 clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 d 1.000E+00 d 1.000E+00 s 1.000E+00 n 6.406E-01 s 1.000E+00 n 1.000E+00 n 1.000E+00	Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-208\$ Pb-208\$	f2 2.900E-05 1.371E-06 5.750E-08 3.594E-01	Nuclide SF SF SF T1-208 Daughter	f3 f3
Nuclide Halflif Nuclide f4 Nu 1 Cf-248 334 2 Cm-244 18.10 3 Pu-240 6564 4 U-236 2.342E+7 5 Th-232 1.405E10 6 Ra-228 5.75 7 Ac-228 6.15 8 Th-228 1.9116 9 Ra-224 3.66 10 Rn-220 55.6 11 Po-216 0.145 12 Pb-212 10.64 13 Bi-212 60.55 14 Po-212 2.99E-7 15 T1-208 3.053 Cf-249 Products Nuclide Halflif Nuclide f4 Nu	e f1 clide d 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 y 1.000E+00 d 1.000E+00 d 1.000E+00 s 1.000E+00 n 6.406E-01 s 1.000E+00 n 1.000E+00 n 1.000E+00	Nuclide Cm-244 Pu-240 U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Pb-208\$ Pb-208\$	f2 2.900E-05 1.371E-06 5.750E-08 3.594E-01 f2	Nuclide SF SF SF T1-208 Daughter Nuclide	

3	Cm-245 Pu-241 Am-241	8.5E+3y 14.35y 432.2y	1.000E+00 1.000E+00 1.000E+00	Am-241	6.100E-09 2.450E-05	
	U-237	6.75d		÷		
6	Np-237	2.144E+6y	1.000E+00	÷		
7	Pa-233	26.967d	1.000E+00	U-233		
8	U-233	1.592E+5y	1.000E+00	Th-229		
9	Th-229	7.34E+3y	1.000E+00	Ra-225		
10	Ra-225	14.9d	1.000E+00	Ac-225		
11	Ac-225	10.0d	1.000E+00	Fr-221		
12	Fr-221	4.9m	1.000E+00	At-217		
13	At-217	3.23E-2s	9.999E-01	Bi-213		
14	Bi-213	45.59m	9.791E-01	Po-213	2.090E-02	T1-209
15	Po-213	4.2E-6s	1.000E+00	Pb-209		
16	T1-209	2.161m	1.000E+00	Pb-209		
17	Pb-209	3.253h	1.000E+00	Bi-209\$		

Cf-250

						Daughter	
Proc	lucts					-	
	Nuclide	Halflife	f1	Nuclide	f2	Nuclide	f3
Nucl	ide f4	4 Nucl	ide				
	Cf-250		9.992E-01				
2	Cm-246	4.76E+3y	9.997E-01	Pu-242	2.630E-04	SF	
3	Pu-242	3.75E+5y	1.000E+00	U-238	5.540E-06	SF	
4	U-238	4.468E+9y 24.10d	1.000E+00	Th-234	5.450E-07	SF	
5	Th-234	24.10d	1.000E+00	Pa-234m			
6	Pa-234m	1.17m	1.600E-03	Pa-234	9.984E-01	U-234	
	Pa-234		1.000E+00				
8	U-234	2.455E+5y	1.000E+00	Th-230			
		7.538E+4y	1.000E+00	Ra-226			
10	Ra-226	1600y	1.000E+00	Rn-222			
11	Rn-222	3.8235d	1.000E+00	Po-218			
12	Po-218	3.10m	9.998E-01	Pb-214	2.000E-04	At-218	
13	Pb-214	26.8m	1.000E+00	Bi-214			
14	At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218	
15	Bi-214	19.9m	9.998E-01	Po-214	2.100E-04	Tl-210	
16	Rn-218	3.5E-2s	1.000E+00	Po-214			
17	Po-214	1.643E-4s					
18	T1-210	1.30m	1 . 000E+00	Pb-210			
19	Pb-210	22.20y	1.000E+00	Bi-210	1.900E-08	Hg-206	
20	Bi-210	5.013d	1.000E+00	Po-210	1.320E-06	T1-206	
21	Hg-206	8.15m	1.000E+00	T1-206			
22	Po-210	138.376d	1.000E+00	Pb-206\$			
23	T1-206	4.200m	1.000E+00	Pb-206\$			
Cf-2	251						
					 ` ;	Daughter	
Proc	lucts		- -			-	
	Nuglida	U-1-1-1-F-	£ 1	Nualida	£0	Munlide	ഹാ

FIQUUCLS							
Nucli	de	Halflife	f1	Nuclide	f2	Nuclide	£З
Nuclide	f4	Nucl	ide				
1 Cf-25	51	900y	1.000E+00	Cm-247			

3 4 5 7 8	Cm-247 Pu-243 Am-243 Np-239 Pu-239 U-235m U-235 Th-231	4.956h 7.37E+3y 2.3565d 2.411E+4y 26m 7.04E+8y	9.994E-01	Am-243 Np-239 Pu-239 U-235m U-235 Th-231	6.000E-04	U-235
		3.276E+4y				
	Ac-227	_	9.862E-01		1.380E-02	Fr-223
12	Th-227	18.68d	1.000E+00	Ra-223		
13	Fr-223	22.00m	1.000E+00	Ra-223	6.000E-05	At-219
14	Ra-223	11.43d	1.000E+00	Rn-219		
15	Rn-219	3.96s	1.000E+00	Po-215		
16	At-219	56s	9.700E-01	Bi-215		
17	Bi-215	7.6m	1.000E+00	Po-215		
18	Po-215	1.781E-3s	1.000E+00	Pb-211		
19	Pb-211	36.1m	1.000E+00	Bi-211		
20	Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211
21	Tl-207	4.77m	1.000E+00	Pb-207\$		
22	Po-211	0.516s	1.000E+00	Pb-207\$		

Cf-252

Nuclide f4 Nuclide

----- Daughter

3	Pu-244	8.00E+/y	9.988E-UI	0-240	T.2IOE-03	SF	
4	U-240	14.1h	1.000E+00	Np-240m			
5	Np-240m	7.22m	1.100E-03	Np-240	9.989E-01	Pu-240	
6	Np-240	61.9m	1.000E+00	Pu-240			
7	Pu-240	6564y	1.000E+00	U-236	5.750E-08	SF	
8	U-236	2.342E+7y	1.000E+00	Th-232			
9	Th-232	1.405E10y	1.000E+00	Ra-228			
10	Ra-228	5.75y	1.000E+00	Ac-228			
11	Ac-228	6.15h	1.000E+00	Th-228			
12	Th-228	1.9116y					
13	Ra-224	3.66d	1.000E+00	Rn-220			
14	Rn-220	55.6s	1.000E+00	Po-216			
15	Po-216	0.145s	1.000E+00	Pb-212			
16	Pb-212	10.64h	1.000E+00	Bi-212			
17	Bi-212	60.55m	6.406E-01	Po-212	3.594E-01	T1-208	
18	Po-212	2.99E-7s	1.000E+00	Pb-208\$			
19	Tl-208	3.053m	1.000E+00	Pb-208\$			
		•					
Cf-2	253						
						Daughter	
Prod	ducts						
	Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3

2	Cf-253 Es-253 Cm-249	20.47d	9.969E-01 1.000E+00 1.000E+00	Bk-249	3.100E-03 8.900E-08	
	Bk-249		1.000E+00		1.450E-05	
	Cf-249	-	1.000E+00		5.020E-09	SF
	Am-245		1.000E+00			
		8.5E+3y			6.100E-09	SF
8	Pu-241		1.000E+00		2.450E-05	U-237
9	Am-241	432.2y	1.000E+00	Np-237		
10	U-237	6.75d	1.000E+00	Np-237		
11	Np-237	2.144E+6y	1.000E+00	Pa-233		
12	Pa-233	26.967d	1.000E+00	U-233		
13	U-233	1.592E+5y	1.000E+00	Th-229		
14	Th-229	7.34E+3y	1.000E+00	Ra-225		
15	Ra-225	14.9d	1.000E+00	Ac-225		
16	Ac-225	10.0d	1.000E+00	Fr-221		
17	Fr-221	4.9m	1.000E+00	At-217		
18	At-217	3.23E-2s	9.999E-01	Bi-213		
19	Bi-213		9.791E-01		2.090E-02	T1-209
20	Po-213	4.2E-6s	1.000E+00	Pb-209		
	T1-209	2.161m				
	Pb-209	3.253h	1.000E+00			
				+		

Cf-254

]	Daughter	
Products						
Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuclide f	4 Nucl	ide				
1 Cf-254	60.5d	3.100E-03	Cm-250	9.969E-01	SF	
2 Cm-250	8300y	1.800E-01	Pu-246	8.000E-02	Bk-250	
7.400E-01 SH	3					
3 Pu-246	10.84d	1.000E+00	Am-246m			
	3.212h					
5 Am-246m	25.Om	1.000E+00	Cm-246			
	13.08y					
7 Cm-246	4.76E+3y	9.997E-01	Pu-242	2.630E-04	SF	
8 Pu-242	3.75E+5y	1.000E+00	U-238	5.540E-06	SF	
9 U-238	4.468E+9y	1.000E+00	Th-234	5.450E-07	SF	
10 Th-234	24.10d	1.000E+00	Pa-234m			
11 Pa-234m	1.17m	1.600E-03	Pa-234	9.984E-01	U-234	
12 Pa-234	6.70h	1.000E+00	U-234			
13 U-234	2.455E+5y	1.000E+00	Th-230			
14 Th-230	7.538E+4y	1.000E+00	Ra-226			
	1600y					
16 Rn-222	3.8235d	1.000E+00	Po-218			
17 Po-218	3.10m	9.998E-01	Pb-214	2.000E-04	At-218	
18 Pb-214	26.8m	1.000E+00	Bi-214			
19 At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218	
20 Bi-214	19.9m	9.998E-01	Po-214	2.100E-04	T1-210	
21 Rn-218	3.5E-2s	1.000E+00	Po-214			
22 Po-214	1.643E-4s	1.000E+00	Pb-210			
23 Tl-210	1.30m	1.000E+00	Pb-210			

22.20y 1.000E+00 Bi-210 1.900E-08 Hg-206 24 Pb-210 5.013d 1.000E+00 Po-210 1.320E-06 T1-206 25 Bi-210 26 Hg-206 8.15m 1.000E+00 T1-206 27 Po-210 138.376d 1.000E+00 Pb-206\$ 28 T1-206 4.200m 1.000E+00 Pb-206\$ Cf-255 / ---- Daughter _____ Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 85m 1.000E+00 Es-255 1 Cf-255 39.8d 9.200E-01 Fm-255 2 Es-255 8.000E-02 Bk-251 4.500E-05 SF 3 Fm-255 20.07h 1.000E+00 Cf-251 2.300E-07 SF 55.6m 1.000E+00 Cf-251 4 Bk-251 900y 1.000E+00 Cm-247 5 Cf-251 6 Cm-247 1.56E+7y 1.000E+00 Pu-243 7 Pu-243 4.956h 1.000E+00 Am-243 8 Am-243 7.37E+3y 1.000E+00 Np-239 9 Np-239 2.3565d 1.000E+00 Pu-239 10 Pu-239 2.411E+4y 9.994E-01 U-235m 6.000E-04 U-235 11 U-235m 1.000E+00 U-235 26m 12 U-235 7.04E+8y 1.000E+00 Th-231 13 Th-231 25.52h 1.000E+00 Pa-231 14 Pa-231 3.276E+4y 1.000E+00 Ac-227 15 Ac-22721.772y9.862E-01 Th-22716 Th-22718.68d1.000E+00 Ra-223 1.380E-02 Fr-223 17 Fr-223 22.00m 1.000E+00 Ra-223 6.000E-05 At-219 11.43d 1.000E+00 Rn-219 18 Ra-223 3.96s 1.000E+00 Po-215 56s 9.700E-01 Bi-215 7.6m 1.000E+00 Po-215 19 Rn-219 20 At-219 21 Bi-215 22 Po-215 1.781E-3s 1.000E+00 Pb-211 23 Pb-211 36.1m 1.000E+00 Bi-211 24 Bi-211 2.14m 9.972E-01 T1-207 2.760E-03 Po-211 4.77m 1.000E+00 Pb-207\$ 25 T1-207 0.516s 1.000E+00 Pb-207\$ 26 Po-211 Es-249 ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Es-249 102.2m 9.943E-01 Cf-249 5.700E-03 Bk-245 351y 1.000E+00 Cm-245 5.020E-09 SF 4.94d 9.988E-01 Cm-245 1.200E-03 Am-241 2 Cf-249 3 Bk-245 8.5E+3y 1.000E+00 Pu-241 4 Cm-245 6.100E-09 SF 14.35y 1.000E+00 Am-241 2.450E-05 U-237 5 Pu-241 6 Am-241 432.2y 1.000E+00 Np-237 7 U-237 6.75d 1.000E+00 Np-237 8 Np-237 2.144E+6y 1.000E+00 Pa-233

12 Ra-225 13 Ac-225 14 Fr-221 15 At-217 16 Bi-213 17 Po-213 18 T1-209		1.000E+00 1.000E+00 1.000E+00 9.999E-01 9.791E-01 1.000E+00 1.000E+00	Th-229 Ra-225 Ac-225 Fr-221 At-217 Bi-213 Po-213 Pb-209 Pb-209	2.090E-02	T1-209	
Es-250					Daughter	
Products -				1	Daughter	
Nuclide Nuclide f 1 Es-250 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 • 7 Pa-234 8 Pa-234 9 U-234 10 Th-230 11 Ra-226 12 Rn-222 13 Po-218 14 Pb-214 15 At-218 16 Bi-214 17 Rn-218 18 Po-214 19 Tl-210	8.6h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s 1.643E-4s 1.30m 22.20y 5.013d 8.15m 138.376d	ide 9.850E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00	$\begin{array}{c} Cf-250\\ Cm-246\\ Pu-242\\ U-238\\ Th-234\\ Pa-234\\ Pa-234\\ U-234\\ Th-230\\ Ra-226\\ Rn-222\\ Po-218\\ Pb-214\\ Bi-214\\ Pb-214\\ Po-214\\ Pb-210\\ Pb-210\\ Pb-210\\ Bi-210\\ Pb-210\\ Bi-210\\ Pb-210\\ Fb-206\\ Pb-206\\ \end{array}$	7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03 2.100E-04	SF SF U-234 At-218 Rn-218 T1-210 Hg-206	f3
Es-250m						
		·		I	Daughter	
Products - Nuclide Nuclide f 1 Es-250m 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238	4 Nucl 2.22h 13.08y 4.76E+3y 3.75E+5y	1.000E+00 9.992E-01 9.997E-01 1.000E+00	Cm-246 Pu-242 U-238	f2 7.700E-04 2.630E-04 5.540E-06	Nuclide SF SF SF	f3

6	Ťh-234	24.10d	1.000E+00	Pa-234m		•
7	Pa-234m	1.17m	1.600E-03	Pa-234	9.984E-01	U-234
8	Pa-234	6.70h	1.000E+00	U-234		
9	U-234	2.455E+5y	1.000E+00	Th-230		
10	Th-230	7.538E+4y	1.000E+00	Ra-226		
11	Ra-226	1600y	1.000E+00	Rn-222		
12	Rn-222	3.8235d	1.000E+00	Po-218		
13	Po-218	3.10m	9.998E-01	Pb-214	2.000E-04	At-218
14	Pb-214	26.8m	1.000E+00	Bi-214		
15	At-218	1.5s	9.990E-01	Bi-214	1.000E-03	Rn-218
16	Bi-214	19.9m	9.998E-01	Po-214	2.100E-04	T1-210
17	Rn-218	3.5E-2s	1.000E+00	Po-214		
18	Po-214	1.643E-4s	1.000E+00	Pb-210		
19	Tl-210	1.30m	1.000E+00	Pb-210		
20	Pb-210	22.20y	1.000E+00	Bi-210	1.900E-08	Hg-206
21	Bi-210	5.013d	1.000E+00	Po-210	1.320E-06	T1-206
22	Hg-206	8.15m	1.000E+00	T1-206		
23	Po-210	138.376d	1.000E+00	Pb-206\$		
24	T1-206	4.200m	1.000E+00	Pb-206\$		

Es-251

					.	
Products -					Daughter	
	Halflife	£1	Nuglido	fo	Nuclide	f3
			NUCLICE	12	NUCTICE	13
					D) 047	
1 Es-251		9.950E-01		5.000E-03	BK-24/	
2 Cf-251		1.000E+00				
3 BK-247	1.38E+3y	1.000E+00	Am-243			
4 Cm-247		1.000E+00				
5 Pu-243		1.000E+00				
	7.37E+3y					
7 Np-239	2.3565d	1.000E+00	Pu-239			
8 Pu-239	2.411E+4y	9.994E-01	U-235m	6.000E-04	U-235	
9 U-235m	26m	1.000E+00	U-235			
10 U-235	7.04E+8y	1.000E+00	Th-231			
11 Th-231	25.52h	1.000E+00	Pa-231			
12 Pa-231	3.276E+4y	1.000E+00	Ac-227			
13 Ac-227		9.862E-01		1.380E-02	Fr-223	
	18.68d	1.000E+00	Ra-223			
	22.00m			6.000E-05	At-219	
16 Ra-223		1.000E+00				
	3.96s					
18 At-219		9.700E-01				
19 Bi-215						
	1.781E-3s					
21 Pb-211		1.000E+00				
22 Bi-211	2.14m			2.760E-03	Do 211	
	2.14m 4.77m			2.7006-03	F0-211	
24 Po-211	0.3165	1.000E+00	PD-2015			

Es-253

---- Daughter

.

Products					
Nuclide Halflife					f3
Nuclide f4 Nucli .1 Es-253 20.47d	ide				
.1 Es-253 20.47d	1.000E+00	Bk-249	8.900E-08	SF	
2 Bk-249 330d	1.000E+00	Cf-249	1.450E-05	Am-245	
3 Cf-249 351y	1.000E+00	Cm-245	5.020E-09	SF	
4 Am-245 2.05h	1.000E+00	Cm-245			
5 Cm-245 8.5E+3y	1.000E+00	Pu-241	6.100E-09	SF	
6 Pu-241 14.35y	1.000E+00	Am-241	2.450E-05		
7 Am-241 432 2v	1 000E+00	Nn-237			
8 U-237 6.75d 9 Np-237 2.144E+6y 10 Pa-233 26.967d 11 U-233 1.592E+5y	1.000E+00	Np-237			
9 Np-237 2.144E+6y	1.000E+00	Pa-233			
10 Pa-233 26.967d	1.000E+00	U-233			
11 U-233 1.592E+5v	1.000E+00	Th-229			
12 Th-229 7.34E+3y	1.000E+00	Ra-225			
13 Ba-225 14 9d	1 000E+00	Ac-225			
13 Ac-225 10.0d 14 Ac-225 10.0d 15 Fr-221 4.9m 16 At-217 3.23E-2s 17 Bi-213 45.59m 18 Po-213 4.2E-6s	1.000E+00	Fr-221			
15 Fr - 221 4.9m	1.000E+00	At-217			
16 At - 217 3 23E - 2s	9.999E-01	Bi-213			
17 Bi - 213 $45 59 m$	9.791E-01	$P_0 - 213$	2 090E-02	т1-209	
$18 P_{0}-213 \qquad 4 2E-6s$	1 000E+00	Pb - 209	2.0901 02	11 200	
19 T1-209 2.161m	1.000E+00	Pb = 209			
20 Pb-209 3.253h	1.000E+00	Bi-2095			
20 10 200 012001	1.00000.000	D# 2007			
Es-254					
Es-254 Products]	Daughter	
				2	
Products					
Nuclide Halflife		 Nuclide	f2	Nuclide	£3
Nuclide Halflife Nuclide f4 Nucl:	f1 ' ide				£3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d	f1 ' ide				£3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF	f1 ide 1.000E+00	Bk-250			f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h	f1 ide 1.000E+00 1.000E+00	Bk-250 Cf-250	1.740E-06	Fm-254	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h	f1 ide 1.000E+00 1.000E+00 9.994E-01	Bk-250 Cf-250 Cf-250	1.740E-06 5.920E-04	Fm-254 SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h	f1 ide 1.000E+00 1.000E+00 9.994E-01	Bk-250 Cf-250 Cf-250	1.740E-06 5.920E-04	Fm-254 SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h	f1 ide 1.000E+00 1.000E+00 9.994E-01	Bk-250 Cf-250 Cf-250	1.740E-06 5.920E-04	Fm-254 SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h	f1 ide 1.000E+00 1.000E+00 9.994E-01	Bk-250 Cf-250 Cf-250	1.740E-06 5.920E-04	Fm-254 SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00	Bk-250 Cf-250 Cf-250 Cm-246 Pu-242 U-238 Th-234	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Fm-254 SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00	Bk-250 Cf-250 Cf-250 Cm-246 Pu-242 U-238 Th-234	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Fm-254 SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00	Bk-250 Cf-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234m	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Fm-254 SF SF SF SF SF SF	f3
Nuclide Halflife Nuclide f4 Nucli 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.600E-03	Bk-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Fm-254 SF SF SF SF SF SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.600E-03	Bk-250 Cf-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Fm-254 SF SF SF SF SF SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00	Bk-250 Cf-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Fm-254 SF SF SF SF SF SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y 12 Th-230 7.538E+4y	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Bk-250 Cf-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Fm-254 SF SF SF SF SF SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00	Bk-250 Cf-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Fm-254 SF SF SF SF SF SF	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y 12 Th-230 7.538E+4y 13 Ra-226 1600y	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Bk-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Fm-254 SF SF SF SF SF U-234	£3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y 12 Th-230 7.538E+4y 13 Ra-226 1600y 14 Rn-222 3.8235d 15 Po-218 3.10m	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01	Bk-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01	Fm-254 SF SF SF SF SF U-234	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y 12 Th-230 7.538E+4y 13 Ra-226 1600y 14 Rn-222 3.8235d 15 Po-218 3.10m 16 Pb-214 26.8m	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Bk-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234m Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04	Fm-254 SF SF SF SF U-234 At-218	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y 12 Th-230 7.538E+4y 13 Ra-226 1600y 14 Rn-222 3.8235d 15 Po-218 3.10m 16 Pb-214 26.8m 17 At-218 1.5s	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.990E-01	Bk-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Fm-254 SF SF SF SF U-234 At-218 Rn-218	f3
Nuclide Halflife Nuclide f4 Nucli 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y 12 Th-230 7.538E+4y 13 Ra-226 1600y 14 Rn-222 3.8235d 15 Po-218 3.10m 16 Pb-214 26.8m 17 At-218 1.5s 18 Bi-214 19.9m	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 9.998E-01	Bk-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04	Fm-254 SF SF SF SF U-234 At-218 Rn-218	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y 12 Th-230 7.538E+4y 13 Ra-226 1600y 14 Rn-222 3.8235d 15 Po-218 3.10m 16 Pb-214 26.8m 17 At-218 1.5s 18 Bi-214 19.9m 19 Rn-218 3.5E-2s	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00	Bk-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234m Pa-234m Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Po-214 Po-214	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Fm-254 SF SF SF SF U-234 At-218 Rn-218	f3
Nuclide Halflife Nuclide f4 Nucli 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y 12 Th-230 7.538E+4y 13 Ra-226 1600y 14 Rn-222 3.8235d 15 Po-218 3.10m 16 Pb-214 26.8m 17 At-218 1.5s 18 Bi-214 19.9m 19 Rn-218 3.5E-2s 20 Po-214 1.643E-4s	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Bk-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Po-214 Po-214 Pb-210	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Fm-254 SF SF SF SF U-234 At-218 Rn-218	f3
Nuclide Halflife Nuclide f4 Nucl: 1 Es-254 275.7d 3.000E-08 SF 2 Bk-250 3.212h 3 Fm-254 3.240h 4 Cf-250 13.08y 5 Cm-246 4.76E+3y 6 Pu-242 3.75E+5y 7 U-238 4.468E+9y 8 Th-234 24.10d 9 Pa-234m 1.17m 10 Pa-234 6.70h 11 U-234 2.455E+5y 12 Th-230 7.538E+4y 13 Ra-226 1600y 14 Rn-222 3.8235d 15 Po-218 3.10m 16 Pb-214 26.8m 17 At-218 1.5s 18 Bi-214 19.9m 19 Rn-218 3.5E-2s	f1 ide 1.000E+00 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00	Bk-250 Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234m Pa-234m Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Pb-210 Pb-210	1.740E-06 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Fm-254 SF SF SF SF U-234 At-218 Rn-218 T1-210	f3

.

5.013d 1.000E+00 Po-210 1.320E-06 Tl-206 8.15m 1.000E+00 Tl-206 23 Bi-210 24 Hg-206 25 Po-210 138.376d 1.000E+00 Pb-206\$ 4.200m 1.000E+00 Pb-206\$ 26 T1-206 Es-254m ----- Daughter Products -----Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 39.3h 9.800E-01 Fm-254 7.600E-04 Cf-254 1 Es-254m 3.200E-03 Bk-250 4.500E-04 SF 2 Fm-254 3.240h 9.994E-01 Cf-250 5.920E-04 SF 60.5d 3.100E-03 Cm-250 9.969E-01 SF 3 Cf-254 8300y 8.000E-02 Bk-250 4 Cm-250 1.800E-01 Pu-246 7.400E-01 SF 5 Bk-250 3.212h 1.000E+00 Cf-250 6 Cf-250 7 Pu-246 13.08y 9.992E-01 Cm-246 7.700E-04 SF 10.84d 1.000E+00 Am-246m 8 Am-246m 25.0m 1.000E+00 Cm-246 9 Cm-246 4.76E+3y 9.997E-01 Pu-242 2.630E-04 SF 3.75E+5y 1.000E+00 U-238 10 Pu-242 5.540E-06 SF 4.468E+9y 1.000E+00 Th-234 5.450E-07 SF 24.10d 1.000E+00 Pa-234m 11 U-238 12 Th-234 13 Pa-234m1.17m1.600E-03Pa-2349.984E-01U-23414 Pa-2346.70h1.000E+00U-234 · 13 Pa-234m 2.455E+5y 1.000E+00 Th-230 15 U-234 16 Th-230 7.538E+4y 1.000E+00 Ra-226 17 Ra-226 1600y 1.000E+00 Rn-222 3.8235d 1.000E+00 Po-218 3.10m 9.998E-01 Pb-214 2.000E-04 At-218 26.8m 1.000E+00 Bi-214 18 Rn-222 19 Po-218 20 Pb-214 1.5s 9.990E-01 Bi-214 1.000E-03 Rn-218 21 At-218 19.9m 9.998E-01 Po-214 2.100E-04 T1-210 22 Bi-214 23 Rn-218 3.5E-2s 1.000E+00 Po-214 24 Po-214 1.643E-4s 1.000E+00 Pb-210 25 T1-210 1.30m 1.000E+00 Pb-210 22.20y 1.000E+00 Bi-210 1.900E-08 Hg-206 5.013d 1.000E+00 Po-210 1.320E-06 Tl-206 26 Pb-210 27 Bi-210 8.15m 1.000E+00 T1-206 28 Hg-206 29 Po-210 138.376d 1.000E+00 Pb-206\$ 4.200m 1.000E+00 Pb-206\$ 30 T1-206

Es-255

Products ------ Daughter Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide f4 Nuclide 1 Es-255 39.8d 9.200E-01 Fm-255 8.000E-02 Bk-251 4.500E-05 SF 2 Fm-255 20.07h 1.000E+00 Cf-251 2.300E-07 SF 3 Bk-251 55.6m 1.000E+00 Cf-251

5 6 7	Cf-251 Cm-247 Pu-243 Am-243 Np-239	1.56E+7y		Pu-243 Am-243 Np-239		
9	Pu-239	2.411E+4y	9.994E-01	U-235m	6.000E-04	U-235
	U-235m		1.000E+00			
11	U-235	7.04E+8y	1.000E+00	Th-231		
12	Th-231	25.52h	1.000E+00	Pa-231		
		3.276E+4y	1.000E+00	Ac-227		
14	Ac-227	21.772y	9.862E-01	Th-227	1.380E-02	Fr-223
15	Th-227	. 18.68d	1.000E+00	Ra-223		
16	Fr-223	22.00m	1.000E+00	Ra-223	6.000E-05	At-219
17	Ra-223	11.43d	1.000E+00	Rn-219		
18	Rn-219	3.96s	1.000E+00	Po-215		
19	At-219	56s	9.700E-01	Bi-215		
20	Bi-215	7.6m	1.000E+00	Po-215		
21	Po-215	1.781E-3s	1.000E+00	Pb-211		
22	Pb-211	36.1m	1.000E+00	Bi-211		
23	Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211
24		4.77m				
25	Po-211	0.516s	1.000E+00	Pb-207\$		

Es-256

						Daughter	
Prod	ducts					2	
	Nuclide	Halflife	f1	Nuclide	f2	Nuclide	£3
Nuc	lide f4	Nucl	ide				
1	Es-256	25.4m	1.000E+00	Fm-256			
2	Fm-256	157.6m	8.100E-02	Cf-252	9.190E-01	SF	
		2.645y					
4	Cm-248	3.48E+5y	9.161E-01	Pu-244	8.390E-02	SF	
		8.00E+7y			1.210E-03	SF	
		14.1h					
		7.22m		Np-240	9.989E-01	Pu-240	
		61.9m					
		6564y			5.750E-08	SF	
		2.342E+7y					
		1.405E10y					
	Ra-228		1.000E+00	Ac-228			•
		6.15h					
14		1.9116y		Ra-224			
15	Ra-224	3.66d	1.000E+00	Rn-220			
16		55.6s		Po-216			
17	Po-216	0.145s	1.000E+00	Pb-212			
	Pb-212			Bi-212			
		60.55m			3.594E-01	T1-208	
		2.99E-7s		Pb-208\$			
21	T1-208	3.053m	1.000E+00	Pb-208\$			

Fm-251

Daughter

Products -						
Nuclide	Halflife	f1	Nuclide	£2	Nuclide	£3
Nuclide f	4 Nucl	ide				
1 Fm-251	5.30h	9.820E-01	Es-251	1.800E-02	Cf-247	
2 Es-251	33h 3.11h 900y 1.38E+3y	9.950E-01	Cf-251	5.000E-03	Bk-247	
3 Cf-247	3.11h	9.997E-01	Bk-247	3.500E-04	Cm-243	
4 Cf-251	900y	1.000E+00	Cm-247			
5 Bk-247	1.38E+3y	1.000E+00	Am-243			
6 Cm-247	1.56E+7y	1.000E+00	Pu-243			
	[.] 4.956h					
8 Cm-243	29.ly	2.400E-03	Am-243	9.976E-01	Pu-239	
9 Am-243	7.37E+3y	1.000E+00	Np-239	•	`	
10 Np-239	2.3565d	1.000E+00	Pu-239			
11 Pu-239	2.411E+4y 26m	9.994E-01	U-235m	6.000E-04	U-235	
12 U-235m	26m	1.000E+00	U-235			
13 U-235	7.04E+8y	1.000E+00	Th-231			
14 Th-231	25.52h	1.000E+00	Pa-231			
	3.276E+4y					
16 Ac-227	21.772y	9.862E-01	Th-227	1.380E-02	Fr-223	
17 Th-227	18.68d	1.000E+00	Ra-223			
18 Fr-223	22.00m 11.43d 3.96s	1.000E+00	Ra-223	6.000E-05	At-219	
19 Ra-223	11.43d	1.000E+00	Rn-219			
20 Rn-219	3.96s	1.000E+00	Po-215			
21 At-219	56s	9.700E-01	Bi-215			
22 Bi-215	7.6m	1.000E+00	Po-215			
	1.781E-3s					
	36.1m					
25 Bi-211	2.14m	9.972E-01	T1-207	2.760E-03	Po-211	
26 Tl-207	4.77m	1.000E+00	Pb-207\$			
27 Po-211	0.516s	1.000E+00	Pb-207\$			
Fm-252						
Products -					Daughter	
Nuclide		f1		f2	Nuclide	f3
Nuclide f			Mucriuc	12	Nucliuc	10
	25.39h	1.000E+00	Cf-248	2.300E-05	SF	
2 Cf-248	334d	1.000E+00	Cm - 244	2.900E-05	SF	
3 Cm-244	0010				O L	
	$18 \ 10v$	1 000E+00	P11-240	1 371E - 06	SF	
4 Pu-240	18.10y 6564y	1.000E+00	Pu-240 U-236	2.300E-05 2.900E-05 1.371E-06 5.750E-08		
4 Pu-240	6564y	1.000E+00	U-236	1.371E-06 5.750E-08		
4 Pu-240 5 U-236	6564y 2.342E+7y	1.000E+00 1.000E+00	U-236 Th-232			
4 Pu-240 5 U-236 6 Th-232	6564y 2.342E+7y 1.405E10y	1.000E+00 1.000E+00 1.000E+00	U-236 Th-232 Ra-228			
4 Pu-240 5 U-236 6 Th-232 7 Ra-228	6564y 2.342E+7y 1.405E10y 5.75y	1.000E+00 1.000E+00 1.000E+00 1.000E+00	U-236 Th-232 Ra-228 Ac-228			
4 Pu-240 5 U-236 6 Th-232 7 Ra-228 8 Ac-228	6564y 2.342E+7y 1.405E10y 5.75y 6.15h	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	U-236 Th-232 Ra-228 Ac-228 Th-228			
4 Pu-240 5 U-236 6 Th-232 7 Ra-228 8 Ac-228 9 Th-228	6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224			
4 Pu-240 5 U-236 6 Th-232 7 Ra-228 8 Ac-228 9 Th-228 10 Ra-224	6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220			
4 Pu-240 5 U-236 6 Th-232 7 Ra-228 8 Ac-228 9 Th-228 10 Ra-224 11 Rn-220	6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216			
4 Pu-240 5 U-236 6 Th-232 7 Ra-228 8 Ac-228 9 Th-228 10 Ra-224 11 Rn-220 12 Po-216	6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212			
4 Pu-240 5 U-236 6 Th-232 7 Ra-228 8 Ac-228 9 Th-228 10 Ra-224 11 Rn-220 12 Po-216 13 Pb-212	6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212	5.750E-08	SF	
4 Pu-240 5 U-236 6 Th-232 7 Ra-228 8 Ac-228 9 Th-228 10 Ra-224 11 Rn-220 12 Po-216 13 Pb-212 14 Bi-212	6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 6.406E-01	U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212		SF	
4 Pu-240 5 U-236 6 Th-232 7 Ra-228 8 Ac-228 9 Th-228 10 Ra-224 11 Rn-220 12 Po-216 13 Pb-212	6564y 2.342E+7y 1.405E10y 5.75y 6.15h 1.9116y 3.66d 55.6s 0.145s 10.64h 60.55m	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+01 1.000E+00	U-236 Th-232 Ra-228 Ac-228 Th-228 Ra-224 Rn-220 Po-216 Pb-212 Bi-212 Po-212 Pb-208\$	5.750E-08	SF	

·

Fm-253

					Daughter	
Products	·				-	
	Halflife		Nuclide	f2	Nuclide	f3
Nuclide f4	Nucl	ide				
1 Fm-253	3.00d	8.800E-01				
2 Es-253	20.47d	1.000E+00	Bk-249	8.900E-08	SF	
3 Bk-249	330d	1.000E+00	Cf-249	1.450E-05	Am-245	
4 Cf-249	351y	1.000E+00	Cm-245	5.020E-09	SF	
5 Am-245	2.05h	1.000E+00	Cm-245			
	8.5E+3y					
7 Pu-241	14.35y	1.000E+00	Am-241	2.450E-05	U-237	
8 Am-241	432.2y	1.000E+00	Np-237			
9 U-237 10 Np-237	6.75d	1.000E+00	Np-237			
10 Np-237	2.144E+6y	1.000E+00	Pa-233			
11 Pa-233 12 U-233	26.967d	1.000E+00	U-233			
12 U-233	1.592E+5y	1.000E+00	Th-229			
13 Th-229	7.34E+3y	1.000E+00	Ra-225			
14 Ra-225		1.000E+00				
15 Ac-225	10.0d	1.000E+00				
16 Fr-221	4.9m	1.000E+00	At-217			
17 At-217	3.23E-2s	9.999E-01	Bi-213			
17 At-217 18 Bi-213 19 Po-213	45.59m	9.791E-01	Po-213	2.090E-02	T1-209	
19 Po-213	4.2E-6s	1.000E+00	Pb-209			
20 Tl-209	2.161m	1.000E+00	Pb-209			
21 Pb-209	3.253h	1.000E+00	Bi-209\$			
Fm-254						
				I	Daughter	
			- - -		-	
Nuclide	Halflife	f1	Nuclide		Daughter Nuclide	f3
Nuclide f4	Halflife Nucl	f1 ide	Nuclide	f2	Nuclide	£3
Nuclide Nuclide f4 1 Fm-254	Halflife Nucl 3.240h	f1 ide 9.994E-01	Nuclide	f2 5.920E-04	Nuclide SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250	Halflife Nucl 3.240h 13.08y	f1 ide 9.994E-01 9.992E-01	Nuclide Cf-250 Cm-246	f2 5.920E-04 7.700E-04	Nuclide SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246	Halflife Nucl 3.240h 13.08y 4.76E+3y	f1 ide 9.994E-01 9.992E-01 9.997E-01	Nuclide Cf-250 Cm-246 Pu-242	f2 5.920E-04 7.700E-04 2.630E-04	Nuclide SF SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06	Nuclide SF SF SF SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Nuclide SF SF SF SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234m	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Nuclide SF SF SF SF SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238	Halflife 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.000E+00 1.600E-03	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Nuclide SF SF SF SF SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234 8 Pa-234	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Nuclide SF SF SF SF SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234m 8 Pa-234 9 U-234	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Nuclide SF SF SF SF SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234m 8 Pa-234 9 U-234 10 Th-230	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Nuclide SF SF SF SF SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234m 8 Pa-234 9 U-234 10 Th-230 11 Ra-226	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Nuclide SF SF SF SF SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234m 8 Pa-234 9 U-234 10 Th-230	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Nuclide SF SF SF SF SF SF	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234m 8 Pa-234 9 U-234 10 Th-230 11 Ra-226 12 Rn-222 13 Po-218	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07	Nuclide SF SF SF SF SF U-234	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234m 8 Pa-234 9 U-234 10 Th-230 11 Ra-226 12 Rn-222 13 Po-218 14 Pb-214	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04	Nuclide SF SF SF SF U-234 At-218	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234 8 Pa-234 9 U-234 10 Th-230 11 Ra-226 12 Rn-222 13 Po-218 14 Pb-214 15 At-218	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.990E-01	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Nuclide SF SF SF SF U-234 At-218 Rn-218	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234m 8 Pa-234 9 U-234 10 Th-230 11 Ra-226 12 Rn-222 13 Po-218 14 Pb-214 15 At-218 16 Bi-214	Halflife 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 9.998E-01	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04	Nuclide SF SF SF SF U-234 At-218 Rn-218	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234m 8 Pa-234 9 U-234 10 Th-230 11 Ra-226 12 Rn-222 13 Po-218 14 Pb-214 15 At-218 16 Bi-214 17 Rn-218	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Nuclide SF SF SF SF U-234 At-218 Rn-218	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234m 8 Pa-234 9 U-234 10 Th-230 11 Ra-226 12 Rn-222 13 Po-218 14 Pb-214 15 At-218 16 Bi-214 17 Rn-218 18 Po-214	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s 1.643E-4s	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00 1.000E+00 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Pb-210	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Nuclide SF SF SF SF U-234 At-218 Rn-218	f3
Nuclide Nuclide f4 1 Fm-254 2 Cf-250 3 Cm-246 4 Pu-242 5 U-238 6 Th-234 7 Pa-234m 8 Pa-234 9 U-234 10 Th-230 11 Ra-226 12 Rn-222 13 Po-218 14 Pb-214 15 At-218 16 Bi-214 17 Rn-218	Halflife Nucl 3.240h 13.08y 4.76E+3y 3.75E+5y 4.468E+9y 24.10d 1.17m 6.70h 2.455E+5y 7.538E+4y 1600y 3.8235d 3.10m 26.8m 1.5s 19.9m 3.5E-2s	f1 ide 9.994E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.600E-03 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 9.998E-01 1.000E+00 9.998E-01 1.000E+00	Nuclide Cf-250 Cm-246 Pu-242 U-238 Th-234 Pa-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 Po-218 Pb-214 Bi-214 Bi-214 Po-214 Po-214 Pb-210	f2 5.920E-04 7.700E-04 2.630E-04 5.540E-06 5.450E-07 9.984E-01 2.000E-04 1.000E-03	Nuclide SF SF SF SF U-234 At-218 Rn-218	f3

21 22 23	Pb-210 Bi-210 Hg-206 Po-210 Tl-206	5.013d 8.15m 138.376d	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	Po-210 T1-206 Pb-206\$	1.900E-08 1.320E-06		
Fm-2	255				T	Daughter	
Proc	lucts				-	Jaagneer	
		Halflife	f1	Nuclide	f2	Nuclide	f3
	ide f4						
1	Fm-255	20.07h	1.000E+00		2.300E-07	SF	
2	Cf-251	900y	1.000E+00	Cm-247			
3	Cm-247	1.56E+7y	1.000E+00	Pu-243			
4	Pu-243	4.956h	1.000E+00	Am-243			
5	Am-243	7.37E+3y	1.000E+00	Np-239			
ט ד	Np-239	2.3565d	1.000E+00	Pu=239	6 0000 04	11 025	
0	Pu-239	2.411E+4y	9.994E-01 1.000E+00	U=235m	6.000E-04	0-235	
g	U-235m	26m 7.04E+8y 25.52h	1.000E+00	U-233 Th-231			
10	0200 Th-231	25 52h	1.000E+00	Pa-231			
11	Pa-231	3.276E+4y	1.000E+00	Ac-227			
	Ac-227	21.772v	9.862E-01	Th-227	1.380E-02	Fr-223	
		18.68d					
14	Fr-223	22.00m			6.000E-05	At-219	
15	Ra-223	11.43d	1.000E+00	Rn-219			
16	Rn-219 At-219	3 965	1.000E+00				
17	At-219	56s	9.700E-01	Bi-215			
		7.6m					
		1.781E-3s					
		36.1m			0 0 0 0 0 0 0 0 0		
		2.14m			2.760E-03	Po-211	
	T1-207	4.//m 0.516s	1.000E+00			•	
25	P0-211	0.5105	1.0005+00	FD-2075			
Fm-2	256						
]	Daughter	
Prod	lucts					2	
	Nuclide	Halflife	f1	Nuclide	£2	Nuclide	f3
Nuc	lide f4	4 Nucl:	ide				
	Fm-256	157.6m	8.100E-02	Cf-252	9.190E-01	SF	
	Cf-252		9.691E-01				
	Cm-248	3.48E+5y	9.161E-01	Pu-244	8.390E-02		
	Pu-244		9.988E-01		1.210E-03	SF	
	U-240		1.000E+00				
	Np-240m		1.100E-03		9.989E-01	Pu-240	
	Np-240		1.000E+00			0.7	
	Pu-240		1.000E+00		5.750E-08	SF	
		2.342E+7y					
	Th-232 Ra-228	1.405E10y	1.000E+00 1.000E+00				
	Ac-228	6.15h					
		0.1011	1.00001.00				

13 Th-228	1.9116y	1.000E+00	Ra-224		
14 Ra-224	3.66d	1.000E+00	Rn-220		
15 Rn-220	55.6s	1.000E+00	Po-216		
16 Po-216	0.145s	1.000E+00	Pb-212		
17 Pb-212	10.64h	1.000E+00	Bi-212		
18 Bi-212	60.55m	6.406E-01	Po-212	3.594E-01 T1-208	
19 Po-212	2.99E-7s	1.000E+00	Pb-208\$		
20 Tl-208	3.053m	1.000E+00	Pb-208\$		

Fm-257

						_	
Product	c]	Daughter	
		Halflife		Nuclide	fo	Nuclide	f3
		A Nucl		Nucride	12	Nucride	10
		100.5d		Cf_253	2 1000-03	C.F.	
		17.81d					
		20.47d			8.900E-08		
		64.15m			0.900E-00	51	
		330d			1 4500-05	3m - 245	
		351y			5.020E-09		
7 Am-	245	2.05h	1 0005+00	Cm = 245	3.0206-09	51	
		8.5E+3y			6 1000-00	S.F.	
		14.35y					
		432.2y			2.4006-00	0-257	
		6.75d					
		2.144E+6y					
		26.967d					
		1.592E+5y					
		7.34E+3y					
		14.9d					
10 Na 17 Ac-			1.000E+00				
		4.9m					
		3.23E-2s					
		45.59m			2.090E-02	TT1-209	
		4.2E-6s			2.000 02	11 200	
		2.161m					
23 Pb-		3.253h					
25 10	205	5.25511	1.00000100	DT 2099			

\$ stable nucleus.

Dose Equivalent Ra	ate (Sv/s) per l	Jnit Concentration (Bq/m3) - Water Immersion
Skin	Effective	
0.005.00		

00	ise Equivalent Ra	ate (SV/S) per	Unit Concentra	auon (BQ/II	is) - water li	mmersion			
Nuclide	Skin	Effective			•				
H-3	0.00E+00	0.00E+00							
Be-7	6.03E-18	4.81E-18							
Be-10	1.37E-17	1.55E-19							
C-10	2.68E-16	1.71E-16							
C-11	1.47E-16	9.90E-17							
C-14	2.55E-19	2.89E-21							
N-13	1.56E-16	9.91E-17							
N-16	8.19E-16	5.63E-16							
O-14	4.70E-16	3.52E-16							•
0-15	1.75E-16	9.95E-17							
O-19	2.49E-16	· 9.83E-17							
F-17	1.75E-16	9.95E-17							
F-18	1.33E-16	9.58E-17							
Ne-19	1.92E-16	9.98E-17							
Ne-24	1.22E-16	5.33E-17							
Na-22	2.78E-16	2.20E-16			,				
Na-24	5.59E-16	4.51E-16							
Mg-27	1.57E-16	8.98E-17							
Mg-28	1.74E-16	1.38E-16							
Al-26	3.61E-16	2.78E-16							
AI-28	3.14E-16	1.91E-16							
Al-29	2.41E-16	1.44E-16							
Si-31	4.03E-17	6.14E-19							
Si-32	1.05E- 18	1.14E-20							
P-30	2.30E-16	1.01E-16							
P-32	4.79E-17	6.45E-19							
P-33	1.45E-18	1.57E-20							
S-35	3.03E-19	3.40E-21							
S-37	4.34E-16	3.34E-16			•	,			
S-38	2.46E-16	1.83E-16							
Cl-34	2.81E-16	1.02E-16							
Cl-34m	2.97E-16	2.24E-16						•	
Cl-36	1.56E-17	1.94E-19							
CI-38	2.99E-16	1.58E-16							
Cl-39	2.37E-16	1.50E-16							
Cl-40	6.34E-16	4.53E-16							
Ar-37	0.00E+00	0.00E+00					•		
Ar-39	1.13E-17	1.28E-19	× .						
Ar-41	1.88E-16	1.33E-16							
Ar-42	1.24E-17	1.41E-19							
Ar-43	2.91E-16	1.62E-16							
Ar-44	2.77E-16	2.04E-16							
K-38	4.86E-16	3.36E-16	•						
К-40	5.45E-17	1.68E-17							
К-42	1.41E-16	3.11E-17							

K-43	1.35E-16	9.39E-17				
К-44	4.09E-16	2.57E-16				
K-45	3.01E-16	1.95E-16				
К-46	5.43E-16	3.17E-16				
Ca-41	0.00E+00	0.00E+00				
Ca-45	1.53E-18	1.66E-20				
Ca-47	1.51E-16	1.08E-16				
Ca-49	4.70E-16	3.61E-16				
Sc-42m	6.08E-16	4.28E-16				
Sc-43	1.46E-16	9.55E-17				
Sc-44	3.01E-16	2.14E-16				
Sc-44m	3.52E-17	2.66E-17		·		
Sc-46	2.49E-16	2.03E-16				
Sc-47	2.04E-17	1.03E-17				
Sc-48	4.22E-16	3.42E-16				
Sc-49	5.77E-17	9.20E-19				
Sc-50	5.18E-16	3.32E-16				
Ti-44	1.61E-17	1.10E-17				
Ti-45	1.29E-16	8.45E-17				
Ti-51	1.06E-16	3.66E-17				
Ti-52	6.69E-17	1.22E-17			3	
V-47	1.77E-16	9.72E-17				
V-48	3.66E-16	2.95E-16				
V-49	0.00E+00	0.00E+00				
V-50	1.77E-16	1.49E-16				
V-52	2.56E-16	1.52E-16				
V-53	1.99E-16	1.06E-16				
Cr-48	5.29E-17	4.12E-17				
Cr-49	1.68E-16	1.02E-16				
Cr-51	3.86E-18	3.05E-18				
Cr-55	7.98E-17	1.30E-18				
Cr-56	5.01E-17	7.36E-18				
Mn-50m		4.71E-16				
Mn-51	1.87E-16	9.76E-17				
Mn-52m		2.45E-16				-
Mn-52	4.27E-16	3.51E-16				
Mn-53	0.00E+00	0.00E+00				·
Mn-54	1.01E-16	8.30E-17				
Mn-56	2.68E-16	1.76E-16				
Mn-57	9.07E-17	1.07E-17				
Mn-58m		2.47E-16				
Fe-52	1.01E-16	7.13E-17				
Fe-53	2.23E-16	1.15E-16				
Fe-53m	3.76E-16	3.12E-16				
Fe-55	1.96E-26	1.49E-26				
Fe-59	1.50E-16	1.22E-16				
Fe-60	6.91E-19	7.59E-21				

~

. . .

Fe-61	2.50E-16	1.44E-16					
Fe-62	1.19E-16	4.98E-17					
Co-54m	6.38E-16	3.99E-16					
Co-55	2.72E-16	1.99E-16		•			
Co-56	4.60E-16	3.82E-16					
Co-57	1.48E-17	1.11E-17					
Co-58	1.20E-16	9.63E-17					
Co-58m	7.22E-22	1.43E-22					
Co-60	3.11E-16	2.58E-16					
Co-60m	6.34E-19	4.23E-19					
Co-61	4.11E-17	8.67E-18					
Co-62	3.22E-16	1.70E-16					
Co-62m	4.12E-16	2.81E-16					
Ni-56	2.09E-16	1.70E-16				×	
Ni-57	2.48E-16	1.99E-16					
Ni-59	1.88E-21	1.50E-21					
Ni-63	0.00E+00	0.00E+00					
Ni-65	1.12E-16	5.83E-17					÷
Ni-66	1:36E-18	1.48E-20					
Cu-57	4.27E-16	1.19E-16					
Cu-59	2.87E-16	1.44E-16					
Cu-60	5.48E-16	4.06E-16					
Cu-61	1.20E-16	8.02E-17					
Cu-62	2.16E-16	9.90E-17					
Cu-64	2.86E-17	1.80E-17				ب	
Cu-66	8.90E-17	1.11E-17					
Cu-67	1.94E-17	1.08E-17					
Cu-69	1.27E-16	5.41E-17		·			
Zn-60	2.67E-16	1.49E-16					
Zn-61	3.28E-16	1.55E-16					
Zn-62	5.42E-17	4.21E-17	•				
Zn-63	1.99E-16	1.08E-16					
Zn-65	7.09E-17	5.88E-17					
Zn-69m	5.18E-17	4.01E-17					
Zn-69	1.92E-17	2.28E-19				,	
Zn-71m	2.25E-16	1.53E-16					
Zn-71	1.14E-16	3.22E-17					
Zn-72	2.00E-17	1.37E-17					
Ga-64	5.49E-16	3.55E-16					
Ga-65	1.97E-16	1.13E-16					
Ga-66	3.86E-16	2.69E-16					
Ga-67	1.89E-17	1.45E-17					
Ga-68	1.67E-16	[•] 9.27E-17					
Ga-70	4.49E-17	1.32E-18					*
Ga-72	3.70E-16	2.83E-16					
Ga-73	7.07E-17	3.37E-17					
Ga-74	4.66E-16	3.35E-16					
				•			

Ge-66	8.63E-17	6.46E-17
Ge-67	2.59E-16	1.41E-16
Ge-68	1.36E-20	2.05E-22
Ge-69	1.23E-16	9.49E-17
Ge-71	1.38E-20	2.08E-22
Ge-75	3.10E-17	3.71E-18
Ge-77	1.76E-16	1.07E-16
Ge-78	4.58E-17	2.68E-17
As-68	6.09E-16	3.80E-16
As-69	2.28E-16	1.13E-16
As-70	5.85E-16	4.32E-16
As-71	7.60E-17	5.56E-17
As-72	2.92E-16	1.77E-16
As-73	6.39E-19	3.55E-19
As-74	1.08E-16	7.38E-17
As-76	1.28E-16	4.25E-17
As-77	1.29E-17	
As-78	2.53E-16	1.35E-16
As-79	6.62E-17	4.20E-18
Se-70	9.89E-17	6.83E-17
Se-71	2.98E-16	1.60E-16
Se-72	2.92E-18	1.41E-18
Se-73	1.57E-16	1.05E-16
Se-73m	4.18E-17	2.55E-17
Se-75	4.69E-17	3.64E-17
Se-77m	1.30E-17	8.13E-18
Se-79	2.99E-19	3.38E-21
Se-79m	1.57E-18	8.01E-19
Se-81	4.24E-17	1.33E-18
Se-81m	2.45E-18	1.23E-18
Se-83	3.52E-16	2.68E-16
Se-83m		
	2.14E-16	1.02E-16
Se-84	8.76E-17	4.09E-17
Br-72	5.81E-16	3.03E-16
Br-73	2.72E-16	1.41E-16
Br-74	6.59E-16	4.98E-16
Br-74m	6.10E-16	4.33E-16
Br-75	1.81E-16	1.16E-16
Br-76	3.94E-16	2.91E-16
Br-76m	4.20E-18	2.19E-18
Br-77	3.85E-17	3.05E-17
Br-77m	2.69E-18	1.32E-18
Br-78	1.99E-16	1.01E-16
Br-80	5.98E-17	8.09E-18
Br-80m	1.67E-18	5.56E-19
Br-82	3.28E-16	2.64E-16
-		
Br-82m	2.80E-18	3.19E-19

Br-83	2.04E-17	8.98E-19	
Br-84	3.13E-16	1.92E-16	
Br-84m	4.04E-16	2.83E-16	
Br-85	8.29E-17	7.81E-18	
Kr-74	1.68E-16	1.02E-16	
Kr-75	2.70E-16	1.26E-16	\cdot
Kr-76	5.11E-17	4.00E-17	
Kr-77	1.73E-16	1.00E-16	
Kr-79	3.14E-17	2.42E-17	
Kr-81	3.21E-19	8.39E-20	
Kr-81m	1.82E-17	1.22E-17	
Kr-83m	7.65E-20	2.57E-21	
Kr-85	1.41E-17	3.75E-19	
Kr-85m	3.37E-17	1.49E-17	
Kr-87	1.97E-16	8.51E-17	
Kr-88	2.69E-16	2.10E-16	
Kr-89	3.43E-16	2.06E-16	
Rb-77	3.14E-16	1.53E-16	
Rb-78	6.12E-16	4.41E-16	
Rb-78m	5.08E-16	3.28E-16	
Rb-79	2.31E-16	1.41E-16	
Rb-80	3.00E-16	1.19E-16	·
Rb-81	6.86E-17	4.89E-17	
Rb-81m	3.64E-18	4.83E-17 2.33E-18	
Rb-82	2.39E-16	1.09E-16	
Rb-82 Rb-82m	3.61E-16	2.91E-16	
Rb-83	5.89E-17	4.69E-17	
Rb-84			
Rb-84m	1.20E-16 5.02E-17	8.95E-17	
Rb-86	5.74E-17	3.66E-17	
		1.01E-17	
Rb-86m Rb-87	6.67E-17	5.30E-17	
	3.59E-18	3.90E-20	
Rb-88	2.39E-16	7.12E-17	
Rb-89	3.47E-16	2.36E-16	
Rb-90	4.19E-16	2.33E-16	
Rb-90m	5.13E-16	3.51E-16	
Sr-79	2.82E-16	1.16E-16	
Sr-80	5.46E-17	4.17E-17	
Sr-81	2.38E-16	1.35E-16	
Sr-82	3.23E-19	1.10E-20	
Sr-83 ·	1.08E-16	8.02E-17	
Sr-85	6.01E-17	4.77E-17	
Sr-85m	2.67E-17	2.07E-17	
Sr-87m	4.27E-17	3.07E-17	
Sr-89	3.95E-17	5.26E-19	
Sr-90	9.71E-18	1.09E-19	
Sr-91	1.31E-16	7.14E-17	

.

·							
Sr-92	1.75E-16	1.39E-16				1	
Sr-93	3.34E-16	2.31E-16					
Sr-94	2.36E-16	1.49E-16					
Y-81	2.87E-16	1.15E-16					
Y-83	2.59E-16	1.33E-16					
Y-83m	1.59E-16	8.15E-17					
Y-84m	5.75E-16	3.98E-16					
Y-85	1.64E-16	1.05E-16			2		
Y-85m	2.03E-16	1.34E-16					
Y-86	4.54E-16	3.64E-16					
Y-86m	2.75E-17	2.10E-17					
Y-87	5.34E-17	4.23E-17					
Y-87m	4.19E-17	2.94E-17					
Y-88	3.34E-16	2.82E-16					
Y-89m	1.10E-16	9.02E-17					
Y-90	6.65E-17	9.86E-19					
Y-90m	7.98E-17	6.10E-17					
Y-91	4.12E-17	8.61E-19					
Y-91m	6.57E-17	5.13E-17					
Y-92	1.39E-16	2.74E-17					
Y-93	9.74E-17	1.13E-17				`	
Y-94	2.32E-16	8.12E-17					
Y-95	2.47E-16	1.23E-16					
Zr-85	2.77E-16	1.45E-16	•				
Zr-86	3.48E-17	2.63E-17			•		
Zr-87	1.71E-16	9.10E-17					
Zr-88	4.74E-17	3.68E-17	,				
Zr-89	1.46E-16	1.15E-16					
Zr-89m	7.91E-17	6.24E-17					
Zr-93	6.75E-23	6.75E-25		•			
Zr-95	9.30E-17	7.23E-17					
Zr-97	1.57E-16	8.79E-17					
Nb-87	2.75E-16	1.19E-16					
Nb-88	6.18E-16	4.20E-16					
Nb-88m	6.11E-16	4.13E-16					
Nb-89	2.49E-16	1.40E-16					
Nb-89m	2.14E-16	1.40E 10 1.27E-16					
Nb-90	5.51E-16	4.44E-16					
Nb-91	7.11E-19	1.86E-19					
Nb-91m	4.20E-18	2.59E-18					
Nb-92	4.20E-18 1.82E-16	1.48E-16					
Nb-92m	1.32C-10 1.17E-16	9.63E-17					·
Nb-93m	1.01E-19	7.13E-21					
Nb-94							
	1.97E-16	1.55E-16					
Nb-94m	1.06E-18	4.67E-19 ,					
Nb-95 Nb-95m	9.30E-17 1.70E-17	7.56E-17 6.10E-18					

.

		-	
		2 1 45 1 5	2 455 46
	Nb-96	3.14E-16	2.45E-16
	Nb-97	1.11E-16	6.56E-17
	Nb-98m	3.98E-16	2.86E-16
	Nb-99	1.29E-16	1.72E-17
	Nb-99m	2.00E-16	8.26E-17
	Mo-89	2.98E-16	1.22E-16
	Mo-90	1.11E-16	7.98E-17
	Mo-91	2.26E-16	9.66E-17
	Mo-91m	2.10E-16	1.40E-16
	Mo-93	5.66E-19	3.99E-20
	Mo-93m	2.90E-16	2.36E-16
	Mo-99	4.25E-17	1.48E-17
	Mo-101	2.17E-16	1.51E-16
	Mo-102	2.37E-17	2.01E-18
	Tc-91	4.37E-16	2.60E-16
	Tc-91m	3.16E-16	1.42E-16
•	Tc-92	6.04E-16	3.88E-16
	Tc-93	1.96E-16	1.62E-16
	Tc-93m	1.26E-16	1.01E-16
	Tc-94	3.25E-16	2.63E-16
	Tc-94m	2.93E-16	1.97E-16
	Tc-95	9.60E-17	7.78E-17
	Tc-95m	8.33E-17	6.64E-17
	Tc-96	3.04E-16	2.48E-16
	Tc-96m	5.44E-18	4.21E-18
	Tc-97	6.30E-19	5.20E-20
	Tc-97m	8.98E-19	8.10E-20
	Tc-98	1.77E-16	1.39E-16
	Tc-99	2.88E-18	3.14E-20
	Tc-99m	1.56E-17	1.17E-17
	Tc-101	7.15E-17	3.28E-17
	Tc-102	1.58E-16	1.10E-17
	Tc-102m	3.61E-16	2.56E-16
	Tc-104	4.00E-16	2.37E-16
	Tc-105	1.89E-16	8.10E-17
	Ru-92	3.05E-16	2.05E-16
	Ru-94	6.24E-17	4.96E-17
	Ru-95	1.56E-16	1.23E-16
	Ru-97	2.88E-17	2.18E-17
	Ru-103	6.12E-17	4.80E-17
	Ru-105	1.17E-16	7.34E-17
	Ru-106	0.00E+00	0.00E+00
	Ru-107	1.20E-16	3.57E-17
	Ru-107	3.81E-17	6.10E-18
	Rh-94	6.92E-16	3.89E-16
	Rh-95	3.80E-16	2.62E-16
	Rh-95m	1.25E-16	9.31E-17

• • • • •

	E 225 46				
Rh-96	5.32E-16	3.93E-16			
Rh-96m	1.97E-16	1.30E-16	•		
Rh-97	2.12E-16	1.43E-16			
Rh-97m	2.88E-16	2.31E-16			
Rh-98	3.20E-16	1.80E-16			
Rh-99	6.81E-17	5.28E-17			
Rh-99m	8.02E-17	6.28E-17			
Rh-100	3.43E-16	2.85E-16			
Rh-100m	6.78E-18	4.43E-18			
Rh-101	3.46E-17	2.58E-17			
Rh-101m	3.46E-17	2.64E-17			
Rh-102	7.16E-17	4.86E-17			
Rh-102m	2.61E-16	2.11E-16			
Rh-103m	9.87E-20	1.32E-20			
Rh-104	7.19E-17	2.26E-18			
Rh-104m	4.18E-18	2.09E-18			
Rh-105	1.61E-17	7.49E-18			
Rh-106	1.30E-16	2.20E-17			
Rh-106m	3.69E-16	2.86E-16			
Rh-107	6.62E-17	3.05E-17			
Rh-108	1.76E-16	3.34E-17			
Rh-109	1.02E-16	2.95E-17			
Pd-96	1.89E-16	1.41E-16			
Pd-97	3.48E-16	2.43E-16			
Pd-98	5.04E-17	3.85E-17			
Pd-99	1.87E-16	1.28E-16			
Pd-100	1.30E-17	8.19E-18			
Pd-101	4.24E-17	3.22E-17			
Pd-103	9.18E-19	1.24E-19			
Pd-107	0.00E+00	0.00E+00			
Pd-109	2.34E-17	6.88E-19			
Pd-109m	1.62E-17	1.01E-17			
Pd-111	6.51E-17	5.62E-18	-		
Pd-112	1.85E-18	4.33E-20			
Pd-114	3.84E-17	2.89E-18			
Ag-99	3.80E-16	2.33E-16			
Ag-100m	4.92E-16	2.87E-16			
Ag-101	2.52E-16	1.56E-16			
Ag-102	4.80E-16	3.47E-16			
Ag-102m	2.77E-16	2.10E-16			
Ag-103	1.15E-16	8.23E-17			
Ag-104	3.35E-16	2.70E-16			
Ag-104m	2.75E-16	1.83E-16			
Ag-105	6.16E-17	4.81E-17			
Ag-105m	1.24E-19	9.63E-20	•		
Ag-106	1.19E-16	6.77E-17	·		

•

Ag-108	4.35E-17	2.32E-18					
Ag-108m	1.96E-16	1.57E-16					
Ag-109m	1.08E-18	3.56E-19					
Ag-110	8.99E-17	4.38E-18					
Ag-110m	3.40E-16	2.77E-16					
Ag-111	2.49E-17	2.80E-18					
Ag-111m	7.80E-19	3.71E-19					
Ag-112	1.86E-16	7.24E-17					
Ag-113	6.18E-17	7.75E-18					
Ag-113m	3.90E-17	2.07E-17					
Ag-114	1.94E-16	2.97E-17					
Ag-115	1.39E-16	5.12E-17					
Ag-116	4.01E-16	2.29E-16					
Ag-117	2.57E-16	1.40E-16					
Cd-101	3.82E-16	2.53E-16					
Cd-102	1.05E-16	8.10E-17	•				
Cd-103	2.83E-16	2.17E-16					
Cd-104	2.92E-17	2.21E-17					
Cd-105	1.75E-16	1.33E-16					
Cd-107	3.03E-18	1.09E-18		,			
Cd-109	2.11E-18	5.20E-19					
Cd-111m	3.73E-1 [,] 7	2.64E-17			•		
Cd-113	2.49E-18	2.72E-20					
Cd-113m	8.91E-18	1.06E-19					
Cd-115	4.22E-17	1.88E-17					
Cd-115m	4.50E-17	3.87E-18					
Cd-117	1.61E-16	1.10E-16					
Cd-117m	2.66E-16	2.14E-16					
Cd-118	7.19E-18	8.02E-20		•			
Cd-119	2.61E-16	1.72E-16		•	·		
Cd-119m	3.33E-16	2.41E-16					
In-103	4.55E-16	2.82E-16	,				
In-105	3.12E-16	1.94E-16					
In-106m	4.69E-16	2:92E-16					
In-106	5.12E-16	3.53E-16					
In-107	2.11E-16	1.56E-16					
In-108m	3.97E-16	2.92E-16				*	
In-108	4.89E-16	3.93E-16					
In-109m	7.64E-17	5.95E-17					
In-109	7.92E-17	6.23E-17		,			
In-110m	2.37E-16	1.57E-16					
In-110	3.76E-16	3.06E-16					
In-111m	6.12E-17	4.55E-17					
In-111	4.95E-17	3.70E-17					
In-112m	6.82E-18	2.15E-18				·	
In-112	4.72E-17	2.56E-17					
In-113m	3.95E-17	2.46E-17					

.

•.

.

. .

	In-114m	1.51E-17	7.07E-18			
	In-114	5.45E-17	9.87E-19			
	In-115m	2.94E-17	1.50E-17			
	In-115	6.56E-18	7.29E-20			
	In-116m	3.23E-16	2.55E-16			
•	ln-117m	3.94E-17	8.63E-18			
	In-117	9.81E-17	6.69E-17			
	In-118m	3.86E-16	2.83E-16			
× .	In-118	1.53E-16	1.08E-17			
	In-119m	8.11E-17	7.63E-18			
	In-119	1.33E-16	7.63E-17			
	In-121m	1.20E-16	7.29E-18			
•	In-121	1.83E-16	9.37E-17			
	Sn-106	1.53E-16	1.17E-16			
	Sn-108	8.27E-17	6.45E-17			
	Sn-109	2.76E-16	2.28E-16			
	Sn-110	3.50E-17	2.65E-17			
	Sn-111	7.20E-17	4.79E-17			
	Sn-113m	1.02E-18	2.38E-19			
	Sn-113	1.97E-18	7.73E-19			
	Sn-117m	2.29E-17	1.35E-17			
	Sn-119m	1.06E-18	2.17E-19			
	Sn-121m	1.36E-18	1.12E-19			
	Sn-121	3.98E-18	4.36E-20			
	Sn-123m	4.72E-17	4.30E 20 1.34E-17			
	Sn-123	3.55E-17	1.15E-18			
	Sn-125					
		9.86E-17	3.42E-17	١		
	Sn-125	9.78E-17	3.49E-17			
	Sn-126	8.08E-18	4.09E-18			
	Sn-127m	1.50E-16	5.72E-17			•
	Sn-127	2.69E-16	1.95E-16			
	Sn-128	8.07E-17	5.49E-17			
	Sn-129	2.15E-16	1.02E-16			
	Sn-130m	2.10E-16	8.99E-17			
	Sn-130	1.40E-16	9.04E-17			
•	Sb-111	2.81E-16	1.46E-16			
	Sb-113	2.05E-16	1.24E-16			`
	Sb-114	4.20E-16	2.74E-16			
	Sb-115	1.23E-16	8.55E-17			
	Sb-116	3.17E-16	2.33E-16			
	Sb-116m	3.84E-16	3.11E-16			
	Sb-117	2.24E-17	1.59E-17			
	Sb-117 Sb-118	1.61E-16	7.86E-17			
	Sb-118 Sb-118m	3.19E-16				
	Sb-118m Sb-119	3.19E-16 1.68E-18	2.61E-16 3.55E-19			
		I DAF-IX	1 224-14			
	Sb-119 Sb-120 Sb-120m	7.53E-17 3.01E-16	4.32E-17 2.46E-16			

. .

Sb-122	9.17E-17	4.39E-17					
Sb-122m	7.17E-18	4.04E-18					
Sb-124	2.53E-16	1.90E-16					
Sb-124m	6.01E-17	4.30E-17				,	
Sb-124n	6.04E-23	1.32E-23					
Sb-125	5.53E-17	4.12E-17					
Sb-126	3.56E-16	2.71E-16					
Sb-126m	2.31E-16	1.52E-16					
Sb-127	1.03E-16	6.80E-17					
Sb-128	4.08E-16	3.05E-16					
Sb-128m	3.00E-16	1.89E-16					
Sb-129	2.04E-16	1.48E-16					
Sb-130	4.51E-16	3.26E-16					
Sb-130m	4.03E-16	2.72E-16					
Sb-131	2.95E-16	2.13E-16					
Sb-133	3.87E-16	2.87E-16					
Te-113	4.02E-16	2.27E-16					
Te-114		1.28E-16					
	1.64E-16						
Te-115	3.34E-16	2.26E-16					
Te-115m	3.70E-16	2.65E-16					
Te-116	1.23E-17	8.08E-18					
Te-117	2.05E-16	1.57E-16					
Te-118	1.49E-18	3.56E-19					
Te-119	9.29E-17	7.44E-17					
Te-119m	1.84E-16	1.51E-16					
Te-121	6.91E-17	5.45E-17					
Te-121m	2.65E-17	1.98E-17					
Te-123	2.59E-21	6.19E-22					
Te-123m	1.81E-17	1.28E-17					
Te-125m	3.60E-18	7.78E-19	•				
Te-127	1.25E-17	6.02E-19					
Te-127m	1.38E-18	2.55E-19					
Te-129	4.18E-17	6.13E-18					
Te-129m	1.89E-17	3.26E-18					
Te-131	9.90E-17	4.14E-17					
Te-131m	1.85E-16	1.45E-16					
Te-132	2.94E-17	2.05E-17					
Te-133	1.95E-16	1.23E-16					
Te-133m	2.51E-16	1.87E-16					
Te-134	1.15E-16	8.42E-17					
I-118	3.96E-16	2.02E-16					
I-118m	5.37E-16	3.71E-16					
I-119	1.46E-16	8.79E-17					
I-120	4.17E-16	2.76E-16					
I-120m	4.97E-16	3.53E-16					
I-121	5.12E-17	3.70E-17					
I-122	1.98E-16	9.45E-17					

							· .	
I-123	2.05E-17	1.45E-17						
I-124	1.49E-16	1.11E-16						
I-125	3.32E-18	8.88E-19						
I-126	6.17E-17	4.17E-17		•				
I-128	6.04E-17	7.16E-18						
I-129	2.35E-18	6.68E-19						
I-130	2.75E-16	2.10E-16			`			
I-130m	2.37E-17	1.05E-17						•
I-131	5.55E-17	3.69E-17	•			•		
I-132	3.08E-16	2.26E-16						
I-132m	4.57E-17	3.26E-17						
I-133	1.00E-16	6.02E-17						
I-134	3.55E-16	2.61E-16						
I-134m	3.82E-17	2.60E-17						
I-135	2.16E-16	1.64E-16						
Xe-120	4.74E-17	3.60E-17						
Xe-121	2.22E-16	1.50E-16						
Xe-122	7.37E-18	4.81E-18						
Xe-123	8.85E-17	6.20E-17						
Xe-125	3.25E-17	2.37E-17						
Xe-125	3.39E-17	2.48E-17						
Xe-127m	2.33E-17	1.45E-17						
Xe-129m	1.12E-17	2.01E-18						
Xe-125m Xe-131m	6.17E-18	7.64E-19						
Xe-131	8.01E-18	3.06E-18					·	
Xe-133	1.32E-17	2.75E-18						
×e-135	4.89E-17	2.39E-17						
Xe-135	4.89E-17 5.78E-17	4.09E-17						
Xe-137	1.51E-16	4.09E-17 2.12E-17						
Xe-137								
	1.84E-16	1.18E-16						
Cs-121	2.73E-16	1.16E-16		-	,			
Cs-121m	2.43E-16	1.16E-16						
Cs-123	1.99E-16	1.06E-16						
Cs-124	2.94E-16	1.16E-16						
Cs-125	1.15E-16	7.31E-17						
Cs-126	2.39E-16	1.14E-16						
Cs-127	5.26E-17	4.01E-17						
Cs-128	1.72E-16	8.71E-17						
Cs-129	3.29E-17	2.46E-17						
Cs-130	8.74E-17	4.83E-17						
Cs-130m	7.67E-18	4.53E-18						
Cs-131	1.86E-18	5.63E-19						
Cs-132	8.62E-17	6.85E-17						
Cs-134	1.97E-16	1.53E-16						
Cs-134m	4.55E-18	1.77E-18						
Cs-135	2.18E-18	2.37E-20						
Cs-135m	1.96E-16	1.59E-16						

Cs-136	2.65E-16	2.13E-16					
Cs-137	9.22E-18	1.05E-19					
Cs-138	3.84E-16	2.48E-16					
Cs-138m	7.00E-17	4.14E-17					
Cs-139	1.63E-16	3.45E-17					
Cs-140	3.70E-16	1.91E-16					
Ba-124	7.92E-17	5.46E-17					
Ba-126	7.02E-17	5.57E-17					
Ba-127	1.29E-16	7.08E-17					
Ba-128	7.22E-18	4.67E-18					
Ba-129	4.76E-17	3.13E-17					
Ba-129m	1.94E-16	1.56E-16					
Ba-131	5.73E-17	4.36E-17					
Ba-131m	8.83E-18	5.93E-18					
Ba-133	4.77E-17	3.56E-17					
Ba-133m	1.86E-17	5.36E-18					
Ba-135m	1.72E-17	4.65E-18					
Ba-137m	7.65E-17	5.83E-17					
Ba-139	6.91E-17	5.17E-18					
Ba-140	3.84E-17	1.74E-17					
Ba-141	1.81E-16	9.32E-17					
Ba-142	1.53E-16	1.05E-16					
La-128	4.44E-16	2.82E-16	-				
v La-129	1.54E-16	8.90E-17					
La-130	3.55E-16	2.23E-16					
La-131	9.13E-17	6.26E-17					
La-132	2.86E-16	2.02E-16					
La-132m	8.46E-17	6.42E-17					
La-133	2.06E-17	1.39E-17					
La-134	1.42E-16	7.02E-17					
La-135	3.41E-18	1.73E-18				,	
La-136	6.90E-17	3.86E-17					
La-137	2.09E-18	7.20E-19					
La-138	1.52E-16	1.26E-16		¢ .			
La-140	3.21E-16	2.39E-16					
La-141	7.41E-17	3.86E-18					
La-142	3.61E-16	2.56E-16					
La-143	1.28E-16	2.91E-17					
Ce-130	6.17E-17	4.66E-17					
Ce-131	2.40E-16	1.61E-16		•			
Ce-132	3.24E-17	2.40E-17					
· Ce-133	8.67E-17	4.96E-17					
Ce-133m	2.15E-16	1.73E-16			•		
Ce-134	2.46E-18	9.72E-19					
Ce-135	9.99E-17	7.85E-17					
Ce-137	3.65E-18	1.90E-18					
Ce-137m	1.62E-17	4.18E-18		I			
							ļ

.

	Ce-139	1.92E-17	1.32E-17					
	Ce-141	1.56E-17	6.87E-18					
	Ce-143	5.92E-17	2.58E-17					
	Ce-144	4.28E-18	1.61E-18					
	Ce-145	1.42E-16	7.87E-17					
	Pr-134	4.63E-16	3.12E-16					
	Pr-134m	3.99E-16	2.34E-16					•'
	Pr-135	1.45E-16	8.42E-17					
,	Pr-136	3.18E-16	2.15E-16					
	Pr-137	5.73E-17	3.50E-17					
	Pr-138	1.85E-16	8.02E-17					
	Pr-138m	3.15E-16	2.45E-16					
	Pr-139	1.76E-17	1.11E-17					
	Pr-140	1.05E-16	5.27E-17		x			
	Pr-142	6.42E-17	6.94E-18	_				
	Pr-142m	0.00E+00	0.00E+00	ю				
	Pr-143	1.87E-17	2.22E-19					
	Pr-144	9.20E-17	4.45E-18					
	Pr-144m	1.22E-18	5.76E-19					
	Pr-145	4.87E-17	2.46E-18					
	Pr-146	2.23E-16	1.06E-16					
	Pr-147	1.17E-16	4.69E-17					
	Pr-148	2.47E-16	1.03E-16					
	Pr-148m	2.40E-16	9.36E-17					
	Nd-134	7.54E-17	5.06E-17				,	
	Nd-135	2.25E-16	1.22E-16	ı				
	Nd-136	3.37E-17	2.41E-17					
	Nd-137	1.64E-16	1.16E-16					
	Nd-138	4.41E-18	2.44E-18					
	Nd-139	6.73E-17	4.22E-17					
	Nd-139m	1.94E-16	1.56E-16					
	Nd-140	2.55E-18	1.04E-18					
	Nd-141	8.96E-18	5.79E-18					
	Nd-141m	8.84E-17	6.85E-17					
`	Nd-144	0.00E+00	0.00E+00			,		
	Nd-147	2.92E-17	1.25E-17					
	Nd-149	7.53E-17	3.53E-17					
	Nd-151	1.45E-16	8.49E-17	;				
	Nd-152	3.90E-17	1.57E-17					
	Pm-136	4.95E-16	2.69E-16					
	Pm-137m	2.94E-16	1.74E-16					
	Pm-139	1.91E-16	9.24E-17					
	Pm-140	2.85E-16	1.05E-16					
	Pm-140m	4.41E-16	3.01E-16					
	Pm-141	1.33E-16	7.24E-17					
	Pm-142	2.02E-16	8.48E-17					
	Pm-143	3.74E-17	2.93E-17					

•

Pm-144	1.89E-16	1.51E-16					
Pm-145	2.88E-18	1.28E-18					
Pm-146	9.54E-17	7.23E-17					
Pm-147	8.51E-19	9.64E-21					
Pm-148	1.21E-16	5.93E-17					
Pm-148m	2.49E-16	1.95E-16		1			
Pm-149	2.39E-17	1.41E-18				•	
Pm-150	2.38E-16	1.50E-16					
Pm-151	5.58E-17	3.12E-17					
Pm-152	1.32E-16	3.04E-17					
Pm-152m	2.46E-16	1.53E-16					
Pm-153	5.45E-17	7.02E-18					
Pm-154	2.81E-16	1.88E-16					
Pm-154m	2.84E-16	1.84E-16					
Sm-139	2.57E-16	1.44E-16					
Sm-140	7.93E-17	5.49E-17					
Sm-141	2.24E-16	1.40E-16					
Sm-141m	2.64E-16	1.93E-16					
Sm-142	1.50E-17	9.11E-18					
Sm-143	9.93E-17	5.11E-17					
Sm-143m	8.78E-17	6.75E-17					
Sm-145	6.06E-18	2.86E-18					
Sm-146	0.00E+00	0.00E+00					
Sm-147	0.00E+00	0.00E+00					
Sm-148	0.00E+00	0.00E+00	·				
Sm-151	4.64E-22	6.20E-23					
Sm-153 [′]	1.89E-17	4.65E-18					
Sm-155	4.91E-17	9.44E-18					
Sm-156	2.24E-17	1.04E-17					
Sm-157	1.11E-16	4.09E-17			•		
Eu-142	3.64E-16	1.23E-16					
Eu-142m	5.50E-16	3.42E-16					
Eu-143	2.40E-16	1.13E-16					
Eu-144	2.93E-16	1.11E-16					
Eu-145	1.58E-16	1.29E-16					
Eu-146	2.95E-16	2.40E-16		·			
Eu-147	5.69E-17	4.42E-17					÷
Eu-148	2.71E-16	2.19E-16					
Eu-149	7.11E-18	4.53E-18					
Eu-150	1.89E-16	1.51E-16					
Eu-150m	2.49E-17	4.88E-18					
Eu-152	1.49E-16	1.17E-16					
Eu-152m	7.00E-17	2.94E-17					
Eu-152n	8.53E-18	5.92E-18					
Eu-154	1.65E-16	1.25E-16					
Eu-154m	7.55E-18	4.87E-18					
Eu-155	7.41E-18	4.87E-18					

•

Eu-156 1.81E-16 1.28E-16 Eu-157 5.76E-17 2.67E-17 Eu-159 9.60E-17 2.83E-16 Eu-159 9.60E-17 2.83E-17 Gd-143 3.50E-16 2.11E-16 Gd-144 1.54E-16 9.19E-17 Gd-145 3.27E-16 2.55E-16 Gd-146 2.93E-17 1.95E-17 Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-13 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-152 0.07E+10 0.00E+10 Gd-152 6.97E-17 4.02E-16 Tb-144 3.52E-16 2.20E-16 Tb-144 3.52E-16 3.07E-16 Tb-145 3.09E-15 1.97E-16 Tb-146 3.09E-16 1.34E-16 Tb-147 1.38E-18 6.99E-13 Gb-151 1.34E-16 1.34E-16 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
Eu-157 5.76E-17 2.67E-17 Eu-158 2.19E-16 1.32E-16 Eu-159 9.60E-17 2.83E-17 Gd-142 1.81E-16 1.03E-16 Gd-143 3.50E-16 2.11E-16 Gd-144 1.54E-16 9.19E-17 Gd-145 3.27E-16 2.55E-16 Gd-146 2.93E-17 1.95E-17 Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E-00 0.00E+00 Gd-148 0.00E-00 0.00E+00 Gd-150 0.00E+00 0.00E+00 Gd-151 1.88E 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-152 0.00E+00 0.00E+00 Gd-152 0.00E+00 0.00E+00 Gd-152 0.00E+00 0.00E+01 Gd-152 0.00E+00 0.00E+01 Gd-152 0.00E+00 0.00E+01 Tb-144 5.26E-16 3.07E-16 Tb-147 2.85E-16 3.09E-16 Tb-148 3.02E-16 3.09E-16	Eu-156	1.81E-16	1.28E-16			,		
Eu-158 2.19E-16 1.32E-16 Eu-159 9.60E-17 2.38E-17 Gd-142 1.81E-16 1.03E-16 Gd-143m 3.50E-16 2.11E-16 Gd-144 1.54E-16 3.27E-16 Gd-145 3.27E-16 2.55E-16 Gd-146 2.93E-17 1.95E-17 Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.34E-17 7.05E-18 Gd-154 0.00E+00 0.00E+00 Gd-152 0.00E+00 0.00E+01 Gd-152 0.00E+00 0.00E+01 Gd-152 0.00E+00 1.37E-16 Tb-146 5.00E-16 3.77E-16 Tb-147 2.86E-16 2.70E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-150 3.24E-16 3.4E-16 Tb-151 1.22	Eu-157	5.76E-17		•				
Eu-159 9.60E-17 2.83E-17 Gd-142 1.81E-16 1.03E-16 Gd-143 3.50E-16 2.11E-16 Gd-144 1.54E-16 9.19E-17 Gd-145 3.27E-16 2.55E-16 Gd-146 2.93E-17 1.95E-17 Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E+00 0.00E+00 Gd-150 0.00E+00 0.00E+00 Gd-151 0.89E-17 4.89E-17 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.95E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-162 6.97E-17 4.02E-17 Tb-146 5.00E-16 3.77E-16 Tb-147 2.59E-16 1.97E-16 Tb-148 3.52E-16 2.07E-16 Tb-148 3.52E-16 2.07E-16 Tb-148 3.26E-16 2.46E-16 Tb-150 3.24E-16 2.46E-16 Tb-151 1.22	Eu-158							,
Gd-142 1.81E-16 1.03E-16 Gd-143m 3.50E-16 2.31E-16 Gd-145 3.27E-16 2.35E-17 Gd-145 3.27E-16 2.35E-17 Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.84E-17 7.05E-18 Gd-154 0.00E+00 0.00E+00 Gd-155 2.00E+10 0.00E+00 Gd-154 1.44E-17 7.05E-18 Gd-159 2.42E-17 4.02E-17 Tb-146 5.60E+16 3.77E-16 Tb-147 2.86E-16 2.37E-16 Tb-148 3.52E-16 1.97E-16 Tb-148 3.52E-16 1.97E-16 Tb-148 3.52E-16 3.0FE-16 Tb-150 3.24E-16 2.44E-16 Tb-151 1.22E-16 9.47E-17 Tb-152 3.98E-17 2.44E-16 Tb-153 3.9								
Gd-143m 3.50E-16 2.11E-16 Gd-144 1.54E-16 9.19E-17 Gd-145 3.27E-16 2.55E-16 Gd-146 2.93E-17 1.95E-17 Gd-146 2.93E-17 1.95E-17 Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-154 5.00E-16 3.77E-16 Tb-147 2.85E-16 2.20E-16 Tb-147 2.85E-16 2.20E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 3.09E-16 Tb-148 3.52E-16 2.44E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-153 9.3								
Gd-144 1.54E-16 9.19E-17 Gd-145 3.27E-16 2.55E-16 Gd-145 9.44E-17 6.67E-17 Gd-146 2.93E-17 1.95E-17 Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E+00 0.00E+00 Gd-150 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-154 0.00E+00 0.00E+100 Gd-153 1.14E-17 7.05E-18 Gd-154 2.00E+16 1.77E-16 Tb-144 5.60E-16 3.77E-16 Tb-144 3.52E-16 2.40E-17 Tb-144 3.52E-16 2.40E-16 Tb-147 2.56E-16 3.97E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-149 1.71E-16 1.36E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-152 2.0E-17 7.16E-17 <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		· ·						
Gd-145 3.27E-16 2.55E-16 Gd-145m 9.44E-17 6.67E-17 Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E+00 0.00E+00 Gd-149 6.51E-17 4.89E-17 Gd-150 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.84E-17 7.05E-18 Gd-154 6.97E-17 4.99E-18 Gd-162 6.97E-17 4.92E-17 Tb-144 5.60E-16 3.77E-16 Tb-144 5.60E-16 3.77E-16 Tb-147 2.86E-16 2.20E-16 Tb-148 4.02E-16 3.09E-16 Tb-147 2.86E-16 2.20E-16 Tb-148 4.02E-16 3.09E-16 Tb-148 1.32E-16 2.44E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>						•		
Gd-145m 9.44E-17 6.67E-17 Gd-146 2.93E-17 1.95E-17 Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E+00 0.00E+00 Gd-149 6.51E-17 4.89E-17 Gd-150 0.00E+00 0.00E+00 Gd-151 1.34E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-162 6.97E-17 4.02E-17 Tb-145 5.60E-16 3.77E-16 Tb-147 2.86E-16 2.20E-16 Tb-147 2.86E-16 3.09E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-150 3.24E-16 2.34E-16 Tb-151 1.22E-16 9.47E-17 Tb-152 3.91E-18 6.99E-18 Tb-153 3.93E-17 2.97E-17 Tb-154 2.87E-16 2.44E-16 Tb-155 3.91E-18 6.99E-18 Tb-155 2.66E-17 1.40E-17 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Gd-146 2.93E-17 1.95E-17 Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E+00 0.00E+00 Gd-150 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-152 0.24E-17 4.95E-18 Gd-153 1.34E-17 7.05E-18 Gd-152 0.24E-17 4.95E-18 Gd-162 6.97E-17 4.02E-17 Tb-1446 5.00E-16 3.77E-16 Tb-1447 2.86E-16 2.20E-16 Tb-147 2.86E-16 2.09E-16 Tb-148 3.52E-16 2.09E-16 Tb-148 3.52E-16 2.09E-16 Tb-1484 4.02E-16 3.09E-16 Tb-1484 3.02E-16 2.44E-16 Tb-150 3.24E-16 2.44E-16 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-154 2.37E-16 2.09E-1								
Gd-147 1.73E-16 1.37E-16 Gd-148 0.00E+00 0.00E+00 Gd-149 6.51E-17 4.89E-17 Gd-150 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-154 6.97E-17 4.02E-17 Tb-146 5.60E-16 3.77E-16 Tb-147 2.59E-16 1.97E-16 Tb-147 2.59E-16 1.97E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 4.02E-16 3.09E-16 Tb-148 4.02E-16 3.09E-16 Tb-148 4.02E-16 3.09E-16 Tb-148 4.02E-16 3.09E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-153 3.93E-17 2.97E-17 Tb-154 2.87E-16 2.44E-16 Tb-155 2.06E-17 7.16E-17 Tb-154 2.37E-16 1.93E-16 Tb-155 3.93E-17 2.97E-17 <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>						•		
Gd-148 0.00E+00 0.00E+00 Gd-150 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-154 1.41E-17 7.05E-18 Gd-155 2.42E-17 4.95E-18 Gd-156 6.97E-17 4.02E-17 Tb-146 5.60E-16 3.77E-16 Tb-147 2.86E-16 2.20E-17 Tb-148 3.52E-16 2.97E-16 Tb-147 2.86E-16 2.00E-16 Tb-148 3.52E-16 2.90E-16 Tb-147 2.86E-16 3.09E-16 Tb-148 3.52E-16 2.40E-16 Tb-149 1.71E-16 1.36E-16 Tb-149 3.22E-16 2.44E-16 Tb-150 3.24E-16 2.44E-16 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-154 2.37E-16 2.40E-16 Tb-155 2.37								
Gd-149 6.51E-17 4.89E-17 Gd-150 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-159 2.42E-17 4.95E-18 Gd-162 6.97E-17 4.02E-17 Tb-145 5.06E-16 3.77E-16 Tb-146 5.06E-16 3.77E-16 Tb-147 2.86E-16 2.20E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-149 1.71E-16 1.36E-16 Tb-149 1.71E-16 1.36E-16 Tb-149 3.12E-16 2.54E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-153 3.39E-16 2.44E-16 Tb-154 2.87E-16 2.40E-16 Tb-155 2.06E-17 7.16E-17 Tb-156 3.37E-16 1.93E-16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Gd-150 0.00E+00 0.00E+00 Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-154 6.97E-17 4.02E-17 Tb-146 5.60E-16 3.77E-16 Tb-147 2.85E-16 2.20E-16 Tb-147 2.85E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-149 1.71E-16 1.36E-16 Tb-149 1.71E-16 1.36E-16 Tb-149 1.71E-16 1.36E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-152 3.93E-17 7.16E-17 Tb-153 3.93E-16 2.40E-16 Tb-154 2.87E-16 2.40E-16 Tb-155 2.06E-17 1.40E-17 Tb-156 3.37E-16 1.93E-16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Gd-151 7.88E-18 4.81E-18 Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-152 6.97E-17 4.95E-18 Gd-162 6.97E-17 4.02E-17 Tb-146 5.60E-16 3.77E-16 Tb-147 2.86E-16 2.20E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 4.02E-16 3.09E-16 Tb-149 1.71E-16 1.36E-16 Tb-149 1.71E-16 1.36E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-153 3.93E-17 2.97E-17 Tb-154 2.87E-16 2.49E-18 Tb-155 2.06E-17 7.16E-17 Tb-156 3.37E-16 2.93E-19 Tb-156 3.81E-18 2.13E-18 Tb-156 3.81E-18 2.13E-18 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Gd-152 0.00E+00 0.00E+00 Gd-153 1.14E-17 7.05E-18 Gd-159 2.42E-17 4.95E-18 Gd-162 6.97E-17 4.02E-17 Tb-146 5.05C-16 3.77E-16 Tb-147 2.86E-16 2.20E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-149 1.71E-16 1.36E-16 Tb-149 1.71E-16 1.36E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-153 3.93E-17 2.97E-17 Tb-154 2.87E-16 2.40E-16 Tb-155 2.06E-17 7.16E-17 Tb-154 2.87E-16 2.40E-16 Tb-155 2.05E-17 1.40E-17 Tb-156 2.37E-16 1.93E-16 Tb-156 3.81E-18 2.13E-18 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Gd-153 1.14E-17 7.05E-18 Gd-159 2.42E-17 4.95E-18 Gd-162 6.97E-17 4.02E-17 Tb-146 5.60E-16 2.20E-16 Tb-147 2.86E-16 2.20E-16 Tb-148 3.52E-16 2.20E-16 Tb-148 3.52E-16 2.40E-16 Tb-149 1.71E-16 1.36E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-153 3.93E-17 2.97E-17 Tb-154 2.87E-16 2.40E-16 Tb-155 2.06E-17 1.40E-17 Tb-155 2.05E-19 2.25E-19 Tb-156 3.81E-18 2.13E-18 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Gd-159 2.42E-17 4.95E-18 Gd-162 6.97E-17 4.02E-17 Tb-146 5.60E-16 3.77E-16 Tb-147 2.86E-16 2.20E-16 Tb-147 2.85E-16 2.97E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 3.52E-16 2.40E-16 Tb-149 1.71E-16 1.36E-16 Tb-149 1.71E-16 1.36E-16 Tb-149 1.32E-16 2.44E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-153 3.93E-17 2.97E-17 Tb-154 2.87E-16 2.40E-16 Tb-155 2.06E-17 7.16E-17 Tb-155 2.06E-17 1.40E-17 Tb-154 2.87E-16 2.40E-16 Tb-155 2.06E-17 1.40E-17 Tb-156 2.37E-16 1.40E-17 Tb-156 3.81E-18 2.13E-18 Tb-156 3.81E-18 2.13E-18 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Gd-162 6.97E-17 4.02E-17 Tb-146 5.60E-16 3.77E-16 Tb-147 2.85E-16 2.20E-16 Tb-147 2.59E-16 1.97E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 4.02E-16 3.09E-16 Tb-148 4.02E-16 3.09E-16 Tb-149 1.71E-16 1.36E-16 Tb-149 1.71E-16 1.34E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-151 9.31E-18 6.99E-18 Tb-152 2.01E-16 1.51E-16 Tb-153 3.93E-17 2.97E-17 Tb-154 2.87E-16 2.40E-16 Tb-155 2.06E-17 7.16E-17 Tb-156 2.37E-16 1.93E-16 Tb-156 2.37E-16 1.93E-16 Tb-157 2.05E-19 2.25E-19 Tb-158 9.98E-17 7.84E-17 Tb-160 1.48E-16 1.13E-16 Tb-157 4.55E-19 2.25E-19 Tb-158 9.98E-17 7.84E-17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Tb-146 5.60E-16 3.77E-16 Tb-147 2.86E-16 2.20E-16 Tb-147m 2.59E-16 1.97E-16 Tb-148 3.52E-16 2.40E-16 Tb-148 4.02E-16 3.09E-16 Tb-148 4.02E-16 3.09E-16 Tb-149 1.71E-16 1.36E-16 Tb-149m 1.80E-16 1.34E-16 Tb-150 3.24E-16 2.54E-16 Tb-151 1.22E-16 9.47E-17 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-153 3.93E-17 2.97E-17 Tb-154 2.87E-16 2.40E-16 Tb-155 2.06E-17 1.40E-17 Tb-156 2.37E-16 1.93E-16 Tb-156 3.81E-18 2.13E-18 Tb-156 3.95E-19 2.28E-19 Tb-157 4.55E-19 2.28E-19 Tb-161 1.02E-17 2.01E-18 Tb-162 1.67E-16 1.09E-16<						\$,	
Tb-1472.86E-162.20E-16Tb-147m2.59E-161.97E-16Tb-1483.52E-162.40E-16Tb-148m4.02E-163.09E-16Tb-1491.71E-161.36E-16Tb-149m1.80E-161.34E-16Tb-1503.24E-162.54E-16Tb-150m3.12E-162.44E-16Tb-151m9.31E-186.99E-18Tb-1522.01E-161.51E-16Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-177.16E-17Tb-1562.37E-161.93E-16Tb-1562.37E-161.93E-16Tb-1563.81E-182.13E-18Tb-1563.81E-182.13E-18Tb-1574.55E-192.25E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1631.65E-168.67E-17								
Tb-147m 2.59E-16 1.97É-16 Tb-148 3.52E-16 2.40E-16 Tb-148m 4.02E-16 3.09E-16 Tb-149m 1.71E-16 1.36E-16 Tb-149m 1.80E-16 1.34E-16 Tb-150m 3.24E-16 2.54E-16 Tb-151m 1.22E-16 9.47E-17 Tb-151 1.22E-16 9.47E-17 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-152 2.01E-16 1.51E-16 Tb-153 3.93E-17 2.97E-17 Tb-154 2.87E-16 2.40E-16 Tb-155 2.06E-17 1.40E-17 Tb-156 2.37E-16 1.93E-16 Tb-157 4.55E-19 2.28E-19 Tb-158 9.98E-17 7.84E-17 Tb-160 1.48E-16 1.13E								
Tb-1483.52E-162.40E-16Tb-148m4.02E-163.09E-16Tb-1491.71E-161.36E-16Tb-149m1.80E-161.34E-16Tb-1503.24E-162.54E-16Tb-150m3.12E-162.44E-16Tb-1511.22E-169.47E-17Tb-151m9.31E-186.99E-18Tb-1522.01E-161.51E-16Tb-153m9.60E-177.16E-17Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1563.37E-161.93E-16Tb-156m3.81E-182.13E-18Tb-156m3.81E-182.13E-18Tb-1574.55E-192.25E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1631.65E-168.67E-17			,					
Tb-148m4.02E-163.09E-16Tb-1491.71E-161.36E-16Tb-149m1.80E-161.34E-16Tb-1503.24E-162.54E-16Tb-150m3.12E-162.44E-16Tb-1511.22E-169.47E-17Tb-151m9.31E-186.99E-18Tb-1522.01E-161.51E-16Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-18Tb-1563.98E-192.25E-19Tb-1574.55E-192.25E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1563.93E-177.84E-17Tb-1561.35E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-1491.71E-161.36E-16Tb-149m1.80E-161.34E-16Tb-1503.24E-162.54E-16Tb-150m3.12E-162.44E-16Tb-1511.22E-169.47E-17Tb-1519.31E-186.99E-18Tb-1522.01E-161.51E-16Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-1573.81E-182.13E-18Tb-1562.37E-161.22E-19Tb-1574.55E-192.25E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-149m1.80E-161.34E-16Tb-1503.24E-162.54E-16Tb-150m3.12E-162.44E-16Tb-1511.22E-169.47E-17Tb-1519.31E-186.99E-18Tb-1522.01E-161.51E-16Tb-1529.60E-177.16E-17Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-1563.81E-182.13E-18Tb-1574.55E-192.25E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-1503.24E-162.54E-16Tb-150m3.12E-162.44E-16Tb-1511.22E-169.47E-17Tb-1519.31E-186.99E-18Tb-1522.01E-161.51E-16Tb-1529.60E-177.16E-17Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-1562.37E-161.93E-16Tb-1574.55E-192.25E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-150m3.12E-162.44E-16Tb-1511.22E-169.47E-17Tb-1519.31E-186.99E-18Tb-1522.01E-161.51E-16Tb-1529.60E-177.16E-17Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-1562.37E-161.93E-16Tb-1565.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-1511.22E-169.47E-17Tb-1519.31E-186.99E-18Tb-1522.01E-161.51E-16Tb-1529.60E-177.16E-17Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-1563.81E-182.13E-18Tb-1565.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-151m9.31E-186.99E-18Tb-1522.01E-161.51E-16Tb-152m9.60E-177.16E-17Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-156m3.81E-182.13E-18Tb-156n5.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-1522.01E-161.51E-16Tb-152m9.60E-177.16E-17Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-156m3.81E-182.13E-18Tb-156m5.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-152m9.60E-177.16E-17Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-156m3.81E-182.13E-18Tb-156m5.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-1533.93E-172.97E-17Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-156m3.81E-182.13E-18Tb-156n5.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-1542.87E-162.40E-16Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-156m3.81E-182.13E-18Tb-156m5.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-1552.06E-171.40E-17Tb-1562.37E-161.93E-16Tb-156m3.81E-182.13E-18Tb-156n5.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-1562.37E-161.93E-16Tb-156m3.81E-182.13E-18Tb-156n5.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-156m3.81E-182.13E-18Tb-156n5.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17								
Tb-156n5.95E-192.25E-19Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17			1.93E-16					
Tb-1574.55E-192.28E-19Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17			2.13E-18					
Tb-1589.98E-177.84E-17Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17	Tb-156n	5.95E-19	2.25E-19					
Tb-1601.48E-161.13E-16Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17		4.55E-19	2.28E-19					
Tb-1611.02E-172.01E-18Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17	Tb-158	9.98E-17	7.84E-17					
Tb-1621.67E-161.09E-16Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17	Tb-160	1.48E-16	1.13E-16					•
Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17	Tb-161	1.02E-17	2.01E-18					
Tb-1631.16E-167.62E-17Tb-1643.53E-162.47E-16Tb-1651.65E-168.67E-17	Tb-162	1.67E-16	1.09E-16					
Tb-165 1.65E-16 8.67E-17	Tb-163	1.16E-16	7.62E-17					
Tb-165 1.65E-16 8.67E-17	Tb-164		2.47E-16					
	Tb-165							
	Dy-148	8.73E-17			x			
			x					

Dy-149	2.03E-16	1.63E-16				
Dy-150	3.33E-17	2.57E-17				
Dy-151	1.69E-16	1.36E-16				
Dy-152	3.43E-17	2.59E-17				
Dy-153	1.06E-16	8.34E-17				
Dy-154	0.00E+00	0.00E+00				
Dy-155	8.13E-17	6.45E-17				
Dy-157	4.14E-17	3.15E-17				
Dy-159	4.46E-18	2.32E-18				
Dy-165	3.15E-17	2.73E-18				
, Dy-165m	3.60E-18	1.55E-18				
Dy-166	8.88E-18	2.91E-18				
Dy-167	1.12E-16	5.17E-17				
Dy-168	7.07E-17	3.74E-17				
Ho-150	3.82E-16	1.88E-16				
Ho-153	1.62E-16	9.99E-17				
Ho-153m	1.75E-16	1.02E-16				
Ho-154	3.10E-16	1.87E-16				
Ho-154m	3.34E-16	2.37E-16			•	-
Ho-155	8.61E-17	5.89E-17		•		
Ho-156	3.03E-16	2.12E-16		. •		
Ho-157	7.24E-17	5.38E-17				
Ho-157	4.58E-17	3.36E-17				
Ho-160	4.58E-17 2.06E-16	1.66E-16				
Ho-161	5.67E-18	3.06E-18				
Ho-162	2.03E-17	1.43E-17				
Ho-162m	6.80E-17	1.45E-17 5.40E-17				
Ho-163	0.00E+00	0.00E+00				
Ho-164	1.04E-17	1.76E-18				·
		2.44E-18				
Ho-164m .	4.48E-18					
Ho-166	4.93E-17	3.34E-18				
Ho-166m	2.00E-16	1.59E-16				
Ho-167	5.50E-17	3.48E-17				
Ho-168	1.60E-16	8.74E-17				
Ho-168m	6.29E-19	3.46E-19				
Ho-170	2.59E-16	1.69E-16.				
Er-154	8.69E-18	5.00E-18				
Er-156	6.71E-18	3.89E-18				
Er-159	1.20E-16	9.47E-17				
Er-161	1.21E-16	9.70E-17				
Er-163	4.05E-18	2.26E-18				
Er-165	3.78E-18	2.08E-18				
Er-167m	1.61E-17	8.83E-18				
Er-169	2.95E-18	3.24E-20				
Er-171	6.75E-17	3.50E-17				
Er-172	6.62E-17	4.88E-17				
Er-173	1.45E-16	8.08E-17				

Tm-161	1.68E-16	1.28E-16						
Tm-162	2.75E-16	1.98E-16						
Tm-163	1.62E-16	1.31E-16						
Tm-164	1.37E-16	7.70E-17						
Tm-165	6.85E-17	5.23E-17						
Tm-166	2.45E-16	2.02E-16						
Tm-167	2.15E-17	1.21E-17						
Tm-168	1.51E-16	1.20E-16						
Tm-170	1.93E-17	5.14E-19						
Tm-171	6.70E-20	3.89E-20				·		•
Tm-172	9.12E-17	4.92E-17						
Tm-173	6.48E-17	3.74E-17						
Tm-174	2.43E-16	1.75E-16						
Tm-175	1.64E-16	1.07E-16						
Tm-176	3.09E-16	2.03E-16						
Yb-162	2.98E-17	2.21E-17						
Yb-163	1.06E-16	7.13E-17						
Yb-164	5.77E-18	3.64E-18						
Yb-165	4.28E-17	3.01E-17						
Yb-166	9.05E-18	5.42E-18						
Yb-167	3.09E-17	2.14E-17						
Yb-169	3.92E-17	2.65E-17						
Yb-175	9.77E-18	3.73E-18						
Yb-177	5.07E-17	1.95E-17						
Yb-178	1.40E-17	3.74E-18						
Yb-179	1.65E-16	9.52E-17						
Lu-165	1.57E-16	1.09E-16			•		•	
Lu-167	2.13E-16	1.72E-16						
Lu-169	1.61E-16	1.32E-16						
Lu-169m	3.48E-21	5.83E-23		•		Ň		
Lu-170	3.20E-16	2.71E-16						
Lu-171	7.73E-17	6.09E-17						
Lu-171m	4.09E-20	2.24E-20						
Lu-172	2.39E-16	1.94E-16						
Lu-172m	1.31E-21	9.04E-23						
Lu-173	2.08E-17	1.44E-17						
Lu-174	1.33E-17	9.84E-18						
Lu-174m	6.49E-18	4.04E-18						
Lu-176	6.90E-17	4.52E-17	•					
Lu-176m	2.98E-17	1.41E-18						
Lu-177	9.73E-18	3.25E-18			٠,			
Lu-177m	1.25E-16	9.29E-17						
Lu-178	6.64E-17	1.34E-17	· · ·					
Lu-178m	1.51E-16	9.89E-17						
Lu-179	3.54E-17	3.23E-18						
Lu-180	2.25E-16	1.53E-16						
Lu-181	1.23E-16	5.57E-17						

Hf-167	1.10E-16	5.91E-17					
Hf-169	8.50E-17	6.05E-17					
Hf-170	5.24E-17	4.01E-17					
Hf-172	1.12E-17	7.02E-18					
Hf-173	4.76E-17	3.57E-17					
Hf-174	0.00E+00	0.00E+00					
Hf-175	4.36E-17	3.22E-17					
Hf-177m		2.15E-16					
Hf-178m		2.13E-16					
Hf-179m		8.59E-17					
Hf-180m		9.33E-17					
Hf-181	7.04E-17	5.05E-17					
Hf-182	3.02E-17	2.27E-17					
Hf-182m		8.69E-17				•	
Hf-183	1.22E-16	7.58E-17					
Hf-184	· 4.73E-17	2.15E-17					
Ta-170	2.47E-16	1.05E-16					
Ta-172	2.42E-16	1.69E-16					
Ta-172	7.65E-17	5.58E-17	•				
Ta-175 Ta-174	1.47E-16	9.68E-17					
Ta-174 Ta-175	1.37E-16	9.882-17 1.11E-16					
Ta-175 Ta-176	· 2.78E-16	2.32E-16					
Ta-176 Ta-177							
Ta-177 Ta-178	7.54E-18	4.90E-18					
	1.44E-17	1.04E-17					
Ta-178m		1.08E-16					
Ta-179	2.59E-18	1.59E-18	·				
Ta-180	6.71E-18	3.22E-18					
Ta-182	1.63E-16	1.30E-16					
Ta-182m		2.31E-17					
Ta-183	4.61E-17	2.63E-17					
Ta-184	2.19E-16	1.54E-16					
Ta-185	6.32E-17	1.43E-17					
Ta-186	2.46E-16	1.39E-16					
W-177	1.11E-16	8.70E-17					
W-178	1.59E-18	9.89E-19			i .		
Ŵ-179	5.54E-18	3.32E-18					
W-179m	1.27E-17	4.39E-18					
W-181	4.21E-18	2.63E-18					
W-185	4.77E-18	5.67E-20					
W-185m		2.05E-18					
W-187	7.02E-17	4.33E-17				-	
W-188	3.18E-18	2.08E-19				-	
W-190	3.82E-17	1.26E-17					
Re-178	2.52E-16	1.77E-16					
Re-179	1.34E-16	1.07E-16					
Re-180	1.53E-16	1.18E-16					
Re-181	1.02E-16	7.66E-17					

.

Re-182	2.21E-16	1.76E-16				
Re-182m	1.50E-16	1.22E-16				
Re-183	1.84E-17	1.24E-17	•			
Re-184	1.08E-16	8.68E-17				
Re-184m	4.65E-17	3.58E-17				
Re-186	2.22E-17	1.99E-18				
Re-186m	1.67E-18	9.72E-19				
Re-187	0.00E+00	0.00E+00				
Re-188	6.10E-17	6.60E-18				
Re-188m	7.83E-18	5.12E-18				
Re-189	2.52E-17	5.40E-18				
Re-190	2.08E-16	1.31E-16				
Re-190m	1.38E-16	8.96E-17				
Os-180	1.45E-17	1.03E-17				
Os-181	1.70E-16	1.37E-16				
Os-182	5.25E-17	3.98E-17				
Os-183	7.58E-17	5.83E-17				
Os-183m	1.23E-16	1.00E-16				
Os-185	8.36E-17	6.65E-17				
Os-186	0.00E+00	0.00E+00				
Os-189m	1.40E-20	2.38E-22				
Os-190m	1.96E-16	1.53E-16				
Os-191	9.97E-18	6.62E-18				
Os-191m	6.63E-19	4.15E-19				
Os-193	2.97E-17	4.13E-13 6.41E-18				
Os-193 Os-194	2.57E-17 2.67E-19	1.18E-19				
Os-194 Os-196	3.23E-17	7.73E-18				
lr-180	2.83E-16	1.56E-16				
Ir-180	2.46E-16	1.39E-16				
lr-182	2.40E-10 1.52E-16	1.19E-16				
Ir-185	2.58E-16	1.19E-16 1.96E-16				
Ir-184	2.38E-10 1.07E-16	8.59E-17				
lr-185	2.09E-16	1.66E-16				
lr-186m	1.59E-16	1.26E-16				
lr-187	3.99E-17	3.07E-17				
lr-188	2.62E-16	2.19E-16				
Ir-189	8.86E-18	5.99E-18				
lr-190	1.81E-16	1.42E-16				
Ir-190m	1.46E-20	2.65E-22				
Ir-190n	6.62E-18	4.12E-18				
lr-191m	8.89E-18	5.96E-18				
lr-192	1.10E-16	7.86E-17				
lr-192m	6.07E-20	5.92E-21				
lr-192n	4.88E-18	9.60E-20				
lr-193m	8.95E-20	2.32E-20		1		
lr-194	6.80E-17	9.74E-18				
lr-194m	2.87E-16	2.26E-16				

•

Ir-195	2.66E-17	4.72E-18				
Ir-195m	5.66E-17	3.56E-17				
lr-196	1.14E-16	2.42E-17				
Ir-196m	3.18E-16	2.39E-16				
Pt-184	8.87E-17	6.63E-17				
Pt-186	8.29E-17	6.51E-17				
Pt-187	7.90E-17	5.81E-17				
Pt-188	2.52E-17	1.78E-17				
Pt-189	5.92E-17	4.51E-17				
Pt-190	0.00E+00	0.00E+00				
Pt-191	3.56E-17	2.60E-17				
Pt-193	3.37E-20	6.57E-22				
Pt-193m	3.86E-18	8.04E-19				
Pt-195m	1.06E-17	5.52E-18				
Pt-19511 Pt-197	1.00E-17 1.27E-17	2.10E-18				
Pt-197 Pt-197m	2.47E-17	7.05E-18				
Pt-199	5.96E-17	1.97E-17				
Pt-200	1.48E-17	5.09E-18				
Pt-200	4.49E-17	6.05E-19				
Au-186	4.49C-17 2.61E-16	1.49E-16				
Au-187	1.37E-16	1.08E-16				
Au-107 Au-190	3.12E-16	2.51E-16				
Au-190 Au-191	7.32E-10	5.58E-17				
Au-191 Au-192	2.46E-16	2.02E-16				
Au-192 Au-193						
Au-195 Au-193m	2.03E-17 2.61E-17	1.42E-17 1.83E-17				
Au-19511 Au-194	1.29E-16	1.05E-17 1.05E-16				
Au-194 Au-195	9.18E-18	6.10E-18				
Au-195 Au-195m	2.67E-18	1.87E-17				
Au-19511 Au-196	5.81E-17					
Au-196 Au-196m	3.64E-17	4.42E-17 2.14E-17				
Au-198	6.82E-17					
Au-198 Au-198m	6.97E-17	3.90E-17 4.87E-17				
Au-19811 Au-199						
	1.50E-17	8.74E-18				
Au-200	8.43E-17	2.84E-17				
Au-200m	2.51E-16	1.92E-16				
Au-201	3.09E-17	3.62E-18	•			
Au-202	9.88E-17	1.85E-17				
Hg-190	2.38E-17	1.72E-17				
Hg-191m	1.87E-16	1.46E-16				
Hg-192	3.29E-17	2.44E-17				
Hg-193	1.03E-16	8.29E-17				
Hg-193m	1.26E-16	1.01E-16				
Hg-194	4.46E-20	√ 1.04E-21				
Hg-195	2.38E-17	1.81E-17				
Hg-195m	2.63E-17	1.83E-17				
Hg-197	8.06E-18	5.41E-18				

, .

Hg-197m	1.69E-17	8.28E-18					
Hg-199m	3.96E-17	1.65E-17				•	
Hg-203	3.14E-17	2.27E-17					
Hg-205	3.65E-17	9.63E-19					
Hg-206	4.07E-17	1.19E-17					
Hg-207	3.86E-16	2.77E-16					
TI-190	2.74E-16	1.28E-16					
Tl-190m	3.57E-16	2.41E-16					
TI-194	1.55E-16	8.87E-17					
Tl-194m	3.22E-16	2.46E-16					
TI-195	1.53E-16	1.25E-16					
TI-196	2.43E-16	1.91E-16					
TI-197	5.68E-17	4.40E-17					
TI-198	2.50E-16	2.06E-16					
Tl-198m	1.55E-16	1.17E-16					
Tl-199	3.15E-17	2.27E-17					
TI-200	1.61E-16	1.30E-16					
TI-201	1.08E-17	7.32E-18					
TI-202	5.65E-17	4.36E-17					
TI-204	1.32E-17	2.44E-19					
Tl-206	3.60E-17	4.75E-19					
Tl-206m	3.05E-16	2.37E-16					
TI-207	3.28E-17	6.50E-19					
TI-208	4.65E-16	3.64E-16					
TI-209	3.11E-16	2.20E-16					
TI-210	4.30E-16	2.85E-16					
Pb-194	1.35E-16	1.07E-16			,		
Pb-195m	2.15E-16	1.61E-16					
Pb-196	6.29E-17	4.60E-17					
Pb-197	1.93E-16	1.55E-16					
Pb-197m	1.53E-16	1.14E-16					
Pb-198	5.52E-17	4.07E-17	· .				
Pb-199	1.30E-16	1.04E-16					
Pb-200	2.67E-17	1.81E-17					
Pb-201	9.39E-17	7.28E-17					
Pb-201m	6.13E-17	3.54E-17					· .
Pb-202	6.24E-20	1.12E-21					
Pb-202m	2.49E-16	1.97E-16					
Pb-203	3.95E-17	2.88E-17			<u>.</u>		
Pb-204m	2.58E-16	2.05E-16					
Pb-205	6.32E-20	1.14E-21					
Pb-209	9.87E-18	1.12E-19					
Pb-210	3.03E-19	1.09E-19					
Pb-211	3.71E-17	6.68E-18					
Pb-212	2.32E-17	1.34E-17					
Pb-214	4.53E-17	2.41E-17					
Bi-197	2.25E-16	1.70E-16					

• •

X

•

Bi-200	3.10E-16	2.39E-16					
Bi-201	2.15E-16	1.76E-16					
Bi-202	3.44E-16	2.74E-16					
Bi-203	2.98E-16	2.44E-16					
Bi-204	3.59E-16	2.92E-16					
Bi-205	2.10E-16	1.73E-16					
Bi-206	4.06E-16	3.28E-16					
Bi-207	1.95E-16	1.53E-16					
Bi-208	3.38E-16	2.93E-16	•				
Bi-210	2.44E-17	2.98E-19			÷		
Bi-210m	3.39E-17	2.49E-17					
Bi-211	6.25E-18	4.51E-18				•	
Bi-212	4.72E-17	1.08E-17					'
Bi-212n	3.56E-17	4.61E-19					
Bi-213	4.38E-17	1.26E-17					
Bi-214	2.28E-16	1.54E-16	,			,	
Bi-215	7.52E-17	2.52E-17					
Bi-216	1.87E-16	7.31E-17					
Po-203	2.08E-16	1.64E-16					
Po-204	1.44E-16	1.12E-16					
Po-205	1.96E-16	1.59E-16					
Po-206	1.49E-16	1.16E-16					
Po-207	1.58E-16	1.27E-16					
Po-208	2.69E-21	2.04E-21					
Po-209	7.82E-19	6.01E-19					
Po-210	1.19E-21	9.65E-22					
Po-211	1.00E-18	8.08E-19					
Po-212	0.00E+00	0.00E+00					
Po-212m	1.01E-17	8.65E-18					
Po-213	4.63E-21	3.71E-21					
Po-214	1.01E-20	8.23E-21				•	
Po-215	2.17E-20	1.70E-20					
Po-216	1.87E-21	1.52E-21					
Po-218	2.62E-22	2.86E-24					
At-204	3.12E-16	2.26E-16					
At-205	1.56E-16	1.13E-16					
At-206	3.24E-16	2.44E-16					
At-207	2.53E-16	2.03E-16					
At-208	3.78E-16	3.03E-16					
At-209	2.80E-16	2.24E-16					
At-210	3.67E-16	3.03E-16					
At-211	4.11E-18	2.86E-18					
At-215	2.25E-20	1.64E-20					
At-216	3.10E-19	2.12E-19					
At-217	3.28E-20	2.31E-20					
At-218	7.94E-20	1.25E-21					
At-219	0.00E+00	0.00E+00					

•

1

At-220	1.42E-16	4.46E-17				
Rn-207	1.34E-16	9.59E-17				
Rn-209	1.53E-16	1.19E-16				
Rn-210	7.62E-18	5.89E-18				
Rn-211	2.31E-16	1.87E-16				
Rn-212	4.13E-20	3.32E-20				
Rn-215	0.00E+00	0.00E+00				
Rn-216	0.00E+00	0.00E+00				
Rn-217	0.00E+00	0.00E+00				
Rn-218	9.26E-20	7.39E-20				
Rn-219	7.41E-18	5.60E-18				
Rn-220	7.70E-20	6.10E-20	· ·			
Rn-222	4.77E-20	3.76E-20				
Rn-223	7.86E-17	3.35E-17				
Fr-212	1.45E-16	1.14E-16		•		
Fr-219	4.48E-19	3.41E-19				
Fr-220	1.26E-18	7.85E-19				
Fr-221	3.86E-18	2.75E-18				
Fr-222	6.51E-17	1.74E-17				
Fr-223	2.79E-17	4.55E-18				
Fr-224	1.27E-16	5.63E-17				
Fr-227	1.06E-16	4.32E-17				
Ra-219	2.34E-17	1.61E-17				
Ra-220	5.76E-19	4.51E-19				
Ra-221	5.23E-18	3.24E-18				
Ra-222	1.16E-18	8.81E-19				
Ra-223	1.85E-17	1.27E-17				
Ra-224	1.36E-18	9.87E-19				
Ra-225	3.69E-18	5.43E-19				
Ra-226	1.02E-18	6.84E-19				
Ra-227	4.29E-17	1.37E-17				
Ra-228	1.22E-19	6.78E-21				
Ra-230	1.88E-17	7.23E-18				
Ac-223	2.25E-18	1.60E-18				
Ac-224	2.76E-17	2.06E-17				
Ac-225	1.84E-18	1.26E-18				
Ac-226	3.13E-17	1.23E-17				
Ac-227	3.66E-20	8.25E-21				
Ac-228	1.30E-16	8.67E-17				
Ac-230	1.31E-16	5.70E-17				
Ac-231	8.92E-17	3.98E-17				
Ac-232	2.10E-16	1.22E-16				
Ac-233	1.18E-16	4.92E-17				
Th-223	9.07E-18	6.18E-18				
Th-224	3.19E-18	2.14E-18				
Th-226	1.18E-18	7.08E-19				
Th-227	1.62E-17	1.15E-17				

			·							
		· ·		٠						
Th-228	3.24E-19	1.84E-19			·					
Th-229	1.12E-17	7.40E-18								
Th-230	1.02E-19	3.42E-20								
Th-231	3.73E-18	1.02E-18								
Th-232	7.41E-20	1.80E-20								
Th-233	2.93E-17	3.63E-18								
Th-234	1.45E-18	7.22E-19								
Th-235	5.25E-17	5.86E-18								
Th-236	2.57E-17	3.44E-18								
Pa-227	2.43E-18	1.61E-18							•	
Pa-228	1.68E-16	1.35E-16								
Pa-229	7.40E-18	5.22E-18								
Pa-230	8.19E-17	6.50E-17								
Pa-231	4.91E-18	3.18E-18								
Pa-232	1.17E-16	9.25E-17								
Pa-233	3.26E-17	2.03E-17						•		
Pa-234	1.92E-16	1.45E-16								
Pa-234m	5.94E-17	2.45E-18								
Pa-235	3.10E-17	3.93E-19								
Pa-236	1.66E-16	9.38E-17								
Pa-237	1.12E-16	6.07E-17								
U-227	1.67E-17	1.07E-17								
U-228	6.00E-19	3.53E-19								
· U-230	2.29E-19	1.02E-19								
U-231	9.05E-18	5.96E-18								
U-232	1.18E-19	2.43E-20								
U-233	7.45E-20	2.35E-20								
U-234	9.48E-20	1.40E-20								
U-235	2.00E-17	1.51E-17								
U-235m	0.00E+00	0.00E+00								
U-236	7.90E-20	8.69E-21								
U-230	1.92E-17	1.17E-17								
U-238	6.39E-20	7.32E-21								
U-239	3.07E-17	4.41E-18								
U-240	3.67E-18	4.30E-19								
U-242	2.87E-17	4.03E-18								
Np-232	1.47E-16	1.16E-16								
Np-232	1.05E-17	7.52E-18								
Np-234	1.38E-16	1.13E-16				χ.				
Np-235	3.30E-10	6.43E-20								
Np-235	2.06E-17	0.43E-20 1:23E-17								
Np-236m	9.11E-18	4.18E-18								
Np-230	3.31E-18	4.18E-18 1.93E-18					•			
Np-237	8.33E-18 8.33E-17	1.93E-18 5.88E-17								
Np-238 Np-239	8.33E-17 2.85E-17	1.62E-17			•					
Np-239	2.83E-17 1.49E-16	1.02E-17 1.03E-16							•	
Np-240 Np-240m	1.49E-16 8.33E-17	3.20E-17								

· · ·

Np-241	3.07E-17	3.67E-18			,	
Np-242	9.66E-17	2.82E-17				
Np-242m	1.51E-16	8.99E-17				
Pu-232	7.20E-18	5.16E-18				
Pu-234	7.81E-18	5.58E-18				
Pu-235	1.08E-17	7.70E-18				
Pu-236	1.03E-19	1.00E-20				
Pu-237	5.77E-18	4.00E-18				
Pu-238	9.22E-20	7.81E-21				
Pu-239	4.63E-20	8.51E-21				
Pu-240	8.74E-20	7.66E-21		•		
Pu-241	2.07E-22	1.37E-22				
Pu-242	8.71E-20	1.43E-20				
Pu-243	1.01E-17	2.08E-18				
Pu-244	3.46E-18	2.09E-18				
Pu-245	6.56E-17	3.92E-17				
Pu-246	1.75E-17	1.20E-17			•	
Am-237	4.56E-17	3.41E-17				
Am-238	1.10E-16	8.88E-17				
Am-239	3.14E-17	2.07E-17				
Am-240	1.26E-16	1.02E-16				
Am-240	2.75E-18	1.54E-18				
Am-241	9.71E-18	1.34E-18 1.27E-18	,			
Am-242m	2.85E-19	4.53E-20				
Am-243	6.52E-18	4.34E-18				
Am-244	1.05E-16	7.77E-17				
Am-244m	3.53E-17	1.89E-18	•			
Am-245	1.91E-17	3.03E-18				
Am-246	1.20E-16	7.09E-17				,
Am-246m	1.50E-16	9.86E-17				
Am-247	4.89E-17	1.25E-17				
Cm-238	9.44E-18	6.80E-18				
Cm-239	3.09E-17	2.32E-17				
Cm-240	1.07E-19	1.06E-20				
Cm-241	6.40E-17	4.63E-17				
Cm-242	9.54E-20	9.09E-21				
Cm-243	1.85E-17	1.17E-17				
Cm-244	8.39E-20	9.22E-21				
Cm-245	1.32E-17	8.90E-18				
Cm-246	6.52E-19	3.87E-19				
Cm-247	3.85E-17	3.01E-17				
Cm-248	2.20E-16	1.39E-16				
Cm-249	1.80E-17	2.04E-18				
Cm-250	2.29E-15	1.41E-15				
Cm-251	4.21E-17	1.10E-17				
Bk-245	3.10E-17	2.05E-17				
Bk-246	1.03E-16	8.30E-17				

X

Bk-247	1.97E-17	1.32E-17				
Bk-248m	1.63E-17	4.91E-18				
Bk-249	3.73E-20	5.42E-22				
Bk-250	1.25E-16	9.03E-17				
Bk-251	2.81E-17	7.70E-18				
Cf-244	1.02E-19	1.01E-20				
Cf-246	7.73E-20	1.12E-20				
Cf-247	1.16E-17	7.95E-18				
Cf-248	1.37E-19	4.40E-20				
Cf-249	4.01E-17	3.11E-17				
Cf-250	1.63E-18	1.04E-18				
Cf-251	1.91E-17	1.07E-17				
Cf-252	7.50E-17	4.81E-17				
Cf-253	1.64E-18	5.64E-20				
Cf-254	2.85E-15	1.78E-15				
Cf-255	1.14E-17	1.30E-19				
Es-249	5.00E-17	3.86E-17				
Es-250 .	1.49E-16	1.14E-16				
Es-250m	6.76E-17	5.42E-17				
Es-251	1.16E-17	7.96E-18				
Es-253	7.31E-20	3.30E-20				
Es-254	1.18E-18	3.33E-19				
Es-254m	6.81E-17	4.61E-17				•
Es-255	1.74E-18	8.96E-20				
Es-256	3.85E-17	5.29E-19				
Fm-251	1.88E-17	1.40E-17				
Fm-252	1.24E-19	3.78E-20				
Fm-253	8.26E-18	5.15E-18				
Fm-254	1.18E-18	7.50E-19			• .	
Fm-255	9.72E-19	2.16E-19				
Fm-256	2.01E-15	1.31E-15				
Fm-257	2.06E-17	1.32E-17				

From: Sent: To: Cc: Subject: OST02 HOC Saturday, March 26, 2011 2:06 PM Costa, Arlon; PMT03 Hoc; Chowdhury, Prosanta OST01 HOC RE: PMT Coordinator

The 3-11 PM shift is already staffed. 11:00 PM - 7:00 AM 4/1-4/2 is available as well as 7:00 - 3:00, and 11:00 PM - 7:00 AM 4/2-4/3.

OST02 NRC Operations Center 301-816-5100

From: Costa, Arlon Sent: Saturday, March 26, 2011 1:56 PM To: PMT03 Hoc; Chowdhury, Prosanta Cc: OST02 HOC; OST01 HOC Subject: RE: PMT Coordinator

I signed in for the 3-11PM.

From: PMT03 Hoc Sent: Saturday, March 26, 2011 1:22 AM To: Costa, Arlon; Chowdhury, Prosanta Cc: OST02 HOC; OST01 HOC Subject: PMT Coordinator

Arlon, Prosanta,

We're almost complete on the PMT Coordinator roster for next week, but there are two slots needing filled next Saturday, April 2nd, if you're available. The slots are 7am-3pm and 3pm-11pm (and actually 11pm-7am Sunday which I will take if it remains unfilled). If each of you can fill one of these slots, that would be great. Please respond by copying OST01 and OST02, to be placed on the roster.

1

183

BBBBB/

Hope to see you then.

Thanks.

Lou

O.R.P.S.C

Lee, Richard

From: Sent: To: Subject: Lee, Richard Sunday, March 27, 2011 10:47 PM Dana Powers RE: long term storage of wastage

Thx, Dana: Richard

From: Dana Powers [danapowers@msn.com] Sent: Sunday, March 27, 2011 7:28 PM To: Lee, Richard Subject: RE: long term storage of wastage

Richard, The Hanford tanks are mild steel tanks - even the double walled tanks. They can hold waste only by making the waste extremely basic (pH>10). Just making the waste water basic may not be enough for the waste water from Fukushima. The waste water is heavily contaminated with chloride and will be aggressive toward mild steel. The Hanford waste did not have a lot of sodium chloride in it.

The problem tanks at Hanford were those that had precipitated solids. Water from the Fukushima reactors will come in hot and will precipitate sodium chloride. Over time iron hydroxide and carbonates of various types will precipitate from the waste water. Over the long term, weird and unwonderful things can happen in the liquids trapped between the precipitated solids and the tank walls - crevice corrosion. I would think that they would want to use tanks better suited for the long term storage of the waste water. Steels with a little copper in it might work better. Plastic coated interiors will work for a while, but eventually the radiation dose will embrittle the plastic and cause it to flake off. They may also want to make sure that they can stir up the waste every once in a while so that concentrations at interfaces get dissipated. The second most readily attacked area of the tanks is the interface with the atmosphere.

On another score. If they inject water sparged with nitrogen into the core, they will start getting nitric acid formation in the gas phase. The nitric acid will begin to acidify the water in the core. It is not clear to me that they have enough buffer solution to stand up to the acidification. They may want to make sure that sparged water is well borated with sodium tetraborate or similar material.

I would expect that if there is precipitated sodium chloride in the vessel bottom, that some fraction of the cesium will ion exchange with sodium in the precipitated sodium chloride. I don't know how much or whether it will significantly reduce the amount of cesium in solution. It should reduce it some. I would expect some ion exchange also with barium and strontium - again, I don't know how much, probably not a lot. Dana

From: <u>Richard.Lee@nrc.gov</u> To: <u>danapowers@msn.com</u>; <u>dapower@sandia.gov</u> Date: Sun, 27 Mar 2011 18:13:53 -0400 Subject: long term storage of wastage

Dana:

3000/ 184

Form your experience with the Hanford Water tanks, is there lesson-learned what to do better from the start so one does not have to go through what DOE did (spending \$Bs and none got clean up).

Richard

ţ

Lee, Richard

From:	
Sent:	
To:	
Subject:	

Lee, Richard Sunday, March 27, 2011 10:55 PM Dana Powers RE: long term storage of wastage

Dear Dana:

Tomorrow, I will forward these messages to DOE Science Council w/- cc: to you at Sandia.

Richard

From: Dana Powers [danapowers@msn.com] Sent: Sunday, March 27, 2011 7:28 PM To: Lee, Richard Subject: RE: long term storage of wastage

Richard, The Hanford tanks are mild steel tanks - even the double walled tanks. They can hold waste only by making the waste extremely basic (pH>10). Just making the waste water basic may not be enough for the waste water from Fukushima. The waste water is heavily contaminated with chloride and will be aggressive toward mild steel. The Hanford waste did not have a lot of sodium chloride in it.

The problem tanks at Hanford were those that had precipitated solids. Water from the Fukushima reactors will come in hot and will precipitate sodium chloride. Over time iron hydroxide and carbonates of various types will precipitate from the waste water. Over the long term, weird and unwonderful things can happen in the liquids trapped between the precipitated solids and the tank walls - crevice corrosion. I would think that they would want to use tanks better suited for the long term storage of the waste water. Steels with a little copper in it might work better. Plastic coated interiors will work for a while, but eventually the radiation dose will embrittle the plastic and cause it to flake off. They may also want to make sure that they can stir up the waste every once in a while so that concentrations at interfaces get dissipated. The second most readily attacked area of the tanks is the interface with the atmosphere.

On another score. If they inject water sparged with nitrogen into the core, they will start getting nitric acid formation in the gas phase. The nitric acid will begin to acidify the water in the core. It is not clear to me that they have enough buffer solution to stand up to the acidification. They may want to make sure that sparged water is well borated with sodium tetraborate or similar material.

I would expect that if there is precipitated sodium chloride in the vessel bottom, that some fraction of the cesium will ion exchange with sodium in the precipitated sodium chloride. I don't know how much or whether it will significantly reduce the amount of cesium in solution. It should reduce it some. I would expect some ion exchange also with barium and strontium - again, I don't know how much, probably not a lot. Dana

From: <u>Richard.Lee@nrc.gov</u> To: <u>danapowers@msn.com</u>; <u>dapower@sandia.gov</u> Date: Sun, 27 Mar 2011 18:13:53 -0400 Subject: long term storage of wastage

BBBB/ 185

Form your experience with the Hanford Water tanks, is there lesson-learned what to do better from the start so one does not have to go through what DOE did (spending \$Bs and none got clean up).

4

Richard

From: Sent: To: Cc: Subject: OST01 HOC Monday, March 28, 2011 2:47 PM Giitter, Joseph Evans, Michele; OST02 HOC; OST01 HOC RE: Updated ET Response Advisor Schedule for Pay Period 8

Joe,

You have been added to the ERO Staffing Roster in the ET Response Advisor for Thursday, 7am to 3pm.

Tony McMurtray EST Coordinator

From: Giitter, Joseph
Sent: Monday, March 28, 2011 2:33 PM
To: McDermott, Brian; Miller, Chris; McGinty, Tim; Morris, Scott; Blount, Tom; Thaggard, Mark; Ross-Lee, MaryJane
Cc: Evans, Michele; OST01 HOC
Subject: RE: Updated ET Response Advisor Schedule for Pay Period 8

I can cover the Thursday dayshift since Allen will be back off shift then.

From: McDermott, Brian
Sent: Monday, March 28, 2011 8:19 AM
To: Miller, Chris; McGinty, Tim; Giitter, Joseph; Morris, Scott; Blount, Tom; Thaggard, Mark; Ross-Lee, MaryJane
Cc: Evans, Michele; OST01 HOC
Subject: RE: Updated ET Response Advisor Schedule for Pay Period 8

Everyone - We still have three shifts to fill later in the week – 2 dayshifts and one swing shift. Please check to see if you can fill in. Please reply to the group and OST01.HOC if you are able to cover.

Regarding our plan to reduce staffing, the EDO and DEDOs are working to align on the approach. I am hopeful that we will be able to implement sometime this week.

Thanks, Brian

From: OST01 HOC

Sent: Monday, March 28, 2011 5:29 AM To: McDermott, Brian; Miller, Chris; McGinty, Tim; Giitter, Joseph; Morris, Scott; Blount, Tom; Thaggard, Mark Subject: Updated ET Response Advisor Schedule for Pay Period 8

Hello,

Attached is the most recent schedule for the ET Response Advisor for pay period 8. There have been some changes. Please verify that this information is correct.

1

Thank you.

EST Coordinator

BBBB/ 186

Operations Center 301-816-5100

6.1

Franovich, Mike

From:	Franovich, Mike
Sent:	Monday, March 28, 2011 12:06 PM
То:	Franovich, Rani
Subject:	FW: 50 Mile EPZ justification response

This may have been intended for you. The TAs received the info in a separate e-mail.

From: LIA08 Hoc Sent: Monday, March 28, 2011 11:58 AM To: Franovich, Mike; Blount, Tom Subject: FW: 50 Mile EPZ justification response

For your info. Jeff Temple

From: LIA08 Hoc Sent: Monday, March 28, 2011 11:56 AM To: Franovich, Mike; Orders, William; Snodderly, Michael; Castleman, Patrick; Marshall, Michael; Batkin, Joshua; Hipschman, Thomas Cc: LIA06 Hoc Subject: FW: 50 Mile EPZ justification response

Attached for your info is an email sent by the Ops Center Liaison Team to Mr. Takashi regarding questions he raised about the 50 mile evacuation recommendation we made for US Citizens in Japan. Please let me know if you have any questions or would like additional information about this.

Jeff Temple Response Program Manager Liaison Team/Interagency Response Team/Corporate Support Response Team 301-816-5185

From: LIA03 Hoc

Sent: Monday, March 28, 2011 11:07 AM
To: takashi.inutsuka@mofa.go.jp
Cc: Doane, Margaret; Mamish, Nader; LIA02 Hoc; LIA08 Hoc; Borchardt, Bill; LIA03 Hoc
Subject: 50 Mile EPZ justification response

On behalf of Bill Borchardt, we are responding to your questions:

1. In the NRC NEWS, March 16, 2011, there are attachments of the results of two sets of computer calculations. One, 15 March 2010 02:51am (EDT), has a hypothetical, single-reactor site, 2350 MWt, Boiling Water Reactor. On the other hand, 16 March 2010 12:24pm (EDT), has a hypothetical, four-reactor site. But in these attachments there is no detailed assumption for calculations about

(1) the power and type of reactor for the four-reactor site,

(2) weather, wind direction and speed, and the status of the problem at the reactors (for example: Source Term).

Q1: Are these sentences correct?

A1: These sentences are correct. Although the press release identified one of the computer calculations being based on a hypothetical four-reactor site, the source term used in

BBBBB/187

the calculation was the approximate activity available for release from one reactor and two spent fuel pools.

- For sile.

Q2: Have you ever explained these detailed assumptions to the public?

A2: The assumptions have been generally described in press releases, interviews, and congressional testimony.

Q3: Could you explain the relation between the number of Total EDE and 1rem (PAGs)? For example 8.1rem (15 March calculation) and 9.9rem (16 March calculation), 50 mi, and 1rem? Could you also explain the relation between the number of Thyroid CDE and 5rem (PAGs)? For example 23rem (15 March calculation) and 48rem (16 March calculation), 50 mi, and 5rem? Is there no need to calculate this for distances greater than 50 mi?

A3: As stated in the press release, these two computer calculations are hypothetical, rough estimates that would not necessarily characterize an actual release. Although the calculation references have TEDE and CDE doses exceeding PAGs beyond 50 miles, these were only two of several cases run. Given that other cases projected PAG doses less than 50 miles and there would be time to extend our recommendations beyond 50 miles, if necessary, the 50 mile recommendation was considered appropriate to protect US citizens.

2. At the White House Regular Briefing, March 17, 2011, Chairman Jaczko said, "We have a team of 11, some of our best technical experts in Tokyo, and they are working with counterparts from the utility in Tokyo as well as other individuals with the government. So that is one of the sources. We are collecting data from as many places as we can to make the best judgments we can with the information available. But I would stress that this is a very difficult situation. There is often conflicting information. And so we made what we thought was a prudent decision."

Q4: Does this statement accurately reflect the NRC's decisionmaking process that led to the recommendation (50 miles)?

A4: Yes.

Q5: Did NRC have evidence to suggest that radiation levels around Fukushima were higher than what Japanese officials had said?

A5: No. The NRC had very limited radiation level information at this time. The computer calculations and subsequent protective action decisions were based on conservative assumptions based on limited information and the deteriorating state of several reactors and spent fuel pools.

3. At the meeting of NRC, March 21, 2011, you said, "the situation that led to the 50 mile guidance in Japan was based upon what we understood and still believe had existed that there were degraded conditions in two spent-fuel pools at the site and, in all likelihood, some core damage in three of the reactor units. Based on the situation as we understood it at that time, we thought it was prudent to provide the recommendation to the ambassador to evacuate out to 50 miles in Japan."

Q6: Does this statement accurately reflect the NRC's decisonmaking process that led to the recommendation (50 miles)?

A6: Yes. ′

Q7: There are some differences on the basis for making recommendation between 1. and 3. Could you explain the basis for making the recommendation (50 miles) again?

A7: The comments made by NRC Chairman Jaczko and Mr. Borchardt were consistent in that seriously degrading conditions at several Daiichi units supported a need to take pre-emptive protective action. The computer calculations helped to provide perspective on possible impacts.

Q8: I understand the recommendation is prudent. How do you define "prudent" in the assumptions for your calculations? in the decision about the distance?

A8: Since communications were limited and there was a large degree of uncertainty about plant conditions at the time, it was difficult to accurately assess the radiological hazard. Computer models used meteorological model data appropriate for the Fukushima Daiichi vicinity. Source terms were based on hypothetical, but not unreasonable estimates of fuel damage, containment, and other release conditions. Subsequent modeling can be correlated with the ground deposition as observed in flyover and other monitoring data. Therefore, prudent (reasonable conservative protective actions made with a predictive approach to limit radiation exposure to US citizens) can be substantiated based on the conditions present and the information known at the time.

If you have additional questions please contact Mr. Borchardt at the email address above.

Tracking:

From: Sent: To: Cc: Subject: OST01 HOC Monday, March 28, 2011 7:23 PM Miller, Chris McDermott, Brian RE: Updated ET Response Advisor Schedule for Pay Period 8

Thanks Chris. You are on the schedule for April 9 from 7am-3pm.

Rebecca Stone EST Coordinator

From: McDermott, Brian Sent: Monday, March 28, 2011 7:21 PM To: OST01 HOC Subject: FW: Updated ET Response Advisor Schedule for Pay Period 8

From: Miller, Chris Sent: Monday, March 28, 2011 8:30 AM To: McDermott, Brian Subject: Re: Updated ET Response Advisor Schedule for Pay Period 8

I could pick up day shift on 4-9.

From: McDermott, Brian
To: Miller, Chris; McGinty, Tim; Giitter, Joseph; Morris, Scott; Blount, Tom; Thaggard, Mark; Ross-Lee, MaryJane
Cc: Evans, Michele; OST01 HOC
Sent: Mon Mar 28 08:18:37 2011
Subject: RE: Updated ET Response Advisor Schedule for Pay Period 8

Everyone - We still have three shifts to fill later in the week – 2 dayshifts and one swing shift. Please check to see if you can fill in. Please reply to the group and OST01.HOC if you are able to cover.

Regarding our plan to reduce staffing, the EDO and DEDOs are working to align on the approach. I am hopeful that we will be able to implement sometime this week.

Thanks, Brian

From: OST01 HOC

Sent: Monday, March 28, 2011 5:29 AM To: McDermott, Brian; Miller, Chris; McGinty, Tim; Giitter, Joseph; Morris, Scott; Blount, Tom; Thaggard, Mark Subject: Updated ET Response Advisor Schedule for Pay Period 8

Hello,

Attached is the most recent schedule for the ET Response Advisor for pay period 8. There have been some changes. Please verify that this information is correct.

1

188 BBBB/

Thank you.

EST Coordinator Operations Center 301-816-5100

1

From: Sent: To: Subject: Attachments: PMT03 Hoc Monday, March 28, 2011 7:55 PM Hoc, PMT12 US Nuclear Plant Reported Measurements 03282011.xlsx US Nuclear Plant Reported Measurements 03282011.xlsx

÷

BBBB/ 189

1

OFPICIAL USP UNLY						
Date	Plant	Isotope	Concentration			
	San Onofre	I-131	1.4E-13 uCi/cc			
	Diablo Canyon	I-131	3.8 to 6E-13 uCi/cc			
3/19/2011	San Onofre	I-131	6.5E-13 to 7.0E-13 uCi/cc			
	Palo Verde	Cs-134	2.22E-13 uCi/cc			
	Palo Verde	Cs-137	3.58E-13 uCi/cc			
	Palo Verde	I-131	1.54E-12 uCi/cc			
3/20/2011	San Onofre	I-131	2.0E-12 uCi/cc			
	Palo Verde	Cs-134	3.87E-13 uCi/cc			
3/20/2011	Palo Verde	I-131	2.50E-12 uCi/cc			
3/21/2011	Nine Mile Point	I-131	19.1 pCi/L (rainwater)			
	Palo Verde	I-131	6.70E-13 uCi/cc			
the second s	Palo Verde	Cs-134	2.06E-13 uCi/cc,			
	Palo Verde	Cs-137	2.71E-13 uCi/cc			
	San Onofre	I-131	7.0 to 8.0E-13 uCi/cc			
	San Onofre	Cs-137	1.25E-13 uCi/cc			
3/22/2011		I-131	6.74E-13 uCi/cc			
3/22/2011	Nine Mile Point	I-131	18 pCi/L (rainwater)			
3/22/2011	Ginna	I-131	26.8 pCi/L (rainwater)			
3/22/2011	Palo Verde	I-131	2.01E-12 uCi/cc			
3/22/2011	Palo Verde	Cs-137	2.93E-13 uCi/cc			
3/22/2011	Palo Verde	Cs-134	2.76E-13 uCi/cc			
3/23/2011	Millstone	I-131	25.6 pCi/L (rainwater)			
3/23/2011	San Onofre	I-131	5E-13 to 6E-13 uCi/cc			
3/23/2011	San Onofre	Cs-137	7E-14 uCi/cc			
3/23/2011	Palo Verde	I-131	7.42E-13 uCi/cc			
3/23/2011	тмі	1-131	95 pCi/L (rainwater)			
3/24/2011	Palo Verde	-131	6.30E-13 uCi/cc			
3/24/2011	Oyster Creek	I-131	127 pCi/L (rainwater)			
3/24/2011	San Onofre	-131	3.0E-13 to 6.0E-13 uCi/cc			
3/24/2011	Limerick	I-131	47 pCi/L (rainwater)			
	South Texas	1-131	2.6E-13 uCi/cc			
	San Onofre	1-131	9.0E-13 to 1E-12 uCi/cc			
	San Onofre	Cs-137	1E-13 to 3E-13 uCi/cc			
	Palo Verde	I-131	1.25E-12 uCi/cc			
	Palo Verde	Cs-134	3.50E-13 uCi/cc			
	Palo Verde	Cs-137	2.62E-13 uCi/cc			
	Palo Verde	I-131	5.561E-13 uCi/cc			
	Palo Verde	I-131	2.2181E-13 uCi/cc			
	San Onofre	I-131	2E-13 to 3E-13 uCi/cc			
	Beaver Valley	I-131	14.98 pCi/L (standing water)			
		<u> </u>				
3/28/2011	San Onofre	-131	2.0 to 3E-13 uCi/cc			

I-131 Reporting Levels NUREG-1301 and NUREG-1302

	I-131	Units	I-131	Units
Drinking Water	2	pCi/L	2.00E-09	uCi/ml
Non-Drinking Water	20	pCi/L	2.00E-08	uCi/ml
Air	0.9	pCi/m3	9.00E-13	uCi/cc

from 2E-13 to 3E-13 microcuries/cc

OFFICIAL USE ONLY

.

From: Sent: To:

LIA07 Hoc

Tuesday, March 29, 2011 6:35 PM

1

Borchardt, Bill; Bradford, Anna; Cohen, Shari; Collins, Elmo; Cooper, LaToya; Dyer, Jim; ET07 Hoc; Flory, Shirley; Gibbs, Catina; Haney, Catherine; Hudson, Sharon; Jaczko, Gregory; Johnson, Michael; Leeds, Eric; Loyd, Susan; Pace, Patti; Schwarz, Sherry; Sheron, Brian; Speiser, Herald; Sprogeris, Patricia; Taylor, Renee; Virgilio, Martin; Walker, Dwight; Walls, Lorena; Weber, Michael

Subject: Attachments: Go Book Update - 1800 EDT, March 29, 2011 TEPCO Press Release 211.pdf; TEPCO Press Release 208.pdf; TEPCO Press Release 209.pdf; TEPCO Press Release 210.pdf; ET Chronology 3-29-11 1500.pdf; March 29 1500 EDT one pager .docx; USNRC Earthquake-Tsunami Update.032911.1800EDT.pdf

Attached, please find updated information for the "Go Books".

The updates include:

- The 1800 EDT, 03/29/11 Status Update
- The latest ET Chronology
- The latest "One Pager" (1500 EDT, 03/29/11)
- TEPCO Press Releases (208-211)

Please let me know if you have any questions or concerns.

-Sara

Sara Mroz Communications and Outreach Office of Nuclear Security & Incident Response US Nuclear Regulatory Commission Sara.Mroz@nrc.gov LIA07.HOC@nrc.gov (Operations Center)

BBBB/ 190

Q Search

Press Releases

Press Release (Mar 29,2011)

Status of TEPCO's Facilities and its services after the Tohoku-Taiheiyou-Oki Earthquake (as of 4:00PM)

Due to the Tohoku-Taiheiyou-Oki Earthquake which occurred on March 11th 2011, TEPCO's facilities including our nuclear power stations have been severely damaged. We deeply apologize for the anxiety and inconvenience caused.

Below is the status of TEPCO's major facilities. *new items are underlined

[Nuclear Power Station] Fukushima Daiichi Nuclear Power Station: Units 1 to 3: shutdown due to the earthquake

(Units 4 to 6: outage due to regular inspections)

*The national government has instructed the public to evacuate for those local residents within 20km radius of the site periphery and to evacuate voluntarily for those local residents between 20km and 30km radius of the site periphery.

*Off-site power was connected to Unit 1 to 6.

*Unit 1

-The explosive sound and white smoke was confirmed near Unit 1 when the big quake occurred at 3:36pm, March 12th.

-We started injection of sea water at 8:20 pm, March 12th, and then boric acid which absorbs neutron into the reactor afterwards.

At approximately 2:30 am, March 23rd, we started the injection of sea water into the reactor from feed water system. After that, the injection of freshwater was started from 3:37 pm on March 25th (switched from the seawater injection). At 8:32 am, Mar 29th, transfer from the fire fighting pump to a temporary motor driven pump was made

fighting pump to a temporary motor driven pump was made. -At approximately 10:50 am on March 24th, white smoke was confirmed arising from the top of the reactor building.

-At approximately 11:30 am, March 24th, lights in the main control room were restored.

*Unit2

-At 1:25 pm, March 14th, since the Reactor Core Isolation Cooling System has failed, it was determined that a specific incident stipulated in Clause 1, Article 15 of Act on Special Measures Concerning Nuclear Emergency Preparedness occurred (failure of reactor cooling function). At 5:17 pm, March 14th, while the water level in the reactor reached the top of the fuel rod, we have restarted the water injection with the valve operation.

-At approximately 6:14 am, March 15th, the abnormal sound was confirmed near the suppression chamber and the pressure inside the chamber decreased afterwards. It was determined that there is a possibility that something happened in the suppression chamber. While sea water injection to the reactor continued, TEPCO employees and workers from other companies not in charge of injection work started tentative evacuation to a safe location.

Sea water injection to the reactor continued.

-On March 18th, power was delivered up to substation for backup power through offsite transmission line. We completed laying cable further to unit receiving facility in the building, and at 3:46 pm, March 20th the load-side power panel of the receiving facility started to be energized. -From 3:05 pm to 5:20 pm on March 20th, about 40 tons of seawater was injected into Unit 2 by TEPCO employees.

-At approximately 6:20 pm on March 21st, white smoke was confirmed arising from the top of the reactor building. As of 7:11 am on March 22nd, smoke decreased to the level where we could hardly confirm.

-From around 4 pm to 5 pm on March 22nd, approximately 18 tons of sea water was injected into the spent fuel pool by TEPCO employees.

-From 10:30 am on March 25th, seawater injection through Fuel Pool Cooling

and Filtering System was initiated. The work finished at 0:19 pm on March 25th.

-From 10:10 am on March 26th, freshwater (with boric acid) injection was initiated. (switched from the seawater injection) At 06:31pm, Mar 27th, transfer from the fire fighting pump to a temporary motor driven pump was made.

-At approximately 4:46 pm, March 26th, lights in the main control room were restored.

*Unit 3

-At 6:50 am, March 14th, while water injection to the reactor was under operation (injection of boric acid was done on Mar 13th), the pressure in the reactor containment vessel increased to 530 kPa. As a result, at 7:44 am, it was determined that a specific incident stipulated in article 15, clause 1 occurred (abnormal increase of the pressure of reactor containment vessel). Afterwards, the pressure gradually decreased (as of 9:05 am, 490 kPa).

-At approximately 11:01 am, March 14th, an explosion followed by white smoke occurred near Unit 3. 4 TEPCO employees and 3 workers from other companies (all of them were conscious) sustained injuries and were taken to the hospital by ambulances.

-As the temperature of water in the spent fuel pool rose, spraying water by helicopters with the support of the Self Defense Force was considered. However the operation on March 16th was cancelled.

-At 6:15 am, March 17th, the pressure of the Suppression Chamber temporarily increased, but currently it is stable within a certain range. On March 20th, we were preparing to implement measures to reduce the pressure of the reactor containment vessel (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to immediately implement measures and discharge air containing radioactive material to outside. We will continue to monitor the status of the pressure of the reactor containment vessel.

-In order to cool spent fuel pool, water was sprayed by helicopters on March 17th with the cooperation of Self-Defense Forces.

-At approximately past 7:00 pm, March 17th, Self-Defense Forces and the police started spraying water by water cannon trucks upon our request for the cooperation. At 8:09 pm, March 17th, they finished the operation. -At 2:00 pm, March 18th, spraying water by fire engines was started with the cooperation of Self-Defense Forces and the United States Armed Forces. At 2:45 pm, March 18th, the operation was finished.

-At approximately 12:30 am, March 19th, spraying water was started with the cooperation of Fire Rescue Task Forces of Tokyo Fire Department. At approximately 1:10 am, March 19th, the operation was finished. They resumed spraying water at 2:10 pm and finished at approximately 3:40 am, March 20th.

-At approximately 9:30 pm, March 20th, spraying water was started with the cooperation of Fire Rescue Task Forces of Tokyo Fire Department. At approximately 3:58 am, March 21th, they the operation was finished. -At approximately 3:55 pm, March 21st, light gray smoke was confirmed arising from the southeast side of the 5th floor roof of the Unit 3 building. The situation was reported to the fire department at approximately 4:21 pm. The parameters of reactor pressure vessel, reactor containment vessel, and monitored environmental data remained stable without significant change. However, employees working around Unit 3 evacuated to a safe location. On March 22nd, the color of smoke changed

to somewhat white and it is slowly dissipating. -At approximately 3:10 pm on March 22nd, spraying water to Unit 3 by Tokyo Fire Department's Hyper Rescue and Osaka City Fire Department was conducted, and completed at approximately 4:00 PM on the same day. -At approximately 10:45 pm on March 22nd, lights in the main control room were restored.

-At 11:00 am on March 23rd, the injection of sea water to spent fuel pool was conducted, and finished approximately at 1:20 pm on the same day. -At 4:20 pm on March 23rd, light gray smoke was observed belching from Unit 3 building. The situation was reported to the fire department at 4:25 pm on March 23rd. The parameters of the reactor, the reactor containment vessel of Unit 3, and monitored figures around the site's immediate surroundings remained stable without significant change. To be safe, workers in the main control room of Unit 3 and around Unit 3 evacuated to a safe location. At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, TEPCO employees confirmed the smoke has disappeared. Accordingly, workers evacuation was lifted.

-From approximately 5:35 am on March 24th, sea water injection through Fuel Pool Cooling and Filtering System was initiated, and finished at approximately 4:05 pm on the same day.

-From 1:28 pm on March 25th, Hyper Rescue team started water spray. The work finished at 4:00 pm on March 25th.

-From 6:02 pm on March 25th, the injection of freshwater to the reactor was started (switched from the seawater injection). At 8:30 pm on March 28th, the injection of fresh water is switched to temporary electricity pumps from the fire engine pumps.

-At approximately 12:34pm March 27th , the injection of water by the concrete pump truck was started. At approximately 2:36 pm, March 27th, the operation was finished.

At approximately 2:17pm March 29th, the injection of fresh water by the concrete pump truck was started. (Sea water had been injected so far and

* Unit 4

-At approximately 6:00 am, March 15th, an explosive sound was heard and the damage in the 5th floor roof of Unit 4 reactor building was confirmed. At 9:38 am, the fire near the north-west part of 4th floor of Unit 4 reactor building was confirmed. At approximately 11:00 am, TEPCO employees confirmed that the fire was out. -At approximately 5:45 am on March 16th, a TEPCO employee discovered a fire at the northwest corner of the Nuclear Reactor Building. TEPCO immediately reported this incident to the fire department and the local government and proceeded with the extinction of fire. At approximately 6:15 am, TEPCO staff confirmed at the site that there are no signs of fire. -At approximately 8:21 am on March 20th, spraying water by fire engines was started with the cooperation of Self-Defense Forces and they finished the operation at approximately 9:40 am. At approximately 6:45 pm spraying water was started by Self-Defenses' water cannon trucks and finished at approximately 7:45 pm. -At approximately 6:30 am, March 21st, spraying water by fire engines was started with the cooperation of Self-Defense Forces and the United States Armed Forces. At approximately 8:40 am, March 21, they had finished the operation. -On March 21st, cabling has been completed from temporary substation to the main power center. -From approximately 5:20 pm on March 22nd, spraying water from the concrete pumping vehicle was conducted and ended at approximately 8:30 pm on the same day. -From approximately 10:00 am on March 23rd, spraying water from the concrete pumping vehicle was conducted and ended at approximately 1:00 pm on the same day. -From approximately 2:35 pm on March 24th, spraying water by the concrete pumping vehicle was conducted and ended at approximately 5:30 pm on the same dav. -From 6:05 am on March 25th, seawater injection through Fuel Pool Cooling and Filtering System was initiated and finished at approximately 10:20 \mbox{am} on the same day. -From 7:05 pm on March 25th, water spray by the concrete pumping vehicle was started and finished at 10:07 pm on March 25th. -From 4:55 pm on March 27th, water spray by the concrete pumping vehicle was started and finished at 7:25 pm on March 27th. -At approximately 11:50 am on March 29th, lights in the main control room were restored. *Unit 5 and 6 -At 5 am on March 19th, we started the Residual Heat Removal System Pump (C) of Unit 5 in order to cool the spent fuel pool. At 10:14 pm, we started the Residual Heat Removal System Pump (B) of Unit 6 in order to cool the spent fuel pool. -Unit 5 has been in reactor cold shutdown since 2:30 pm on March 20th. Unit 6 has been in reactor cold shutdown since 7:27 pm on March 20th. -At Units 5 and 6, in order to prevent hydrogen gas from accumulating within the buildings, we have made three holes on the roof of the reactor building for each unit. -At approximately 5:24 pm on March 23rd, the temporary Residual Heat Removal System Seawater Pump automatically stopped when its power source was switched. We restarted the pump at around 4:14 pm, March 24th, and resumed cooling of reactor at around 4:35 pm. *On March 18th, regarding the spent fuel in the common spent fuel pool, we have confirmed that the water level of the pool is secured. At around 10:37 am March 21st, water spraying to common spent fuel pool and finished at 3:30 pm. At around 6:05 pm, fuel pool cooling pump was started to cool the pool. *common spent fuel pool: a spent fuel pool for common use set in a separate building in a plant site in order to preserve spent fuel which are transferred from the spent fuel pool in each Unit building. *On March 17th, we patrolled buildings for dry casks and found no signs of abnormal situation for the casks by visual observation. A detailed inspection is under preparation. *dry cask: a measure to store spent fuel in a dry storage casks in storages. Fukushima Daiichi Nuclear Power Station started to utilize the measure from August 1995. * In total 13 fire engines are lent for spraying water to the spent fuel pools and water injection to the nuclear reactors by various regional fire departments* as well as Tokyo Fire Department. Also, instruction regarding the setting and operation of large scale decontamination system was provided. \star On March 21st, 23rd to <u>28th</u>, we detected technetium, cobalt, iodine, cesium, tellurium, barium, lanthanum and molybdenum from the seawater

around discharge canal of Unit 1, 2, 3 and 4. * On March 20th, 21st, 23rd to 28th, we detected iodine, cesium, tellurium

and ruthenium in the air collected at the site of Fukushima Daiichi

http://www.tenco.co.in/en/press/corp.com/release/11032000-e.html

Nuclear Power Station.

* Plutonium has detected from the sample of soil at the site of Fukushima Daiichi Nuclear Power Station collected on 21st and 22nd of March, Concentration level of Plutonium detected was same as that of under usual environment and it is thought not to be harmful to human health. We will strengthen environmental monitoring of power station and surrounding environment.

 * On March 28th, we detected radioactive materials contained in the puddles found in the turbine building of Unit 1 to 4.

* At approximately 3:30 pm, March 27th, we found water pooling in the vertical shaft of the trench outside of the turbine buildings for Units 1 to 3. The radiation dose at the surface of the water amounted 0.4 mSv/h in Unit 1 and over 1,000 mSv/h in Unit 2. We could not confirm the amount of the radiation dose in Unit 3. We will keep observing the condition of the water in the vertical shaft.

* At 12:03 pm, March 29th, when taking off the flange of the pipe to remove the residual heat in the seawater system, 3 workers from other companies received water in the pipe. Mopping up water, we confirmed no radioactive material had adhered to their bodies.

*We will continuously endeavor to securing safety, and monitoring of the surrounding environment.

Fukushima Daini Nuclear Power Station:

Units 1 to 4: shutdown due to the earthquake * The national government has instructed evacuation for those local residents within 10km radius of the periphery.

* In order to achieve cold shutdown, reactor cooling function was restored and cooling of reactors was conducted. As a result, all reactors achieved cold shutdown: Unit 1 at 5:00 pm, March 14th, Unit 2 at 6:00 pm, March 14th, Unit 3 at 0:15 pm, March 12th, Unit 4 at 7:15 am, March 16th.

*Since March 12th, we had been preparing measures for reducing the pressure of reactor containment vessels (partial discharge of air containing radioactive materials to outside), but on March 17th, we stopped such preparation in all Units.

* (Unit 1)

As it is confirmed that the temperature of the Emergency Equipment Cooling Water System ^{*1} has increased, at 3:20 pm, March 15th, we stopped the Residual Heat Removal System (B) for the inspection. Subsequently, failure was detected in the power supply facility associated with the pumps of the Emergency Equipment Cooling Water System. At 4:25 pm, March 15th, after replacing the power facility, the pumps and the Residual Heat Removal System (B) have been reactivated.

* (Unit 4)

As it is confirmed that the pressure at the outlet of the pumps of the Emergency Equipment Cooling Water System¹ has been decreased, at 8:05 pm, March 15th, we stopped the Residual Heat Removal System (B) for the inspection. Subsequently, failure was detected in the power supply facility associated with the pumps of the Emergency Equipment Cooling Water System. At 9:25 pm, March 15th, after replacing the relevant facility, the pumps and the Residual Heat Removal System (B) have been reactivated.

*1:emergency water system in which cooling water (pure water) circulates which exchanged the heat with sea water in order to cool down bearing pumps and/or heat exchangers etc.

Kashiwazaki Kariwa Nuclear Power Station:

Units 1, 5, 6, 7: normal operation

(Units 2 to 4: outage due to regular inspection)

[Thermal Power Station]

-Hirono Thermal Power Station Units 2 and 4: shutdown due to the earthquake -Hitachinaka Thermal Power Station Unit 1: shutdown due to the earthquake -Kashima Thermal Power Station Units 2, 3, 5, 6: shutdown due to the earthquake

[Hydro Power Station]

-All the stations have been restored. (Facilities damaged by the earthquake are now being repaired in a timely manner.)

[Transmission System, etc.]

-All substation failed due to the earthquake have been restored. (Facilities damaged by the earthquake are now being repaired in a timely manner.)

[Power Supply to TEPCO's Service Areas]

-Except in case of planned rolling blackouts, we can supply electricity to

our all service areas.

[Supply and Demand Status within TEPCO's Service Area to Secure Stable Power Supply]

-Considering the critical balance of our power supply capacity and expected power demand forward, in order to avoid unexpected blackout, TEPCO has been implementing rolling blackout (planned blackout alternates from one area to another) since Mar 14th. We will make our utmost to secure the stable power supply as early as possible. For customers who will be subject to rolling blackout, please be prepared for the announced blackout periods. Also for customers who are not subject to blackouts, TEPCO appreciates your continuous cooperation in reducing electricity usage by avoiding using unnecessary lighting and electrical equipment.

[Others]

-Please do NOT touch cut-off electric wires.

-In order to prevent fire, please make sure to switch off the electric appliances such as hair driers when you leave your house. -For the customer who has in-house power generation, please secure fuel

for generator.

Dack to page top

http://www.tenco.co.in/en/press/corn_com/release/11032000_e html

Q Search

Press Releases

Press Release (Mar 29,2011) Plant Status of Fukushima Daini Nuclear Power Station (as of 9:00 pm March 29th)

[No update from the last release issued at 3:00 pm, March 29th]

Unit Status

1

2

3

4

- Reactor cold shutdown, stable water level, offsite power is available.
- No reactor coolant is leaked to the reactor containment vessel.
 Maintain average water temperature below 100°C in the Pressure Suppression Chamber.
- Reactor cold shutdown, stable water level, offsite power is available.
- No reactor coolant is leaked to the reactor containment vessel.
 Maintain average water temperature below 100°C in the Pressure Suppression Chamber.
- Reactor cold shutdown, stable water level, offsite power is available.
 - · No reactor coolant is leaked to the reactor containment vessel.
 - \cdot Maintain average water temperature below 100°C in the Pressure Suppression Chamber.
- Reactor cold shutdown, stable water level, offsite power is available.
 - No reactor coolant is leaked to the reactor containment vessel.
 Maintain average water temperature below 100°C in the Pressure

Suppression Chamber.

Other N.A.

Dack to page top

Q Search

Press Releases

Press Release (Mar 29,2011)

Plant Status of Fukushima Daiichi Nuclear Power Station (as of 8:00 PM Mar 29th)

*Updates are underlined

All 6 units of Fukushima Daiichi Nuclear Power Station have been shut down.

Unit 1 (Shut down)

- -Explosive sound and white smoke were confirmed after the big quake occurred at 3:36 pm Mar 12th. It was assumed to be hydrogen explosion.
- -At approximately 2:30 am on March 23rd, seawater injection to the nuclear reactor through the feed water system was initiated.
- -At approximately 10:50 am on March 24th, white fog-like steam arising from the roof part of the reactor building was observed.
- -At approximately 11:30 am on March 24th, lights in the main control room was restored.
- -We had been injecting seawater into the reactor, but from 3:37 $\rm pm$ on March 25th, we started injecting freshwater.
- -At 8:20 am on March 29th, we switched injection of fresh water from using fire engine to temporary electrical pump.

Unit 2 (Shut down)

- -At approximately 6:00 am on March 15th, an abnormal noise began emanating from nearby Pressure Suppression Chamber and the pressure within the chamber decreased.
- -At 6:20 pm on March 21st, white smoke was confirmed arising from the top of the reactor building. As of 7:11 am on March 22nd, smoke decreased to the level to nearly non-existent.
- -We have been injecting seawater into the reactor, but from 10:10 am on March 26th, we started injecting fresh water (with boric acid).
- -At approximately 4:46 pm on March 26th, the light in the main control room was restored.
- -We had been injecting fresh water in to the reactor utilizing fire pump, however, we switched over to utilizing temporary electrical pump from 6:31 pm on March 27th.

Unit 3 (Shut down)

- -Explosive sound and white smoke were confirmed at 11:01am March 4th. It was assumed to be hydrogen explosion.
- -At 8:30am on March 16th, fog like steam was confirmed arising from the reactor building.
- -At approximately 6:15 am on March 17th the pressure of the Suppression Chamber has temporarily increased. We were preparing to implement measures to reduce the pressure of the reactor containment vessel
- (partial discharge of air containing radioactive material to outside) in order to fully secure safety. However, at present, it is not a situation to immediately implement measures and discharge air containing radioactive material to outside. We will continue to monitor the status
- of the pressure of the reactor containment vessel.
- -At approximately 4:00 pm, March 21st, light gray smoke was confirmed arising from the floor roof of the Unit 3 building. On March 22nd, the color of smoke changed to somewhat white and it is slowly dissipating. -At approximately 10:45 pm on March 22nd, the light in the main control room was turned on.
- -At around 4:20 pm on March 23rd, our staff confirmed light black smoke belching from the Unit 3 building. At approximately 11:30 pm on March 23rd and 4:50 am on March 24th, our employee found no signs of smoke. -We had been injecting sea water into the reactor pressure vessel, but from 6:02 pm on March 25th, we started injecting freshwater.
- -We had been injecting fresh water in to the reactor utilizing fire pump, however, we switched over to utilizing temporary electrical pump from 8:30 pm on March 28th.

Unit 4 (outage due to regular inspection)

-At approximately 6 am on March 15th, we confirmed the explosive sound and the sustained damage around the 5th floor rooftop area of the Nuclear

1 EPCO : Press Release | Plant Status of Fukusnima Dalichi Nuclear Power Station (as of ... Page 2 of 3

Reactor Building.

-On March 15th and 16th, we respectively confirmed the outbreak of fire at the 4th floor of the northwestern part of the Nuclear Reactor Building. We immediately reported this matter to the fire department and the related authorities. TEPCO employees confirmed that each fire had already died down by itself.

-At this moment, we do not consider any reactor coolant leakage inside the reactor happened.

Unit 5 (outage due to regular inspection)

-Sufficient level of reactor coolant to ensure safety is maintained.

-At 5 am, March 19th, we started the Residual Heat Removal System Pump (C) in order to cool the spent fuel pool.

-At 2:30 pm, March 20th, the reactor achieved reactor cold shutdown. At around 5:24 pm on March 23rd, when we switched the temporary Residual Heat Removal System Seawater Pump, it has stopped automatically. At

around 4:14 pm, March 24th we replaced the pump, and restarted cooling of reactor at around 4:35 pm.

-At this moment, we do not consider any reactor coolant leakage inside the reactor happened.

Unit 6 (outage due to regular inspection)

-Sufficient level of reactor coolant to ensure safety is maintained. -We completed the repair work on the emergency diesel generator (A). -At 10:14 pm, March 19th, we started the Residual Heat Removal System Pump

(B) of Unit 6 in order to cool the spent fuel pool.

-At 7:27 pm, March 20th, the reactor achieved reactor cold shutdown.

-In relation to the two seawater side pumps of the Residual Heat Removal System, we switched the power source from temporary to permanent at 3:38 PM and 3:42PM, Mar 25 respectively.

-At this moment, we do not consider any reactor coolant leakage inside the reactor happened.

Today's work for cooling the spent fuel pools

-From 2:17pm to 6:18pm, March 29th, water was injected into Unit 3 from a concrete pumping vehicle. Until March 28th, we had been injecting sea water, however, from March 29th, we started injecting fresh water. -At Unit 2, seawater had been injected from the fire fighting pump, but at 4:30pm, March 29th, we started injecting fresh water from a temporary motor driven pump instead. The water was injected until 6:25pm, March 29th.

-We are considering further spraying subject to the conditions of spent fuel pools.

Casualty

-Presence of 2 TEPCO employees at the site is not confirmed on March 11th. -Dresence of 2 TEPCO employees at the site is not confirmed on March 11th. -On March 24th, it was confirmed that 3 workers from cooperative companies who were in charge of cable laying work in the 1st floor and the underground floor of turbine building were exposed to the radiation dose of more than 170 mSv. 2 of them were confirmed that their skins on legs were contaminated. After they were decontaminated, since there was a possibility of beta ray burn injury, they were transferred to Fukushima Medical University Hospital. The third worker was also transferred to Fukushima Medical University Hospital on March 25th. Later, the 3 workers were transferred to National Institute of Radiological Sciences in Chiba Prefecture. They all left the hospital on March 28th. Regarding this event, TEPCO has reported to the related government ministries and agencies on measures to be taken to assure appropriate radiation dose control and radiation exposure related operations. We will inform the related parties of countermeasures and continue to take all possible measures to future management.

Others

-We measured radioactive materials (iodine etc.) inside of the nuclear power station area (outdoor) by monitoring car and confirmed that radioactive materials level is getting higher than ordinary level. As listed below, we have determined that specific incidents stipulated in article 15, clause 1 of Act on Special Measures Concerning Nuclear Emergency Preparedness (Abnormal increase in radiation dose measured at site boundary) have occurred.

Determined at 4:17 pm Mar 12th (Around Monitoring Post 4) Determined at 8:56 am Mar 13th (Around Monitoring Post 4) Determined at 2:15 pm Mar 13th (Around Monitoring Post 4) Determined at 3:50 am Mar 14th (Around Monitoring Post 6) Determined at 4:15 am Mar 14th (Around Monitoring Post 2) Determined at 9:27 am Mar 14th (Around Monitoring Post 3) Determined at 9:37 pm Mar 14th (Around main entrance) Determined at 6:51 am Mar 15th (Around main entrance) Determined at 4:17 pm Mar 15th (Around main entrance) Determined at 4:17 pm Mar 15th (Around main entrance) Determined at 4:17 pm Mar 15th (Around main entrance) Determined at 11:05 pm Mar 15th (Around Main entrance) Determined at 8:58 am Mar 19th (Around MP5) From now on, if the measured figure fluctuates and goes above and below 500 micro Sv/h, we deem that as the continuous same event and will not regard that as a new specific.incidents stipulated in article 15, clause 1 of the Act on Special Measures Concerning Nuclear Emergency Preparedness (Abnormal increase in radiation dose measured at site boundary) has occurred. In the interim, if we measure a manifestly abnormal figure and it is evident that the event is not the continuous same event, we will determine and notify.

- -The national government has instructed evacuation for those local residents within 20km radius of the periphery and evacuation to inside for those residents from 20km to 30km radius of the periphery, because it is possible that radioactive materials are discharged.
- -At around 10:37 am March 21st, water spraying to common spent fuel pool and finished at 3:30 pm (conducted by TEPCO).

-At around 3:37 pm, March 24th, electricity supply to common spent fuel pool has started from external power source. At around 6:05 pm, fuel pool cooling pump was started to cool the pool.

- -We found no signs of abnormal situation for the casks by visual observation during the patrol activity. A detailed inspection is under preparation.
- -At Units 5 and 6, in order to prevent hydrogen gas from accumulating within the buildings, we have made three holes on the roof of the reactor building for each unit.

-In total 12 fire engines are lent for the water spraying to the spent fuel pools and water injection to the nuclear reactors by various regional fire departments* as well as Tokyo Fire Department. Also, instruction regarding the setting and operation of large scale decontamination system was provided by Niigata City Fire Headquarter and

- Hamamatsu City Fire Headquarter. *: Koriyama Fire Department, Iwaki Fire Brigade Headquarters, Fire Headquarters of Sukagawa District Wide Area Fire-fighting Association, Yonezawa City Fire Headquarters, Utsunomiya City Fire Headquarters, Fire
- Headquarters of Aizu-Wakamatsu wide area municipal association, Saitama City Fire Bureau, and Niigata City Fire Bureau. -By March 22nd. Units 1 through 6 were started to be energized from the
- -By March 22nd, Units 1 through 6 were started to be energized from the external power source. -At 3:30PM, March 27th, we found that there was water in the trenches of
- Units 1 to 3. The radioactive emission at the surface of the water was 0.4 mSv/h for Unit 1 and over 1,000 mSv/h for Unit 2. As for Unit 3, we couldn't have access to the surface because of debris. We will continue to monitor water in the trenches.

-We will continue to take all measures to ensure the safety and to continue monitoring the surrounding environment around the Power Station.

Dack to page top

http://www.tenco.co.in/en/press/corp_com/release/11032012_e.html