Core Thermal Hydraulics

Code Description

- Sub-Channel Analyzer for NuScale Reactors (SCANR)
- Calculates the enthalpy and flow distributions in rod bundle nuclear fuel elements and cores under single- and two-phase flow conditions for <u>both steady-state and transient</u> simulations
- Minimum departure from nucleate boiling ratio (MDNBR) calculation using local thermal-hydraulic conditions
- Quasi-transient, quasi-three-dimensional, homogeneous equilibrium two-phase mixture models
- Modularized and modernized code structure using Fortran 90/95
- Input/output unit conversions, MDNBR iterations on operating parameters, and automatic generation of subchannel/lumped channel models

Analysis Requirements

MDNBR Calculation Process

Physical Models

- Critical heat flux models
 - Rod bundle and round tube
- Heat transfer models
 - Heat transfer regime dependent
- Pressure drop models
 - Friction factor
 - Form loss coefficient
 - Two-phase multiplier
- Void fraction models
 - Subcooled flow quality
 - Void fraction
- Inter-channel interaction models
 - Turbulent mixing
 - Void drift
- Water/steam properties
 - IAPWS-IF97
- Fuel/gap/clad properties
 - Temperature and burnup dependent

]]3(a)

Numerical Models

- Coolant subchannels
 - High flow solution scheme
 - Early COBRA series of codes (COBRA-IIIC)
 - Low flow solution scheme
 - Later COBRA series of codes (COBRA-IV-I, VIPRE-01)
- Fuel rods
 - Fully implicit
 Finite difference scheme
 - Stable for all time steps
 - Solution by Gaussian Elimination

Validation Plan

t the second sec

]]^{3(a)}

54

Validation Matrix Example

]]^{3(a)}

NUSCALE

Power[™]

Design Implementation

- CHF correlation development by providing local thermal-hydraulic conditions
- DNB analyses for normal operation, anticipated operational occurrences, and postulated accidents
- Boundary conditions generation for fuel performance analyses

]]

Code Interfaces

]]^{3(a)}

System Thermal Hydraulics

System Thermal Hydraulic Code Selection Process

Key Requirements

- will be used by NuScale to perform transient and accident analyses (Ch. 15) and containment analyses (Sec. 6.2)
- needs to accurately model natural circulation
- provide coupled containment and reactor pressure vessel simulation
- enable evaluation of important 3dimensional effects
- include high fidelity containment/condensation modeling
- have an existing quality pedigree and easy to maintain

Codes Evaluated

- TRACE
- RELAP5
- RETRAN
- GOTHIC

Code Selection Results

- GOTHIC selected as licensing basis code for systems thermal hydraulics
- Primary reasons were quality pedigree, range of assessment base, and modeling fidelity (3D)
- Plan to verify and validate GOTHIC for LOCA, non-LOCA, and containment performance

Code Description

- · A general purpose thermal-hydraulic analysis code
- Porous media approach for transient, multi-dimensional, multicomponent, multi-phase flow systems in complex geometries
- Key Features
 - condensation and film heat transfer
 - 3-D fluid flow behavior
 - subdivided modeling
 - comprehensive drop behavior models
 - mixing and stratification models
 - variable porosity
 - equipment models: pumps, valves, heat exchangers, fan coolers, etc.

Multi-Zone Modeling

- Combine lumped and subdivided volumes
- Superimposed conductors
- Finite volume solution
 - Semi-explicit

Multiphase/Multicomponent

- Vapor
 - Steam
 - N gas components
- Drops
 - N fields
- Liquid
 - Films
 - Pools
 - Slugs
 - Stratified flow
- Mist
- Ice

Development Plan

]]^{3(a)}

64

Validation Plan

- Existing test data used in the assessment of GOTHIC for containment analyses
- Existing test data to be used in the assessment of GOTHIC for transient and accident analyses
- Planned NuScale integral effects test program
- Planned SIET helical coil steam generator test program

]]

Code Interfaces

66 Nonproprietary © 2012 NuScale Power, LLC **NUScale**

]]^{3(a)}

Example Assessment

Void Fraction in Large Pipes

- Large diameter, quiescent voiding may become important during SBLOCA if primary natural circulation is broken.
- Most steam/water experimental data are at much smaller diameters than the NuScale riser.
- · Search for large diameter data yielded an interesting experiment

Void Fraction Experimental Facility

- 36" steady state void fraction data* is available, which will be part of our code assessment
 - variety of pressures
 - variety of steam mass flow rates
 - void fractions measured based upon dPs at three radial locations (measured radial profile)

*ACNP-63035, Joint US/Euratom R&D Program: AT(11-1)-1186, Quarterly Progress Report, October-December 1963.

GOTHIC Model

- Match experimental flow areas and approximate L/D measurement location
- Modeling options are set to defaults no tuning
- Results shown are time and axially averaged

GOTHIC Model

Top View:

- 36" round tube
- 5x5 Cartesian grid

Side View:

- 10 L/D tube
- 10 axial levels 4 to 6 averaged

Predicted versus Measured

- Kataoka-Ishii* correlation similar to code results
- Similar trend for all three predictions
- Data is not qualified yet

*I. Kataoka, M. Ishii, "Drift Flux Model for Large Diameter Pipe and New Correlation for Pool Void Fraction," *Int. J. Heat Mass Transfer*, Vol. 30, 1987, No 9, pp. 1927-1939.

Predicted versus Kataoka-Ishii Model

- Good agreement for RELAP5 and especially GOTHIC
- Compared to raw data:
 - Less scatter
 - Better trending

Event Selection and Categorization

Nonproprietary © 2012 NuScale Power, LLC

Event Selection Process

- Failure modes and effects analysis of plant systems, structures, and components
- Comprehensive list of initiating events
- Categorization of events by frequency of occurrence
 - Anticipated operational occurrences (AOOs)
 - Postulated accidents (PAs)

Event Selection Process

Categorization of Events by Type

SRP CH 15

- 1. Increase in heat removal by the secondary system
- 2. Decrease in heat removal by the secondary system
- 3. Decrease in reactor coolant system (RCS) flow rate
- 4. Reactivity and power distribution anomalies
- 5. Increase in reactor coolant inventory
- 6. Decrease in reactor coolant inventory
- 7. Radioactive release from a subsystem or component

NuScale DCD CH 15

]]

NUSCALE

Methods Development

EMDAP for NuScale LOCA Analysis

Evaluation Model Development and Assessment Process (EMDAP)^[1]

EMDAP - Element 1: Establish Requirements for Evaluation Model Capability^[1]

EMDAP - Element 2: Develop Assessment Base^[1]

EMDAP - Element 3: Develop Evaluation Model^[1]

[1] U.S. Nuclear Regulatory Commission, "Transient and Accident Analysis Methods," Regulatory Guide 1.203, December 2005.

Nonproprietary © 2012 NuScale Power, LLC

To Adequacy Decision

EMDAP - Element 4: Assess Evaluation Model Adequacy^[1]

Methods Development Summary

Method Class	Use/Application	
Core neutronics methods	 Core power distributions Nuclear uncertainties Safety analysis physics parameters Safety limits Operating limits 	
Core TH methods	 CHF correlation development DNBR correlation safety and design limits DNBR operating limits 	
SBLOCA methods	Decrease in RCS inventory/SBLOCA	
Non-LOCA methods	 Increase in heat removal by the secondary system Decrease in heat removal by the secondary system Decrease in RCS flow rate Reactivity and power distribution anomalies Increase in reactor coolant inventory 	

Core Neutronics Methods

- Benchmarking of CASMO/SIMULATE to MCNP
- Nuclear uncertainties
- Core power distributions
- Safety analysis physics parameters
- Safety limits
- Operating limits
- S3K RIA applications

Core Thermal Hydraulic Methods

- Benchmarking to STERN CHF and mixing tests
- CHF correlation development
- DNBR correlation safety and design limits
- DNBR operating limits

Core Thermal Design

Core Thermal Design Process

SBLOCA Methods

- No core uncovery/less complex EM sufficient
- R. G. 1.203 process
 - PIRT
 - Assessment base includes NuScale integral data and large-scale helical coil steam generator data
 - GOTHIC validation
- Appendix K approach
 - Identification of elements that are not applicable
 - GOTHIC EM
 - Break spectrum
 - Compliance with 50.46(c)

SBLOCA PIRT Results

Nonproprietary © 2012 NuScale Power, LLC

SBLOCA PIRT Results

NUSCALE POWER"

Nonproprietary © 2012 NuScale Power, LLC

88

[[

PIRT Conclusions

89	Nonproprietary © 2012 NuScale Power, LLC	NUSCALE Power™

Non-LOCA Methods

- PIRT
- Benchmarking to integral test data
- GOTHIC reactor coolant system and containment models
- DCD Chapter 15 AOO and accident identification

Regulatory Acceptance Criteria

- R.G. 1.183 radiological limits
 - Gap release from cladding failures (PCMI or DNBR)
 - Source term transport
- Cladding failure due to temperature (cal/gm), PCMI (Δcal/gm), or DNBR
- Core coolability limits on cal/gm, incipient melting, mechanical energy, and loss of geometry (fuel rod ballooning post-DNB)
- RCS peak pressure < ASME Service Limit C

Methodology for Fuel-Related Acceptance Criteria

]]^{3(a)}

SCANR Model

NUSCALE

POWER"

NuScale versus Large PWR Applications

- S3K has been reviewed and approved by NRC for PWR rod ejection incident (REA).
- SCANR will be benchmarked to VIPRE-01.
- Full core S3K and SCANR models
- Only one symmetric ejected rod core location
- Low initial fuel power density compared to PWRs
- Low initial mass flux compared to PWRs
- Low fuel exposure compared to PWRs

Schedule and Work Plan

Safety Analysis and Nuclear Methods Work Plan

DBA: Design Basis Accident

BDBA: Beyond Design Basis Accident

Pre-Application Schedule

]]

NuScale Power Responses to NRC's RIS 2011-02 Rev. 1

]]^{3(a)}

SA Codes and Methods Report Outline

NUSCALE

POWER^M

Conclusions

- Relying on well-established industry codes and data for safety analysis
- A large majority of models, correlations, and data are directly applicable
- Some additional data and model/code development are needed to address unique design characteristics (e.g., helical coil steam generators)
- Passive and inherent safety features provide significant margins to safety in a number of key areas (e.g., no core uncovery during LOCAs).
- GOTHIC used in a different application envelope than the NRC uses
- Other code packages such as SIMULATE or SCANR may require additional attention during pre-application.
- Preparation, review, and approval of safety analysis codes and methods are resource intensive for both the applicant and the NRC.
- An agreed upon pre-application engagement activities and schedule early is important for success.

