Beaver Valley Power Station

Unit 1/2

1/2-ODC-3.01

ODCM: Dispersion Calculation Procedure and Source Term Inputs

Document Owner Manager, Nuclear Environmental & Chemistry

Revision Number	1
Level Of Use	General Skill Reference
Safety Related Procedure	Yes
Effective Date	12/29/06

Beaver Valley Power Station	Procedure Nu	umber: 1/2-ODC-3.01
Title:	Unit:	Level Of Use:
	1/2	General Skill Reference
ODCM: Dispersion Calculation Procedure and Source Term Inputs	Revision: 1	Page Number: 2 of 12
	· L	
TABLE OF CONTENTS		
1.0 PURPOSE		3
2.0 SCOPE		_
3.0 REFEFERENCES AND COMMITMENTS		
3.1 References		3
3.2 Commitments		
4.0 RECORDS AND FORMS		
4.1 Records		
4.2 Forms		
6.0 ACCEPTANCE CRITERIA		
7.0 PREREQUISITES.		
8.0 PROCEDURE		*
8.1 Summary of Dispersion and Deposition Methodology		
8.2 Summary of Source Term Inputs		
8.2.1 Liquid Source Term Inputs		
8.2.2 Gaseous Source Term Inputs		
ATTACHMENT A BV-1 AND 2 RELEASE CONDITIONS ATTACHMENT B LIQUID SOURCE TERM INPUTS		
ATTACHMENT C GASEOUS SOURCE TERM INPUTS		
	``	

	Beaver Valley Power Station	Procedure Ni	
Fitle:		Unit:	1/2-ODC-3.01 Level Of Use:
ODCM: I	Dispersion Calculation Procedure and Source Term Inputs	1/2 Revision:	General Skill Reference Page Number: 3 of 12
1.0 <u>P</u>	URPOSE	_ <u>l</u>	<u> </u>
	his procedure contains the basic methodology that was used and deposition (D/Q) .	for calculat	ing dispersion (χ/Q)
1.1.1	Prior to issuance of this procedure, these items were locat ODCM.	ed in Apper	ndix A of the old
Li	his procedure also contains the input parameters to the variou censee and its subcontractors for determination of the liquid ixes.	-	
1.2.1	Prior to issuance of this procedure, these items were locat ODCM.	ed in Apper	ndix B of the old
2.0 <u>S</u>	COPE		
	nis procedure is applicable to all station personnel (including alified to perform activities as described and referenced in the		
3.0 <u>R</u>	EFEFERENCES AND COMMITMENTS		
3.1 <u>R</u>	eferences		
3.1.1	NUS-2173, Development Of Terrain Adjustment Factors For Power Station, For the Straight-Line Atmospheric Dispers June 1978		5
3.1.2	NUREG/CR-2919, XOQDOQ: Computer Program For T Of Routine Effluent Releases At Nuclear Power Stations,		0
3.1.3	Regulatory Guide 1 23, Meteorological Measurement Pro	gram for Ni	clear Power Plants
3.1.4	Regulatory Guide 1.111, Methods for Estimating Atmospl of Gaseous Effluents In Routine Releases From Light-Wa Revision 1, July 1977	,	
3.1.5	NRC Gale Code,		
3.1.6	SWEC LIQ1BB Code,		
3.1.7	SWEC GAS1BB Code,		
3.1.8	NUREG-1301, Offsite Dose Calculation Manual Guidance Effluent Controls for Pressurized Water Reactors (Generic No. 1)		
3.1.9	1/2-ADM-1640, Control of the Offsite Dose Calculation N	Topust	

Beaver Valley Power Station	Procedure Nu	umber: 1/2-ODC-3.01
Title:	Unit: 1/2	Level Of Use: General Skill Reference
ODCM: Dispersion Calculation Procedure and Source Term Inputs	Revision: 1	Page Number: 4 of 12

- 3.1.10 1/2-ADM-0100, Procedure Writer's Guide
- 3.1.11 1/2-ADM-0101, Review and Approval of Documents
- 3.1.12 CR 05-01169, Chemistry Action Plan for Transition of RETS, REMP and ODCM. CA-19, Revise procedure 1/2-ODC-3.01 to change document owner from Manager, Radiation Protection to Manager, Nuclear Environmental & Chemistry.

12-29-06

- 3.2 <u>Commitments</u>
 - 3.2.1 None

4.0 <u>RECORDS AND FORMS</u>

- 4.1 <u>Records</u>
 - 4.1.1 Any calculation supporting generation of dispersion, deposition, or source term mixes shall be documented, as appropriate, by a retrievable document (e.g.; letter or calculation package) with an appropriate RTL number.

4.2 <u>Forms</u>

4.2.1 None

5.0 PRECAUTIONS AND LIMITATIONS

- 5.1 This procedure contains the information that was previously contained in Appendix A and Appendix B of the previous BV-1 and 2 Offsite Dose Calculation Manual.
 - 5.1.1 In regards to this, the Tables that were transferred from Appendix A and Appendix B to the appropriate ATTACHMENTS of this procedure will still contain a prefix denoting an "A" or "B".

6.0 ACCEPTANCE CRITERIA

- 6.1 Any change to this procedure shall contain sufficient justification that the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50, and not adversely impact the accuracy or reliability of effluent dose or setpoint calculation.
 - 6.1.1 All changes to this procedure shall be prepared in accordance with 1/2-ADM-0100^(3.1.10) and 1/2-ADM-1640.^(3.1.9)
 - 6.1.2 All changes to this procedure shall be reviewed and approved in accordance with 1/2 ADM-0101^(3.1.11) and 1/2-ADM-1640.^(3.1.9)

7.0 **PREREQUISITES**

7.1 The user of this procedure shall be familiar with ODCM structure and content.

E	Beaver Valley Power Station	Procedure Nu	imber: 1/2-ODC-3.01
Title:		Unit: 1/2	Level Of Use: General Skill Referen
ODCM: Dispe	ersion Calculation Procedure and Source Term Inputs	Revision: 1	Page Number: 5 of 12
8.0 <u>PROC</u>	CEDURE		
8.1 <u>Summ</u>	ary of Dispersion and Deposition Methodology		
de ac	nnual average and grazing season average values of rela eposition (D/Q) were calculated for continuous and inter- tivity from the site according to the straight-line airflow $G-1.111^{(3.1.4)}$	mittent gas	eous releases of
8.1.1.1	Undecayed and undepleted sector average χ/Q and l each of sixteen 22.5-degree sectors at the site bound receptors.		
8.1.1.2	For an elevated release, (i.e.; occurring at a height the of a nearby structure) credit was taken for the effect comprised of the physical release height plus mome terrain height at a given receptor.	ive release	height which is
8.1.1.3	A building wake correction factor was used to adjus releases.	t calculatio	ns for ground-level
8.1.1.4	Airflow reversals were also accounted for by applyi recirculation factors for both ground and elevated re		
8.1.1.5	The methodology employed in the calculation of int values is that described in NUREG/CR-2919. ^(3.1.2)	ermittent re	elease χ/Q and D/Q
	he site continuous gaseous release points that have been llowing:	evaluated in	nclude the
8.1.2.1	PV-1/2: The Unit 1/2 Gaseous Waste/Process Vent draft cooling tower	attached to	the Unit 1 natural
8.1.2.2	CV-1 and CV-2: The Unit 1 Rx Containment/SLCF Filtered Pathway	RS Vented t	he Unit 2 SLCRS
8.1.2.3	VV-1 and VV-2: The Unit 1 Ventilation Vent and t Pathway	he Unit 2 S	LCRS Unfiltered
8.1.2.4	TV-2: The Unit 2 Turbine Building Vent		
8.1.2.5	CB-2: The Unit 2 Condensate Polishing Building V	ent	
8.1.2.6	DV-2: The Unit 2 Decontamination Building Vent		
8.1.2.7	WV-2: The Unit 2 Gaseous Waste Storage Tank Va	ult Vent	
8.1.3 Th	e intermittent releases are from PV-1/2, VV-1, VV-2, C	V-1 and C	V-2.

	Be	eaver Valley Power Station	Procedure N	1/2-ODC-3.01
Title:			Unit: 1/2	Level Of Use: General Skill Reference
ODCM ⁻	Disper	sion Calculation Procedure and Source Term Inputs	Revision:	Page Number:
			1	<u>6 of 12</u>
8.1.4	trea	y PV-1/2 was considered to be an elevated release wi ted as ground level releases. A summary of the release ations is given in ATTACHMENT A.		
8.1.5	• •	site meteorological data for the period January 1, 1976 e used as input for the annual-average calculations.	6 through D	ecember 31, 1980
8.1	1.5.1	The grazing season was represented by a six-month October 31 for each year of the 5-year meteorologi season corresponds reasonably well with the growi	cal data bas	
8.1	1.5.2	The data were collected according to guidance in N in Section 2.3 of the BVPS-2 FSAR.	IRC RG-1.2	$3^{(3.1.3)}$ as described
8.1	1.5.3	The parameters used in the χ/Q and D/Q calculation direction, and ΔT as an indicator of atmospheric stat (35 ft) and ΔT (150-35 ft) were used for all release which required the use of 500 ft winds and ΔT (500 of the release height (510 ft).	ability. The points exce	lower level winds pt the Process Vent
8.1.6	inte	annual average and grazing season χ/Q and D/Q valurmittent radioactive releases were calculated at the sit rest vegetable garden, nearest milk cow, nearest milk	e boundary	, nearest resident,
8.1	1.6.1	In the case of the Process Vent releases, several of evaluated in each downwind sector to determine the values.	-	
8.1	1.6.2	The distances of the limiting maximum individual release points are given in ATTACHMENT E (Tab		
			at the second	al locations for the
8.1	1.6.3	The continuous release annual average χ/Q values a Containment Vents, Ventilation Vents, Process Ven Decontamination Building Vent, Waste Gas Storag Polishing Building Vent are given in ATTACHME 2.2-10) of 1/2-ODC-2.02. Continuous release annu release points are also given at ten incremental dow	nt, Turbine I e Vault Ver NT F (Tabl al average ;	nt, and Condensate es 2.2-4 through X/Q's for these same
	1.6.3	Containment Vents, Ventilation Vents, Process Ven Decontamination Building Vent, Waste Gas Storag Polishing Building Vent are given in ATTACHME 2.2-10) of 1/2-ODC-2.02. Continuous release annu	nt, Turbine e Vault Ver NT F (Table al average f nwind distance se points ar of 1/2-OD	nt, and Condensate es 2.2-4 through X/Q's for these same ances of 0-5 miles. re given in C-2.02 for the same

Be	eaver Valley Power Station	Procedure N	
			1/2-ODC-3.01
Title:		Unit: 1/2	Level Of Use: General Skill Reference
ODCM: Dispers	ion Calculation Procedure and Source Term Inputs	Revision:	Page Number: 7 of 12
8.1.6.6	Likewise, the Turbine Building Vent χ/Q 's and D/Q Polishing Building as well due to its location adjace	~ ~ ~	
χ/Q	TACHMENT M (Tables 2.3-35 through 2.3-38) of 1/2 values for batch releases originating from the Contain Process Vent releases respectively.		
8.1.7.1	The values in these tables are based on 32 hours per Ventilation Vent purges and 74 hours per year of Pro-	•	
8.2 <u>Summar</u>	y of Source Term Inputs		
8.2.1 <u>Liq</u> ı	uid Source Term Inputs		
8.2.1.1	Inputs to the NRC Gale Code used for generation of Mixes are shown in ATTACHMENT B (Table B:1a	-	uid Source Term
8.2.1.2	Inputs to the SWEC LIQ1BB Code used for generat Term Mixes are shown in ATTACHMENT B (Table		2 Liquid Source
8.2.2 <u>Gase</u>	eous Source Term Inputs		
8.2.2.1	Inputs to the SWEC GAS1BB Code for generation of Mixes are shown in ATTACHMENT C (Table B:2a		aseous Source Term
8.2.2.2	Inputs to the SWEC GAS1BB Code for generation of Mixes are shown in ATTACHMENT C (Table B:2b		seous Source Term
	· · · · ·		

Beav	er Valley Pov		Procedure Num 1	1.100000000000000000000000000000000000	
Title: ODCM: Dispersion	Calculation Procedu	re and Source Term I	nputs	Unit: 1/2 Revision:	Level Of Use: General Skill Reference Page Number:
	BV-1 AN	ATTACHMENT A Page 1 of 1 D 2 RELEASE CON	DITION	<u> </u>	<u>8 of 12</u>
		TABLE A:1			
	VV-1 VENTILATION VENT (PAB EXHAUST) VV-2 SLCRS UNFILTERED	CV-1 RX CONTAINMENT/ SLCRS VENT CV-2 RX CONTAINMENT/		GASEOUS E/PROCESS	TV-2 TURBINE BUILDING VENT
	PATHWAY	SLCRS FILTERED PATHWAY			
TYPE OF RELEASE	GROUND LEVEL	GROUND LEVEL	ELI	EVATED	GROUND LEVEL
	Long Term And Short Term	Long Term And Short Term		Term And ort Term	Long Term And Short Term
Release Point Height (m)	26	47		155	33
Adjacent Building Height (m)	19	44		155	33
Relative Loca tion To Adjacent Structures	E. Side Of Primary Auxiliary Bldg	Top Center Of Containment Dome	Atop Co	ooling Tower	Turbine Building
Exit Velocity(m/sec)	NA	NA		9.4	NA
Internal Stack Diameter (m)	NA	NA		0.25	NA
Building Cross- Sectional Area (m ²)	1600	1600		NA	NA
Purge Frequency* (hours/year)	32	32		74	NA
Purge Duration (hrs/release)	8	8		NA	NA
	calculations only				

	<u></u>									
· B	Beaver Valley Power Station						Procedure Number: 1/2-ODC-3.01			
Title:					[1	Unit:	Leve	el Of Use:		
ODOLO D'		Alex D	1	T T.	h	1/2 Revision:		neral Skill Reference		
ODCM: Dispe	rsion Calcul	ation Proce	dure and Sour	ce Term Inpi	uts	1	1 age	9 of 12		
			ATTACHI	MENT B				·		
			Page 1							
		LIQI	JID SOURCE	TERM INP	UTS					
			TABLI	$\Xi B^{-1}a$						
INPUTS TO C	GALE CODE	E FOR GEN			uid so	URCE	TERM	I MIXES		
	BV	-1 PWR INP	UTS			VAI	LUE			
Thormal Downer	Lovel (maga	watta)				ר. ס י ד	66 000			
Thermal Power Level (megawatts) Plant Capacity Factor						. 21	66.000 800.			
Mass Of Primary Coolant (thousand lbs)						3	45.000			
Percent Fuel W	ith Cladding 1	Defects					.120			
Primary System	1 Letdown Ra	te (gpm)					60.000			
Letdown Cation	Demineraliz	er Flow					6.000			
Number Of Stea					3.000					
Total Steam Flo					11.620					
Mass Of Steam	In Each Steam	m Generator			6.772					
Mass Of Liquid	In Each Stea	m Generator	(thousand lbs)				97.000			
Total Mass Of S	Secondary Co	alant (thausa	and lbs)			12	96.000			
Mass Of Water							91.000			
Blowdown Rate		•	,				33,900			
Primary To Sec			<i>'</i>)		100.000					
Fission Product	Carry-Over I	Fraction					.001			
Halogen Carry-	Over Fraction	h					.010			
Condensate Der				•	0.000					
Radwaste Diluti							22.500			
		•								
		RV_	I LIQUID WAST	E INPLITS						
		<u>, , , , , , , , , , , , , , , , , </u>		COLLECTION	DELAY	DECC	DNTAM	INATION		
			FRACTION	TIME	TIME		FACTO			
STREAM	(gal/day)	OF PCA	DISCHARGE	(days)	(days)	<u> I </u>	Cs	OTHERS		
Shim Bleed	1.32E4	1.000	0.000	11.260	7.220	1E7	1E7	1E7		
Rate		2								
Equipment	6.00E2	1.000	0.000	11.260	7.220	1E7	1E7	1E7		
Drains	0.0002	1.000	0.000	11,200	1.220	/ برا ا	11.7	1.27		
Clean Waste	7.50E1	1.000	1.000	0.071	0.648	1E5	2E4	1E5		
Input	1.201	1.000	1.000	0.071	0.070	CCTT	2.LH			
-	1 25 12 2	0.025	1.000	0.071	0.648	165	2E4	165		
Dirty Waste Input	1.35E3	0.035	1.000	0.071	0.048	1E5	2£4	1E5		

--

Blowdown

Untreated

Blowdown

9.75E4

0.0

0.071

0.648

--

1E5

--

2E4

1E5

--

1.000

Bldg.Drains

F	Beaver V	Vallev F	Power Sta	tion		Procedure	Number: $1/2-C$	DDC-3.01
Title:					·	Unit:		el Of Use:
			÷ .			1/2		eneral Skill Reference
ODCM: Dispo	ersion Calcu	lation Proc	cedure and Sou	Irce Term	Inputs	Revision: 1	Pag	e Number: 10 of 12
			ATTACI	IMENT B				
			Page	2 of 2				
		LIC	QUID SOURC		NPUTS			
			TABI	LE B:1b				
INPUTS T	O SWEC LI		E FOR GENER	ATION OF	F BV-2 LIQ	UID SC	URCE	
·		BV-	2 PWR INPUTS					VALUE
Thern	al Power Lev	vel (megawa	tts)					2766.000
	Capacity Fact		,					.800
	Of Primary C		sand lbs)					385,000
	nt Fuel With							.120
	ry System Le							57.000
Letdo	wn Cation De	mineralizer	Flow					5.700
	er Of Steam		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					3.000
	Steam Flow (m)					11.600
			Generator (thous	and lbs)	•			8.700
			Generator (thous					100.000
Total	Mass Of Seco	ondary Coola	int (thousand lbs)				2000.000
			ator (thousand lb					298.000
	lown Rate (th							22,300
	ry To Second							100.000
	n Product Ca							.001
Halog	en Carry-Ove	er Fraction			÷			.010
	ensate Demin		V Fraction					.700
	aste Dilution							7.800
	·	B	V-2 LIQUID WA	ASTE INPUT			UNIT AN	MINATION
	FLOW RATE	FRACTION	FRACTION	TIME	TIME	DEC	FACTO	
STREAM	(gal/day)	OF PCA	DISCHARGE	(hrs)	(hrs)	<u> </u>	CsRb	OTHERS
Containment	40	1.000	1.0	35.5	6.2	1E3	1E4	1E4
Sump								
Auxiliary Building Sump	200	0.100	1.0	35.5	6.2	1E3	1E4	1E4
Miscellaneous Sources	700	0.010	1.0	35.5	6.2	1E3	1E4	1E4
Rx Plant Samples	35	1.000	1.0	35.5	6.2	1E3	1E4	1E4
Lab Drains	400	0.002	1.0	35.5	6.2	1E3	1E4	1E4
Cond. Demin. Rinse Water	2685	1.1E-4	1.0	35.5	6.2	1E3	1E4	1E4
CVCS	60		1.0	1300	173	1E4	4E3	1E5
Turbine Bldg Drains	7200		1.0					

Beaver Valley Power Station	Procedure Nu	umber: 1/2-ODC-3.01		
	Unit:	Level Of Use:		
	1/2	General Skill Referen		
CM: Dispersion Calculation Procedure and Source Term Inputs	Revision: 1	Page Number: 11 of 12		
ATTACHMENT C	<u> </u>	11 01 12		
Page 1 of 2				
GASEOUS SOURCE TERM INPUTS				
GABLOOD DOORCE TERMING OT	,			
TABLE B:2a INPUTS TO SWEC GAS1BB CODE FOR GENERATION OF BV-1 GAS1	OUS SOUR	CE TERM MIXES		
BV-1 PWR INPUTS		VALUE		
Thermal Power Level (megawatts)		2766.000		
Plant Capacity Factor		.800		
Mass Of Primary Coolant (thousand lbs)		385.000		
Percent Fuel With Cladding Defects		.120		
Primary System Letdown Rate (gpm)		57.000		
Letdown Cation Demineralizer Flow		5.700		
Number Of Steam Generators		3.000		
Total Steam Flow (million lbs/hr)		11.600		
Mass Of Steam In Each Steam Generator (thousand lbs)		8.700		
Mass Of Liquid In Each Steam Generator (thousand lbs)		100.000		
Total Mass Of Secondary Coolant (thousand lbs)		2000.000		
Mass Of Water In Steam Generator (thousand lbs)		298.000		
Blowdown Rate (thousand lbs/hr)		52.000		
Primary To Secondary Leak Rate (lbs/day)		100.000		
Fission Product Carry-Over Fraction		.001		
Halogen Carry-Over Fraction		.010		
Condensate Demineralizer Flow Fraction		0.000		
Radwaste Dilution Flow (thousand gpm)		15.000		
BV-1 GASEOUS WASTE INPUTS		VALUE		
There Is Not Continuous Stripping Of Full Letdown Flow	<u> </u>			
Hold Up Time For Xenon (days)		39,000		
Hold Up Time For Krypton (days)		2.000		
Primary Coolant Leak To Auxiliary Building (lb/day)		160.000		
Auxiliary Building Leak Iodine Partition Factor		7.5E-3		
Gas Waste System Particulate Release Fraction		0.000		
Auxiliary Building Charcoiodine Release Fraction		1.000		
Auxiliary Building Particulate Release Fraction		1.000		
Containment Volume (million cu-ft)		1.800		
Frequency Of Primary Coolant Degassing (times/yr)		2.000		
Primary To Secondary Leak Rate (lb/day)		100.000		
There Is A Kidney Filter		2000000		
Containment Atmosphere Cleanup Rate (thousand cfm)		2.000		
Purge Time Of Containment (hours)		8.000		
There Is Not A Condensate Demineralizer		0.000		
Iodine Partition Factor (gas/liq) In Steam Generator		0.010		
Frequency Of Containment Building High Vol Purge (times/yr)*		4.000		
Containment Volume Purge Iodine Release Fraction		1.000		
Containment Volume Purge Particulate Release Fraction		1.000		
Steam Leak To Turbine Building (lbs/hr)		1700.000		
Fraction Iodine Released From Blowdown Tank Vent		0.000		
Fraction Iodine Released From Main Condensate Air Ejector		0.000		
		0.440		
There Is Not A Cryogenic Off Gas System				

Beaver Valley Power Station	Procedure N	umber: 1/2-ODC-3.01
le:	Unit:	Level Of Use:
	1/2	General Skill Reference
DCM: Dispersion Calculation Procedure and Source Term Inputs	Revision:	Page Number: 12 of 12
ATTACHMENT C		12 01 12
Page 2 of 2		
GASEOUS SOURCE TERM INPUT	q	
GASEOUS SOURCE TERM INFUT	3	
TABLE B:2b		
INPUTS TO SWEC GAS1BB CODE FOR GENERATION OF BV-2 GAS	EOUS SOUR	CE TERM MIXES
BV-2 PWR INPUTS		VALUE
Thermal Power Level (megawatts)		2766.000
Plant Capacity Factor		.800
Mass Of Primary Coolant (thousand lbs)		385.000
Percent Fuel With Cladding Defects		.120
Primary System Letdown Rate (gpm)		57.000
Letdown Cation Demineralizer Flow		5.700
Number Of Steam Generators		3.000
Total Steam Flow (million lbs/hr)		11.600
Mass Of Steam In Each Steam Generator (thousand lbs)		8.700
Mass Of Liquid In Each Steam Generator (thousand lbs)		100.000
Total Mass Of Secondary Coolant (thousand lbs)		2000,000
Mass Of Water In Steam Generator (thousand lbs)		298.000
Blowdown Rate (thousand lbs/hr)		22.300
Primary To Secondary Leak Rate (lbs/day)		100.000
Fission Product Carry-Over Fraction		.001
Halogen Carry-Over Fraction		.010
Condensate Demineralizer Flow Fraction		.700
Radwaste Dilution Flow (thousand gpm)		7.800
BV-2 GASEOUS WASTE INPUTS		VALUE
There Is Not Continuous Stripping Of Full Letdown Flow		
Hold Up Time For Xenon (days)		45.800
Hold Up Time For Krypton (days)		2.570
Primary Coolant Leak To Auxiliary Building (lb/day)		160.000
Auxiliary Building Leak Iodine Partition Factor		7.5E-3
Gas Waste System Particulate Release Fraction		0.000
Auxiliary Building Charcoiodine Release Fraction		0.100
Association Devilding Derticulate Delegas Francian		0.010
Auxiliary Building Particulate Release Fraction		1.800
Containment Volume (million cu-ft)		1.000
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr)		2.000
Containment Volume (million cu-ft)		
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr)		2.000
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day)		2.000
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day) <u>There Is A Kidney Filter</u>		2.000 100.000
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day) <u>There Is A Kidney Filter</u> Containment Atmosphere Cleanup Rate (thousand cfm)		2.000 100.000 20.000
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day) <u>There Is A Kidney Filter</u> Containment Atmosphere Cleanup Rate (thousand cfm) Purge Time Of Containment (hours)		2.000 100.000 20.000
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day) <u>There Is A Kidney Filter</u> Containment Atmosphere Cleanup Rate (thousand cfm) Purge Time Of Containment (hours) <u>There Is Not A Condensate Demineralizer</u>		2.000 100.000 20.000 8.000
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day) <u>There Is A Kidney Filter</u> Containment Atmosphere Cleanup Rate (thousand cfm) Purge Time Of Containment (hours) <u>There Is Not A Condensate Demineralizer</u> Iodine Partition Factor (gas/liq) In Steam Generator Frequency Of Containment Building High Vol Purge (times/yr)*	,	2.000 100.000 20.000 8.000 0.010 4.000
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day) <u>There Is A Kidney Filter</u> Containment Atmosphere Cleanup Rate (thousand cfm) Purge Time Of Containment (hours) <u>There Is Not A Condensate Demineralizer</u> Iodine Partition Factor (gas/liq) In Steam Generator Frequency Of Containment Building High Vol Purge (times/yr)* Containment Volume Purge Iodine Release Fraction	,	$\begin{array}{c} 2.000\\ 100.000\\ \hline 20.000\\ \hline 8.000\\ \hline 0.010\\ \hline 4.000\\ \hline 1.000\\ \end{array}$
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day) <u>There Is A Kidney Filter</u> Containment Atmosphere Cleanup Rate (thousand cfm) Purge Time Of Containment (hours) <u>There Is Not A Condensate Demineralizer</u> Iodine Partition Factor (gas/liq) In Steam Generator Frequency Of Containment Building High Vol Purge (times/yr)* Containment Volume Purge Iodine Release Fraction Containment Volume Purge Particulate Release Fraction	,	$\begin{array}{c} 2.000\\ 100.000\\ \hline \\ 20.000\\ \hline \\ 8.000\\ \hline \\ 0.010\\ \hline \\ 4.000\\ \hline \\ 1.000\\ \hline \\ 1.000\end{array}$
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day) <u>There Is A Kidney Filter</u> Containment Atmosphere Cleanup Rate (thousand cfm) Purge Time Of Containment (hours) <u>There Is Not A Condensate Demineralizer</u> Iodine Partition Factor (gas/liq) In Steam Generator Frequency Of Containment Building High Vol Purge (times/yr)* Containment Volume Purge Iodine Release Fraction Containment Volume Purge Particulate Release Fraction Steam Leak To Turbine Building (lbs/hr)	,	$\begin{array}{c} 2.000\\ 100.000\\ \hline \\ 20.000\\ \hline \\ 8.000\\ \hline \\ 0.010\\ \hline \\ 4.000\\ \hline \\ 1.000\\ \hline \\ 1.000\\ \hline \\ 1700.000\\ \end{array}$
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day) <u>There Is A Kidney Filter</u> Containment Atmosphere Cleanup Rate (thousand cfm) Purge Time Of Containment (hours) <u>There Is Not A Condensate Demineralizer</u> Iodine Partition Factor (gas/liq) In Steam Generator Frequency Of Containment Building High Vol Purge (times/yr)* Containment Volume Purge Iodine Release Fraction Containment Volume Purge Particulate Release Fraction Steam Leak To Turbine Building (lbs/hr) Fraction Iodine Released From Blowdown Tank Vent	,	$\begin{array}{c} 2.000\\ 100.000\\ \hline \\ 20.000\\ \hline \\ 8.000\\ \hline \\ 0.010\\ \hline \\ 4.000\\ \hline \\ 1.000\\ \hline \\ 1.000\\ \hline \\ 1700.000\\ \hline \\ 0.000\\ \hline \end{array}$
Containment Volume (million cu-ft) Frequency Of Primary Coolant Degassing (times/yr) Primary To Secondary Leak Rate (lb/day) <u>There Is A Kidney Filter</u> Containment Atmosphere Cleanup Rate (thousand cfm) Purge Time Of Containment (hours) <u>There Is Not A Condensate Demineralizer</u> Iodine Partition Factor (gas/liq) In Steam Generator Frequency Of Containment Building High Vol Purge (times/yr)* Containment Volume Purge Iodine Release Fraction Containment Volume Purge Particulate Release Fraction Steam Leak To Turbine Building (lbs/hr)	,	$\begin{array}{c} 2.000\\ 100.000\\ \hline \\ 20.000\\ \hline \\ 8.000\\ \hline \\ 0.010\\ \hline \\ 4.000\\ \hline \\ 1.000\\ \hline \\ 1.000\\ \hline \\ 1700.000\\ \end{array}$