From:	Juliana Hoskinson
To:	Hayden, Elizabeth; "bulletin news"
Cc:	Brenner, Eliot; Mitlyng, Viktoria
Subject:	RE: News Stories left out
Date:	Monday, March 28, 2011 10:56:23 AM

Good morning Beth,
Thank you for your email. We're looking into these stories and I'll get back to you shortly.

Best regards,
Juliana.

Juliana Hoskinson

Director of Product Management, Bulletin News
[11190 Sunrise Valley Drive, Suite 130
Reston, VA 20191]
(703) 483-6192 (direct)
$\left[\frac{(b)(6)}{(703) 483-6112(\text { (fax })}\right]$

From: Hayden, Elizabeth [mailto:Elizabeth.Hayden@nrc.gov]
Sent: Monday, March 28, 2011 10:54 AM
To: 'bulletin news'; 'Juliana Hoskinson'
Cc: Brenner, Eliot; Mitlyng, Viktoria
Subject: News Stories left out
Juliana, Paul,
Can you shed some light on why these stories are not showing up in our news clips package? This is a lot of stories.

Beth Hayden
Senior Advisor
Office of Public Affairs
U.S. Nuclear Regulatory Commission
.-- Protecting People and the Environment
301-415-8202
elizabeth.hayden@nrc.gov

From: Mitlyng, Viktoria
Sent: Monday, March 28, 2011 8:47 AM
To: Brenner, Eliot; Hayden, Elizabeth
Cc: Chandrathil, Prema
Subject:
Below is the coverage of Friday's forum with Durbin and Kirk. None of which is in today's NRC in the News; not even a representative sample, Is our news service not catching Midwestern news? In addition, this weekend, coverage related to at least two other Region

3 plants is missing - Quad Cities and Kewaunee. Throughout the Japan crisis, most of the coverage in Midwestern press has not been picked up in the NRC in the News. And we have been way too busy to collect the clips and send them to HQ. Can we look into why this is happening? Please let us know. Thank you. Vika
http:/lillinoisreview,typepad.com/illinoisreview/2011/03/kirk-opening-remarks-at-nuclear-safety-forum.html
http://chicago.cbslocal.com/2011/03/25/kirk-durbin-grill-nuclear-safety-officials/
http://www.suntimes.com/news/metro/4514592-418/kirk-durbin-quiz-nuclear-experts.htm/
http://www.milive.com/news/grand. rapids/index.ssf/2011/03/stores_running_out_of_potassiu.html
http://www.examiner.com/conservative-in-chicago/durbin-kirk-question-nuclear-officials
http://www.chicagotribune.com/news/chi-ap-il-illinoisnuclearpl.0,2925280.story
http:/lwww.chicagotribune.com/news/chi-ap-il-illinoisnuclearpl.0,2925280.story
NBC
http://www.nbcchicago.com/news/local/Illinois-Senators-question-nuclear-experts-118690579.htms
ABC
http://abclocal.go.com/wls/video?id=8035110\#global
FOX
http:///www.myfoxchicago.com/dpp/news/metro/illinois-nuclear-power-plants-kirk-durbin-reactors-japan-meltdown-fears-20110315
http://www.myfoxchicago.com/dpp/news/metrolilinois-nuclear-power-plants-20110313
CBS - QUESTIOINS ABOUT IG REPORT
http://chicage.cbslocal.com/2011/03/25/kirk-durbin-grill-nuclear-safety-officials/

Viktoria Mitlyng
Office of Public Affairs
US Nuclear Regulatory Commission
Region III
Lisle, IL 60532
Tel 630/829-9662
Fax 630/515-1026
e-mail: viktoria.mitlyng@nrc.gov

From:	Burnell, Scott
To:	Chokshi, Nilesh; Munson, Clifford; Ake_Jon; Brenner, Eliot; Hayden, Elizabeth
Subject:	RE: Peter Yanev??
Date:	Monday, March 28, 2011 9:23:02 AM

Understood - I just wanted to make sure there wasn't some new contract wed issued regarding Fukushima. Thanks.

From: Chokshi, Nilesh
Sent: Monday, March 28, 2011 9:22 AM
To: Munson, Clifford; Burnell, Scott; Ake, Jon; Brenner, Eliot; Hayden, Elizabeth
Subject: Re: Peter Yanev??
Peter is avery well known eq engineer. He was the founder of EQE. He is known for post eq investigations. To my knowledge he has been inactive for few years. I know him very well.

Sent from NRC Blackberry
Nilesh
(b)(6)

From: Munson, Clifford
To: Chokshi, Nilesh
Sent: Mon Mar 28 07:53:30 2011
Subject: FW: Peter Yanev??
Do you know Peter? Did he do work for us?

From: Manson, Clifford
Sent: Monday, March 28, 2011 7:52 AM
To: Ake, Jon; Burnell, Scott; Bensi, Michelle
Cc: Brenner, Eliot; Hayden, Elizabeth
Subject: RE: Peter Yanev??
He is a structural engineer and works for Risk Solutions International. See link for more info.

Cliff
http://www.rsirisk.com/yanev.html

From: Aka, Jon
Sent: Sunday, March 27, 2011 8:17 PM
To: Burnell, Scott; Munson, Clifford; Bensi, Michelle
Cc: Brenner, Eliot; Hayden, Elizabeth
Subject: RE: Peter Yanev??
Scott, I have heard the name but I am not familiar with the guy. I'll check around. Jon

From: Burnell, Scott

Sent: Sunday, March 27, 2011 8:54 AM
To: Munson, Clifford; Ake, Jon; Bensi, Michelle
Cc: Brenner, Eliot; Hayden, Elizabeth
Subject: Peter Yanev??
Importance: High
Cliff, Jon, Michelle;
This is from today's New York Times piece on the tsunami at Fukushima: http://www.nytimes.com/2011/03/27/worid/asia/27nuke,htm/? $r=18 \mathrm{hp}=8$ \&pagewanted=all
"They had years to prepare at that point, after Kashiwazaki, and I am seeing the same thing at Fukushima," said Peter Yanev, an expert in seismic risk assessment based in California, who has studied Fukushima for the United States Nuclear Regulatory Commission and the Energy Department.

Do we know this guy? I know we've been very careful to avoid commenting on Fukushima, and certainly not in this way! I'm thinking Yanev overstated his credentials and the reporter didn't check with us.

I'm much less concerned with the articie's slam against us for "not going far enough" with risk-based seismic analysis, that's nothing new.

Scott

Good morning,

The topics for today's scheduling_call are as follows:

- Contingency Planning for Commercial Contracts, DOE Lab Agreements, and Interagency Agreements - ADM/DC
- FOIA Coordination during recent events - OIS

Please feel free to come to Mary's office (O-17H20) for the meeting. The bridge line for this call is 1-800-857-0150, pass code $[(6)(6)$

Thank you,
Renee Taylor
Administrative Assistant to the Executive Director for Operations
U.S. Nuclear Regulatory Commission
(301) 415-1701

From:	Gray, Kathy
Sent:	Monday, March 28, 2011 4:13 PM.
To:	Alter, Peter; Hasselberg, Rick; RST01 Hoc
Subject:	RE: RST Watch Bill Updated as of 1500 on Monday March 28 th
Follow Up Flag:	Follow up
Flag Status:	Flagged

Peter,
OK, thanks.
One more change - Bill Ruland will cover as RST Director on 4/5/2011, 1500-2300 swing shift. Thanks!

From: Alter, Peter

Sent: Monday, March 28, 2011 4:02 PM
To: Gray, Kathy
Cc: Hasselberg, Rick
Subject: RE: RST Watch Bill Updated as of 1500 on Monday March 28th
Kathy,
Continue to send any corrections to Peter, Rick, and RST01.
We collect any change emails from all three places before we hand a New one to the OST and email to all those concerned.
We will include the changes in the attachment to your email, tomorrow before 1400.
Peter

From: Gray, Kathy
Sent: Monday, March 28, 2011 3:47 PM
To: Hasselberg, Rick; Alter, Peter
Subject: RE: RST Watch Bill Updated as of 1500 on Monday March 28th
Shall I now only send updates to you and Peter Alter directly and not via RST01? I sent over some updates around 11:25am this morning, but they were not incorporated into this recent update. I had sent it to you, Peter and RST01. I am sure this is a very difficult task .. hang in there, you all are doing a GREAT job! I can be reached at home if you wish to call (b)(6)

From: Hasselberg, Rick

Sent: Monday, March 28, 2011 3:23 PM
To: Brown, Eva; Brown, Frederick; Ruland, William; Holian, Brian; Hiland, Patrick; Skeen, David; Hackett, Edwin; Case, Michael; Howe, Allen; Dudes, Laura; Dozier, Jerry; Alter, Peter; RST01 Hoc; Hasselberg, Rick; Rini, Brett; Boyce, Tom (RES); Dion, Jeanne; Thomas, Eric; Collins, Frank; Orr, Mark; Morlang, Gary; Schoenebeck, Greg; Bukharin, Oleg; Circle, Jeff; Lair, Steven; Helton, Donald; Arndt, Steven; Skarda, Raymond; Mitman, Jeffrey; Gilmer, James; Ward, Leonard; Harrison, Donnie; Esmaili, Hossein; Fuller, Edward; Chung, Donald; Zoulis, Antonios; Gavrilas, Mirela; Gilmer, James; Mitman, Jeffrey; Alter, Peter; Norton, Charles; Summers, Robert; Brown, Michael; Shea, James; Shea, James; Thorp, John; Hart, Ken; Roggenbrodt, William; Williams, Donna; Solorio, Dave; Reeves, Rosemary; Bhachu, Ujagar; Gardocki, Stanley; McGovern, Denise; Padovan, Mark; Jervey, Richard; Horn, Brian; Kugler, Andrew; Bloom, Steven; Ramadan, Liliana; Lube, Donald
Cc: Gray, Kathy; Dozier, Jerry
Subject: RST Watch Bill Updated as of 1500 on Monday March 28th

RST Members,

Please accept our (my) apologies for the multiple screw-ups on the watch bill. We're learning from our mistakes and hope to better coordinate this in the immediate future. As a starter, I am off shift to concentrate on team management and staffing issues. Hopefully that will help.

Attached is the RST watch bill as of this time (1500) on Monday $3 / 28$. You'll notice we have some holes yet to fill. If you need to change something or to offer yourself for an additional shift, please do the following:

For RST Directors, please contact Kathy Gray. Kathy oversees the RST Director watch standers. Kathy will pass her updates to me (Rick Hasselberg) and to Peter Alter.

For Accident Analysts/Severe Accident analysts - please contact Jerry Dozier. Jerry is overseeing the staffing of that position. Jerry will pass his updates to me and to Peter Alter.

For all other RST positions, please e-mail both me and Peter Alter. Peter and I will make all the changes on the watch bill and make sure that our changes get captured in the Master Roll-up document maintained by the OST/EST.

Please do not mark-up a watch bill sitting around the Ops Center. That doesn't help.
Please do not contact the OST/EST to make changes. That only leads to confusion. All changes have to reach either Peter Alter or me. We will get changes placed on the RST and master watch bills. Thanks!

And by the way, you folks are awesome! You're part of the history of this agency and most likely the history of the nuclear industry. For better or worse, we're all in this together.
God bless us all.

Rick

Rick Hasselberg

Sr. Emergency Response Coordinator
NRC Reactor Safety Team
Office of Nuclear Security and Incident Response
M/S T-4A43
Office - 301-415-6417

```
From: ANS.HOC@nrc,gov
Subject: ACTION: (OUO) Commissioners Assistants Briefing Notification
Date:
Attachments:
Monday, March 28, 2011 6:48:58 AM
USNRC Earthcuake-Tsunami Uodate 032811 0430EDT.pdf
```

There will be a Commissioners Assistants Briefina aiven bv the NRC HQ at 0730 EDT concerning the Reactor Events in Japan. Call ${ }^{(b)(6)}$ approximately 5 minutes before the scheduled start time. When prompted, enter security code ${ }^{(6)(6)}$ You may call 301-816-5164 at this time and follow the voice prompts if you do not wish to receive this notification from our Automatic Notification System.

From:
Sent:
To:
Cc:
Subject:
Attachments:

OST01 HOC
Monday, March 28, 2011 7:18 AM
RST01 Hoc; PMT01 Hoc; PMT02 Hoc; PMT11 Hoc
FOIA Response.hoc Resource
FW: Radiation data by MEXT
20110328_18.pdf; 20110328_18_II_unofficial.pdf; 20110328_19.pdf; 20110328_20.pdf; 20110328_21.pdf; 20110328_22.pdf
-----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Monday, March 28, 2011 7:18 AM
To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03 HOC
Subject: FW: Radiation data by MEXT

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYT.^ckFORCE@STATE.GOV]
Sent: Monday, March 28, 2011 7:16:43 AM
To, (b)(6)
(b)(6)

Subject: FW: Radiation data by MEXT
Auto forwarded by a Rule

Jennifer Clever
Japan Emergency Command Center
U.S. Embassy, Tokyo

BU
This email is UNCLASSIFIED -----Original Message--...
From: saigai03@mext.go.jp [mailto:saigai03@mext.go.jp]
Sent: Monday, March 28, 2011 8:13 PM

```
To: (b)(6)
Cc:(b)(6)
(b)(6)
```


$\overline{\text { CTR; }}$ (b)(6)

Subject:Radiation data by MEXT
Dear Mr. Cherry,
Please see attached the document.

Sincerely yours,
Eiko SENAMI

	都道府県名	定 時 降下物		
		$\mathrm{I}-131$	Cs－137	備考
1	北海道（札幌市）	不検出	不検出	
2	青森県（青森市）	不検出	不検出	
3	岩手県（盛岡市）	31	不検出	
4	宮城県	－	－	震災被害によって計測不能
5	秋田県（秋田市）	不検出	不検出	
6	山形県（山形市）	110	61	
7	福島県（福島市）	－	－	震災対応により計測不能
8	茨城県（ひたちなか市）	76	不検出	
9	栃木県（宇都宮市）	320	73	
10	群馬県（前橋市）	6.9	不検出	
11	埼玉県（さいたま市）	57	16	
12	千葉県（市原市）	42	24	
13	東京都（新宿区）	100	36	
14	神奈川県（茅ヶ崎市）	6.4	不検出	
15	新潟県（新潟市）	不検出	不検出	
16	富山県（射水市）	不検出	不検出	
17	石川県（金沢市）	6.0	不検出	
18	福井県（福井市）	不検出	不検出	
19	山梨県（甲府市）	不検出	不検出	
20	長野県（長野市）	不検出	不検出	
21	岐阜県（各務原市）	不検出	不検出	測定中であったが到達
22	静岡県（御前崎市）	不検出	不検出	
23	愛知県（名古屋市）	不検出	不検出	
24	三重県（四日市市）	不検出	不検出	
25	滋賀県（大津市）	不検出	不検出	
26	京都府（京都市）	不検出	不検出	
27	大阪府（大阪市）	不検出	不検出	
28	兵庫県（神戸市）	不検出	不検出	
29	奈良県（奈良市）	不検出	不検出	
30	和歌山県（和歌山市）	不検出	不検出	
31	鳥取県（東伯郡）	不検出	不検出	
32	島根県（松江市）	不検出	不検出	
33	岡山県（岡山市）	不検出	不検出	
34	広島県（広島市）	不検出	不検出	
35	山口県（山口市）	不検出	不検出	
36	徳島県（徳島市）	不検出	不検出	
37	香川県（高松市）	不検出	不検出	
38	愛媛県（八幡浜市）	不検出	不検出	
39	高知県（高知市）	不検出	不検出	
40	福岡県（太宰府市）	不検出	不検出	
41	佐賀県（佐賀市）	不検出	不検出	
42	長崎県（大村市）	不検出	不検出	
43	熊本県（宇土市）	不検出	不検出	
44	大分県（大分市）	－	－	機器調整中
45	宮崎県（宮崎市）	不検出	不検出	
46	鹿児島県（鹿児島市）	不検出	不検出	
47	沖縄県（南城市）	不検出	不検出	

福島第一原子力発電所の20Km以遠のモニタリング結果について
平成 23 年 3 月 28 日 19 時 00 分現在
文 部 科 学 省
○文部科学省が集計した結果 注）太下線データが今回追加分
＊ 1 GM（ガイガ一＝ミュ一ラ一計測管）における値
＊2 電離箱における値
＊ 3 NaI （ヨウ化ナトリウム）シンチレータにおける値
＊4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	測定位置	天候	実施者
測定エリア【1】（約60Km北西）	3月28日7時33分	$3.2 * 2$	N： 37° 44^{\prime} $12.6^{\prime \prime}$ E： 140° 28^{\prime} $02.9^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア 【2】（約55Km北西）	3月28日9時18分	5.0 ＊2	$\mathrm{N}:$ 37° 41^{\prime} $03.5^{\prime \prime}$ $\mathrm{E}:$ 140° 33^{\prime} $08.2^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア 【3】（約45Km北西）	3月28日9時45分	$5.5 * 2$	$\mathrm{N}:$ 37° 45^{\prime} $12.5^{\prime \prime}$ $\mathrm{E}:$ 140° 44^{\prime} $05.5^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア 【4】（約50Km北西）	3月28日9時40分	$1.8 * 2$	N： 37° 39^{\prime} $00.1^{\prime \prime}$ E： 140° 35^{\prime} $00.2^{\prime \prime}$	降雨無し	文部科学省
測定エリア【5】（約45Km北）	$\begin{gathered} \text { 3月28日13時00分 } \\ \simeq 16 \text { 時00分 } \end{gathered}$	$0.5 \sim 1.2^{* 2 * 4}$	N：$\quad{\frac{37}{}{ }^{\circ}}^{\circ} \quad \frac{47}{}^{\prime} ; \quad \frac{04.8^{\prime \prime}}{16.4}{ }^{\prime \prime}$	隆雨無し	且本原子力研究開発機構
測定エリア 【5】（約45Km北）	$\begin{gathered} \text { 3月28日13時00分 } \\ \sim 15 \text { 時00分 } \\ \hline \end{gathered}$	$0.6 \sim 1.2^{* 2 * 4}$	$\mathrm{N}:$ 37° 47^{\prime} $04.8^{\prime \prime}$ $\mathrm{E}:$ 140° 55^{\prime} $16.4^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア［5］（約45Km北）	3月28日10時14分	0.0 ＊2	$\mathrm{N}:$ 37° 47^{\prime} $04.8^{\prime \prime}$ $\mathrm{E}:$ 140° 55^{\prime} $16.4^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア 【6】（約45Km北）	3月28日10時31分	1.2 ＊2	$\mathrm{N}:$ 37° 42^{\prime} $02.7^{\prime \prime}$ $\mathrm{E}:$ 140° 58° $00.0^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア 【7】（約45Km北）	3月28日10時38分	3.3 ＊2	$\mathrm{N}:$ 37° 41^{\prime} $13.6^{\prime \prime}$ $\mathrm{E}:$ 140° 57^{\prime} $16.0^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア【10】（約40Km北西）	3月28日10時02分	$1.2^{* 2}$	$\mathrm{N}:$ 37° 35^{\prime} $00.1^{\prime \prime}$ $\mathrm{E}:$ 140° 35^{\prime} $\prime \prime$	降雨無し	文部科学省
測定エリア【11】（約40Km北西）	3月28日10時10分	2.2 ＊2	N： 37° 34^{\prime} $00.0^{\prime \prime}$ $\mathrm{E}:$ 140° 34^{\prime} $00.1^{\prime \prime}$	降雨無し	文部科学省
測定エリア【12】（約40Km西）	3月28日11時42分	0.7 ＊2	$\mathrm{N}:$ 37° 25^{\prime} $14.9^{\prime \prime}$ $\mathrm{E}:$ 140° 35^{\prime} $12.3^{\prime \prime}$	降雨無し	文部科学省
測定エリア【13】（約40Km西）	3月28日11時48分	0.7 ＊2	$\mathrm{N}:$ 37° 26^{\prime} $06.0^{\prime \prime}$ $\mathrm{E}:$ 140° 37^{\prime} $05.8^{\prime \prime}$	降雨無し	文部科学省
測定エリア【14】（約35Km西）	3月28日12時00分	$0.4 * 2$	$\mathrm{N}:$ 37° 26^{\prime} $02.6^{\prime \prime}$ $\mathrm{E}:$ 140° 38^{\prime} $13.8^{\prime \prime}$	降雨無し	文部科学省

＊ 1 GM（ガイガー＝ミューラ一計測管）における値
＊2 電離箱における値
＊3 NaI （ヨウ化ナトリウム）シンチレータにおける値
＊4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	測定位置		天候	実施者
測定エリア【15】（約35Km西）	3月28日12時10分	1.9 ＊2	 $\mathrm{N}:$ 37° 26^{\prime} $\mathrm{E}:$ 140° 40^{\prime}	$\begin{aligned} & \hline 15.0^{\prime \prime} \\ & 14.8^{\prime \prime} \\ & \hline \end{aligned}$	降雨無し	文部科学省
測定エリア【20】（約45Km北西）	3月28日10時42分	$1.1{ }^{* 2}$	$\mathrm{N}:$ 37° 29^{\prime} $\mathrm{E}:$ 140° 34^{\prime} $\mathrm{N}:$ 37° 30^{\prime}	$06.7 \prime \prime$ $15.1 "$ 18.0	降雨無し	文部科学省
測定エリア【21】（約30Km西北西）	3月28日12時50分	4.2 ＊2	$\begin{array}{\|crr\|} \hline \mathrm{N}: & 37^{\circ} & 30^{\prime} \\ \mathrm{E}: & 140^{\circ} & 42^{\prime} \\ \hline \end{array}$	$\begin{aligned} & 08.0^{\prime \prime} \\ & 02.4 \prime \prime \end{aligned}$	降雨無し	文部科学省
測定エリア【21】（約30Km西北西）	3月28日11時03分	5.3 ＊2	$\mathrm{N}:$ 37° 30^{\prime} $\mathrm{E}:$ 140° 42^{\prime} N 37°	$\begin{aligned} & 08.0^{\prime \prime} \\ & 02.4^{\prime \prime} \end{aligned}$	降雨無し	文部科学省
測定エリア【22】（約30Km西北西）	3月28日10時55分	0.8 ＊2	$\mathrm{N}:$ 37° 30^{\prime} $\mathrm{E}:$ 140° 39^{\prime} N 37° 30^{\prime}	$\begin{aligned} & 11.5^{\prime \prime} \\ & 08.0^{\prime \prime} \end{aligned}$	降雨無し	文部科学省
測定エリア【23】（約30Km西北西）	3月28日11時20分	1.4 ＊2	$\mathrm{N}:$ 37° 30^{\prime} $\mathrm{E}:$ 140° 34^{\prime} $\mathrm{N}:$ 37° 33^{\prime}	$\begin{aligned} & \hline 05.3^{\prime \prime} \\ & 11.3^{\prime \prime} \\ & \hline \end{aligned}$	降雨無し	文部科学省
測定エリア【31】（約30Km西北西）	3月28日10時29分	$25.0 * 2$	$\mathrm{N}:$ 37° 33^{\prime} $\mathrm{E}:$ 140° 44^{\prime} N 37°	$\begin{aligned} & 12.5^{\prime \prime} \\ & 13.9^{\prime \prime} \\ & \hline \end{aligned}$	降雨無し	日本原子力研究開発機構
測定エリア【32】（約30Km北西）	3月28日10時51分	45．0＊2	$\begin{array}{\|ccc\|} \hline \mathrm{N}: & 37^{\circ} & 35^{\prime} \\ \mathrm{E}: & 140^{\circ} & 45^{\prime} \\ \hline \end{array}$	$\begin{aligned} & 11.7^{\prime \prime} \\ & 04.0^{\prime \prime} \end{aligned}$	降雨無し	日本原子力研究開発機構
測定エリア【33】（約30Km北西）	3月28日12時05分	43．0＊2	$\mathrm{N}:$ 37° 36^{\prime} $\mathrm{E}:$ 140° 45^{\prime} 	$\begin{aligned} & 09.6^{\prime \prime} \\ & 02.5^{\prime \prime} \end{aligned}$	降雨無し	日本原子力研究開発機構
測定エリア【33】（約30Km北西）	3月28日11時31分	25．0＊2	$\mathrm{N}:$ 37° 36^{\prime} $\mathrm{E}:$ 140° 45°	$\begin{aligned} & 09.6^{\prime \prime} \\ & 02.5^{\prime \prime} \\ & \hline \end{aligned}$	降雨無し	日本原子力研究開発機構
測定エリア【33】（約30Km北西）	3月28日11時18分	25.0 ＊2	$\mathrm{N}:$ 37° 36^{\prime} $\mathrm{E}:$ 140° 45° 37°	$\begin{aligned} & 09.6^{\prime \prime} \\ & 02.5^{\prime \prime} \end{aligned}$	降雨無し	日本原子力研究開発機構
測定エリア【34】（約30Km北西）	3月28日13時05分	7.7 ＊2	$\mathrm{N}:$ 37° 33 $\mathrm{E}:$ 140° 44^{\prime} $\mathrm{N}:$ 37° 36^{\prime}	$\begin{array}{r} \hline 00.8^{\prime \prime} \\ 07.0^{\prime \prime} \\ \hline \end{array}$	降雨無し	文部科学省
測定エリア【36】（約40Km北西）	3月28日9時51分	8.0 ＊2	 $\mathrm{N}:$ 37° 36^{\prime} $\mathrm{E}:$ 140° 40°	$\begin{aligned} & 18.8^{\prime \prime} \\ & 07.9^{\prime \prime} \end{aligned}$	降雨無し	日本原子力研究開発機構
測定エリア【51】（約40Km南西）	3月28且14時50分	$0.3{ }^{* 3}$		$\begin{aligned} & 7 \\ & \hline \\ & \hline \end{aligned}$	隆雨無し	福島県
測定エリア【51】（約40Km南西）	3月28日11時16分	0.3 ＊3	$\begin{array}{ll} N_{i} & \vdots \\ E_{i} & \vdots \end{array}$	$\begin{aligned} & \overline{\prime \prime} \\ & = \\ & =1 \end{aligned}$	降雨無し	福島県
測定エリア【52】（約40Km西）	3月28日15時28分	$0.4{ }^{* 3}$		$\stackrel{7}{\prime \prime}$	隆雨無し	福島県
測定エリア【52】（約40Km西）	3月28日11時30分	$0.3{ }^{* 3}$	$\frac{\mathrm{N}:}{\mathrm{E}}$ ：	$\stackrel{7}{\square}$	隆雨無し	福島県
測定エリア 161】（約40Km北西）	3月28日14時53分	$7.7{ }^{* 3}$	$\begin{array}{ll} \mathrm{N}_{i} & \vdots \\ \mathrm{E}_{i} & \vdots \end{array}$	$\bar{n} \bar{n}$	隆雨無し	福島県
測定エリア【61】（約40Km北西）	3月28日12時43分	$7.7{ }_{-}^{*}$	$\begin{aligned} & \mathrm{N}: \\ & \mathrm{E}_{\mathrm{E}} \\ & \hline \end{aligned}$	$\frac{\pi}{n}$	隆雨無し	福島県

＊ 1 GM（ガイガ一＝ミューラ一計測管）における値
＊2 電離箱における値
＊3 $\mathrm{NaI}(ヨ ウ$ 化ナトリウム）シンチレータにおける値
＊ 4 測定時間内における測定値の変動範囲

＊ 1 GM （ガイガ一＝ミューラ一計測管）における値
＊2電離箱における値
＊3 $\mathrm{NaI}(ヨ ウ$ 化ナトリウム）シンチレータにおける値
＊4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	測定位置	天候	実施者
測定エリア 【861（約55km西）	3月28日14時00分	$\underline{2.0}{ }^{* 2}$	N_{i} 37° $23 ;$ $57.0^{\prime \prime}$ E_{i} 140° 19 35.0^{\prime}	隆雨無し	防衛省
測定エリア【86】（約55km西）	3月28日6時00分	2.0 ＊2	 $\mathrm{N}:$ 37° 23^{\prime} $57.0^{\prime \prime}$ E： 140° 19^{\prime} $35.0^{\prime \prime}$	降雨無し	防衛省
測定エリア［87】（約30km西南西）	3月28日14時00分	1．2＊${ }^{*}$		隆雨無し	防衝省
測定エリア［87】（約30km西南西）	3月28日6時00分	2.4 ＊2	$\mathrm{N}:$ 37° 21^{\prime} $42.0^{\prime \prime}$ $\mathrm{E}:$ 140° 42^{\prime} $54.0^{\prime \prime}$	降雨無し	防衛省

H23．3．28 19：00

3.28 19：00 $\quad \mu \mathrm{Sv} / \mathrm{h}$（マイクロシーベルト毎時）			
日時	日本原子力研究開発機構原子力科学研究所 （茨城県東海村）	日本原子力研究開発機構核燃料サイクルエ学研究所 （茨城県東海村）	東京大学弥生 （茨城県東海村）
3月28日			
0：00	1.78	1.10	1.51
1：00	1.77	1.10	1.48
2：00	1.77	1.10	1.53
3：00	1.76	1.10	1.53
4：00	1.76	1.10	1.41
5：00	1.75	1.10	1.42
6：00	1.75	1.10	1.42
7：00	1.75	1.10	1.55
8：00	1.75	1.10	1.47
9：00	1.73	1.00	1.51
10：00	1.73	1.00	1.40
11：00	1.72	1.00	1.53
12：00	1.71	1.00	1.44
13：00	1.71	1.00	1.50
14：00	1.70	1.00	1.45
15：00	1.65	1.00	1.43
16：00	1.68	1.00	1.47
17：00	1.68	1.00	1.31
18：00	1.67	1.00	

※3月24日以降は，1時間毎とした。なお，日本原子力研究開発機構原子力科学研究所及び日本原子力研究開発機構核燃料サイクルエ学研究所のデータは，それぞれ以下のホームページでも掲載されている。
日本原子力研究開発機構原子力科学研究所
http：／／erms．jaea．go．jp／Chart．htm
日本原子力研究開発機構核燃料サイクルエ学研究所
http：／／www．jaea．go．jp／04／ztokai／kankyo／realtime／tbl＿10mStPo01．html

福島第一原子力発電所周辺のモニタリング結果

福島第一原子力発電所の $20 K m$ 以遠のモニタリング結果について平成 23 年 3 月 28 日 19 時 00 分現在

文 部 科 学 省
○文部科学省が集計した結果 注）太下線データが今回追加分
＊ 1 GM（ガイガ一＝ミューラ一計測管）における値
＊2 電離箱における値
＊3 $\mathrm{NaI}(ヨ ウ$ 化ナトリウム）シンチレータにおける値
＊4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	天候	実施者
測定エリア【1】（約60Km北西）	3月28日7時33分	$3.2 * 2$	降雨無し	日本原子力研究開発機構
測定エリア【2】（約55Km北西）	3月28日 9 時18分	5.0 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【3】（約45Km北西）	3月28日 9 時45分	5.5 ＊2	降雨無L	日本原子力研究開発機構
測定エリア【4】（約50Km北西）	3月28日9時40分	$1.8{ }^{* 2}$	降雨無し	文部科学省
測定エリア 【5】（約45Km北）	$\frac{\text { 3月28日13時00分 }}{\simeq 16 \text { 㭙 } 00 \text { 分 }}$	$\underline{0.5 \sim 1.2 * * * 4}$	隆雨無L	且本原子力研究開発機構
測定エリア【5】（約45Km北）	$\begin{gathered} \text { 3月28日13時00分 } \\ \sim 15 \text { 時 } 00 \text { 分 } \end{gathered}$	$0.6 \sim 1.2{ }^{* 2 * 4}$	降雨無し	日本原子力研究開発機構
測定エリア【5】（約45Km北）	3月28日10時14分	0.0 ＊2	降雨無L	日本原子力研究開発機構
測定エリア【6】（約45Km北）	3月28日10時31分	$1.2 * *$	降雨無し	日本原子力研究開発機構
測定エリア【7】（約45Km北）	3月28日10時38分	3.3 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【10】（約40Km北西）	3月28日10時02分	1.2 ＊2	降雨無し	文部科学省
測定エリア【11】（約40Km北西）	3月28日10時10分	2.2 ＊2	降雨無し	文部科学省
測定エリア【12】（約40Km西）	3月28日11時42分	0.7 ＊2	降雨無し	文部科学省
測定エリア【13】（約40Km西）	3月28日11時48分	$0.7{ }^{* 2}$	降雨無し	文部科学省
測定エリア【14】（約 35 Km 西）	3月28日12時00分	$0.4 * 2$	降雨無し	文部科学省

＊1 GM（ガイガー＝ミューラ一計測管）における値
＊2 電離相における値
＊3 NaI （ヨウ化ナトリウム）シンチレータにおける値
＊4測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	天候	実施者
測定エリア［15】（約35Km西）	3月28日12時10分	1.9 ＊2	降雨無し	文部科学省
測定エリア【20】（約45Km北西）	3月28日10時42分	$1.1{ }^{* 2}$	降雨無し	文部科学省
測定エリア［21】（約30Km西北西）	3月28日12時50分	4.2 ＊2	降雨無し	文部科学省
測定エリア【21】（約30Km西北西）	3月28日11時03分	5.3 ＊2	降雨無し	文部科学省
測定エリア【22】（約30Km西北西）	3月28日10時55分	0.8 ＊2	降雨無し	文部科学省
測定エリア【23】（約30Km西北西）	3月28日11時20分	$1.4 * 2$	降雨無し	文部科学省
測定エリア【31】（約30Km西北西）	3月28日10時29分	25.0 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【32】（約30Km北西）	3月28日10時51分	$45.0{ }^{* 2}$	降雨無し	日本原子力研究開発機構
測定エリア【33】（約30Km北西）	3月28日12時05分	43．0＊2	降雨無し	日本原子力研究開発機構
測定エリア【33】（約30Km北西）	3月28日11時31分	25．0＊2	降雨無し	日本原子力研究開発機構
測定エリア【33】（約30Km北西）	3月28日11時18分	$25.0{ }^{* 2}$	降雨無し	日本原子力研究開発機構
測定エリア【34】（約30Km北西）	3月28日13時05分	$7.7 * 2$	降雨無し	文部科学省
測定エリア【36】（約40Km北西）	3月28日9時51分	8.0 ＊	降雨無し	日本原子力研究開発機構
測定エリア【51】（約40Km南西）	3月28且14時50分	0．3 ${ }^{* 3}$	隆雨無し	福島県
測定エリア 【51】（約40Km南西）	3月28日11時16分	$0.3{ }^{* 3}$	隆雨無し	福島県
測定エリア 【52】（約40Km西）	3月28目15時28分	$0.4{ }^{* 3}$	隆雨無し	楅島県
測定エリア 【52】（約40Km西）	3月28且11時30分	0.3 ＊3	隆雨無し	福島県
測定エリア（611（約40Km北西）	3月28日14時53分	7．7＊3	隆雨無し	福島県
測定エリア【61】（約40Km北西）	3月28日12時43分	7．7 ${ }^{* 3}$	隆雨無し	福島県

＊ 1 GM（ガイガー＝ミューラ一計測管）における値
＊2 電離箱における値
＊3 NaI （ヨウ化ナトリウム）シンチレータにおける値
4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	天候	実施者
測定エリア 「861（約55km西）	3且28日14時00分	2．0＊2	隆雨無し	防衛省
測定エリア［86］（約55km西）	3月28日6時00分	2.0 ＊2	降雨無し	防衛省
測定エリア【87】（約30km西南西）	3月28日14時00分	1．2＊2	降雨無し	防䘖省
測定エリア【87】（約30km西南西）	3月28日6時00分	$2.4{ }^{* 2}$	降雨無し	防衛省

H23．3．28 19：00									（ $\mu \mathrm{Sv} / \mathrm{h}($ マイクロシーベルト毎時））							
	都道府県名	3月27日							3月28日							
		17－18	18－19	19－20	20－21	21－22	22－23	23－24	0－1	1－2	2－3	3－4	4－5	5－6	6－7	過去の平常値の範囲
1	北海道（札㹸市）	0.030	0.030	0.031	0.030	0.029	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	$0.02 \sim 0.105$
2	青森県（青森市）	0.024	0.023	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	$0.017 \sim 0.102$
3	岩手県（盛岡市）	0.028	0.028	0.028	0.027	0.027	0.027	0.028	0.028	0.028	0.029	0.029	0.029	0.029	0.029	$0.014 \sim 0.084$
4	宮城県（仙台市）															$0.0176 \sim 0.0513$
5	秋田県（秋田市）	0.035	0.034	0.034	0.034	0.035	0.035	0.035	0.038	0.038	0.038	0.041	0.040	0.040	0.041	$0.022 \sim 0.086$
6	山形県（山形市）	0.070	0.070	0.069	0.069	0.069	0.069	0.070	0.069	0.069	0.070	0.070	0.070	0.070	0.070	$0.025 \sim 0.082$
7	福島県（双葉郡）															$0.037 \sim 0.071$
8	茨城県（水戸市）	0.241	0.241	0.240	0.240	0.239	0.239	0.238	0.238	0.237	0.237	0.237	0.236	0.236	0.235	$0.036 \sim 0.056$
9	杤木県（宇都宮市）	0.108	0.108	0.108	0.108	0.107	0.107	0.108	0.107	0.107	0.107	0.107	0.107	0.106	0.106	$0.030 \sim 0.067$
10	群馬県（前橋市）	0.066	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.066	0.066	0.066	0.066	0.066	0.066	$0.017 \sim 0.045$
11	埼玉県（さいたま市）	0.094	0.094	0.094	0.094	0.093	0.093	0.093	0.093	0.093	0.093	0.093	0.093	0.092	0.092	$0.031 \sim 0.060$
12	千葉県（市原市）	0.079	0.079	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.077	0.078	0.077	0.077	$0.022 \sim 0.044$
13	東京都（新宿区）	0.114	0.114	0.114	0.113	0.113	0.112	0.112	0.112	0.113	0.113	0.112	0.112	0.112	0.112	$0.028 \sim 0.079$
14	神奈川県（茅ヶ崎市）	0.077	0.077	0.077	0.077	0.077	0.077	0.081	0.078	0.076	0.076	0.076	0.076	0.075	0.075	$0.035 \sim 0.069$
15	新渴県（新潟市）	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.047	0.047	0.047	0.047	$0.031 \sim 0.153$
16	富山県（射水市）	0.047	0.047	0.047	0.046	0.047	0.047	0.047	0.047	0.048	0.048	0.048	0.048	0.049	0.049	$0.029 \sim 0.147$
17	石川県（金沢市）	0.046	0.047	0.047	0.047	0.047	0.047	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.047	$0.0291 \sim 0.1275$
18	楅井県（福井市）	0.045	0.045	0.045	0.045	0.045	0.045	0.046	0.046	0.045	0.046	0.046	0.046	0.046	0.047	$0.032 \sim 0.097$
19	山梨県（甲府市）	0.044	0.044	0.044	0.049	0.053	0.048	0.045	0.045	0.044	0.044	0.044	0.044	0.044	0.045	$0.040 \sim 0.064$
20	長野延（長野市）	0.047	0.047	0.046	0.046	0.046	0.047	0.047	0.047	0.047	0.047	0.047	0.048	0.048	0.048	$0.0299 \sim 0.0974$
21	妓阜県（各務原市）	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.061	0.061	0.061	0.062	0.062	0.062	0.062	0．057～0．110
22	静岡県（静岡市）	0.041	0.041	0.040	0.040	0.041	0.041	0.041	0.042	0.042	0.042	0.042	0.042	0.042	0.042	$0.0281 \sim 0.0765$
23	愛知県（名古屋市）	0.038	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.040	0.040	0.040	0.041	0.041	$0.035 \sim 0.074$
24	三重県（四日市市）	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.046	$0.0416 \sim 0.0789$
25	滋檪県（大津市）	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.033	0.034	0.033	0.034	0.034	0.034	0.034	$0.031 \sim 0.061$
26	京都府（京都市）	0.037	0.037	0.037	0.037	0.037	0.038	0.038	0.038	0.039	0.039	0.039	0.039	0.040	0.040	$0.033 \sim 0.087$
27	大阪府（大阪市）	0.042	0.042	0.041	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.043	0.043	0.043	0.043	$0.042 \sim 0.061$
28	兵庫県（神戸市）	0.036	0.035	0.035	0.035	0.035	． 0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	$0.035 \sim 0.076$
29	奈良県（奈良市）	0.047	0.046	0.047	0.047	0.047	0.047	0.047	0.047	0.048	0.048	0.049	0.048	0.048	0.049	$0.046 \sim 0.08$
30	和歌山県（和歌山市）	0.031	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.033	0.033	$0.031 \sim 0.056$
31	鳥取県（東伯郡）	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.064	0.063	$0.036 \sim 0.11$
32	島根県（松江市）	0.036	0.036	0.036	0.037	0.037	0.037	0.038	0.038	0.038	0.039	0.039	0.039	0.039	0.039	$0.033 \sim 0.079$
33	岡山県（岡山市）	0.050	0.049	0.049	0.049	0.049	0.049	0.050	0.049	0.050	0.050	0.051	0.051	0.051	0.051	$0.043 \sim 0.104$
34	広島県（広島市）	0.048	0.046	0.047	0.047	0.048	0.048	0.048	0.048	0.049	0.050	0.050	0.050	0.050	0.050	$0.035 \sim 0.069$
35	山口県（山口市）	0.090	0.091	0.090	0.091	0.091	0.092	0.092	0.093	0.094	0.093	0.094	0.094	0.094	0.095	$0.084 \sim 0.128$
36	徳島県（徳島市）	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.039	0.039	0.039	0.039	0.039	0.039	0.039	$0.037 \sim 0.067$
37	香川県（高松市）	0.054	0.059	0.063	0.061	0.055	0.061	0.068	0.061	0.056	0.065	0.068	0.058	0.059	0.068	$0.051 \sim 0.077$
38	愛媛県（松山市）	0.048	0.048	0.048	0.049	0.050	0.050	0.050	0.051	0.051	0.051	0.051	0.050	0.050	0.050	$0.045 \sim 0.074$
39	高知県（高知市）	0.025	0.025	0.025	0.025	0.026	0.026	0.027	0.027	0.027	0.027	0.027	0.028	0.028	0.028	$0.023 \sim 0.076$
40	福岡県（太宰府市）	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.037	0.037	0.037	0.038	$0.034 \sim 0.079$
41	佐賀県（佐賀市）	0.039	0.039	0.039	0.039	0.040	0.040	0.040	0.040	0.040	0.040	0.041	0.041	0.041	0.041	$0.037 \sim 0.086$
42	長崎県（大村市）	0.028	0.029	0.028	0.028	0.028	0.028	0.028	0.029	0.029	0.029	0.028	0.029	0.029	0.029	$0.027 \sim 0.069$
43	熊本県（宇土市）	0.027	0.026	0.027	0.027	0.027	0.027	0.027	0.028	0.028	0.028	0.028	0.028	0.028	0.029	$0.021 \sim 0.067$
44	大分県（大分市）	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.051	0.051	0.051	0.051	$0.048 \sim 0.085$
45	宮崎県（宮崎市）	0.027	0.026	0.026	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	$0.0243 \sim 0.0664$
46	鹿児島県（鹿児島市）	0.034	0.034	0.034	0.034	0.034	0.034	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	$0.0306 \sim 0.0943$
																$0.0133 \sim 0.0575$
宮城県原子力安全対策室HP（http：／／www．pref．miyagi．jp／gentai／Press／PressH230315．htmi）で公開 ＊福島県では，モニタリングボスト周辺の空間線量が高いことから測定が困難であるが，その分のデータはモニタリングカーを用いて測定。 別資料の「福島第一原子力発電所の20km以遠のモニタリング結果について（3月28日19：00現在）」参照。 ＊空榬は機器点検等のための欠測等 ＊本データは， $1 \mu \mathrm{~Gy} / \mathrm{h}$（マイクログレイ毎時）$=1 \mu \mathrm{~Sv} / \mathrm{h}$（マイクロシーベルト毎時）と換算して算出 ＊文部科学省が各都道府県等からの報告に基つき作成																

	都道府県名	3月28日										
		7－8	8－9	9－10	10－11	11－12	12－13	13－14	14－15	15－16	16－17	過去の平常値の範囲
1	北海道（札幌市）	0.028	0.028	0.028	0.028	0.027	0.027	0.028	0.027	0.027	0.027	0．02～0．105
2	青森県（青森市）	0.024	0.023	0.023	0.023	0.023	$\underline{0.024}$	0.023	0.024	0.024	0.024	0．017～0．102
3	岩手県（盛岡市）	0.029	0.028	$\underline{0.028}$	$\underline{0.027}$	0.027	$\underline{0.027}$	0.027	0.027	0.027	0.027	0．014～0．084
4	宮城県（仙台市）											$0.0176 \sim 0.0513$
5	秋田県（秋田市）	0.043	0.036	0.033	0.032	0.033	0.034	$\underline{0.035}$	0034	0.036	$\underline{0.040}$	$0.022 \sim 0.086$
6	山形県（山形市）	0.069	0.069	$\underline{\underline{0.068}}$	$\underline{0.068}$	0.068	$\underline{0.069}$	$\underline{0.068}$	$\underline{0.069}$	0.068	0.068	0．025～0．082
7	福島県（双葉郡）											$0.037 \sim 0.071$
8	茨城県（水戸市）	0.235	0.234	0.233	0.232	0.232	0.231	0.230	0.230	0.230	0.229	$0.036 \sim 0.056$
9	杤木県（宇都宮市）	0.106	0.105	0.105	0.104	0.104	0.105	0.104	0.104	0.104	0.103	$0.030 \sim 0.067$
10	群馬県（前捕市）	0.065	0.064	0.063	$\underline{0.062}$	$\underline{0.062}$	0.062	0.061	0.061	0.061	0.060	0．017～0．045
11	埼玉県（さいたま市）	0.091	0.091	0.091	0.090	0.090	0.090	0.090	0.090	0.090	0.089	$0.031 \sim 0.060$
12	千葉県（市原市）	0.076	0.076	0.076	0.075	0.075	0.075	0.075	0.075	$\underline{0.076}$	$\underline{0.076}$	$0.022 \sim 0.044$
13	東京都（新宿区）	0.112	0.112	0.112	0.112	0.112	0.111	0.111	0.111	$\underline{0.111}$	0.111	$0.028 \sim 0.079$
14	神奈川県（茅ヶ崎市）	0.075	0.075	$\underline{0.075}$	0.074	0.074	0.074	0.074	0.074	$\underline{0.073}$	0.073	$0.035 \sim 0.069$
15	新潟県（新潟市）	0.047	0.047	0.047	$\underline{0.046}$	0.046	0.046	$\underline{0.046}$	$\underline{0.046}$	0.046	$\underline{0.046}$	$0.031 \sim 0.153$
16	富山県（射水市）	0.049	0.049	0.049	$\underline{0.048}$	0.048	0.048	$\underline{0.047}$	0.047	0.047	0.047	$0.029 \sim 0.147$
17	石川県（金沢市）	0.047	0.047	0.047	0.046	0.047	$\underline{0.047}$	$\underline{0.046}$	0.047	$\underline{0} 0.046$	$\underline{0.047}$	$0.0291 \sim 0.1275$
18	福井県（福井市）	0.046	0.046	0.045	0.045	0.044	$\underline{0.044}$	$\underline{0.044}$	0.044	$\underline{0.045}$	$\underline{0.045}$	0．032～0．097
19	山梨県（甲府市）	0.044	0.044	0.044	0.044	0.044	0.044	$\underline{0.044}$	0.043	$\underline{0.044}$	0.044	$0.040 \sim 0.064$
20	長野県（長野市）	0.048	0.047	0.047	0.047	$\underline{0.046}$	0.046	0.046	0.046	0.046	0.047	$0.0299 \sim 0.0974$
21	故岳県（各務原市）	0.062	0.062	0.061	0.061	$\underline{0.060}$	$\underline{0.060}$	$\underline{0.060}$	0.060	$\underline{0.060}$	$\underline{0.060}$	$0.057 \sim 0.110$
22	静岡県（静岡市）	0.041	0.040	0.041	0.043	0.045	0.045	$\underline{0.045}$	$\underline{0.043}$	0.042	$\underline{0.040}$	$0.0281 \sim 0.0765$
23	愛知県（名古屋市）	0.042	0.041	0.040	0.039	0.039	0.038	0.038	0.039	0.039	$\underline{0.039}$	0．035～0．074
24	三重県（四日市市）	0.046	0.046	0.046	0.046	0.046	0.045	$\underline{0} 0.046$	0.045	0.045	0.046	$0.0416 \sim 0.0789$
25	滋㖵県（大津市）	0.034	0.033	0.033	0.032	0.032	0.033	0.032	0.033	0.032	0.033	$0.031 \sim 0.061$
26	京都府（京都市）	0.040	0.040	0.038	0.038	0.037	0.037	0.037	0.037	0.037	0.038	$0.033 \sim 0.087$
27	大阪府（大阪市）	0.043	0.043	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	$0.042 \sim 0.061$
28	兵庫県（神戸市）	0.037	0.036	0.036	0.036	0.036	0.036	$\underline{0.036}$	0.036	0036	0.036	$0.035 \sim 0.076$
29	奈良県（奈良市）	0.049	0.048	0.047	0.047	0.047	$\underline{0.046}$	0.047	0.047	$\underline{0.047}$	0.047	$0.046 \sim 0.08$
30	和歌山県（和歌山市）	0.033	0.032	0.032	0.032	0.031	0.031	0.031	0.031	0.031	0.031	$0.031 \sim 0.056$
31	鳥取県（東伯郡）	0.064	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	$0.036 \sim 0.11$
32	島根県（松江市）	0.038	0.038	0.038	0.037	0.036	$\underline{0.036}$	$\underline{0.036}$	0.036	0.036	0.036	$0.033 \sim 0.079$
33	岡山県（岡山市）	0.052	0.051	0.050	0.049	0.049	0.048	0.048	0.048	0.048	0.048	$0.043 \sim 0.104$
34	広島県（広島市）	0.050	0.050	0.049	0.047	0.047	0.047	$\underline{0.046}$	$\underline{0.047}$	0.046	0.046	$0.035 \sim 0.069$
35	山口県（山口市）	0.096	0.095	0.093	0.092	0.091	0.090	0.090	0.091	0.090	0.091	0．084～0． 128
36	徳島県（徳島市）	0.039	0.038	0.038	0.038	0.037	0.037	0.037	0.037	0.037	0.037	$0.037 \sim 0.067$
37	香川県（高松市）	0.068	0.056	0.055	0.055	0.054	0.055	0.055	0.054	0.055	0.054	$0.051 \sim 0.077$
38	愛媛県（松山市）	0.050	0.049	0.049	0.048	0.048	0.048	0.048	0.047	$\underline{0.047}$	0.047	$0.045 \sim 0.074$
39	高知県（膏知市）	0.028	0.027	0.026	0.025	0.024	0.024	0.024	0.025	0.024	0.024	$0.023 \sim 0.076$
40	福岡県（太宰府市）	0.038	0.038	$\underline{0} 0.037$	0.037	0.036	0.036	$\underline{0.036}$	0.036	0.038	0.037	$0.034 \sim 0.079$
41	佐賀県（佐賀市）	0.041	0.041	$\underline{0.041}$	0.040	0.040	$\underline{0.039}$	0.039	0.040	0.042	0.041	$0.037 \sim 0.086$
42	長酠県（大村市）	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.028	$0.027 \sim 0.069$
43	熊本県（宇土市）	0.029	0.029	0.028	0.027	0.027	0.027	0.027	0.026	$\underline{0.021}$	$\underline{0.026}$	$0.021 \sim 0.067$
44	大分県（大分市）	0.052	0.052	0.051	0.050	0.050	0.050	0.050	$\underline{0.050}$	0.050	0.050	$0.048 \sim 0.085$
45	宮酠県（宮畸市）	0.027	0.027	0.027	0.026	0.026	0.026	0.026	0.026	$\underline{0.026}$	0.026	$0.0243 \sim 0.0664$
46	鹿児島県（鹿坚島市）	0.035	0.035	0.035	0.034	0.034	0.034	0.034	0.034	0.034	0.034	$0.0306 \sim 0.0943$
47	沖縄県（うるま市）	0.022	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	$0.0133 \sim 0.0575$

別資料の「福島第一原子力発電所の20km以遠のモニタリンク結果について（3月28日19：00現在）」参照
＊空橺は機器点検等のための欠欠測等
＊本テータは， $1 \mu \mathrm{~Gy} / \mathrm{h}($ マイクログレイ毎時 $)=1 \mu \mathrm{~Sv} / \mathrm{h}$（マイクロシーベルト毎時）と換算して算出
＊文部科学省が各都道府県等からの報告に基づき作成

From:
Sent:
To:
Cc:
Subject:
Attachments:

OSTO1 HOC
Tuesday, March 29, 2011 2:48 AM
PMT02 Hoc; PMT11 Hoc; Hoc, PMT12
FOIA Response.hoc Resource
FW: SPEEDI data - March 29-3PM
FUKUSHIMA1 wind(15hüj.gif; FUKUSHIMA1 air concentrationüi15-16hüj.gif; FUKUSHIMA1 air concentrationüi16-17hüj.gif; FUKUSHIMA1 air concentrationüi17-18hüj.gif; FUKUSHIMA1 air doseüi15-16hüj.gif; FUKUSHIMA1 air doseüi16-17hüj.gif; FUKUSHIMA1 air doseüi17-18hüj.gif
-----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Tuesday, March 29, 2011 2:47 AM
TO: LIAO HOC; OSTO1 HOC; OSTO2 HOC; OSTO3 HOC
Subject: FW: SPEEDI data - March 29-3PM

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Tuesday, March 29, 2011 2:45:42 AM
To: (b)(6)
(b)(6)

Subject: SPEEDI data - March 29-3PM
Auto forwarded by a Rule
Attached is the SPEEDI data for March 29 at 3 pm .

From:	OST01 HOC
Sen:	Tuesday, March 29, 2011 12:14 AM
To:	PMT02 Hoc; PMT11 Hoc; Hoc, PMT12
Cc:	FOLA Response.hoc Resource
Subject:	FW: 3/29, 12:00 SPEEDI Data
Attachments:	FUKUSHIMA1 air concentrationüi12-13hüj.gif; FUKUSHIMA1 air
	concentrationüil3-14hüj.gif; FUKUSHIMA1 air concentrationüi14-15hüj.gif;
	FUKUSHIMA1 air doseüi12-13hüj.gif; FUKUSHIMA1 air doseüi13-14hüj.gif;
	FUKUSHIMA1 air doseüi14-15hüj.gif; FUKUSHIMA1 wind(12hüj.gif

-----Original Message--.--

From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Tuesday, March 29, 2011 12:11 AM
To: LIA07 HOC; OST01 HOC; OST02 HOC; OST03 HOC
Subject: FW: 3/29, 12:00 SPEEDI Data
\qquad
From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Tuesday, March 29, 2011 12:09:40 AM
To: (b) (6)
(b)(6)
(b)(6)

[^0]
Japan Emergency Command Center

 U．S．Embassy Tokyo－－－－－Original Message－－－－－
From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Tuesday，March 29， 2011 12：32 PM
To：（b）（6）
（b）（6）

Subject：3／29 12時SPEEDI単位量放出図形イメージの送付

関係者各位

お世話になっております。
原子力安全技術センター SPEEDI担当です。
3／29 12時のSPEEDI単位量放出図形のイメージデータを送付致します。 ご確認のほど，よろしくお願い致します。

Please find attached 12：00［29－Mar］SPEEDI Data
NUSTEC

SBU
This email is UNCLASSIFIED

From:	OSTO1 HOC
Sent:	Tuesday, March $29,20115: 31$ AM
To:	PMTO2 Hoc; PMT11 Hoc; Hoc, PMT12
Cc:	FOIA Response.hoc Resource
Subject:	FW: SPEEDI data - March $29-6$ PM
Attachments:	FUKUSHIMA1 air doseüi19-20hüj.gif; FUKUSHIMA1 air doseüi20-21hüj.gif;
	FUKUSHIMAI wind(18hüj.gif; FUKUSHIMA1 air concentrationüil8-19hüj.gif;
	FUKUSHIMA1 air concentrationüi19-20hüj.gif; FUKUSHIMA1 air
	concentrationüi20-21hüj.gif; FUKUSHIMA1 air doseüi18-19hüj.gif

-----Original Message--.-.
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Tuesday, March 29, 2011 5:30 AM
To: LIA07 HOC; OST01 HOC; OSTO2 HOC; OST03 HOC
Subject: FW: SPEEDI data - March 29-6PM

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GO *
Sent: Tuesday, March 29, 2011 5:28:29 AM $T \phi^{(b)(6)}$
(b)(6)

Subject: SPEEDI data - March 29-6PM
Auto forwarded by a Rule

Attached is the SPEEDI data for March 29 at 6pm.

$$
x+x / 129
$$

SBU
This email is UNCLASSIFIED

From:
Sent:
To:
Cc:
Subject:
Attachments:

OSTO1 HOC
Tuesday, March 29, 2011 2:24 AM
PMT02 Hoc; PMT11 Hoc; Hoc, PMT12
FOIA Response.hoc Resource
FW: SPEEDI data - March 29-2PM
FUKUSHIMA1 wind(14hüj.gif; FUKUSHIMA1 air concentrationüi14-15hüj.gif; FUKUSHIMA1 air concentrationüi15-16hüj.gif; FUKUSHIMA1 air concentrationüi16-17hüj.gif; FUKUSHIMA1 air doseüi14-15hüj.gif, FUKUSHIMA1 air doseüi15-16hüj.gif; FUKUSHIMA1 air doseüi16-17hüj.gif
.----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Tuesday, March 29, 2011 2:20 AM
To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03 HOC
Subject: FW: SPEEDI data - March 29-2PM

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Tuesday, March 29, 2011 2:19:07 AM
To: $(\mathrm{b})(6)$
(b)(b)

Subject: SPEEDI data-March 29-2PM
Auto forwarded by a Rule
Attached is the SPEED data for March 29 at 2pm.

$$
x \times x / 130
$$

SBU
This email is UNCLASSIFIED

From:	Danielle Emche $(b)(6)$
Sent:	Tuesday, March $29,20115: 28$ AM
To:	RSTO1 Hoc
Cc:	Caste, Chuck; LAO2 Hoc; LAO3 Hoc; LAOD Hoc
Subject:	Re: USNRC Earthquake-Tsunami Update.032811.0430EDT.docx

Mike, RST Coordinator,
I see that the same priorities were kept, now with an explanation.
The team here doesn't necessarily agree with NRC these priorities and that's why we originally as if this was a mistake in the report. In addition, not being aligned is a bigger issue because other agencies are picking this up and re-reporting it in their situation reports as "Unit 1 is the priority," not "NRC believes Unit 1 is the priority."
The obvious problem being that the former insinuates that this is a fact, rather than the opinion of the USG. Before the next report goes out, we would like to get on the same page and ensure alignment and that we're not misleading the interagency. The ground team RST will raise it with the HQ RST on the next call.
Danielle
On Tue, Mar 29, 2011 at 1:17 AM, RSTO1 Hoc RSTO1.Hoc@nrc.gov wrote:
$>$ More info, they were changed on the 25 th, to what you have, we are
$>$ reevaluating and 0600 update will have priority and reason for change.
> Mike
$>$
$>$ RST Coordinator
$>$
> -----Original Message-----
$>$ From: Danielle Emche $\sqrt{(\mathrm{b})(6)}$
> Sent: Tuesday, March 29, 2011 1:14 AM
$>$ To: RSTO1 Hoc
> Subject: Re: Fw: USNRC Earthquake-Tsunami Update.032811.0430EDT.docx
$>$
$>$ Great, thank you!
$>$
> On Tue, Mar 29, 2011 at 12:38 AM, RSTO1 Hoc RST01.Hoc@nrc.gov wrote:

```
>> Daniel,
```

>>
>> Don't know who changed them, we will update the 0600 report. Thanks, Mike.
>>
>> RST Coordinator.
>>
>> -----Original Message-....
>> From: Danielle Emche (b)(6)
>> Sent: Monday, March 28, 2011 11:38 PM
\gg To: LIA02 Hoc; LIA03 Hoc; RSTO1 Hoc
>> Subject: Fwd: Fw: USNRC Earthquake-Tsunami Update.032811.0430EDT.docx
>>
>> Can you help? In the attached document, which goes out to the interagency we noticed that the priorities are wrong and are matching each unit, rather than identifying the actual priority. Looking back at reports, this was introduced starting March 25th. Can you please resend last night's report with the correction? I don't know whether it's worth communicating this error and correction to the interagency, but for our purposes it would be helpful. I caught this

```
based on a review of another agency's report and when I questioned their priorities, they responded that they got this
from our report.
>>
>>
>> ---------- Forwarded message
>> From: Emche, Daniell&<Danielle.Emche@nrc.gov>
>> Date: Mon, Mar 28, 2011 at 11:22 PM
>> Subject: Fw: USNRC Earthquake-Tsunami Update.032811.0430EDT.docx
>> To:(b)(6)
>>
>>
>>
>> Danielle
> Sent from an NRC BlackBerry.
>>
>> From: LIA07 Hoc
>> To: Liaison Japan
>> Sent: Mon Mar 28 03:48:45 }201
>> Subject: USNRC Earthquake-Tsunami Update.032811.0430EDT.docx
>>
>> Please find attached the 0430 EDT 3/28/11 NRC Status Update.
>>
>>
>>
>> If you have any comments or edits for the next update, scheduled for 1800 EDT today, please let me know.
>>
>>
>>
>> Thank you,
>>
>>
>>
>>-Caroline
>>
>>
>>
>> Caroline Nguyen
>>
>> US Nuclear Regulatory Commission
>>
>> LIAO7.HOC@nrc.gov
>>
>> Caroline.Nguyen@nrc.gov
>>
>
```

From:
Sent:
To:
Cc:

Brusoe, Eric
Saturday, March 26, 2011 6:18 PM
LA 02 Hoc; LA 03 Hoc
Turner, Joseph; Curtis, David

I need someone from the ops center to call me please.

Eric Brusoe
Sent from my NRC Blackberry

$x+1132$

```
From: OST01 HOC
Sent: Tuesday, March 29, 2011 8:42 AM
To: OST02 HOC
Subject: FW: Updated ET Response Advisor Schedule for Pay Period 8
```

Please add MJ to the ET Response Advisor position for Saturday, Bpm to 11 pm

Tony McMurtray
EST Coordinator

From: Ross-Lee, MaryJane
Sent: Tuesday, March 29, 2011 8:16 AM
To: OST01 HOC; McDermott, Brian; Miller, Chris; McGinty, Tim; Giitter, Joseph; Morris, Scott; Blount, Tom; Thaggard, Mark
Cc: Evans, Michele
Subject: RE: Updated ET Response Advisor Schedule for Pay Period 8
I can take this Saturday $3 p m$ to 11 pm .

Mary Jane Ross-Lee (MJ)
Director, Division of Facilities and Security
TWFN 3D3
US Nuclear Regulatory Commission
풀 Office: 301-415-8080
Mobile: $($ (b) (6)
e-mail: maryiane.ross-lee@nrc.gov

From: OST01 HOC
Sent: Monday, March 28, 2011 8:00 PM
To: McDermott; Brian; Miller, Chris; McGinty, Tim; Giitter, Joseph; Morris, Scott; Blount, Tom; Thaggard, Mark; Ross-Lee, MaryJane
Cc: Evans, Michele
Subject: Updated ET Response Advisor Schedule for Pay Period 8
Importance: High
Good Evening All,

Attached is the updated schedule for Pay Period 8. Please review because there have been changes and respond to all if you can fill any open shift. There are four open over the next two weeks - three day shifts and one swing shift.

Thank you,
Rebecca Stone
EST Coordinator
301-816-5100 x5500

ET Response Advisor			
Sat-Sun	3/26-3/27	11pm-7am	Chris Miller
Sun	27-Mar	7am-3pm	Tom Blount
Sun	27-Mar	$3 \mathrm{pm}-11 \mathrm{pm}$	Brian McDermott
Sun-Mon	3/27-3/28	11 pm -7am	Chris Miller
Mon	28-Mar	$7 \mathrm{am}-3 \mathrm{pm}$	Tom Blount
Mon	28-Mar	$3 \mathrm{pm}-11 \mathrm{pm}$	Brian McDermott
Mon-Tue	3/28-3/29	11pm-7am	Scott Morris
Tue	29-Mar	$7 \mathrm{am}-3 \mathrm{pm}$	Tom Blount
Tue	29-Mar	3pm-11pm	Brian McDermott
Tue-Wed	3/29-3/30	11pm-7am	Scott Morris
Wed	30-Mar	7am-3pm	Tom Blount
Wed	30-Mar	$3 \mathrm{pm}-11 \mathrm{pm}$	Brian McDermott
Wed-Thur	3/30-3/31	11pm-7am	Scott Morris
Thur	31-Mar	7am-3pm	Joe Giitter
Thur	31-Mar	3 pm -11pm	Mark Thaggard
Thur-Fri	3/31-4/1	11pm-7am	Scott Morris
Fri	1-Apr	$7 \mathrm{am}-3 \mathrm{pm}$	Tom Blount
Fri	1-Apr	3 pm -11pm	Mark Thaggard
Fri-Sat	4/1-4/2	11pm-7am	Scott Morris
Sat	2-Apr	7 am -3pm	
Sat	2-Apr	$3 \mathrm{pm}-11 \mathrm{pm}$	2
Sat-Sun	4/2-4/3	11 pm -7am	Brian McDermott

ET Response Advisor

Sat-Sun	$4 / 2-4 / 3$	$11 \mathrm{pm}-7 \mathrm{am}$	Brian McDermott
Sun	$3-\mathrm{Apr}$	$7 \mathrm{am}-3 \mathrm{pm}$	
Sun	$3-\mathrm{Apr}$	$3 \mathrm{pm}-11 \mathrm{pm}$	Chris Miller
Sun-Mon	$4 / 3-4 / 4$	$11 \mathrm{pm}-7 \mathrm{am}$	Brian McDermott
Mon	$4-\mathrm{Apr}$	$7 \mathrm{am}-3 \mathrm{pm}$	Tim McGinty
Mon	$4-\mathrm{Apr}$	$3 \mathrm{pm}-11 \mathrm{pm}$	Joe Giitter
Mon-Tue	$4 / 4-4 / 5$	$11 \mathrm{pm}-7 \mathrm{am}$	Brian McDermott
Tue	$5-\mathrm{Apr}$	$7 \mathrm{am}-3 \mathrm{pm}$	Tim McGinty
Tue	$5-\mathrm{Apr}$	$3 \mathrm{pm}-11 \mathrm{pm}$	Joe Giitter
Tue-Wed	$4 / 5-4 / 6$	$11 \mathrm{pm}-7 \mathrm{am}$	Brian McDermott
Wed	$6-\mathrm{Apr}$	$7 \mathrm{am}-3 \mathrm{pm}$	Tim McGinty
Wed	$6-\mathrm{Apr}$	$3 \mathrm{pm}-11 \mathrm{pm}$	Joe Giitter
Wed-Thur	$4 / 6-4 / 7$	$11 \mathrm{pm}-7 \mathrm{am}$	Scott Morris
Thur	$7-\mathrm{Apr}$	$7 \mathrm{am}-3 \mathrm{pm}$	Tim McGinty
Thur	$7-\mathrm{Apr}$	$3 \mathrm{pm}-11 \mathrm{pm}$	Joe Giitter
Thur-Fri	$4 / 7-4 / 8$	$11 \mathrm{pm}-7 \mathrm{am}$	Chris Miller
Fri	$8-\mathrm{Apr}$	$7 \mathrm{am}-3 \mathrm{pm}$	la
Fri	$8-\mathrm{Apr}$	$3 \mathrm{pm}-11 \mathrm{pm}$	Tom Blount
Fri-Sat	$4 / 8-4 / 9$	$11 \mathrm{pm}-7 \mathrm{am}$	Mark Thaggard
Sat	$9-\mathrm{Apr}$	$7 \mathrm{am}-3 \mathrm{pm}$	Chris Miller
Sat	$9-\mathrm{Apr}$	$3 \mathrm{pm}-11 \mathrm{pm}$	Tom Blount
Sat-Sun	$4 / 9-4 / 10$	$11 \mathrm{pm}-7 \mathrm{am}$	Mark Thaggard

To:
Subject:

Hoc, PMT12
RE: Contact with the British Embassy: Fukushima-related questions

From: Hoc, PMT12
Sent: Wednesday, March 30, 2011 6:02 PM
To: PMT09 Hoc; PMTO2 Hoc
Subject: RE: Contact with the British Embassy: Fukushima-related questions

Ron/Steve

Please review and see if this read okay to you

Please send the following in response to the British Embassy.

1. NRC is providing scientific advice regarding the evacuation of US resident within 50 miles of the Fukushima reactor. This advice combined with that of the US Department of Energy and other experts are being used by the Department of State for travel advisories for Japan.
2. We can provide the basis for NRC recommendations regarding evacuation within 50 miles of the Fukushima facility for US citizens. As follows:

The following assumptions were used in the computer calculations referenced in NRC press release 11-050 dated March 16, 2011 (http://www.nrc.gov/reading-rm/doc-collections/news/2011/11-050.pdf).

The first assessment assumed release from Unit 2. It assumed an ex-vessel, unfiltered release from a totally failed containment, 100% fuel damage, and actual meteorological conditions during early morning hours. This resulted from 550 assemblies in the core. The low dispersion characteristics included low wind speeds, relatively stable air, and light precipitation. The assessment considered the conditions of the plant at the time and possible degrading conditions. The assumptions included total failure, sprays off, no removal mechanism (e.g., scrubbing), no mitigation by the operator. A ground level release was assumed with release duration of 16 hours.

The second assessment assumed 30% core damage at Units 2 and 3, and 100\% fuel damage for the Unit 4 spent fuel pool. The Unit 4 spent fuel pool was assumed to include only a full core offload from the current outage. To account for the combined inventories of the three units sources (ie., from Units 2 and 3 and Unit 4 spent fuel pool), the staff adjusted the reactor power level, fuel burnup and number of assemblies, and included that as one source used to perform a RASCAL calculation. This resulted in 917 assemblies in the core. The assumptions included total failure, sprays off, no removal mechanism (e.g., scrubbing), no mitigation by the operator. The shutdown time was assumed to be $14: 46$ hours on March 11, 2011, and the core was assumed uncovered at 19:50 hours on March 16, 2011. This run was modeled as LOCA. In addition, the source term included two additional days of decay before release. The meteorological conditions for the second assessment also assumed actual conditions with light precipitation, calm wind (between 2 and 5 meters per second) conditions with occasional higher wind speeds (around 10 meters per second). A ground level release was assumed with a release duration used was 15 hours. For these atmospheric conditions, an average wind speed of 5 meters per second and stability class of " D " would seem a good assumption. Wind direction was primarily from the northwest (NW). The same assessment could easily be used with a wind shift to blow from the northeast (NE).

It's important to note that since communications were limited and there was a large degree of uncertainty about plant conditions at the time, it was difficult to accurately assess the radiological hazard. Computer models used meteorological model data appropriate for the Fukushima Daiichi vicinity. Source terms were based on hypothetical, but not unreasonable estimates of fuel damage, containment, and other release conditions. Subsequent modeling can be correlated with the ground deposition as observed in flyover and other monitoring data.

From: LIA02 Hoc
Sent: Wednesday, March 30, 2011 4:57 PM
To: Hoc, PMT12
Subject: FW: Contact with the British Embassy: Fukushima-related questions
See below.

Thanks.

Gerri

From: Liz.Kane@fco.gov.uk [mailto:Liz.Kane@fco.gov.uk]
Sent: Wednesday, March 30, 2011 4:32 PM
To: LIA02 Hoc
Subject: RE: Contact with the British Embassy: Fukushima-related questions

Gerri

Thank you for the email and speedy response.

What I am trying to understand is both a process and a substance question. On the process, I'm trying to establish which part of the US government is providing the scientific advice on which the US is deciding policy such as travel advice. This is related to the substance question in the sense that l'd like to understand what that scientific advice is about radiation levels within the 50 mile exclusion zone and, in particular, what the scientific worst-case scenario for Fukushima is now.

Happy to discuss over the phone if that is easier.

Liz

From: LIA02 Hoc [mailto:LIA02.Hoc@nrc.gov]
Sent: 30 March 2011 16:01
To: Liz Kane (Restricted)
Subject: FW: Contact with the British Embassy: Fukushima-related questions

Liz -

Can you please identify what you mean by "scientific evaluations" so I can direct your inquiry to the right staff. Is this a dose-type inquiry, or is it a pumps and valves type inquiry.

Thanks.

Gerri Fehst

From: Abrams, Charlotte
Sent: Wednesday, March 30, 2011 3:55 PM
To: Liz.Kane@fco.gov.uk
Cc: LIA02 Hoc; LIA03 Hoc
Subject: RE: Contact with the British Embassy: Fukushima-related questions
Liz -
I am forwarding your message to our Operations Center. I have not been on duty there for several days and am not as up to date on the situation as the International Liaison staff on duty there. Someone from that location will get back to you right away to get some specifics on your question so that it can be directed to the right person. I can tell you that technical representatives from the UK Health and Safety Executive Nuclear Safety Directorate have been on daily (sometimes twice daily) telephone calls with NRC's technical staff.

From: Liz.Kane@fco.gov.uk [mailto:Liz.Kane@fco.gov.uk]
Sent: Wednesday, March 30, 2011 3:40 PM
To: Abrams, Charlotte
Subject: Contact with the British Embassy: Fukushima-related questions
Dear Charlotte

Mary Pietrzyk gave me your contact information as I asked her for a contact in the NRC with whom I could discuss a Fukushima-related question. I'm sure that you are really busy at the moment, but would you be able to give me a ring (or send me your number please) so that I can ring you. I have an urgent enquiry from the Foreign Office in London about the scientific evaluations of the situation in Fukushima.

Thank you.
Liz

Dr Liz Kane
First Secretary, Energy
British Embassy
3100 Mass Ave NW, Washington D.C., 20008-36, USA
Office: +1 2025183205 FTN: 84303205
Mobile:(b)(6)

Visit http://www.fco.gov.uk for British foreign policy news and travel advice and http://blogs.fco.gov.uk to read our blogs.

This email (with any attachments) is intended for the attention of the addressee(s) only. If you are not the intended recipient, please inform the sender straight away before deleting the message without copying, distributing or disclosing its contents to any other person or organisation. Unauthorised use, disclosure, storage or copying is not permitted.
Any views or opinions expressed in this e-mail do not necessarily reflect the FCO's policy. The FCO keeps and uses information in line with the Data Protection Act 1998. Personal information may be released to other UK government departments and public authorities.
All messages sent and received by members of the Foreign \& Commonwealth Office and its missions overseas may be automatically logged, monitored and/or recorded in accordance with the Telecommunications (Lawful Business Practice) (Interception of Communications) Regulations 2000.

From:	LIA05 Hoc
Sent:	Wednesday, March $30,20114: 12$ PM
To:	FOIA Response.hoc Resource
Subject:	FW: GOJ urgent request for water pumping capacity - follow up 1

Bonnie Sheffield Dayshift 0700-1500
Ken Wierman Nightshift 1500-2300
FEMA REP Liaison
NRC Operations Center
(301) 816-5187
******FOR OFFICIAL USE ON $\mathrm{Y}^{* * * * * * ~}$
DO NOT RELEASE OUTSIDE OF THE FEDERATFATHLY
From: Weber, Michael
Sent: Tuesday, March 15, 2011 12:27 PM
To: LIA05 Hoc; RST01 Hoc
Subject: FYI - GOJ urgent request for water pumping capacity - follow up 1
You should already be aware of this request.

From: Batkin, Joshua
To: Weber, Michael; HOO Hoc
Sent: Tue Mar 15 09:53:57 2011
Subject: Pw: GOJ urgent request for water pumping capacity - follow up 1
in case you don't have this
Joshua C. Batkin
Chief of Staff
Chairman Gregory B. Jaczko
(301) 415-1820

From: Jaczko, Gregory
To: Coggins, Angela; Batkin, Joshua; Pace, Patti
Sent: Tue Mar 15 07:53:16 2011
Subject: FW: GOJ urgent request for water pumping capacity - follow up 1

From: Uses, Anthony
Sent: Tuesday, March 15, 2011 7:50:32 AM
To, $\sqrt{(b)(6)}$
(b)(6)
$x \times x / 135$

JapanEmbassy, TaskForce; Beed, John A; Berger, William (RDMA/OFDA);
Jaczko, Gregory; HOO Hoc; LIA06 Hoc
Cc: Roos, John; Zumwalt, James P; Fuller, Matthew G;
rmtpactsu_elnrc@ofda.gov; LIA03 Hoc; LIA02 Hoc
Subject: RE: GOJ urgent request for water pumping capacity - follow up 1
Auto forwarded by a Rule

COL McDaniel/Team USFJ,

Please see the enclosed information. Please advise how best to proceed.
Thank you,
Tony Ulses
Jim and Tony,
Alex Robinson of the DTRA Military Command Center (in Japan) called and said that he has a representative with him from the Japanese military civil defense unit (Ichikawa). They have " 4 pumps coming" and want to know if this would "solve the problem." Alex Robinson has a contact with Tepco at the reactor site and could try to make this happen, if you believe it would help.

Please call him-he is having trouble reaching you. Alex's number is dsn(b)(6)
Thank you.

From: Basalla, Suzanne I [BasallaSI@state.gov]
Sent: Tuesday, March 15, 2011 6:59 AM
To: Basalla, Suzanne I; LIAO2 Hoc; Mitchell, Derek J SES OSD POLICY; Schiffer, Michael SES OSD POLICY; (b)(6) USFJ-CAT-CHIEF@usfj.mil; (b)(6) Crowe, William B BGen USMC USFJ JO1; $[(b)(6)$ Duncan, Aleshia D; Cherry, Ronald C; JapanEmbassy, TaskForce; Beed, John A; Berger, William (RDMA/OFDA); Jaczko, Gregory; HOO Hoc; LIA06 Hoc; Ulses, Anthony
Cc: Roos, John; Zumwalt, James P; Fuller, Matthew G
Subject: RE: GOJ urgent request for water pumping capacity - follow up 1
COL McDaniel/Team USFI - Tony Ulses, our NRC Liaison, has a lead on a very promising equipment to help solve this problem. He'll shortly forward you the information. Hope this can be of use. Thanks for the continued support.

Suzanne

SBU
This email is UNCLASSIFIED.

From: Basalla, Suzanne I

Sent: Tuesday, March 15, 2011 12:24 AM
To: 'LIA02 Hoc'; Mitchell, Derek J SES OSD POLICY; Schiffer, Michael SES OSD POLICY; (b)(6)
(b)(6) (b) (6) Crowe, William B BGen USMC USFJ J01; $\sqrt{(\mathrm{b})(6)}$ Duncan, Aleshia D; Cherry, Ronald C; JapanEmbassy, TaskForce; Beed, John A; Berger, William (RDMAJOFDA); Jaczko, Gregory; HOO Hoc; LIA06 Hoc
Cc: Roos, John; Zumwalt, James P; Fuller, Matthew G
Subject: RE: GOJ urgent request for water pumping capacity - follow up 1
Thank you. We look forward to the list of equipment and additional advice.

SBU
This email is UNCLASSIFIED.

From: LIA02 Hoc [mailto:LIA02.Hoc@nrc.gov]
Sent: Tuesday, March 15, 2011 12:16 AM
To: Basalla, Suzanne I; Mitchell, Derek J SES OSD POLICY; Schiffer, Michael SES OSD POLICY; (b)(6)
(b)(6)
(b)(6)
(bDMAOFDA); Jaczko, Gregory; HOO Hoc; LIA06 Hoc
Cc: Roos, John; Zumwalt, James P; Fuller, Matthew G
Subject: RE: GOJ urgent request for water pumping capacity - follow up 1

Hi Suzanne,
I just spoke with the Director of the Reactor Safety Team here at the NRC Incident Response Center. She is aware of the request for equipment and has generated a list of equipment that, as I understand it, will be requested of U.S. military forces for use in Japan. She also notes that the equipment may need to be accompanied by instructions in Japanese and/or personnel knowledgeable of how to operate it. This list has been generated based on our understanding of the status of systems and the core at Units 1, 2 and 3. We believe that TEPCO personnel, who will have the most current knowledge of the condition of the core and emergency systems, will be in the best position to determine where and how the equipment can be used once it arrives. We are looking for technical staff to be available to advise, if needed, on countermeasures that can be considered using this equipment.
Hope this helps,
Rani Franovich
Liaison Team Coordinator
U.S. Nuclear Regulatory Commission

From: Basalla, Suzanne I [mailto:BasallaSI@state.gov]
Sent: Monday, March 14, 2011 10:39 AM
To: Mitchell, Derek J SES OSD POLICY; Schiffer, Michael SES OSD POLICY; (b)(6)
\qquad Jeffrey.Wiltse@usfj.mil; Crowe, William B BGen USMC USFJ J01; (b)(6)
Duncan, Aleshia D; Cherry, Ronald C; JapanEmbassy, TaskForce; Beed, John A; Berger, William (RDMA/OFDA); Jaczko, Gregory; HOO Hoc; LIA02 Hoc
Cc: Roos, John; Zumwalt, James P; Fuller, Matthew G
Subject: GOJ urgent request for water pumping capacity - follow up 1
All,
(Ron/Aleshia, please pass to Jim Trapp. USFJ - please pass to appropriate person at PACOM.)
As an update based on tonight's White House led interagency VTC and other discussions:
-- The WH stated that the President considers it the highest priority to respond quickly and comprehensively to any request from Japan. The Prime Minister's request for truck/s with capacity to pump water at high pressure was specifically discussed.
-- OSD also stated that USFJ has appropriate authority to transfer diesel-driven pumps (in this case, a fire truck) to Japan for use in this nuclear emergency.
-- USFJ/J4 has notified us that the have a fire truck available and they are starting to move it to the affected area. MOFA has not yet responded to their request for a police escort to expedite the transit, but the "pumper" is en route and USFJ will continue to coordinate for a lash up with an escort.
-- In post-VTC discussions, Jim Trapp (NRC liaison on the DART) advised that three diesel-driven pumps should be the target number in responding to this request. USFJ should look for at least two additional diesel-driven pumps to provide to Fukushima site ASAP.

- NRC also advised that to help Japan provide coolant to the reactor, they need more than diesel-driven pumps. The VTC participants agreed that the U.S. military forces should immediately look for ways to provide the following to the Fukushima site:
-- diesel-driven pump
-- AC power
-- DC power
-- nitrogen/air
--For further coordination on what kinds of solutions the U.S. military can offer to the Japanese to address this urgent issue, it will be useful for USFI/J4 (who is in touch with the TEPCO personnel) to coordinate with the U.S. Army Corps of Engineers and NRC experts.

We appreciate OSD's outreach to find an Army Corps of Engineers POC to share with the group.
The NRC Chairman, Greg Jaczko, can also offer advice. I've copied his team and him on this email. Their watch can be reached via (301) 816-5100.

The USFJ POC is the J4, Colonel Everett MCDaniel. Everett can be reached at OSN 315-2254712/4705/4713. ... His commercial number is: 011-81-3-1175-54712/54705/54713. His cell number is: (b)(6) If you can't reach him, the USFJ watch is: DSN: 225-4223 and they can :rack him down.'

The Mission Japan Emergency Command Center is copied above and can be reached at 03-32245530, commercial 81-3-3224-5530 if any additional coordination is necessary.

Thank you all for your assistance. It's great to hear one pumper is on the way -- appreciate everyone's help in trying to find additional support during this urgent window.

Suzanne

Suzanne I. Basalla
Senior Advisor to Ambassador John V. Roos
American Embassy - Tokyo

Please follow Ambassador Roos on Twitter.com/AmbassadorRoos

Tel: 081-3-3224-5023
Fax: 081-3-3224-5312
BasallaS1@state.gov

SBU
This email is UNCLASSIFIED.

From:
OSTO1 HOC
Sent:
To:
Wednesday, March 30, 2011 3:37 AM
PMT02 Hoc; PMT11 Hoc; Hoc, PMT12
Cc:
Subject:
Attachments:
FOIA Response.hoc Resource
FW: SPEEDI data - March 30-4pm
FUKUSHIMA1 air doseüi17-18hüj.gif; FUKUSHIMA1 air doseüi18-19hüj.gif; FUKUSHIMAI wind(16hüj.gif; FUKUSHIMA1 air concentrationüi16-17hüj.gif, FUKUSHIMA1 air concentrationüi17-18hüj.gif; FUKUSHIMA1 air concentrationüi18-19hüj.gif; FUKUSHIMA1 air doseüi16-17hüj.gif
-----Original Message--..-
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Wednesday, March 30, 2011 3:37 AM
TO: LIAO7 HOC; OST01 HOC; OST02 HOC; OSTO3 HOC
Subject: FW: SPEEDI data - March $30-4 \mathrm{pm}$

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Wednesday, March 30, 2011 3:35:33 AM
To: (b)(6)
(b)(6)

This email is UNCLASSIFIED

From:	OSTO1 HOC
Sent:	Wednesday, March 30, 2011 5:37 AM
To:	PMTO2 Hoc; PMT11 Hoc; Hoc, PMT12
Cc:	FOIA Response.hoc Resource
Subject:	FW: SPEEDI data - March $30-6 \mathrm{pm}$
Attachments:	FUKUSHIMA1 air doseüi19-20hüj.gif; FUKUSHIMA1 air doseüi20-21hüj.gif;
	FUKUSHIMA1 wind(18hüj.gif; FUKUSHIMA1 air concentrationüi18-19hüj.gif;
	FUKUSHIMA1 air concentrationüi19-20hüj.gif; FUKUSHIMA1 air
	concentrationüi20-21hüj.gif; FUKUSHIMA1 air doseüi18-19hüj.gif

-----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Wednesday, March 30, 2011 5:35 AM
To: LIA07 Hoc; OSTO1 HOC; OSTO2 HOC; OSTO3 HOC
Subject: FW: SPEEDI data - March $30-6 \mathrm{pm}$

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Wednesday, March 30, 2011 5:32:45 AM
To: (b)(6)
(b)(6)

Subject: SPEEDI data - March 30-6pm
Auto forwarded by a Rule

Attached is the SPEEDI data for March 30 at 6 pm .

SBU
This email is UNCLASSIFIED

From:
Sent:
To:

Cc:

Subject:
Attachments:

OSTOI HOC
Wednesday, March 30, 2011 1:24 AM
PMT02 Hoc; PMT11 Hoc; Hoc، PMT12
FOIA Response.hoc Resource
FW: 3/30, 11:00 SPEEDI DAta
FUKUSHIMA1 air concentrationüi11-12hüj.gif; FUKUSHIMA1 air concentrationüi12-13hüj.gif; FUKUSHIMA1 air concentrationüi13-14hüj.gif; FUKUSHIMA1 air doseüil1-12hüj.gif; FUKUSHIMA1 air doseüi12-13hüj.gif, FUKUSHIMA1 air doseüi13-14hüj.gif; FUKUSHIMA1 wind(11hüj.gif
-----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Wednesday, March 30, 2011 1:20 AM
TO: LIAO7 HOC; OST01 HOC; OSTO2 HOC; OSTO3 HOC
Subject: FW: 3/30, 11:00 SPEEDI DAta

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Wednesday, March 30, 2011 1:16:48 AM
To: (b)(6)
(b)(6)

Subject: 3/30, 11:00 SPEEDI DAta
Auto forwarded by a Rule
Attached please find 11:00 SPEEDI Data. Apologies for the delay.

SBU
This email is UNCLASSIFIED

Naomi Walcott
Emergency Action Officer
Japan Emergency Command Center
U．S．Embassy Tokyo
－－－－－Original Message－－－．－
From：nustec［mailto：spd01＠nustec．or．jp］
－ $2 n t:$ Wednesday，March 30， 2011 11：38 AM
10：（b）（6）
（b）（6）

Subject：3／30 11時SPEEDI単位量放出図形イメージの送付

関係者各位

お世話になっております。
原子力安全技術センター SPEEDI担当です。
3／30 11時のSPEEDI単位量放出図形のイメージデータを送付致します。 こ確認のほど，よろしくお願い致します。

Please find attached 11：00［30－Mar］SPEEDI Data
NUSTEC

From:	RST06 Hoc
Sent:	Wednesday, March 30,2011 5:36 PM
To:	Ruland, William; Arndt, Steven; Skeen, David; Cheok, Michael; Gibson, Kathy; Coe, Doug
Cc:	Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RSTO1 Hoc; Hoc, PMT12;
	McDermott, Brian; Scott, Michael; Tinker, Charles; Cool, Donald
Subject:	RE: Request for Ops Center RTS support

Just noticed that I'm not even on the distribution. Please add me. Thanks.

From: RST06 Hoc
Sent: Wednesday, March 30, 2011 5:34 PM
To: Ruland, William; Arndt, Steven; Skeen, David; Cheok, Michael; Gibson, Kathy; Coe, Doug
Cc: Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Scott, Michael; Tinker, Charles; Cool, Donald
Subject: RE: Request for Ops Center RTS support

Thanks Bill. You must be a fan of other tired, old, acts too-Cher maybe?

Before responding, can l ask that whomever has stepped-up to take the lead for this do a respond-all to let us know?
Objective for first question (energetic release potential): this information is important to the Ambassador in Japan and the US military command that would be responsible for movement of US citizens who were ordered to be evacuated from any locations in the Pacific. In fact, the Pacific Command asked the same question of the NRC at today's Deputies Meeting that is attended by the Chairman. The answer to this question may also impact when we as the NRC ramp down our activities? We should attempt to address this by Friday (4/1).

Objective for the second question is to support multiple questions/actions. There have been many requests of the PMT for "realistic" dose models. The RST Assessment document (original e-mail was supposed to have it attached, but I've added to this incuse it did not go out the first time) also contains recommended actions for the Japanese to consider. These recommendations are based on the SAMGS, which all are intended to protect primary containment. Since primary containment is damaged on at least two units, we need to assess whether there may be new considerations/priorities that are not captured by the SAMGs. Also, the product of this effort helps us better clarify the assessment of potential energetic releases, along with identifying the best strategies to ensure that they don't happen. This item does not have as short a deliverable date unless the PMT has one that I'm not aware of, but is still very significant in terms of our recommendations. Can we complete by Monday (4/4)?

Of course, my request should be seen as the start of a process, and that others should add to it in order to shape into an end product that goes beyond, or corrects, the vision that I started with.

Fred

From: Rutland, William
Sent: Wednesday, March 30, 2011 10:36 AM
To: Arndt, Steven; Skeen, David; RST06 Hoc; Cheok, Michael; Gibson, Kathy
Cc: Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Coe, Doug; Scott, Michael
Subject: RE: Request for Ops Center RTS support

From:	Hoc, PMT12
Sent:	Wednesday, March 30,2011 6:08 PM
To:	PMT09 Hoc
Subject:	FW: Request for Ops Center RTS support
Attachments:	03-26-2100 Final RST assessment of Daichi Units document.docx

Steve

Can you take a look at this - PMT is being tagged for an action item as noted below that a believe is on the RAAD side.

From: RST06 Hoc

Sent: Wednesday, March 30, 2011 5:34 PM
To: Ruland, William; Arndt, Steven; Skeen, David; Cheok, Michael; Gibson, Kathy; Coe, Doug
Cc: Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Scott, Michael; Tinkler, Charles; Cool, Donald
Subject: RE: Request for Ops Center RTS support

Thanks Bill. You must be a fan of other tired, old, acts too - Cher maybe?

Before responding, can lask that whomever has stepped-up to take the lead for this do a respond-all to let us know?
Objective for first question (energetic release potential): this information is important to the Ambassador in Japan and the US military command that would be responsible for movement of US citizens who were ordered to be evacuated from any locations in the Pacific. In fact, the Pacific Command asked the same question of the NRC at today's Deputies Meeting that is attended by the Chairman. The answer to this question may also impact when we as the NRC ramp down our activities? We should attempt to address this by Friday (4/1).

Objective for the second question is to support multiple questions/actions. There have been many requests of the PMT for "realistic" dose models. The RST Assessment document (original e-mail was supposed to have it attached, but I've added to this incase it did not go out the first time) also contains recommended actions for the Japanese to consider. These recommendations are based on the SAMGS, which all are intended to protect primary containment. Since primary containment is damaged on at least two units, we need to assess whether there may be new considerations/priorities that are not captured by the SAMGs. Also, the product of this effort helps us better clarify the assessment of potential energetic releases, along with identifying the best strategies to ensure that they don't happen. This item does not have as short a deliverable date unless the PMT has one that I'm not aware of, but is still very significant in terms of our recommendations. Can we complete by Monday (4/4)?

Of course, my request should be seen as the start of a process, and that others should add to it in order to shape into an end product that goes beyond, or corrects, the vision that I started with.

Fred

From: Ruland, William
Sent: Wednesday, March 30, 2011 10:36 AM
To: Arndt, Steven; Skeen, David; RST06 Hoc; Cheok, Michael; Gibson, Kathy
Cc: Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Coe, Doug; Scott, Michael
Subject: RE: Request for Ops Center RTS support

From:	RSTO6 Hoc
Sent:	Wednesday, March 30, 2011 6:07 PM
To:	Cheok, Michael; Ruland, William; Arndt, Steven; Skeen, David; Gibson, Kathy; Coe, Doug
Cc:	Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12;
	McDermott, Brian; Scott, Michael; Tinkler, Charles; Cool, Donald; Harrison, Donnie; Lee,
	Samson; Tate, Travis; Parillo, John; Brown, Frederick
Subject:	RE: Request for Ops Center RTS support

Thanks Mike.

Mike Scott is in Japan.

Fred Brown
RST on-shift Director

From: Cheok, Michael
Sent: Wednesday, March 30, 2011 6:05 PM
To: RST06 Hoc; Ruland, William; Arndt, Steven; Skeen, David; Gibson, Kathy; Coe, Doug
Cc: Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Scott, Michael; Tinkler, Charles; Cool, Donald; Harrison, Donnie; Lee, Samson; Tate, Travis; Parillo, John
Subject: RE: Request for Ops Center RTS support

The first question will need SOARCA/PRA Level Il expertise - so RES/DSA (Kathy's staff) would be optimal (Kathy was not in the office today, and I will discuss this with her and/or Mike Scott tomorrow). NRR/DRA can support with John Parillo or someone else in our accident dose branch.

NRR/DRA (Donnie Harrison will be POC) can take the lead on Question 2 and will work with RES/DRA and RESIDSA on a response.

From: RST06 Hoc
Sent: Wednesday, March 30, 2011 5:34 PM
To: Ruland, William; Arndt, Steven; Skeen, David; Cheok, Michael; Gibson, Kathy; Coe, Doug
Cc: Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Scott, Michael; Tinkier, Charles; Cool, Donald
Subject: RE: Request for Ops Center RTS support

Thanks Bill. You must be a fan of other tired, old, acts too - Cher maybe?

Before responding, can lask that whomever has stepped-up to take the lead for this do a respond-all to let us know?
Objective for first question (energetic release potential): this information is important to the Ambassador in Japan and the US military command that would be responsible for movement of US citizens who were ordered to be evacuated from any locations in the Pacific. In fact, the Pacific Command asked the same question of the NRC at today's Deputies Meeting that is attended by the Chairman. The answer to this question may also impact when we as the NRC ramp down our activities? We should attempt to address this by Friday (4/1).

From:
Sent:
To:
Cc:

Gibson, Kathy
Wednesday, March 30, 2011 6:05 PM
RST06 Hoc; Ruland, William; Arndt, Steven; Skeen, David; Cheok, Michael; Coe, Doug
Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Scott, Michael; Tinkler, Charles; Cool, Donald; Correia, Richard
Subject:
Re: Request for Ops Center RTS support

First, I can't tell who "me" is. Suggest if you are using an HOC email address you first say who you are.
Second, RES has the lead for both items, DSA (me) for the first one and DRA (Doug Coe) for the second one. I added Rich Correia to the distribution as he is our new DRA division director and Doug Coe's father passed away so he is gone.

Richard Lee is our POC with the Ops Center. Charlie Tinkler is the staff person working the first item and Mary Druin is working the second item.

Let us know (preferably via Richard) if you need anything else.

From: RST06 Hoc
To: Ruland, William; Arndt, Steven; Skeen, David; Cheok, Michael; Gibson, Kathy; Coe, Doug
Cc: Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Scott, Michael; Tinkler, Charles; Cool, Donald
Sent: Wed Mar 30 17:35:33 2011
Subject: RE: Request for Ops Center RTS support
Just noticed that I'm not even on the distribution. Please add me. Thanks.

From: RST06 Hoc

Sent: Wednesday, March 30, 2011 5:34 PM
To: Ruland, William; Arndt, Steven; Skeen, David; Cheok, Michael; Gibson, Kathy; Coe, Doug
Cc: Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Scott, Michael; Tinkler, Charles; Cool, Donald
Subject: RE: Request for Ops Center RTS support
Thanks Bill. You must be a fan of other tired, old, acts too - Cher maybe?
Before responding, can lask that whomever has stepped-up to take the lead for this do a respond-all to let us know?

Objective for first question (energetic release potential): this information is important to the Ambassador in Japan and the US military command that would be responsible for movement of US citizens who were ordered to be evacuated from any locations in the Pacific. In fact, the Pacific Command asked the same question of the NRC at today's Deputies Meeting that is attended by the Chairman. The answer to this question may also impact when we as the NRC ramp down our activities? We should attempt to address this by Friday (4/1).

Objective for the second question is to support multiple questions/actions. There have been many requests of the PMT for "realistic" dose models. The RST Assessment document (original e-mail was supposed to have it attached, but l've added to this incase it did not go out the first time) also contains recommended actions for the Japanese to consider. These recommendations are based on the SAMGS, which all are intended to protect primary containment. Since primary containment is damaged on at least two units, we need to assess whether there may be new considerations/priorities that are not captured by the SAMGs. Also, the product of this effort helps us better clarify the assessment of potential energetic releases, along with identifying the best strategies to ensure that they don't

From:	Cheok, Michael
Sent:	Wednesday, March 30, 2011 6:05 PM
To:	RSTO6 Hoc; Ruland, William; Arndt, Steven; Skeen, David; Gibson, Kathy; Coe, Doug
Cc:	Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12;
	McDermott, Brian; Scott, Michael; Tinkler, Charles; Cool, Donald; Harrison, Donnie; Lee,
	Samson; Tate, Travis; Parillo, John
Subject:	RE: Request for Ops Center RTS support

The first question will need SOARCA/PRA Level II expertise - so RES/DSA (Kathy's staff) would be optimal (Kathy was not in the office today, and I will discuss this with her and/or Mike Scott tomorrow). NRR/DRA can support with John Parillo or someone else in our accident dose branch.

NRR/DRA (Donnie Harrison will be POC) can take the lead on Question 2 and will work with RES/DRA and RES/DSA on a response.

From: RST06 Hoc
Sent: Wednesday, March 30, 2011 5:34 PM
To: Ruland, William; Arndt, Steven; Skeen, David; Cheok, Michael; Gibson, Kathy; Coe, Doug
Cc: Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RSTO1 Hoc; Hoc, PMT12; McDermott, Brian; Scott, Michael; Tinkler, Charles; Cool, Donald
Subject: RE: Request for Ops Center RTS support
Thanks Bill. You must be a fan of othertired, old, acts too - Cher maybe?
Before responding, can lask that whomever has stepped-up to take the lead for this do a respond-all to let us know?
Objective for first question (energetic release potential): this information is important to the Ambassador in Japan and the US military command that would be responsible for movement of US citizens who were ordered to be evacuated from any locations in the Pacific. In fact, the Pacific Command asked the same question of the NRC at today's Deputies Meeting that is attended by the Chairman. The answer to this question may also impact when we as the NRC ramp down our activities? We should attempt to address this by Friday (4/1).

Objective for the second question is to support multiple questions/actions. There have been many requests of the PMT for "realistic" dose models. The RST Assessment document (original e-mail was supposed to have it attached, but I've added to this incase it did not go out the first time) also contains recommended actions for the Japanese to consider. These recommendations are based on the SAMGS, which all are intended to protect primary containment. Since primary containment is damaged on at least two units, we need to assess whether there may be new considerations/priorities that are not captured by the SAMGs. Also, the product of this effort helps us better clarify the assessment of potential energetic releases, along with identifying the best strategies to ensure that they don't happen. This item does not have as short a deliverable date unless the PMT has one that I'm not aware of, but is still very significant in terms of our recommendations. Can we complete by Monday (4/4)?

Of course, my request should be seen as the start of a process, and that others should add to it in order to shape into an end product that goes beyond, or corrects, the vision that I started with.

Fred

From: Ruland, William
Sent: Wednesday, March 30, 2011 10:36 AM
To: Arndt, Steven; Skeen, David; RST06 Hoc; Cheok, Michael; Gibson, Kathy
Cc: Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Coe, Doug; Scott, Michael
Subject: RE: Request for Ops Center RTS support
Great thinking! I've always been a Fred Brown fan! For my benefit, what is the objectives for this task and by when do we need to get the answers?

Regarding the core damage percentages, I understand that they were early numbers. Are we yet in a position to revise them?

Bill

From: Arndt, Steven
Sent: Wednesday, March 30, 2011 7:33 AM
To: Skeen, David; RST06 Hoc; Cheok, Michael; Gibson, Kathy
Cc: Ruland, William; Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Coe, Doug; Scott, Michael
Subject: Re: Request for Ops Center RTS support
I agree with Dave, this should be done out side of the Op Center. A group of RES folks are already doing some analysis is this area (DRA and DSA) to support the PMT. We should task them to do this and provide them with additional resources if needed.

Sent from a NRChblackberry
Steven Arndt
(b)(6)

From: Skeen, David
T0: RST06 Hoc; Cheok, Michael; Gibson, Kathy
Cc: Ruland, William; Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Coe, Doug; Scott, Michael; Arndt, Steven
Sent: Tue Mar 29 23:43:46 2011
Subject: Re: Request for Ops Center RTS support
Good thought, Fred.
I think this would be a worthwhile task, and I think we need a small group of severe accident experts to discuss the potential worst case outcomes for each scenario.

I believe this effort should be conducted outside of the RST, on the normal day shift, with either NRR or RES taking the lead to put a team together to develop the potential outcomes.

Please let me know if you need any support from NRR/DE. We could potentially offer Steve Arndt to support.

From: RST06 Hoc
To: Cheok, Michael; Gibson, Kathy
Cc: Ruland, William; Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; Skeen, David; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Coe, Doug; Scott, Michael; RST01 Hoc
Sent: Tue Mar 29 23:01:43 2011
Subject: RE: Request for Ops Center RTS support

From: Brown, Frederick
Sent: Tuesday, March 29, 2011 10:56 PM
To: Cheok, Michael; Gibson, Kathy
Cc: Ruland, William; Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; Skeen, David; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Coe, Doug; Scott, Michael; Brown, Frederick; RST01 Hoc
Subject: Request for Ops Center RTS support
Importance: High
Mike, Kathy
First, I'm not sure that you two are the right folks to ask, but I know that you'll know where this should go.
I'd like to have folks with the right skill set look at two issues (the two are inter-related, but the first may be easier to give a quick answer to without the work that the second will take):

1) Given the known, or assumed, status of the three units and four pools, what realistic scenarios exist for energetic dispersion of high quantities of radioactive material that would result in mobile plumes? The point of this question is that there are many clear scenarios that present significant near-area radiological challenges, but given the time since shutdown (for the operating units) and age of much of the fuel (in the SFPs) what are the remaining scenarios of concern with respect to more distant locations (Tokyo with a large concentration of US citizens, Alaska, Hawaii, etc).
2) Given the assumed condition of the three units and four pools, can we generate basic event trees for the coming weeks/months? The point would be to identify key success criteria and to help identify key decision points/risk factors to be balanced (qualitative not quantitative analysis). For instance, take two units, each with significant core damage and prior release of volatile fission products, each with primary and secondary containment failure, but one with an intact RPV and the other with a breach of RPV - would there be a difference in potential releases that would lead to different strategies for flooding the primary containment of these two units? This question will make more sense if you look at the assumed conditions below and the attached assessment document where we recommend that TEPCO utilize the SAMG recommendation to flood all 3 units' containments.

Note that the intent is to limit this activity to hours and days, not weeks or years. Once we validate the concept of this evaluation, we can turn it over to US industry for further action/development.

Assumed status (slightly different than the status in the attached assessment):
Unit 1 Rx : Shutdown $3 / 11$. 70% core damage. Cooling with 30 gpm . Significant salt deposits in vessel, core spay plugged. Primary pressure 65 psig. Drywell pressure 25 psig. Secondary containment destroyed. Containment has been vented at least once since fuel damage occurred. Attempting to establish Nitrogen purge prior to resuming venting.

Unit 2 Rx: Shutdown 3/11. 30\% core damage. Significant salt deposits in vessel/drywell. Assumed RPV breach, with at least some core ex-vessel that ocurred approximately $3 / 15$. Primary containment breached in the torus. Secondary containment breached. Significant release of volatile fission products has occurred through both airborne release and also via water drainage out of the Rx building.

Unit 3 Rx: same assumptions as Unit 2, but do not assume RPV failure and location of primary containment breach may be the drywell.

SFP 1: 292 bundles. Pool intact. All fuel at least 12 years old. No secondary containment. Rubble on top of pool. Water can be added through external spray. Now at saturation temperature.

SFP 2: 587 bundles. Pool intact. Water added to the point of pool over-flow. Pool had reached saturation temperature at one time.

SFP 3: 548 bundles. $1 / 4$ core offload previous refueling. No checker boarding of hotter fuel. Structural damage to pool area suspected. Pool leakage possible. External addition of water has been made repeatedly, but flooding of pool may not be possible due to damage.

SFP 4: 1331 bundles. Full core offload about 120 days ago. No checker boarding of hotter fuel. Structural damage to pool area is known to exist, and structure may not support a full pool weight load. Pool leakage likely, requiring addition of water periodically. Pool was likely dry enough to have cladding/water reaction which produced enough hydrogen to lead to catastrophic explosion that destroyed secondary containment.

From:
Sent:
To:
Cc:

Subject:

Skeen, David
Tuesday, March 29, 2011 11:44 PM
RST06 Hoc; Cheok, Michael; Gibson, Kathy
Ruland, William; Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; RST01
Hoc; Hoc, PMT12; McDermott, Brian; Coe, Doug; Scott, Michael; Arndt, Steven
Re: Request for Ops Center RTS support

Good thought, Fred.
I think this would be a worthwhile task, and I think we need a small group of severe accident experts to discuss the potential worst case outcomes for each scenario.

I believe this effort should be conducted outside of the RST, on the normal day shift, with either NRR or RES taking the lead to put a team together to develop the potential outcomes.

Please let me know if you need any support from NRRIDE. We could potentially affer Steve Arndt to support.

From: RST06 Hoc

To: Cheok, Michael; Gibson, Kathy
Cc: Ruland, William; Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; Skeen, David; RST01 Hoc; Hoc, PMT12; McDermott, Brian; Coe, Doug; Scott, Michael; RST01 Hoc
Sent: Tue Mar 29 23:01:43 2011
Subject: RE: Request for Ops Center RTS support
Please see below.

From: Brown, Frederick
Sent: Tuesday, March 29, 2011 10:56 PM
To: Cheok, Michael; Gibson, Kathy
Cc: Ruland, William; Dudes, Laura; Uhle, Jennifer; Hiland, Patrick; Hackett, Edwin; Skeen, David; RSTO1 Hoc; Hoc, PMT12; McDermott, Brian; Coe, Doug; Scott, Michael; Brown, Frederick; RST01 Hoc
Subject: Request for Ops Center RTS support
Importance: High
Mike, Kathy
First, I'm not sure that you two are the right folks to ask, but I know that you'll know where this should go.

I'd like to have folks with the right skill set look at two issues (the two are inter-related, but the first may be easier to give a quick answer to without the work that the second will take):

1) Given the known, or assumed, status of the three units and four pools, what realistic scenarios exist for energetic dispersion of high quantities of radioactive material that would result in mobile plumes? The point of this question is that there are many clear scenarios that present significant near-area radiological challenges, but given the time since shutdown (for the operating units) and age of much of the fuel (in the SFPs) what are the remaining scenarios of concern with respect to more distant locations (Tokyo with a large concentration of US citizens, Alaska, Hawaii, etc).
2) Given the assumed condition of the three units and four pools, can we generate basic event trees for the coming weeks/months? The point would be to identify key success criteria and to help identify key decision
points/risk factors to be balanced (qualitative not quantitative analysis). For instance, take two units, each with significant core damage and prior release of volatile fission products, each with primary and secondary containment failure, but one with an intact RPV and the other with a breach of RPV - would there be a difference in potential releases that would lead to different strategies for fooding the primary containment of these two units? This question will make more sense if you look at the assumed conditions below and the attached assessment document where we recommend that TEPCO utilize the SAMG recommendation to flood all 3 units' containments.

Note that the intent is to limit this activity to hours and days, not weeks or years. Once we validate the concept of this evaluation, we can turn it over to US industry for further action/development.

Assumed status (slightly different than the status in the attached assessment):

Unit 1 Rx: Shutdown 3/11. 70\% core damage. Cooling with 30 gpm . Significant salt deposits in vessel, core spay plugged. Primary pressure 65 psig. Drywell pressure 25 psig. Secondary containment destroyed. Containment has been vented at least once since fuel damage occurred. Attempting to establish Nitrogen purge prior to resuming venting.

Unit 2 Rx: Shutdown 3/11. 30\% core damage. Significant salt deposits in vessel/drywell. Assumed RPV breach, with at least some core ex-vessel that ocurred approximately 3/15. Primary containment breached in the torus. Secondary containment breached. Significant release of volatile fission products has occurred through both airborne release and also via water drainage out of the Rx building.

Unit 3 Rx: same assumptions as Unit 2, but do not assume RPV failure and location of primary containment breach may be the drywell.

SFP 1: 292 bundles. Pool intact. All fuel at least 12 years oid. No secondary containment. Rubble on top of pool. Water can be added through external spray. Now at saturation temperature.

SFP 2: 587 bundles. Pool intact. Water added to the point of pool over-flow. Pool had reached saturation temperature at one time.

SFP 3: 548 bundles. $1 / 4$ core offload previous refueling. No checker boarding of hotter fuel. Structural damage to pool area suspected. Pool leakage possible. External addition of water has been made repeatedly, but flooding of pool may not be possible due to damage.

SFP 4: 1331 bundles. Full core offload about 120 days ago. No checker boarding of hotter fuel. Structural damage to pool area is known to exist, and structure may not support a full pool weight load. Pool leakage likely, requiring addition of water periodically. Pool was likely dry enough to have cladding/water reaction which produced enough hydrogen to lead to catastrophic explosion that destroyed secondary containment.

OST01 HOC

From:
Sent:
To:
Cc:
Subject:
Attachments:

Thursday, March 31, 2011 8:19 PM
PMT02 Hoc; PMT11 Hoc; Hoc, PMT12
OSTO2 HOC
FW: 4/1, 07:00 SPEEDI Data
FUKUSHIMA1 air concentrationüi07-08hüj.gif; FUKUSHIMA1 air concentrationüi08-09hüj.gif; FUKUSHIMA1 air concentrationüi09-10hüj.gif: FUKUSHIMA1 air doseüi07-08hüj.gif; FUKUSHIMA1 air doseüi08-09hüj.gif; FUKUSHIMA1 air doseüi09-10hüj.gif; FUKUSHIMA1 wind(07hüj.gif
fyi.
-----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Thursday, March 31, 2011 6:52 PM
To: LIA07 Hoc; OSTO1 HOC; OSTO2 HOC; OST03 HOC
Subject: FW: 4/1, 07:00 SPEEDI Data

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Thursday, March 31, 2011 6:50:39 PM
To: (b)(6)
(b)(6)

Auto forwarded by a Rule

Please find attached 4/1, 07:00 SPEEDI Data.

SBU
This email is UNCLASSIFIED

```
Naomi Walcott
Emergency Action Officer
Japan Emergency Command Center
U．S．Embassy Tokyo
```

－－－－uriginal Message－－－－－
From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Friday，April 01， 2011 7：43 AM
To：（b）（6）
（b）（6）

Subject：4／1 07時SPEEDT本立童败出図形ノメーンण达付

関係者各位

お世話になっております。
原子力安全技術センターSPEEDI担当です。
4／1 D7時のSPEEDI単位量放出図形のイメージデータを送付致します。 ご確認のほど，よろしくお願い致します。

Please find attached 07：00［01－Apr］5PEEDI Data NUSTEC


```
    *
```


From:

Sent:
To:
Cc:
Subject:

LIAO2 Hoc
Thursday, March 31, 2011 12:51 AM
Shaffer, Mark R; LIA03 Hoc
Schwartzman, Jennifer
RE: IAEA Request for radaition montoring information

The request has been forwarded to EPA contacts as of 12:45 AM EDT 3/31/11.

From: Shaffer, Mark R [mailto:ShafferMr@state.gov]
Sent: Wednesday, March 30, 2011 7:21 AM
To: LIAO2 Hoc; LIAO3 Hoc
Cc: Schwartzman, Jennifer
Subject: IAEA Request for radaition montoring information
Can you let me know the status of the subject. The request came from $1 A E A$ to NRC. DOE and State Department (with a CC to UNVIE) (dated March 191. I forwarded it on to you guys for action, hoping to expedite things. I received a note back (from Jennifer, if I recall) saying that NRC's response was "...we don't have anything, and EPA is who you need to talk to." I asked if NRC could please forward the IAEA request on to EPA. As of today, I haven'I seen anything from anyone. Most Member States have responded to IAEA, and the results are in their daily briefings, and posted on the web. IEC is aware (from the news media) that radiation hos been detected in the U.S., so they wont to know why we (USG) are not responding to their request. I think it's a reasonable question.

I know you can't control the other agencies, but can you check on the status and let me know how long it's going to take to get an answer from DOE. State and EPA. Thanks!

This email is UNCLASSIFIED.

From: LIA02 Hoc [mailto:LIA02.Hoc@nrc.gov]
Sent: Wednesday, March 30, 2011 1:06 PM
To: LIA02 Hoc; Doane, Margaret; Marish, Nader; Abrams, Charlotte; Wittick, Brian; Afshar-Tous, Mugeh; Shaffer, Mark R; Bloom, Steven; Schwartzman, Jennifer; Tobin, Jennifer; Mayros, Lauren; Jones, Andrea; English, Lance; Smiroldo, Elizabeth; Young, Francis; Henderson, Karen; Ramsey, Jack; Shepherd, Jill; Baker, Stephen; Emche, Danielle; Fragoyannis, Nancy; LIA03 Hoc; Stahl, Eric; LIA07 Hoc; LIA06 Hoc; LIA08 Hoc; Owens, Janice; Fehst, Geraldine Subject: OUO- TRANSITION REPORT FOR MARCH 29-30, 2300-0700

OFFTCTALUSE ORTH

TRANSITION REPORT FOR MARCH 28-29, 2300-0700

Steve Baker to Lauren Mayros

UPDATES DURING SHIFT

A brief overview of what the plans) are to remove the water: In response to your (Mark Shaffer's) inquiry, the Site team in Japan reports that the current plan is to pump the basement water to the available hotwells and other tanks onsite. Additionally, US forces in Japan are expected to supply bladders and other additional temporary storage.
（nev：paragraph）Longer term plans are being considered in the US such as temporary rad waste processing skids， temporary holding tanks and tanker trucks．DOE is also investigating whether there is a technology to absorb contaminated materials from water．（No further action required）

Time Table for Response Team：A Response Team comprised of PMT，RST and attended by Int＇I Liaison team will not be needed until Wednesday March 30 at 8：00 pm（EDT）for the Thursday 3－31 9：00 am meeting in Japan．

Taiwan Conference Call．Per Danielle＇s request on March 24 and PMT＇s agreement to include Taiwan in the daily France／Canada／UK calls，we have asked Danielle to provide POC information for Taiwan to provide Taiwan with dial－ in numbers．The number is（b）（6）PIN is（b）（6）Action：Danielle will provide Taiwan poc information． Obtain phone number from back－up desk officer and contact Taiwan poc with information．Reference e－mail sent from LIA02 HOC to Danielle Emche on March 29， 2011 at 6：22 a．m．ET
解家 8 名2at 2am

－Site Team Computer Assistance Requested．Site Team requested assistance in forwarding attachments via Webmail．OIS is aware of the request and is considering action on March 30．Meanwhile Technical Support in the Op Center directed the Site Team to call the NRC help desk， available 24／7，and to check the international air cards sent with each laptop to use with CITRIX．Action：Follow up with Technical Support on March 30 for final determination with Webmail．
－Cancellation of 9：30 pm EST nightly Interagency Call and the Task Force disbanded as of 0830 EDT March 29 Japan Desk will monitor events through routine channels．Interagency calls may be scheduled in the future，as needed．
－Consortium POC request：Request sent to Brooke，Danielle，Dan D．and Chuck C．at 4：26pm to provide a POC for the Consortium effort that will include vetting the＂Japanese Government Action Items and Materials Request List to be Considered by the Consortium＂and participate in future daily meetings starting March 31 at 8 am Japan time．Also asked to advise if the time does NOT work for the POC．Once we have the name of the POC we will forward the list and other pertinent information．Update：Alan Blamey was named POC．He was provided the consolidated action item list for review and input and asked to consider while reviewing：1）the type of protocol that we may need to develop with the industry and government to address these requests／action items，and 2）how to effectively track items and requests．Initial meeting time was not acceptable and has been changed to Gam Japan time．No further action necessary．
－INPO：All equipment requests are now going through INPO．They are consolidating all available information．Contact information for INPO is 770－644－8118 or email at inpoercassistance＠inpo．org．
－IAEA All Member States Meeting：Received request from the ET director，Mike Webber to coordinate with Mark Shaffer in Vienna to determine the topic and／or agenda for this meeting，which was called by the DG．The ET would like to know what will be communicated by the DG to member states and what might be asked of member states at this meeting．Email communicating this request was sent to Jen Schwartzman with cc to Mark Shaffer by 0700－1500 shift on $3 / 29$ ．Communicate any information received to the LT director to be communicated to the ET director on duty．Action follow up pending response by Jen or Mark．
－Re－Entry guidance：Forwarded final re－entry guidance to NRC team in Japan and requested they forward to the Ambassador per our instructions from NSC．Action is closed．

- $3^{\text {rd }}$ Team of NRC Travelers: Per Michele Evans a third team of NRC travelers is being considered however, no names or dates have been decided as yet. Action: Pending notification from Michele Evans. Remember to inform Jason Kozal (NRC embedded at USAID) once a decision has been reached.
- DHS Request: Received request from DHS/Stern (to Cyndi Jones) on $3 / 28$ at 1912. Stern wants to know "does NRC have access to IAEA Measured Data on ENAC (not the Japanese data)". PMT was unable to provide a response as to whether or not they use the IAEA data and ENAC search showed only Japanese data. Responded back to Cyndi Jones at 2141 with that information and inquired if anyone else would have access to IAEA information within the PMT. At 2:11am, Mark Shaffer asked that Jennifer Schwartzman brief LIA02 (and Cyndi Jones) regarding the ongoing discussion between Warren Stern and Ambassador Davies on the topic noted in the recent transition log. Action follow-up pending Cyndi's response.
- IAEA Coordination. $3 / 28$ at 1850 , DEDO/Virgilio requested information on IAEA's role as the clearinghouse for assistance. He indicated that Margie said IAEA accepted the role. He would like to know the next steps for implementation and how it will be accomplished. Sent Margie and Mark Schaffer an email requesting information. Jen Schwartzman responded that DOD has the lead for USInteragency logistics (Margie is aware of this) and that IAEA has not agreed to be a clearinghouse, however, they have agreed to play a significant role (Jen's email response with more information is in the Inbox from $3 / 28$ at 1937. Follow up with Margie on $3 / 29$ and advise the ET and DEDO/Virgilio of the next steps.
- Request from RST and PMT to keep them updated on who is currently in Japan on NRC team. 3/28, 1300: Updated list provided, minus PII, to RST and PMT.
- Sent a request to returned travelers/travelers about to return to confirm their status, and to provide them with updated returned traveler checklist at 1300. Received responses from
R.DeVercelly. Action: Update list as travelers respond. Update: Received response from D.Emche that Chuck Casto will return $4 / 12$ and John Monniger $4 / 5$ at 2107.
- Return Checklist. Michele Evans had one suggested amendment. The change was made and the document was sent to Michele Evans for concurrence and for distribution to the travelers coming back. Email document to travelers coming back to U.S as requested by Michele Evans (on LIA02 Desktop). Update $3 / 28$ 1300: After confirming changes with Michele Evans, sent checklist to travelers already returned and those returning this week.
- NRC Health Unit request: Dr. Cadoux (and Jeanne Dempsey) has contacted LIA02/LIA03 via Jen Schwartzman to discuss the situation with KI. The NRC team members were given KI before they left. At this time the guidance is to not take the KI while on duty in Tokyo. However, due to the still-fluid nature of the environmental hazards posed by radioactive isotopes, there still exists a possibility that KI could be required at some point. Jen has responded to Jeanne that should it become necessary to have the NRC team take the KI, the LIA02/LIA03 international liaisons would be responsible for receiving the advice from ADM/Dr. Cadoux and to get the information to the team immediately.

FUTURE ACTIONS/OPEN ITEMS

- Coordination of IAEA and U.S. Efforts. It appears that DOD (Navy) is taking a logistical leadership role in coordinating efforts for the U.S. government. This information will need to be coordinated with both the IAEA international coordinating team as well as the INPO representative. NRC is interested in knowing what other countries are providing in support to Japan. Email was sent to NRC IAEA Attache' and NRC IAEA desk officer to pursue a path forward. Action: Attache' and desk officer will report if they need anything further from the LT; ET may inquire about path forward.
- Emche Blackberry Voicemail Problems. Forwarded directions from TSC to Danielle on how to access her voicemail. She tried them but it still did not work properly. She will call the CSC Monday morning. Her BB number is confirmed. Emailed Eric to confirm his
BB number. Action: A heads up regarding the continuing voice mail problems was sent to CSC. Danielle will call CSC Monday. The Monday teams should stay tuned in case Danielle needs further assistance. Update 3/29, 4:08 AM: We still have IT issues, (for D. Emche, no voice mail, although she's ready to give up and stop reporting this). Update 3/29: Based upon emails between Danielle and CSC they are working to find a time for a call with AT\&T to troubleshoot the issues since the instructions provided are still not working. Problem not solved.
- Laptop IT/C itrix issues: Update $3 / 29,4: 08$ AM: We still have IT issues, (for D. Emche, no voice mail, although she's ready to give up and stop reporting this). A bigger issue is with citrix for a few laptops here. Robert Heard and Karen Jackson have been contacted. Update 3/29 10AM: Met with OIS to discuss the laptop issues. They stated that several of the laptops that went out from headquarters were configured generically so that anyone could use them. OIS said they would provide a list to LIA02 and LIA03 showing which laptops were generically configured. OIS said they could reconfigure the ones that are currently tied to a user from headquarters. Any laptops that went from the regions to Japan are outside the scope of what they can reconfigure. Along with the list OIS is to provide any instructions for users in Japan needed to assist them with reconfiguration efforts. They requested one point of contact on the ground in Japan. I informed them that LIA02 or 03 would pass all information along to Danielle Emche and instruct Danielle to contact the CSC before 10am Japan time with any questions or issues following the reconfiguration instructions. UPDATE: $3 / 29$ 2:35pm - List plus instructions from OIS have been received and forwarded to Danielle Emche with instructions to call CSC with questions before 10am Japan time (9pm EDT). Action: None (be prepared to provide assistance pending further complications from the team in Japan).
- Request for meteorological data. PMT notified LIA02/03 of their need for meteorological data. Action: If you receive meteorological communications which do not already have PMT on distribution, please ensure PMT is cc'ed on the email (send to PMT02 and PMT12) and walk a hard copy back to the meteorologists.
- Japan Relief Team.
- Dosimetry: LIA03 sent an email to LiasonJapan (original team) asking for them to email back their dosimetry numbers. The initial team sent over was in such a rush that the Headquarters Radiation Safety Officer, John O'Donnell, never recorded which dosimeter was assigned to which staff member. If dosimeter numbers (on the back) are received directly to the international liaison desks they should be forwarded to John O'Donnell and entered into a word document on LIA03.
- Cris Brown has advised that, rather than asking the relief team to carry additional satellite phones to Japan, the current team should turn ownership of the two satellite phones already over there to a new member of the relief team. The travelers have been advised to work with the current team to determine who should take ownership, then provide that name to Cris Brown and LIAO2/LIA03. Action: When name is provided, ensure that Cris Brown has it.
- Request from U.S. Forces Japan. LT Director received a request for specific reactor information from USFJ in preparation for a bilateral. International liaisons gave NRC team in Japan a heads up that the request had come in. LT Director replied to the request indicating that we have a team in Japan and that, rather than duplicate the requests the USG is making of the Japanese, it would be more efficient for USFJ to coordinate with us. LIA02 and 03 were provided as email addresses for USFJ to communicate with.
- IAEA Coordination. The ET had tasked us with understanding the role of the IAEA's Incident and Emergency Centre (IEC) and what the extent of their role is if Japan does not make a formal request to them under the Assistance Convention. We suggested that the IEC serve as a clearinghouse, keeping track of all requests for assistance from Japan, all offers to assist from other countries, who has provided what, and whether it satisfies the requests. We have told the LT Director that OIP will keep the ET informed of developments on this issue. Action: We need to talk to Margie about how she'd like us to proceed with responding to IAEA's request. Continue to follow this and expect questions from ET and LT Director. Update 3/28: M. Shaffer has confirmed that Japan has not requested assistance under the Convention.
- Translators. 24/7 translation coverage has been suspended due to both projected decreasing demand and funding issues. Action: PMT has asked that we identify any Japanese speakers at NRC (e.g. foreign assignees) who can assist if an urgent translation is needed. PMT is comfortable understanding the monitoring data as the fields in the tables are repetitive. Email request sent to Steve D./Charlotte/Mary C.
- Daily calls with UK/France/Canada. Calls will take place at 0930 with RST and PMT to discuss reactor-related and radiation-related information, respectively, with regulatory representatives from
these three countries. Everyone should call into the HOO to be connected. Call will not occur over the weekend. The new number to call into for the RST call is ${ }_{(b)(6)}$ land the pin is (b)(6)
- Daily NRC Japan Team - RST/PMT Call. Next call scheduled for 0300. RST and PMT have been notified of the call and international liaison should plan on participating (Brooke and Kirk don't necessarily participate). All parties should call into 301-816-5120 and use pass-code (b)(6)
- 21:30 Interagency Call. Call (202) 647-1512 and ask for the Interagency call bridge.
- Deputies Committee Decisions and Action Items: Action: Annette will be sending us the meeting summaries when she gets them. They need to be placed in the White House file and then search for NRC actions and update the running list. Forward to the LT Director and Coordinator.
- RST Recommendations: In reference to the white paper that the RST is writing containing technical recommendations for the Japanese (which will need interagency and consortium stakeholder concurrence), Chuck Casto relayed that Ambassador Roos wants to attach the final recommendations to a document from DOS and submit it to the Japanese side. The ET said that this was not a good idea. Following the call, Chuck Casto did touch base with the Ambassador, who still wants to proceed. The Chairman will probably talk to the Ambassador about this issue in due course. No action required, just be aware in case the issue comes up.
- Tech Issues for New Team Members in Tokyo: The newly arrived team members have questions about how to access citrix and re-assign laptops. In addition, due to sign on problems, some may be locked out or need to have something re-set. A call was placed to NRCs 24 IT group for resolution of the issues. Follow service $\operatorname{tag} 91$ JMNL1 for resolution of their issues.

DAILY ACTIONS/REMINDERS

- International updates must be sent to LIA07 (to be put in the HOO Status Update) before the end of every shift as well as posted on the LT status board (different than the LT Log).
- 11 PM - 7 AM shift is responsible for the summary call with Kirk and Brooke, scheduled daily at 0500 EST unless rescheduled, and subsequent write-up of one-pager for Margie. Margie reminds us that the write-up should not contain technical details, which are already captured in other reports, and should be marked "Official Use Only - Foreign Government Information."
- The $11 \mathrm{pm}-7$ am shift is responsible for sending all emails from the previous day to the FOIA email address. Open new email, copy previous day's emails as an attachment and send to FOIA Response.hoc@nrc.gov.
- Kirk, Brooke, Danielle and Eric requested that the international team to sit in on calls with the ET and team leader (Chuck or Dan) to take notes and provide a short summary of what was discussed via email.
- Prior to any international call you set up, please make sure you contact the HOOs to let them know that you are going to have an international call.
- Reminder to Keep Mark Shaffer in-the-loop at shaffermr@state.gov, regardless of time of day, regardless of whether he is in the office or asleep. Especially cc Mark on all communication to IAEA.
- Sanitary wipes now available. Action: Please wipe the keyboards, mice and phones before you leave.

From:
Sent:
To:
Cc:
Subject:
Attachments:

OSTO1 HOC
Thursday, March 31, 2011 8:20 PM
PMT02 Hoc; PMT11 Hoc; Hoc, PMT12
OSTO2 HOC
FW: 4/1, 08:00 SPEEDI Data
FUKUSHIMA1 air concentrationüi08-09hüj.gif; FUKUSHIMA1 air concentrationüi09-10hüj.gif; FUKUSHIMA1 air concentrationüi10-11hüj.gif; FUKUSHIMA1 air doseüi08-09hüj.gif; FUKUSHIMA1 air doseüi09-10hüj.gif; FUKUSHIMA1 air doseüi10-11hüj.gif; FUKUSHIMA1 wind(08hüj.gif
-----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Thursday, March 31, 2011 7:56 PM
To: LIA07 HOC; OSTO1 HOC; OST02 HOC; OSTO3 HOC
Subject: FW: 4/1, 08:00 SPEEDI Data

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Thursday, March 31, 2011 7:53:42 PM
To: (b) (6)
(b)(6)

Subject: 4/1, 08:00 SPEEDIData
Auto forwarded by a Rule

Naomi Walcott
Emergency Action Officer

Japan Emergency Command Center
U．S．Embassy Tokyo

SBU

This email is UNCLASSIFIED－－－－－Original Message－－－－－
From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Friday，April 01， 2011 8：31 AM
To：（b）（6）
（b）（6）

Subject：4／1 08時SPEEDI単位量放出図形イメージの送付

関係者各位

お世話になっております。
原子力安全技術センターSPEED担当です。
4／1 08時のSPEEDI単位量放出図形のイメージデータを送付致します。 ご確認のほど，よろしくお願い致します。

Please find attached 08：00［01－Apr］SPEEDI Data
NUSTEC

From:	OSTO1 HOC
Sent:	Thursday, March 31, 2011 3:39 AM
To:	PMTO2 Hoc; PMT11 Hoc; Hoc, PMT12
Cc:	FOIA Response.hoc Resource
Subject:	FW: 31MAR 1634 Speedi Data
Attachments:	FUKUSHIMA1 air concentrationüi16-17hüj.gif; FUKUSHIMA1 air
	concentrationüi17-18hüj.gif; FUKUSHIMA1 air concentrationüi18-19hüj.gif;
	FUKUSHIMA1 air doseüi16-17hüj.gif, FUKUSHIMA1 air doseüil7-18hüj.gif;
	FUKUSHIMA1 air doseüi18-19hüj.gif; FUKUSHIMA1 wind(16hüj.gif

-----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Thursday, March 31, 2011 3:38 AM
TO: LIA07 HOC; OSTO1 HOC; OST02 HOC; OST03 HOC
Subject: FW: 31MAR 1634 Speedi Data
-From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Thursday, March 31, 2011 3:36:07 AM
To: (b)(6)
(b)(6)

```
Fubject: 31MAR 1634 Speedi Data
Adro forwarded by a Rule
```

\qquad

```
31MAR 1634 Speedi Data attached
on behalf of the Japan Emergency Command Center, +81 -3-3224-5533
Lynda Hinds
Staff Assistant to Ambassador John V. Roos U.S. Embassy
1-10-5 Akasạa, Minato-ku
```

Tokyo 107－8420
Tel．（03）3224－5370

Twitter．com／AmbassadorRoos
－－－－－Original Message－－－－－
From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Thursday，March 31， 2011 4：34 PM
To：${ }^{(b)(6)}$
（b）（6）

Subiert 2／21 16時SPEEDI単位量放出図形イメージの送付
関係者各位
お世話になっております。
原子力安全技術センター SPEEDI担当です。
3／31 16時のSPEED1単位量放出図形のイメージデータを送付致します。 ご磼認のほど，よろしくお願い致します。

Please find attached 16：00［31－Mar］SPEEDI Data NUSTEC

From:
Sent:
To:
Cc:
Subject:
Attachments:

OSTOI HOC
Thursday, March 31, 2011 5:33 AM
PMT02 Hoc; PMT11 Hoc; Hoc, PMT12
FOIA Response.hoc Resource
FW: 31MAR Speedi Data
FUKUSHIMA1 air concentrationüi18-19hüj.gif; FUKUSHIMA1 air concentrationüi19-20hüj.gif; FUKUSHIMA1 air concentrationüi20-21hüj.gif; FUKUSHIMA1 air doseüi18-19hüj.gif; FUKUSHIMA1 air doseüi19-20hüj.gif; FUKUSHIMA1 air doseüi20-21hüj.gif; FUKUSHIMA1 wind(18hüj.gif
-.---Original Message----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Thursday, March 31, 2011 5:28 AM
TO: LIAO7 HOC; OSTO1 HOC; OSTO2 HOC; OSTO3 HOC
Subject: FW: 31MAR Speedi Data

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Thursday, March 31, 2011 5:26:56 AM
To: (b)(6)
(b)(6)
-Subject: 31MAR Speedi Data
Auto forwarded by a Rule

31MAR Speedi Data attached
on behalf of the Japan Emergency Command Centet,
Lynda Hinds
Staff Assistant to Ambassador John V. Roos U.S. Embassy 1-10-5 Akasaka, Minato-ku

Tokyo 107－8420
Tel．（03）3224－5370
Twitter．com／AmbassadorRoos
－－－－－Original Message－－－－－
From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Thursday，March 31， 2011 6：26 PM
To：（b）（6）
（b）（6）

Subject：3／31 18時SPEEDI単位量放出図形イメージの送付
関係者各位
お世話になっております。
原子力安全技術センター SPEEDI担当です。
3／31 18時のSPEEDI単位量放出図形のイメージデータを送付致します。 ご確認のほど，よろしくお願い致します。

Please find attached 18：00［31－Mar］SPEEDI Data
NUSTEC

From:	Nielsen, Rick M (INPO) NielsenFM@INPO.org
Sent:	Thursday, March 31, 2011 8:06 PM
To:	ET05 Hoc
Subject:	Consortium call

From:
Sent:

Subject:

Please send minutes to nielsenfm@inpo.org

Rick Nielsen
Corporate Evaluations
INFO
770 644-8696 (office)
(b)(6)
(cell)
In Pursuit of Excellence!

[^1]$x+x / 145$

From:

Sent:
To:

Subject:

LA 02 Hoc
Thursday, March 31, 2011 6:31 AM
LIA02 Hoc; Doane, Margaret; Mamish, Nader; Abrams, Charlotte; Wittick, Brian; AfsharTows, Mugeh; 'ShafferMR@state.gov'; Bloom, Steven; Schwartzman, Jennifer; Tobin, Jennifer; Mayros, Lauren; Jones, Andrea; English, Lance; Smiroldo, Elizabeth; Young, Francis; Henderson, Karen; Ramsey, Jack; Shepherd, Jill; Baker, Stephen; Emche, Danielle; Fragoyannis, Nancy; LA03 Hoc; Stahl, Eric; LA07 Hoc; ШA06 Hoc; LIA08 Hoc; Owens, Janice; Fehst, Geraldine; Foggie, Kirk; Breskovic, Clarence
OUO - Transition Report for March 31-0700

TRANSITION REPORT FOR MARCH 31-0700

sen to Jill and Lauren

UPDATES DURING SHIFT

- Call with Danielle Emche: Spoke to her at approx. 0500. They attended the daily NISATEPCO meeting and reported it was a good meeting that lasted 2 hours. She noted that attendance at this standing meeting has been consistent on the Japanese side which has facilitated ongoing communication, and they characterized the meetings as "honest exchanges of information." Elmo Collins has arrived and was introduced to the group at today's NISATEPCO meeting. Following the larger meeting, Danielle, Marie Miller and an interpreter had a smaller meeting with NISA and TEPCO reps to follow up on some radiation protection issues that had been raised by various branches of the USG. Later in the day, the DOE Attache reported a call from the French Embassy indicating that senior ASN officials were coming to Japan and had requested a meeting with the NRC Team. They will be meeting with Commissioner Philippe Jame either on Friday or Saturday. Danielle also reported on progress US Embassy Tokyo is making in tracking assistance requests from Japan (see "Coordination of IAEA and U.S. Efforts" below).
- News Reports on IAEA "Recommendation" to Extend Evacuation Zone: News media is reporting that the IAEA has called on Japan to extend the evacuation zone around Fukushima, based on abnormal levels of radiation detected in a village outside the current evacuation zone. This was not a special announcement nor a formal recommendation from the IAEA. Instead, the reports result from information provided at the March 30 IAEA technical briefing, at which DDG Denis Flory reported on the location of the abnormal radiation levels and noted that they were located outside the evacuation zone. When asked a direct question about whether the IAEA was recommending that Japan extend the zone, DDG Flory stated only that the IAEA was encouraging the "counterpart" to "carefully assess the situation." Full summary of technical briefing here: http://iaea.org/newscenter/news/tsunamiupdate01.html, relevant paragraph is the fourth paragraph under item \#2, "Radiation Monitoring." Jon Schwartzman verified with Mark Shaffer that no formal announcement has come from IAEA in this regard. Action: If asked about this by the ET or other NRC management, provide the above information so there is no confusion about IAEA's position.
- Taiwan Conference Call. PMT and RST are available for a 1200 EST onetime conference call with Taiwan, date TBD. Action: The 0700-1500 EST shift on March 31 should contact Taiwan POC (JuneYuan (JY) Huang, ${ }^{(b)(6)}$ to schedule a date for the call, then notify/confirm time and date with PMT and RST. IntTliaison should sit in on the call.
- New Travelers to Japan: Four additional technical staff will be sent to support the team in Japan. Mike Salay (RES), Michel Call (NMSS), Mike Hay (RIV), and Rudy Bernhard (RII) to leave the USA on Saturday, April 2. (Salay may leave April 3). A two-week stay is anticipated. Action 1: OIP is to identify an additional staff member to support and provide relief in the near term. Action 2: Request was made to add four new travelers to Liaison Japan alias - follow up to ensure this is done. Action 3: USAID may need us to collect passport information, etc. for the travelers.
- Coordination of IAEA and U.S. Efforts. There is ongoing interest from the ET and other NRC managers regarding the IAEA's role in coordinating, or tracking, assistance requests from Japan and offers from other member states. While the IAEA's Incident and Emergency Centre (IEC) has not agreed to be a formal "clearinghouse" (i.e., actively reaching out to all IAEA member states requesting that all assistance efforts be coordinated through the IEC), they are tracking all offers for assistance via a database that was posted on ENAC last week. For the effort to be effective, they need input from countries, and they do not have anything from the United States. It was our initial understanding that DoD (Navy) is taking a logistical leadership role in coordinating equipment-provision efforts for the USG. However, during the last shift information was received that INPO was taking the lead on equipment issues, and then during this shift information was provided that the State Department had taken a lead role in the "Consortium." The call with Danielle provided some much-needed clarity - she indicated that US Embassy Tokyo had established a tracking system to compile assistance requests from the Japanese and offers from USG entities. INPO had been separately tracking equipment requests (see INPO item below). Danielle reported that the Embassy and INPO tracking had merged, and that the Embassy and NRC Team were developing a standardized form that could be filled out for assistance requests. I inquired as to whether a similar standardized form would be developed for either solicited or unsolicited offers for assistance from USG entities and Danielle indicated she would check. I suggested that, given the concrete actions US Embassy Tokyo is taking, they should take the lead in providing information to IAEA on behalf of the USG. Danielle is going to suggest this and communicate back to us. Action: Wait to hear back from Danielle, then confirm whether or not US Embassy Tokyo will be communicating with IAEAIEC. Information can be sent to IEC1@iaea.org with a copy to Mark Shaffer. Provided this to Danielle.
- Deputies Committee Decisions and Action Items: SECY has been sending summaries of the Deputies Committee meetings as they are received and the LT Director/Coordinator have been tracking any actions pertinent to the LT. There are currently no international liaison tasks resulting from these meetings but the LT Director will inform us if this changes. Action: Mark Shaffer would like to see the summaries. We sent him everything we had already received but he would need future summaries beginning with the March 30 meeting.
- Plant Status Updates. James Whitney, NSIR has requested that all of the "Plant Status" news releases on ENAC be sent to him to assist other government agencies in their analysis of the situation. Action: Send james.whitney@nrc.gov "plant status updates" on ENAC as they come in (last one sent during $1500-2300$ shift on $3 / 30$).
- Translators. 24/7 translation coverage has been suspended due to both projected decreasing demand and funding issues. Kirk Foggie confirmed that there is only one known NRC employee that speaks Japanese (at the moment) but there is a Japanese foreign assignee and other options available. Also, Tony Nakanishi will be returning from Japan today and may be available to provide transiation assistance beginning Monday. Danielle Emche informed us that USAID is paying for an NRC-dedicated translator in Tokyo. If we need items translated and cannot get assistance from within NRC, we can rely on them. Action 1: If in need of USAID translation support, fax the document to $+81-3-3224-5538$ and send a scanned (PDF) copy to Danielle Emche and Eric Stahl as a backup. Action 2: Inform PMT and RST if a decision is made to resume translation services at NRC.

FUTURE ACTIONS/OPEN ITEMS

- INPO: All equipment requests are now going through INPO. They are consolidating all available information. Contact information for INPO is 770-644-8118 or email at inpoercassistance@inpo.org.
- IAEA All Member States Meating: Received request from the ET director, Mike Weber to coordinate with Mark Shaffer in Vienna to determine the topic and/or agenda for this meeting, which was called by the DG. The ET would like to know what will be communicated by the DG to member states and what might be asked of member states at this meeting. All known information is publicly available on the IAEA's website (see http://iaea.org/newscenter/news/high level conference.html). No further action required.
- Returning Travelers. A request to returned travelers/travelers about to return to confirm their status, and to provide them with updated returned traveler checklist. Action: Update list as travelers respond.
- NRC Health Unit request: The NRC team members were given KI before they left. At this time the guidance is to not take the KI while on duty in Tokyo. However, due to the still-fluid nature of the environmental hazards posed by radioactive isotopes, there still exists a possibility that KI could be required at some point. Should it become necessary to have the NRC team take the KI, the LIA02/LIA03 international liaisons would be responsible for receiving the advice from ADM/Dr. Cadoux and to get the information to the team immediately.
- Request for meteorological data. PMT notified LIA02/03 of their need for meteorological data. Action: If you receive meteorological communications which do not already have PMT on distribution, please ensure PMT is cc'ed on the email (send to PMT02 and PMT12) and walk a hard copy back to the meteorologists.
- Japan Relief Team Dosimetry. LIA03 sent an email to LiasonJapan (original team) asking for them to email back their dosimetry numbers. If dosimeter numbers (on the back) are received directly to the international liaison desks they should be forwarded to John O'Donnell and entered into a word document on LIA03.
- Dally calls with UK/France/Canada. Calls will take place at 0930 with RST and PMT to discuss reactorrelated and radiation-related information, respectively, with regulatory representatives from these three countries. Everyone should call into the HOO to be connected. The new number to call into is (b)(6) (b)(6) and the pin is $($ (b) (6)
- Daily $\mathbf{0 3 0 0}$ NRC Japan Team - RST/PMT Call. RST and PMT have been notified of the call and international liaison should plan on participating (OIP staff in Japan don't necessarily participate). All parties should call into 301-816-5120 and use pass-code ${ }^{(b)(6)}$

DAILY ACTIONS/REMINDERS

- International updates must be sent to LIA07 (to be put in the HOO Status Update) before the end of every shift as well as posted on the LT status board (different than the LT Log).
- 11 PM - 7 AM shift is responsible for the summary call with Danielle and Eric, scheduled daily at 0500 EST unless rescheduled, and subsequent write-up of one-pager for Margie. Margie reminds us that the write-up should not contain technical details, which are already captured in other reports, and should be marked "Official Use Only - Foreign Government Information."
- The 11 pm -7am shift is responsible for sending all emails from the previous day to the FOIA email address. Open new email, copy previous day's emails as an attachment and send to FOIA Response.hoc@nrc.gov.
- The intemational team should sit in on calls with the ET and team leader (Chuck or Dan) to take notes and provide a short summary of what was discussed via email to OIP reps on Japan Team.
- Prior to any international call you set up, please make sure you contact the HOOs to let them know that you are going to have an international call.
- Reminder to Keep Mark Shaffer in-the-loop at shaffermr@state.gov, regardless of time of day, regardless of whether he is in the office or asleep. Especially cc Mark on all communication to IAEA.
- Request from RST and PMT to keep them updated on who is currently in Japan on NRC team.
- Sanitary wipes now available. Action: Please wipe the keyboards, mice and phones before you leave.

From: saigai03@mext.go.jp [mailto:saigai03@mext.go.jp]
Sent: Friday, April 01, 2011 12:16 PM
To: Cherry, Ronald C
Cc: (b)(6)
(b)(6)

Subject: Radiation data by MEXT

Dear Mr. Cherry,

Please see attached the document.

I will mainly take charge of a new role, a liaison officer for public relations and others.
Though it has not been decided yet when a new point of contact comes, our colleague will be a new contact point to you.

Sincerely yours,

Eiko SENAMI
$x x+1147$

福島第一原子力発電所の 20 km 以遠のモニタリング結果について
平成23年4月1日 10時00分現在
文 部 科 学 省
○文部科学省が集計した結果 注）太下線データが今回追加分
1 GM（ガイガー＝ミューラー計測管）における値
＊2 電離箱における値
＊3 $\mathrm{NaI}(ヨ ウ$ 化ナトリウム）シンチレータにおける値
＊4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	測定位置	天候	実施者
測定エリア 【11（約60Km北西）	3月31日15時50分	2．6 ${ }^{\text {2 }}$		降雨無し	且本原子力研究開発機構
測定エリア【1］（約60Km北西）	3月31日9時07分	$1.8 * 2$		降雨無し	文部科学省
測定エリア【2】（約55Km北西）	3月31日10時20分	4.1 ＊2	$\mathrm{N}:$ 37° 44^{\prime} $12.6^{\prime \prime}$ $\mathrm{E}:$ 140° 28^{\prime} 02.9	降雨無し	日本原子力研究開発機構
測定エリア 【3】（約45Km北西）	3月31日11時19分	4.8 ＊2	$\mathrm{N}:$ 37° 44^{\prime} $12.6^{\prime \prime}$ $\mathrm{E}:$ 140° 28^{\prime} $02.9^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア【5】（約45Km北）	3月31日12時03分	0.7 ＊2	$\mathrm{N}:$ 37° 44^{\prime} $12.6^{\prime \prime}$ $\mathrm{E}:$ 140° 28^{\prime} $02.9^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア【6】（約45Km北）	3月31日12時18分	1.3 ＊2	$\mathrm{N}:$ 37° 44^{\prime} $12.6^{\prime \prime}$ $\mathrm{E}:$ 140° 28^{\prime} $02.9^{\prime \prime}$ 37° 44^{\prime} $12.6{ }^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア【7］（約45Km北）	3月31日12時28分	1.0 ＊2	$\mathrm{N}:$ 37° 44^{\prime} $12.6^{\prime \prime}$ $\mathrm{E}:$ 140° 28^{\prime} $02.9^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア【10】（約40Km北西）	3月31日15時59分	0.8 ＊2	$\mathrm{N}:$ 37° 35^{\prime} $36.0^{\prime \prime}$ $\mathrm{E}:$ 140° 35^{\prime} $\prime \prime$	降雨無し	日本原子力研究開発機構
測定エリア【11】（約40Km北西）	3月31日15時48分	1.7 ＊2	$\mathrm{N}:$ 37° 29^{\prime} $24.2^{\prime \prime}$ $\mathrm{E}:$ 140° 34^{\prime} $54.2^{\prime \prime}$ N 37° 44^{\prime} $126^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア【13】（約40Km西）	3月31日14時03分	1.0 ＊2	$\mathrm{N}:$ 37° 44^{\prime} $12.6^{\prime \prime}$ $\mathrm{E}:$ 140° 28^{\prime} $02.9^{\prime \prime}$	降雪有り	日本原子力研究開発譏構
測定エリア【14】（約35Km西）	3月31日13時51分	0.4 ＊2	$\mathrm{N}:$ 37° 44^{\prime} $12.6^{\prime \prime}$ $\mathrm{E}:$ 140° 28^{\prime} $02.9^{\prime \prime}$	降雪有り	日本原子力研究開発機構
測定エリア【15】（約35Km西）	3月31日13時38分	1.2 ＊2	$\mathrm{N}:$ 37° 44^{\prime} $12.6^{\prime \prime}$ $\mathrm{E}:$ 140° 28^{\prime} $02.9^{\prime \prime}$	降雪有り	日本原子力研究開発機構
測定エリア【20】（約45Km北西）	3月31日15時24分	1.0 ＊2	$\mathrm{N}:$ 37° 29^{\prime} $24.2^{\prime \prime}$ $\mathrm{E}:$ 140° 34^{\prime} $54.2^{\prime \prime}$	降雨無し	日本原子力研究開発機構
測定エリア【21】（約30Km西北西）	3月31日15時05分	3.0 ＊2	N： 37° 30° $41.3^{\prime \prime}$ $\mathrm{E}:$ 140° 39^{\prime} $28.8^{\prime \prime}$	降雨無し	日本原子力研究開発機構
	3日31成14時53分	$11^{* 2}$	N： $37^{\circ} 30{ }^{\prime}$ 41．3＂	降雨無1	口木佰子九研空閣登㮫構

＊ 1 GM（ガイガー＝ミューラ一計測管）における値
＊2 電離箱における値
＊3 NaI （ヨウ化ナトリウム）シンチレータにおける値
＊4 測定時間内における測定値の変動範囲

＊ 1 GM（ガイガー＝ミューラ一計測管）における値
＊2 電離箱における値
＊ 3 NaI （ヨウ化ナトリウム）シンチレータにおける値
＊ 4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	測定位置		天候	実施者
	\％107070nyour		E：			\pm
測定エリア【52】（約40Km西）	3月31日11時59分	$0.5 * 3$	$\begin{aligned} & \hline \mathrm{N}: \\ & \mathrm{E}: \end{aligned}$	＂	降雨無し	福島県
測定エリア【61】（約40Km北西）	3月31日14時40分	7.0 ＊3	$\begin{aligned} & \hline \mathrm{N}: \\ & \mathrm{E}: \\ & \hline \end{aligned}$	＂	降雨無し	福島県
測定エリア【61】（約40Km北西）	3月31日12時33分	7.1 ＊3	$\begin{aligned} & \hline \mathrm{N}: \\ & \mathrm{E}: \end{aligned}$	＂	降雨無し	福島県
測定エリア【62】（約40Km北西）	3月31日14時54分	$7.8{ }^{* 3}$	$\begin{aligned} & \mathrm{N}: \\ & \mathrm{E}: \end{aligned}$	＂	降雨無し	福島県
測定エリア【62】（約40Km北西）	3月31日12時21分	8.0 ＊3	$\begin{aligned} & \mathrm{N}: \\ & \mathrm{E}: \\ & \hline \end{aligned}$	＂	降雨無し	福島県
測定エリア【63】（約45Km北西）	3月31日15時22分	$3.4 * 3$	$\begin{array}{ll} \mathrm{N}: & \circ \\ \mathrm{E}: & \circ \\ \hline \end{array}$	＂	降雨無し	福島県
測定エリア【63】（約45Km北西）	3月31日11時12分	$2.8 * 3$	$\begin{array}{ll} \mathrm{N}: & \circ \\ \mathrm{E}: & \circ \\ \hline \end{array}$	＂	降雨有り	福島県
測定エリア【71】（約25Km南）	$\begin{gathered} \hline \text { 3月31日15時10分 } \\ \sim 15 \text { 時50分 } \\ \hline \end{gathered}$	$1.9 \sim 2.0^{* 2 * 4}$	$\mathrm{N}:$ 37° 44^{\prime} $\mathrm{E}:$ 140° 28^{\prime}	$\begin{array}{l\|} \hline 12.6 " \\ 02.9 " \\ \hline \end{array}$	降雨無し	文部科学省
測定エリア【71】（約25Km南）	$\begin{gathered} \text { 3月31日12時17分 } \\ \sim 15 \text { 時 } 00 \text { 分 } \\ \hline \end{gathered}$	$1.8 \sim 2.1^{* 2 * 4}$	N： 37° 44^{\prime} $\mathrm{E}:$ 140° 28^{\prime}	$\begin{aligned} & 12.6^{\prime \prime} \\ & 02.9^{\prime \prime} \\ & \hline \end{aligned}$	降雨有り	日本原子力研究開発機構
測定エリア【71】（約25Km南）	3月31日14時45分	3．0 ${ }^{* 2}$		$\begin{aligned} & 12.6^{\prime \prime} \\ & \underline{02.9}= \end{aligned}$	隆雨有以	叠祭（NBC対策部隊）
測定エリア【71】（約25Km南）	3月31日8時20分	$1.8{ }^{*}$	N： 37° 44^{\prime} $\mathrm{E}:$ 140° 28^{\prime}	$\begin{array}{r} 12.6^{\prime \prime} \\ 02.9^{\prime \prime} \\ \hline \end{array}$	降雨無し	警察（NBC対策部隊）
測定エリア【72】（約30Km南）	3月31日15時34分	$\underline{2.4}{ }^{* 2}$	$\begin{array}{lrl} \mathrm{N}: & \underline{37}^{\circ}: & 44^{\circ} \\ \mathrm{E}: & 140^{\circ} & 28^{\circ} \\ \hline \end{array}$	$\begin{aligned} & 12.6^{\prime \prime} \\ & \underline{02.9}= \end{aligned}$	䀱雨無し	警緊（NBC対策部隧）
測定エリア【72】（約30Km南）	3月31日11時52分	$1.5 * 2$	$\begin{array}{crr}\text { N：} & 37^{\circ} & 44^{\prime} \\ \mathrm{E}: & 140^{\circ} & 28^{\prime} \\ \mathrm{N} & 37^{\circ} & \end{array}$	$\begin{array}{r} 12.6^{\prime \prime} \\ 02.9^{\prime \prime} \\ \hline \end{array}$	降雨無し	日本原子力研究開発機構
測定エリア【72】（約30Km南）	3月31日8時44分	1.2 ＊2	$\begin{array}{crr}\mathrm{N}: & 37^{\circ} & 44^{\prime} \\ \mathrm{E}: & 140^{\circ} & 28^{\prime}\end{array}$	$\begin{array}{r} 12.6^{\prime \prime} \\ 02.9^{\prime \prime} \\ \hline \end{array}$	降雨無し	鳘察（NBC対策部隊）
測定エリア【73】（約35Km南）	3月31旦15時50分	$0.7{ }^{* 2}$	$\begin{array}{lll} \text { N: } & \frac{37^{\circ}}{}{ }^{\circ} \\ \text { E: } & 144^{\prime} \\ \end{array}$	$\frac{12.6}{02.9}=$	隆雨無し	警察（NBC対策部隊）
測定エリア【73】（約35Km南）	3月31日12時34分	1.3 ＊2	$\mathrm{N}:$ 37° 44 $\mathrm{E}:$ 140° 28^{\prime}	$\begin{aligned} & 12.6^{\prime \prime} \\ & 02.9^{\prime \prime} \end{aligned}$	降雨無し	日本原子力研究開発機構
測定エリア【73】（約35Km南）	3月31日9時01分	1.0 ＊2	$\mathrm{N}:$ 37° 44^{\prime} $\mathrm{E}:$ 140° 28^{\prime} N 37° 44^{\prime}	$\begin{aligned} & \hline 12.6^{\prime \prime} \\ & 02.9^{\prime \prime} \\ & \hline \end{aligned}$	降雨無し	警察（NBC対策部隊）
測定エリア【74】（約35Km南）	3月31日13時13分	0.5 ＊2	$\mathrm{N}:$ 37° 44^{\prime} $\mathrm{E}:$ 140° 28^{\prime}	$\begin{array}{r} 12.6^{\prime \prime} \\ 02.9^{\prime \prime} \\ \hline \end{array}$	降雨無し	日本原子力研究開発機構
测完ナ11ア 「741（約25Km南）	2日 21 口0肚30分	n5＊2	$\mathrm{N}: 37^{\circ}$ 44 ${ }^{\prime}$	12．6＂	路雨無I	警家（ARC対第部朕）

＊ 1 GM（ガイガー＝ミューラ一計測管）における値
＊2 電離箱における値
＊ 3 NaI （ヨウ化ナトリウム）シンチレータにおける値
＊ 4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルトう時） （記載のない限り屋外）	測定位置			天候	実施者
			E：． 140°	19	35.0 ＂	－n	
測定エリア【87】（約30km西南西）	3月31日6時00分	1.3 ＊2	N：$\quad 3.37^{\circ}$	$21^{\prime}{ }^{\prime}$	42．0＂${ }^{\prime \prime}$	降雪有り	防衛省

福島第一原子力発電所の 20 km 以遠のモニタリング結果について
平成23年4月1日 10 時 00 分現在
文 部 科 学 省
○文部科学省が集計した結果 注）太下線データが今回追加分

> * 1 GM (ガイガー=ミュ一ラ一計測管) における値
> *2 電離箱における値
> *3 NaI (ヨウ化ナトリウム) シンチレータにおける値
> * 4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	天候	実施者
測定エリア【1】（約60Km北西）	3月31日15時50分	$\underline{2.6}{ }_{-}^{\text {2 }}$	隆雨無し	且本原子力研究開発機菨
測定エリア【1】（約60Km北西）	3月31日9時07分	1.8 ＊2	降雨無し	文部科学省
測定エリア【2】（約55Km北西）	3月31日10時20分	4.1 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【3】（約45Km北西）	3月31日 11 時 19 分	4.8 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【5】（約45Km北）	3月31日 12 時 03 分	0.7 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【6】（約45Km北）	3月31日12時18分	1.3 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【7】（約45Km北）	3月31日12時28分	$1.0{ }^{* 2}$	降雨無し	日本原子力研究開発機構
測定エリア【10】（約40Km北西）	3月31日15時59分	0.8 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【11】（約40Km北西）	3月31日15時48分	1.7 ＊2	降雨無し	日本原子力研究開発機構
測定エリア［13】（約40Km西）	3月31日14時03分	1.0 ＊2	降雪有り	日本原子力研究開発機構
測定エリア【14】（約35Km西）	3月31日13時51分	0.4 ＊2	降雪有り	日本原子力研究開発機構
測定エリア【15】（約35Km西）	3月31日13時38分	1.2 ＊2	降雪有り	日本原子力研究開発機構
測定エリア【20】（約45Km北西）	3月31日15時24分	1.0 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【21】（約30Km西北西）	3月31日 15 時 05 分	3.0 ＊2	降雨無し	日本原子力研究開発機構

			＊ 1 GM（ガイガー＝ミユーラ一計測管）における値 ＊2 電離箱における値 ＊3 NaI （ヨウ化ナトリウム）シンチレータにおける値 ＊4 測定時間内における測定値の変動範囲	
場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	天候	実施者
測定エリア【22】（約30Km西北西）	3月31日14時53分	1.1 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【23】（約30Km西北西）	3月31日14時45分	1.2 ＊2	降雨無し	日本原子力研究開発機構
測定エリア 【32】（約30Km北西）	3月31日11時00分	38．0＊2	降雨無し	日本原子力研究開発機構
測定エリア【33】（約30Km北西）	3月31日11時20分	21.5 ＊2	降雨有り	日本原子力研究開発機構
測定エリア【36】（約40Km北西）	3月31日10時15分	5.3 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【37］（約50km北西）	3月31日11時08分	4.4 ＊2	降雨有り	日本原子力研究開発機構
測定エリア【38】（約 35 km 南）	3月31日16時23分	0.8 ＊2	降雨無し	文部科学省
測定エリア［41】（約20Km西）	3月31日14時10分	1．1＊2	隆雨有し	毽力会社
測定エリア［41】（約20Km西）	3月31日10時40分	$1.1{ }^{* 2}$	隆雨無し	電力会社
測定エリア 【42】（約30Km西）	3月31日13時30分	$1.3{ }^{* 2}$	隆雨無し	電力会社
測定エリア【43】（約20Km南西）	3月31日15時10分	$0.4{ }^{* 2}$	隆雨無し	電力会社
測定エリア【43】（約20Km南西）	3月31日11時10分	$0.4{ }^{* 2}$	隆雨無し	電力会社
測定エリア 【44】（約30Km南）	3且31日13時25分	$1.4{ }^{* 2}$	隆雨無し	電力会社
測定エリア（44】（約30Km南）	3月31日10時15分	$1.4{ }^{* 2}$	隆雨無し	電力会社
測定エリア【45】（約20Km南）	3月31日13時36分	$\underline{2.2}$＊	隆雨無し	電力会社
測定エリア【461（約20Km北西）	3月31日14時00分	$6.8{ }^{* 2}$	隆雨無し	電力会社
測定エリア（461（約20Km北西）	3月31日10時25分	6.9 ＊2	隆雪有し	電力会社
測定エリア【51】（約40Km南西）	3月31日14時19分	0.3 ＊3	降雨無し	福島県
測定エリア【51】（約40Km南西）	3月31日 11 時01分	0.3 ＊3	降雨無し	福島県

＊ 1 GM（ガイガ一＝ミューラ一計測管）における値
＊2 電離箱における値
＊3 NaI （ヨウ化ナトリウム）シンチレータにおける値
＊4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （記載のない限り屋外）	天候	実施者
測定エリア【52】（約40Km西）	3月31日15時03分	$0.4 * 3$	降雨無し	福島県
測定エリア【52】（約40Km西）	3月31日 11 時59分	0.5 ＊3	降雨無し	福島県
測定エリア【61】（約40Km北西）	3月31日14時40分	$7.0 * 3$	降雨無し	福島県
測定エリア【61】（約40Km北西）	3月31日12時33分	7.1 ＊3	降雨無し	福島県
測定エリア【62】（約40Km北西）	3月31日14時54分	$7.8 * 3$	降雨無し	福島県
測定エリア【62】（約40Km北西）	3月31日12時21分	8.0 ＊3	降雨無し	福島県
測定エリア【63】（約45Km北西）	3月31日15時22分	$3.4 * 3$	降雨無し	福島県
測定エリア【63】（約45Km北西）	3月31日11時12分	$2.8{ }^{* 3}$	降雨有り	福島県
測定エリア【71】（約25Km南）	$\begin{gathered} \text { 3月31日15時10分 } \\ \sim 15 \text { 時 } 50 \text { 分 } \\ \hline \end{gathered}$	$1.9 \sim 2.0{ }^{* 2 * 4}$	降雨無し	文部科学省
測定エリア【71】（約25Km南）	$\begin{gathered} \text { 3月31日12時17分 } \\ \sim 15 \text { 時 } 00 \text { 分 } \\ \hline \end{gathered}$	$1.8 \sim 2.1^{* 2 * 4}$	降雨有り	日本原子力研究開発機構
測定エリア【711（約25Km南）	3月31日14時45分	$3.0{ }^{* 2}$	降雨有り	警察（NBC対策部隊）
測定エリア【71】（約25Km南）	3月31日8時20分	$1.8{ }^{* 2}$	降雨無し	警察（NBC対策部隊）
測定エリア【72】（約30Km南）	3月31日15時34分	2．4＊2	降雨無L	警察（NBC対策部隊）
測定エリア【72】（約30Km南）	3月31日11時52分	1.5 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【72】（約30Km南）	3月31日8時44分	$1.2{ }^{* 2}$	降雨無し	警察（NBC対策部隊）
測定エリア【731（約35Km南）	3月31日15時50分	$0.7{ }^{* 2}$	隆雨無L	警察（NBC対策部隊）
測定エリア【73］（約35Km南）	3月31日12時34分	1.3 ＊2	降雨無し	日本原子力研究開発機構
測定エリア【73】（約35Km南）	3月31日9時01分	1.0 ＊2	降雨無し	警察（NBC対策部隊）
測定エリア【74】（約35Km南）	3月31日13時13分	$0.5 * 2$	降雨無し	日本原子力研究開発機構

		＊ 1 GM（ガイガー＝ミューラ一計測管）における値 ＊2 電離箱における値 ＊ 3 NaI （ヨウ化ナトリウム）シンチレータにおける値 ＊4 測定時間内における測定値の変動範囲		
場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト $/$ 時） （記載のない限り屋外）	天候	実施者
測定エリア【87】（約30km西南西）	3月31日15時00分	0.8 ＊2	降雪有り	防衛省
測定エリア【87】（約30km西南西）	3月31日6時00分	1.3 ＊2	降雪有り	防衛省

ダストサンプリングの測定結果（1／2）
\square
：伜内は新規追加データ。
平成23年4月1日 10 時 00 分現在
文部科学省

測定試料採取点	採取日時	放射能濃度（ $\mathrm{Bq} / \mathrm{m}^{3}$ ）		空間線量率$(\mu \mathrm{Sv} / \mathrm{h})$	備考
		${ }^{137}$ I	${ }^{137} \mathrm{Cs}$		
【1－1］（約45km北西）	3月23日 10：45～10：55	4.0	1.2	5.5	【3】
【1－2］（約40km北西）	3月23日 10：50～11：10	5.2	＜1．2	9.0	［36】
【1－3】（約30km西北西）	3月23日 13：54～14：17	8.0	＜1．4	9.4	［21］
【1－4】（約35km西）	3月23日 12：40～13：02	2.8	＜1．1	2.3	【15】
【1－4】（約35km西） 1 回目	3月24日 10：58～11：09	3.1	<0.99	2	
【1－4】（約35km西）2回目	3月24日 11：58～12：09	2.4	1.3	2.8	
【1－4】（約35km西）3回目	3月24日 12：58～13：09	2.5	＜1．2	2.5	
【1－4】（約35km西）4回目	3月24日 13：58～14：09	2.2	1.6	2.2	
【1－4】（約35km西） 5 回目	3月24日 14：58～15：09	2.8	＜1．2	2.5	
【1－4】（約 35 km 西） 6 回目	3月24日 15：58～16：09	2.1	＜1．0	2.2	
【1－5】（約25km南）走行測定1回目	3月23日 13：15～13：58	530.0	6.6	$5.5 \sim 14.0$	【71】
【1－5】（約25km南）走行測定2回目	3月23日 14：30～15：10	180.0	2.3	$5.5 \sim 14.0$	
【1－5】（約25km南）走行測定3回目	3月23日 15：20～15：59	110.0	2.1	$5.5 \sim 14.0$	
【1－5】（約25km南）走行測定1回目	3月24日 10：06～10：44	5.9	＜0．66	5.6	
【1－5】（約25km南）走行測定2回目	3月24日 10：53～11：33	9.2	<0.71	5.6	
【1－5】（約25km南）走行測定3回目	3月24日 11：44～12：26	12.0	1.1	5.6	
【1－5】（約25km南）走行測定	3月25日 11：51～12：38	43.0	2.0	4．1～5．5	
【1－5】（約25km南）1回目	3月25日 13：12～13：42	23.0	1.4	2	
【1－5】（約25km南）2回目	3月25日 14：12～14：42	19.0	1.3	2.8	
【1－5】（約25km南）3回目	3月25日 15：12～15：42	24.0	2.5	2.5	
【1－5】（約25km南）4回目	3月25日 16：12～16：42	10.0	1.3	2.2	
［1－5］（約25km南）1回目	3月26日 12：47～13：21	13.0	1.3	3.9	
【1－5】（約25km南）2回目	3月26日 14：21～14：57	10.0	1.5	3.9	
【1－5】（約25km南）走行測定1回目	3月27日 12：36～13：26	20.0	0.8	2．8～3．8	
【1－5】（約25km南）1回目	3月27日 13：58～14：33	7.1	<0.98	3.8	
［1－5］（約25km南）2回目	3月27日 15：33～16：08	6.6	<1.0	3.8	
【1－5】（約25km南）3回目	3月27日 16：16～16：53	10.0	<1.1	3.8	
【1－5】（約25km南）走行測定2回目	3月27日 14：43～15：18	5.5	1.2	2．8～3．8	
【1－5】（約25km南）1回目	3月28日 9：48～13：03	6.6	0.57	3.0	
【1－5】（約25km南）2回目	3月28日 13：23～14：07	54.0	8.0	3.0	
［1－5］（約25km南）3回目	3月28日 14：18～15：19	20.0	3.0	3.0	
【1－5】（約25km南）1回目	3月31日 12：22～13：12	24.0	4.5	2.1	
［1－5］（約25km南）2回目	3月31日 13：17～14：01	18.0	1.3	2.0	
［1－5】（約25km南）3回目	3月31日 14：06～14：50	13.0	1.0	1.9	
【1－5】（約25km南）4回目	3月31日 15：00～15：44	13.0	<0.79	2.0	
【1－7】（約40km北）1回目	3月25日 12：58～13：09	3.5	<0.99	3.2	【7】
【1－7】（約40km北）1回目	3月25日 13：58～14：09	4.3	1.6	3.2	
［1－7］（約40km北）1回目	3月25日 14：57～15：08	15.0	＜0．98	3.2	
【1－7】（約40km北）1回目	3月25日 15：58～16：09	22.0	1.1	3.2	
【1－7】（約40km北）1回目	3月26日 11：27～11：38	2.9	1.0	1.5	
【1－7】（約40km北）1回目	3月26日 13：00～13：11	2.2	1.3	1.5	
【1－8】（約45km北）1回目	3月28日 13：00～16：00	19.0	3.2	$0.6 \sim 1.2$	【5】

測定試料採取点	採取日時	放射能濃度（ $\mathrm{Bq} / \mathrm{m}^{3}$ ）		空間線量率$(\mu \mathrm{Sv} / \mathrm{h})$	備考
		${ }^{131}$ I	${ }^{137} \mathrm{Cs}$		
【2－1】（約40km北西）1回目	3月29日 12：50～13：45	4.2	0.73	7.0	【61】
【2－1】（約40km北西）2回目	3月29日 13：49～14：46	3.4	0.79	7.0	
【2－1）（約40km北西）3回目	3月29日 14：47～15：50	2.9	＜0．74	7.0	
【2－1】（約40km北西） 1 回目	3月30日 11：15～11：35	4.8	＜1．8	6.7	
【2－1】（約40km北西）2回目	3月30日 12：15～12：35	4.7	2.00	7.2	
【2－1】（約40km北西）3回目	3月30日 13：15～13：35	3.4	1.80	7.0	
［2－1】（約40km北西）4回目	3月30日 14：15～14：35	28.0	20.00	7.4	
［2－1】（約40km北西）5回目	3月30日 15：15～15：35	7.7	1.90	7.5	
【2－4】（約25km北） 1 回目	3月29日 11：17～12：15	75.0	46.0	1.7	【80】
【2－4］（約 25 km 北）2回目	3月29日 12：15～13：15	29.0	34.0	0.4	
【2－4】（約 25 km 北）3回目	3月29日 13：15～14：15	32.0	23.0	0.6	
【2－4】（約 25 km 北）4回目	3月29日 14：15～15：00	29.0	25.0	0.5	
【2－4】（約25km北）1回目	3月30日 11：09～11：29	1.8	0.5	0.0	
［2－4］（約 25 km 北）2回目	3月30日 12：10～12：30	1.6	0.5	0.8	
【2－4】（約 25 km 北）3回目	3月30日 13：10～13：30	1.2	0.4	0.2	
【2－4】（約 25 km 北）4回目	3月30日 14：10～14：30	1.5	0.5	0.3	
【2－4】（約25km北）5回目	3月30日 15：10～15：30	1.1	<0.49	0.6	
［2－7）（約35Km北西）	3月29日 12：00～13：00	0.95	0.59	8.0	【46】
【2－7】（約 35 Km 北西）	3月29日 13：00～14：00	0.66	<0.70	8.0	
［2－7）（約 35 Km 北西）	3月29日 14：00～15：00	0.75	＜0．76	8.0	
［2－7）（約35Km北西）	3月29日 15：00～16：00	0.90	<0.58	8.0	
［2－7］（約35Km北西）	3月29日 16：00～17：00	0.69	＜0．59	8.0	
【2－7】（約35km北西）1回目	3月30日 12：11～12：31	1.9	1.0	13.9	
【2－7】（約35km北西）2回目	3月30日 13：11～13：33	1.3	1.0	15.2	
【2－7】（約 35 km 北西） 3 回目	3月30日 14：11～14：32	89.0	91.0	14.6	
［2－7】（約35km北西）4回目	3月30日 15：11～15：32	180.0	140.0	15.0	
【3－1】（約30km北西） 1 回目	3月24日 11：20～11：41	43.0	2.0	30	【33】
【3－1】（約30km北西）2回目	3月24日 12：20～12：40	3.3	<0.98	30	
【3－1】（約30km北西） 3 回目	3月24日 13：20～13：42	3.8	＜1．2	30	
【3－1】（約30km北西）4回目	3月24日 14：20～14：42	3.8	1.5	30	
【3－1】（約30km北西） 5 回目	3月24日 15：20～15：42	3.3	1.7	30	
【3－1】（約30km北西） 1 回目	3月26日 11：38～12：00	5.8	4.8	26	
【3－1】（約30km北西）2回目	3月26日 13：18～13：39	5.2	2.2	26	
【3－1】（約30km北西） 1 回目	3月28日 11：31～11：52	2.6	1.8	26	
【3－1】（約30km北西）2回目	3月28日 12：53～13：15	2.7	－＜1．2	26	
【3－1】（約30km北西） 1 回目	3月29日 11：18～11：40	2.4	1.1	18.9	
【3－1】（約30km北西）2回目	3月29日 13：23～13：50	1.9	＜1．0	－	

備考欄の番号は，モニタリングカーによる測定箇所を示す。
空間線量率は，別途発表済み。

ダストサンプリングの測定結果（2／2 ）
\square ：枠内は新規追加データです。

採取地点	採取日時		放射能濃度 $\left(\mathrm{Ba} / \mathrm{m}^{3}\right)$		空間線量率$(\mu \mathrm{Sv} / \mathrm{h})$
			${ }^{131}$ I	${ }^{137}$ Cs	
【1】（約60km北西）	3月19日	18：30～18：50	1.22	ND	7.2
	3月20日	18：30～18：50	203.00	32.20	5.0
	3月21日	18：30～18：50	2.50	ND	4.5
	3月22日	18：30～18：50	3.06	ND	5.2
	3月23日	19：38～19：58	3.69	1.20	4.0
	3月24日	18：30～18：55	ND	ND	3.6
	3月25日	19：10～19：20	24.00	14.20	2.5
	3月26日	18：30～18：40	1.75	ND	2.5
	3月27日	18：30～18：50	0.87	ND	3.5
	3月28日	18：33～18：43	1.13	ND	3.2
	3月29日	18：30～18：50	1.56	ND	2.1
	3月30日	18：40～19：00	0.91	ND	2.0
【2－1】（約40km北西）	3月21日	13：00～13：20	12.80	2.37	4.1
	3月22日	12：26～12：46	5.87	ND	4.2
	3月23日	12：50～13：10	2.99	ND	16.8
	3月24日	13：30～13：50	5.80	1.51	10.0
	3月25日	12：45～13：05	5.87	ND	12.3
	3月26日	12：26～12：46	5.39	133	7.8
	3月27日	12：06～12：26	2.22	ND	11.2
	3月28日	12：05～12：25	1.66	ND	9.6
	3月29日	12：07～12：27	2.42	6.79	9.2
	3月30日	13：22～13：42	3.47	LTD	8.5
【2－2】（約45km北西）	3月22日	11：10～11：30	10.50	ND	7.8
	3月23日	11：31～11：51	1.47	ND	6.0
	3月24日	11：20～11：40	1.47	ND	2.0
	3月25日	11：25～11：45	2.15	ND	7.5
	3月26日	11：10～11：30	1.19	ND	4.3
	3月27日	10：50～11：10	2.97	ND	5.5
	3月28日	11：00～11：20	1.66	0.87	5.5
	3月29日	11：30～11：23	1.10	2.02	4.8
	3月30日	11：37～11：57	1.38	1.11	4.6
【2－3】（約40km西）	3月21日	12：30～12：50	3.74	ND	0.9
	3月22日	11：32～11：52	3.92	ND	2.2
	3月23日	11：50～12：10	1.75	ND	1.0
	3月24日	12：12～12：32	0.97	ND	－
	3月25日	13：33～13：53	37.00	1.45	0.8
	3月26日	11：52～12：12	1.77	ND	0.8
	3月27日	11：48～12：08	1.07	ND	0.8
	3月28日	11：39～11：59	ND	ND	0.7
	3月29日	13：44～13：54	2.29	0.63	0.7
	3月30日	12：25～12：35	1.59	ND	0.5

採取地点	採取日時		放射能濃度 $\left(\mathrm{Bq} / \mathrm{m}^{3}\right)$		空間線量率 （ $\mu \mathrm{Sv} / \mathrm{h}$ ）
			${ }^{131}$ I	${ }^{137} \mathrm{Cs}$	
【2－4】（約25km北）	3月21日	14：20～14：40	13.20	0.74	2.8
	3月22日	13：35～13：55	3.81	ND	1.8
	3月23日	14：10～14：30	2.62	ND	1.1
	3月24日	14：55～15：15	193.00	2.94	1.2
	3月25日	14：20～14：40	16.10	ND	0.7
	3月26日	13：57～14：17	2.62	ND	1.3
	3月27日	13：38～13：58	1.31	ND	1.4
	3月28日	13：30～13：50	16.40	2.80	0.7
	3月29日	13：30～13：50	63.40	38.60	1.0
	3月30日	14：50～15：10	ND	LTD	$0.0 \sim 1.3$
【2－5】（約40km南西）	3月20日	13：57～14：17	24.00	1.75	0.6
	3月21日	13：37～13：57	2.69	ND	0.5
	3月22日	12：32～12：52	6.29	ND	0.4
	3月23日	12：50～13：10	1.86	ND	0.5
	3月24日	13：21～13：41	1.19	ND	－
	3月25日	13：35～13：55	12.40	ND	0.4
	3月26日	11：55～12：15	ND	ND	0.6
	3月27日	11：05～11：25	1.04	ND	0.5
	3月28日	11：25～11：45	0.82	ND	－
	3月29日	11：25～11：45	0.89	ND	0.3
	3月30日	11：00～11：20	ND	ND	0.3
【2－6】（約45km南）	3月20日	15：25～15：45	6.89	ND	0.6
	3月21日	15：00～15：20	28.90	ND	1.5
	3月22日	14：00～14：20	17.00	ND	0.6
	3月23日	14：15～14：35	6.93	ND	1.0
	3月24日	15：12～15：32	8.25	ND	1.4
	3月25日	13：47～14：07	40.60	ND	1.1
	3月27日	12：30～12：50	1.55	ND	0.8
	3月28日	13：10～13：30	3.56	ND	0.3
	3月29日	12：55～13：15	2.68	ND	0.7
	3月30日	12：32～12：52	4.59	1.56	0.3
【2－7】（約35km北西）	3月25日	15：05～15：22	555.00	12.40	12.0
	3月26日	14：06～14：26	1.54	ND	8.8
	3月27日	13：51～14：11	1.02	ND	8.7
	3月28日	13：39～13：59	2.14	ND	8.4
	3月29日	15：02～15：12	3.51	1.46	8.0
	3月30日	14：05～14：15	1.33	0.89	13．9～15．4
【2－8】（約50km北西）	3月24日	12：05～12：25	2.71	ND	－
	3月25日	16：13～16：33	34.00	ND	－
	3月26日	15：15～15：35	ND	ND	－
	3月27日	14：52～15：12	ND	ND	－
	3月28日	14：38～14：58	ND	ND	－
	3月29日	15：59～16：09	1.60	ND	1.6
	3月30日	16：05～16：15	2.09	0.77	－

採取地点	採取日時		放射能濃度 $\left(\mathrm{Bq} / \mathrm{m}^{3}\right)$		空間線量率 （ $\mu \mathrm{Sv} / \mathrm{h}$ ）
			${ }^{131}$ I	${ }^{137} \mathrm{Cs}$	
【2－9】（約45km西北西）	3月25日	11：32～11：52	8.67	ND	－
	3月26日	10：10～10：30	7.98	ND	－
	3月27日	10：28～10：48	ND	ND	－
	3月28日	10：12～10：32	0.78	ND	－
	3月29日	11：56～12：06	2.53	0.59	－
	3月30日	11：00～11：10	1.54	ND	－
【2－10】（約50km北）	3月25日	16：25～16：45	33.60	0.84	－

上記測定結果は政府現地対策本部が，福島県に依頼し，その結果を入手したもの。

土壌モニタリング結果

\square
：伜内は新規追加データです。太字下線は訂正䉪所。

測定試料採取点	採取日時	放射能濃度（Bq／kg）		空間線量率 （ $\mu \mathrm{Sv} / \mathrm{h}$ ）	備考
		${ }^{131}$ I	${ }^{137} \mathrm{Cs}$		
（1－1）（約45km北西）	3月31日 11：19	29，000	9，400	4.8	（3）
［2］（約55km北西）	3月31日 10：20	48，000	15，000	4.1	（2）
［2］（約55km北西）	3月31日 11：08	24，000	21，000	4.4	［2］
【2】（約55km北西）	3月31日 14：35	16，000	6，300	2.1	（2）
【3－1】（約30km北西）	3月23日 11：10	200，000	45，000	103.0	【33】
【3－1】（約30km北西）	3月25日 14：45	251，000	60，100	27.0	【33】
［3－1］（約30km北西）	3月26日 10：55	7，500	1，500	26.0	【33】
【3－1】（約30km北西）	3月27日 12：15	93，000	29，000	26.0	【33】
【3－1】（約30km北西）	3月28日 11：18	110，000	36，000	43.0	［33】
［3－1］（約30km北西）	3月30日 11：30	190，000	70，000	17.3	［33】
【3－2】（約30km北西）	3月23日 13：17	92，000	15，000	15.0	［34］
【3－3】（約35km西）	3月23日 12：50	11，000	3，300	2.3	【15】
［3－3］（約35km西）	3月24日 12：58	4，900	220	2.5	【15】
【3－4】（約40km北西）	3月23日 11：08	33，000	8，600	2.8	【11】
［3－5］（約50km北西）	3月23日 10：30	4，200	770	2.8	［4］
【3－6】（約30km西北西）	3月23日 14：00	70，000	12,000	9.4	［21］
【3－6】（約30km西北西）	3月26日 15：33	13,000	2，900	6.5	［21］
【3－6】（約30km西北西）	3月28日 11：03	14.000	4，600	5.3	【21】
【3－6】（約30km西北西）	3月29日 11：34	25，000	7.100	－	［21］
【3－7】（約25km南）	3月23日 13：00	69，000	2，600	14.0	【71】
【3－8】（約25km南）	3月23日 16：22	140，000	2，900	14.0	【71】
［3－9］（約45km北）	3月25日 11：24	6，900	1，600	2.7	［5］
【3－9】（約45km北）	3月26日 10：48	6，900	1，600	1.0	［5］
［3－9］（約45km北）	3月26日 12：30	110，000	2，800	1.0	【5】
［3－9］（約45km北）	3月28日 13：00	12，000	4，100	$0.6 \sim 1.2$	［5］
【3－10】（約40km北）	3月25日 12：18	11，000	3，300	3.7	［6】
［3－10】（約40km北）	3月26日 11：12	14，000	3，800	1.5	［6］
【3－10】（約40km北）	3月28日 10：32	11，000	3，600	1.2	【6】
【3－10】（約40km北）	3月29日 15：20	8，400	3，200	1.3	［6］
［3－10】（約40km北）	3月30日 15：54	6，100	2，000	1.4	［6］
【3－10】（約40km北）	3月31日 12：18	9，600	4，700	1.3	【6】
【3－11】（約40km北）	3月25日 12：33	8，000	1，300	3.2	【7】
［3－11】（約40km北）	3月26日 11：33	13，000	4，300	1.5	【7】
【3－11】（約40km北）	3月28日 10：38	8，200	2，000	3.3	【7】
【3－12】（約30km西北西）	3月25日 14：13	29，000	627	30.5	［31】
【3－12】（約30km西北西）	3月26日 10：15	22，000	1，600	17.8	【31】
【3－12】（約30km西北西）	3月26日 10：40	290，000	33，000	46.0	【31】
（3－12）（約30km西北西）	3月26日 10：55	15，000	3，000	26.0	【31】
【3－12】（約30km西北西）	3月27日 11：30	120，000	27，000	25.0	【31】
【3－12】（約30km西北西）	3月28日 10：29	120，000	28，000	23.0	【31】
【3－12】（約30km西北西）	3月29日 9：59	710，000	220，000	18.3	【31】
【3－12】（約30km西北西）	3月29日 10：57	660，000	94，000	43.0	【31】
【3－12】（約30km西北西）	3月29日 11：18	220，000	65，000	18.9	【31】
［3－12）（約30km西北西）	3月30日 10：50	710，000	290，000	16.3	【31】
［3－13）（約30km北西）	3月25日 14：30	88，700	9，260	65.0	【32】
［3－13】（約30km北西）	3月27日 11：55	550，000	80，000	45.0	【32】
［3－13】（約30km北西）	3月28日 10：51	210,000	9，200	50.0	【32】
［3－13］（約30km北西）	3月30日 11：08	260,000	52，000	41.6	［32］
【3－14】（約40km北西）	3月25日 15：35	73,000	18，000	7.0	【36】
【3－14】（約40km北西）	3月26日 19：30	49，000	9，300	7.8	【36】
【3－14】（約40km北西）	3月28日 9：15	65，000	21，000	8.0	【36】
【3－14】（約40km北西）	3月29日 9：41	63，000	21，000	6.0	【36】
【3－14】（約40km北西）	3月30日 10：18	71，000	24，000	5.6	［36］
（3－14］（約40km北西）	3月31日 10：21	59，000	28，000	5.3	［36］
【3－15】（約25km南）	3月25日 14：15	560	410	5.5	［71］

【3－15】（約25km南）	3月26日 12：55	31，000	1，800	3.9	［71】
【3－15】（約25km南）	3月28日 9：54	42.000	1，500	3.0	［71］
【72】（約30km南）	3月31日 12：00	18，000	1，500	1.5	【72】
【73】（約35km南）	3月31日 12：39	13，000	1，100	1.3	［73］
【74】（約35km南）	3月31日 13：18	4，300	330	0.5	［74】
【75】（約45km南）	3月31日 14：03	14，000	650	0.7	【75】
［83］（約20km北西）	3月30日 15：40	340，000	170，000	59.3	［83］
［3－16】（約45km北西）	3月28日 16：18	7，800	3，500	1.7	－

備考欄の番号は，モニタリングカーによる測定箇所を示す。

環境試料の測定結果

\square ：枠内は新規追加データです。

採取地点	市町村名	試料名	$\begin{gathered} \text { 種類 } \\ \text { 又は部位 } \end{gathered}$	採取日時	放射能濃度（Bq／kg）		空間線量率 （ $\mu \mathrm{Sv} / \mathrm{h}$ ）	備考
					${ }^{131}$ ］	${ }^{137} \mathrm{Cs}$		
（2－1）（約40km北西）	飯舘村	雑草	葉菜	3月18日 12：20	2，520，000	1，800，000	30以上	
（2－1）（約40km北西）	飯舘村	雑草	葉菜	3月19日 11：40	845，000	1，010，000	26.5	
［2－1］（約40km北西）	飯舘村	雑草	葉菜	3月20日 12：40	2．540，000	2，650，000	25.8	
（2－1）（約40km北西）	飯舘村	雑草	葉荣	3月21日 12：32	1，330，000	1，240，000	20.4	
（2－1）（約40km北西）	飯舘村	雑草	葉菜	3月22日 12：00	1，110，000	1，600，000	15.3	
（2－1）（約40km北西）	飯舘村	雑草	葉荣	3月23日 11：30	819，000	1，620，000	16.8	
（2－1）（約40km北西）	飯舘村	雑草	葉菜	3月24日 13：05	805，000	1，050，000	13.2	
（2－1）（約40km北西）	飯舘村	雑草	葉菜	3月25日 12：20	400，000	398，000	12.3	
（2－1）（約40km北西）	飯舘村	雑草	葉菜	3月26日 12：00	1，030，000	2，870，000	10.2	
［2－1］（約40km北西）	飯舘村	雑草	葉菜	3月27日 11：40	508，000	910，000	11.2	
［2－1）（約40km北西）	飯舘村	雑草	葉荣	3月28日 11：50	381，000	480，000	9.6	
（2－1）（約40km北西）	飯舘村	稚草	葉菜	3月29日 11：10	330，000	311，000	9.2	
（2－1）（約40km北西）	飯舘村	雑草	葉荣	3月30日 12：25	576，000	1，890，000	8.5	
（2－2）（約45km北西）	川俣町	雜草	葉菜	3月18日 11：45	173，000	72，800	8.5	
（2－2）（約45km北西）	川俣町	雑草	葉荣	3月19日 11：00	184，000	65，100	－	
（2－2）（約45km北西）	川俣町	雑草	葉䒩	3月20日 12：05	308，000	138，000	4.2	
（2－2）（約45km北西）	川俣町	雑草	葉菜	3月21日 12：03	315，000	120，000	3.5	
（2－2）（約45km北西）	川侯町	雜草	葉荣	3月22日 11：00	180，000	89，000	7.8	
（2－2）（約45km北西）	川俣町	雑草	葉菜	3月23日 11：30	170，000	73，700	5.5	
（2－2）（約45km北酉）	11俣町	雑草	葉菜	3月23日 11：30	74，400	23，100	5.5	洗浄なし
（2－2）（約45km北西）	川俣町	雑草	葉菜	3月23日 11：30	46，200	16，000	5.5	洗浄あり
（2－2）（約45km北西）	川俣町	雑草	葉菜	3月24日 11：20	141，000	43，200	5.0	
（2－2）（約45km北西）	川俣町	錐草	葉荣	3月25日 11：30	155，000	53，000	7.5	
［2－2］（約45km北西）	川俣町	雑草	葉菜	3月26日 11：20	79，500	54，700	4.3	
（2－2）（約45km北西）	川俣町	雑草	葉菜	3月27日 10：45	50，000	32，900	5.5	
（2－2）（約45km北西）	川侯町	雑草	葉菜	3月28日 11：05	46，000	33，600	5.5	
（2－2）（約45km北西）	川俣町	雑草	葉菜	3月29日 11：00	71.900	67，900	4.8	
（2－2）（約45km北西）	同俣町	雑草	葉菜	3月30日 11：35	33,500	27，500	4.6	
（2－3）（約40km西）	田村市	雑草	葉荣	3月18日 11：35	36，000	40，100	1.6	
（2－3）（約40km西）	田村市	雑草	葉菜	3月19日 11：35	68，000	38，500	0.8	
（2－3）（約40km西）	田村市	雑草	葉菜	3月20日 12：40	75，700	50，000	0.7	
（2－3）（約40km西）	田村市	雑草	葉菜	3月21日 12：30	30，800	25，000	0.7	
（2－3）（約40km西）	田村市	雜草	葉菜	3月22日 11：30	43，200	25，000	1.4	
（2－3）（約40km西）	田村市	雑草	葉菜	3月23日 11：50	24，100	17，000	1.0	
（2－3）（約40km西）	田村市	雑草	葉菜	3月24日 11：35	29，400	32，600	0.5	
（2－3）（約40km西）	田村市	雑草	葉菜	3月25日 13：28	23，400	13，700	0.8	
（2－3）（約40km西）	田村市	雑草	葉菜	3月26日 11：35	33，100	10，700	0.6	
（2－3）（約40km西）	田村市	雜草	葉菜	3月27日 11：45	33，300	19，800	0.4	
（2－3）（約40km西）	田村市	雑草	葉荣	3月28日 11：36	37.000	22，400	0.7	
（2－3）（約40km西）	田村市	雑草	葉菜	3月29日 13：35	24，800	34，500	0.7	
（2－3）（約40km西）	田村市	雑草	葉菜	3月30日 12：30	18，600	18，800	0.5	
（2－4）（約25km北）	䔵相馬市	森隹草	葉菜	3月18日 13：30	88，600	17，800	－	
（2－4）（約25km北）	南相馬市	雑草	葉菜	3月19日 13：00	455，000	24，900	－	
（2－4）（約25km北）	南相馬市	雑草	葉菜	3月20日 14：30	497，000	24，700	3.4	
（2－4）（約25km北）	南相馬市	雑草	葉菜	3月21日 14：07	289，000	13,400	2.8	
（2－4）（約25km北）	南相馬市	雑草	葉菜	3月22日 13：35	140，000	17，200	1.8	
（2－4］（約25km北）	南相馬市	雑草	葉采	3月23日 14：10	185，000	17，200	1.1	
（2－4）（約25km北）	南相馬市	雜草	葉菜	3月24日 14：40	184.000	27，900	1.2	
（2－4）（約25km北）	南相馬市	雑草	葉䒩	3月25日 14：20	217．000	18，800	0.7	
（2－4）（約25km北）	南相馬市	雑草	葉荣	3月26日 13：50	83,700	10,500	1.3	
（2－4）（約25km北）	南相馬市	雑草	葉荣	3月27日 13：25	161，000	39，900	1.4	
（2－4］（約25km北）	南相馬市	雑草	葉菜	3月28日 13：27	113，000	23，900	0.7	
（2－4］（約25km北）	南相馬市	雑草	葉菜	3月29日 13：30	109，000	17，000	1.0	
（2－4）（約25km北）	南相馬市	雑草	葉菜	3月30日 14：45	113，000	13，100	0．0～1．3	
（2－5）（約40km南西）	小野町	雧草	葉菜	3月18日 12：35	181，000	28，300	0.9	
［2－5］（約40km南西）	小野町	權草	葉菜	3月19日 12：15	201，000	73，800	0.7	
（2－5）（約40km南西）	小野町	雑草	葉荣	3月20日 13：50	36，900	11，700	0.6	
（2－5）（約40km南西）	小野町	雑草	葉荣	3月21日 13：40	20，300	11，200	0.4	
（2－5）（約40km南西）	小野町	稚草	葉菜	3月22日 12：40	32，000	8，120	0.5	
（2－5）（約40km南西）	小野町	雜草	葉菜	3月23日 12：50	22，300	10，300	0.5	
［2－5］（約40km南西）	小野町	雜草	葉荣	3月24日 13：18	29，700	4，900	0.4	
（2－5］（約40km南西）	小野町	雑草	葉䒩	3月25日 11：30	21，800	8，040	0.4	

採取地点	市町村名	試料名	種類又は部位	採取日時	放射能濃度（Bq／kg）		空間線量率 （ $\mu \mathrm{Sv} / \mathrm{h}$ ）	備考
					${ }^{131}$ I	${ }^{137} \mathrm{Cs}$		
（2－5）（約40km南西）	小野町	雑草	葉菜	3月26日 11：50	25，800	5，150	0.6	
【2－5】（約40km南西）	小野町	雑草	葉菜	3月27日 11：10	18，600	4，970	0.5	
（2－5）（約40km南西）	小野町	雑草	葉菜	3月28日 11：25	16，700	4，550	－	
（2－5）（約40km南西）	小野町	雑草	葉菜	3月29日 11：30	16，700	3，770	0.3	
（2－5）（約40km南西）	小野町	雑草	葉菜	3月30日 11：08	10，300	6，280	0.3	
（2－6）（約45km南）	いわき市	雑草	葉菜	3月18日 13：15	690，000	17，400	－	
（2－6）（約45km南）	いわき市	雑草	葉菜	3月18日 13：40	468，000	10.100	－	
（2－6】（約45km南）	いわき市	雑草	葉菜	3月20日 15：25	548，000	17，500	0.6	
【2－6】（約45km南）	いわき市	雑草	葉菜	3月21日 15：10	115，000	2，380	1.5	
（2－6）（約45km南）	いわき市	雑草	葉菜	3月22日 13：50	448，000	18，600	0.6	
（2－6）（約45km南）	いわき市	雑草	葉菜	3月23日 14：20	451，000	30，300	1.0	
［2－6］（約45km南）	いわき市	雑草	葉菜	3月24日 15：00	454，000	6，210	1.4	
（2－6］（約45km南）	いわき市	雑草	葉苟	3月25日 13：45	170，000	6，860	1.1	
（2－6）（約45km南）	いわき市	雑草	葉菜	3月26日 13：50	291，000	12，800	1.0	
（2－6］（約45km南）	いわき市	雑草	葉菜	3月27日 12：30	126，000	7.470	0.8	
（2－6）（約45km南）	いわき市	雑草	葉菜	3月28日 12：50	71，800	4，370	0.3	
（2－6）（約45km南）	いわき市	雑草	葉荣	3月29日 13：05	132，000	9，310	0.7	
（2－6）（約45km南）	いわき市	雑草	葉菜	3月30日 12：30	121，000	10，100	0.3	
（2－7）（約35km北西）	川俣町	雑草	葉荣	3月25日 15：07	663，000	497，000	12.0	
（2－7）（約35km北西）	川俣町	雑草	葉菜	3月26日 14：03	488，000	571，000	8.8	
［2－7）（約35km北西）	川俣町	雑草	葉菜	3月27日 13：44	402，000	490，000	8.7	
［2－7］（約35km北西）	川俣町	雑草	葉菜	3月28日 13：39	443，000	689，000	8.4	
［2－7］（約35km北西）	川俣町	雑草	葉菜	3月29日 14：50	242，000	383，000	8.0	
（2－7）（約35km北西）	川俣町	雑草	葉菜	3月30日 14：00	267，000	338，000	13．9～15．4	
（2－8）（約50km北西）	伊達市	雑草	葉菜	3月25日 16：18	77.100	40，700	－	
（2－8）（約50km北西）	伊達市	雑草	葉䒩	3月26日 15：13	39，400	24，000	－－	
（2－8）（約50km北西）	伊達市	雑草	葉菜	3月27日 15：50	43，900	44，600	－	
［2－8】（約50km北西）	伊達市	雑草	葉菜	3月28日 14：37	43，300	52，000	－	
（2－8）（約50km北西）	伊達市	雑草	葉菜	3月29日 15：50	37,100	62，100	1.6	
（2－8）（約50km北西）	伊達市	雑草	葉菜	3月30日 16：05	33，800	44，300	－	
（2－9）（約45km西北西）	三本松市	雑草	葉菜	3月25日 11：40	73，400	235，000	－	
［2－9］（約45km西北西）	二本松市	雑草	葉菜	3月26日 10：13	24，300	106，000	－	
［2－9］（約45km西北西）	二本松市	雑草	葉菜	3月27日 10：30	73，400	230，000	－	
［2－9］（約45km西北西）	二本松市	雑草	葉菜	3月28日 10：13	34，500	223，000	－	
（2－9］（約45km西北西）	三本松市	雑草	葉菜	3月29日 11：45	34，000	160，000	－	
［2－9］（約45km西北西）	二本松市	雑草	葉菜	3月30日 10：35	31，500	153，000	－	
（2－10）（約50km北）	新地町	雑草	葉菜	3月25日 16：20	29，300	12，500	－	

上記測定結果は政府現地対策本部が，福島県に依頼し，その結果を入手したもの。

：伜内は新規追加データです。

採取地点	市町村名	試料名	$\begin{gathered} \text { 種類 } \\ \text { 又は部位 } \end{gathered}$	採取日時	放射能濃度（Ba／kg）		備考
					${ }^{131}$ I	${ }^{137} \mathrm{C}_{5}$	
【2－1】（約40km北西）	飯舘村	陸水	池水	3月18日 12：20	2，090	511	
	飯舘村	陸水	池水	3月19日 11：36	2，450	940	
	飯舘村	陸水	池水	3月20日 12：40	2，010	437	
	飯舘村	陸水	池水	3月21日 12：35	1，720	246	
	飯舘村	陸水	池水	3月22日 12：00	1，330	172	
	飯舘村	陸水	池水	3月23日 12：25	1，260	145	
	飯舘村	陸水	池水	3月24日 13：05	1，330	268	
	飯舘村	陸水	池水	3月25日 12：20	1，280	507	
	飯舘村	陸水	池水	3月26日 12：00	835	162	
	飯舘村	陸水	池水	3月27日 11：40	828	145	
	飯舘村	陸水	池水	3月28日 11：50	884	183	
	飯舘村	陸水	池水	3月29日 11：50	701	158	
	飯舘村	陸水	池水	3月30日 12：25	629	113	
	飯舘村	陸土	土壤	3月19日 11：40	300，000	28，100	
	飯舘村	陸土	土壤	3月20日 12：40	1，170，000	163，000	
	飯舘村	陸土	土壤	3月21日 12：32	207，000	39，900	
	飯舘村	陸土	土壌	3月22日 12：00	256，000	57，400	
	飯舘村	陸土	土壤	3月23日 12：25	135，000	32，200	
	飯舘村	陸土	土壤	3月24日 13：05	45，500	1,870	
	飯舘村	陸土	土壤	3月25日 13：05	265，000	27，900	
	飯舘村	陸土	土壤	3月26日 12：00	564，000	227，000	
	飯舘村	陸土	土壤	3月26日 15：20	82，000	28，000	
	飯舘村	陸土	土壌	3月27日 11：40	169，000	29，100	
	飯舘村	陸土	土壌	3月27日 12：00	69，800	20，800	
	飯館村	陸土	土壌	3月28日 11：50	14，000	2，040	
	飯舘村	陸土	土壌	3月28日 12：10	23，100	860	
	飯舘村	陸土	土壤	3月29日 11：50	53，700	5，650	
	飯舘村	陸土	土壤	3月29日 12：10	58，400	25，100	
	飯舘村	陸土	土壤	3月30日 12：25	89，000	32，300	
	飯舘村	陸土	土堹	3月30日 12：45	11，900	408	
【2－2】（約45km北西）	川俣町	陸土	土壤	3月18日 11：45	84，300	14，200	
	川俣町	陸土	土壌	3月19日 11：00	85，400	8，690	
	川俣町	陸土	土壤	3月20日 12：04	151，000	15，100	
	川俣町	陸土	土壌	3月21日 12：10	157，000	16，500	
	川俣町	陸土	土壌	3月22日 11：00	38，900	4，720	
	川俣町	陸土	土壤	3月23日 11：30	44，600	6，010	
	川俣町	陸土	土壤	3月24日 11：20	21，500	1，160	
	川俣町	陸土	土壤	3月26日 11：20	29，300	3，760	
	川俣町	陸土	土壌	3月27日 10：45	44，900	7，580	
	川俣町	陸土	土壤	3月28日 11：05	31，100	2，470	
	川1俣町	陸土	土壌	3月29日 11：00	34，400	5，900	
	川俣町	陸土	土壤	3月30日 11：35	23，800	5，280	
【2－3】（約40km西）	田村市	陸土	土壌	3月18日 11：50	19，300	3，510	
	田村市	陸土	土壌	3月19日 11：35	6，970	1，260	
	田村市	陸土	土壤	3月20日 12：40	5，390	1，250	
	田村市	陸土	土壌	3月21日 12：30	3，000	390	
	田村市	陸土	土壌	3月22日 11：30	7，290	1，290	
	田村市	陸土	土壌	3月24日 11：35	6，600	1，310	
	田村市	陸土	土壌	3月25日 13：35	5，480	778	
	田村市	陸土	土壤	3月26日 11：51	5，250	1，010	
	田村市	陸土	土壌	3月27日 11：45	3，700	796	
	田村市	陸土	土嬢	3月28日 11：37	4，360	1，110	
	田村市	晆土	土壤	3月29日 13：35	5，080	1.610	
	田村市	陸土	土壌	3月30日 12：30	5，040	834	

採取地点	市町村名	試料名	種類又は部位	採取日時	放射能濃度（ $\mathrm{Bq} / \mathrm{kg}$ ）		備考
					${ }^{131}$ I	${ }^{137} \mathrm{Cs}$	
【2－4】（約25km北）	南相馬市	陸土	土壤	3月18日 13：30	22，600	3，280	
	南相馬市	陸土	土壤	3月19日 13：00	35，800	4，040	
	南相馬市	陸土	土壌	3月20日 14：30	35，800	4，850	
	南相馬市	陸土	土壤	3月21日 14：07	83，200	8，660	
	南相馬市	陸土	土壤	3月23日 14：10	16，600	1，720	
	南相馬市	陸土	土壤	3月24日 14：40	14，900	1，990	
	南相馬市	陸土	土壤	3月25日 14：20	2，480	189	
	南相馬市	陸土	土壌	3月26日 13：50	15，100	2，490	
	南相馬市	陸土	土壤	3月27日 13：25	10，100	1，520	
	南相馬市	陸土	土壤	3月28日 13：27	7,730	1，330	
	南相馬市	陸土	土壤	3月29日 13：30	9，010	2，200	
	南相馬市	陸土	土壤	3月30日 14：45	14，900	3，300	
【2－5】（約40km南西）	小野町	陸水	雨水	3月22日 12：40	7，440	107	
	小野町	陸水	雨水	3月25日 11：38	3，000	800	
	小野町	陸土	土壤	3月18日 12：30	8，170	2，260	
	小野町	陸土	土壤	3月19日 12：15	14，100	4，630	
	小野町	陸土	土壤	3月20日 13：50	10,300	3，020	
	小野町	陸土	土壤	3月21日 13：40	4，830	910	
	小野町	陸土	土壤	3月22日 11：40	3，220	466	
	小野町	陸土	土壤	3月23日 12：50	6，430	1，590	
	小野町	陸土	土壤	3月24日 13：18	2，830	747	
	小野町	陸土	土壌	3月25日 11：39	3，000	800	
	小野町	陸土	土壤	3月26日 11：50	1，510	159	
	小野町	陸土	土壤	3月27日 11：10	2.140	158	
	小野町	陸土	土壤	3月28日 11：25	505	59	
	小野町	陸水	土壤	3月29日 11：30	2，290	161	
	小野町	陸土	土壤	3月30日 11：02	2，230	947	
【2－6】（約45km南）	いわき市	陸土	土壤	3月19日 13：15	12，600	288	
	いわき市	陸土	土緟	3月20日 15：17	14，600	460	
	いわき市	陸土	土壤	3月21日 15：10	30，700	1，220	
	いわき市	陸土	土壤	3月22日 13：50	1，960	1，290	
	いわき市	陸土	土壌	3月23日 14：20	32，600	840	
	いわき市	陸土	土壤	3月24日 15：00	27，100	951	
	いわき市	陸土	土壌	3月25日 13：45	23，900	519	
	いわき市	陸土	土壤	3月26日 13：50	41，100	875	
	いわき市	陸土	土壤	3月27日 12：30	25，100	849	
	いわき市	陸土	土壤	3月28日 12：50	11，500	465	
	いわき市	陸土	土壤	3月29日 13：05	15，700	617	
	いわき市	陸土	土壌	3月30日 12：30	1，420	ND	
【2－7】（約35km北西）	川俣町	陸土		3月25日 15：05	112，000	21，800	
	川侯町	陸土	土壤	3月26日 13：59	100，000	21，900	
	川俣町	陸土	土壌	3月27日 13：47	50，800	7.350	
	川俣町	陸土	土壤	3月28日 13：39	39，800	4，330	
	川俣町	陸土	土壤	3月29日 14：50	61，800	23，400	
	川俣町	陸土	土壌	3月30日 14：00	42，600	7，750	
［2－8］（約50km北西）	伊達市	陸土	土壤	3月24日 12：10	41，200	6，850	
	伊達市	陸土	土壤	3月25日 16：15	20，800	3，790	
	伊達市	陸土	土壤	3月26日 15：13	16，000	3.740	
	伊達市	陸土	土壤	3月27日 14：54	16，900	3，070	
	伊達市	陸土	土壤	3月28日 14：34	22，300	5.320	
	伊達市	陸土	土壤	3月29日 15：50	25，700	5，800	
	伊達市	陸土	土壤	3月30日 16：05	20，500	3，360	
【2－9】（約45km西北西）	二本松市	陸土	土壤	3尺25日 11：35	32，900	9，330	
	二本松市	陸土	土壌	3月26日 10：14	39，000	16，900	
	二本松市	陸土	土壤	3月27日 10：26	49，300	22，700	
	二本松市	陸土	土壤	3月28日 10：13	34，100	15，700	
	二本松市	陸土	土壌	3月29日 11：45	36，400	21，100	
	二本松市	陸土	土壌	3月30日 10：35	24，000	14，800	
【2－10】（約50km北）	新地町	陸土	土壌	3月25日 16：20	44	3，740	

上記測定結果は政府現地対策本部が，福島県に依頼し，その結果を入手したもの。

	都道府県名	定 時 降下物		
		$\mathrm{I}-131$	Cs－137	備考
1	北海道（札幌市）	不検出	不検出	
2	青森県（青森市）	不検出	不検出	
3	岩手県（盛岡市）	不検出	不検出	
4	宮城県	－	－	震災被害によって計測不能
5	秋田県（秋田市）	不検出	不検出	
6	山形県（山形市）	－	－	機器調整中
7	福島県（福島市）	114	146	測定中であったが到達
8	茨城県（ひたちなか市）	540	390	
9	栃木県（宇都宮市）	1，350	505	測定中であったが到達
10	群馬県（前橋市）	120	130	
11	埼玉県（さいたま市）	270	260	
12	干葉県（市原市）	63	75	
13	東京都（新宿区）	50	68	
14	神奈川県（茅ヶ崎市）	29	52	
15	新潟県（新潟市）	不検出	不検出	
16	富山県（射水市）	不検出	不検出	
17	石川県（金沢市）	不検出	不検出	
18	福井県（福井市）	不検出	不検出	
19	山梨県（甲府市）	不検出	3.6	
20	長野県（長野市）	不検出	不検出	
21	岐阜県（各務原市）	－	－	現在測定中
22	静岡県（御前崎市）	不検出	4.6	
23	愛知県（名古屋市）	不検出	不検出	
24	三重県（四日市市）	不検出	不検出	
25	滋賀県（大津市）	不検出	不検出	
26	京都府（京都市）	不検出	不検出	
27	大阪府（大阪市）	不検出	不検出	
28	兵庫県（神戸市）	不検出	不検出	
29	奈良県（奈良市）	不検出	不検出	
30	和歌山県（和歌山市）	不検出	不検出	
31	鳥取県（東伯郡）	不検出	不検出	
32	島根県（松江市）	不検出	不検出	
33	岡山県（岡山市）	不検出	不検出	
34	広島県（広島市）	不検出	不検出	
35	山口県（山口市）	不検出	不検出	
36	德島県（徳島市）	不検出	不検出	
37	香川県（高松市）	不検出	不検出	
38	愛媛県（八幡浜市）	不検出	不検出	
39	高知県（高知市）	不検出	不検出	
40	福岡県（太宰府市）	不検出	不検出	
41	佐賀県（佐賀市）	不検出	不検出	
42	長崎県（大村市）	不検出	不検出	
43	熊本県（宇土市）	不検出	不検出	
44	大分県（大分市）	不検出	不検出	
45	宫崎県（宮崎市）	不検出	不検出	
46	鹿児島県（鹿児島市）	不検出	不検出	
47	沖縄県（南城市）	不検出	不検出	

福島第一原子力発電所の 20 km 以遠の積算線量結果について

> 平成23年4月1日10時00分現在
> 文 部 科 学 省
＊1簡易型線量計くポケット線量計りにおける値

場所（福島第1発電所からの距離）	設置日時	前回取得日時等 （x）	$\begin{gathered} \text { 前回取得時 } \\ \text { (数値 (a) } \\ \text { マイクシ } \\ \text { ベルト) } \end{gathered}$	$\underset{(y)}{\stackrel{\rightharpoonup}{x} \text {-夕採取日時 }}$	$\begin{aligned} & \text { 積数値(b) } \\ & \text { (1) } \\ & \text { ベルト } \end{aligned}$	$\begin{gathered} \text { 経過時間 } \\ (z=y-x) \end{gathered}$	$\left\|\begin{array}{c} \text { 皘算数値 }(\mathrm{c}=\mathrm{b}-\mathrm{a}) \\ (マ イ ン ヘ ル ト) \end{array}\right\|$	測定位置	天候
測定エリア［31］（約30km西北西）	3月23日11時43分	3月30日 10 時50分	3428.0 ＊	3月31日10時45分	$3763.0{ }^{*}$	23時問55分	$\begin{gathered} 335.0^{* 1} \\ (14.0 \mu \mathrm{~Sv} / \text { 時 }) \\ \hline \end{gathered}$		降雨無し
測定エリア［32】（約30km北西）	3月23日12時14分	3月30日11時08分	7490．0＊1	3月31日11時00分	8260.0 ＊	23時間52分	$\begin{array}{r} 770.0{ }_{* 1} \\ (32.3 \mu \mathrm{~Sv} / \text { 時 }) \end{array}$	$\begin{array}{\|l\|l\|l\|} \hline N & 37 \\ \hline \\ E & 140^{\circ} & 35 \\ \hline \end{array}$	降雨無し
測定エリア［33］（約30km北西）	3月23日12時32分	3月30日11時30分	4449．0＊1	3月31日11時20分	4870．0＊＊	23時間50分	$\begin{gathered} 421.0{ }_{* 1} \\ (17.7 \mu \mathrm{~Sv} / \text { 時 }) \end{gathered}$		降雨有り
測定エリア［34】（約30km北西）	3月23日13時08分	3月29日14時29分	1491．0＊	3月31日12時50分	1646．0＊	46時間21分	$\begin{array}{r} 155.0 * 1 \\ (3.3 \mu \mathrm{SV} / \text { 時 }) \\ \hline \end{array}$		降雨無し
測定エリア［38】（約35km南）	3月31日16時23分	3月31日16時23分	0.0 ＊	－	－	－	－		－
測定エリア［71】（約25km南）	3月23日138時00分	3月28日13時15分	$372.0 * 1$	－	－	－	－	$\mathrm{N}, 37^{\circ}, 12{ }^{\circ} \mathrm{F}, 525^{\prime \prime}$	－
測定エリア［79］（約30km北西）	3月23日148寺09分	3月29日14時48分	3149.0 ＊	3月31日12時00分	3753.0 ＊	45時間12分	$\begin{gathered} 604.0^{* 1} \\ (13.4 \mu \mathrm{~Sv} / \text { 時 }) \\ \hline \end{gathered}$		降雨無し
測定エリア【7】（約45km北）	3月23日12時06分	3月30日16時08分	$212.0{ }^{* 1}$	3月31日12時28分	231.0 ＊	20時間20分	$\begin{gathered} 19.0^{* 1} \\ (0.9 \mu \mathrm{SV} / \text { 時 }) \\ \hline \end{gathered}$		降雨無し
測定エリア 【1】（約60km北西）	3月24日15時20分	3月30日17時59分	189.0 ＊	3月31日15時20分	213.0 ＊	21時間21分	$\begin{gathered} 24.0 * 1 \\ (1.1 \mu \mathrm{SV} / \text { 時 }) \end{gathered}$		降雨無し
測定エリア［15］（約35km西）	3月24日108寺58分	3月30日12時25分	$313.0{ }^{*}$	3月31日13時38分	$358.0 * 1$	25時間13分	$\begin{array}{r} 45.0 * 1 \\ (1.8 \mu \mathrm{SV} / \text { 時 }) \\ \hline \end{array}$		降雨有り
測定エリア 【84】（約40km南西）	3月25日 10時40分	3月28日8時53分	24．0＊	3月31日11時02分	43.0 ＊	748寺間09分	$\begin{array}{r} 19.0 * 1 \\ (0.3 \mu \mathrm{~Sv} / \text { 時 }) \\ \hline \end{array}$	N	降雨有り

注）積算数値の括弧書きは，積算数値を経過時間で割った値（c／z）である。

- 測定者：文部科学省
- 前回取得時数値が 0.0 と表示のものは新規に設置した箇所を示す。
- ［71］の3月31日分はモニタリングの計画上走行しないため，次回以降データ採取の予定。
- ［34］，［79］は型池切れのため，電池交換を行い3月31日分よりデータ採取を再開している。
- ［38］は3月31日より探取を実施している。

福島第一原子力発電所周辺のモニタリング結果

福島第一原子力発電所の20km以遠の積算線量結果について
＊1 簡易型線量計くポケット線量狺ににおける值

，場所（福島第1発電所からの距離）	設置日時	前回取得日時等 （x）	$\begin{gathered} \text { 前回取得時 } \\ \text { 数値 }(\text { a) } \\ \text { (マイクロシー } \\ \text { ベルト) } \end{gathered}$	データ採取日時 （y）	$\begin{aligned} & \text { 皘算数値(b) } \\ & \text { (マイクロシー } \\ & \text { ベルト) } \end{aligned}$	経過時間 $(z=y-x)$	$\left\|\begin{array}{c} \text { 積算数値 }(c=b-a) \\ (マ イ ク ロ ー ヘ ゙ ル ト) ~ \end{array}\right\|$	天候
測定エリア【31】（約30km西北西）	3月23日11時43分	3月30日10時50分	$3428.0{ }^{* 1}$	3月31日10時45分	$3763.0{ }^{* 1}$	23時間55分	$\begin{gathered} 335.0^{* 1} \\ (14.0 \mu \mathrm{SV} / \text { 時 }) \\ \hline \end{gathered}$	降雨無し
測定エリア［32】（約30km北西）	3月23日12時14分	3月30日 11 時08分	7490．0＊	3月31日11時00分	8260.0 ＊	23時間52分	$\begin{array}{r} 770.0 * 1 \\ (32.3 \mu \mathrm{~Sv} / \text { 時 }) \\ \hline \end{array}$	．降雨無し
測定エリア［33】（約30km北西）	3月23日12時32分	3月30日11時30分	4449．0＊1	3月31日11時20分	4870．0＊＊	23時間50分	$\begin{array}{r} 421.00 * 1 \\ (17.7 \mu \mathrm{~Sv} / \text { 時 } \end{array}$	降雨有り
測定エリア［34】（約30km北西）	3月23日13時08分	3月29日14時29分	1491．0＊	3月31日12時50分	1646.0 ＊	46時間21分	$\left(\begin{array}{l} 155.0_{* 1} \\ \left(3.3 \mu \mathrm{~Sv} / \text { 時 }^{2}\right) \\ \hline \end{array}\right.$	降雨無し
測定エリア【38】（約35km南）	3月31日16時23分	3月31日16時23分	0.0 ＊	－	－	－	－	－
測定エリア【71】（約25km南）	3月23日13時00分	3月28日13時15分	372.0 ＊	－	－	－	－	－
測定エリア【79】（約30km北西）	3月23日14時09分	3月29日14時48分	3149.0 ＊	3月31日12時00分	3753.0 ＊	45時間12分	$\begin{gathered} 604.0^{* 1} \\ (13.4 \mu \mathrm{~Sv} / \text { 時 }) \\ \hline \end{gathered}$	降雨無し
測定エリア【7】（約45km北）	3月23日12時06分	3月30日16時08分	$212.0{ }^{* 1}$	3月31日12時28分	231.0 ＊1	20時間20分	$\begin{aligned} & \quad 19.0^{* 1} \\ & (0.9 \mu \mathrm{~Sv} / \text { 時) } \\ & \hline \end{aligned}$	降雨無し
測定エリア【1】（約60km北西）	3月24日15時20分	3月30日17時59分	189．0＊	3月31日15時20分	213.0 ＊	21時間21分	$\begin{array}{r} 24.0 * 1 \\ (1.1 \mu \mathrm{~Sv} / \text { 時) } \\ \hline \end{array}$	降雨無し
測定エリア［15］（約35km西）	3月24日10時58分	3月30日12時25分	313.0 ＊	3月31日13時38分	358.0 ＊	25時間13分	$\begin{gathered} \quad 450{ }^{* 1} \\ (1.8 \mu \mathrm{SV} / \text { 時 }) \\ \hline \end{gathered}$	降雨有り
測定エリア【84】（約40km南西）	3月25日10時40分	3月28日8時53分	24．0＊	3月31日11時02分	43．0＊	74時間09分	$\begin{array}{r} 19.0 \text { *1 } \\ (0.3 \mu \mathrm{~Sv} / \text { 時) } \\ \hline \end{array}$	降雨有り

注）積算数値の括弧書きは，積算数値を経過時間で割った値（ c / z ）である。

- 測定者：文部科学省
- 前回取得時数値が 0.0 と表示のものは新規に設置した箇所を示す。
- ［711］の3月31日分はモニタリングの計画上走行しないため，次回以降データ採取の予定。
- ［34］，［79］は電池切れのため，電池交換を行い3月31日分よりデータ採取を再開している。
- ［38］ 1 3月31日より採取を実施している。

福島第一原子力発電所周辺の積算線量結果

測定日時
－3月23日～31日
（測定エリア：7，31～34，79）
－3月23日～28日
（測定エリア：71）
－3月24日～31日
（測定エリア：1，15）
－3月25日～31日
（測定エリア：84）
－3月31日
（測定エリア：38）
測定箇所
（凡例）

【ポイント番号】

積算線量※
＜前回取得日時からの増加量＞ （1時間当たりの平均線量）
※積算線量については，各測定開始から3月31日までの約1日～9日間の積算である。

単位：マイクロシーベルト
（マイクロシーベルト／時）

From:	OSTO1 HOC
Sent:	Friday, April 01, 2011 12:14 AM
To:	RSTO1 Hoc; PMTO2 Hoc; PMT11 Hoc; Hoc, PMT12
Cc:	FOIA Response.hoc Resource
Subject:	FW: Radiation data by MEXT
Attachments:	20110401_01.pdf; 20110401_01_I__unofficial.pdf; 20110401_02.pdf; 20110401_03.pdf;
	20110401_04.pdf; 20110401_04_II_unofficial.pdf; 20110401_05.pdf; 20110401_06.pdf;
	20110401_07.pdf; 20110401_08.pdf

-----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Friday, April 01, 2011 12:12 AM
TO: LIAO 7 HOC; OSTO1 HOC; OSTO2 HOC; OSTO3 HOC
Subject: FW: Radiation data by MEXT

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Friday, April 01, 2011 12:08:56 AM
Γ
To: Alex Robinson; (b)(6)

(b)(6)

Subject: FW: Radiation data by MEXT
Auto forwarded by a Rule

Attached please find radiation monitoring data from the Ministry of Education, Culture, Science, and Technology.

BU

This email is UNCLASSIFIED

Naomi Walcott
Emergency Action Officer
Japan Emergency Command Center
U.S. Embassy Tokyo

From:

Sent:
To:

Subject:

Subject:

LIAO2 Hoc
Friday, April 01, 2011 7:03 AM
LIA02 Hoc; Doane, Margaret; Mamish, Nader; Abrams, Charlotte; Wittick, Brian; Afshar-
Tous, Mugeh; 'ShafferMR@state.gov'; Bloom, Steven; Schwartzman, Jennifer; Tobin, Jennifer; Mayros, Lauren; Jones, Andrea; English, Lance; Smiroldo, Elizabeth; Young, Francis; Henderson, Karen; Ramsey, Jack; Shepherd, Jill; Baker, Stephen; Emche, Danielle; Fragoyannis, Nancy; LA03 Hoc; Stahl, Eric; Owens, Janice; Fehst, Geraldine; Foggie, Kirk; Breskovic, Clarence

RE: OUO - Transition Report for April 1, 2011-0700

TRANSITION REPORT FOR APRIL 1 - 0700

Jon transitioning to Lauren

UPDATES DURING SHIFT

- Announcement of French nuclear safety meeting in May: Reuters is reporting that Sarkozy has announced plans for a high-level meeting of "G20 nuclear industry officials" in Paris in May 2011 "to define international nuclear safety standards." The article states that Sarkozy "declared this [meeting] would lay the groundwork for the IAEA high-level meeting on June 20-24. We are seeking additional information on this announcement from official channels. Message sent to Eric at 0400 inquiring whether he has heard anything via his French contacts (noting that ASN will be meeting with the NRC Team in the next day or two). Action: Report any new information learned to OIP management and ET.
- Ralph Way BB status. There is an older open ticket item that says he is having trouble with his BB. On $3 / 31$ emailed Ralph asking if he is still having trouble and ccd Danielle and Eric in case Ralph can't read his email. He responded that his email was working, but not the phone. Forwarded his response to ET02 who emailed back to Ralph (Eric \& Danielle) and suggested for him to remove his battery and replace it and check. This solution didn't work. Received an email from Eric that this is not an urgent matter and Ralph can use webmail for now. ACTION: If asked, please let LT Coordinator know the progress on this ticket item and why it is still open.
- Update Japan Traveler Information Document on LIA03 with $3^{\text {rd }}$ Team info - Added the names, available flight and emergency contact info for three of five members of Japan Team\#3 to this file. Emailed All to request their international BB \#s. Emailed Bernhard, Collins and Salay to request travel info as well as emergency contact info. ACTION: Await for reply emails. Make sure to populate the information in the table on Team\#3 in the Document on LIA03.
- Update Japan Traveler Information Document on LIA03 with Return Team info - Per request from LT Director please update the traveler table as the original NRC Japan Travel Team members return to U.S. Leave the most recent copy on the cabinet in LIA02 work area. on 3/31 emailed "Liaison Japan" and asked them to notify LIA02 and LIA03 when they arrive in the U.S. Also, added this as an action item to the Return Traveler Checklist. ACTION: Await for reply emails from returned travelers and update the Document on LIA03.
- BB/Laptops Requests from $3^{\text {rd }}$ Team - Working with $3^{\text {rd }}$ Japan Team to make sure they get their BB and a laptop if requested before they leave. As of 3:00 on 3/31: 1) Call has requested a blackberry, but no laptop. He will pick it up from HQ at 1:00 PM on $4 / 1 ; 2$) Bernhard has requested a laptop and BB from HQ, even though he is in Region II. IT plans to prepare BB and laptop and overnight them to him
on $3 / 31 ; 3$) Hay is getting his laptop and BB through his region. When I asked him to provide his BB number, he said it would be the same number he has now - 817-528-2634. All travelers before him got new BB numbers when they got their international BB , so please confirm this with him again tomorrow that he is not getting a new $B B ; 4$) Salay - TBD when he returns to $D C$ from the Netherlands.
- Updated International Travelers Checklist: Carlotta wanted to add an additional item to the list, that travelers need to take International Travel Training before they leave. Carlotta made the change to the checklist and sent it back to LIA02 and Charlotte for final approval in an email on 3/31 at 11:29 am. ACTION: Check with Charlotte and confirm Carlotta's change to the checklist; finalize checklist; and send to $3^{\text {rd }}$ Team telling them about the update.
- IAEA Request for Severe Accident Mitigation Guidance for a BWR: We need to track down one of these Guidelines and get permission from the BWR Owner's Group to share it with the IAEA. The LT Director put a call in to John Jolicoeur to see if he could get a POC at the BWR Owner's Group. We are still waiting to hear back from him. ACTION: Follow-up on this on $4 / 1$ if we have not heard back by then.
- News Reports on IAEA "Recommendation" to Extend Evacuation Zone: News media is reporting that the IAEA has called on Japan to extend the evacuation zone around Fukushima, based on abnormal levels of radiation detected in a village outside the current evacuation zone. This was not a special announcement nor a formal recommendation from the IAEA. Instead, the reports result from information provided at the March 30 IAEA technical briefing, at which DDG Denis Flory reported on the location of the abnormal radiation levels and noted that they were located outside the evacuation zone. When asked a direct question about whether the IAEA was recommending that Japan extend the zone, DDG Flory stated only that the IAEA was encouraging the "counterpart" to "carefully assess the situation." Full summary of technical briefing here:
http://iaea.org/newscenter/news/tsunamiupdate01.html, relevant paragraph is the fourth paragraph under item \#2, "Radiation Monitoring." Jen Schwartzman verified with Mark Shaffer that no formal announcement has come from IAEA in this regard. Action: If asked about this by the ET or other NRC management, provide the above information so there is no confusion about IAEA's position.
- Taiwan Conference Call. PMT and RST are available for a 1200 EST one-time conference call with Taiwan, date TBD. The 1500-2300 EST shift on March 31 received a call from Taiwan POC (June-Yuan (JY) Huang, ${ }^{(b)(6)}$. He said Danielle Emche had offered the conference call (and Danielle's suggestion stems from DOS push). He doesn't see a need for an immediate conference call. He will call again to set up a date. He would like the conference call to start with a briefing on the technical status at Fukushima and then he will ask questions. After he calls with a date please notify/confirm time and date with PMT and RST. Int'l liaison should sit in on the call. Action: Be aware that Mr. Huang will be calling back to set up a specific date. When date is set, please let PMT and RST know that he would like a briefing on the technical status at Fukushima and will have questions.

- New Travelers to Japan:

1. Contact Valerie Kerben (HQ Security) with all new travelers to Japan. Her group is responsible for providing clearance info to USAID.
2. Four additional technical staff will be sent to support the team in Japan. Mike Salay (RES), Michel Call (NMSS), Mike Hay (RIV), and Rudy Bernhard (RII) to leave the USA on Saturday, April 2. (Salay may leave April 3). A two-week stay is anticipated. Action 1: OIP is to identify an additional staff member to support and provide relief in the near term Action 2: USAID is collecting passport information, etc. for the travelers. We have requested the " 3 " Team" to provide us with all the information requested in the checklist, including full name, passport, banking info, etc. As soon as we receive this info, pass it along immediately to USAID. Status of information received as of 7:00 on 4/1: 1)Rudolph Bernhard: COMPLETE; Michel Call: COMPLETE; Michael Hay: COMPLETE; Michael Salay: NOT COMPLETE. Michael just returned from the Netherlands late yesterday afternoon and will be communicating with USAID today to provide remaining information. Email from USAID at 1645 3/31 indicates he communicated with them upon return to US and will be providing the information 4/1 AM. Action 3: Continue to populate the
international traveler Information document on LIA03 with all new flight information as it comes in from USAID. Action 4: Make sure to get $3^{\text {nd }}$ Team emergency contact information before they leave on Saturday and populate it in the same document. We have received this info for two of the $3^{\text {rd }}$ Team travelers and still need three. Initial Phone numbers from the HOO for $3^{\text {rd }}$ Team are on a post-it note above LIA02. These are not their BB - some are office and home numbers. Action 5: Make sure to get their International BB \#s before they leave and populate that info in the same document on LIA03. Cited above as well.

- Coordination of IAEA and U.S. Efforts. There is ongoing interest from the ET and other NRC managers regarding the IAEA's role in coordinating, or tracking, assistance requests from Japan and offers from other member states. While the IAEA's Incident and Emergency Centre (IEC) has not agreed to be a formal "clearinghouse" (i.e., actively reaching out to all IAEA member states requesting that all assistance efforts be coordinated through the IEC), they are tracking all offers for assistance via a database that was posted on ENAC last week. For the effort to be effective, they need input from countries, and they do not have anything from the United States. It was our initial understanding that DoD (Navy) is taking a logistical leadership role in coordinating equipment-provision efforts fọ the USG. However, during the last shift information was received that INPO was taking the lead on equipment issues, and then during this shift information was provided that the State Department had taken a lead role in the "Consortium." The call with Danielle provided some much-needed clarity - she indicated that US Embassy Tokyo had established a tracking system to compile assistance requests from the Japanese and offers from USG entities. INPO had been separately tracking equipment requests (see INPO item below). Danielle reported that the Embassy and INPO tracking had merged, and that the Embassy and NRC Team were developing a standardized form that could be filled out for assistance requests. I inquired as to whether a similar standardized form would be developed for either solicited or unsolicited offers for assistance from USG entities and Danielle indicated she would check. I suggested that, given the concrete actions US Embassy Tokyo is taking, they should take the lead in providing information to IAEA on behalf of the USG. 2316 email from Danielle indicates that Embassy Tokyo is in the process of verifying with State HQ that they can take the lead on this. She will provide updates. Action: Wait to hear back from Danielle, then confirm whether or not US Embassy Tokyo will be communicating with IAEAIEC. Information can be sent to IEC1@laea.org with a copy to Mark Shaffer. Provided this to Danielle.
- Deputies Committee Decisions and Action Items: SECY has been sending summaries of the Deputies Committee meetings as they are received and the LT Director/Coordinator have been tracking any actions pertinent to the LT. There are currently no international liaison tasks resulting from these meetings but the LT Director will inform us if this changes. Action: Mark Shaffer would like to see the summaries. We sent him everything we had already received but he would need future summaries beginning with the March 30 meeting.
- Plant Status Updates. James Whitney, NSIR has requested that all of the "Plant Status" news releases on ENAC be sent to him to assist other government agencies in their analysis of the situation. Action: Send james.whitney@nrc.gov "plant status updates" on ENAC as they come in (last one sent during 1500-2300 shift on $3 / 30$).
- Translators. 24/7 translation coverage has been suspended due to both projected decreasing demand and funding issues. Kirk Foggie confirmed that there is only one known NRC employee that speaks Japanese (at the moment) but there is a Japanese foreign assignee and other options available. Also, Tony Nakanishi will be returning from Japan today and may be available to provide translation assistance beginning Monday. Danielle Emche informed us that USAID is paying for an NRC-dedicated translator in Tokyo. If we need items translated and cannot get assistance from within NRC, we can rely on them. Action 1: If in need of USAID translation support, fax the document to $+81-3-3224-5538$ and send a scanned (PDF) copy to Danielle Emche and Eric Stahl as a backup. Action 2: Inform PMT and RST if a decision is made to resume translation services at NRC.

FUTURE ACTIONS/OPEN ITEMS

- INPO: All equipment requests are now going through INPO. They are consolidating all available information. Contact information for INPO is 770-644-8118 or email at inpoercassistance@inpo.org.
- IAEA All Member States Meeting: Received request from the ET director, Mike Weber to coordinate with Mark Shaffer in Vienna to determine the topic and/or agenda for this meeting, which was called by the DG. The ET would like to know what will be communicated by the DG to member states and what might be asked of member states at this meeting. All known information is publicly available on the IAEA's website (see http://iaea.org/newscenter/news/high level conference.html). No further action required.
- NRC Health Unit request: The NRC team members were given KI before they left. At this time the guidance is to not take the KI while on duty in Tokyo. However, due to the still-fluid nature of the environmental hazards posed by radioactive isotopes, there still exists a possibility that KI could be required at some point. Should it become necessary to have the NRC team take the KI, the LIA02/LIA03 international liaisons would be responsible for receiving the advice from ADM/Dr. Cadoux and to get the information to the team immediately.
- Request for meteorological data. PMT notified LIA02/03 of their need for meteorological data. Action: If you receive meteorological communications which do not already have PMT on distribution, please ensure PMT is cc'ed on the email (send to PMT02 and PMT12) and walk a hard copy back to the meteorologists.
- Japan Relief Team Dosimetry. LIA03 sent an email to LiasonJapan (original team) asking for them to email back their dosimetry numbers. If dosimeter numbers (on the back) are received directly to the international liaison desks they should be forwarded to John O'Donnell and entered into a word document on LIA03.
- Daily calls with UK/France/Canada. Calls will take place at 0930 with RST and PMT to discuss reactorrelated and radiation-related information, respectively, with regulatory representatives from these three countries. Everyone should call into the HOO to be connected. Finland and the IAEA mav alsanarticipate on an intermittent basis. The new number to call into is (b)(6) find the pin if (b)(6)
- Daily NRC Japan Team - RST/PMT Call. The time of thecall varies. As of $3 / 31$ it was 1800 with RST and PMT have been notified of the call and international liaison should plan on participating (OIP staff in Japan don't necessarily participate). All parties should call into 301-816-5120 and use pass-codd (b)(6)]
DAILY ACTIONS/REMINDERS
- International updates must be sent to LIA07 (to be put in the HOO Status Update) before the end of every shift as well as posted on the LT status board (different than the LT Log).
- 11 PM - 7 AM shift is responsible for the summary call with Danielle and Eric, scheduled daily at 0500 EST unless rescheduled, and subsequent write-up of one-pager for Margie. Margie reminds us that the write-up should not contain technical details, which are already captured in other reports, and should be marked "Official Use Only - Foreign Government Information."
- The 11 pm -7am shift is responsible for sending all emails from the previous day to the FOIA email address. Open new email, copy previous day's emails as an attachment and send to FOIA Response.hoc@nrc.gov.
- The international team should sit in on calls with the ET and team leader (Chuck or Dan) to take notes and provide a short summary of what was discussed via email to OIP reps on Japan Team.
- Prior to any international call you set up, please make sure you contact the HOOs to let them know that you are going to have an international call.
- Reminder to Keep Mark Shaffer in-the-loop at shaffermr@state.gov, regardless of time of day, regardless of whether he is in the office or asleep. Especially cc Mark on all communication to IAEA.
- Request from RST and PMT to keep them updated on who is currently in Japan on NRC team.
- Please make sure to keep the NRC Japan travelers list updated (check the last updated date) and post a new copy on LIA02 cabinet as changes occur.
- Sanitary wipes now available. Action: Please wipe the keyboards, mice and phones before you leave.
- OFFICIAL USE-ONLY

From:	OSTO1 HOC
Sent:	Friday, April 01, 2011 10:27 AM
To:	Brock, Kathryn
Cc:	OSTO2 HOC; OST01 HOC; Brandon, Lou; Hoc, PMT12; PMTO3 Hoc
Subject:	RE: Updated Watchlist for March 27 - April 2 (Final)

Okay. The PMT coordinator needs to propose another person.

From: Brock, Kathryn
Sent: Friday, April 01, 2011 10:14 AM
To: OST01 HOC
Subject: RE: Updated Watchlist for March 27 - April 2 (Final)

- Working the week of April 4-8 from 7:00-3:00 is fine.
- (b)(6) 7:00-3:00, however,

I could do the 3:00-11:00 on Saturday.

From: OST01 HOC
Sent: Friday, April 01, 2011 9:34 AM
To: Brock, Kathryn
Subject: RE: Updated Watchlist for March 27 - April 2 (Final)
Kathryn:

For the week of April 3-9, the schedule reflects you working the 7 am -3 pm shift for April $4,5,6,7$ and 8 . We are proposing you filling the $7 a-3 \mathrm{pm}$ slot for April 9. Are you okay with that?

Steve Campbell
EST Coordinator

From: OST02 HOC
Sent: Friday, April 01, 2011 9:11 AM
To: Brandon, Lou; OST01 HOC
Subject: FW: Updated Watchlist for March 27 - April 2 (Final)

From: Brock, Kathryn
Sent: Friday, April 01, 2011 9:07 AM
To: OSTO2 HOC
Subject: RE: Updated Watchlist for March 27 - April 2 (Final)
Are you scheduling the PMT for the week of April $4^{\text {th }}$? Does the PMT need help? I'm a PAAD.

From: OST02 HOC
Sent: Thursday, March 31, 2011 7:07 PM
To: Abrams, Charlotte; Abu-Eid, Boby; Adams, John; Afshar-Tous, Mugeh; Ahn, Hosung; Alemu, Bezakulu; Algama, Don;
Alter, Peter; Anderson, Brian; Anderson, James; Arndt, Steven; Arribas-Colon, Maria; Ashkeboussi, Noma; Athey, George;
Baker, Stephen; Ballam, Nick; Barnhurst, Daniel; Barr, Cynthia; Barss, Dan; Bazian, Samuel; Benner, Eric; Bensi, Michelle;

Bergman, Thomas; Berry, Rollie; Bhachu, Ujagar; Bloom, Steven; Blount, Tom; Boger, Bruce; Bonnette, Cassandra; Borchardt, Bill; Bowers, Anthony; Bowman, Gregory; Boyce, Tom (RES); Brandon, Lou; Brandt, Philip; Brenner, Eliot; Brock, Kathryn; Brown, Cris; Brown, David; Brown, Eva; Brown, Frederick; Brown, Michael; Bukharin, Oleg; Burnell, Scott; Bush-Goddard, Stephanie; Campbell, Stephen; Camper, Larry; Carlson, Donald; Carpenter, Cynthia; Carter, Mary; Case, Michael; Casto, Greg; Cecere, Bethany; Cervera, Margaret; Chazell, Russell; Chen, Yen-Ju; Cheng, May; Cheok, Michael; Chokshi, Nilesh; Chowdhury, Prosanta; Chung, Donald; Circle, Jeff; Clement, Richard; Clinton, Rebecca; Coe, Doug; Coggins, Angela; Collins, Frank; Cool, Donald; Correia, Richard; Corson, James; Costa, Arlon; Couret, Ivonne; Craffey, Ryan; Crutchley, Mary Glenn; Cruz, Zahira; Cuadrado, Leira; Dacus, Eugene; DeCicco, Joseph; Decker, David; Dembek, Stephen; Devlin, Stephanie; Dimmick, Lisa; Doane, Margaret; Dorman, Dan; Dorsey, Cynthia; Dozier, Jerry; Drake, Margaret; Droggitis, Spiros; Dube, Donald; Dudes, Laura; Eads, Johnny; Easson, Stuart; Emche, Danielle; English, Lance; Erlanger, Craig; Esmaili, Hossein; Evans, Michele; Faria-Ocasio, Carolyn; Flgueroa, Roberto; Fiske, Jonathan; Flanders, Scott; Flannery, Cindy; Floyd, Daphene; Foggie, Kirk; Foster, Jack; Fragoyannis, Nancy; Franovich, Rani; Frazier, Alan; Freshman, Steve; Fuller, Edward; Galletta, Thomas; Gambone, Kimberly; Gardocki, Stanley; Gartman, Michael; Gibson, Kathy; Giitter, Joseph; Gilmer, James; Glenn, Nichole; Gordon, Dennis; Gott, William; Grant, Jeffery; Gray, Anita; Gray, Kathy; Greenwood, Carol; Grimes, Kelly; Grobe, Jack; Gross, Allen; Gulla, Gerald; Hackett, Edwin; Hale, Jerry; Hardesty, Duane; Hardin, Kimberly; Hardin, Leroy; Harrington, Holly; Harris, Tim; Harrison, Donnie; Hart, Ken; Hart, Michelle; Harvey, Brad; Hasselberg, Rick; Hayden, Elizabeth; Helton, Donald; Henderson, Karen; Hiland, Patrick; Hipschman, Thomas; Holahan, Patricia; Holahan, Vincent; Holian, Brian; HOO Hoc; Horn, Brian; Howard, Arlette; Howard, Tabitha; Howe, Allen; Huffert, Anthony; Hurd, Sapna; Huyck, Doug; Imboden, Andy; Isom, James; Jackson, Karen; Jacobson, Jeffrey; Jervey, Richard; Jessie, Janelle; Johnson, Michael; Jolicoeur, John; Jones, Andrea; Jones, Cynthia; Jones, Henry; Kahler, Carolyn; Kammerer, Annie; Karas, Rebecca; Kauffman, John; Khan, Omar; Kolb, Timothy; Kotzalas, Margie; Kowalczik, Jeffrey; Kratchman, Jessica; Kugler, Andrew; Lamb, Christopher; Lane, John; Larson, Emily; Laur, Steven; LaVie, Steve; Lewis, Robert; Li, Yong; Lichatz, Taylor; Lising, lason; Lombard, Mark; Lovell, Louise; Lubinski, John; Lui, Christiana; Lukes, Kim; Lynch, Jeffery; Ma, John; Mamish, Nader; Manahan, Michelle; Marksberry, Don; Marshall, Jane; Masao, Nagai; Maupin, Cardelia; Mayros, Lauren; Mazaika, Michael; McConnell, Keith; McCoppin, Michael; McDermott, Brian; McGinty, Tim; McGovern, Denise; McIntyre, David; McMurtray, Anthony; Merritt, Christina; Meyer, Karen; Miller, Charles; Miller, Chris; Milligan, Patricia; Miranda, Samuel; Mohseni, Aby; Moore, Scott; Morlang, Gary; Morris, Scott; Mroz (Sahm), Sara; Munson, Clifford; Murray, Charles; Musico, Bruce; Nerret, Amanda; Nguyen, Caroline; Norris, Michael; Norton, Charles; Nosek, Andrew; Opara, Stella; Ordaz, Vonna; Orr, Mark; Owens, Janice; Padovan, Mark; Parillo, John; Patel, Jay; Patel, Pravin; Patrick, Mark; Perin, Vanice; Pope, Tia; Powell, Amy; Purdy, Gary; Quinlan, Kevin; Raddatz, Michael; Ragland, Robert; Ralph, Melissa; Ramsey, Jack; Reed, Elizabeth; Reed, Sara; Reed, Wendy; Reeves, Rosemary; Reis, Terrence; Resner, Mark; Riley (OCA), Timothy; Riner, Kelly; Rini, Brett; Roach, Edward; Robinson, Edward; Rodriguez-Luccioni, Hector; Roggenbrodt, William; Ropon, Kimberly; Rosales-Cooper, Cindy; Rosenberg, Stacey; RossLee, MaryJane; Roundtree, Amy; Ruland, William; Russell, Tonya; Ryan, Michelle; Salay, Michael; Salter, Susan; Salus, Amy; Sanfilippo, Nathan; Santos, Daniel; Scarbrough, Thomas; Schaperow, Jason; Schmidt, Duane; Schmidt, Rebecca; Schoenebeck, Greg; Schrader, Eric; Schwartzman, Jennifer; Seber, Dogan; See, Kenneth; Shane, Raeann; Shea, James; Shepherd, Jill; Sheron, Brian; Skarda, Raymond; Skeen, David; Sloan, Scott; Smiroldo, Elizabeth; Smith, Brooke; Smith, Stacy; Smith, Theodore; Solorio, Dave; Stahl, Eric; Stang, Annette; Stark, Johnathan; Steger (Tucci), Christine; Stieve, Alice; Stone, Rebecca; Stransky, Robert; Sturz, Fritz; Sullivan, Randy; Summers, Robert; Sun, Casper; Susco, Jeremy; Takacs, Michael; Tappert, John; Tegeler, Bret; Temple, Jeffrey; Thaggard, Mark; Thomas, Eric; Thorp, John; Tiruneh, Nebiyu; Tobin, Jennifer; Trefethen, Jean; Tschiltz, Michael; Turtil, Richard; Uhle, Jennifer; Valencia, Sandra; Vaughn, James; Vick, Lawrence; Virgilio, Martin; Virgilio, Rosetta; Ward, Leonard; Ward, William; Wastler, Sandra; Watson, Bruce; Webber, Robert; Weber, Michael; White, Bernard; Wiggins, Jim; Williams, Donna; Williams, Joseph; Williams, Tamera; Williamson, Linda; Willis, Dori; Wimbush, Andrea; Wittick, Brian; Wray, John; Wright, Lisa (Gibney); Wright, Ned; Wunder, George; Young, Francis; Zimmerman, Jacob; Zimmerman, Roy
Subject: Updated Watchlist for March 27 - April 2 (Final)
Attached is the final updated schedule for this week through Sunday, April $3^{\text {rd }}$ at 7 a.m.
The schedule for next week noting shifts for this Sunday and Monday, April $4^{\text {th }}$ will be sent out tomorrow.
If you need to change the schedule, please contact your team coordinator and the following cognizant individuals:
Liaison Team - Jeff Temple
Reactor Safety Team - Rick Hasselberg or Peter Alter
Protective Measures Team - Lou Brandon

Thank You,

 OST02

If you rename these pdf they will open

This email is UNCLASSIFIED.

From: Kenagy, W David
Sent: Friday, April 01, 2011 7:01 PM
To: Kenagy, W David; 'vince.mcclelland@nnsa.doe.gov'; 'veronica.rodriguez@nrc.gov'; 'ann.heinrich@nnsa.doe.gov'; 'hoo1@nrc.gov'; 'hoo2@nrc.gov'; 'wch@nrc.gov'; 'decair.sara@epamail.epa.gov'; 'timothy.greten@dhs.gov';
'maria.marinissen@hhs.gov'; (b)(6) 'doehqeoc@oem.doe.gov'; 'hhs.soc@hhs.gov';
'james.kish@dhs.gov'; 'hoo.hoc@nrc.gov'; 'brooke.smith@nrc.gov'; Zubarev, Jill E; Shaffer, Mark R;
'nitops@nnsa.doe.gov'; Skypek, Thomas M; (b)(6) 'clark.ray@epamail.epa.gov'; 'Stern, Warren'; Mentz, John W; DeLaBarre, Robin; Burkart, Alex R; Metz, Patricia J; Fladeboe, Jan P; Withers, Anne M; Lowe, Thomas J; Lewis, Brian M; SES-O_OS; EAP-J-Office-DL; O'Brien, Thomas P; Lane, Charles D; Conlon, John N; Foughty, Michael A; Mahaffey, Charles T; (b)(6) Jih, Rongsong
Subject: RE: IAEA distributed documents

This email is UNCLASSIFIED.

$$
x+x / 151
$$

現状：プール及び炉心への淡水注入を継綂

福島第一原子力発電所3号機の状況
 （4月1日 14：00現在）

現状：
プール及び炉心への淡水注入を絧続

発生後の主要なできごと
11日15：42 10楽通報（全交流香源瑃失）

13日08：41 ペント開始
13日13：12 海水及び小ウ酸の炉心注入開始
14日05：20 ベント閒始

14日11：01 媬発音 16日08：30顷 白哣が発生
17日09：48～10：01 自驚詸へりによる放水 17日19：05～19：15 登禁の高任放水車による䑤水
 18日 14時前～14：38 自衛様消防車6台による地上放水～14：45 米軍消防車1台による地上放水 19日0：30～01：10 尔泉消防庁ハイバーレスキュー隊放水 19日 14：10～20日3：40 取京消昉庁ハイバーレスキェー隊放水
 20日21：36～21日3：58 東京消防庍ハイパーレスキュー榢放水 21日15：55頃 灭色がかった桎が発生。17：55に煙が収まっていることを硍詵 22日15：10～16：00来京洞防庁ルパーレスキュー譄及び大阪市消㕫局放水 22日22：46 中央制御室の扫明復紹
23日11：03－13：20使用済然料ブール冷却系（FPC）から使用济㜣料ブール（SFP）に約351の海水を注水

24日05：35～16：05 FPCからSFPに約120tの潅水を注水
25日13：28～16：00 聚京消防庁の支捱を受けた川的市消眆局による放水 25日18：02 淡水の炉心注入閒紿
27日12：34～14：36 コンクリートボンブ車による放水

 29日 14：17～18：18 コンクリートボンブ井による佊水（淡水） 31日16：30～19：33 コンクリートボンブ耻による放水（淡水）

福島第一原子力発電所4号機の状況 （4月1日 14：00現在）

発生後の主要なできごと
地良発生時，定期険査により停止中 14日04：08 使用済燃料プール温度 $84^{\circ} \mathrm{C}$ 15日06：14 4Fの壁が一部破損の確認
 16日05：45 4号据で火災。事莱者によると現場での火は確認できず（06：15） 20日08：21～9：40 自断隊による使用済燃料プール （SFP）への故水
20日18：30頃～19：46自衛隊によるSFPへの放水 21日06：37～08：41 自街䠔によるSFPへの放水 21日15：00頃 パワーセンターまでのケーブル散股完了 22日10：35 パワーセンター妥電
22日17：17～20：32 コンクリートポンプ車による放水 23日10：00～13：02 コンクリートポンプ車による放水 24日14：36～17：30 コンクリートポンプ車による放水 25日06：05～10：20 使用済燃料プール冷却系（FPC）か らSFPに海水を注入
25日19：05～22：07 コンクリートボンプ車による故水 27日16：55～19：25 コンクリートポンプ䒠による放水 29日11：50 中央制御室の昭明復㟪 30日14：04～18：93 コンクリートポンプ事による放水（淡水） 1日8：28 コンクリートボンブ車による放水（淡水）

定検停止中

原子妒圧力： 0.107 MPa 㴆原子妒水位： 1896 mm原子炉水温度： $40.9^{\circ} \mathrm{C}$状況：操作により压力等を制御中。 ※：絶対圧に换算

原子妒氏力容器温度：
原子杆水温度にて監視中。

現状：20日 14：30 冷温㝓止。
21日11：36 外部電源から受電開始。
23日17：24 残留熱除去海水系（RHRS）ポ ンプが，仮設から本設の電源への切り替えの際に自動停止。
24日16：14 RHRSポンプの修理完了。 24日16：35 椧却開始。
※炉水とプール水を切替えて除黙

福島第一原子力発電所 6 号機の状況 （4月1日 14：00現在） \square
定検停止中

（1）事務本館北（2号機より北西約0．5才口）（2）体育館付近（MP－5東側）（2号機より西北西約0．9キ口） （3）西門付近（MP－5付近）（2号機より西約1．1キ口）（4）正門付近前（MP－6付近）（2号機より西南西約1．0キロ） （5）免酸楝前（2号機より北西約0．5キロ）（6）事務本館南側（7）正門 MC：モニタリングカー 可搬：可搬型MP

既定場所	（3）																							
時 間	12：00	12：10	12：20	12：30	12.40	12：50	13：00	13：10	13：20	13：30	13：40	13：50	14：00	14：10	14：20	14：30	14：40	14：50	15：00	15：10	15：20	15：30	15：40	15：50
	92.3	92.3	92.3	92.1	92.1	92.0	92.0	91.9	91.9	91.6	91.8	91.6	91.6	91.5	91.4	91.4	91.3	91.3	91.2	91.2	91.2	91.1		
－中性子	N．D	N．D	N．D	N．D	N． D	．N．D	N．D																	
	890	－	－	900	－	－	900	－	－	900	－	－	910	－	－	900	－	－	910	－	－	900		
猡（7）正門（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	145	－	－	147	－	－	145	－	－	145	－	－	143	－	－	144	－	－	144	－	－	143		
洮西門（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	67.4	－	柬	65.2	－	－	65.8	－	－	65.5	－	－	65.2	－	－	64	－	－	64.5	－	－	64.6		
風向	東	東	南東	東南東	東南東	宋	東	東	宋南東	東南東	東	東	南南東	東	南東	南東	東南東	南東	東	柬	東南東	苯南宩		
風速（ m / s ）	2.2	2.2	2.6	2.6	2.6	3.3	3.2	3.6	3.3	3.8	3.0	3.7	2.2	2.5	3.3	2.6	2.8	2.8	2.7	3.0	2.2	2.4		

䦸定場所	（3）																							
辳 間	16：00	16：10	16：20	16：30	16：40	16：50	17：00	17：10	17：20	17：301	17：40	17：50	18：00	18：10	18：20	18：30	18：40	18：50	19：00	19：10	19：20	19：30	19：40	19：50
MC 滑定值（ $\mu \mathrm{Sv} / \mathrm{h}$ ）																								
MC 中狌子																								
${ }^{\text {服（3）}}$ 酉門 $(\mu \mathrm{Sv} / \mathrm{h})$																								
－風向																								
風速（m／s）																								

䦜定場所	（3）																							
	20：00	20：10	20：20	20：30	20：40	20：50	21：00	21：10	21：20	21：30	21：40	21：50	22：00	22：10	22：20	22：30	22：40	22：50	23：00	23：10	23：20	23：30	23：40	23：50
MC 樃定㑑 $(\mu \mathrm{SV} / \mathrm{h})$																								
MC 中性子																								
可（7）${ }^{\text {正門（ }(\mu \mathrm{Sv} / \mathrm{h})}$																								
败（3）西門 $(\mu \mathrm{SV} / \mathrm{h})$																								
囯页																								
俨速（m／s）																								

（1）事務本館北（2号機より北西約0．5キロ） （3）西門付近（MP－5付近）（2号機より西約1．1キロ）

 MC：Eニタリンクカー 可掛：可报型MP

泪定場所	（3）																							
時 間	0：00	$0: 10$	0：20	$0: 30$	0：40	0：50	1：00	1：10	1：20	1：30	1：40	1：50	2：00	2：10	2：20	2：30	2：40	$2: 50$	3：00	3：10	3：20	3：30	3：40	3：50
MC 醇定值 $(\mu \mathrm{Sv} / \mathrm{h})$	94.3	94.3	94.2	94.1	94.1	94.1	93.9	93.9	93.9	93.9	98.9	93.7	93.7	93.8	93.7	93.4	93.5	93.4	93.3	93.3	93.3	93.4	93.3	93.2
MC 中性子	N．D	N．O	N．D	N．D	N．D																			
－可 6 本管南 $(\mu \mathrm{Sv} / \mathrm{h})$	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－
㨥（7）正門（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	145	－	－	145	－	－	145	－	－	145	－	－	146	－	－	146	－	－	145	－	－	146	－	－
（3）西門（ $\mu \mathrm{SV} / \mathrm{h}$ ）	69.3	－	－	68.9	－	－	68.6	－	－	68.7	－	－	68.8	－	－	68.7	－	－	68	－	－	68.3	－	－
風向	北西	西北西	西	北西	西	西	北西	西北西	西	北西	西	北西	西北西	西北西	西	北西	北西	北西	西北西	捒西	西	西	西	画北西
俨速（m／s）	－0．6	0.7	0.8	0.4	0.6	0.6	0.8	0.8	0.8	0.5	0.8	0.7	0.9	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.5	0.6	0.6	0.8

測定場所	（3）																							
	4：00	4：10	4：20	4：30	4：40	4：50	5：00	5：10	5：20	5：30	$5: 40$	5：50	6：00	6：10	6：20	6：30	6：40］	6：50	7：00	7：10	7：20	7：30	7：40	7：50
MC 䦗定值（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	93.1	93.0	93.0	93.1	92.8	92.9	92.8	92.8	92.7	92.5	92.4	92.3	92.3	92.4	92.4	92.3	92.2	92.2	92.3	92.3	92.3	92.2	92.2	92.2
MC 中性子	N．D	N．D	N．D	N．	N．D	N．D	N．D	N．D	N． D	N．D														
－可 6 本本镍南 $(\mu \mathrm{Sv} / \mathrm{h})$	940	－	－	940	－	－	930	－	－	930	－	－	930	－	－	930	－	－	930	－	－	930	－	－
搬 7 I正門（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	145	－	－	145	－	－	144	－	－	144	－	－	146	－	－	146	－	－	145	－	－	143	－	－
	70	－	－	68.4	－	－	68.8	－	－	69	－	－	69.9	－	－	69	－	－	68.8	－	－	68.2	－	\bigcirc
風向	西	西	西	西	西	西	西	西	西	西	西	西	酉南西	西北西	西	西	西南酉	西北西	西北西	北西	北北西	北北酉	西	南西
風速（m／s）	0.8	0.7	0.7	0.6	0.6	0.7	0.7	0.8	0.7	0.7	0.8	0.8	0.7	0.9	1：0	0.8	0.5	0.6	0.6	0.6	0.6	0.6	0.5	0.4

測定場所	（3）																							
硅 間	8：00	$8: 10$	8：20	8：30	8：40	$8: 50$	9：00	9：10	9：20	9：30	9：40	9：50	10：00	10：10	10：20	10：30	10：40	10：50	11：00	11：10	11：20	11：30	11：40	11：50
MC 澙定值（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	97.6	96.8	99.6	98.6	95.1	94.3	94.5	94.5	94.5	96.9	94.1	93.5	93.5	93.6	93.3	93.1	92.9	92.9	92.5	92.4	92.8	92.3	92.3	92.3
MC中性子	N． O	N．D	N．D	N．D	N．D	N．D	N． D	N．D	N．D	N．D	N．O	N．D	N．	N．D	N．D	N．D								
－ 6 体瞖南 $(\mu \mathrm{Sv} / \mathrm{h})$	930	－	－	920	－	－	910	－	－	910	－	－	910	－	－	920	－	－	910	－	－	910	－	－
搬（7）正門（ $\mu \mathrm{Sv} / \mathrm{h})$	145	－	－	145	－	－	150	－	－	148	－	－	146	－	－	145	－	－	145	－	－	146	－	\bigcirc
－（3）西門（ $\mu \mathrm{Sv} / \mathrm{h})$	68.5	－	－	76.6	－	－	70.8	－	－	71.9	－	－	67.2	－	－	67.2	－	－	66.7	－	－	67.5	－	－
風向	東	南東	東	東南東	東	東	東	東	更	東	南東	東南東	東南東	東	東	南南東	東	東南東	東	東	東運東	南	南	南
風速（m／s）	1.6	1.7	2.3	2.5	2.2	2.5	2.6	3.1	3.1	3.0	3.1	3.0	2.2	2.6	3.2	3.0	2.8	2.4	2.4	3.0	2.2	1.7	2.4	2.2

（1）事務本館北（2号機より北西約0．5キロ）（2）体育館付近（MP－5東側）（2号機より西北西約0．9キロ） （3）西門付近（MP－5付近）（2号機より西約1．1キロ）（4）正門付近前（MP－6付近）（2号機より西南西約1．0キロ） （5）免睘棟前（2号機より北西約 0.5 キロ）（6）車務本能南㑡（7）正門 MC：モニタリングカー 可搬：可搬型MP

畆定場所	（3）																							
冓 鹪	12：00	12：10	12：20	12：30	12：40	12：50	13：00	13：10	13：20	13：30	13：40	13：50	14：00	14：10	14：20	14：30	14：40	14：50	15：00	15：10	15：20	15：30	15：40	15：50
MC ${ }^{\text {mi }}$ 定值（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	98.9	98.1	97.9	97.7	98.7	97.9	97.7	100.8	100.5	99.2	99，6	97.6	99.9	97.6	96.8	96.5	96.5	96：6	96.5	96.7	96.7	96.9	98.1	99.1
中性子	N．D	N．D	N． D	N．D																				
	950	－	－	940	－	－	940	－	－	940	－	－	940	－	－	930	－	－	930	－	－	930	－	－
可缎 8 正閏（ $\mu \mathrm{Sv} / \mathrm{h})$	165	－	－	155	－	－	162	－	－	157	－	－	157	－	－	153	－	－	150	－	－	151	－	－
（3）${ }^{\text {西門 }}$（ $\mu \mathrm{SV} / \mathrm{h}$ ）	70.3	－	－	70.8	－	－	68.8	－	－	72.0	－	－	69.3	－	－	69.4	－	－	69.7	－	－	69.6	－	－
風向	東	北菄	北	東	東	東	東	東	北東	北東	南東	南東	東	北北東	南東	杳	西。	南西	北西	東	北北菄	東	宋	東
	2.3	1.3	1.0	1.8	1.7	1.8	2.3	2.5	2.7	2.3	2.6	2.3	2.0	1.4	0.8	0.6	0.5	0.7	0.7	0.5	0.6	0.5	1.2	0.8

溥定場所	（3）																							
廄 間	16：00	16：101	16：20	16：30	16：40	16：50	17：00	17：10	17：20	17：30	17：40	17：50	18：00	18：10	18：20	18：30	18：40	18：50	19：00	19：10	19：20	19：30	19：40	19：50
	107.0	108.2	98.6	98.0	98.1	97.9	97.7	97.6	97.6	97.3	97.2	97.0	97.0	96.9	96.8	96.7	96.5	96.5	96.3	96.4	96.3	96.1	96.3	96.1
MC 中䢁子	N．D	N，D																						
可 6 本晚南 $(\mu \mathrm{LV} / \mathrm{h})$	950	－	－	930	－	－	930	－	－	930	－	－	930	－	－	930	－	－	940	－	－	940	－	－
	154	－	－	164	－	－	154	－	－	150	－	－	151	－	－	149	－	－	148	－	－	148	－	－
－（3）西嘸（ $\mu \mathrm{Sv} / \mathrm{h})$	82.8	－	－	71.5	－	－	70	－	－	69.4	－	－	68.3	－	－	70.1	－	二	67.8	－	－	68.4	－	－
風向	南東	宩	南束•	東	東	東	北宩	北	北西	西翮西	宩	北巢	南西	西北西	北北東	北北西	北西	西	西	西	北西	北西	西北西	北西
風速（m／s）	1.5	1.8	1.8	1.0	1.5	0.9	0.7	0.4	0.5	0.5	0.4	0.6	0.5	0.7	0.7	0.3	0.4	0.7	0.3	0.6	0.8	0.7	1.0	1.2

蔀定場所	（3）																							
時 間	20：00	20：10	20：20	20：30	20：40	20：50	21：00	21：10	21：20	21：30	21：40	21：50	22.00	22：10	22：20	22：30	22：40	22：50	23：00	23：10	23：20	23：30	23：40	23：50
MC 副定值（ $\mu \mathrm{Sv} / \mathrm{h})$	96.2	96.2	96.0	95.9	95.9	95.7	95.7	95.6	95.4	95.3	95.3	95.3	95.2	95.3	95.0	94.9	95.1	94.8	94.8	94.8	94.7	94.7	94.6	94.7
－中性子	N．D																							
可 6 本館南 $(\mu \mathrm{Sv} / \mathrm{h})$	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－
懈（7）正閏（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	148	－	－	148	－	－	148	－	－	148	－	－	148	－	－	146	－	－	148	－	－	145	－	－
（3）西門（ $\mu \mathrm{Sv} / \mathrm{h})$	70.9	－	－	70.6	－	－	69.9	－	－	70.5	－	－	69.6	－	－	72.1	－	－	69.9	－	－	69.9	－	－
蛊向	北西	西北西	北西	北西	北束	北西	北北宩	西	北西	北西	北西	北北西	西	北西	西	西	西	西	西南西	北西	西	西	酉	西
圆速（m／s）	1.1	1.4	1.3	0.9	0.8	0.8	0.5	0.3	0.3	0.4	0.4	0.2	0.4	0.5	0.7	1.0	0.7	0.7	0.8	0.8	0.5	0.4	0.5	0.7

（1）事務本館北（2号機より北西約0．5キロ）（2）体育躯付近（MP－5東側）（2号機より西北西約0．9キロ） （3）西門付近（MP－5付近）（2号機より西約1．1キロ）（4）正門付近前（MP－6付近）（2号機より西南西約1．0キロ） （5）免要梀前（2号機より北西約 $0.5 \neq \square$ ）（6）事務本館南側（7）正門 MC：モニタリングカー 可搬：可殼型MP

溮定場所	（3）																							
歱 間	0：00	0：10	$0: 20$	0：30	0：40	0：50	1：00	1：10	1：20］	1：30	1：40	1：50	2：00	2：10	2：20	2：30	2：40	2：50	3：00	3：10	3：20	3：30	3：40	3：50
	100.8	100.8	105.4	101.0	100.4	100.3	100.2	100.4	100.3	100.1	100.2	100.1	100.0	100.0	100.0	100.1	100.0	100.1	99.9	100.3	100.1	100.0	100.1	99.9
MC 中性子	N．D	N：D	N．D	NO	N．D																			
可（6）本所南（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	990	－	－	1，000	－	－	990	－	－	990	－	－	1,000	－	－	990	－	－	990	－	－	990	－	－
	154	－	－	152	－	－	154	－	－	152	－	－	152	－	－	153	－	－	152	－	－	151	－	－
（3）西門（ $\mu \mathrm{Sv} / \mathrm{h})$	71.5	－	－	73.6	－	－	72.2	－	－	71.9	－	－	71.3	－	－	72.5	－	－	71.9	－	－	70.5	－	－
風向	北東	南東	南	北東	西北西	北東	北東	北東	北東	東	南南西	南南束	西南西	南南東	東北東	西南西	西北西	南	南西	北東	西南西	西北西	西	北東
面速（m／s）	3.9	0.9	2.8	4.3	1.6	4.0	5.8	5.9	6.0	2.1	0.5	0.5	0.8	0.9	0.9	1.8	2.2	3.6	2.2	4.7	4.3	1.8	0.6	0.3

測定缷所	（3）																							
時 間	4：00	4：10	4：20	4：30	4：40	4：50	5：00	5：10	5：20	5：30	5：40	5：50	6：00	6：10	6：20	6：30	6：40	6：50	7：00	7：10	7：20	7：30	7：40	7：50
	99.9	99.9.	99.9	99.9	99.9	99.8	99.7	99.8	99.7	99.6	99.6	99.5	99.4	99.3	99.4	99.4	99.4	99.3	99.3	99.2	99.2	99.3	99.0	99.2
中性子	N．D	N．	N．D																					
－可 6 ）本䳽南 $(\boldsymbol{\mu} \mathrm{Sv} / \mathrm{h})$	990	－	－	990	－	－	990	－	－	980	－	－	990	－	－	980	－	－	990	－	－	980	－	－
可搬 7 正門 $(\mu \mathrm{Sv} / \mathrm{h})$	152	－	－	152	－	－	150	－	－	151	－	－	152	－	－	152	－	－	150	－	－	150	－	－
－（3）西閏（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	70.9	－	－	71.2	－	－	71.2	－	－	70.9	－	－	72	－	－	71.8	－	－	72.9	－	－	71.4	－	－
囯面	西南西	西南西	北東	南南西	南西	北東	北宩	北東	北苯	北東	北東	北東	西南西	北東	北東	北東	西	北西	西	西	西	北西	北西	西
風速（m／s）	3.4	0.5	0.7	2.4	0.4	2.4	0.7	4.3	5.6	5.7	5.5	3.9	2.2	3.0	2.1	4.9	1.5	0.7	0.6	0.5	0.9	0.5	0.5	1.0

測定場所	（3）																							
樶 間	8：00	8：10	8：20	8：30	$8: 40$	8：50	9：00	9：10	9：20	9：30	9：40	9．50	10：00	10：10	10：20	10：30	10：40	10：50	11：00	11：10	11：20	11：30	11：40	11：50
Mc䦗定值（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	99.0	99.0	98.9	98.7	98.4	98.4	98.5	98.6	98.6	98.6	98.4	98.7	98.5	98.4	99.9	98.6	100.0	100.9	98.7	98.5	100.6	98.6	98.4	98.3
MC 中程子	N．D																							
	980	－	－	980	－	－	970	－	－	970	－	－	970	－	－	960	－	－	960	－	－	950	－	－
可 7 正門（ $\mu \mathrm{Sv} / \mathrm{h})$	150	－	－	150	－	－	149	－	－	149	－	－	151	\because	－	160	－	－	158	－	－	159	－	－
	72.1	－	－	69.6	－	－	71	－	－	72.9	－	－	70	－	－	70.1	－	－	72.4	－	－	72.5	－	析
風向	北	北北西	西	北東	西	北	北	北西	北西	北西	北西	北北西	北西	西北酉	北北東	東	東	東	東	東	東	東	東	東北菄
風速（m／s）	0.9	0.7	1.5	1.1	1.6	1.0	0.9	1.2	1.0	0.7	0.7	0.7	0.7	9.0	1.5	1.8	0.5	2.9	3.1	2.9.	3.7	3.6	3.3	2.5

4月1日																								
馬列ソケポスト	12：00	12：10	12：20	12：30	12.40	12：50｜	13：00	13：10	13：20	13：30	13：40	13：50｜	14：00	14：10	14：20｜	14：30	14：40	14：50	15：00｜	15：10	15：20｜	15：30	15：40	15：50
MPT $(\mu \mathrm{Sv} / \mathrm{h})$	7.110	7.073	7.100	7.103	7.077	7.070	7.097	7.120	7.070	7.090	7.090	7.070	7.083	7.070	7.073	7.057	7.043	7.063	7.087	7.057	7.040	6.997		
$\overline{\mathrm{MP} 2(\mu \mathrm{~Sv} / \mathrm{h})}$	3.767	3.767	3.763	3.760	3.747	3.750	3.753	3.733	3.720	3.753	3.747	3.733	3.727	3.743	3.730	3.737	3.733	3.710	3.733	3.710	3.723	3.713		
$\mathrm{MP}^{3}(\mu \mathrm{~Sv} / \mathrm{h})$	6.563	6.567	6.507	6.487	6.523	6.510	6.517	6.537	6.497	6.497	6.477	6.493	6.493	6.483	6.480	6.493	6.477	6.430	6.477	6.467	6.467	6.423		
MP4（ $\mu \mathrm{Sv} / \mathrm{h})$	4.727	4.727	4.727	4.713	4.730	4.743	4.717	4.717	4.687	4.710	4.697	4.687	4.683	4.687	4.677	4.700	4.677	4.687	4.670	4.677	4.660	4.660		
$\overline{\mathrm{MP} 5}(\mu \mathrm{~Sv} / \mathrm{h})$	4.473	4.473	4.420	4.420	4.420	4.420	4.427	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420		
MP6（ $\mu \mathrm{Sv} / \mathrm{h})$	5.737	5.717	5.710	5.697	5.707	5.697	5.690	5.700	5.677	． 5.703	5.687	5.710	5.693	5.687	5.713	5.697	5.683	5.667	5.700	5.690.	5.693	5.690		
MP7（ $\mu \mathrm{Sv} / \mathrm{h})$	欠測	欠濆	欠楖	欠㖵	欠激	欠測	欠測	欠測	欠測	欠睍	欠㴘	欠測	尔測	欠渄	欠测	欠测	欠㖵	欠測	欠測	欠剆	欠剆	欠測		
風向	南東	南南東	南南宩	南南東	南南東	南東	南南東	南東	南束	東	南南東	南	南	南	南	南	南	南	南南東	南	南	南		
風速（m／s）	2.5	2.5	3.8	4.9	4.3	5.1	5.4	4.1	3.7	3.1	6.1	9.8	9.1	9.3	9.9	9.4	11.7	12.6	10.2	11.3	11.8	10.4		

4月1日																								
三多ソグボスト	20：00	20：10	20：20	20：30	20：40	20：50	21：00	21：10	21：20	21：30	21：40	21：50	22：00	22：10	22：20	22：30｜	22：40	22：50	23：00｜	23：10	23：20	23：30｜	23：40｜	23：50
$\overline{\mathrm{MPl}}(\mu \mathrm{Sv} / \mathrm{h})$																								
$\overline{\mathrm{MP2}} \mathrm{P}(\mu \mathrm{Sv} / \mathrm{h})$																								
$\overline{\mathrm{MP3}}(\mu \mathrm{~Sv} / \mathrm{h})$																								
$\overline{\mathrm{MP}} 4(\mu \mathrm{~Sv} / \mathrm{h})$																								
$\overline{\mathrm{MP5}(\mu \mathrm{~Sv} / \mathrm{h})}$											．													
$\overline{\mathrm{MPG}(\mu \mathrm{Sv} / \mathrm{h})}$																								
$\overline{\mathrm{MPT}} \mathbf{}$（ $\mu \mathrm{Sv} / \mathrm{h})$																								
風向																								
䖝速（m／s）																								

$\frac{\text { 4月1日 }}{\text { ミタリンタボスト }}$	12：00	12：10	12：20	12：30	12：40	12：50	13：00	13：10	13：20	13：30	13：40	13：50	14：00	14：10	14：20｜	14：30	14：40	14：50	15：00	15：10	15：20	15：30	15：40	15：50
$\overline{\mathrm{MPI}}(\mu \mathrm{Sv} / \mathrm{h})$	7.110	7.073	7.100	7.103	7.077	7.070	7.097	7.120	7.070	7.090	7.090	7.070	7.083	7.070	7.073	7.057	7.043	7.063	7.087	7.057	7.040	6.997		
$\overline{\mathrm{MPP}}(\mu \mathrm{Sv} / \mathrm{h})$	3.767	3.767	3.763	3.760	3.747	3.750	3.753	3.733	3.720	3.753	3.747	3.733	3.727	3.743	3.730	3.737	3.733	3.710	3.733	3.710	3.723	3.713		
$\overline{\mathrm{MP3}(\mu \mathrm{~Sv} / \mathrm{h})}$	6.563	6.567	6.507	6.487	6.523	6.510	6.517	6.537	6.497	6.497	6.477	6.493	6.493	6.483	6.480	6.493	6.477	6.430	6.477	6.467	6.467	6.423		
$\overline{\mathrm{MP4}}(\mu \mathrm{~Sv} / \mathrm{h})$	4.727	4.727	4.727	4.713	4.730	4.743	4.717	4.717	4.687	4.710	4.697	4.687	4.683	4.687	4.677	4.700	4.677	4.687	4.670	4.677	4.660	4.660		
$\overline{\mathrm{MP} 5}(\mu \mathrm{~Sv} / \mathrm{h})$	4.473	4.473	4.420	4.420	4.420	4.420	4.427	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420	4.420		
$\overline{\mathrm{MP6}}(\mu \mathrm{~Sv} / \mathrm{h})$	5.737	5.717	5.710	5.697	5.707	5.697	5.690	5.700	5.677	5.703	5.687	5.710	5.693	5.687	5.713	5.697	5.683	5.667	5.700	5.690	5.693	5.690		
$\overline{\mathrm{MP7}}(\mu \mathrm{~Sv} / \mathrm{h})$	欠即	欠測	欠測	欠㴛	炎㳔	欠餪	欠㳔	欠測	欠濆	穴溉	攵列	欠牧	欠剆	欠刞	欠溉	欠剆	欠影	欠珼	欠㳔	欠㵋	欠測	分測		
廌向	南宩	南南東	南南東	南南宋	南南東	南東	南南東	南束	南東	宋	南南東	南	南	南	南	南	南	南	南南東	南	南	南		
風速（m／s）	2.5	2.5	3.8	4.9	4.3	5.1	5.4	4.1	3.7	3.1	6.1	9.8	9.1	9.3	9.9	9.4	11.7	12.6	10.2	11.3	11.8	10.4		

4月1日																								
こタリンクボスト	16：00	16：10	16：20	16：30	16：40	16：50	17：00	17：10	17：20	17：30｜	17：40	17：50	18：00	18：10｜	18：20	18：30｜	18：40	18：50	19：00	19：10	19：20｜	19：30	19：40	19：50
$\overline{\mathrm{MPI}}(\mu \mathrm{Sv} / \mathrm{h})$																								
$\overline{\mathrm{MPR}}(\mu \mathrm{Sv} / \mathrm{h})$																								
$\overline{\mathrm{MP} 3(\mu \mathrm{~Sv} / \mathrm{h})}$																								
$\overline{\mathrm{MP} 4}(\mu \mathrm{~Sv} / \mathrm{h})$																								
MP5 $(\mu \mathrm{Sv} / \mathrm{h})$																								
MP6（ $\mu \mathrm{Sv} / \mathrm{h})$																								
MP7（ $\mu \mathrm{Sv} / \mathrm{h})$																								
風向																								
風速（m／s）																								

4月1日	20：00	20：10	20：20	20：30	20：40	20：50	21：00	21：10	21：20	21：30｜	21：40	21：50	22：00	22：10	22：20	22：30	22：40	22：50	23：00	23：10	23：20	23：30	23：40	23：50
MP1（ $\mu \mathrm{Sv} / \mathrm{h})$																								
$\overline{\mathrm{MP2}}$（ $\mu \mathrm{Sv} / \mathrm{h})$																								
$\overline{\mathrm{MP3}}(\mu \mathrm{~Sv} / \mathrm{h})$																								
$\overline{\mathrm{MP4}}$（ $\mu \mathrm{Sv} / \mathrm{h})$																								
MP5（ $\mu \mathrm{Sv} / \mathrm{h}$ ）																								
$\overline{\mathrm{MP} 6(\mu \mathrm{~Sv} / \mathrm{h})}$																								
$\overline{\mathrm{MP7}}(\mu \mathrm{~Sv} / \mathrm{h})$																								
風向																								
蜀速（m／s）																								

4月1日																								
ミタリンずボスト	0：00	0：10	0：20	0：30	0：40	0：50	1：00	1：10	1：20	1：30	1：40	1：50	2：00	2：10	2：20	2：30｜	$2: 40$	2：50	3：00	3：10	3：20	3：30	3：40	3：50
$\overline{\mathrm{MP} 1(\mu \mathrm{~Sv} / \mathrm{h})}$	7.303	7.317	7.287	7.313	7.260	7.300	7.273	7.253	7.313	7.307	7.287	7.283	7.260	7.257	7.260	7.270	7.257	7.227	7.227	7.223	7.257	7.253	7.243	7.220
$\mathrm{MP2}(\mu \mathrm{~Sv} / \mathrm{h})$	3.840	3.850	3.837	3.833	3.863	3.833	3.860	3.860	3.843	3.817	3.830	3.820	3.833	3.853	3.830	3.840	3.833	3.817	3.813	3.813.	3.813	3.803	3.810	3.837
MP3（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	6.730	6.673	6.717	6.733	6.743	6.7 .13	6.710	6：690	6.713	6.690	6.693	6.707	6.697	6.693	6.687	6.683	6.688	6.663	6.670	6.673	6.670	6.640	6.637	6.643
MP4（ $\mu \mathrm{Sv} / \mathrm{h})$	4.893	4.857	4.883	4.867	4.883	4.850	4.870	4.870	4.847	4.863	4.850	4.847	4.840	4.833	4.837	4.843	4.843	4.820	4.820	4.823	4.813	4.840	4.830	4.823
MP5（ $\mu \mathrm{Sv} / \mathrm{h})$	4.620	4.613	4.620	4.613	4.620	4.613	4.613	4.613	4.613	4.587	4.613	4.613	4.613	4.620	4.620	4.567	4.613	4.620	4.573	4.567	4.567	4.540	4.520	4.540
MP6（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	5.840	5.823	． 5.830	5.823	5.850	5.827	5.817	5.830	5.827	5.793	5.810	5.823	5.807	5.820	5.803	5.793	5.800	5.767	5.770	5.800	5.790	5.773	5.790	5.790
MP7（ $\mu \mathrm{Sv} / \mathrm{h})$	欠測	欠測	欠湘	欠瞋	欠測	欠測	欠測	欠測	欠㯕	欠淔	欠滇	欠測	欠測	欠測	欠湤	欠測	欠剆	方犋	欠測	欠測	欠測	欠泍	欠顛	欠睍
風面	北西	北西．	北西	北西	西北西	北西																		
圂速（m／s）	6.8	6.2	5.6	5.7	4.8	4.9	4.7	4.4	5.0	5.6	5.4	4.9	4.3	3.9	3.6	4.1	4.7	5.2	5.0	4.4	4.7	6.1	5.1	4.

4月1日																								
ニタリンクボスト	4：00	4：10	4：20	4：30｜	4：40	4：50	5：00	5：10	5：20	5：30	5：40	5：50	6：00	6：10	6：20	6：30	6：40	6：50	7：00	7：10	7：20	7：30	7：40	7．50
MPI（ $\mu \mathrm{Sv} / \mathrm{h})$	7.223	7.240	7.210	7.200	7.207	7.210	7.223	7.223	7.190	7.190	7.183	7.167	7.193	7.183	7.150	7.167	7.187	7.183	7.160	7.160	7.170	7.150	7.157	7.173
MP2（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	3.813	3.803	3.790	3.817	3.803	3.790	3.807	3.780	3.803	3.803	3.780	3.773	3.793	3.787	3.780	3.793	3.777	3.780	3.773	3.783	3.770	3.783	3.787	3.767
MP3（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	6.633	6.653	6.647	6.643	6.623	6.640	6.620	6.647	6.617	6.603	6.583	6.590	6.610	6.630	6.617	6.593	6.603	6.597	6.567	6.577	6.587	6.653	6.580	6.603
MP4（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	4.820	4.807	4.810	4.810	4.800	4.800	4.793	4.783	4.803	4.793	4.807	4.790	4.800	4.790	4.793	4.773	4.770	4.770	4.803	4.787	4.793	4.750	4.773	4.767
MP5（ $\mu \mathrm{Sv} / \mathrm{h})$	4.567	4.513	4.573	4.520	4.513	4.540	4.520	4.513	4.520	4.520	4.520	4.520	4.520	4.520	4.520	4.520	4.520	4.520	4.513	4.513	4.520	4.520	4.520	4.520
MP6（ $\mu \mathrm{Sv} / \mathrm{h})$	5.807	5.787	5.753	5.770	5.767	5.780	5.770	5.757	5.757	5.753	5.743	5.767	5.750	5.743	5.753	5.767	5.740	5.730	5.720	5.743	5.737	5.720	5.733	5.733
MP7（ $\mu \mathrm{Sv} / \mathrm{h})$	欠㖵	欠測	欠㖵	欠湘	欠測	欠測	欠測	欠剆	欠睍	欠漸	欠澌	欠淔	欠測	欠賄	欠剆	欠㴘	欠㖵	欠測	欠測	欠測	欠測	欠剆	欠洎	欠楖
風向	北西	北北西	北西	北西	西北西	西南西	西	西北西	北															
風速（m／s）	4.0	4.4	5.0	5.0	5.1	4.5	4.5	4.7	4.6	4.2	4.2	4.1	3.5	3.4	4.1	3.6	3.3	2.8	2.9	1.9	0.5	0.8	0.5	0.8

4月1日																								
：ニ夘ソグホスト	8：00	8：10	8：20	8：30	8：40	8：50	9：00	9：10	9：20	9：30	9：40	9：50	10：00	10：10	10：20	10：30	10：40	10：50	11：00	11：10	11：20	11：30	$11: 40$	11：50
MP1（ $\mu \mathrm{Sv} / \mathrm{h})$	7.143	7.153	7.143	7.130	7.153	7.123	7.113	7.157	7.140	7.263	7.233	7.230	7.207	7.163	． 7.160	7.150	7.133	7.130	7.083	7.110	7.100	7.127	7.123	7.103
$\mathrm{MP2}(\mu \mathrm{~Sv} / \mathrm{h})$	3．787＊	3.767	3.770	3.777	3.757	3.773	3.780	3.783	3.760	3.833	3.907	3.870	3.843	3.807	3.770	3.777	3.757	3.757	3.753	3.747	3.757	3.743	3.767	3.773
MP3（ $\mu \mathrm{Sv} / \mathrm{h})$	6.657	6.603	6.583	6.583	6.550	6.547	6.567	6.547	6.553	6.557	6.620	6.663	6.630	6.617	6.577	6.550	6.550	6.563	6.543	6.543	6.540	6.520	6.510	6.563
MP4（ $\mu \mathrm{Sv} / \mathrm{h})$	4.773	4.767	4.777	4.790	4.783	4.777	4.757	4.753	4.747	4.767	4.783	4.840	4.843	4.787	4.770	4.753	4.763	4.743	4.733	4.733	4.730	4.740	4.730	4.767
MP5（ $\mu \mathrm{Sv} / \mathrm{h})$	4.520	4.520	4.520	4.513	4.513	4.520	4.520	4.520	4.520	4.520	4.520	4.520	4.620	4.520	4.520	4.500	4.467	4.500	4.467	4.420	4.420	4.440	4.467	4.493
MP6（ $\mu \mathrm{Sv} / \mathrm{h})$	5.743	5.723	5.703	5.713	5.743	5.717	5.703	5：730	5.713	5.723	5.707	5.783	5.820	5.797	5.737	5.707	5.743	5.723	5.730	5.700	5.713	5.720	5.713	5.747
$\overline{\mathrm{MP}} \mathbf{(\mu \mathrm { sv } / \mathrm { h })}$	欠測	欠澌	欠淔	欠剆	欠測	欠測	欠測	欠測	欠淔	欠㴷	欠測	欠測	欠測	欠滇	欠㖵	欠測	欠測	欠淔	欠測	欠惻	欠渏	欠測	欠测	欠滇
風向	北北西	北北東	東北東	東南東	東	東	杳南東	東	東南東	南東	東南東	束南東	東南東	南東	南東	東南東	東南東	南東	東南東	東南東	東南東	南東	南東	南東
風速（m／s）	0.8	0.3	0.8	1.6	2.5	2.9	2.7	3.6	3.6	3.3	3.5	3.5	4.1	3.3	3.3	2.5	2.5	3.3	3.1	3.8	2.4	3.4	4.2	3.0

3月31㐭

 | $\mathrm{MPJ}(\mu \mathrm{Sv} / \mathrm{h})$ | 6.977 | 6.993 | 7.020 | 6.957 | 6.957 | 6.967 | 6.957 | 6.967 | 6.980 | 6.970 | 6.950 | 6.947 | 6.943 | 6.953 | 6.890 | 6.890 | 6.897 | 6.893 | 6.907 | 6.860 | 6.910 | 6.863 | 6.890 | 6.893 |
| :--- | :---: |

MP4（ $\mu \mathrm{Sv} / \mathrm{h})$	5.390	5.397	5.417	5.417	5.393	5.403	5.397	5.410	5：403	5.393	5.390	5.380	5.387	5.407	5.363	5.363	5.35	5.343	5.00	4.993	4.990	5.000	5.023	4.983
h）																				713		4.713	4713	

圂自	東	杳北東	東北真	北東	北東	北東	北東	東	北東	東北東	東南東	東南東	東北東	東	北東	北東	北西	北西	西北西	北北西	北西	北北西	北北西	北
風涑（m／s）	4.0	46	6.0	5.1	3.0	35	39	29	3.7	2.7	2.0	17	3.2	26	6.0	6.0	5.9	6.9	9.9	7.8	5.3	52	46	

3月31日

二多	16：00	16：10	16：20	16：30	16：	16：50	17：00	17：10	17：2	17：3	17	17：5	18：00	18：10	18：20	18：3	18：4	18：5	19：0	19：10	19：2	19：3	19：4	19：50
MP1 μ Sv／h）	7.507	7.493	7.527	7.550	7.530	7.457	7.480	7.483	7.483	7.490	7.453	7.533	7.477	7.520	7.507	7.540	7.470	7.470	7.44	7.407	7.420	7.43	7.41	7.410
$\overline{\mathrm{MP} 2(\mu \mathrm{~Sv} / \mathrm{h})}$	3.977	3.987	3.997	4.013	4.02	3.96	3.94	3.963	3.96	3.943	3.94	3.9	4.00	4.00	4.003	4.0	3.97	3.96	3.95	3.937	3.92	3.92	3.92	3.923
$\overline{\mathrm{MP} 3(\mu \mathrm{~Sv} / \mathrm{h})}$	900	6.900	6.883	6.940	6.957	6.907	6.900	6.890	6.893	6.880	6.880	6.9	6.9	6.887	6.910	6.893	6.86	6.837	6.847	6.827	6.83	6.847	6.840	833
$\overline{\mathrm{MP}}(\underline{\mu \mathrm{Sv} / \mathrm{h})}$	007	5.007	000	5.027	5.083	5.020	5.02	4.97	4.98	4.98	4.99	4.99	5.03	5.027	5.033	5.023	4.98	4.98	4.97	4.953	4.933	4.95	4.93	4.950
$\overline{\mathrm{MP} 5}(\mu \mathrm{~Sv} / \mathrm{h})$	13	4.713	4.713	4.713	4.807	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.687	4.667	4.713	4.660	4.693
$\overline{\mathrm{MPG}(\mu \mathrm{Sv} / \mathrm{h})}$	5.967	5.967	5.987	5.997	6.020	5.930	5.983	5.967	5.950	5.937	5.940	5.960	5.957	5.957	5.943	5.957	5.960	5.963	5.94	5.943	5.917	5.92	5.90	5.927
MP7（ $\mu \mathrm{Sv} / \mathrm{h})$	欠測	欠則	穴測	欠	欠滇	欠測	员測	尔䫀	欠測	欠測	欠洓	欠楖	欠㖵	分測	欠測	欠溉	欠濆	欠測	欠楖	欠測	欠剆	欠溉	欠測	欠測
蛔向	東北東	北東	北東	北東	北東	北東	北束	北北東	北	北	北，	北西	西北西	北東	北北西	北北西	北北西	北西	北北西	北北西	北北西	北北西	北北西	北北西
速（m／s）	2.5	4.4	4.5	3.3	3.8	3.0	2.2	1.8	1.	1.8		3.0	3.3	1.0	1.6	2.8	4.8		5.6	7.0	7.1	6.7	6.3	

3月31日	20：00	20：10	20：20	20：30	20：40	20：50	21：00	21：10	21：20	21：30	21：40	21：50	22：00	22：10	22：20	22：30	22：40	22：50	23：00	23：10	23：20］	23：30	23：40	23：50
$\overline{\mathrm{MPI}}(\underline{\mu S v} / \mathrm{h})$	7.413	7.397	7.423	7.403	7.380	7.400	7.420	7.360	7.390	7.370	7.380	7.390	7.377	7.363	7.347	7.367	7.337	7.343	7.347	8：05	7.333	7.303	7.330	7.307
$\overline{\mathrm{MP} 2}(\mu \mathrm{~Sv} / \mathrm{h})$	3.907	3.937	3.920	3.917	3.907	3.907	3.907	3.887.	3.897	3.890	3.900	3.870	3.877	3.873	3.887	3.887	3.887	3.870	3.857	20：42	3.867	3.867	3.843	3.857
MP3（ $\mu \mathrm{Sv} / \mathrm{h})$	6.810	6.797	6.820	6.820	6.790	6.830	6.793	6.790	6.770	6.780	6.773	6.777	6.747	6.790	6.763	6.760	6.743	6.750	6.733	17：21	6.747	6.700	6.717	6.723
$\overline{\mathrm{MP}} \mathbf{4}(\mu \mathrm{Sv} / \mathrm{h})$	4.950	4.953	4.930	4.923	4.943	4.930	4.923	4.940	4.920	4.923	4.900	4.907	4.930	4.903	4.910	4.880	4.887	4.900	4.893°	21：21	4.880	4.897	4.890	4.893
MP5（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	4.713	4.667	4.613	4.613	4.660	4.640	4.613	4.613	4.620	4.613	4.613	4.613	4.660	4.613	4.613	4.620	4.620	4.620	4.613	14：42	4.613	4.613	4.620	4.613
$\overline{\mathrm{MP6}}$（ $\mu \mathrm{Sv} / \mathrm{h})$	5.893	5.900	5.903	5.893	5.917	5.900	5.870	5.907	5.910	5.877.	5.870	5．877	5.877	5.893	5.880	5.870	5.857	5.897	5.860	21：02	5.867	5.857	5.863	5.847
MP7（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	父測	欠測	欠剆	欠䫀	欠㵋	欠漸	欠䫀	父䫀	尔溉	欠揤	欠測	欠剆	欠剆	欠溂	欠㖵	欠測	欠㵋	欠測	攵測	欠測	欠浙	欠剆	欠㖵	欠測
圂向	北北西	北西	北北西	北	北北西	北北酉	北西	北北西																
風速（m／s）	7.8	8.1	6.7	5.5	6.0	5.7	5.7	5.6	6.0	5.5	4.6	5.2	4.8	4.8	4.6	6.3	6.3	5.2	6.4	21：36	7.4	7.4	7.9	7.1

島第一（2F）（事業者のモ二タリングポスト）
3月31日

－	0：00	0：10｜	0：20	0：30｜	0：40｜	0：50	1：00	1：10	1：20｜	1：30	1：40	1：50｜	2：00	2：1	2：20	2：30	$2: 4$	$2: 5$	3：00	3：10	3：20	3：30	3：40	3：50
$\overline{\mathrm{MP}} \mathrm{F}(\mu \mathrm{Sv} / \mathrm{h})$	7.780	7.757	7.757	7：750	7.733	7.750	7.690	7.697	7.713	7.680	7.657	7.657	7.653	7.667	7.680	7.677	7.643	7.677	7.647	7.640	7.623	7.623	7.593	7.607
$\overline{\mathrm{MP} 2(\mu \mathrm{~Sv} / \mathrm{h})}$	4.113	4.09	4.097	4.1	4.06	4.0	4.07	4.0	4.050	4.067	4.043	4.03	4.027	4.033	4.03	4.03	4.0	4.04	4.0	4.02	4.03	4.03	4.01	4.017
$\left.\overline{\mathrm{MP} 3}{ }^{\text {（ }} \mu \mathrm{LSv} / \mathrm{h}\right)$	7.203	7.	7.173	7.203	7.140	7.157	7.140	7.120	7.140	7.157	7.	7.117	7.127	7.113	7.113	7.123	7.1	7.1	7.10	7.113	7.083	7．060	7.070	7.077
MP ${ }^{(\mu S v / h \text { ）}}$	5.623	5.53	－	5.543	5.527	5.52	5.510	5.510	5.53	5.520	5.51	5.50	5.51	5.493	5.50	5.510	5.48	5.51	5.52	5.45	5.473	5.48	5.470	477
$\underline{\mathrm{MPP}}$（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	4.960	4.913	4	4.913	4.913	4.907	4.907	4.913	4.913	4.873	4.853	4.907	4.867	4.893	4.860	4.913	4.913	4.907	4.907	4.873	4.860	4.840	4.853	4.867
$\overline{\mathrm{MP}} \mathrm{P}$（ $\mu \mathrm{Sv} / \mathrm{h})$	6.143	6.120	6.120	6.143	6.120	6.113	6.123	6.097	6.093	6.117	6.073	6.120	6.080	6.073	6.073	6.080	6.100	6.090	6.060	6.070	6.067	6.077	6.05	6.070
$\overline{M P 7(~} \mu \mathrm{Sv} / \mathrm{h})$	欠溉	欠測	欠測	欠惻	欠罣	欠濆	欠節	欠則	欠	欠溉	只沲	欠楖	欠㳔	欠楖	欠辕	欠颉	欠䫀	欠湘	欠測	欠測	欠測	欠溉	欠㵋	欠樃
風向	北北西	北北西	北	北北東	北北東	北北東	北	西北西	北西	北北西	北菓	北北東	東北東	東北束	東	西南西	東南東	南東	南南東	南南東	南西	南南西	南南酓	南南菓
速（m／s）	4.4	3.1	2.5	2.5	1.0	0.7	0.2	0.2	0.7	0.2	1.1	1.2	0.8	0.4	0.4	0.0	1.8	2.2	1.3	1.4	1.5			

3月31日

三刿ングポスト	4：00	4：10	4：20	4：30	4：401	4：50	5：00	5：10｜	5：20｜	5：30｜	5：40］	5：50	6：00｜	6：101	6：20｜	6：30｜	6：40｜	6：50］	7：00	7：10｜	7：20	7：30｜	7：40］	7.50
$\overline{\mathrm{MP} 1(} \mu \mathrm{Sv} / \mathrm{h})$	7.630	7.590	7.613	7.587	7.580	7.577	7.583	7.577	7.580	7.580	7.560	7.543	7.543	7.557	7.573	7.530	7.540	7.537	7.527	7.533	7.563	7.527	7.553	7.513
$\overline{\mathrm{MPP} 2}(\mu \mathrm{~Sv} / \mathrm{h})$	4.030	4.023	3.993	4.000	3.987	3.973	4.023	4.003	4.000	3.993	4.000	3.987	3.993	3.990	4.000	3.983	3.987	3.970	3.987	3.980	3.987	3.983	3.98	3.960
$\overline{M P 3}(\mu \mathrm{~Sv} / \mathrm{h})$	7.057	7.083	7.050	7.053	7.073	7.077	7.040	7.063	7.037	7.087	7.047	7.027	7.003	7.040	7.053	7.050	7.043	7.050	6.997	7.010	7.037	7.027	6.987	7.033
$\overline{\mathrm{MP}} 4(\mu \mathrm{~Sv} / \mathrm{h})$	5.473	5.467	5.477	5.490	5.483	5.483	5.463	5.460	5.473	5.443	5.453	5.457	5.467	5.440	5.453	5.447	5.437	5.457	5.447	5.427	5.423	5.437	5.453	5.437
MP5（ $\mu \mathrm{SV} / \mathrm{h})$	4.900	4.820	4.853	4.900	4.813	4.807	4.813	4.813	4.807	4.813	4.820	4.827	4.807	4.807	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813
$\overline{M P 6}(\mu \mathrm{SV} / \mathrm{h})$	6.070	6.060	6.057	6.063	6.063	6.047	6.050	6.047	6.033	6.023	6.037	6.033	6.060	6.023	6.003	6.033	6.030	6.033	6.020	6.023	6.053	6.027	6.010	6.047
MP7（ $\mu \mathrm{Sv} / \mathrm{h})$	分㳔	欠測	欠利	欠剆	欠測	欠滇	欠㵋	欠䫀	欠測	欠測	欠既	欠測	欠顛	欠測	欠別	欠剆	欠揤	欠翟	欠測	欠測	欠測	欠測	欠测	欠沮
風向	南東	南	南	南南西	南南西	南南西	南面	西南西	西南西	西南西	西南西	西南西	西南西	南西	南西	南西	南西	南西	西南西	西南西	西南西	西	西	西北西
風速（m／s）	1.4	2.0	1.4	1.6	1.6	1.5	2.1	2.2	2.6	3.4	4.0	2.8	3.6	1.3	1.9	2.0	1.0	1.0	0.9	1.9	2.9	3.0	4.7	4.7
3月31日																								
三壮ングポスト	$8: 00$	8：10	8：20｜	8：30｜	8：40］	8：50｜	9：00	9：10	9：20｜	9：30］	9：40	9：50｜	10：00	10：10	10：20	10：30	10：40	10：50｜	11：00｜	11：10	11：20	11：30｜	11：40	1：50
MPi（ $\mu \mathrm{Sv} / \mathrm{h})$	7.517	7.530	7.540	7.537	7.530	7.513	7.510	7.500	7.527	7.497	7.540	7.503	7.487	7.493	7.513	7.517	7.563	7.580	7.507	7.543	7.590	7.493	7.503	7.503
$\overline{M P 2(\mu S v / h)}$	3.983	3.993	970	3.990	3.970	3.953	3.963	3.967	3.973	3.963	3.963	3.980	3.970	3.960	3.973	4.003	4.050	4.023	3.993	3.977	4.023	3.983	3.960	3.983
$\overline{\mathrm{MPJ}}(\mu \mathrm{Sv} / \mathrm{h})$	7.000	7.010	7.000	7.013	6.973	6.997	7.003	7.010	6.987	6.983	6.980	6.973	6.993	7.000	7.003	6.983	7.010	7.030	7.000	7.003	7.050	6.990	6.980	6.947
MP4（ $\mu \mathrm{Sv} / \mathrm{h})$	5.427	5.410	5.423	5.427	5.433	5.440	5.397	5.440	5.430	5.413	5.433	5.410	5.423	5.403	5.410	5.417	5.453	5.470	5.417	5.413	5.443	5.413	5.403	5.423
MP5（ $\mu \mathrm{Sv} / \mathrm{h})$	4.813	4.807	4.813	4.807	4.807	4.807	4.807	4.760	4.807	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.807	4.813	4.807	4.813	4.767
$\overline{\mathrm{MPG}(\mu \mathrm{Sv} / \mathrm{h})}$	6.020	6.007	6.040	6.043	6.027	6.010	6.003	6.027	6.020	6.013	6.020	6.017	6.000	6.023	6.003	6.063	6.067	6.050	6.070	6.047	6.060	6.027	6.017	6.030
MP7（ $\mu \mathrm{Sv} / \mathrm{h})$	欠溉	欠測	欠測	欠測	欠浿	欠測	欠楖	欠測	欠舅	欠測	欠㵋	欠測	欠測	欠測	欠餭	欠測	欠測	欠測	欠㖵	欠測	欠測	欠測	欠濆	欠測
畕向	西	西北西	西北西	北北西	北	北北西	北北西	北北西	北北西	北	北	北北東	北北東	北束	北東	北東	北東	北東	東北束	東北東	東北菓	東北東	東	南南西
風速（m／s）	3.5	2.3	4.4	4.5	5.8	5.2	5.2	4.7	2.5	2.5	3.0	2.7	2.5	3.0	3.0	3.1	4.1	4.2	5.4	5.0	5.0	5.9	6.1	$1: 7$

福島第二原子力発電所

2011／4／1 17：00現在

通常の平常伐の範眀	会社名	発教所名	3月31日											
通常の平絡組の輀睤			12.00	13：00	14：00	15.10	16：00	17：00	18：00	18：00	20.00	21：00	22：00	23：00
0．023～0．027			0.025	0.025	0.028	0.028	0.028	0.026	0.026	0.026	0.026	0.028	0.028	0.026
0．024～0．080			0,55	0.54	0.54	0.54	0.54	0.54	0.54	0.53	0.53	0.53	0.53	0.53
$0.012 \sim 0.060$			0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.016	0,017	0.017	0.017	0.017
$0.033 \sim 0.050$			98.9	87.7	88.8	06.5	107.0	87.7	07.0	98，3	98.2	85.7	95.2	84.8
$0,038 \sim 0,052$	東京都力解		6.977	0.857	6.943	6.907	6.900	6.800	6.940	0.847	0.810	6.793	6.747	6.733
$0,011 \sim 0.159$			0.085	－ 0.084	0.084	0.085	0.065	0，085	0.086	0.085	0.066	0.086	0.065	0.088
$0.038 \sim 0.053$	日本原子力発觬絓		0.803	0.803	0.600	0.589	0.598	0.598	0,591	0，584	0.587	0.582	0.584	0.587
$0.038 \sim 0.110$			0.074	0.075	0.074	0.073	0.074	0.072	0.074	0.074	0.073	0,074	0.074	0，075
$0.084 \sim 0.108$			0.075	0.075	0.075	0.075	0.075	0.074	0.074	0.074	0.074	0.075	0.075	0.075
$0.0207 \sim 0.132$			0.034	0.034	0.034	0.033	0.033	0.033	0.033	0.032	0.033	0.033	0.033	0.033
$0.028 \sim 0.130$			0.030	0.028	0.028	0.031	0.030	0.032	0.030	0.030	0.030	0.031	0.030	0.030
$0.070 \sim 0.077$			0.071	0.072	0.072	0.072	0.072	0.073	0.073	0.073	0.073	0.073	0.073	0.074
0．045～0．047	関西霉力杵	高派發等所	0.043	0.043	0.043	0.044	0.043	0.043	0.042	0.043	0.042	0.043	0.043	0.042
$0.036 \sim 0.040$		大第登部矿	0.036	0.035	0.036	0.035	0.034	0.034	0.035	0.035	0.035	0.035	0,035	0.035
$0.011 \sim 0.080$	塁國矿五炜		0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.013	0.014	0.014	0.014
0．023 00.087	九椗平力䌊		－ 0.026	0.027	0.026	0.026	0.027	0.026	0.025	0.028	0.027	0.025	0.026	0.028
0．034～0．120			0.038	0.037	0.037	0.038	0.038	0.036	0.037	0.037	0.037	0．038：	0.038	0.038
$0.009 \sim 0.089$	旦本原媼（娕）		0,016	0.016	0,016	0.018	0.016	0.016	0，016	0,015	0.017	0,016	0.016	0.016
$0.009 \sim 0.071$			0.022	0.022	0.022	0.021	0.022	0.022	0.022	0.022	0.022	0.021	0.021	0.022

海水サンプリングボイント図

1．探取－㽗定条件

※ O．OE－Oとは，O．O $\times 10^{-0}$ と同じ覀味である。

1．猢取•利定条件

騳料婐取	埸所			
	日時	－3月19日	3月20日	3月21日
		11：53～12：13（故水欮）	1：41～2：01	－10：19～10：39
	棵取方法	モニタリングカーにてダスト棵取		
	風向－風速	W $4.7 \mathrm{~m} / \mathrm{s}$（ $11: 50$ 現在）	SW $2.1 \mathrm{~m} / \mathrm{s}$（1：40現在）	NW 2．6m（10：10現在）
鸮料測定	日時．	3／19 14：12～	3／21 13：28～	3／21 13：48～
	潄定方法			
	測定時間	$500 \mathrm{~s}$		

2．鮚果

	核種	3月19日			3月20日			3月21日			（3）放的授茧移従事者の呼吸する （ $\mathrm{Bq} / \mathrm{cm} 3$ ）※
		（1）放的能裉度 （ $\mathrm{Bq} / \mathrm{cm3}$ ）						（1）故的能沼度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）	$\begin{array}{c\|} \hline \text { (2)険出限界浱 } \\ (\mathrm{E} / \mathrm{cm3}) \\ (\mathrm{Bq} / \mathrm{cm} \end{array}$		
揮発性	1－131	5．9E－03	3．4E－05	5.94	2．3E－03	13E－05	－ 2.30	1．5E－03	1．1E－05	1.52	1．0E－03
	F－132	2．2E－03	8．8E－05	0.03	ND．	－	－	2．5E－04	2．7E－05	0.004	7．0E－02
	－133	3．8E－05	2．9E－05	0.01	ND	－	－	ND	－	－	5．0E－03
	Cs－134	ND	－	－	4．0E－05	8．3E－06	0.02	3．1E－05	．8．6E－06	0.016	2．0E－03．
	Cs－137	ND	－	－	3．9E－05	8．4E－00	0.01	3．6E－05	7．9E－08	0.01	3．0É－03
䊉子状	Co－58	ND	－	－	ND	－	－	ND	－	－	1．0E－02
	1－131	1．12－03	1．6E－05	1.07	1．3E－03．	6．8E－06	1.29	9．2E－06	5．0E－06	0.01	1．0E－03
	－132	3．8E－04	5．0E－0．5	0.01	ND	－	－	1．1E－04	1．2E－05	0.00	7．0E－02
	Cs－134．	2．2E－05	1．7E－05	0.01	2．8E－05	4．8E－06	0.01	3．4E－05	5．4E－06	0.02	2．0E－03
	Cs－136	ND	－	－	5．6E－08	5．4E－06	0.001	4．5E－06	3．3E－06	0.0005	1．0E－02
	Cs－137	2．4E－0．5	1．8E－05	0.01	2．9E－05	$5.0 \mathrm{E}-08$	0.01	3．8E－05	4．7E－06	0.01	3．0E－03
その他の険出核種	Ru－106	2．1E－04	2．1E－04	0.36	3．8E－05	3．4E－05	0.06	ND	－	－	6．0E－04
	Te－129	ND	－	－	ND	－	－	1．3E－03	3．8E－04	0.00	4．0E－01
	Te－129m	ND	－	－	1．4E－04	1．2E－04	0.03	ND	－	－	4．0E－03
	Te－132	6．7E－05	1．8E－05	0.01	5．1E－04	$6.0 \mathrm{E}-08$	0.07	3．9E－04	4．3E－08	0.06	7．0E－03
	Co－144	ND	－	－	5．0E－03	4．6E－04	7.08	ND	－	－	$7.0 \mathrm{E}-04$

[^2]※ O．OEーOとは， 0.0×10^{-0} と同じ羔味である。
－16－

1．探取•馿定条件

試料探取	場所	楅践第一 正門		
	回喑	$\begin{gathered} 3 / 22 \\ 1: 10 \sim 1: 30 \end{gathered}$	$\begin{gathered} 3 / 23 \\ 2: 1 \sim 2: 21 \end{gathered}$	$\begin{gathered} 3 / 24 \\ 5: 27 \sim 5: 47 \end{gathered}$
	䗇取方法	をニタ！リングカーになグスト称取		
	風向－風速	W $0.5 \mathrm{~m} / \mathrm{s}$（1：10現在）	N 3．2m／s（200理在）	ESE $0.8 \mathrm{~m} / \mathrm{s}$（ $5: 30$ 現在）
拭科測定	日時	3／22 1450～	3／23 14：54～	3／24 22．03～
	測定方法			
	浿定時間	5008		

2．鞘果

	核種	3／22探取分			3／23探取分			3／24探取分			（0）放的線燕弱徒 あ者の呼吸する空然中の意庭限 F $(\mathrm{Bq} / \mathrm{cm} 3) \approx$
		（1）放射能浱宽 （ $\mathrm{B} \boldsymbol{\mathrm { a }} / \mathrm{crn3} \mathrm{3)}$	$\begin{gathered} \text { (2)㱩䌽限界渱 } \\ \text { 度 } \\ (\mathrm{Bq} / \mathrm{qm} 3) \end{gathered}$		（1）放时能號 ．庭 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）	（2）検出限買過度 （ $\mathrm{Bq} / \mathrm{cm} \mathrm{m}^{2}$ ）	空気中表患明慶に対す，各部合（10）（3）				
挥発性	Co－58	ND	－	－	ND	－	－	－ND	－	－	1．0E－02
	1－131	2．2E－03	1．6E－05	2.24	6．7E－04	9．0E－08	0.67	1．5E－03	1．0E－05	1.49	1．0E－03
	1－132	ND	－	－	ND	－	－	ND	－．	－	7．0E－02
	1－133	ND	－	－	ND	－	－	ND	－	－	5．0E－03
	Cs－134	1．1E－05	1．1E－05	0.01	2．2E－05	7．6E－06	0.01	3．2E－05	7．9E－06	0.02	2．0E－03
	Cs－137	1．3E－05	1．0E－05	0.00	2．3E－05	7．6E－06．	0.01	3．1E－05	7．3E－06	0.01	3．0E－03
粒子状	Co－5B	ND	－	－	5．1E－06	5．1E－06	0.00	ND	－	\cdots	1．0E－02
	1－131	4．7E－04	7．4E－06	0.47	4．3E－04	5．0E－06	0.43	5．0E－04	4．8E－06	0.50	1．0E－03
	I－132	ND	－	－．	ND	－	－	ND	－	－	7．0E－02
	Cs－134	1．6E－05	5．9E－06	0.01	1．7E－05	4．2E－06	0.01	1．1E－05	4．6E－06	0.01	2．0E－03
	Cs－136	ND	－	－	3．0E－06	27E－06	0.00	ND	－	－	1．0E－02
	Cs－137	1．9E－05	5．3E－06	0.01	1．3E－05	4．2E－06	0.00	1．2 $\dot{E}-05$	$3.8 \mathrm{E}-08$	0.00	3．0E－03
その他の検出核馧	Zr－95	ND	－	－	ND	－	－	2．5E－05	6．0E－06	0.00	8．0E－02
	Te－129	ND	－	一	2．3E－01	1．2E－01	0.58	4．6E＋00	9．5E－01	． 11.39	4．0E－01
	Te－129m	ND	－	－	ND	－	－	3．4E－04	9．9E－05	0.08	4．0E－03
	Te－132	6．7E－05	1．1E－05	0.01	4．3E－04	4．5E－06	0.06	3．6E－04	4．4E－04．	0.05	7．0E－03
	Ce－144	ND	－	－	1．3E－03	3．7E－04	1.89	ND	－	－	7．0E－04

※ O．OE－Oとは， 0.0×10^{-0} と同じ意味である。

1．锊取－列定采件

䲽料探取	㺟所	楅蜀第一正門		
	日時	$\begin{gathered} 3 / 25 \\ 2: 01 \sim 2: 21 \end{gathered}$	$\begin{gathered} 3 / 26 \\ 2: 00 \sim 2: 20 \end{gathered}$	$\begin{gathered} 3 / 27 \\ 2: 00 \sim 2: 20 \end{gathered}$
	限取方法	モニタリングカーにてダスト滊取		
	皿向－風速	ESE $0.8 \mathrm{~m} / \mathrm{s}$（ $5: 30$ 鴲在）	NNW 2．8m／s（2：20現在）	$50.5 \mathrm{~m} / \mathrm{s}$（2．00現在）
	日時	3／25 13：38～	3／26 12：24～	3／27 11：38～
	涌定方法			
	測定時間	500］		

2．緒果

	技種	3／25棌取分			3／26棌取分			3／27探取分			（3）施射䌏承教特 あ者の呯吸する空気中の思盾眼度 $(\mathrm{Bq} / \mathrm{cm} 3) \times$
		$\underset{\left(B_{q} / \mathrm{cmj}\right)}{(1)}$									
圌発珄	Co－58	ND	－	－	ND	－	－	ND	－	－	1．0E－02
	1－131	8．8E－04	2．1E－05	0.88	3．0E－04	7．8E－06	0.30	4．5E－04	8．2E－08	0.45	1．0E－03
	1－132	ND	－	－	ND	－	－	1．8E－04	1．3E－04	＇0．00	7．0E－02
	I－133	NO	－	－	ND	－	－	ND	－	－	5．0E－03
	Cs－134	3．2E－05	1．7E－0．5	0.02	1．2E－05	7．2E－06	0.01	1．2E－05	6．4E－06	0.01	2．0E－03
	$\mathrm{Cs}_{8} \mathbf{1 3 6}$	ND	－	－	6．2E－06 ${ }^{\circ}$	3．7E－06	0.00	ND	－	－	1：0E－02
	Cs－137	2．4E－05	1．8E－05	0.01	8．8E－06	6．9E－06	0.00	1．4E－05	6．2E－06	0.00	3．0E－03
程字状	Co－58	ND	－	－	ND	－	－	ND	－	－	1．0E－02
	1－131	3．2E－04	1．1E－05	0.32	2．6E－04	1．1E－05	0.28	2．1E－04	$9.5 \mathrm{E}-06$	0.21	1．0E－03
	1－132	ND	－	－	ND	－	－	ND	－	－	7．0E：02
	Cs－134	1．6E－05	9．5E－06 ${ }^{\text {－}}$	0.01	1．8E－05	9．8E－06	0.01	1．6E－05	8．8E－06	0.01	2．0E－03
	$\mathrm{Cs}_{\text {s－1 }} 136$	ND	－	－	ND	－	－	ND	－	－	1．0E－02
	Cs－137	1．6E－05．	9．2E－06	0.01	1．8E－05	1．0E－05	0.01	1．4E－05	9．5E－08	0.00	3．0E－03
モの他の検出校穞	Z -95	ND	－	－	ND	\rightarrow ．	－	ND	－	－	8．0E－02
	Ru－105	3．1E－04	4．4E－05．	0.00	6．0E－05	3．9E－05	0.00	ND	－	－	8．0E－02
	Te－129	ND	－	－	6．2E－02	3．4E－02	0.13	2．6E－02	2．2E－02	0.07	4．0e－01
	T ${ }_{\text {e }}$－129m	ND	－	－	ND	－	－	1．8E－04	1．5E－04	0.05	4．0E－03
	To－132	8．2E－05	1．0E－05	0.01	1．6E－04	6．0E－06	0.02	1．2E－04	5．7E－08	0.02	7．0E－03

※ O．OE－Oとは， 0.0×10^{-0} と周じが味てある。

相島第一原子力発苯所教地内における空気中放射性物兵の枚梗分析結果について
1．棌取•楒定条件

2．結楽

	核䅊	3／28採取分			3／28棌取分						（3）故射梌系沲保 あ耆の呼吸する空気中の誏度良革 $(\mathrm{Bq} / \mathrm{mm} 3)$ ）
		（ $\mathrm{a} / \mathrm{cm} \mathrm{cm}^{3}$ ）									
搉発性	Co－58	ND	－	－	ND	－	－				1．0E－02
	1－131	3．6E－04	8．9E－06	0.36	2．4E－04	1．6E－05	0.24				1．0E－03
	1－132	2．5E－04	1．8E－04	0：00	ND	－	－				7．0E－02
	1－133	ND	－	－	ND	－	－				5．0E－03
	Cs－134	8．9E－08	5．3E－06	0.00	2．3E－05	1．3E－05	0.01				2．0E－03
	Gs－136．	ND	－	－	ND	－	－				1．0E－02
	Cs－137	8．1E－08	5．0E－06	0.00	2．3E－Q5	1．4E－05	0.01				3．0E－03
絃子状	Co－58	ND	－	－	ND	－	\bigcirc				1．0E－02
	I－131	2．1E－04 ．	8．9E－08	0.21	1．2E－04	8．7E－06	0.12				1．0E－03
	1－132	ND	－	－	ND	－	－				7．0E－02
	Cs－134	ND	－	－	1．1E－05	7．5E－06	0.01				2．0E－03
	Cs－136	ND	－	－	ND	－	－				1．0E－02
	Cs－137	7．5E－08	7．3E－06	0.00	1．4E－05	7．7E－08．	0.00				3．0E－03
モの忚の検出䖽種	Zr－95	ND	－	－	ND	－	－				8．0E－02
	Ru－105	ND	－	－	ND	－	－				8．0E－02
	Te－129	ND	－	－	ND	－	－				4．0E－01
	Te－129mi	ND	－	－	ND	－	－				4．0E－03
	Te－132	9．7E－06	7．4E－08	0.00	ND	－	－				7．0E－03

※ O．OE－Oとは， 0.0×10^{-9} と間じ豈沬である。

1．探取•湖定条件

試絓稫取	坆所	福島第二 MP－1	裐岛第二 MP－1	
	日時	3／30 9：27～9：35	3／30 18：30～18：38	
	探取方法	をニタリングカーにてダスト棌取	モニタリングカーにてダスト採取	
	国向－囯速	－－	－－	令
豇科湖定	日時	3／30 10：42～	3／30 20：05～	Whand
	則定方法			
	測定時閣	1000 s	．1000s	

	核稲	（1）体的能总度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）	（2）搭出限界縕度 （ $\mathrm{B} q / \mathrm{am} 3$ ）		（1）故时能盢底 （ $\mathrm{Bq} / \mathrm{om}$ 3）	（2）損出限界澡度 （ $\mathrm{B} / \mathrm{cm} \mathrm{cm}^{3}$ ）							（3）放射绶产指徉 あ者の呼吸する空気中の噱度良 （ $\mathrm{Ba} / \mathrm{cma}$ ）${ }^{2}$
探発性	Co－58	ND	－	－	ND	－	－				Heymyey		1E－02
	1－131	8．1E－04	1．0E－05	0.81	2．4E－04	8．7E－06	0.24			\mid		\|iche	1E－03
	1－132	3．3E－04	1．5E－05	0.00	7．5E－05	1．1E－05	0.00		3		5		7E－02
	1－133	ND	－	－	ND	－	\pm.						5E－03
	Cs－134	8．2E－05	8．5E－08	0.04	7．1E－05	7．1E－06	0.04						2E－03
	Cs－136	6．2E－08	5．8E－06	0.00	6．5E－06	4．3E－06	0.00						1E－02
	Cs－137	$7.4 \mathrm{E}-05$	8．2E－06	0.02	7．5E－05	7．0E－06	0.03				\|e		3E－03
－粒子状	Co－58	ND	－	$\stackrel{-}{+}$	ND	－	－	多 whach	13	jok			1E－02
	1－131	6．8E－04	8．6E－08	0.68	1．5E－04	4．5E－06	0.15						1E－03
	－132	2．3E－04	9．4E－06	0.00	3．7E－05	5．9E－06	0.00	Wiske	\|				7E－02
	Cs－134	8．7E－04	9．0E－08	0.43	5．2E－05	4．2E－06	0.03		\|				2E－03
	Cs－136	3．8E－05	6．2E－06	0.00	3．0E－06	2．1E－06	0.00		1			\|	1E－02
	Cs^{-137}	8．2E－04	7．3E－06	0.27	4．9E－05	3，3E－06	0.02			5			3E－03
モの他の㛟出核䖽	Tc－99m	5．3E－05	4．7E－06	0.00	ND	－	－						7E－01
	$A_{B}-110 \mathrm{~m}$	9．8E－06	6．5E－06	0.00	ND	－	－		5	5			3E－03
	Sn－113	2．2E－05	1．1E－05	0.00	ND	－	－	\|				enk	1E－02
	Te－129	1．0E－03．	2．1E－04	0.00 ．	6．8E－04	1．2E－04	0.00		(3)	Kataze	Heg		4E－01
	Te－129m	6．6E－04	1．8E－04	0.17	3．3E－04	6．8E－05	0.08			$y^{2} 5$		5	－4E－03
	Te－132	2．0E－04	5．4E－06	0.03	1．0E－04	2．5E－06	0.01						7E－03
	La－140	3．4E－06	2．6E－06	0.00	ND	－	－						1E－02

[^3]※ O．OE－Oとは， 0.0×10^{-0} と國じ昰味てある。

1．深取•澌定案件

战料採取	堨所	福島第二 情效姨東貨	福鼻第二 免震建屋1階入口
	日時	3月16日	3月16日
		7：58～8：06	10：00～10：10
	棵取方法	モニタリングカーにてダスト探取	モニタリングカー！二てダスト採取
	風同－風速	－	－
式料湖定：	白時	3／16 8：47～	3／10 11；59～
	測定方迲		
	湖定時間	500s	5008

2．結果

	核種	3月16日			3月16日			（3）放的線带務促世各の呼吸する空気中の路脡樶度 $\left(\mathrm{Bq} / \mathrm{cm}^{3}\right)$ ） K°
		（1）放射能煺度 （ $\mathrm{Bq} / \mathrm{mm3}$ ）			（7）放射的绖良 （ $\mathrm{Bq} / \mathrm{cm3}$ ）	$\begin{gathered} \text { (2) 梌出腿界泿 } \\ \text { (} \mathrm{Q} / \mathrm{cma}) \end{gathered}$		
揮発性	1－131	3．432E－04	2．559E－05	0.34	6．889E－04	1．268E－05	0.69	1．0E－03
	F－132	1．149E－03	2．812E－05	0.02	7．528E－04	1．986E－05	0.01	7．0E－02
	1－133	$3.448 \mathrm{E}-05$	2．687E－05	0.01	4．395E－05	1．497E－05	0.01	5．0E－03
柆子状	Co－58	ND	－	－	$4.943 \mathrm{E}-05$	2．685E－05	0.00	1．0E－02
	Cs－134	1．237E－04	1．449E－05	0.08	4．163E－04	2．459E－05	0.21	2．0E－03
	Cs－136	2．699E－05	9．412E－06	0.003	7．504E－05	1．495E－05	0.01	$1.0 \mathrm{E}-02$
	Cs－137	1．227E－04	1，311E－05	0.04	3．861E－04	2．057E－05	0.13	3．0E－03
その他の検出棹種	$\mathrm{Ge}-75 \mathrm{~m}$	2．762E－04	4．217E－04		ND	－	－	
	$\mathrm{Br}-83$	8．078E－03	$2.756 \mathrm{E}-03$		4．594E－03	1．585E－03		
	Ru－105	ND	－	－	4．057E－05	$2.883 \mathrm{E}-05$		
	Ru－106	4．081E－04	1．920E－04		ND	－	－	6．0E－04
	Te－129	ND	－	－	ND	－	－	4．0E－01
	Te－129m	ND	－	－	ND．	－	－	4．0E－03
	Te－132	1．855E－03	1．757E－05		2．947E－04	9．710E－06		7．0E－03

	枝程	3月17日		倸取分（1）	3月16日		粎取分（1）	3月18日			究の唓踏する空知中の象取䀦
		（ $8 \Phi / \mathrm{cm} 3$ ）						（1）抜封度治存 （ $\mathrm{B} / \mathrm{F} / \mathrm{man}$ ）			
明然珄	1－131	9．432E－05	3，351E－06	0.09	8．630E－04	3．145E－05	0.86	4．298E－03	4．993E－05	430	－1．0E－03
	－132	ND	－．	－	1．720E－03．	3．821E－05	0.02	2．625E－03	9，359E－05	0.04	7．0E－02
	－133	3．304E－06	4．478E－08	0.00	ND	－	－	5．246E－05	4．213E－05	0.01	5．0E－03
䢂于状	Co－58	2484E－05	2081E－05	0.00	3．080E－05	2048E－05	0.00	1．578E－04	1．435E－05	0.02	1．0E－02
	Ca－134	3，314E－04	1．680E－05	0.17	3．345E－04	1．688E－05	0.17	4．883E－04	1．53BE－0．5	0.24	2．0E－03
	Cs－138	6．107E－05	1．298E－05	0.01	5．882E－05	1．012E－05	0.01	8．416E－05	1．43日E－05	0.01	1．0E－02
	Cs－137	3232E 04	1．702E－05	0.11	3．147E－04	1．683E－05	0.10	4．306E－04	1．715E－05	0.14	3．0E－03
その他の极出蚻程	C $\mathrm{C}-38 \mathrm{~m}$	ND	－	－	ND．	－	－	3．180E＋00	3．292E－02		
	G8－72	ND	－	－	ND	－	－	2．101E－03	1．180E－04		
	Go－75m	1．135E－04	1．143E－04		ND	－	－	ND	－	－	
	Ru－105	ND	－	－	6．401E－05	5．018E－05		ND	－	－．	
	Re－106	2．523E－04	2828E－05		2797E－04	2．630E－04		ND．	－	－	6．0E－04
	Te－129	4．603E－02	3．978E－02		1．234E－03	1．052E－03	．	3．605E－03	7．033E－04		4．0E－01
	Te－129m	ND	－	－	8．680E－04	7．250E－04		1．355E－03	3．745E－04		4．0E－03
	To－132	2824E－04	2．743E－06		2329E－03	2546E－05		6．470E－03	1，389E－05		$7.0 \mathrm{E}-03$
	Pr－144	5．780E＋04			9．298E－02			ND	－	－	\cdot
	La－140	ND	－	\cdots	ND	－	－	4．537E－05	8．315E－08		7．0E－03
	Eu－152	1．588E－04	1．003E－04	－	ND	－	－	ND	－	－	
	Bf：212	1．031E－04	8．879E－05		ND	－	－	ND	－	－	
	Ao－228	ND	－	－	7．764E－05	6．890E－05		ND	－	－	

福島第二原子力発奄所數地内における空気中故射性物質の核㮽分析結果について

試制採取	斶所	福島第二 MP－1	䌊島第二 MP－1	暞島第二 MP－1	楅島第二MP－1
	日時	3月19日	3月19日	3月20日	3月20日
		9：15～9：25	18：18～18：28	11：27～11：37	17：10～17：20
	理取方击	モニタリングカーにてダスト採取	モニタリングカーにてダスト粰取	玉ニタリングカーにてダスト搮取	モニタリングカーにてダスト探取
	國向－国速	－	－		－
侙䋛洌定	日時	3／19 10：39～	3／19 19：08～	3／20 16：17～	3／20 21：11～
	測定方法				Ge半湤体型核䅉分析装䞨にて分析
	測定時間	1000s	1000 s	5005	500s

2．格果

	核種	3月19日		瑮取分（1）	3月19日		裸取分（2）	3月20日		探取分（1）	3月20日		探取分（2）	（3）放射楾落務従事者の呯吸する空気中の湾度哏 （Bq／cm3）※
					（1）放的能通度 （ $\mathrm{Bq} / \mathrm{mm}$ ）	$\begin{gathered} \text { (2) 椟出限界潅 } \\ (\mathrm{Bq} / \mathrm{cm} / \mathrm{cm})^{2} \end{gathered}$		（1）故的袢泿度 （ $\mathrm{B} 4 / \mathrm{om} 3$ ）			$\begin{gathered} \text { (1) 放射施谣 } \\ \text { (} \mathrm{Bq} \mathrm{cma}) \\ \hline \end{gathered}$	（2）换出限界源隌 （ $\mathrm{B} 9 / \mathrm{cm3}$ ）		
揮発性	－131	2．7E－04	5．6E－05	0.27	2．5E－04	5．7E－05	0.25	5．3E－05	1．2E－05	0.05	2．2E－04	4．3E－05	0.22	1．0E－03
	F132	2：4E－04	1．7E－04	0.00	1．2E－04	1．2E－04	0.00	ND	－－	－	2．6E－04	2．5E－04	$0.00{ }^{\circ}$	7．0E－02
	1－133	ND	－	－	ND	－	－	ND	－	－	ND	－．	－	$5.0 \mathrm{E}-03$
	Cs－1．34	6．3E－05	$5.9 \mathrm{E}-05$	1.06	ND	－	－	ND	－	－	ND	－	－	2．0E－03
	Cs－136	ND	－	－	1．7E－04	1．6E－04	0.02	ND	－	－	ND	－	－	1．0E－02
粒子状	Co－58	ND	－	－	1．0E－02									
	1－131	1．4E－04	3．1E－05	0.14	1．3E－04	3．1E－05	0.13	2．6E－05	6．0E－06	0.03	ND	－	－	1．0E－03
	1－132	1．2E－04	9：0E－05	0.00	ND	－	－	ND	－	－	1．8E－03	8．9E－04	0.03	7．0E－02
	1－133．	ND	－	－	2．4E－04	2．2E－04	0.05	ND	－	－	ND	－	－．	5．0E－03
	Cs－134	ND	－	－	2．0E－03									
	Cs－136	ND	－	－	1．0E－02									
	Cs－136	ND					－	ND	－	－	ND	－	－	3．0E－03
	Cs－137	ND	－－	－	ND	－	－	ND						
その他核樠	Ru－105	ND	－	－	2．1E－04	$2.0 \mathrm{E}-04$	0.00	ND	－	－	ND	－	－	8．0E－02
	Te－132	ND	－	－	ND	－	－	4．2E－06	3．4E－06	0.00.	ND	－	－	7．0E－03

※ O．OEーOとは， 0.0×10^{-0} と国し意味である。

1．探取•溯定条件

䮙科裸取	㙕所	袘居第二 MP－1	鼣岛第二 MP－1	福閜第二 MP－1	襣窵算二 MP－1
	日時	3月21．日	．${ }^{\text {a }}$ 321日	3月22日	－3月22日
		10－40～10．50	18：11～18：18	10：02～10：10	16：43～16：51
	婹取方法	モニタリングカーにてら゙スト探取	モニ夘ングカーにてダスト粎取		モニタリングカーにてダスト榢取
	国向－因速	－	－	－	－
	日時	3／21 12：15～	3／21 19：00～	3／22 11：53－	3／22 17：32～
	刟定方法		Ge半理体型桹椇分析势路にて分析		
	測定時間	500s	500 s	500s	500s

	，核種	3月21日			3月21日		揲取分（2）	3／22探取分（1）			3／22探取分（2）			（3）放射轻楽務従輯省の呼吸する空気中の洷段限 （
		（1）放时能法度 （ $\mathrm{B} q / \mathrm{cm} 3$ ）	（2）铨出限界遥 $(\mathrm{Bq} / \mathrm{cm} 3)$		（1）放射能晹蔵 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）	（2）検出限界洫庭 （ $\mathrm{B} q / \mathrm{cm3}$ ）								
揮発珄	Co－58	ND	－	－	2．9E－05	2．1E－05	0.00	ND	－	－	ND	－	一．	4，0E－01
	－131	2．3E－04	1．7E－05	0.23	1．6E－04	1．9E－06	0.16	1．416E－04	2．272E－05	0.14	1．349E－04	2216E－05	0.13	1，0E－03
	1－132	2．4E－04	2．4E－05	0.003	8．1E－04	1．8E－05	0.01	ND	－	\bigcirc	ND	－	－	7，0E02
	1－133	ND	－	－	5．0E－03									
	Cs－134	ND	－	－	1．7E－05	1．7E－05	0.01	2648E－05	1．636E－05	0.01	1．865E－05	1．747E－05	0.01	20E－03
	Gs－137	1．8E－05	1．3E－05	0.01	ND	－	－	2316E－05	1．739E－05	0.01	2146E－05	1．731E－05	0.01	3．0E－03
䡃子状	Co－58	ND	－	－	1．3E－05	9．9E－06	0.00	ND	－	－	ND	－	－	1．0E－02
	F131	1．5E－04	9．8E－08	0.151	12E－04	1．0E－05	0.12	6．939E－05	1．155E－05	0.07	7．919E－05	1．180E－05	0.08	1．0E－03
	－132	25E－04	1．3E－05	0.004	3，DE－04	1，6E－05	0.01	ND	－	－	4．153E－05	3．357E－05	0.00	7．0E－02
	Cs－134	4．4E－05	9，3E－06	0.02	3．0E－05	1．0E－05	0.02	1．293E－05	9．476E－08	0.01 －	1．353E－05	9．812E－06	0.01	2．0E－03
	Cs－136	ND	－	－	1．0E－02									
	Cs－137	4．7E－05	6．0E－08	0.02	3．3E－05	9．7E－06	0.01	1．024E－05	8．838E－06	0.00	1．369E－05	$8.361 \mathrm{E}-06$	0.00	3，0E－03
その他核種	Ru－105	ND	－	－	12E－04	8．6E－05	0.00	ND．	－	．－	ND	－	－	8．0E－02
	Rur－106	ND	．－	－	1．4E－04	7．6E－05	0.24	ND	－	－	ND	－	－	6．0E－04
	Te－129	4．5E－04	2．9E－04	0.00	9．3E－04	2．2E－04	0.00	2．316E－03	1．784E－03	0.01	ND	－	－	4．0E－01
			20E－04	0.16	ND	－	－	ND	－	－	ND	－	－	4．0E－03
	To－129m	6．4E－04												7．0E－03
	Te－132	7．6E－04	6．6E－04	0.11	1．4E－03	6．8E－06	0.21	2191E－05	1．648E－05	0.00	ND	－	－	7．0e

[^4]

1．探取－測定条件

鵤料採取	埧所	䋹島第二 MP－1		褀島第二MP－1	褔島第二MP－1
	日時	3／23 9：40～9：48	3／23 16：06～16：14	3／24 9：47～9：55	3／24 17：46～17：54
	探取方法	モニタリングカーにてダスト释取	モニタリングカーにとダスト採取	モニタリングカーにてダスト探取	モニタリングカーにてダスト探取
		－	－	－	－
緗料測定	日時	3／23 15：00～	3／23 17：38～	3／24 10：39～	3／25 0：40～
	湖定方法				
	敏定時間	500 s	500s	500 s	500s

2．結果

	核種	3／23採取分（1）			3／23探取分（2）			3／24粎取分（1）			3／24探取分（2）			（3）故时㮩承挌従等者の呼吸す石空気中の靯度限度 $(\mathrm{Bq} / \mathrm{cm} 3) \%$
		（1）放射能㴓度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）						（1）故时能湓度 （ $\mathrm{Ba} / \mathrm{om} 3$ ）			$\begin{aligned} & \text { (1)故射能温 } \\ & (8 q / \mathrm{cm} 3) \\ & (8) \end{aligned}$		合（1）／（3）	
揮発珄	Co－58	ND	－	－	1．460E－05	1．353E－05	0.00	ND	－．	－－	ND	－	－	1．0E－02
	1－131	2．7E－04	3．9E－05	0.27	2．1E－04	1．4E－05	0.21	1．9E－04	1．5E－05	0.19	1．7E－04	1．4E－05	0.17	1．0E－03
	1－132	2．8E－04	2．2E－04	0.00	2．8E－04	2．8E－05	0.00	3．0E－04	2．5E～05	0.00	ND	－	－	7．0E－02
	1－133	ND	－	－	5．0E－03									
	Cs－134	4．3E－05	3．0E－05	0.02	2．3E－05	1．2E－05	0.01	2．8E－05	1．3E－05	0.01	1．6E－05	1．2E－05	0.01	$2.0 \mathrm{E}-03$
	Cs－137	ND	－	－	2．0E－05	1．3E－05	0.01	3．0E－05	1．2E－05	0.01	2．9E－05	1．1E－05	0.01	3．0E－03
柆子状	Co－58	ND	－	－	1．0E－02									
	－131	1．5E－04	2．1E－05	0.15	8．2E－05	7．9E－06	0.08	1．1E－04	7．3E－06	0.11	6．4E－05	2．1E－05	0.06	1，0E－03
	1－132	ND	－	－	2．6E－04	1．5E－05	0.00	1．7E－04	． $1.0 \mathrm{E}-05$	0.00	ND．	－	－	7．0E－02
	Cs－134	ND	－	－	1．7E－05	8．5E－06	0.01	2．1E－05	6．7E－06	0.01	ND	－	－	2．0E－03
	Cs－136	ND	－	－	1．0E－02									
	Cs－137	ND	－	－	1．7E－05	6．9E－06	0.01	2．0E－05	6．6E－08	0.01	2．1E－05	1．7E－05	0.01	3．0E－03
その他の検出核種	Ru－106	ND	－	－．	8．210E－05．	5．694E－05	0.14	ND．	－－	－	ND	－	－	6．0E－04
	Te－129	ND	－	－	9．278E－04	$2.649 \mathrm{E}-04$	2．320E－03	7．6E－04	1．3E－04	1．894E－03	1．4E－02	9．5E－03	0.04	4．0E－01
	$\mathrm{Te}-129 \mathrm{~m}$	ND	－	－	ND	－－	－	5，7E－04	1．7E－04	0.14	4．6E－04	2．8E－04	． 0.11	4．0E－03
	$\mathrm{Te}_{\mathrm{e}} 132$	1．6E－04	2．2E－05	0.02	7．064E－04	6．527E－06	1．009E－01	5．6E－04．	5．7E－08	0.08	3．5E－04	1．1E－05	0.05	$7.0 \mathrm{E}-03$

[^5]※ O．OE－Oとは， 0.0×10^{-0} と同じ意昧である。

1．探取－湢定绦件

鶝料搮取	場所	福岛第二 MP－1	褞島第二 MP－1	楅島第二 MP－1	嵒島第二 MP－1
	日時	3／25 8：41～9：48	3／25 17：32～17：40	3／26 10：52～10：59	3／26 16：22～16：29
	探取方法	モニタリングカーにてダスト棌取	モニタリングカーにてダスト琛取	モニタリングカーにてダスト䗇取	モニタリングカーにてダスト採取
	風向•䬄速	－	．－－	－	－
試料測定	日時	2011／3／25 12：20～	2011／3／25 12：33～	2011／3／26 12：35～	2011／3／26 19：19～
	測定方法		Ge半违体型校榾分析装整にて分析	Ge半这体型核種分析教饾にて分析	
	䎿定時闣	500s	5005	5006	500s

	核㮌	3／25棎取分（1）			3／25探取分（2）			3／26探取分（1）			3／26探取分（2）			畒者の呼吸する空気中の遠鹿限度（Ba／an3）沙．
		（D）放时能㯰度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）			（1）放封能滛度 （ $\mathrm{B} / \mathrm{c} / \mathrm{cm} 3$ ）			（1）放射旅宬度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）	空新中澸庭限度に対する部合（CD／（3）	（1）放射能㗔度 （ $\mathrm{Ba} / \mathrm{cm} 3$ ）	（2）検出限界源度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）		
揮発性	Co－58	ND	－	－	ND	．－	－	ND	－	－	ND	－	－	1．0E－02
	1－131	2．1E－04	3．2E－05	0.21	1．7E－04	1．3E－05	0.17	1．0E－04	1．3E－05	0.10	1．6E－04	3．4E－05	0.16	1．0E－03
	1－132	1．6E－04	1．0E－04	0.00	2．2E－04	20E－05	0.00	1．6E－04	2．4E－05	0.00	－ND	－	－	7．0E－02
	1－133	ND	－	－	ND	－	－	ND	－＇．	－－	ND	－	－	5．0E－03
	Cs -134	6．9E－05	3．2E－05	0.03	2．6E－05	1．2E－05	0.01	1，3E－05	1．3E－05	0.01	ND	－	－	2．0E－03
	Cs－137	ND	－	－	3．5E－05	1．1E－05	0.01	1．6E－05	1．0E－05	0.01	ND	－	－	3．0E－03
柆子状	Co－58．	ND	－	－	ND	－	\bigcirc	ND	－	－	ND	－	－	1．0E－02
	J－131	1．0E－04	1．6E－05	0.10	6．8E－05	7．0E－06	0.07	8．4E－05	1．7E－05	0.08	8．8E－04	1．7E－04	0.88	$1.0 \mathrm{E}-03$
	1－132	6．0E－05	5．0E－05	0.00	1．1E－04	1．2E－05	0.00	ND	．	－	ND	－	－	7．0E－02
	Cs－134	ND	－	－	1．0E－05	6．1E－06	0.01	1．8E－05	1．6E－05	． 0.01	1．8E－04	1．6E－04	0.09	2．0E－03
	Cs－136	ND	－	－	ND	－－	－	ND	－	－	ND	－	－	1．0E－02
	$\mathrm{C}_{\text {c－137 }}$	ND	．－	－	1：1E－05	5．8E－06	0.00	1．7E－05	$1.6 \mathrm{E}-05$	0.01	2．1E－04	1．6E－04	0.07	3．0E－03
その他の挨出核䅲	Ru－105	ND	－	－	7．3E－05	5．3E－05	0.00	ND	－	－	ND	－	－	8．0E－02
	Ru－106	ND	－	－	ND．	－．	－	ND	－	－．	ND	－	－	6．0E－04
	Te－129	ND	－．	－	5．7E－04	1．5E－04	0.00	5．9E－04	3．4E－04	1．475E－03	ND	－	－	4．0E－01
	Te－129m	ND	－	－	4．4E－04．	1．3E－04	0.11	4．1E－04	2．4E－04	1．025E－01	ND	－	－	4．0E－03
	Te－132	1．1E－04	1．6E－05	0.02	3．8E－0A	4．BE－06	0.06	2．3E－04	8．4E－06	0.03	3．5E－04	3．0E－05	0.05	7．0E－03

※ O．OEーOとは， 0.0×10^{-0} と風じ気味である。

福島第二原子力発軍所敬地内における空気中放射性物貫の核種分析結果について
1．棵取•利定营件

㖪料排取	場所	－福局第二：MP－1	祖岛第二 MP－1	福島管二 MP－1	䋹岛第二 MP－1
	日時	－3／27 10：52～ $11: 00$	3／27．17：02～17：10	3／28 10：46～10．54	3／28 17：04～17：12
	探取方法	モニタリングカーにてら゚スト探取	モニタリングカーにてダスト捰取	モニタリングカーにでメスト探敢	モニタリングカーにてダスト棵取
	睢向－典速	－	－	－	，－
拭料測定	日時	2011／3／27 11：56～	2011／3／27 18：03～	2011／3／28 13：10～	2011／3／28 17：49～
	測定方法	Ge半的体型核理分析踢铝にて分析		Ge半㴧体型核種分析装超にて分析	
	測定時間	500s	500s	1000 s	1000s

2．結果

	校種	3／27棵取分（1）			3／27称取分（2）			3／28 粎取分（1）			3／28棌取分（2）			
		（1）故璟監湿度 （ $\mathrm{B} / \mathrm{cm} / \mathrm{cm}$ ）						$\int_{(\mathrm{Ba} / \mathrm{cm} 3)}$			（1）放射能嘼度 （ $\mathrm{Bq} / \mathrm{cm} 3$ 3）			
挥発性	Co－58	ND	－	－	ND	－	－	－	－	－	\cdots	－	－	1．0E－02
	I－131	1．3E－04	1．3E－05	0.13	4．3E－05	1．8E－05	0.04	3．1E－05	1．4E－05	0.03	4．6E－05	1．4E－05	0.05	1．0E－03
	1－132	1．4E－04	1．6E－05	0.00	ND	－	－	－	－	－	2．8E－05	2．25－05	0.00 ．	7．0E－02
	1－133	ND	－	－	ND	－	－	－	－	－	－	－	－	5．0E－03
	Cs－134	1．9E－05	1．0E－05	0.01	ND	－	－	－	－	－	－	－	－	20E－03
	$\mathrm{Cs}^{\text {c－137 }}$	1．9E－05	$9.5 \mathrm{E}-08$	0.01	ND	－	－	－	－	－	－	－	－	3．0E－03
稱子状	Co－58	ND	－	－	ND	－	－	－	－	－	－	－	－	1．0E－02
	1－131．	7．3E－05	1．6E－05	0.07	7．6E－05	6．4E－06	0.08	－	－	－	－	－	－	1．0E－03
	1－132	3．2E－05	2．7E－05	－	6．3E－05	8．8E－06	0.00	－	－	－	－	－	－	7．0E－02
	Cs－134	2．3E－05	1．5E－05	0.01	9．9E－06	5．7E－06	0.00	－	－	－	－	－	－	2．0E－03
	Cs－136	ND	－．	－	ND	－	－	－	－	－	－	－	－	1．0E－02
	Cs－137	1．6E－05	1．6E－05	0.01	ND	－	－	－	－	－	－	－	－	$3.0 \mathrm{E}-03$
もの他の楥出核䅊	Ru－105	ND	－	－	ND	－	－	－	－	－	－	－	－	8．0E－02
	Ru－106	ND	－	－	ND．	－	－	－	－	－	－	－	－	6．0E－04
	Te－129	2．6E－04	2．2E－04	0.00	2．1E－04	1．15－04	0.00	－	－	－	－	－	－	4．0E－01
	Tei－128m	3．3E－04	2．2E－04	0.08	1．2E－04	1．1E－04	0.03	－	－	－	－	－	－	4．0E－03
	Te－132	1．9E－04	7．8E－06	0.03	7．5E－05	3．7E－08	0.01	－	－	－	1．4E－05	1．1E－05	0.00	7．0E－03

※ O．OE－O\＆は， 0.0×10^{-0} と同じ単味である。

1．棵取•䐓定条件

※ 0.0 E － O とは， 0.0×10^{-0} と同じ甞味である。

海水核種分析結果

試料探取日時刻	平成23年3月30日 8時20分			
探取場所	1 F 南放水口付近（1～4u放水口から南俱に約 330 m 地点）			
測定方法	試料500mlを福島第二へ運搬し，Ge半導体検出器で測定			
測定時間	1，000秒			
$\begin{aligned} & \text { 検出核㮔 } \\ & \text { (半蔵期) } \end{aligned}$	（1）試料濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界濃度 $\left(\mathrm{Ba} / \mathrm{cm}^{3}\right)$	（3）炬規則告示濃度限度 $\mathrm{Ba} / \mathrm{cm}^{3}$ （別表第2第六㯗周辺監視区域外の水中の浪度险度）	倍率 （1）／（3）
1－131 （約8日）	3．2E＋01	5．8E－02	4E－02	800.0
$\begin{aligned} & C s-134 \\ & \text { (約2年) } \end{aligned}$	8． $3 \mathrm{E}+00$	4．5E－02．	6E－02	138.3
$\begin{gathered} \text { Cs-136 } \\ (\text { 約13日) } \end{gathered}$	7．3E－01	4． $4 E-02$	3E－01	2.4
$\begin{gathered} C s-137 \\ \left(\begin{array}{c} \text { 約 } 30 \text { 年) } \end{array}\right. \end{gathered}$	8． $3 \mathrm{E}+00$	4．1E－02	9E－02	92.2
$\begin{gathered} \text { Ba-140 } \\ \text { (約13日) } \end{gathered}$	1． $3 \mathrm{E}+00$	1．7E－01	3E－01	4． 3
$\begin{aligned} & \text { La-140 } \\ & (\text { (約2日) } \end{aligned}$	6．3E－01	1．2E－02	4E－01	1.6

海水核種分析結果

試料採取日時刻	平成23年3月30日 13時55分			
㨲取場所	1F 南放水口付近（1～4u放水口から南側に約330m地点）			
測定方法	試料 500 ml l 福島第二へ運搬し，Ge半導体検出器で測定			
濆定時間	1，000秒			
$\begin{aligned} & \text { 検出核種 } \\ & \text { (半減期) } \end{aligned}$	（1）試料浪度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界濃度 （ $\mathrm{Ba} / \mathrm{cm}^{3}$ ）	（3）虷規則告示澧 $\mathrm{Bq} / \mathrm{cm}^{3}$ （別表第2第六欄周域外の水中の濃	$\begin{gathered} \text { 倍率 } \\ (1) /(3) \mid \end{gathered}$
$\begin{gathered} 1-131 \\ \text { (約8日) } \end{gathered}$	1． $8 \mathrm{E}+02$	1．4E－01	4E－02	4385． 0
$\begin{aligned} & \text { Cs-134 } \\ & \text { (約2年) } \end{aligned}$	4． $7 E+01$	1．1E－01	6E－02	783.7
$\begin{gathered} \text { Cs-136 } \\ (\text { 約13日) } \end{gathered}$	4．2E＋00	1．2E－01	3E－01	14.1
$\begin{gathered} \text { Cs-137 } \\ \text { (約30年) } \end{gathered}$	4．7E＋01	1．1E－01	9E－02	527.4
$\mathrm{Ba}-140$ （約13日）	7．3E＋00	5．7E－01	3E－01	24.5
$\begin{aligned} & \text { La-140 } \\ & \text { (約2日) } \end{aligned}$	3． $6 E+00$	3． $3 \mathrm{E}-02$	4E－01	9.0

※ O．OEーOとは，O．O×10－Oと同じ意味である。

海水核種分析結果

試料探取日時刻	平成23年3月30日 8時40分			
探取堨所	1F 5～6放水口北側（5～6u放水口から北側に約30m地点）			
測定方法	試料 500 ml を福島第二へ運鍛し，Ge半導体検出器で測定			
測定時間	1，000秒			
検出核稹 （半蔵期）	（1）試料源度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界濃度 $\left(\mathrm{Bq} / \mathrm{cm}^{3}\right)$	（3）炉規則告示灎度限度 $\mathrm{Ba} / \mathrm{cm}^{3}$ （別表第2第六欄周辺監視区域外の水中の湢度限度）	倍率 （1）／（3）
$\begin{gathered} 1-131 \\ \text { (約8日) } \end{gathered}$	5．7E＋01	7．5E－02	4E－02	1425.0
$\begin{aligned} & \text { Cs-134 } \\ & \text { (約2年) } \end{aligned}$	1． $5 \mathrm{E}+01$	5．9E－02	6E－02	250.0
$\begin{gathered} \text { Cs-136 } \\ \text { (約13日) } \end{gathered}$	1．3E＋00	5．7E－02	3E－01	4． 3
$\begin{gathered} \text { Cs-1.37 } \\ \text { (約30年) } \end{gathered}$	1． $5 \mathrm{E}+01$	5．3E－02	9E－02	166.7
$\begin{aligned} & \text { Ba-140 } \\ & \text { (約13日) } \end{aligned}$	2． $3 \mathrm{E}+00$	2．2E－01	3E－01	7.7
$\begin{aligned} & \text { La-140 } \\ & (\text { 約2日) } \end{aligned}$	7．8E－01	1．6E－02	4E－01	2.0

海水核種分析結果

試料探取白時刻	平成23年3月30日 14時15分			
採取場所	－ 1 F 5～6放水口北側（5～6u放水口から北側に約30m地点）			
測定方法	試料500ml．を福島第二へ運搬し，Ge半導体検出器で測定			
測定時間	1，000秒			
$\begin{aligned} & \text { 検出核種 } \\ & (\text { 半減期) } \end{aligned}$	（1）試料濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界浀度 （ $\mathrm{Ba} / \mathrm{cm}^{3}$ ）	（3）炉規則告示湢 $\mathrm{Bq} / \mathrm{cin}^{3}$ （別表第2第六㯗周域外の水中の濃	$\begin{gathered} \text { 倍率 } \\ (1) /(3) \end{gathered}$
$\begin{gathered} 1-131 \\ \text { (約8日) } \end{gathered}$	4．7E＋01	7．3E－02	4E－02	1177.3
$\begin{aligned} & C s-134 \\ & \text { (約2年) } \end{aligned}$	1． $2 E+01$	5．5E－02	6E－02	206． 5.
$\begin{gathered} \text { Cs-136 } \\ \left(\begin{array}{c} (4) \\ 13 日) \end{array}\right. \end{gathered}$	1．2E＋00	5．1E－02	3E－01	3． 9
$\begin{gathered} \text { Cs-137 } \\ \text { (約30年). } \end{gathered}$	1．2E＋01	4．9E－02	9E－02	137.9
$\begin{gathered} \mathrm{Ba}-140 \\ \text { (約13日) } \end{gathered}$	1． $9 E+00$	2．0E－01	3E－01	6． 5
$\begin{aligned} & \mathrm{La-140} \\ & \text { (約2日) } \end{aligned}$	6．8E－01	1．4E－0？	4E－01	1． 7

採取場所：1F南放水口付近（1～4u放水口から南則約 330 m 地点）
採取方法：海水を汲みあげ燥取

㵋定時䦗：1，000秒

枋種										（3）周辺監視区城外の水中の浱度噮度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能㩐度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界硫度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中沒度限度に対する割合 （11）／（3）	（1）放射能湛度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界滰度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中㵊度限度に対する暗合 （（1）／（3））	（ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限思球度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中灚府限 度に対する 割合 （1）$/(3)$	
Co－58	$5.955 \mathrm{E}-02$	3．349E－02	0.1	N．D	2．138E－02	－－	5．0E－02	2．6E－02	0.1	$1 \mathrm{E}+00$
1－131	$5.086 E+00$	4．245E－02	128.7	$1.190 \mathrm{E}+00$	$2.293 \mathrm{E}-02$	29.8	$5.9 \mathrm{E}+00$	3．6E－02	146.9	4E－O2
I－132	$2.136 \mathrm{E}+00$	1．925E－01	0.7	$1.362 \mathrm{E}+00$	7．721E－02	0.5	$5.4 \mathrm{E}+00$	$1.4 \mathrm{E}-01$	1：8	$3 \mathrm{E}+00$
Cs－134	$1.486 \mathrm{E}+00$	4．030E－02	24.8	1．504E－01	1．769E－02	2.5	$2.5 \mathrm{E}-01$	2．7E－02	4.2	6E－02
Cs－138	$2.132 \mathrm{E}-01$	2．358E－02	0.7	$2.350 \mathrm{E}-02$	1．056E－02	0.1	2．5E－02	2．4E－02	0.1	3E－01
Cs－137	$1.484 \mathrm{E}+00$	4．204E－02	16.5	$1.535 \mathrm{E}-01$	1．626E－02	1.7	2．5E－01	2．7E－02	2.8	9E－02
Zr－95	1.484 E		$\underline{\square}$			－	2．3E－01	7．8E－02	0.3	9E－01
Ru－105						，	8．7E－01	6．2E－01	0.3	3E＋00
Ru－106							$3.7 \mathrm{E}-01$	2．0E－01	3.7	1E－01
To－129		，					$4.0 \mathrm{E}+00$	$3.9 E+00$	0.4	1E＋01
Te－132						－	$4.0 \mathrm{E}-01$	3．6E－02	2.0	2E－01
La－140						，	1．3E－02	1．0E－02	0.0	4E－01

核檈										$\left\lvert\, \begin{gathered} \text { (3)周辽監視区 } \\ \text { 域外- } \\ \text { 温度限度の } \\ \left(\mathrm{Bq} / \mathrm{cm}^{3}\right) \end{gathered}\right.$
	（1）放射能滥度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界滈度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中渱度曂度に対する劍合 （1）（3）	（1）放射能温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界湉度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）		（1）故射能煺度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界浮度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）		
Co－60			（1）	$5.9 \mathrm{E}-02$	$2.0 E^{-02}$	0.3			－	2． $0 E-01$
Mo－99			－	2．1E－01	1．7E－01	0.2				1． $0 E+00$
［－131	$4.2 \mathrm{E}+00$	2．3E－02	103.9	$5.0 \mathrm{E}+01$	6．2E－02	1250.8	$3.0 \mathrm{E}+01$	4．0E－02	750.0	4．0E－02
［－132	$1.7 \mathrm{E}+00$	4．3E－01	0.6	$3.3 \mathrm{E}+00$	7．7E－02	1.1	$2.0 \mathrm{E}+00$	6．3E－02	0.7	$3.0 \mathrm{E}+00$
C8－134	4．5E－01	1．7E－02	7.4	$7.0 \mathrm{E}+00$	3．9E－02	117.3	4．7E＋00	3．1E－02	78.3	$6.0 \mathrm{E}-02$
$\mathrm{Cs}_{5}-136$	6．1E－02	1．7E－02	0.2	B．0E－01	$3.9 \mathrm{E}-02$	2.7	5．2E－01	3．1E－02	1.7	3．0E－01
Cs－137	4．4E－01	1．5E－02	4.9	$7.2 \mathrm{E}+00$	3．5E－02	79.6	4．8E＋00	2．7E－02	53.3	$9.0 \mathrm{E}-02$
Tc－99m			\bigcirc			11	$6.8 E-02$	4．4E－02	0.0	4．0E＋01
Te－132	8．0E－02	2．1E－02	0.4	22E－01	4．0E－02	1.1			－ 20	$2.0 \mathrm{E}-01$
Ba－140				$1.2 \mathrm{E}+00$	1．5E－01	3.9	7．7E－01	1．2E－01	2.6	3．0E－01
La－140	2．1E－02	1．2E－02	0.1	5．8E－01	1．3E－02	1.4	3．5E－01	1，0E－02	0.9	$4.0 \mathrm{E}-01$

核稙				1F南故水古付近 $\frac{3 月 281 \sim 4014: 20}{}$						（3）周辺監視区域外の水中の湲庭限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能漂度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）険出限界涱度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中蟫度限度に対する割合 （（1）／（3））	（1）放射能滴庭 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）挨出限界溃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中洫度獂度に対する部合 （1）／（3））	（1）故射能潭医 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界滥度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中湲度限度に対する囬合 （1）／（3））	
Co－58			（1）			－				$1 E+00$
［－131	$1.4 \mathrm{E}+00$	1．8E－02	33.9	1．1E＋00	1．7E－02	27.9	1．OE＋02	7．7E－02	2572.5	4E－02
－132	5．6E－02	5．4E－02	0.0							3E +00
Cs－134	$2.8 \mathrm{E}-01$	1．2E－02	4.6	2．4E－01	1．1E－02	4.1	2．4E＋01	6．6E－02	395.5	6E－02
$\mathrm{Cs}_{5}-136$.	2．6E－02	9．5E－03	0.1	$2.4 \mathrm{E}-02$	1．1E－02	0.1	2．2E＋00	6．2E－02	7.3	3E－01
C8－137	2．9E－01	1．1E－02	3.3	$2.4 \mathrm{E}-01$	1．0E－02	2.7	2． $4 E+01$	5．5E－02	268.0	9E－02
Tc－99m			\rightarrow			\rightarrow	1．2E－01	7． $8 \mathrm{E}-02$	0.0	4E＋01
T．θ－129			，			，			－	1E＋01
To－129m			T		，	－			，	3E－01
Te－132									－	2E－01
Ba－140						－	3． 7 Et00	2．3E－01	12.4	3E－01
La－140	2．7E－02	5．6E－03	0.1	1．7E－02	3．7E－031	0.0	2．DE＋00	1． $9 \mathrm{E}-02$	5.0	$4 \mathrm{E}-01$

探取場所：1F南放水口付近（1～4u放水口から南側約 330 m 地点）
探取方法：海水を汲みあげ探取

测定時間： 1 ，000秒

核種				\square						
Co－58										$1 \mathrm{E}+00$
［－131										4E－02
［－132										3E＋00
Cs－134										6E－02
Cs－138					．					3E－01
Cs－137										9E－02
Tc－99m										4E＋01
Te－129										$1 \mathrm{E}+01$
Te－129m										3E－01
Te－132										$2 \mathrm{E}-01$
$\mathrm{Ba}-140$				．						3E－01
La－140										4E－01］

捰取場所：1F5～6放水口北側（5～6u放水口から北側約30m地点）
捰取方法：海水を汲みあげ探取

測定時間：1，000秒

3月23日 9：10			3月24日 10：40		
（1）放射能濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界澼度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中渗度限限 度に対する 割合 （1）／（3））	（1）放射能滨度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界溒度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）．	
5．7E－02	3．1E－02	0.1.			
$2.7 \mathrm{E}+00$	2．5E－02	66.6	9．5E－01	1．3E－02	23.7
$2.9 \mathrm{E}+0 \mathrm{D}$	7．7E－02	1.0	4．5E－01	2．1E－01	0.2
$1.8 \mathrm{E}+00$	2．4E－02	29.9	1．1E－01	9．2E－03	1.8
23E－01	$2.5 \mathrm{E}-02$	0.8	1．1E－02	6．5E－03	0.0
1．9E＋00	2．4E－02	21.4	1．1E－01	$8.75-03$	1.2
8．3E－02	2．5E－02	0.0			－
$7.3 \mathrm{E}+00$	$3.8 \mathrm{E}+00$	0.7		－	－
1．3E＋00	6．1E－01	4.2		－	－
1．6E＋00	2．1E－02	7.8	1．4E－01	1．0E－02	0.7
1．3E－01	9．4E－02	0.4		－	－
5．5E－02	1．2E－02	0.1			－

3月25日 8：50			（3）周辺監視区域外の水中の湯度哏度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
		水中㴗度幔	
（1）放射能罭度		度に対する	
$\cdots\left(\mathrm{Bq} / \mathrm{cm}^{3}\right)$	－$\left(\mathrm{Bq} / \mathrm{cm}^{3}\right)$	割合	
		（17）／（3）	
			$1 \mathrm{E}+00$
$1.1 \mathrm{E}+01$	2．3E－02	283.8	4E－02
1．9E－01	4.1 E－02	0.1	3E＋00
1．7E＋00	1．9E－02	28.0	6E－02
2．0E－01	1．7E－02	0.7	3E－01
$1.7 \mathrm{E}+00$	1．8E－02	18.5	9E－02
3．4E－02	25E－02	0.0	4E＋01
		－	$1 \mathrm{E}+01$
		，	3E－01
1．3E－01	2．1E－02	0.6	2E－01
2．8E－01	7．2E－02	0.9	3E－01
1．3E－011	6．8E－03	0.3	4E－01

核種	3月26日 8：40			3月26日 14：50			3月27日 8：50			（3）周辺監視区域外の水中の婊度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能温度 （ $\mathrm{Ba} / \mathrm{cm}^{3}$ ）	（2）検出限界選度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中蕞度限庶に対する割含 （1）／（3）	（1）放射能温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）倹出限界浱度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中涼度限度に対する割合 （（1）／（3））	（1）放射能温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界泿度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中㴆度限度に対する割合 （1）／（3）	
Co－58．						－				1．0E＋00
1－131	$2.9 \mathrm{E}+01$	3．6E－02	725.0	$1.3 \mathrm{E}+01$	3．7E－02	314.3	8.1 E +00	3．2E－02	202.5	4．0E－02
［－132	1：1E－01	5．7E－02	0.0	3．2E－01	5．9E－02	0.1				3．0E +00
1－135	1．0E＋00	2．6E－01	1.3							8．OE－01．
Cs－134	$5.0 \mathrm{E}+00$	3．1E－02	83.3	$2.2 \mathrm{E}+00$	3．0E－02	36.3	$1.6 \mathrm{E}+00$	2．6E－02	27.2	6．0E－02
Cs－136	5．4E－01	2．9E－02	1.8	2．5E－01	3．0E－02	0.8	1．8E－01	2．0E－02	0.6	3．0E－01
C5－137	$5.1 \mathrm{E}+00$	26E－02	56.7	$2.2 \mathrm{E}+00$	2．9E－02	24.2	$1.7 \mathrm{E}+00$	$2.65-02$	18.9	9．0E－02
Tc－99m	－	－	－		－	－	－2	－	$\stackrel{\square}{-}$	$4.0 \mathrm{E}+01$
Te－129		－	，		－	－	－		－	$1.0 \mathrm{E}+01$
To－129m				－	－	－			－	3．0E－01
Te^{-132}			－	6．7E－02	3．6E－02	0.3		－	－	$2.0 \mathrm{E}-01$
Ba－140	8．6E－01	1．2E－01	2.9	3．4E－01	1．0E－01	1.1	2．7E－01	8．8E－02	0.9	3．0E－01
La－140	3．2E－01	8．3E－03	0.8	1．5E－01	7．8E－03	0.4	1．1E－01	5．3E－03	0.3	4．0E－01

捰取場所：1F 5～6放水口北溉（5～6u故水口から北側約 30 m 地点）
棵取方法：海水を汲みあげ探取
測定方法：試料500mlを褔島第二に運掊L，Ge半过体検出器で測定

3月27日 14：05			3月28日 8：40		
（1）放射能浪度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）険出限界湌度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中港度限 度に対する 割合 $(1) /(3)$	（1）放射能滥度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界退度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中䡙㢈限度に対する割合 （（1）／（3））
		\square			
4．6E＋01	5：2E－02	1150.0	$3.3 \mathrm{E}+01$	5．7E－02	816.0
9．8E＋00	4．1E－02	163.3	$6,6 \mathrm{E}+00$	4．5E－02	110.3
9．8E－01	3．8E－02	3.3	6．8E－01	4．3E－02	2.3
$9.8 \mathrm{E}+00$	3．4E－02	108.9	$6.6 \mathrm{E}+00$	4．1E－02	73：9
		－			－
		－			－
－		－			
		\cdots		－	－
$1.6 E+00$	1．6E－01	5.3	$1.1 \mathrm{E}+00$	1．6E－01	3.6
5．5E－01	1．1E－02	1.4	5．2E－01	1．25－02	1.3

3月28日 14：40			（3）䦖辺監視区
		水中浫度狺	域外の水中の
（1）放射能碱度	（2）検出限界涨度	度に対する	㳑度限度
（ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	割合 （©1）／（3）	（ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
			$1 E+00$
2．7E＋01	4．2E－02	665.8	$4 \mathrm{E}-02$
			3E＋00
5．6E＋00	3．2E－02	93.8	6E－02
5．6E－01	3．0E－02	1.9	3E－01
$5.7 \mathrm{E}+00$	2．8E－02	63.5	9E－02
			4E＋01
		－	$1 \mathrm{E}+01$
		T	3E－01
		－	2E－01
8．8E－01	1．2E－01	2.9	3E－01
3；7E－01	8．5E－03	0.9	4E－01

海水核種分析結果

試料採取日時刻	平成23年3月30日 098寺05分			
採取場所	$2 F$ 岩沢海岸付近 $\begin{gathered}(1,2 \text { 号放水口から南側に約 } 7,000 \mathrm{~m} \text { 地点）} \\ (1 \text { Fから約 } 16 \mathrm{~km})\end{gathered}$			
測定方法	試料500m1をG98半導体検出器で測定			
湨定時間	1，000秒			
$\begin{aligned} & \text { 検出核厦 } \\ & \text { (半期 } \end{aligned}$	（1）試料濃度 （Bq／$/ \mathrm{m}^{3}$ ）．	（2）検出限界浱度 $\left(\mathrm{Ba} / \mathrm{cm}^{3}\right)$	（3）妒規則告示濃度限度 $\mathrm{Bq} / \mathrm{cm}^{3}$ （別表第2第六椤周辺監視区域外の水中の濃度限度）	(倍率(3)
$\begin{gathered} 1-131 \\ (\text { 約 } 8 \text {) } \end{gathered}$	8．8E－01	1．9E－02	4E－02	22.0
$\begin{aligned} & \text { Cs-134 } \\ & \text { (紋2年) } \end{aligned}$	1．8E－01	2．0E－02	6E－02	3.0
$\begin{gathered} \text { cs-136 } \\ \left(\begin{array}{l} \text { 卽 } \end{array}\right) \end{gathered}$	2．1E－02	9．OE－03	3E－01	0.07
$\begin{gathered} \text { Cs-137 } \\ \left(\begin{array}{c} \text { (解 } \end{array}\right) \end{gathered}$	1．9E－01	2．OE－02	9E－02	2.2
$\begin{gathered} \text { Ba-140 } \\ (\text { 約 } 13 \text {) } \end{gathered}$	2．6E－02	3． $7 \mathrm{E}-02$	3E－01	0.1
$\begin{aligned} & \text { La-140 } \\ & \left(\begin{array}{l} \text { 約2日) } \end{array}\right. \end{aligned}$	1．2E－02	4．9E－03	4E－01	0.0

海水核種分析結果

試料探取日時刻	平成23年3月30日 10日寺00分			
採取埸所	$2 F$ 北放水口付近（3，4号放水口付近） （1Fから約 10 km ）			
測定方法	試料500m1をGe半䆃体検出器で測定			
測定時間	1，000秒			
$\begin{aligned} & \text { 検出栐種 } \\ & \text { (半域别 } \end{aligned}$	（1）試料濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）楧出限界濃度 （ $\mathrm{Ba} / \mathrm{cm}^{3}$ ）	（3）炉規則告示濃度限度 $\mathrm{Bq} / \mathrm{cm}^{3}$ （別表第2第六欄周辺監視区域外の水中の湢度限度）	(倍率(3)
$\begin{gathered} 1-131 \\ (\text { (約 } 8 \text {) } \end{gathered}$	1． $6 \mathrm{E}+00$	2．1E－02	4E－02	39． 6
$\begin{aligned} & \text { Cs-134 } \\ & (\text { 約 } 2 \text { } \end{aligned}$	3．6E－01	2．OE－02	6E－02	6.0
$\begin{gathered} \text { Cs-136 } \\ \left(\begin{array}{l} \text { 納 } 13 \text { (} \end{array}\right. \end{gathered}$	2．6E－02	1．OE－02	3E－01	0.1
$\begin{gathered} \text { Cs-137 } \\ \left(\begin{array}{l} 3 \\ \hline \end{array} 300^{\text {}}\right. \end{gathered}$	3．4E－01	2．OE－02	9E－02	3.8
$\begin{gathered} \text { Ba-140 } \\ \text { (約13日) } \end{gathered}$	5．2E－02	4．2E－02	3E－01	0.2
$\begin{aligned} & \text { (a-140 } \\ & \left(\text { 約2日 }^{2}\right. \end{aligned}$	2．2E－02	5．4E－03	4E－01	0.1

探取場所：2F北故水口付近（3，4号放水口付近）（1Fから約 10 km ）

探取方法：海水をくみ上げ探取

揤定方法：式料 500 ml をGe半䝰体検出器て測定

核秱										（3）周辺監視区域外の水中の墭度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能渡度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界浱度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中渱度限度 に対する制合 （1）／（3）	（1）放射能濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界滈度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中湾度限度に対する制合 （3）／（3）	（1）故射能濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界滈度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中浱度限度 に対する割合 （1）／（3）	
Te－132					\checkmark	$\xrightarrow{-}$				$3.0 \mathrm{E}+00$
Co－58	$5.704 \mathrm{E}-03$	7．570E－03	0.0	N．D	1．526E－02	－				$1.0 \mathrm{E}+00$
Ru－105					－	，	3．4E－02	2．5E－02	0.01	3E＋00
Ru－106						－2				1E－01
［－131	1．085E＋00	$1.284 \mathrm{E}-02$	27.1	1．138E＋00	1．993E－02	28.5	7．4E－01	27E－02	18.6	$4.0 \mathrm{E}-02$
－132	1．597E－01	$4.392 \mathrm{E}-02$	0.1	N．D	8．791E－02	－	2．0E－01	5．8E－02	0.1	3．0E＋00
Cs－134	4．815E－02	$9.213 \mathrm{E}-03$	0.8	4．631E－02	1．350E－02	0.8.	5．1E－02	2．0E－02	0.8	6．0E－02
Cs－136	$6.682 \mathrm{E}-03$	4．722E－03	0.0	ND	7．849E－03	－			－	3．0E－01
C5－137	$5.283 \mathrm{E}-02$	$8.822 \mathrm{E}-03$	0.6	$3.962 \mathrm{E}-02$	$1.406 \mathrm{E}-02$	0.4	5．5E－02	2．0E－02	0.6	9．0E－02．

核種	3月24日 9：30			3月25日 10：00						（3）周辺監梘区域外の水中の濃度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能溋度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界涭度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中潰度涱度 に対する割合 （1）／（3）	（1）故射能漉度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出眼界渱度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）		（1）放射能渱度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界燃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中湾度限度 に対する割合 （1）／（3））	
Te－132				1．3E－02	7．4E－03	0.004				3．0E＋00
Cor 58								，	，	1， $\mathrm{E}+00$
Ru－105．	5．6E－02	4．4E－02	0.02			2－		－	－	3E＋00
Ru－106										1E－01
1－131	1．1E＋00	5．2E－02	28.4	$43 E-01$	1．0E－02	10.7	4．1E－01	2．1E－02	10.3	4E－02
－132	1．2E－01	8．8E－02	$\underline{0.04}$	5．8E－02	2．2E－02	0.02	2．6E－02	1．8E－02	0.4	6E－02
Cs－134	9．9E－02	3．8E－02	1.6	2． $4.45-02$	3． $2 \mathrm{EE}-03$	0.01	2． $7 \mathrm{E}-02$	1．9E－02	0.3	$3 \mathrm{E}-01$
Cs－136	6．8E－02	4．9E－02	0.2	3．4E－02	5．9E－03	0.4			－	9E－02

採取堨所：2F北故水口付近（3，4号放水口付近）（1Fから約 10 km ）

> 探取方法:海水をくみ上げ探取

測定方法：跔料 500 ml をGe半導体検出器で測定

$\begin{aligned} & \text { 検出枋楎 } \\ & \text { (半滅期) } \end{aligned}$	3月27日 14：30						2F 北放水口付近（3．4号放水口付近）（1Fから約 10 km ）			（3）周辺監視区域外の水中の暧度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	2F 北放水口付近（ 3,4 号故水口付近）（1Fから的 10 km ）									
	（1）放射能溃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界潈度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中渡度限度 に対する割合 （1）／（3）	（1）放射能湾度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界漫度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中滶度限度に対する割合 （1）／（3））	（1）放射能温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界激度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中渍噔限供 に対する割合 （1）／（3））	
Te－132						－			－	$3.0 \mathrm{E}+00$
Co－58					－	－			，	1．E＋00
Ru－105					－	－				$3.0 \mathrm{E}+00$
Ru－106					－	，				1E－01
1－131．	3．8E＋00	1．5E－02	95.0	3．8E＋00	3．0E－02	95.5	1．6E＋00	1．7E－02	40.9	4．0E－02
－132	1．5E－02	1：3E－02	0.005			\square				$3.0 \mathrm{E}+00$
Cs－134	$5.4 \mathrm{E}-01$	1．2E－02	9.0	6．1E－01	2．3E－02	10.1	3．2E－01	1．3E－02	5.4	6．0E－02
Cs－136	5．5E－02	1．0E－03	0.2	6．3E－02	1，7E－02	0.2	2．5E－02	9．4E－03	0.1	3．0E－01
$\mathrm{Cs}-137$	5．7E－01	1．0E－02	6.3	6．2E－01	2．2E－02	6.8	3．2E－01	1．2E－02	3.6	9．0E－02
$\mathrm{Ba}-140$			－	9．5E－02	5．7E－02	0.3	5．3E－02	3．1E ${ }^{\text {－}} 02$	0.2	3．0E－011
La－140				4．5E－02	6，2E－03	0.1	24E－02	$3.6 \mathrm{E}-03$	0.1	4．0E－01

核榞										（3）周辺監視区域外の水中の懜度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能源度 （Bq／ cm^{3} ）	（2）検出限界湷度 $\left(\mathrm{Bq} / \mathrm{cm}^{3}\right)$	水中湓度限度 に対する制合 （11）／（3）	（1）放射能浢度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界湾度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中隠度限度に対する割合 （（1）／（3））	（1）放射能泿度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界㯰度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中蜄度跟度 に対する割合 （1）／（3））	
Te－132										$3.0 \mathrm{E}+00$
Co－5B										1：E＋00
Ru－105								$\%$		$3.0 \mathrm{E}+00$
Ru－106										1E－01
1－131										4．0E－02
I－132										3．0E＋00
Cs－134										6．0E－02
Cs－136									．	3．0E－01
Cs－137										$9.0 \mathrm{E}-02$

※ O．OE－Oとは，O．O×10－Oと同じ䝾味である。

捰取場所：2F岩沢海学付近（1，2号放水口から南側に約7，000m地点）
探取方法：海水をくみ，上げ深取
測定方法：試料500mlをGe半準体検出器で測定

検出核種 （半減期）	3月21日 23：45			3月22日 $15: 06$			2F岩沢海卓付近（1，2穹放水口から南側に約7，000m地点			（3）周辺監挸区域外の水中の潘度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）故射能㴗度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界湴度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中濃度限度 に対す石割合 （1）／（3）	（1）放射能浸度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界搌度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中潢度限度に対する割合 （1）／（3）	（1）故射能滛度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界漊度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中偯度限度 に対する割合 （1）／（3））	
Te－132						－				$3.0 E+00$
Co－58	N．D	6．845E－03	－	N．D	$1.301 \mathrm{E}-02$					$1 . \mathrm{E}+00$
Ru－105							3．3E－02	2．8E－02	0.01	$3.0 \mathrm{E}+00$
Ru－106						－	1．2E－01	1．2E－01	1.25	1E－01
－131	6．558E－01	1．226E－02	16.4	$6.664 E-01$	1．862E－02	16.7	7．6E－01	$27 \mathrm{E}-02$	19.1	4．0E－02
1－132	1．205E－01	4．146E－02	0.0	N．D	7．815E－02	\square	3．3E－01	$5.3 \mathrm{E}-02$	0.1	$3.0 \mathrm{E}+00$
C5－134	3．110E－02	8．657E－03	0.5	$3.925 E-02$	1．135E－02	0.7	3．3E－02	2．1E－02	0.5	6．0E－02
Cs－136	5．474E－03	$4.840 \mathrm{E}-03$	0.0	N．D	$6.784 \mathrm{E}-03$	－				3．0E－01
Cs－137	3．202E－02	$8.303 \mathrm{E}-03$	0.4	4．361E－02	1．129E－02	0.5	4．3E：02	21E－02	0.5	9．0E－02

核種	3月24日 8：45			3月25日 9：10			3月26日 15：50			（3）周辺監視区域外の水中の浪度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中浱度限度 に対する割合 （1）／（3））	（1）故射能澎度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中渱度限度に対する割合 （1）$/(3)$ ）	（1）故射能瑯度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）柈出限界退度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中涭度隈度 に対する割合 （1）／（3））	
Te－132						$\xrightarrow{\square}$				$3.0 \mathrm{E}+00$
Co－58							－		－	1．E＋00
Ru－105			T			－		，	，	3．0E＋00
Ru－106						－			2	1E－01
1－131	5．OE－01	1．OE－02	12.6	3．7E－01	1．0E－02	9.2	3．0E－01	9．6E－03	7.6	4．0E－02
－132	N．D	1．9E－02	－	1．2E－01	2．6E－02	0.04				$3.0 \mathrm{E}+00$
Cs－134	3．5E－02	7．0E－03	0.6	2． $0 E-02$	6．7E－03	0.3	1．3E－02	7．1E－03	0.2	$6.0 \mathrm{E}-02$
Cs－136	5．3E－03	5．1E－03	0.02	4．2E－03	3． $3 \mathrm{E}-03$	0： 01			－	3．0E－01
Cs－137	3．8E－02	7．0E－03	0.4	2．2E－02	6． $0 \mathrm{E}-03$	0.2	1，4E－02	6．8E－03	0.2	9，0E－02

※ O．OE－Oとは， 0.0×10－Oと同じ意味である。

探取堨所： $2 F$ 岩沢海岸付近（ 1,2 号放水口から南側に絇 $7,000 \mathrm{~m}$ 地点）
探取方法：海水をくみ上げ探取
測定方法：骵料500miをGe半楽体検出器で測定
㵋定時間：1，000秒

娭出核程 （半蔵期）．	3月27日 08：45			3月28日 B：45						
	2F岩沢海岸付近（1，2㝵放水口から南側に呿7，000m地点）									
	（1）放射能㴗度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界漫度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中墭度限度 に対する割合 （1）／（3）	（1）放射能暧度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）楧出限界浊度 $\left(\mathrm{Bq} / \mathrm{cm}^{3}\right)$	水中湮度酸度に対する割合 （C）／（3））	（1）放射能潢度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界滆度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中濃度限度 に対する割合 （1）／（3））	
Te－132						－				3．0E＋00
Co－58						－				1． $\mathrm{E}+00$
Ru－105．			－			，				$3.0 \mathrm{E}+00$
Ru－106										1E－01
1－131	2．9E－01	1．0E－02	7.4	$2.4 \mathrm{E}+00$	2．7E－02	58.8	$1.3 \mathrm{E}+00$	1．7E－02	31.9	$4.0 \mathrm{E}-02$
1－132						－				3，0E＋00
$\mathrm{C}_{5}-134$	2．0E－02	6．0E－03	0.3	3．3E－01	21E－02	5.5	2．3E－01	1．2E－02	3.9	6．0E－02
Gs－136	2．3E－03	2．1E－03	0.01	2．5E－02	1：7E－02	0.08	1．7E－02	$9.3 \mathrm{E}-03$	0.06	3．0E－01
Cs－137	24E－02	5．7E－03	0.3	3．8E－01	2．1E－02	4.2	2．3E－01	1．2E－02	2.6	$9.0 \mathrm{E}-02$
Ba－140	－		－	－		$\underline{\square}$	3．6E－02	3．0E－02	0.1	$3.0 \mathrm{E}-01$
La－140				2．8E－02	5，3E－03	0.1	1．6E－02	4．4E－03	0.0	4．0E－011

核種										（3）周辺監視区域外の水中の浗度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）故射能濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中滞度限度 に対する割合 （1）／（3））	（1）放射能源度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）模出限界灂度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）		（1）放射能囅度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界瀑度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中濃度限度 に対する割合 （1）／（3））	
Te－132										$3.0 \mathrm{E}+00$
Co－58										1．E＋00
Ru－105										3．0E＋00
Ru－106										1E－01
1－131										4．0E－02
1－132										$3.0 \mathrm{E}+00$
Cs－134										6．0E－02
Cs－136										3．0E－01
Cs－137						，				9，0E－02

探取場所： 2 F 富岡川河口付近（ $3,4 \mathrm{u}$ 放水口から北側絇 $2,000 \mathrm{~m}$ 地点）（IFから約 8 km ）
㟳取方法：海水をくみ上げ採取
泪定方法：騳料 500 ml をGe半朗体検出器で測定
則定時間：1，000秒

検出核楮 （半減期）	3月22日 0：38									
	（1）故射能温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界滴度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中㴗度限度 に対する割合 （1）／（3））	（1）放射能源度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）		（1）放射能温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界浸度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中湎度限度 に対する制合 （ 1 ／（3））	
Te－132										$3.0 \mathrm{E}+00$
Co－58	$1.028 \mathrm{E}-02$	1．253E－02	0.0							1． $\mathrm{E}+00$
Ru－105	\square	－	－							$3.0 \mathrm{E}+00$
Ru－106		－	－ 0							1E－01
1－131	$3.211 \mathrm{E}+00$	$1.694 \mathrm{E}-02$	80.3							4．0E－02
1－132	$8.761 \mathrm{E}^{-01}$	$4.236 \mathrm{E}-02$	0.3				－			$3.0 \mathrm{E}+00$
Cs－134	7．535E－02	1．102E－02	$1: 3$							6．0E－02
Cs－136	1．159E－02	7.718 EE 03	0.0							3．0E－01
Cs－137	7．760E－02	1．180E－02	0.9							9．0E－02

核稩										（3）周辺監視区域外の水中の䕄度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能漫度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界源度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中浱度限度 に対する割合 （1）／（3））	（1）放射能莀度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中湯度限度に対する割合 （1）／（3））	（1）放射能渺度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界㵋度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中溒度限度 に対する割合 （1）／（3）	
Te－132										3．0E＋00
Co－58	，				，					$1 . \mathrm{E}+00$
Ru－105										3．0E＋00
Ru－106										1E－01
－131										4．0E－02
1－132										$3.0 \mathrm{E}+00$
C5－134										6．0E－02
Cs－136										3．0E－01
Cs－137										9．0E－02

From:	OSTO2 HOC
Sent:	Friday, April 01, 2011 10:57 AM
To:	LIAO2 Hoc; LIA03 Hoc
Cc:	FOIA Response.hoc Resource
Subject:	FW: IAEA distributed documents
Attachments:	NISA_Press_Release_66_(Japanese)_-_Monitoring_Data.pdf; NISA_Press_Release_66
	_(Japanese).pdf

From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Friday, April 01, 2011 10:52 AM
To: LAO 7 HOC; OST01 HOC; OST02 HOC; OST03 HOC
Subject: FW: IAEA distributed documents

[^6]This email is UNCLASSIFIED.

$$
x+x / 15^{2}
$$

測定場所

4月1日

> 䀅岛第一(1F)
 （3）西門付近（MP－5付近）（ 2 号機より西紋1．1キロ）（4）正門付近前（MP－6付近）（ 2 号枚より西南西約 $1.0 \neq \square$ ）
 MC：Eニタリンクカー 可橵：可报然MP

定場所	（3）																							
－間	$0: 001$	$0: 10$	0：20	0：30	0：40	$0: 50$	1：00	1：10	1：20	1：30	1：40	1：50	2：00	2：10	2：20	2：30	$2: 40$	2：50	3：00	3：10	3：20	3：30	3：40	3：50
	94.3	94.3	94.2	94.1	94.1	94.1	93.9	93.9	93.9	93.9	98.9	93.7	93.7	93.8	93.7	93.4	93.5	93.4	93.3	93.3	93.3	93.4	93.3	93.2
㕩性子	N．D																							
（6）本的南（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－
8 7 正門（ $\mu \mathrm{SV} / \mathrm{h}$ ）	145	－	－	145	－	－	145	－	－	145	－	－	146	－	－	146	－	－	145	－	－	146	－	－
（3） 酉門 $^{(1 \mu \mathrm{~Sv} / \mathrm{h})}$	69.3	－	－	68.9	－	－	68.6	－	－	68.7	－	－	68.8	－	－	68.7	－	－	68	－	－	68.3	－	－
葍向	北西	西北西	酉	北西	酉	酉	北西	西北西	西	北西	西	北西	西北西	西北西	西	北西	北西	北西	西北西	北西	西	西	西	西北目
風景 $(\mathrm{m} / \mathrm{s})$	0.6	0.7	0.8	0.4	0.6	0.6	0.8	0.8	0.8	0.5	0.8	0.7	0.9	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.5	0.6	0.6	0.8

袚場所	（3）																							
1 間	4：00	4：10	4：20	4：30	$4: 40$	4：50	5：00	5：10	5：20	5：30	5：40	5：50	6：00	6：10	6：20	6：30	6：40	6：50	7.00	7：10	7：20	7：30	7：40	7：50
	93.1	93.0	93.0	93.1	92.8	92.9	92.8	92.8	92.7	92.5	92.4	92.3	92.3											
$1)^{\text {中性子 }}$	N．D																							
（6）本朢南 $(\mu \mathrm{SV} / \mathrm{h})$	940	－	－	940	－	－	930	－	－	930	－	－	930											
或证門（ $\mu \mathrm{SV} / \mathrm{h}$ ）	145	－	－	145	－	－	144	－	－	144	－	－	146											
3）${ }^{\text {西門 }}$（ $\left.\mu \mathrm{Sv} / \mathrm{h}\right)$	70	－	－	68.4	－	－	68.8	－	－	69	－	俉	69.9											
－風向	西	西	西	西	西	西	西	西	西	西	西	西	西南西											
㕃速（m／s）	0.8	0.7	0.7	0.6	0.6	0.7	0.7	0.8	0.7	0.7	0.8	0.8	0.7											

还定瑒所	（3）																							
\％間	$8: 00$	8：10	8：20	8：30	8.40	8：50	9：00	9：10	9：20	9：30	9：40	9：50	10：00	10：10	10：20	10：30	10：40	10：50	11：00	11：10	11：20	11：30	11：40	11：50
19 中栍子																								
（b）本鎳南 $(\mu \mathrm{SV} / \mathrm{h})$																								
J（7）正閏（ $\mu \mathrm{Sv} / \mathrm{h})$																								
（3）西閏 $(\mu \mathrm{Sv} / \mathrm{h})$																								
－風京																								
風速（m／s）																								

測定場所

3月31日
（1）事務本館北（2号横より北西約0．5キロ）（2）体育館付近（MP－5東側）（2号機より西北西約0．9キ口） （3）西門付近（MP－5付近）（2号機より西約1．1才口）（4）正聞付近前（MP－6付近）（2号機より西南西約1．0キロ） （5）免褑棟前（2号機より北西約0．5キロ）（6）事務本館南側（7）正門 MC：モニタリングカー 可搬：可搬型MP

定埸所	（3）																							
－間	12：00	12：10	12：20	12：30	12：40	12：50	13：00	13：10	13：20	13：30	13：40	13：50	14：00	14：10	14：20	14：30	14：40	14：50	15：00	$15: 10$	15：20	15：30	15：40）	15：50
	98.9	98.1	97.9	97.7	98.7	97.9	97.7	100.8	100.5	99.2	99.6	97.6	99.9	97.6	96.8	96.5	96.5	96.6	96.5	96.7	96.7	96.9	98.1	99.1
㕩性子	N．D																							
T 6 ）本監南 $(\mu \mathrm{Sv} / \mathrm{h})$	950	－	－	940	－	－	940	－	－	940	－	－	－940	－	－	930	－	－	930	－	－	930	－	－
	155	－	－	155	－	－	162	－	－	157	－	－	157	－	－	153	－	－	150	－	－	151	－	－
（3）西門（ $\mu \mathrm{SV} / \mathrm{h})$	70.3	－	－	70.8	－	－	68.8	－	－	72.0	－	－	69.3	－	－	69.4	－	－	69.7	－	－	69.6	－	－
国面	東	北束	北	杳	杳	東	東	相	北東	北東	南宋	南束	東	北北苯	南東	東	西	南西	北西	東	北北東	東	曺	東
風速（m／s）	2.3	1.3	1.0	1.8	1.7	1.8	2.3	2.5	2.7	2.3	2.6	2.3	2.0	1.4	0.8	0.6	0.5	0.7	0.7	0.5	0.6	0.5	1.2	0.8

］定場所	（3）																							
f．間	16：00	16：10	16：20	16：30	16：40	16：50	17：00	17：10	17：20	17：30	17：40	17：50	18：00	18：10	18：20	18：30	18：40	18：50	19：00	19：10	19：20	19：30	19：40	19：50
	107.0	108.2	98.6	98.0	98.1	97.9	97.7	97.6	97.6	97.3	97.2	97.0	97.0	96.9	96.8	96.7	96.5	96.5	96.3	96.4	96.3	96.1	96.3	96.1
¢ 中䧉子	N． D	N．D	N．D	N．D	N．D	N．D	N． D	N．D	ND	N．D														
i］ 6 本鴉南 $(\mu \mathrm{Sv} / \mathrm{h})$	950	－	－	930	－	－	930	－	－	930	－	－	930	－	－	930	－	－	940	－	－	940	－	－
	154	－	－	164	－	－	154	－	－	150	－	－	151	－	－	149	－	－	148	－	－	148	\bigcirc	－
（3）的門（ $\mu \mathrm{Sv} / \mathrm{h})$	82.8	－	－	71.5	－	－	70	－	－	69.4	－	－	68.3	－	－	70.1	－	－	67.8	－	－	68.4	－	－
目市	南東	東	南東	東	東	柬	北束	北	北西	西南西	東	北東	南西	西北西	北北東	北北西	北西	西	西	西	北西	北西	西北西	北西
罡速（m／s）	1.5	1.8	1.8	1.0	1.5	0.9	0.7	0.4	0.5	0.5	0.4	0.6	0.5	0.7	0.7	0.3	0.4	0.7	0.3	0.6	0.8	0.7	1.0	1.2

呵定埸所	（3）																							
年 間	20：00	20：10	20：20	20：30	20：40	20：50	21：00	21：10	21：20	21：30	21：40	21：50	22：00	22：10	22：20	22：30	22：40	22：50	23：00	23：10	23：20	23：30	23：40	$23: 50$
的定傎 $(\mu \mathrm{Sv} / \mathrm{h})$	96.2	96.2	96.0	95.9	95.9	95.7	95.7	95.6	95.4	95.3	95.3	95.3	95.2	95.3	95.0	94.9	95.1	94.8	94.8	94.8	94.7	94.7	94.6	94.7
㕩性子	N．D																							
（6）本籁南 $(\mu \mathrm{Sv} / \mathrm{h})$	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－	940	－	－
的（7）证門 $(\mu \mathrm{Sv} / \mathrm{h})$	148	－	－	148	－	－	148	－	－	148	－	－	148	－	－	146	－	－	148	－	－	145	－	－
（3）西門（ $\mu \mathrm{Sv} / \mathrm{h})$	70.9	－	－	70.6	－	－	69.9	－	－	70.5	－	－	69.6	－	－	72.1	－	－	69.9	－	－	69.9	－	－
風面	北西	西北西	北西	北遷	北東	北西	北北東	西	北西	北西	北西	北北酉	西	北西	西	西	西	西	酩南西	北西	西	西	西	西
風速（m／s）	1.1	1.4	1.3	0.9	0.8	0.8	0.5	0.3	0.3	0.4	0.4	0.2	0.4	0.5	0.7	1.0	0.7	0.7	0.8	0.8	0.5	0.4	0.5	0.7

濑定場所

福息第一（1F）
 （3）西門付近（MP－5付近）（ 2 号樚より）西約1．1キロ）（4）正門付近前（MP－6付近）（2号機より西南西約1．0キロ）

MC：Eニ舛ンクカー 可搬：可鲟型MP

定愊所	（3）																							
間	0：00	0：10	0：20	0：30	0：40	0：50	1：00	1：10	1：20	1：30	$1: 40$	1：50	2：00	2：10	2：20	2：30	2：40	2：50	3：00	3：10	3：20	3：30	3：40	3：50
c劕定值（ $\mu \mathrm{Sv} / \mathrm{h})$	100.8	100.8	105.4	101.0	100.4	100.3	100.2	100.4	100.3	100.1	100.2	100.1	100.0	100.0	100.0	100.1	100.0	100.1	99.9	100.3	100.1	100.0	100.1	99.9
的性子	N．D	N．D	N．D	N． D	N．D．	N．D	N．D	N．D	N．D	N． O	N．D	N．D	N．O	N．D	N．D	ND	N．D							
（6）本監南 $(\mu \mathrm{Sv} / \mathrm{h})$	990	－	－	1，000	－	－	990	－	－	990	－	－	1，000	－	－	990	－	－	990	－	－	990	－	－
\％ 7 正 $\mathrm{P}^{(1)}(\mu \mathrm{Sv} / \mathrm{h})$	154	－	－	152	－	－	154	－	－	152	－	－	152	－	－	153	－	－	152	－	－	151	－	－
［ 3 西門（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	71.5	－	－	73.6	－	－	72.2	－	－	71.9	－	－	71.3	－	－	72.5	－	－	71.9	－	－	70.5	－	－
一 蜀面	北杏	南東	南	北東	西北西	北宩	北東	北東	北東	龟	南南西	南南東	酉南西	南南東	束北苯	西南西	西北西	南	南西	北交	西南西	西北西	西	北曹
風速（m／s）	3.9	0.9	2.8	4.3	1.6	4.0	5.8	5.9	6.0	2.1	0.5	0.5	0.8	0.9	0.9	1.8	2.2	3.6	2.2	4.7	4.3	1.8	0.6	0.3

定瑒所	（3）																							
－間	4：00	4：10	4：20	4：30	4：40	4：50	5：00	5：10	5：20	5：30	5：40	5：50	6：00	6：10	6：20	6：30	6：40	6：50	7：00	7：10	7：20	7：30	7：40	7：50
蔀定值（ $\mu \mathrm{SV} / \mathrm{h}$ ）	99.9	99.9	99.9	99.9	99.9	99.8	99.7	99.8	99.7	99.6	99.6	99.5	99.4	99.3	99.4	99.4	99.4	99.3	99.3	99.2	99.2	99.3	99.0	99.2
叹性子	N．D																							
6本笪南 $(\mu \mathrm{Sv} / \mathrm{h})$	990	－	－	990	－	－	990	－	－	980	\sim	－	990	－	－	980	－	－	990	－	－	980	－	－
J． 7）$^{\text {正聞 }(\mu \mathrm{Sv} / \mathrm{h})}$	152	－	－	152	－	－	150	－	－	151	－	－	152	－	－	152	－	－	150	－	－	150	－	－
（3）西門（ $\mu \mathrm{Sv} / \mathrm{h})$	70.9	－	－	71.2	－	－	71.2	－	－	70.9	－	－	72	－	－	71.8	－	－	72.9	－	－	71.4	－	－
風向	西南西	西南西	北東	南南西	南西	北宩	北東	北束	北苯	北東	北束	北東	西南西	北果	北東	北東	西	北西	西	西	西	北西	北西	西
夙速（ m / s ）	3.4	0.5	0.7	2.4	0.4	2.4	0.7	4.3	5.6	5.7	5.5	3.9	2.2	3.0	2.1	4.9	1.5	0.7	0.6	0.5	0.9	0.5	0.5	1.0

䧑瑒所	（3）																							
聞	8：00	8：10	8：20	8：30	8：40	8：50	9：00	9：10	9：20	9：30	9：40	9：50	10：00	10：10	10：20	10：30	10：40	10：50	11：00	$11: 10$	11：20	11：30	11：40	11：50
	99.0	99.0	98.9	98.7	98.4	98.4	98.5	98.6	98.6	98.6	98.4	98.7	98.5	98.4	99.9	98.6	100.0	100.9	98.7	98.5	100.6	98.6	98.4	98.3
中性子	N．D																							
T 6 本本筫南 $(\mu \mathrm{Sv} / \mathrm{h})$	980	－	－	980	－	－	970	－	－	970	－	－	970	－	－	960	－	－	960	－	－	950	－	－
和（7）正門（ $\mu \mathrm{Sv} / \mathrm{h})$	150	－	－	150	－	－	149	－	－	149	－	－	151	－	－	160	－	－	158	－	－	159	－	－
（3）西門（ $\mu \mathrm{Sv} / \mathrm{h})$	72.1	－	－	69.6	－	－	71	－	－	72.9	－	－	70	－	－	70.1	－	－	72.4	－	－	72.5	－	－
國面	北	亚北西	西	北東	西	北	北	北西	北西	北西	北西	北北西	北西	西北西	北北東	東	束	菓	自	绩	東	東	東	東北東
風速（m／s）	0.9	0.7	1.5	1.1	1.6	1.0	0.9	1.2	1.0	0.7	0.7	0.7	0.7	9.0	1.5	1.8	0.5	2.9	3.1	2.9	3.7	3.6	3.3	2.5

4月1日

－	$0: 0$	0：10	0：20	0：30｜	0：40	0：50	1：00	10	1：20	1：30｜	$1: 40$	1：50	2：00	2：10	2：20	2：30	$2: 40$	$2: 50$	3：00	3：10	3：20	3：30	3：4	
$\underline{\mathbb{P} \mid(\mu \mathrm{Sv} / \mathrm{h})}$	7.303	7.317	7.287	7.313	7.26	7.300	7.273	7.253	7.313	7.307	7.287	7.283	7.260	7.257	7.260	7.270	7.257	7.227	7.227	7.223	7.257	7.253	7.24	7220
$\overline{\mathrm{P} 2(\mu \mathrm{~Sv} / \mathrm{h})}$	3.84	3.850	3.8	3.8	3.863	3.833	3.860	3.8	3.	3.817	3.830	3.820	3.833	3.8	3.830	3.840	3.8	3.81	3.8	3.81	3.8	3.803	3.8	3.837
P3（ $\mu \mathrm{Sv} / \mathrm{h})$	6.73	6.67	6.717	6.733	6.743	6.713	6.710	6.690	6.71	6.690	6.693	6.707	6.6	6.693	6.6	6.683	6.6	6.663	6.67	6.673	6.670	6.64	6.63	6.643
P4（ $\mu \mathrm{Sv} / \mathrm{h})$	4.893	4.85	4.8	4	4.883	4.8	4.870	4.870	4.8	4.863	4.850	4.847	4.8	4.8	4.8	4.843	4.8	4.820	4.8	4.82	4.8	4.84	4.830	4.823
P5（ $\mu \mathrm{Sv} / \mathrm{h})$	4.620	4.613	4.620	4.613	4.620	4.613	4.6	4.	4.613	4.587	4.613	4.613	4.613	4.620	4.620	4.567	4.613	4.620	4.573	4.56	4.56	4.54	52	4.540
$\overline{P 6}$（ $\mu \mathrm{Sv} / \mathrm{h})$	5.84	5.8	5.830	5.8	5.850	5.8	5.8	5.8	5.8	5.793	5.8	5.82	5.807	5.820	5.803	5.79	5.80	5.76	5.770	5.800	5.790	5.77	5.790	． 790
$\underline{\operatorname{PT}(\mu \mathrm{Sv} / \mathrm{h})}$	欠楖	欠測	矢溉	父潄	矢沮	欠租	欠測	欠现	欠溉	欠溉	欠溉	欠涀	欠測	欠䫀	欠濆	矢溉	炎潮	炎㵋	欠測	欠剆	欠渞	欠溉	欠䫀	欠
風向	北西	西北西	北西																					
速（m／s）	6.8	6.2		5.7	4.8	4.9	4.7	4.4	5.0	5.6	5.4	4.9	4.3	3.9	3.6	4.1	4.7	5.2	5.	4.4	4.7			

4月1日

－刿ングボスト	$4: 00$	4：10	4：20	4：30］	4：40	4：50	5：00	5：10	5：20］	5：30］	5：40］	5：50	6：00	6：10	6：20	6：30	6：40｜	6：50｜	7：00｜	7：10	7：20	7：30	7：40	$7: 50$
$\overline{\mathrm{P} 1(\mu \mathrm{~Sv} / \mathrm{h})}$	7.223	7.240	7.210	7.200	7.207	7.210	7.223	7.223	7.190	7.190	7.183	7.167	7.193											
$\overline{\mathrm{P} 2}(\mu \mathrm{~Sv} / \mathrm{h})$	3.813	3.803	3.790	3.817	3.803	3.790	3.807	3.780	3.803	3.803	3.780	3.773	3.793											
$\bar{P} 3(\mu \mathrm{~Sv} / \mathrm{h})$	． 6.633	6.653	6.647	6.643	6.623	6.640	6.620	6.647	6.617	6.603	6.583	6.590	6.610											
P4（ $\mu \mathrm{Sv} / \mathrm{h})$	4.820	4.807	4.810	4.810	4.800	4.800	4.793	4.783	4.803	4.793	4.807	4.790	4.800											
$\overline{\mathrm{P} 5}(\mu \mathrm{sv} / \mathrm{h})$	4.567	4.513	4.573	4.520	4.513	4.540	4.520	4.513	4.520	4.520	4.520	4.520	4.520											
$\underline{1 P 6(\mu S v / h)}$	5.807	5.787	5.753	5.770	5.767	5.780	5.770	5.757	5.757	5.753	5.743	5.767	5.750											
$\underline{\text { P7 }}$（ $\mu \mathrm{Sv} / \mathrm{h})$	欠溉	资溉	欠測	欠濆	欠測	欠測	欠測	欠餪	父剆	欠測	欠测	欠朗	只溉											
風向	北西																							
風速（m／s）	4.0	4.4	5.0	5.0	5.1	4.5	4.5	4.7	4.6	4.2	4.2	4.1	3.5											

4月1百
4月1日
 ｜P｜（ $u \mathrm{~Sv} / \mathrm{h})$ $\mathrm{P} 2(\mu \mathrm{~Sv} / \mathrm{h})$ $\overline{\mathrm{P} 3(\mu \mathrm{~Sv} / \mathrm{h})}$ $\stackrel{P}{(P 4(\mu S v / h)}$ $\frac{P}{\mathrm{P} 5(\mu \mathrm{~Sv} / \mathrm{h})}$ $\stackrel{P}{P G(\mu \mathrm{~Sv} / \mathrm{h})}$ $\overline{\mathrm{P} 7}(\mu \mathrm{~Sv} / \mathrm{h})$

風向

析スト	$8: 00$	$8: 10$	8.2	8：30］	8：40			
－ Sv / h ）								
LSv／h）								
（ Sv／h）								
c Sv／h）								
L Sv / h ）								
（Sv／h）								
LSv／h）								
向								
（m／s）								

县速（m／s）

－夘こグポスト	12：00	12：10	12：20｜	12：30	12：40	12：50	13：00	13：10	13：20	13：30	13：40	13：50	14：00｜	14：10	14：20	14：30	14：40	14：50｜	15：00	15：10	15：20	15：30	15：40	15：50
$\overline{\bar{p} 1}(\mu \overline{S v} / \mathrm{h})$	7.600	7.603	7.630	7.647	7.610	7.607	7.603	7.590	7.590	7.610	7.560	7.587	7.577	7.563	7.503	7.503	7.497	7.497	7.493	7.510	7.517	7.517	7.507	7.510
$\mathrm{P} 2(\mu \mathrm{~Sv} / \mathrm{h})$	4.013	4.027	4.033	4.023	4.017	3.997	4.020	4.023	4.017	4.020	4.017	4.010	4.007	4.003	3.970	3.970	3.977	3.977	3.967	3.973	3.990	3.960	3.977	3.980
$\mathrm{P}^{2}(\mu \mathrm{~Sv} / \mathrm{h})$	6.977	6.993	7.020	6.957	6.957	6.967	6.957	6.967	6.980	6.970	6.950	6.947	6.943	6.953	6.890	6.890	6.897	6.893	6.907	6.860	6.910	6.863	6.890	6.893
P4．$\mu \mathrm{Sv} / \mathrm{h})$	5.390	5.397	5.417	5.417	5.393	5.403	5．397	5.410	5.403	5.393	5.390	5.380	5.387	5.407	5.363	5.363	5.350	5.343	5.007	4.993	4.990	5.000	5.023	4.983
P5（ $\mu \mathrm{Sv} / \mathrm{h})$	4.793	4.807	4.813	4.813	4.813	4.813	4.760	4.760	4.713	4.760	4.760	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713	4.713
$\mathrm{P}_{6}(\mu \mathrm{~Sv} / \mathrm{h})$	6.017	6.037	6.043	6.010	6.037	6.007	6.050	6.010	6.007	6.037	6.030	6.000	6.033	6.013	5.960	5.960	5.960	5.967	5.947	5.950	5.970	5.993	5.950	5.960
$\underline{P 7}(\mu \mathrm{~Sv} / \mathrm{h})$	3.250	欠㳔	欠測	欠測	欠相	欠測	欠渭	欠測	尔現	欠睍	欠朗	欠澌	欠䫀	欠測	欠欠楖	欠測	欠測	欠㵋	欠㳔	欠溉	欠測	欠餪	欠施	欠測
風向	東	東北東	東北東	北東	北東	北東	北東	北東	北東	菄北東	束南東	東南東	東北東	東	北東	北東	北西	北西	西北西	北北西	北西	北北西	北北西	北
風速（m／s）	4.0	4.6	6.0	5.1	3.0	3.5	3.9	2.9	3.7	2.7	2.0	1.7	3.2	2.6	6.0	6.0	5.9	6.9	9.9	7.8	5.3	5.2	4.6	3.2

PP（ μ SV／h）	4.71	4.7	4.71	4.7	4.80	4.7	4.7	4.71	4.7	4.713	4.	4.7	4.	4.713	4.713	4.713	4.7	4.713	4.713	4.687	4.667	4.713	4.660	4.693
$\operatorname{P6}(\mu \mathrm{Sv} / \mathrm{h})$	5.967	5.967	5.987	5.997	6.020	5.930	5.983	5.967	5.950	5.937	5.940	5.960	5.957	5.957	5.943	5.957	5.960	5.963	5.947	5.943	5.917	5.920	5.903	5.927
P7（ μ Sv／h）	欠樃	欠楖	欠餪	欠樃	欠椇	欠測	欠楖	欠淔	穴測	欠濆	欠測	欠測	欠測	欠睍	欠測	欠睍	欠測	欠犋	欠測	欠測	欠湘	欠䫀	欠測	欠洎
風向	東北束	北束	北束	北東	北東	北東	北東	北北東	北	北	北	北西	西北西	北東	北北西	北北西	北北西	北西	北北西	北北西	北北西	北北西	北北西	北北西

朋31日

－9	20：0	20：10	20：20｜	20：30	20：4	20：50	21：00	21：10	21：2	21：3	21：40	21：50	22：0	22：10	22：2	22：30	$22: 4$	22：50	23：00	23：10	23：2	23：	23：	23：5
$\overline{\mathrm{P} 1}(\mu \mathrm{~Sv} / \mathrm{h})$	7.413	7.397	7.423	7.403	7.380	7.400	7.420	7.360	7.390	7.370	7.380	7.390	7.37	7.363	7.347	7.36	7.33	7.343	7.34	8：05	7.33	7.30	7.330	7.307
P2（ $\mu \mathrm{Sv} / \mathrm{h}$	3.907	3.937		3.91	3.90	3.90		388		3.89		3.87	3.87	3.87	3.8	3.88	3.8	3.87	3.85	20：4	3.8	3.8	3.8	
P3（ $\mu \mathrm{Sv} / \mathrm{h})$	6.810	6.797	6.820	6.820		6.830	6.793	6.790	6.770	6.780		6.7	6.74	6.790	6.763	6.76	6.743	6.750	6.733	17：2	6.74	6.70	6.717	723
P4（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	4.950	4.9	4.930	4.9	4.943	4.930	4.923	4.940	4.920	4.923	4.900	4.90	4.930	4.90	4.91	4.8	4.8	4.900	4.893	21：	4.88	4.89	4.890	4.893
P5 $(\mu \overline{S v} / \mathrm{h})$	4.713	4.667		4.613	4.660		4.613				4.613	4.613	4.660	4.613	4.613	4.620	4.620	4.620	4.613	14：4	4.613	4.61	4.620	4.613
$\overline{P 6}(\mu \mathrm{~Sv} / \mathrm{h})$	893	5.9		5.893	5.917	5.90	5.8	5.907	5.910	5.87	5.870	5.87	5.87	5.893	5.880	5.87	5.85	5.897	5.860	21：02	5.86	5.85	5.863	． 84
$\overline{P 7}(\mu \mathrm{~Sv} / \mathrm{h})$	欠潄	欠測	欠䫀	欠淔	欠測	欠樋	欠測	欠測	欠䫀	欠䫀	欠測	欠測	欠㳔	欠測	欠㳔	欠測		欠測	欠測		欠溉	欠測	欠測	欠就
風向	北北西	北西	北北西	北	北北西	北北西	北西	北北																
速（m／s）													4.8	4.8		6.3				1：3				

3月31日

3月31日	0：00	$0: 101$	$0: 20$	0：30	0：401	0．50	1：00	1：10	1：20	1：301	1：40｜	1：50］	2：00	2：10）	2：20	2：30｜	2：40	$2: 50$	3：00	3：10	3：20	3：30｜	3：40	3：50
$\overline{\overline{1 P 1}(\mu \mathrm{~Sv} / \mathrm{h})}$	7.780	7.757	7.757	7.760	7.733	7.750	7.690	7.697	7.713	7.680	7.657	7.657	7.653	7.667	7.680	7.677	7.643	7.677	7.647	7.640	7.623	7.623	7.593	7.607
AP2（ $\mu \mathrm{Sv} / \mathrm{h})$	4.113	4.097	4.097	4.103	4.067	4.067	4.073	4.040	4.050	4.067	4.043	4.030	4.027	4.033	4.033	4.037	4.040	4.047	4.017	4.027	4.037	4.030	4.013	4.017
	7.203	7.193	7.173	7.203	7.140	7.157.	7.140	7.120	7.140	7.157	7.123	7.117	7.127	7.113	7.113	7.123	7.130	7.143	7.107	7.113	7.083	7.060	7.070	7.077
$\overline{\mathrm{PP} 4(\mu \mathrm{~Sv} / \mathrm{h})}$	5.623	5.537	5.557	5.543	5.527	5.527	5.510	5.510	5.530	5.520	5.517	5.507	5.510	5.493	5.507	5.510	5.487	5.517	5.527	5.453	5.473	5.487	5.470	5.477
$\overline{\text { aP5 }}$（ $\mu \mathrm{Sv} / \mathrm{h}$ ）	4.960	4.913	4.913	4.913	4.913	4.907	4.907	4.913	4.913	4.873	4.853	4.907	4.867	4.893	4.860	4.913	4.913	4.907	4.907	4.873	4.860	4.840	4.853	4.867
$\overline{P 6(\mu \mathrm{~Sv} / \mathrm{h})}$	6.143	6.120	6.120	6.143	6.120	6.113	6.123	6.097	6.093	6.117	6.073	6.120	6.080	6.073	6.073	6.080	6.100	6.090	6.060	6.070	6.067	6.077	6.057	6.070
AP7（ $\mu \mathrm{Sv} / \mathrm{h})$	欠测	欠朗	攵㳔	欠測	欠㖵	欠测	欠濆	欠測	欠㖵	欠剆	欠测	欠測	欠測	父淔	欠樃	众楖	欠㴘	欠颠	欠湘	欠澌	欠测	欠朗	欠㖵	欠㣜
風向	北北西	北北西	北	北北東	北北束	北北束	北	西北西	北西	北北西	北東	北北束	東北杳	東北東	東	西南西	東南東	南果	南南東	南南東	南西	南南西	南南西	南南東
風速（m／s）	4.4	3.1	2.5	2.5	1.0	0.7	0.2	0.2	0.7	0.2	1.1	1.2	0.8	0.4	0.4	0.0	1.8	2.2	1.3	1.4	1.5	1.4	1.6	0.5

3月31日

こ舛ソサポスト	4：00	4：10	4：20	4：30	4：40	4：50	5：00	5：10	5：20	5：30	5：40	5：50	6：00	6：10	6：20	6：30	6：40	6：50	7：00	7：10	7：20	7：30	7：40	7：50
TP1 μ Sv／h）	7.630	7.590	7.613	7.587	7.580	7.577	7.583	7.577	7.580	7.580	7.560	7.543	7.543	7.557	7.573	7.530	7.540	7.537	7.527	7.533	7.563	7.527	7.553	7.513
$\mathbb{1 P 2}(\mu \mathrm{Sv} / \mathrm{h})$	4.030	4.023	3.993	4.000	3.98	3.973	4.023	4.003	4.000	3.993	4.000	3.987	3.993	3.990	4.000	3.983	3.98	3.970	3.98	3.980	3.98	3.98	3.98	3.960
$\overline{\mathrm{AP} 3}(\mu \mathrm{~Sv} / \mathrm{h})$	7.057	7.08	7.050	7.063	7.07	7.0	7.04	． 063	7.037	7.067	7.047	7.027	7.003	7.04	7.05	7.050	7.043	7.050	6.997	7.01	7.03	7.02	6.9	7.033
$1{ }^{184}$（ $\left.\mu \mathrm{Sv} / \mathrm{h}\right)$	5.473	5.467	5.477	5.490	5.483	5.483	5.463	5.460	5.473	5.443	5.453	5.457	5.467	5.440	5.453	5.447	5.437	5.457	5.447	5.427	5.423	5.437	5.453	5.437
$4 \mathrm{P5}(\mu \mathrm{~Sv} / \mathrm{h})$	4.900	4.820	4.853	4.900	． 813	4.807	4.813	． 813	807	4.813	4.820	4.827	4.80	4.80	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813
$\overline{1 P 6}(\mu \mathrm{~Sv} / \mathrm{h})$	6.070	6.060	6.057	6.063	6.063	6.047	6.050	6.047	6.033	6.023	6.037	6.033	6.060	6.023	6.003	6.033	6.030	6.033	6.020	6.023	6.053	6.027	6.010	6.047
AP7（ $\mu \mathrm{Sv} / \mathrm{h})$	欠測	欠剠	欠顛	欠測	欠剆	欠楖	欠測	欠蔀	欠測	矢利	欠測	欠㳔	欠測	欠剆	欠湘	欠測	欠剆	欠測	欠楖	欠楖	欠剆	欠㵋	欠洌	欠樃
風向	南東	南	南	南南西	南南西	南南西	南西	西南酉	西南西	西南酉	西南西	西南西	西南西	南西	南西	南西	南西	南西	西南西	西南西	西南西	西	西	西北西
涫（m）																								

3 3 31 百

こ列ソダポスト	8：00｜	8：101	8：20	8：30	8：40	8：50｜	9：00｜	9：10	9：20	9：30｜	9：40	9，50｜	10：00	10：10	10：20	10：30	10：40	10：50	11：00	11：10	11：20	11：30	11：40	11：50
1P1 $(\mu \mathrm{Sv} / \mathrm{h})$	7.517.	7.530	7.540	7.537	7.530	7.513	7.510	7.500	7.527	7.497	7.540	7.503	7.487	7.493	7．513	7.517	7.563	7.580	7.507	7.543	7.590	7.493	7.503	7.503
$\underline{\mathbb{P} 2(\mu \mathrm{~Sv} / \mathrm{h})}$	3.983	3.993	3.970	3.990	3.970	3.953	3.963	3.967	3.973	3.963	3.963	3.980	3.970	3.960	3.973	4.003	4.050	4.023	3.993	3.977	4.023	3.983	3.960	3.983
$\overline{\mathrm{EP3}}(\mu \mathrm{~Sv} / \mathrm{h})$	7.000	7.010	7.000	7.013	6.973	6.997	7.003	7.010	6.987	6.983	6.980	6.973	6.993	7.000	7.003	6.983	7.010	7.030	7.000	7.003	7.050	6.990	6.980	6.947
AP4（ $\mu \mathrm{Sv} / \mathrm{h})$	5.427	5.410	5.423	5.427	5.433	5.440	5.397	5.440	5.430	5.413	5.433	5.410	5.423	5.403	5.410	5.417	5.453	5.470	5.417	5.413	5.443	5.413	5.403	5.423
$\overline{\text { P } 5(~} \mu \mathrm{Sv} / \mathrm{h})$	4.813	4.807	4.813	4.807	4.807	4.807	4.807	4.760	4.807	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.813	4.807	4.813	4.807	4.813	4.767
$\overline{\mathbb{P} G(\mu \mathrm{~Sv} / \mathrm{h})}$	6.020	6.007	6.040	6.043	6.027	6.010	6.003	6.027	6.020	6.013	6.020	6.017	6.000	6.023	6.003	6.063	6.067	6.050	6.070	6.047	6.060	6.027	6.017	6.030
$\underline{A P 7(\mu \mathrm{~Sv} / \mathrm{h})}$	欠測	欠㳔	欠溉	欠測	欠測	文沼	欠楖	欠飳	欠楖	欠㖵	欠測	欠溉	欠測	欠則	欠即	欠測	欠避	欠溉	欠湘	欠效	欠楖	欠測	欠測	欠㵋
風向	西	西北西	西北西	北北西	北	北北酉	北北西	北北西	北北西	北	北	北北東	北北宩	北東	北東	北果	北東	北東	東北東	東北東	東北宋	東北東	東	南南西
富速（m／s）	3.5	2.3	4.4	4.5	5.8	5.2	5.2	4.7	2.5	2.5	3.0	2.7	2.5	3.0	3.0	3.1	4.1	4.2	5.4	5.0	5.0	5.9	6.1	1.7

通常の平常碩の箷囲	虫社名	発军所名	3月31日											
			0：00	1：00	2：00	3.00	4：00	5：00	6：00	7，00	8：00	9：00	－10：00	11：00
0．023～0．027	北海通筀力棌	洨発哏菥	0.025	0.025	0,025	0.025	0.025	0.028	0,026	0,025	0.026	0.026	0.028	0.026
$0.024 \sim 0.060$			0，57	0.57	0.57	0.58	0.56	0.58	0.56	0.58	0.56	0.58	0.55	0.55
$0.012 \sim 0.080$	束北昰力桃	東通原子力発缐所	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.018	0.017	0.017	0.017	0.017
$0.033 \sim 0.050$			100.8	100．2	100.0	99.9	99.8	88.7	99.4	99.3	99.0	88.5	88.5	98.7
$0.038 \sim 0.052$	東宗管力蛛		7.203	7.140	7.127	7.107	7.057	7.040	7.003	6.997	7.000	7.003	6.893	7.000
$0.011 \sim 0.159$			0.066	0.086	0.065	0.065	0.086	0.087	0.079	0.083	0.077	0.071	0.088	0.065
$0.038 \sim 0.053$			0.611	0.612	0.613	0.612	0.811	0.609	0.601	0.603	0.802	0.605	0.603	0.602
$0.038 \sim 0.110$			0.072	0.074	0.075	0.073	0.074	0.073	0.073	0.074	0.072	0.073	0.074	0.074
0．084～0．108	中都姩力相		0.075	0.075	0.075	0.076	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075
$0.0207 \sim 0.132$			0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.034	0.033	0.034
$0.028 \sim 0.130$.	中国京力栜	跉根原子力然等所	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.029	0.030	0.031	0.031	0.031
$0.070 \sim 0.077$		莫流恽雱所	0.074	0.073	0.072	0.073	0.073	0.073	0.073	0.072	0.072	0.072	0.072	0.075
$0.045 \sim 0.047$	関西笔力蚫		0.043	0.043	0.043	0.043	0.042	0.042	0.043	0.043	0.044	0.043	0.043	0.043
$0.036 \sim 0.040$		大䇫発管所	0.035	0.035	$0: 035$	0.035	0.036	0.038	0.036	0.037	0.036	0.036	0.035	0.035
$0.011 \sim 0.080$		角方壁等所	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.013	0.014	0.014
0．023～0．087	九利需力姓	玄海原子力発筑所	0，027	0,026	0.025	0.026	0.027	0.027	0.027	0.027	0,026	0.027	0.026	0.028
$0.034 \sim 0.120$	九和電力碞	昉内原子力発哏所	0.037	0.040	0.038	0.036	0.039	0.036	0.038	0.040	0.039	0.041	0.041	0.036
$0.009 \sim 0.069$			0.017	0.017	0.016	0.016	0.016	0.016	0.016	0.017	0.017	0.016	0.017	0.017
0．009～0．071			0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.023	0.022	0.022	0.022

	会社名	䜿坱所名	3月31日											
			12.00	13.00	14.00	15：00	16.00	17.00	18：00	18：00	20：00	$21: 00$	22：00	23：00
$0.023 \sim 0.027$			0.025	0.025	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026		403＋5
0．024～0．080	宋北宵力称	女川原子力登堇所	0.55	0.54	0.54	0.54	0.54	0.54	0.54	0.53	0.53	0.53	W Mater	
0．012～0．060		東通原子力䏈部所	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.016	0.017	0.017		17
0．033～0．050			98.9	97.7	99.9	98.5	107.0	97.7	97.0	96.3	96.2	95.7	$5 \times$－	W，
$0.036 \sim 0.052$	乗京電力秝		6.977	6.957	6.943	6.907	6.800	6.900	6.940	6.847	8.810	8.793	20，mis	\％
$0.011 \sim 0.158$			0.085	0.064	0.084	0.065	0.065	0.065	0.066	0.085	0.066	0.066		Pationtur
$0.036 \sim 0.053$	日本原子力穊		0.603	0.603	0.600	0.599	0.599	0.598	0.581	0.594	0.587	0.592	hathuex en	Ein
$0.039 \sim 0.110$	日本原子カ見	整賏登澵所	0.074	0.075	0.074	0.073	0.074	0.072	0.074	0.074	0.073	0.074	Weze	20
$0.084 \sim 0.108$			0.075	0.075	0.075	0.075	0.075	0.074	0.074	0.074	0.074	0.075	29	
$0.0207 \sim 0.132$	北㙱骨力桃		0.034	0.034	0.034	0.033	0.033	0.033	0.033	0.032	0.033	0.033	ETH	
$0.028 \sim 0.130$	中国虫力哏		0.030	0.029	0.029	0.031	0.030	0.032	0.030	0.030	0.030	0.031		15－12
$0.070 \sim 0.077$			0.071	0.072	0.072	0.072	0.072	0.073	0.073	0.073	0.073	0.073		gicy
$0.045 \sim 0.047$	関西辇力森		0.043	0.043	0.043	0.044	0.043	0.043	0.042	0.043	0.042	0.043		Wxe
$0.036 \sim 0.040$			0.036	0.035	0.036	0.035	0.034	0.034	0.035	0.035	0.035	0.035		
$0.011 \sim 0.080$		伊方姺奞所	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.013	0.014		
0．023－0．087	九州軍力杵		0.026	0.027	0.026	0.026	0.027	0.026	0.025	0.028	0.027	0.025		
0．034～0．120	九积电力圽		0.036	0.037	0.037	0.036	0.038	0.036	0.037	0.037	0.037	0.038	Namazex	－
$0.009 \sim 0.089$	日本原煤（株）		0.016	0.016	0.016	0.016	0.018	0.016	0.016	0.015	0.017	0,016		－
$0.009 \sim 0.071$	日本原烍（休）		0.022	0.022	0.022	0.021	0.022	0.022	0.022	0.022	0.022	0.021	4izumidy	（ Fick

海水サンプリングポイント図

探取埚所：1F南放水口付近（ $1 \sim 4 \mathrm{u}$ 教水口から南僛約 330 m 地点）

輆種	3月21日 14：30			3月22日 6：30		
	（1）放射能洫度 （ $\mathrm{B} q / \mathrm{cm}^{3}$ ）	（2）検出限界濫度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中㴗度限度に対する 割合 （11）／（3）	（1）故射能虺度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）模出限界浸度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中浱度限度に対する割合 （11）／（3））
Co－58	$5.955 \mathrm{E}-02$	$3.349 \mathrm{E}-02$	0.1	N．D	2．138E－02	－
1－131	$5.066 \mathrm{E}+00$	4．245E－02	128.7	$1.190 \mathrm{E}+00$	$2.293 \mathrm{E}-02$	29.8
1－132	$2.136 \mathrm{E}+00$	1．925E－01	0.7	$1.362 \mathrm{E}+00$	7．721E－02	0.5
Cs－134	$1.486 \mathrm{E}+00$	4．030E－02	24.8	1．504E－01	1．769E－02	2.5
C8－136	2．132E－01	$2.358 \mathrm{E}-02$	0.7	2．350E－02	1．056E－02	0.1
Cs－137	$1.484 \mathrm{E}+00$	4．204E－02	10.5	1．535E－01	$1.626 \mathrm{E}-02$	1.7
Zr－95			－			－
Ru－105						，
Ru－106			，		T	－
Te－129			－	－	，	－
Te－132			，		，	
Le－140			，			－

			（3）周辺監視区城外の水中の温度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
（1）故射能湌度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界监度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中洫度限度に対する割含 （1）／（3）	
5．0E－02	2．6E－02	0.1.	$1.0 \mathrm{E}+00$
$5.9 \mathrm{E}+00$	3．6E－02	148.9	4．0E－02
5．4E＋00	1．4E－01	1.8	$3.0 \mathrm{E}+00$
2．5E－01	2．7E－02	4.2	$6.0 \mathrm{E}-02$
$2.5 \mathrm{E}-02$	$2.4 \mathrm{E}-02$	0.1	3．0E－01
2．5E－01	2．7E－02	2.8	9．0E－02
$2.3 \mathrm{E}-01$	7．8E－02	0.3	$9.0 \mathrm{E}-01$
$8.78-01$	8．2E－01	0.3	$3.0 \mathrm{E}+00$
3.7 E－01	2．0E－01	3.7	$1.0 \mathrm{E}-01$
$4.0 \mathrm{E}+00$	$3.9 \mathrm{E}+00$	0.4	$1.0 \mathrm{E}+01$
4．0E－01	3.6 E－02	2.0	2．0E－01
1．3E－02	1．0E－02	0.0	4．0E－01

核種	3月24日 10：25			3月25日 8：30						
	（1）放射能湿度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）挨出限界㴗度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中謇度限 度に対する 都合 （19）（3）	（1）放射能浪度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界漫度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中海庭限度に対する割合 （（1）／（3））	（7）放射能㵊度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中温度限度に対する割合 （11）／（3）	
C0－60			\cdots	5．9E－02	20E－02	0.3			－	$2.0 \mathrm{E}-01$
Mo－99				2．1E－01	1．7E－01	0.2			，	$1.0 \mathrm{E}+00$
1－131	$4.2 \mathrm{E}+00$	2．3E－02	103.9	5．0E＋01	8．2E－02	1250.8	3．0E＋01	4．0E－02	750.0	4．0E－02
1－132	1．7E＋00	4．3E－01	0.6	$3.3 \mathrm{E}+00$	7．7E－02	1.1	$2.0 \mathrm{E}+00$	6．3E－02	0.7	$3.0 \mathrm{E}+00$
Cs－134	4．5E－01	1．7E－02	7.4	$7.0 \mathrm{E}+00$	3．9E－02	117.3	$4.7 \mathrm{E}+00$	3．1E－02	78.3	6．0E－02
Cs－136	6．1E－02	1．7E－02	0.2	8．0E－01	3．9E－02	2.7	5．2E－01	3．1E－02	1.7	3．0E－01
Cs－137	4．4E－01	$1.5 \mathrm{E}-02$	4.9	$7.2 \mathrm{E}+00$	3．5E－02	79.6	$4.8 \mathrm{E}+00$	2．7E－02	53.3	9．0E－02
Tc－99m			－				6．8E－02	4．4E－02	0.0	$4.0 \mathrm{E}+01$
To－132	8．0E－02	2．1E－02	0.4	$2.2 \mathrm{E}-01$	4．0E－02	1.1			－	2．0E－01
Ba－140			－	$1.2 \mathrm{E}+00$	1．5E－01	3.9	7．7E－01	$1.2 \mathrm{E}-01$	2.6	$3.0 \mathrm{E}-01$
La－140	2．1E－02	1．2E－02	0.1	5．8E－01	1，3E－02	1.4	$3.5 \mathrm{E}-01$	1．0E－02	0.9	4．0E－01

搮取場所：1F南故水口付近（1～4u故水口から南侧約 330 m 地点）

採取方法：海水を服みあげ探取

洎定方法：觡料 500 ml を福岛第二に運搬L，Ge半㴖体検出器で测定

䁚定時間：1，000移

核演	3月28年 8：20									（3）周辺監視区域外の水中の搌度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能滴度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界沸度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	$\|$水中洪度限 度に対する 草合 $(1) /(3))$	（1）放射能濾度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界浸度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中洫度限㢈に対する割合 （1）／（3）	（1）放射能搌度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界澴度 （ $\mathrm{Ba} / \mathrm{cm}^{3}$ ）	水中敲度限 度に対する 割合 $(1) /(3)$	
Co－58						\longrightarrow				$1.0 \mathrm{E}+00$
1－131	$1.4 \mathrm{E}+00$	1．8E－02	33.9	1．1E＋00	1．7E－02	27.9	1． $0 \mathrm{E}+02$	7．7E－02	2572.5	$4.0 \mathrm{E}-02$
1－132	5．6E－02	5．4E－02	0.0							$3.0 \mathrm{E}+00$
$\mathrm{C}_{8}-134$	2．8E－01	1．2E－02	4.6	2．4E－01	1．1E－02	4.1	2． $4 \mathrm{E}+01$	6．6E－02	395.5	6，0E－02
Cs－136	2．6E－02	$9.5 \mathrm{E}-03$	0.1	2．4E－02	1．1E－02	0.1	2． $2 \mathrm{E}+00$	6．2E－02	7.3	3．0E－01
Cs－137	$2.9 \mathrm{E}-01$	1．1E－02	3.3	2．4E－01	1．0E－02	2.7	2．4E＋01	5．5E－02	268.0	9．0E－02
Tc－99m			－			－	1．2E－01	7．8E－02	0.0	$4.0 \mathrm{E}+01$
T0－129		，	，		，	－			－	$1.0 \mathrm{E}+01$
Te－129m					T	T			－	3．0E－01
T ${ }^{\text {e }}$－132									？	2．0E－01
Ba－140						－	3． $7 \mathrm{~F}+00$	2．3E－01	12.4	$3.0 \mathrm{E}-01$
La－140	2．7E－02	5．6E－03	0.1	1．7E－02	3．7E－03	0.0	2． $05+00$	1．9E－02	5.0	4．0E－01

探取場所：1F南故水口付近（1～4u故水口から南侧約 330 m 地点）
採取方法：海水を汲みあげ探取
測定方法：試料500mほを福岛第二に運㮶L，Ge半望体検出器て測定

探取堌所：1F5～6放水口北側（5～6u故水口から北偲約 30 m 地点）
摽取方法：海水を汲みあげ探取

測定㭙間：1，000

				3月25日 8：50		（3）周辺監視区域外の水中の温度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
（1）放射能泿度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）㛟出限界潡度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	永中浪度限 度に対する 部合 $(10 /(3))$	（1）放射能温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）険出险界榩度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中㳔度银 度に対する 割合 （1）（3）	
						$1.0 \mathrm{E}+00$
9．5E－01	1．3E－02	23.7	$1.1 E^{+01}$	$2.3 \mathrm{E}-02$	283.8	4．0E－02
4．5E－01	2．1E－01	0.2	1．9E－01	$4.1 \mathrm{E}-02$	0.1	$3.0 \mathrm{E}+00$
1．1E－01	9．2E－03	1.8	$1.7 \mathrm{E}+00$	1．9E－02	28.0	6．0E－02
1．1E－02	6．5E－03	0.0	2．0E－01	1．7E－02	0.7	3．0E－01
1．1E－01	8．7E－03	1.2	$1.7 \mathrm{E}+00$	1．8E－02	18.5	9．0E－02
			$3.4 \mathrm{E}-02$	$2.5 \mathrm{E}-02$	0.0	$4.0 \mathrm{E}+01$
						$1.0 \mathrm{E}+01$
						$3.0 \mathrm{E}-01$
1．4E－01	1．0E－02	0.7	$1.3 \mathrm{E}-01$	2．1E－02	0.6	2．0E－01
		－	$2.8 \mathrm{E}-01$	7．2E－02	0.9	3．0E－01
		－	1．3E－01	6．8E－03	0.3	4．0E－01

核稆										
	（1）放射能浪度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界漍度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）		（ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出险界没度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中蜄度限度に対する割合 （1）／（3））	（1）放射能溃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ），	（2）検出限界洨度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中暧度㟲度に対する㲅合 （1）／（3））	
Co－58										$1.0 \mathrm{E}+00$
［－131	$2.9 \mathrm{E}+01$	3．6E－02	725.0	1．3E＋01	3．7E－02	314.3	8.1 E＋00	3．2E－02	202.5	4．0E－02
［－132	1．1E－01	5．7E－02	0.0	3．2E－01	5．9E－02	0.1			－	$3.0 \mathrm{E}+00$
－135	$1.0 \mathrm{E}+00$	2．6E－01	1.3			－			－	8．0E－011
Cs－134	$5.0 \mathrm{E}+00$	3．1E－02	83.3	$2.2 E+00$	3．0E－02	36.3	1．6E＋00	2．6E－02	27.2	6．0E－02
Cs－136	5．4E－01	2．9E－02	1.8	2．5E－01	3．0E－02	0.8	1．8E－0．1	2．0E－02	0.6	3．0E－01
Cs－137．	$5.1 \mathrm{E}+00$	2．8E－02	56.7	2．2E＋00	2．9E－02	24.2	1．7E＋00	2．6E－02	18.9	9．0E－02
Tc－99m			－	－－					－	$4.0 \mathrm{E}+01$
Te－129		，	T			T			－	1．0E＋01
$\mathrm{Te}-129 \mathrm{~m}$		－	，			－			－	3．0E－01
Te－132			T	6．7E－02	3．6E－02	0.3			，	2．0E－01
Ba－140	8．6E－01	1．2E－01	2.9	$3.4 \mathrm{E}-01$	1．08－01	1.1	27E－01	8．8E－02	0.9	3．0E－01
La－140	3．2E－011	8．3E－03	0.8	1．5E－011	7．8E－03	0.4	1．1E－01	$5.3 \mathrm{E}-03$	0.3	4，0E－011

探取場所：1F5～6放水口北佃（5～6u故水口から北側䄪30m地点）
操取方法：海水を汲みあげ搮取
浿定方法：骮料 500 ml を楅島第二に莮㧠L，Ge半導体検出器で測定
濆定時間：1，000秒

核種	3月27日 14：05									（3）周辺監視区域外の水中の溒度限度 （ $\mathrm{Ba} / \mathrm{cm}^{3}$ ）
	（1）放射能滈度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界浢度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中涱度限度に対する䅫合 （1）／（3）	（1）故射能莨度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界懐度 （ $\mathrm{Ba} / \mathrm{cm}^{3}$ ）	水中㳑度限度に対する割合 （1）／（3））	（1）放射能搌度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界滞度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中清度琨度に対する割合 （（1）$/(3)$	
Co－58．						\cdots				$1.0 \mathrm{E}+00$
1－131	$4.6 \mathrm{E}+01$	5．2E－02	1150.0	$3.3 \mathrm{E}+01$	5．7E－02	816.0	$2.7 \mathrm{E}+01$	$4.2 \mathrm{E}-02$	665.8	4．0E－02
1－132										3．0E＋00
Cs－134	9．8E＋00	4．1E－02	163.3	$6.6 \mathrm{E}+00$	4．5E－02	110.3	$5.6 \mathrm{E}+00$	3．2E－02	93.8	6．0E－02
Cs－136	$9.8 \mathrm{E}-01$	3．8E－02	3.3	6．8E－01	4．3E－02	2.3	$5.6 \mathrm{E}-01$	3．0E－02	1.9	3．0E－01
Cs－137	$9.8 \mathrm{E}+00$	$3.4 \mathrm{E}-02$	108.9	6．6E＋00	4．1E－02	73.9	5．7E +00	2．8E－02	63.5	9，0E－02
Tc－99m			－			－			－	$4.0 \mathrm{E}+01$
Te－129		，	－		，	－			－	1．0E＋01
To－129m			\square			，			－	3．0E－01
Te－132			－			T			－	2．0E－01
Ba－140	$1.6 \mathrm{E}+00$	1．6E－01	5.3	1.1 E +00	1．6E－01	3.6	8．8E－01	1．2E－01	2.9	3．0E－01
La－140	5．5E－01	1．1E－02	1.4	5．2E－01	1．2E－02	1.3	3．7E－01	$8.5 \mathrm{E}-03$	0.9	4．0E－01

核種	3月29日 8：40			3月29日 14：10			3月30日 8：40			$\begin{gathered} \text { (3)周辺監視区 } \\ \text { 域外の等中度限度 } \\ \left(\mathrm{Bq} / \mathrm{cm}^{3}\right) \end{gathered}$
	（1）放射能㳑庶 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界㵊度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中渻度限度に対する割合 （1）／（3））	（1）放射能温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出涱界冁度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中溒度限度に対する割合 （（1）／（3））	（1）放射能莀度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界澴度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中濫度限度に対する割合 （1）／（3））	
Co－58						－	－			1．0E＋00
1－131	4．9E＋01	$5.2 \mathrm{E}-02$	1234.5	5．1E＋01	5．2E－02	1262.5	5．7E＋01	7．5E－02	1425.0	$4.0 \mathrm{E}-02$
I－132										$3.0 \mathrm{E}+00$
Cs^{-134}	$1.2 \mathrm{E}+01$	4．5E－02	191.8	$1.2 \mathrm{E}+01$	$4.6 \mathrm{E}-02$	202.2	$1.5 \mathrm{E}+01$	5．9E－02	250.0	6．0E－02
Cs－136	$1.1 \mathrm{E}+00$	$4.3 \mathrm{E}-02$	3.0	$1.1 \mathrm{E}+00$	$4.3 \mathrm{E}-02$	3.6	$1.35+00$	5．7E－02	4.3	3．0E－01
Cs－137	1．2E＋01	3．8E－02	129.8	$1.2 \mathrm{E}+01$	3．9E－02	137.0	1．5E＋01	5，3E－02	166.7	9．0E－02
Tc－99m	6．6E－02	5．4E－02	0.0	6．4E－02	4．9E－02	0.0				4．0E＋01
T 0 －129			－							1．0E＋01
Te－129m			－					T	－	3．0E－01
Te －132						，			，	2．0E－01
Ba－140	$1.9 \mathrm{E}+00$	1．8E－01	6.2	$2.0 \mathrm{E}+00$	1．8E－01	6.7	$2.3 \mathrm{E}+00$	2．2E－01	7.7	$3.0 \mathrm{E}-01$
La－140	6．6E－01	1．2E－02	1.7	6．9E－01	1．3E－02	1.7	7．8E－01	1．8E－02	2.0	4．0E－01

婐取堨所：1F5～6放水口北側（5～6u放水口から北側約30m地点）
探取方法：海水を汲みあげす探取

䢙定時間：1，000秒

核理										（3）周辺監視区域外の水中の蜸度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能蛝度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界渱度 （ $\mathrm{B} \dot{q} / \mathrm{cm}^{3}$ ）	水中䋶度限度に対する割合 （11）／（3）							
Co－58			－							$1.0 \mathrm{E}+000$
1－131	4．7E＋01	7．3E－02	1177.3							$4.0 \mathrm{E}-02$
－132										3：0E＋00
C8－134	$1.2 \mathrm{E}+01$	5．5E－02	206.5							6．0E－02
$\mathrm{Cs}^{\text {s－136 }}$	$1.2 \mathrm{E}+00$	5．1E－02	3.9							3．0E－01
Cs－137	1．2E＋01	4．9E－02	137.9							9．0E－02
T c －99m	－	－	－							4．0E＋01
T 0 －129		，	－							$1.0 \mathrm{E}+01$
$\mathrm{Te}-129 \mathrm{~m}$		俉	－							3．0E－01
$\mathrm{T}_{0}-132$	－	－	－							2．0E－01
Ba－140	1．9E＋00	20E－01	6.5							$3.0 \mathrm{E}-01$
La－140	$6.8 \mathrm{E}-01$	1．4E－02	1.7							4．0E－01

探取場所：2F北放水口付近（3，4号故水口付近）（1Fから約10km）
探取方法：海水をくみ上げ採取

核稙										（3）周辺監視区域外の水中の暧度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能深度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出涭界漫度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中䢜度限度 に対する割合 （1）／（3）	（1）放射能蛝度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界澴度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中潩度限度に対する割合 （1）／（3）	（1）放射能懐度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界滳度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中蛈度限度 に対する割合 （1）／（3））	
Te－132						1－3）				$3.0 \mathrm{E}+00$
Co－58	$5.704 \mathrm{E}-03$	7．570E－03	0.0	N．D	1．526E－02	－				$1.0 \mathrm{E}+00$
Ru－105						－	3．4E－02	$2.5 \mathrm{E}-02$	0.01	$3.0 \mathrm{E}+00$
Ru－106						－				1．0E－01
［－131	$1.085 \mathrm{E}+00$	1．284E－02	27.1	$1.138 E+00$	1．993E－02	28.5	7．4E－01	2．7E－02	18.6	$4.0 \mathrm{E}-02$
－132	1．597E－01	4．392E－02	0.1	N．D	$8.791 \mathrm{E}-02$	－	20E－01	5．8E－02	0.1	$3.0 \mathrm{E}+00$
Cs－134	$4.815 \mathrm{E}-02$	9．213E－03	0.8	4．631E－02	1．350E－02	0.8	5．1E－02	2．0E－02	0.8	$6.0 \mathrm{E}-02$
Cs－136	$6.682 \mathrm{E}-03$	4．722E－03	0.0	N．D	7．849E－03	－				3．0E－01
Cs－137	$5.283 \mathrm{E}-02$	$8.822 \mathrm{E}-03$	0.6	3．962E－02	1．406E－02	0.4	5．5E－02	2．0E－02	0.6	9．0E－02

核程										（3）周辺監視区城外の水中の渱度涭度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）故射能婊度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界浿度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中濃度限度 に対する割合 （1）／（3）	（1）放射能噯度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中漉度限度に対する割合 （1）／（3））	（1）放射能敩度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界涺度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中蛝度限度 に対する割合 （1）／（3）	
Te－132				1．3E－02	7：4E－03	0.004				$3.0 \mathrm{E}+00$
Co－58										$1.0 \mathrm{E}+0 \mathrm{D}$
Ru－105	$5.6 \mathrm{E}-02$	4．4E－02	0.02			－				$3.0 \mathrm{E}+00$
Ru－106						－			－	1．0E－01
1－131	$1.1 \mathrm{E}+00$	5．2E－02	28.4	4．3E－01	1．0E－02	10.7	4．1E－01	2．1E－02	10.3	4．0E－02
1－132	1．2E－01	8．8E－02	0.04	5．8E－02	2．2E－02	0.02				$3.0 \mathrm{E}+00$
Cs－134	9．9E－02	3．8E－02	1.6	2．6E－02	7．4E－03	0.4	2． $6 \mathrm{E}-02$	1．8E－02	0.4	6．0E－02
Cs－136	6．8E－02	4．9E－02	0.2	4．45－03	3．2E－03	0.01	2． $7 \mathrm{E}-02$	1．9E－02	0.3	3．0E－01
Cs－137	9．4E－02	4．1E－02	1.0	3．4E－02	5．9E－03	0.4				$9.0 \mathrm{E}-02$

※ O．OE－Oとほ，O．O×10－Oと同し意啉である。

探取場所：2F北故水口付近（3，4号放水口付近）（1Fから約 10 km ）
操取方法：海水をくみ上げ探取
测定方法：試料 500 ml をGe半違体検出器で測定

裸取場所：2F岩沢海岸付近（1，2莳故水口から南側に約7．000m乱点）
捰取方法：海水をくみ上げ探取
測定方法：樲料 500 ml をGo半隹体検出器て測定

$\begin{aligned} & \text { 検出核旛 } \\ & \left(\begin{array}{l} \text { 半減期 } \end{array}\right. \end{aligned}$	3月21日 23：45			3月22國 15：06			3月23日 14：25			（3）周辺監視区域外の水中の源度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
				2F岩沢海岸付近（1，2年放水口から南侽に枃7，000m地点）			2F岩沢海卓付近（1，2㘯放水口から南側に約7．000m地点）			
	（1）放射能蚑庭 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）模出限界瀑度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中喑度限度 に対する愘合 （1）／（3）	（1）放射能㵊度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界暧度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中湾度限度に奶する割合 （1）／（3）	（7）放射能源度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）满出限界温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中濇度限度 に対する部合 （1）／（3）	
Te－132			－			$\xrightarrow{-}$				$3.0 \mathrm{E}+00$
Co－58	N．D	$6.845 \mathrm{E}-03$	－	N．D	1．301E－02	－				$1.0 \mathrm{E}+00$
Ru－105			－		－	－	3．3E－02	2．8E－02	0.01	$3.0 \mathrm{E}+00$
Ru－106						－	1．2E－01	$1.2 \mathrm{E}-01$	1.25	1．0E－01
1－131	$6.558 \mathrm{E}-01$	1．226E－02	16.4	6．664E－01	1．862E－02	16.7	7．6E－01	$2.7 \mathrm{E}-02$	19.1	$4.0 \mathrm{E}-02$
1－132	1．205E－01	4．146E－02	0.0	N．D	7．915E－02	－2．	3．3E－01	5．3E－02	0.1	$3.0 \mathrm{E}+00$
Cs－134	3．110E－02	8．657E－03	0.5	$3.925 \mathrm{E}-02$	1．135E－02	0.7	3．3E－02	2．1E－02	0.5	6．0E－02
$\mathrm{C}_{5}-136$	$5.474 \mathrm{E}-03$	4．840E－03	0.0	N．D	$6.784 \mathrm{E}-03$	－				3．0E－01
Cs－137	3．292E－02	B．303E－03	0.4	4．361E－02	1．129E－02	0.5	4．3E－02	2．1E－02	0.5	9．0E－02

核種	3月24日 8：45			3月25旦 9：10			3月26日 15：50			（3）周辺監視区域外の水中の渱度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
				2F．						
	（1）放射能蠉度 （ $\mathrm{Bq} 7 \mathrm{~cm}^{3}$ ）	（2）検出限界温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中澶度限度 に対する割合 （1）／（3））	（1）放射能澏度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中澴度限度に対する割合 （1）／（3）	（1）放射能蛝度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界沒度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中㵊度限度 に対する割合 （1）／（3）	
To－132						－				$3.0 \mathrm{E}+00$
Co－58									，	$1.0 \mathrm{E}+00$
Ru－105										$3.0 \mathrm{E}+00$
Ru－106										$1.0 \mathrm{E}-01$
1－131	5．0E－01	1．OE－02	12.6	3．7E－01	1．OE－02	9.2	3．0E－01	9．6E－03	7.6	4．0E－02
－132	N．D	1．9E－02	－	1．2E－01	2．6E－02	0.04		－		$3.0 \mathrm{E}+00$
Cs^{-134}	$3.5 \mathrm{E}-02$	7．0E－03	0.6	2．0E－02	6．7E－03	0.3	1，3E－02	7．1E－03	0.2	$6.0 \mathrm{E}-02$
$\mathrm{C}_{5}-136$	5．3E－03	5．1E－03	0.02	4．2E－03	3．3E－03	0.01			－	3．0E－01
Cs－137．	3．8E－02	7．0E－03	0.4	2． $25-02$	6． $05-03$	0.2	1．4E－02	$6.8 \mathrm{E}-03$	0.2	$9.0 \mathrm{E}-02$

※ O．OEーOとほ，O．O×10－Oと風じ意味である。

探取場所：2F岩沢海岸付近（1，2号放水口から南側に約7，000m地点）
採取方法：海水をくみ上げ捰取
測定方法：钲料 500 ml を Ge 半梁体検出器て測定
測定時間：1，000

$\begin{aligned} & \text { 検出格種 } \\ & \text { (半袼期) } \end{aligned}$	3月27日 08：45			3月28日 8：45			3月29日 9：20			（3）周辺監視区域外の水中の泿度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	2F岩沢海岸付近（1．2驾放水口から南側に絇7．000m她占）									
	（1）放射能㴖度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界濃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中婊度限度 に対する割合 （1）／（3）	（1）放射能溃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）模出限界浸度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中㴗度限度に対する割合 （ 7 ／／（3）	（1）放射能源度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）模出险界濃店 （ $\mathrm{Ba} / \mathrm{cm}^{3}$ ）	水中婊度限度 に対する割合 （1）／（3））	
Te－132						－				$3.0 \mathrm{E}+00$
Co－58						T				$1.0 \mathrm{E}+00$
Ru－105						，				$3.0 E+00$
Ru－105		－				－2			－	$1.0 \mathrm{E}-01$
1－131	$2.9 \mathrm{E}-01$	1．0E－02	7.4	$2.4 \mathrm{E}+00$	27E－02	58.8	1．3E＋00	1．7E－02	31.9	4．0E－02
［－132						－				$3.0 \mathrm{E}+00$
Cs－134	2．0E－02	$6.0 \mathrm{E}-03$	0.3	$3.3 \mathrm{E}-01$	21E－02	5.5	2．3E－01	1．2E－02	3.9	6．0E－02
Cs－136	$2.3 \mathrm{E}-03$	2．1E－03	0.01	2．5E－02	1．7E－02	0.08	1．7E－02	9．3E－03	0.06	3．0E－01
Cs－137	2．4E－02	5．7E－03	0.3	3．8E－01	$2.1 E-02$	4.2	2．3E－01	1．2E－02	2.6	$9.0 \mathrm{E}-02$
Ba－140						－	3．6E－02	3．0E－02	0.1	3．0E－01
La－140				2．BE－02	5．3E－031	0.1	1．6E－02	4．4E－03	0.0	4．0E－01］

核種										（3）周辺監視区域外の水中の搌度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能溃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界浪度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中澊度限度 に対する割合 （1）／（3））	（1）放射能渱度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界蛆度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中源度阳度に対する割合 （1）／（3））	（1）放射能晴度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界瀿度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中滈度限度 に対する割合 （1）／（3））	
Te－132										3．0E＋00
Co－58	－	，	，							$1.0 \mathrm{E}+00$
Ru－105	－		，							3．0E＋00
Ru－108			T							1．0E－01
1－131	8． $8 \mathrm{E}-01$	1．9E－02	22.0							$4.0 \mathrm{E}-02$
［－132		－	－							3．0E＋00
Cs－134	1．8E－01	2．0E－02	3.0							6．0E－02
Cs－136	$2.1 \mathrm{E}-02$	9．0E－03	0.07							3．0E－01
Cs－137	1．9E－01	2．0E－02	2.2							9．0E－02
$\mathrm{Ba}-140$	2．6E－02	3．7E－02	0.1							$3.0 \mathrm{E}-01$
La－140	1．2E－02	4．9E－03	0.0							4．0E－011

探取堨所：2F富岡川河口付近（3．4u故水口から北側約2，000m地点）（IFから約 8 km ）

搮取方法：海水をくみ，上げ探取

測定方法：䬲料500mlをGe半導体検出器で測定
測定時間：1，000秒

検出核種 （半減期）	3月22日 0：38									（3）周辺監視区域外の水中の遗度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）放射能浪度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出隄界湿度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中温度钋度 に対する割合 （1）／（3）	（1）放射能濅度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界灌度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中鞎度限 度に対する 鄙合 $(1$（1）$/(3)$	（1）放射能浪度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界戝度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中搌度限度 に対する割合 （1）／（3））	
Te－132										$3.0 \mathrm{E}+00$
Co－58	$1.028 \mathrm{E}-02$	$1.253 \mathrm{E}-02$	0.0							$1.0 \mathrm{E}+00$
Ru－105	2	－	－							$3.0 \mathrm{E}+00$
Ru－106										1．0E－01
［－131	$3.211 \mathrm{E}+00$	1．694E－02	80.3							4．0E－02
1－132	$8.761 \mathrm{E}-01$	$4.236 \mathrm{E}=02$	0.3							$3.0 \mathrm{E}+00$
Cs－134	$7.535 \mathrm{E}-02$	1．102E－02	1.3							6．0E－02
Cs－136	1．159E－02	7．718E－03	0.0							3．0E－01
Cs－137	7．760E－02	1．186E－02	0.9							9．0E－02

核種	\cdots									（3）周辺監視区域外の水中の漲度限度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）
	（1）故射能漫韭 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界温度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中璂度限度 に対する割合 （1）／（3）	（1）放射能蛝度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界溃度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中温度哣度に対する割合 （1）／（3））	（1）放射能楛度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	（2）検出限界䅼度 （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）	水中蛝度限度 に対する割合 （1）／（3）	
Te－132		，								$3.0 \mathrm{E}+00$
Co－58										$1.0 \mathrm{E}+00$
Ru－105										$3.0 \mathrm{E}+00$
Ru－106										1．0E－01
［－13］										4．0E－02
1－132										3．0E＋00
Cs－134										6．0E－02
Cs－136										3．0E－01
Cs－137										9，0E－02

1．探取－湖定条件

試料探取	苓所	福島第一 事務本館北側		
	日時	3月19日	3月20日	3月21日
		．11：53～12：13（敏水前）	1：41～2：01	10：19～10：39
	棌取方法	モニタリングカーにてダスト䗇取		
	風向•風速	W $4.7 \mathrm{~m} / \mathrm{s}$（ $11: 50$ 現在）	SW $2.1 \mathrm{~m} / \mathrm{s}$（1：40現在）	NW 2.6 m （10：10現在）
䳝料租定	旦時	3／19 14：12～	3／21 13：28～	3／21 13：48～
	浰定方法			
	测定時間	500s		

2．結果

	核種	3月19日		採取分	3月20日		探取分	3月21日			（3）放射段素務従事者の呼吸する空気中の搌庭良 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）※
		（1）放时能度 （ $\mathrm{Ba} / \mathrm{cm} 3$ ）	（2）锁出限界過 度 $(\mathrm{Bq} / \mathrm{cm} 3)$		（1）放的的法度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）			（1）故射能溫度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）			
揮発性	1－131	5．9E－03	3．4E－05	5.94	2．3E－03	$1.3 \mathrm{E}-05$.	2.30	$1.5 \mathrm{E}-03$	1．1E－05	1.52	1．0E－03
	1－132	2．2E－03	8．8E－05	0.03	ND	－	－	2．5E－04	2．7E－05	0.004	7．0E－02
	1－133	3．8E－05	2．9E－05	0.01	ND	－	－	ND	－	－	5．0E－03
	Cs－134	ND	－	－	4．0E－05	8．3E－06	0.02	3．1E－05	8．6E－06	0.016	2．0E－03
	Cs－137	ND	－	－	3．9E－05	B．4E－06	0.01	3．6E－05	7．9E－06	0.01	3．0E－03
粒子状	Co－58	ND	－	－	ND	－	－	ND	－	－	1．0E－02
	1－131	1．1E－03	1．6E－05	1.07	1．3E－03	6．8E－06	1.29	9．2E－06．	5．0E－06	0.01	1．0E－03
	1－132	3．8E－04	5．0E－05	0.01	ND	－	－	1．1E－04	1．2E－05	0.00	7．0E－02
	Cs－134	2．2E－05	1．7E－05	0.01	2．8E－05	4．8E－06	0.01	3．4E－05	5．4E－06	0.02	2．0E－03
	Cs－136	ND	－	－	5．6E－06	5．4E－06	0.001	4．5E－06	3．3E－06	0.0005	1．0E－02
	Cs－137	2．4E－05	1．8E－05．	0.01	$2.9 \mathrm{E}-05$	5．0E－06	0.01	3．8E－05	4．7E－06	0.01	$3.0 \mathrm{E}-03$
モの他の検出核種	Ru －108	2．1E－04	2．1E－04	0.36	3．8E－05	3．4E－05	0.06	ND	－	－	6．0E－04
	Te－129	ND	－	－	ND	－－	－	1．3E－03	3．8E－04	0.00	$4.0 \mathrm{E}-01$
	$\mathrm{Te}-129 \mathrm{~m}$	ND	－	－	1．4E－04	1．2E－04	0.03	ND	－	－	4．0E－03
	Te－132	6．7E－05	1．8E－05	0.01	5．1E－04	6．0E－06	0.07	3．9E－04	．4．3E－06	0.06	7．0E－03
	$\mathrm{Ce}-144$	ND	－	－	5．0E－03	4．6E－04	7.08	ND	－	－	7．0E－04

※ O．OE－Oとは， 0.0×10^{-0} と同じ意味である。

1．铞取•利定条件

2．梏果

	核䊈	3／22棌取分			3／23棌取分			3／24棌取分			（3）故时被置務徒車者の呼吸する 度 $(\mathrm{Ba} / \mathrm{cm} 3)$ ※
					（1）故时的潼 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）	$\begin{gathered} \text { (2) 梌出限界浪 } \\ (\mathrm{Bq} / \mathrm{cm} 3) \end{gathered}$					
戟発性	Co－58	ND．	－	－	ND	－	－	ND	－	－	1．0E－02
	1－131	2．2E－03	1：6E－05	2.24	6．7E－04	$9.6 \mathrm{E}-06$	0.67	1．5E－03	1．0E－05	1.49	1．0E－03
	1－132	ND	－	－	ND	－	－	ND	－	－	7．0E－02
	1－133	ND	－	－	ND	－	－	ND	－	－	5．0E－03
	C_{5}－134	1．1E－05	1．12－05	0.01	2．2E－05	7．6E－06	0.01	3．2E－05	7．9E－08	0.02	2．0E－03
	C5－137	1．3E－05	1．0E－05	0.00	2．3E－05	7．6E－06	0.01	3．1E－05	7．3E－06	0.01	3．0E－03
粗子状	Co－58	ND	－	－	5．1E－06	5．1E－06	0.00	ND	－	－	1．0E－02
	I－131	4．7E－04	7．4E－06	0.47	4．3E－04	5．0E－06	0.43	5．0E－04	4．8E－08	0.50	1．0E－03
	1－132	ND	－	－	ND	－	－	ND	－	－	7．0E－02
	C5－134	1．6E－05	5．9E－06	0.01	1．7E－05	4．2E－08	0.01	1．1E－05	4．6E－06	0.01	2．0E－03
	Cs－136	ND	－	－	3．0E－06	2．7e－06	0.00	ND	－	－	1．0E－02
	Cs－137	1．9E－05	5．3E－06	0.01	$1.3 \mathrm{E}-05$	4．2E－06	0.00	1．2E－05	3．8E－06	0.00	3．0E－03
その他の	Zr－95	ND	－	－	ND	－	－	2．5E－05	6．0E－06	0.00	8．0E－02
	T－129	ND	－	－	$2.3 \mathrm{E}-01$	1．2E－01	0.58	4．6E＋00	9．5E－01	11.39	4．0E－01
	Te－129m	ND	－	－	ND	－	－	3．4E－04	9．9E－05	0.08	4．0E－03
	Te－132	6．7E－05	1．1E－05	0.01	4．3E－04	4．5E－06	0.06	3．6E－04	4．4E－04	0.05	7．0E－03
	Ce－144	ND	－	－	1．3E－03	3．7E－04	1.89	ND	－－	－	7．0E－04

※ 0.0 E －Oとは， 0.0×10^{-0} と国じ䍃味である。

1．槚取－湖定喿件

战䉽搮取	垉所	褔岛第一 正門		
	日時	$\begin{gathered} 3 / 25 \\ 2: 01 \sim 2: 21 \end{gathered}$	$\begin{gathered} 3 / 26 \\ 2: 00 \sim 2: 20 \end{gathered}$	$\begin{gathered} 3 / 27 \\ 2: 00 \sim 2: 20 \end{gathered}-$
	敀取方法	モニタリングカーにてダスト棌取		
	蛔向•風速	ESE $0.8 \mathrm{~m} / \mathrm{s}$（5：30現在）	NNW $2.9 \mathrm{~m} / \mathrm{s}$（2：20現在）	S $0.5 \mathrm{~m} / \mathrm{s}$（2：000覞在）
碔料刟定	日時	3／25 13：38～	3／26 12：24～	3／27 11：38～
	剆定方法。			
	測定時間	500 s		

[^7]※ O．OEーOとは， 0.0×10^{-0} と国じき味である。

㿾禺的一原子力発埯所數地内における空気中故的性物置の核種分析拮果にういて

或紏穓取	埸所	福岡第一 画門		
	日時	$\begin{gathered} 3 / 28 \\ 2: 00 \sim 2: 20 \end{gathered}$	$\begin{gathered} 3 / 29 \\ 2: 22 \sim 2: 42 \end{gathered}$	$\begin{gathered} 3 / 30 \\ 200 \sim 2: 20 \end{gathered}$
	践取方法	モニタリングカーにてダスト榢取		
	周向－蜔速	N $0.5 \mathrm{~m} / \mathrm{s}$（2000現在）	WNW $1.2 \mathrm{~m} / \mathrm{s}$（2．30現在）	S 0．9m／s（2．00） 现在）$^{\text {c }}$
琙科湖定	日時	3／28 11：41～	3／29 12：17～	3／30 12．05～．
	㭭定方法			
	溯定時间	1000s		

	－核秤	3／28探取分			3／29婇取分			3／30探取分			（3）放讨楾梁歌位 ゅ少の呼吸する案気中の沽度限度 $\left(\mathrm{Bq} / \mathrm{cm} \mathrm{m}^{3}\right)$ 泜
			\qquad	穓度に対す万㝬合（1） （3）	（1）放时能㴗压 （ $8 \downarrow / \mathrm{cm} 3$ ）						
縺発住	Co－58	ND	－．	－	ND	－	－	ND	．－	－	1．0E－02
	－131	3．6E－04	8．9E－06	0.36	2．4E－04	1．6E－05	0.24	4．1E－0．4	5．4E－06	0.41	1．0E－03
	1－132	2．5E－04	1．8E－04	0.00	ND	．－	－	ND	－	－	7．0E－02
	1－133	ND	－	－	ND	－	－	ND	－	－	5．0E－03
	Cs－134	8．9E－06	5．3E－06	0.00	23E－05	1．3E－05	0.01	4．3E－05	4．0E－06	0.02	2．0E－03
	Cs－136	ND	－	－	ND	－	－	4．5E－06	24E－06	0.00	1．0E－02
	Cs－137	8．1E－08	5．0E－06	0.00	2．3E－05	1．4E－05	0.01	4．0E－05	4．0E－06	． 0.01	3．0E－03
粗子状	Co－58	ND	－	－	ND	－	－	ND	－	－	1．0E－02
	1－131	2．1E－04	8．9E－06	0.21	1．2E－04	8．7E－06	0.12	1．9E－04	2．9E－06	0.18	1．0E－03
	［－132	ND	－	－	ND	－	－	ND	－	－	7．0E－02
	Cs－134	ND	－	－	1．1E－05	7．5E－06	0.01	2．9E－05	2．3E－06	0.01	2．0E－03
	Cs－136	ND	－	－．	ND	－．	－	2．4E－06	1．1E－06	0.00	1．0E－02
	Cs－137	7．5E－08	7．3E－08	0.00	1．4E－05	7．7E－06	0.00	3．0E－05	2．1E－06	0.01	3．0E－03
モの他の模出核輏	Z－95．	ND	－	－	ND	－	－	ND	－	－	8．0E－02
	Ru－105	ND	－	－	ND	－	－－	ND	－	－	8．0E－02
	Tc－99m	ND	－	－	ND	－	－	3．0E－06	3．0E－06	0.00	7．0E－01
	Te－129	ND	－	－	ND	－	－	6．3E－02	1．2E－02	0.16	4．0E－01
	Te－129m	ND	－	－	ND	－	－	2．7E－04	3．8E－05	0.07	4．0E－03
	Te－132	9．7E－06	7．4E－06	0.00	ND	－	－	8．35－05	1．7E－06	0.01	7．0E－03

※ O．OE－Oとは， 0.0×10^{-0} と国し总味である。

1．採取•測定条件

酸料裸取	城所	榅島第二 情教桋東㑡	棍鸟第二 免震趧屋1陼入口
		3月16日	3月16日
		7：56～8：06	10：00～10：10
	裸取方法	モニタリングカーにてダスト探取	モニタリングカーにてダスト探取
	風向•風速	－．	－
弑䋛测定	日時	3／16 8：47～	3／16 11：59～
	測定方法	Go半幛体型核稱分析装置にて分析	
	浰定時間	5005	500 s

	核䆀	3月16日		探取分（1）	3月16日			（3）放射楾薬務従事者の呼昅する （ $8 \mathrm{q} / \mathrm{cm} 3$ ）※
		（1）放射施娍度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）	$\begin{gathered} \text { (2)抰出限界椡 } \\ (\mathrm{Bq} / \mathrm{cm} 3) \end{gathered}$		$\begin{gathered} \text { (1)故射能堸 } \\ (\mathrm{Bq} / \mathrm{cm} 3) \\ \hline \end{gathered}$			
揮発性	1－131	3．432E－04	2．559E－05	0.34	6．889E－04	1．268E－05	0.69	1．0E－03
	1－132	1．149E－03	2．812E－05	0.02	7．528E－04	1．988E－05	0.01	7．0E－02
	1－133	3．448E－05	2．687E－05	0.01	$4.395 \mathrm{E}-05$	1．497E－05	0.01	5．0E－03
柆子状	Co－58	ND	－	－	4．943E－05	2．685E－05	0.00	1．0E－02
	Cs－134	1．237E－04	1．449E－05	0.06	4．163E－04	2．459E－05．	0.21	2．0E－03
	Cs－136	2．699E－05	9．412E－06	0.003	7．504E－05	1．495E－05	0.01	1．0E－02
	C5－137	1．227E－04	1．311E－05	0.04	$3.861 \mathrm{E}-04$	$2.057 \mathrm{E}-05$	0.13	$3 . \mathrm{DE}-03$
その他の検出核種	$\mathrm{Ge}-75 \mathrm{~m}$ ．	2．762E－04	$4.217 \mathrm{E}-04$		ND	－		
	Br－83	8．078E－03	2．756E－03		4．594E－03	1．565E－03		
	Ru－105	ND	－	－	4．057E－05	2．883E－05		
	Ru－106	4．081E－04	1．920E－04		ND	－	－	6．0E－04
	Te－129	ND	－	－	ND	－	－	4．0E－01
	Te－129m	ND	－	－	ND	－	－	4．0E－03
	Te－132	1．855E－03	1．757E－05		2．947E－04	9．710E－06		7．0E－03

澏度哏度。

	埸阫	棫鳥第二 MP－1．	䌊房第二 MP－1	蹜島第二 MP－1
	日時	3月17日	3月18日	3月18日
		13：50～14：00．	8：22～8：32	15：09～15：19
	蚞取方法	モニタリングカーにてら゙スト棎取		モニタリングカーにてダスト捄取
	园自－成㞂	－．	－－	－
式科則定	日時	3／1722：01～	3／18 9：40～	3／18 17：12～
	測定方法	G8半理体型核报分析装置にて分析		
	畷定時间	1000s．	10008	1000s

2．铬梁											
－	榢䅐	3月17日			3月18日			3月18日			（3）放时教吡戻嗞曾劣の唓吸する空気中の强度酸 F（B $\left.\alpha / \mathrm{cm}^{3}\right) ※$
		（ $\mathrm{Bq} / \mathrm{om} 3$ ）						（1）放时能泡磪 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）			
婵発珄	1－131	9．432E－0．5	3．351E－06	0.08	8．630E－04	3．145E－05	0.86	4．298E－03	4．993E－05	4.30	1．0E－03
	1－132	ND	－	－	1．720E－03	3．821E－05	0.02	2625E－03	8．359E－05	0.04	7．0E－02
	1－133	3．304E－08	4．478E－06	0.00	ND	－	－	5．246E－05	4．213E－05	0.01	5．0E－03
䗑子状	Co－58	2484E－05	2．061E－05	0.00	3．080E－05	2．048E－05	0.00	1．578E－04	1．435E－05	0.02	1．0E－02
	Cs－134	3．314E－04	1．680E－05	0.17	3，345E－04	1．666E－05	0.17	4．863E－04	1．538E－05	0.24	20E－03
	C5－136	6．107E－05	1．296E－05	0.01	5．882E－05	1．012E－05	0.01	8．416E－05	1．436E－05	0.01	1．0E－02
	Cs－137	3．232E－04	1．702E－05	0.11	3．147E－04	1．683E－05	0.10	4．306E－04	1．715E－05	0.14	3．0E－03
その他の椟出植和	C -38 m	ND	－	－	ND	－	－	$3.180 \mathrm{E}+00$	3．292E－02		
	Ga－72	ND	－	－	ND	－	－	2101E－03＇	1．180E－04		
	Ge－75m	1．135E－04	1．143E－04		ND	－	－	ND	－	－	
	Ru－105．	ND	－	－	6．401E－05	$5.018 \mathrm{E}-0.5$		ND	－	－	
	Rur 106	2523E－04	2828E－05		2797E－04	2．630E－04		ND	－	－	6．0E－04
	Te－129	4．603E－02	3．978E－02		1．234E－03	1．052E－03		3．605E－03	7．033E－04		4．0E－01
	To－128m	ND	－	．－	8．680E－04	7．250E－04		1．355E－03	3．745E－04		4．0E－03
	Te－132	2．324E－04	2．743E－06		2．329E－03	$2.546 \mathrm{E}-05$		6．470E－03	1．399E－05		7．0E－03
	Pr－144	5．780E＋04			9．299E－02			ND．	－	－	
	La－140	ND	－	－	ND	－	－	4．537E－05	8．315E－06		7．0E－03
	Eu－152	1．589E－04	1．003E－04		ND	－	－	ND	－	－	
	Bi－212	1．031E－04	8．879E－05		ND	－	－	ND	－	－	
	Ac－228	ND	－	－	7．764E－05	6．890E－05		ND	－	－	

※ O．OE－Oとは， 0.0×10^{-0} と同じ急味である。

1．探取：湖定条件

酠料㨲取	場所	楅島第二 MP－1	㮛島第二．MP－1	福島第二 MP－1	楅岛第二 MP－1
	日時	3月19日	3月19日	3月20日	3月20日，
		9：15～9：25	18：18～18：28	11：27～11：37	17：10～17：20
	棌取方法	モニタリングカーにてダスト棌取	モニタリングカーにてダスト珄取	モニタリングカーにてゲスト楼取	モニタリングカーにてダスト㧺取
	風間•風速	－	－	－	－
試料溊定	日時	3／19 10：39～	．3／19 19：08～	3／20 16：17～	3／20 21：11～
	測定方法			Ge半海体型核稯分析装道にて分析	Ge半道体型核弾分析装畳にて分析
	测定時間	1000s	1000s	500 s	．\quad 500s

	，核根	3月19日．探取分（1）			3月19日		探取分（2）	3月20日			3月20日			（3）故射線柔務従 あ者の呼吸する空気中の湲度㩐 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）※
		（1）放的能宬度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）			（1）放射能㳑度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）	$\begin{gathered} \text { (2) 検出限界㵊 } \\ \text { (} \\ (\mathrm{Bq} / \mathrm{cm} 3) \end{gathered}$		（1）放射能㳑度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）	$\begin{gathered} \text { (2) 拎出限界滥 } \\ \left(\mathrm{Bq} / \mathrm{cm}^{2}\right) \end{gathered}$		（1）放射能渡度 （ $\mathrm{Ba} / \mathrm{cm} 3$ ）	$\begin{gathered} \text { (8) 梌出浪界温 } \\ (\mathrm{Bq} / \mathrm{cm} 3) \\ \hline \end{gathered}$		
揮発性	1－131	2．7E－04	5．6E－05	0.27	2．5E－04	5．7E－05	0.25	5．3E－05	1：2E－05	0.05	2．2E－04	4．3E－05	0.22	1．0E－03
	1－132	2．4E－04	1．7E－04	0.00	1．2E－04	1．2E－04	0.00	ND	．	－	2．6E－04	$2.5 \mathrm{E}-04$	0.00	7．0E－02
	1－133	ND	－	－	5．0E－03									
	Cs－134	6．3E－05	5．9E－05	1.06	ND	－	－	ND	－	－	ND	－	－	2．0E－03
	Cs－136	ND	－	－	1．7E－04	$1.6 \mathrm{E}-04$	0.02	ND	－	－	ND	－	－	1．0E－02
粒子状	Co－58	ND	－	－．	ND	－	－	ND	－	－	ND	－	－	1．0E－02
	－131	1．4E－04	3．1E－05	0.14	1．3E－04	$3.1 \mathrm{E}-05$	0.13	2．6E－05	6．0E－06	0.03	ND	－	－．	1．0E－03
	－ $1-132$	1．2E－04	9．0E－05	0.00	ND	－	－	ND	－	－	1．8E－03	8．9E－04	0.03	7．0E－02
	1－133	ND	－	－	2．4E－04	2．2E－04	0.05	ND	－	－	ND	－	－	5．0E－03
	Cs－134	ND	－	－	2．0E－03									
	Cs－136	ND	－	－	1．0E－02									
	Cs－137	ND	－	－	ND	－．	－	ND	－	－	ND	－	－	3．0E－03
その他核雬	Ru－105	ND	－	－	2．1E－04	2．0E－04	0.00	ND	－	－	ND	－	．－	8．0E－02
	To－132	ND	－	－	ND	－	－	4．2E－06	3．4E－06	0.00	ND	－	－	$7.0 \mathrm{E}-03$

※ O．OE－Oとは， 0.0×10^{-0} と同し意味である。

福岛第二原子力発軍所敬地内における空気中放射性物質の核種分析結果について
1．㭼取 \cdot 列定苯件

絓料抨取	場所	細蜀第二 MP－1．	桖島第二 MP－1	楅我第二 MP－1	福島第二 MP－1
	日時	3月21日	3月21日	3月22日	3月22日
		10：40～10：50	18：11～18：19	10：02～10：10	16：43～16：51
	標取方法	モニタリングカーにとダスト䗇取	モニタリングカーにてダスト滊取	モニタリングカーにてダスト埰取	モニタリングカーにてがスト梕取
	田向•国违	－	－	－．	－．
战教洌定	日续	3／21 12：15～	3／21 19：00～	3／22 11：53～	3／22 17：32～
	販定方法	Ge半渻体型授程分析娎运にて分析			Go半过体型核程分析教登にて分析
	測定時間	500s	500 s	500s	5008

2．結果

	核㱣	3月21日 ，探取分（1）			3月21日			3／22婇取分（1）			3／22探取分（2）			（3）使射緌县指従者の呼吸する空气中の湦屋滑 （ $84 / \mathrm{cm} 3) \%$
		（1）放封能盓 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）						度 （ $\mathrm{Ba} / \mathrm{cm}^{3}$ ）						
䲝発珄	Co－58	ND	－	－	2．9E－05	2．E－05	0.00	ND	－	－	ND	－	－	4．0E－01
	F－131	2．3E－04	1．7E－05	0.23	1．6E－04	1．9E－05	0.16	1．416E－04	2．272E－05	0.14	1．349E－04	2．216E－05	0.13	1．0E－03
	1－132	2．4E－04	2．4E－05	0.003	8．1E－04	1．9E－05	0.01	ND	－	－	ND	－	－	7．0E－02
	${ }_{5} 133$	ND	－	－	5．0E－03									
	C5－134	ND	－	－	1．7E－05	1．7E－05	0.01	2646E－05	1．636E－05	0.01	1．865E－05	1．747E－05	0.01	2．0E－03
	Cs－137	1．8E－05：	1．3E－05	0.01	ND	－	－	2．316E－05	1．739E－05	0.01	2．146E－05	1．731E－05	0.01	3．0E－03
粒子状	Co－58	ND	－	－	1．3E－05	8．9E－06	0.00	ND	－	－	ND	－－	－	1．0E－02
	1－131	1．5E－04	9．8E－06	0.151	12E－04	1．0E－05	0.12	6．939E－05	1．155E－05	0.07	7．919E－05	1．190E－05	0.08	1．0E－03
	1－132	2．5E－04	1．3E－05	0.004	3．9E－04	1．8E－05	0.01	ND	－	－	4．153E－05	3．357E－05	0.00	7．0E－02
	Cs－134	4．4E－05	9．3E－06	0.02	3．0E－05	1．0E－05	0.02	1：293E－05	9．476E－06	0.01	1．353E－05	9．812E－06	0.01	2．0E－03
	C5－136	ND	－	－	ND．	－	－	ND	－	－	ND	－	－	1．0E－02
	Cs－137	4．7E－05	8．0E－06	0.02	3．3E－05	9．7E－08	0.01	1．024E－05	8．838E－06．	0.00	1．369E－05	8．381E－06	0.00	3．0E－03
その地核種	Ru－105	ND	－	－	1．2E－04	8．6E－05	0.00	ND	－	－	ND	－	－	8．0E－02
	Ru－106	ND	－	－	1．4E－04	7．6E－05	0.24	ND	－	－	ND	－	－	6．0E－04
	Te－129	4．5E－04	2．9E－04	0.00	9．3E－04	2．2E－04	0.00	$2.316 \mathrm{E}-03$	1．784E－03	0.01	ND	－	－	4．0E－01
	Te－129m	6．4E－04	2．0E－04	0.16	ND	－	－	ND．	－	－	ND	－	－	4．0E－03
	Te－132	7．6E－04	6．6E－04	0.11	1．4E－03	6．8E－06	021	2．191E－05	1．649E－05	0.00	ND	－	－	7．0E－03

1．探取－测定条件

	場所	䙖岛第二 MP－1	罍島第二 MP－1	祖瞗第二 MP－1	相島第二 MP－1
	日時	3／23 9：40～9：48	3／23 16：06～16：14	3／24 9：47～9：55	3／24 17：46～17：54
	探取方法	モニタリングカーにてダスト捰取	モニタリングカーにてダスト探取	モニタリングカーにてダスト哖取	モニタリングカーにてダスト採取
	風向－風速	－	－	－	－
㨁科測定	日時	3／23 15：00～	3／23 17：38～	3／24 10：38～	3／25 0：40～
	刑定方法				Ge半退体型核種分析装遺にて分析
	測定時間	500s	500s	500s	500 s

2．結果

	核種	3／23探取分（1）			3／23探取分（2）			3／24婇取分（1）			3／24探取分（2）			（3）放射楾㭗務従事者の呼吸する空気中の滥度眼 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）※
		（1）放射能退度 （ $\mathrm{B} / \mathrm{q} / \mathrm{cm} 3$ ）	$\left[\begin{array}{c} \text { (2) 梌田根界㵋 } \\ \text { 度 } \\ (\mathrm{Bq} / \mathrm{cm} 3) \end{array}\right.$					（1）放行能㫰度 （ $\mathrm{B} q / \mathrm{cm} 3$ ）			（1）放射能泿度 （ $\mathrm{Bq} / \mathrm{cm3}$ ）	（2）険出限界滥度 （ $\mathrm{Bq} / \mathrm{cm3}$ ）		
揮発性	Co－58	ND	－	－	1．460E－05	1．353E－05	0.00	ND	－	－	ND	－	－	1．0E－02
	I－131	2．7E－04	3．9E－05	0.27	2．1E－04	1．4E－05	0.21	1．9E－04	1．5E－05	0.19	1．7E－04	1．4E－05	0.17	1．0E－03
	1－132	2．8E－04	2．2E－04	0.00	2．8E－04	2．8E－05	0.00	3．0E－04	2．5E－05	0.00	ND	－	－	7．0E－02
	1－133	ND	－	－	5．0E－03									
	Cs－134	4．3E－05	3．0E－05	0.02	2．3E－05	1．2E－05	0.01	2．8E－05	1．3E－05	0.01	1．6E－05	1．2E－05	0.01	2．0E－03
	Cs－137	ND	－	－	$2.0 \mathrm{E}-05$	1．3E－05	0.01	3．0E－05	$1.2 \mathrm{E}-05$	0.01	$2.9 \mathrm{E}-05$	$1.1 \mathrm{E}-05$	0.01	3．0E－03
粒子状	Co－58	ND｀	－	－	ND	－	－	－ND	－	－	ND	－	－	1．0E－02
	1－131	1．5E－04	2．1E－05	0.15	8．2E－05	7．9E－06	0.08	1．1E－04	7．3E－06	0.11	6．4E－05	2．1E－05	0.06	1．0E－03
	－132	ND	－	－	2．6E－04	1．5E－05	0.00	1．7E－04	1：0E－05	0.00	ND	－	－	7．0E－02
	Cs－134	ND	－	－	1．7E－05	8．5E－06	0.01	2．1E－05	6．7E－06	0.01	ND	－	－	2．0E－03
	Cs－136	ND	－	－	ND	－	－	ND	－	\cdots	ND	－	－	1．0E－02
	Cs－137	ND	－	－	1．7E－05	6．9E－06	0.01	$2.0 \mathrm{E}-05$	$6.6 \mathrm{E}-06$	0.01	2．1E－05	1．7E－05	0.01 ．	$3.0 \mathrm{E}-03$
その他の检出核種	Ru－106	ND	－	－	8．210E－05	5．694E－05	0.14	ND	－	－	ND	－	－	6．0E－04
	Te－129	ND	－	－	9．278E－04	2．649E－04	2．320E－03	7．6E－04	1．3E－04	1．894E－03	1．4E－02	$9.5 \mathrm{E}-03$	0.04	4．0E－01
	Te－129m	ND	－	－	ND	．－	－	5．7E－04	1．7E－04	0.14	4．6E－04	2．8E－04	0.11	4．0E－03
	Te－132	1．6E－04	2．2E－05	0.02	$7.084 \mathrm{E}-04$	6．527E－06	1．009E－01	5．6E－04	5．7E－06	0.08	$3.5 \mathrm{E}-04$	1．1E－05	0.05	$7.0 \mathrm{E}-03$

[^8]※ O．OE－Oとは， 0.0×10^{-0} と風じ意味である。

嵒島第二原子力発軍所稘地内における空気中放射性物啠の核栕分析結果について
1．採取•㱚定颈件

解料探取	場所	楬島第二 MP－1	福島第二 MP－1	福岛第二 MP－1	褐岛第二 MP－1
	日時	3／25 9：41～9：48	3／25 17：32～17：40	3／26 10：52～10：59	3／26 16：22～16：29
	採取方法	モニタリンゲカーにてダスト稆取	モニタリングカーにてダスト探取	モニダリングかーにてダスト墚取	モニタリングカーにてダスト棌取
	風間－盛速	－	－	－	－
縒網敉定	日時	2011／3／25 1220～	2011／3／25 12：33～	2011／3／26 12：35～	2011／3／26 18：19～
	利定方法				
	湖定時間	500s	500s	500s	5005

2．結果

	核種	$3 / 25$ 婇取分（1）			$3 / 25$ 採取分（2）			3／26桃取分（1）			3／26探取分（2）			（3）放射镜㭉務従車者の呼吸する （Bq／cm3）※
		（1）放射能埌度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）			（1）放射能過家 （ $\mathrm{Bq} / \mathrm{cm}$ ）	（2）抶出限界瑯 （ E / cm ）		（1）放射能治菂 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）			（1）放射能㵊度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）			
憡発性	Co－58	ND．	－	－	ND	－	－	ND	－－	－	ND	－	．－	1．0E－02
	1－131	2．1E－04	3．2E－05	0.21	1．7E－04	1．3E－05	0.17	1．0E－04	1．3E－05	0.10	1．6E－04	3．4E－05	0.16	1．0E－03
	1－132	1．6E－04	1．0E－04．	0.00	2．2E－04	2．0E－05	0.00	1．6E－04	2．4E－05	0.00	ND	－	－	7．0E－02
	1－133	ND	－	－	5．0E－03									
	Cs－134	6．9E－05	3．2E－05	0.03	2．6E－05	1．2E－05	0.01	1．3E－05	1．3E－05	0.01	ND	－	－	2．0E－03
	Cs－137	ND	－	－	3．5E－05．	1．1E－05	0.01	1．6E－05	1．0E－05	0.01	ND	－	－	3．0E－03
粒子状	Co－58	ND	－	－	$1.0 \mathrm{E}-02$									
	1－131	1．0E－04	1．6E－05	0.10	6．8E－05	7．0E－06	0.07	8．4E－05	1．7E－05	0.08	8．8E－04	1．7E－04	0.88	1．0E－03
	1－132	6．0E－05	5．0E－05	0.00	1．1E－04	1．2E－05	0.00	ND	－	－	ND	－	－	7．0E－02
	Cs－134	ND	－	－	1．0E－0．5	6．1E－06．	0.01	1．8E－05	1．6E－05	0.01	1．8E－04	1．6E－04	0.09	2．0E－03
	Cs－136	ND	－	－	1．0E－02									
	Cs－137	ND	－	－	1．1E－05	5．8E－06	0.00	1．7E－05	1．6E－05	0.01	2．1E－04	1．6E－04	0.07	3．0E－03
その他の椮出核種	Ru－105	ND	－	－	7．3E－05	5．3E－05	0.00	ND	－	－	ND	－	－	8．0E－02
	Ru－106	ND	－	－	6．0E－04．									
	Te－129	ND	－	－	5．7E－04	1．5E－04	0.00	5．9E－04	3．4E－04	1．475E－03	ND	－	－	4．0E－01
	$\mathrm{Te}-129 \mathrm{~m}$	ND	－	－	4．4E－04	1．3E－04	0.11	4．1E－04	2．4E－04	$1.025 \mathrm{E}-01$	ND	－	－	4．0E－03
	Te－132	1．1E－04	1．6E－05	0.02	3．9E－04	4．8E－06	0.06	2．3E－04	8．4E－06	0.03	3．5E－04	3．0E－05	0.05	7．0E－03

※ O．OE－Oとは， 0.0×10^{-0} と同じ意味である。

鴙料捰取	塌所	畄盛第二 MP－1	褔島第二．MP－1	襠島第二 MP－1	緡島第二 MP－1
	日時	3／27 10：52～11：00	3／27 17：02～17：10	3／28 10：46～10：54	3／28 17．04～17：12
	姩取方法	モニタリングカーにてダスト綡取	モニタリングカーにてダスト被取	モニタリングカーにてダスト椎取	モニタリングカーにてダスト积取
	围向－蜀息	－	－	－	－
侙料測定	－日時	2011／3／27－11：56～	2011／3／27 18：03～	2011／3／28 13：10～	2011／3／28．17：49～
	研定方法		Ge半浑体型校勳分析装匋にて分析		
	剆定時間	500 s	500s	1000s	1000s

2．姞果

	核楮	3／27棌取分（1）			3／27棎取分（2）			3／28探取分（1）			3／28採取分（2）			（3）放射授果䓉说 あ者の呼吸する （ $\mathrm{Bq} / \mathrm{mm} 3$ ）※
		（1）故的的澸度 （ $\mathrm{Bq} / \mathrm{cm} 3$ ）	$\left[\begin{array}{c} \text { (2) 蒇出限界沼 } \\ \text { 部 } \mathrm{cm} 3) \end{array}\right.$					（1）放特施浔度 （ $\mathrm{B} / \mathrm{cm} 3$ ）	$\begin{gathered} \text { (2) 険出限界温 } \\ (\mathrm{Bq} / \mathrm{cm} \mathrm{c}) \end{gathered}$			$\begin{gathered} \text { (2)摸出㔭界温 } \\ (\mathrm{Bq} / \mathrm{cm} 3) \\ \hline \end{gathered}$		
挥発性	Co－58	ND	－	－	ND	－	－	－	－	－	－	－	－	1．0E－02
	1－131	1．3E－04．	1．3E－05	0.13	4．3E－05	1．9E－05	0.04	3．1E－05	1．4E－05	0.03	4．6E－05	1．4E－05	0.05	1．0E－03
	－132	1．4E－04	1．6E－05	0.00	ND	－	－	－	－＇	－	2．8E－05	2．2E－05	0.00	7．0E－02
	1－133	ND	－	－	ND	－	－	－	－	－	－	－	－	5．0E－03
	C5－134	1．9E－05	1．0E－05	0.01	ND	－	－	－	－	－	－	－	－	2．0E－03
	Cs－137	1．9E－05	9．5E－06	0.01	ND	－	－	－	－	－	－	－	－	3．0E－03
梹子状	Co－58	ND	－	－	ND	－	－	－	－	－	－	－	－	1．0E－02
	1－131	7．3E－05	1．6E－05	0.07	7．6E－05	6．4E－06	0.08	－	－	－	－	－	－	1．0E－03
	1－132	3．2E－05	2．7E－05	－	6．3E－05	8．8E－06	0.00	－	－	－	－	－	－	7．0E－02
	Cs－134	2．3E－05	1．5E－05	0.01	9．9E－06	5．7E－06	0.00	－	－	－	－	－	－	2．0E－03
	Cs－136	ND	－	－	ND	－	－	－	－	－	－．	－	－	1．0E－02
	Cs－137	1．6E－05	1．6E－05	0.01	ND	－	－	－	－	－	－	－	－	3．0E－03
その他の検出核程	Ru－105	ND	－	－	ND	－	－	－	－	－	－	－	－	8．0E－02
	Ru－106	ND	－	－	ND	－	－	－	－	－	－	－	－	6．0E－04
	Te－129	2．6E－04	2．2E－04	0.00	2．1E－04	1．1E－04	0.00	－	－	－	－	－	－	4．0E－01
	Te－129m	3．3E－04	2．2E－04	0.08	1．2E－04	1．1E－04	0.03	－	－	－	－	－	－	4．05－03
	Te－132	1．9E－04	7．8E－06	0.03	7．5E－05	3．7E－06	0.01	－	－	－	1．4E－05	1．1E－05	0.00	7．0E－03

睵料婇取	埸防	栭嘘第二 MP－1	福息第二MP－1	㮩成第二．MP－1	福为第二 MP－1
	日時	3／29 9：51～9；58	3／28 15：58～16：04	3／30 9：27～9：35	3／30 18：30～18：38
	碞取方法	モニタリングカーにてタスト潩取	モニタリングカーにてダスト採取	モニタリングカーにてダスト籹取	モニタリングカーにてタスト蜼取
		－	－	－	－－
8乐料的定足	日時	．2011／3／20．13：24～	2011／3／29 18：18～	3／30 10：42～	3／30 20：05～．
	沼定方法				
	研定時間	5008	500 s	1000s	1000s

2．結果

	核稱	3／29棌取分（1）			3／29稑取分（8）			3／30採取分（1）			3／30探取分（6）			褶の挐吸する
		（1） （ $\mathrm{Bq} / \mathrm{cm}^{3}$ ）									（ $\mathrm{Bq} / \mathrm{cm} \mathrm{m}^{\text {）}}$			
䍜势性	Co－58	ND．	－	－	ND	－	－	ND	－	－	ND	－	－	1．0E－02
	－131	2．0E－04	1．9E－05	0.20	1．4E－04	1．2E－05	0.14	8．1E－04	1．0E－05	0.81	2．4E－04	8．7E－06	0.24	1．0E－03
	1－132	ND	－	－	8．3E－05	2．1E－05	$0.00{ }^{\prime}$	3．3E－04	1．5E－05	0.00	7．5E－05	1．1E－05	0.00	7．0E－02
	－133	ND	－．	－	ND	－	－	ND	－	－	ND	－	－	5．0E－03．
	Cs－134	3．3E－05	1．5E－05	0.02	8．0E－05	9．2E－06	0.03	8．2E－05	8．5E－06	0.04	7．1E－05	7．1E－08	0.04	2．0E－03
	Cs－136	ND	－	－	ND	－	－	6．2E－06	5．8E－06	0.00	6．5E－06	4．3E－06	0.00	1．0E－02
	C5－137	4．3E－05	1．4E－05	0.01	6．3E－05	9．5E－06	0.02	7．4E－05	8．2E－06	0.02	7．5E－05	$7.0 \mathrm{E}-06$	0.03	3．0E－03
䡴子状	Co－58	ND	－	－	$1.0 \mathrm{E}-02$									
	1－131	－1．3E－04	1．9E－05	0.13	7．9E－05	6．3E－06	0.08	6．8E－04	8．6E－06	0.68	1．5E－04	4．5E－08	0.15	1．0E－03
	－132	ND	－	－	3．9E－05	1．1E－05	0.00	$2.3 \mathrm{E}-04$	9．4E－06	0.00	3．7E－05	5．9E－06	0.00	7．0E－02
	Cs－134	1．8E－04	1．8E－05	0.08	4．3E－05	5．9E－06	0.02	8．7E－04	9，0E－06	0.43	5．2E－05	4．2E－06	0.03	$2.0 \mathrm{E}-03$
	Cs－138	1．6E－05	7．1E－08	0.00	4．2E－06	3．8E－06	0.00	3．8E－05	6．2E－06	0.00	3．0E－06	2．1E－06	0.00	1．0E－02
	Cs－137	1．8E－04	1．7E－05	0.06	3．9E－05	5．2E－06	0.01	8．2E－04	7．3E－08	0.27	4．9E－05	3．3E－06	0.02	3．0E－03．
その他の 検出数盉	Rur－105	ND	－	－	ND	－	－	ND	－	－	ND	－－	－	$8.0 \mathrm{E}-02$
	Ru－108	ND	－	－	ND	－	－	ND	－．	－	ND	－	－	6．0E－04
	Tc－99m	ND	－	－	ND	－	－	5．3E－05	4．7E－06	0.00	ND	．－	－	7．0E－01
	As 110 m	ND	－	－	ND	－	－	9．8E－06	6．5E－06	0.00	ND	－	－	3．0E－03
	$\mathrm{Sn}-113$	ND	－	－	ND	－	－	2．2E－05	1．1E－05	0.00	ND	－	－	1．0E－02
	Te－128	ND	－	－	1．5E－03	2．1E－04	0.00	1．0E－03	2．1E－04	0.00	6．9E－04	1．2E＝04	0.00	4．0E－01
	$\mathrm{Ta}-129 \mathrm{~m}$	ND	－	－	1．3E－04	9．2E－05	0.03	6．6E－04	1．8E－04	0.17	3．3E－04	6．8E－05	0.08	4．0E－03
	Te－132	ND	－	－	1．5E－04	3．6E－06	0.02	2．0E－04	5．4E－06	0.03	1．0E－04	2．5E－06	0.01	7．0E－03
	La－140	ND	－	－	ND	－	－	3．4E－08	2．6E－06	0.00	ND	－	－	7．0E－03

[^9]※ 0.0 － 0 とは， 0.0×10^{-0} と国じ意味てある。

地震被害情報（第6 6 報）

（4月1日09時30分現在）

原子力安全•保安院が現時点で把握している東京電力（株）福島第一原子力発電所，福島第二原子力発電所，東北電力株女川原子力発電所，日本原子力発電
（株）東海第ニ，電気，ガス，熱供給，コンビナート被害の状況は，以下のと おりです。

前回からの変更点は以下のとおり。

1．原子力発電所関係

○福島第一原子力発電所
－1号機の使用済燃料プールについて，コンクリートポンプ車が約90t放水（淡水）（31日 13：03～16：04）
－ 3 号機の使用済燃料プールについて，コンクリートポンプ車（ $50 \mathrm{t} / \mathrm{h}$ ） が約 105 t 放水（淡水）（31日 16：30～19：33）。
－ 4 号機の使用済燃料プールについて，コンクリートポンプ車（ $50 \mathrm{t} / \mathrm{h}$ ） が放水開始（1日 8：25）
－原子炉等の泠却に使用する淡水を積んだ米軍のはしけ船（バージ船）1 隻 が海上自衛隊の艦船にえい航され，発電所専用港に接岸（31日15：42）。

○福島第二原子力発電所

街宣車1台が施錠管理している西側車両ゲートから構内に侵入（31日 13：08頃）し，構内を走行した後，同ゲートから退去（31日13：20頃）。本件につい
て，福島県警に通報。当該ゲートについては，街宣車退出後，東京電力（株） の車両により封鎖。

2．産業保安関係
別紙参照

3．原子カ安全•保安院等の対応
－原子力安全•保安院は，東京電力（株）に対し，31 日の福島第二原子力発電所への街宣車の進入について，核物質防護等に係る対策に万全を期すよう口頭で指示。
－原子力安全•保安院は，東京電力（株）に対し，作業員の放射線管理に万全を期すように注意喚起。
－原子力安全•保安院は，東京電力（株）に対し，核種分析結果の誤りについて適切な対応をとるように厳重注意。

〈従業員等の被ばく＞
福島第一原子力発電所で作業していた従業員で 100 mSv を超過した作業員 は，計21名。

1 発電所の運転状況【自動停止号機数：10基】

O東京電力（株）福島第一原子力発電所（福島県双葉郡大熊町及び双葉町）
（1）運転状況
1 号機（46 万 kW）（自動停止）
2 号機（ 78 万 4 千 kW ）（自動停止）
3 号機（ 78 万 4 千 kW ）（自動停止）
4 号機（78万4千kW）（定検により停止中）
5 号機（ 78 万 4 千 kW ）（定検により停止中，20日 14：30冷温停止）
6 号機（110 万 kW）（定検により停止中，20日 19：27冷温停止）
（2）モニタリングの状況
別添参照
（3）主なプラントパラメーター（1日 6：00現在）

	1号機	2号機	3号機	4号機	5 号機	6号機
原子炬压カ＊${ }^{\text {² }}$［MPa］	$\begin{aligned} & 0.394(\mathrm{~A}) \\ & 0.596(\mathrm{~B}) \end{aligned}$	$\begin{aligned} & 0.087(\mathrm{~A}) \\ & 0.085(\mathrm{~B}) \end{aligned}$	$\begin{aligned} & 0.119(\mathrm{~A}) \\ & 0.015(\mathrm{C}) \end{aligned}$	－	0.108	0.104
原子炉格納容器圧力 （D／W）［kPa］	170	110	107.1	－	－	－
原子炉水位＊2 ${ }^{\text {2 }}$［mm］	$\begin{aligned} & -1600(\mathrm{~A}) \\ & -1600(\mathrm{~B}) \end{aligned}$	$\begin{aligned} & -1500(\mathrm{~A}) \\ & \text { 不明 (B) } \end{aligned}$	$\begin{aligned} & -1900(\mathrm{~A}) \\ & -2250(\mathrm{~B}) \end{aligned}$	－	1912	1699
原子妒格納容器内 S / C 水温 $\left[{ }^{\circ} \mathrm{C}\right]$	－	－	－	－	－	－
原子炉格納容器内 S／C 圧力 $[\mathrm{kPa}$ ］	170	D / S (調査中)	175.5	－	－	－
使用済燃料プール水温度 $\left[{ }^{\circ} \mathrm{C}\right]$	計器不良	48.0	計器不良	計器不良	36.6	22.0
備 考	$\begin{gathered} 4 / 1 \\ 6: 00 \end{gathered}$ 現在の値	$\begin{gathered} 4 / 1 \\ 6: 00 \end{gathered}$ 現在の値	$4 / 1$ $05: 45$ 現在の値	$\begin{gathered} 4 / 1 \\ \text { 現在 } \end{gathered}$	$\begin{gathered} 4 / 1 \\ 6: 00 \end{gathered}$ 現在の値	$\begin{gathered} 4 / 1 \\ 6: 00 \end{gathered}$ 現在の値

＊1：絶対圧に換算
＊2：燃料頂部からの数値
（4）各プラントの状況

<1 号機関係 $>$

－原子力災害対策特別措置法第 15 条（非常用炉心冷却装置注水不能）．通報（11日 16：36）

- ベント操作（12日 10：17）
- 1 号機の原子炉圧力容器内に消火系ラインを用いて海水注入開始（12 日 20：20）\rightarrow 14日 01：10 一時中断
- 1 号機で爆発音。（ 12 日 $15: 36$ ）
- 消火系に加え，給水系を使うことにより炬心への注水量を増量（ $2 \mathrm{~m}^{3}$／ $\mathrm{h} \rightarrow 18 \mathrm{~m}^{3} / \mathrm{h}$ ）（23日 $02: 33$ ）。その後，給水系のみに切替（約 $11 \mathrm{~m}^{3} / \mathrm{h}$ ） （23日9：00）
- 中央制御室の照明が復帰（24日 11：30）
- タービン建屋地下の溜まり水を測定した結果，主な核種として ${ }^{1311}$（ヨウ素）が $2.1 \times 10^{5} \mathrm{~Bq} / \mathrm{cm}^{3}, ~{ }^{137} \mathrm{Cs}$（セシウム）が $1.8 \times 10^{6} \mathrm{~Bq} / \mathrm{cm}^{3}$ ，検出さ れた。
－消防ポンプによる淡水の原子炉圧力容器への注入を仮設電動ポンプに切 り替え（29日 8：32）
－タービン建屋地下の溜まり水は，24日 17 時頃から復水器へ移送開始。復水器の水位が満水に近いことが確認されたため，復水器への排水を停止（29 日 07：30）。タービン建屋地下の溜まり水を復水器へ移送する準備 のため，復水貯蔵タンクの水をサプレッションプール水サージタンクヘ移送中。（31日 12：00～）
－使用済然料プールについて，コンクリートポンプ車が約 90 t放水（淡水）（31日 13：03～16：04）
- 引き続き白煙の吐出確認（31日 06：30現在）
- 原子炉圧力容器人淡水注入中。（1日 9：30現在）

＜2号機関係＞

－原子力災害対策特別措置法第 15 条（非常用炬心椧却装置注水不能）通報（11日 16：36）

- ベント操作（13日 11：00）
- 3号機の建屋の爆発に伴い，原子炬建屋ブローアウトパネル開放（14日 11 時過ぎ）
－原子炉圧力容器の水位が低下傾向（14日13：18）。原子力災害対策特別措置法第 15 条事象（原子炉冷却機能喪失）である旨，受信（14日13：49）
- 原子炉圧力容器内に消火系ラインを用いて海水注入作業開始（14日 16：34）
- 原子炉圧力容器の水位が低下傾向（14日 $22: 50$ ）
- ベント操作（15日 0：02）
－2号機で爆発音するとともに，サプレッションプール（圧カ抑制室）の圧力低下（15日6：10）。同室に異常が発生したおそれ（15日6：20頃）
－外部送電線から予備電源変電設備までの受電を完了し，そこから負荷側 へのケーブル敷設を実施（19日 13：30現在）
－使用済燃料プールに海水を 40 t 注入（冷却系配管に消防車のポンプを接続）（20日 15：05～17：20）
- 2 号機のパワーセンタ一受電（20 日 15：46）
- 白煙が発生（21日 18：22）
- 白煙はほとんど見えない程度に減少（22 日 7：11 現在）
- 使用済燃料プールに海水を 18 t 注入（ 22 日 16：07～17：01）
- 使用済燃料プールに，使用済燃料プール泠却系を用いて海水を注入（25日 $10: 30 \sim 12: 19$ ）
- 中央制御室の照明が復帰（26日 $16: 46$ ）
- 消防ポンプによる淡水の原子炉圧力容器への注入を仮設電動ポンプに切 り替え（27日 18：31）
－2号機について，3月27日に東京電力（株）が発表した福島第一原子力発電所2号機タービン建屋地下階溜まり水の測定結果について，ヨウ素1 34 の測定値に誤りがあるとの判断を踏まえた再度の採取及び分析•評価の結果，ヨウ素134を含むガンマ核種の濃度については，検出限界値未満であることの報告（28日 $0: 07$ ）。タービン建屋地下の溜まり水を復水器へ移送する準備のため，復水貯蔵タンクの水をサプレッションプ
- ル水サージタンクへ移送中。（29日16：45～）
- 消防ポンプによる海水の使用済燃料プールへの注入を仮設電動ポンプに よる淡水に切り替え注入（29日 16：30～18：25）
－2号機において，30日9時25分より使用済燃料プールへの注入をし ていたところ，仮設電動ポンプの不調が同日 9 時 45 分に確認されたた め，消防ポンプによる切り替えを行ったが，ホースの亀裂が確認（30日 12：47，13：10）されたため，注入を中断。30旦 19 時 05 分に注水を再開 し，淡水を注入。（ 30 日～23：50）
- 引き続き白煙の吐出確認（31日 06：30現在）
- 原子炉圧力容器へ淡水注入中（1日 9：30現在）

＜3号機関係＞

－原子力災害対策特別措置法第 15 条（非常用炉心冷却装置注水不能）通報（13日 05：10）

- ベント操作（13日 $8: 41$ ）
- 3号機の原子炉圧力容器内に消火系ラインから真水注入開始（13日11：55）
- 3号機の原子炉圧力容器内に消火系ラインから海水注入開始（13日13：12）
－3号機及び 1 号機の注入をくみ上げ箇所の海水が少なくなったため停止 （14日 1：10）
- 3 号機の海水注入を再開（14日 3：20）
- ベント操作（14日 5：20）
- 3 号機の格納容器圧力が異常上昇（14日 7：44）。原子力災害対策特別措置法第15条事象である旨，受信（14日7：52）
- 3号機で1号機と同様に原子炉建屋付近で爆発（14日11：01）
- 3 号機から白い湯気のような煙が発生（16日 8：30頃）
- 3号機の格納容器が破損しているおそれがあるため，中央制御室（共用） から作業員退避（16日 10：45）。その後，作業員は中央制御室に復帰し，注水作業再開（16日 11：30）
－自衛隊へリにより3号機への海水の投下を 4 回実施（17 日 9：48，9：52， 9：58，10：01）
- 警察庁機動隊が放水のため現場到着（17日 16：10）
- 自衛隊消防車により放水（17日 19：35）。
- 警察庁機動隊による放水（17日 19：05～19：13）
- 自衛隊消防車 5 台が放水（17日 19：35，19：45，19：53，20：00，20：07）
- 自衛隊消防車 6 台（ 6 t 放水／台）が放水（18日 14 時前～14：38）
- 米軍消防車 1 台が放水（18日 14：45 終了）
- 東京消防庁ハイパーレスキュー隊が放水（20日 3：40終了）
- 3号機の格納容器内圧カが上昇（20日 11：00 現在 320 kPa ）。圧カ下げる ための準備を進めていたが，直ちに放出を必要とする状況ではないと判断し，圧力監視を継続（21日 12：15 120 kPa ）
- ケーブル引き込みの現地調査（20日 11：00～16：00）
- 東京消防庁ハイパーレスキュー隊が 3 号機の使用済燃料プールに放水（20日 $21: 30 \sim 21$ 日 $03: 58$ ）
- 灰色がかった煙が発生（21日 15：55頃）
- 煙が収まっていることを確認（21日 17：55）
- 灰色がかった煙は白みがかった煙に変化し終息に向かっていると思われ る（22 日 $7: 11$ 現在）
- 東京消防庁及び大阪市消防局が放水（約 180t）（22日 15：10～16：00）
- 中央制御室の照明が復帰（22 日 22：43）
- 使用済燃料プールに使用済燃料プール泠却系から海水 35 t 注入（23日 11：03～13：20）
－原子炉建屋からやや黒色がかった煙が発生（23日 16：20頃）。23日 23：30頃及び 24 日 $4: 50$ 頃に確認したところ止んでいる模様。
－使用済燃料プールに使用済燃料プール泠却系を用いて海水約 120 t を注入（24日 5：35 頃～16：05頃）
－3号機タービン建屋1階及び地下1階において，ケーブル敷設作業を行 つていた作業員が踏み入れた水について調査した結果，水表面の線量率 は約 $400 \mathrm{mSv} / \mathrm{h}$ ，採取水のガンマ線核種分析の結果，試料の濃度は各核種合計で約 $3.9 \times 10^{6} \mathrm{~Bq} / \mathrm{cm}^{3}$ であった。
- 東京消防庁の支援を受けた川崎市消防局が放水（25日13：28～16：00）
- コンクリートポンプ車（ $50 \mathrm{t} / \mathrm{h}$ ）が約 100 t 放水（27日 12：34～14：36）
- 消防ポンプによる淡水の原子炉圧力容器への注入を仮設電動ポンプに切 り替え（28日 20：30）
－コンクリートポンプ車（50t／h）が約100t放水（淡水）（29日 14：17 ～18：18）
－タービン建屋地下の溜まり水を復水器へ移送する準備のため，復水貯蔵 タンクの水をサプレッションプール水サージタンクへ移送。（28日 17：40 ～31日 8：40頃）
－コンクリートポンプ車（ $50 \mathrm{t} / \mathrm{h}$ ）が約 105 t 放水（淡水）（31日 16：30 ～19：33）
- 引き続き白煙の吐出確認（31日 06：30現在）
- 原子炉圧力容器へ淡水注入中。（1旦9：30現在）

＜4号機関係＞

－原子炉圧力容器のシュラウドエ事中のため，原子炉圧力容器内に燃料は なし。

- 使用済燃料プール水温度が上昇（3月14日 $4: 08$ 時点 $84^{\circ} \mathrm{C}$ ）
- 4 号機のオペレーションエリアの壁がー部破損していることを確認日 6：14）。
－4号機で火災発生。（15 日 9：38）事業者によると，自然に火が消えてい ることを確認（15日 11：00頃）
－ 4 号機で火災が発生（16日 5：45頃）。事業者は現場での火災は確認でき ず（16日 6：15頃）。
- 自衛隊が使用済燃料プールへ放水（20 日 9：43）
- ケーブル引き込みの現地調査（20日 11：00～16：00）
- 自衛隊が使用済燃料プールへ放水（20 日 18：30 頃～19：46）
- 自衛隊消防車13台が使用済燃料プールに放水（21日 06：37～08：41）
- パワーセンターまでのケーブル敷設工事完了（21日 15：00頃）
- パワーセンター受電（22 日 10：35）
- コンクリートポンプ車（ $50 \mathrm{t} / \mathrm{h}$ ）が約 150 t 放水（22日 17：17～20：32）
- コンクリートポンプ車（ $50 \mathrm{t} / \mathrm{h}$ ）が約 130 t 放水（23日 10：00～13：02）
- コンクリートポンプ車（50t／h）が約 150 t 放水（24日 14：36～17：30）。
- コンクリートポンプ車（50t／h）が約 150 t 放水（25日 19：05～22：07）
－使用済燃料プールに，使用済燃料プール冷却系を用いて海水を注入日 06：05～10：20）
- コンクリートポンプ車（ $50 \mathrm{t} / \mathrm{h}$ ）が約 125 t 放水（27日 16：55～19：25）
- 中央制御室の照明復帰（29日11：50）
- 引き続き白煙の吐出確認（29日 6：30現在）
- コンクリートポンプ車（ $50 \mathrm{t} / \mathrm{h}$ ）が約 140 t 放水（30日 14：04～18：33）。
- コンクリートポンプ車（ $50 \mathrm{t} / \mathrm{h}$ ）が放水開始（1日 8：25）
＜5号機，6号機関係〉
－ 6 号機の非常用ディーゼル発電機（D／G）1台目（B）は運転により電力供給。復水補給水系（MUWC）を用いて原子炉圧力容器及び使用済燃料 プールヘ注水。
－ 6 号機の非常用ディーゼル発電機（D／G）2台目（A）起動。（19 日 4：22） －5号機の残留熱除去系（RHR）ポンプ（C）（19日 $5: 00$ ）及び 6 号機 の残留熱除去系（RHR）ポンプ（B）（19日 $22: 14$ ）が起動し，除熱機能回復。使用済燃料プールを優先的に冷却（電源： 6 号の非常用ディーゼ ル発電機）（19日 5：00）
- 5号機，冷温停止（20日 14：30）
- 6 号機，冷温停止（20日 19：27）
- 5 号機及び 6 号機，起動用変圧器まで受電（20日 19：52）
- 5 号機，電源を非常用ディーゼル発電機から外部電源に切り替え（21日 11：36）
－ 6 号機，電源を非常用ディーゼル発電機から外部電源に切り替え（22 日 19：17）
－5号機の仮設の残留熱除去海水系（RHRS）ポンプが，仮設から本設 の電源への切り替えの際，自動停止（23日 17：24）。
－5号機の仮設のRHRSポンプの修理が完了（24 日 16：14）し，冷却を再開（24日 16：35）。
－ 6 号機の仮設の残留熱除去海水系（RHRS）ポンプが，仮設から本設 の電源へ切り替え（25日 15：38，15：42）
＜使用済燃料共用プール＞
- 18日6：00過ぎ，プールはほぼ満水であることを確認
- 共用プールに注水（21日 10：37～15：30）
- 電源供給を開始（24日15：37）し，冷却を開始（24日 18：05）。
- 31日 08：10時点でのプール水温度は $32^{\circ} \mathrm{C}$ 程度

〈その他＞
－南放水口付近の海水核種分析の結果，${ }^{131} \mathrm{I}$（ヨウ素）が $7.4 \times 10^{1} \mathrm{~Bq} / \mathrm{cm}^{3}$ ，
（周辺監視区域外の水中濃度限度の 1850．5倍）検出された。（26日 14：30） （3月29日に計測した結果，水中濃度限度の3，355．0倍となった。（29日 13：55）一方，1F放水口北側の海水核種分析の結果，${ }^{131} \mathrm{I}$（ヨウ素）が $4.6 \times 10^{1} \mathrm{~Bq} / \mathrm{cm}^{3}$（同 $1,262.5$ 倍）検出された。（29日 14：10））
－ $1 ~ 3$ 号機タービン建屋外のトレンチ（配管を布設しているトンネル状 の地下構造物）の立坑に水が溜まっていることを確認。水表面の線量は， 1 号機が $0.4 \mathrm{mSv} / \mathrm{h}$ ， 2 号機が $1,000 \mathrm{mSv} / \mathrm{h}$ 以上， 3 号機はがれきがあり測定できず（27日 $15: 30$ 頃）。 1 号機立坑内の溜留水を仮設ポンプにて集中環境施設プロセス主建屋の貯槽に移送し，立坑内の水位が上端から約 -0.14 m から約 -1.14 m に減少（31日 9：20～11：25）
－福島第一原子力発電所の敷地内（5地点）の土壌から，平成23年3月 21日及び22日に採取した試料の中に，プルトニウム 238 ，プルトニウ ム 239 ，プルトニウム 240 を検出（28日 23 時 45 分 東京電力発表）。検出されたプルトニウムの濃度は，過去の大気圏内核実験において国内で観測されたフォールアウト（放射性降下物）と同様，通常の環境レベル で人体に問題となるものではない。
－3号機建屋外において，残留熱除去海水系配管のフランジを取り外した際，協力企業作業員 3 名が，配管に溜まった水を被ったが，水を拭き取 った結果，身体への放射性物質の付着はなかった。（29日 12：03）
－3月28日，集中環境施設プロセス主建屋で水溜まりを確認し，放射能分析の結果，3月29日管理区域内で総量約 $1.2 \times 10^{1} \mathrm{~Bq} / \mathrm{cm}^{3}$ ，非管理区域で総量 $2.2 \times 10^{1} \mathrm{~Bq} / \mathrm{cm}^{3}$ の放射能を検出した。
－南放水口付近の海水核種分析の結果，${ }^{1311} \mathrm{I}$（ヨウ素）が $1.8 \times 10^{2} \mathrm{Bg} / \mathrm{cm}^{3}$ ， （周辺監視区域外の水中濃度限度の 4385.0 倍）検出された。（30日 13：55）
－原子炉等の冷却に使用する淡水を積んだ米軍のはしけ船（バージ船） 1隻が海上自衛隊の艦船にえい航され，福島第一原子力発電所専用港に接岸（31白15：42）。

○東京電力（株）福島第二原子力発電所（福島県双葉郡楢葉町及び富岡町）
（1）運転状況
1 号機（110 万 kW ）（自動停止，14日 17：00 冷温停止）
2 号機（ 110 万 kW ）（自動停止） 14 日 18：00 冷温停止）
3 号機（ 110 万 kW ）。（自動停止， 12 日 $12: 15$ 冷温停止）
4 号機（ 110 万 kW ）（自動停止， 15 日 $7: 15$ 冷温停止）
（2）モニタリングポスト等の指示値
別添参照
（3）主なプラントパラメーター（1日6：00現在）

	単位	1号機	2号機	3号機	4号機
原子炉圧力＊${ }^{\text {1 }}$	MPa	0.15	0.14	0.10	0.17
原子炉水温	${ }^{\circ} \mathrm{C}$	27.1	26.6	35.7	28.5
原子炉水位 ${ }^{* 2}$	mm	9396	10296	7827	8785
原子炉格納容器内 サプレッションプ－ル水温	${ }^{\circ} \mathrm{C}$	24	25	27	29
原子炉格納容器内 サプレッションプ－ル圧カ	$\begin{aligned} & \mathrm{kPa} \\ & (\mathrm{abs}) \end{aligned}$	106	106	103	102
備 考		冷温停止中	浍温停止中	冷温停止中	浍温停止中

＊1：絶対圧に換算
＊2：燃料頂部からの数値
（4）各プラントの状況
＜1号機関係〉
－30日 17 時 56 分頃， 1 号機において，タービン建屋の 1 階の電源盤 から煙が上がっていたが，電気の供給を切ったところ，煙の発生が止ま った。消防署により，19時15分，当該事象は電源盤の異常であり，火災ではないと判断された。
－ 1 号機の原子炉を冷却する残留熱除去系（B）の電源が，外部電源に加 え非常用電源からも受電可能となり，全号機において，残留熱除去系（B） のバックアップ電源（非常用電源）を確保（30日 14：30）
（5）その他異常等に関する報告

- 1 号機にて原子力災害対策特別措置法第 10 条通報（11日18：08）
- 1，2，4号機にて同法第10条通報（11日 18：33）
- 1 号機にて原子力災害対策特別措置法第 15 条事象（圧力抑制機能喪失）発生（12日 $5: 22$ ）
－ 2 号機にて原子力災害対策特別措置法第 15 条事象（圧力抑制機能喪失）発生（12日 $5: 32$ ）
－ 4 号機にて原子力災害対策特別措置法第 15 条事象（圧力抑制機能喪失）発生（12日 6：07）

○東北電力（株）女川原子力発電所（宮城県牡鹿郡女川町，石巻市）
（1）運転状況
1 号機（ 52 万 4 千 kW ）（自動停止， 12 日 0：58 冷温停止）
2号機（ 82 万 5 千 kW ）（自動停止，地震時点で泠温停止）
3 号機（82 万 5 千 kW ）（自動停止，12日 1：17 冷温停止）
（2）モニタリングポスト等の指示値
MP 2 付近（敷地最北敷地境界）：
約 $0.58 \mu \mathrm{~Sv} / \mathrm{h}$（30日 16：00）$\rightarrow$ 約 $0.54 \mu \mathrm{~Sv} / \mathrm{h}$（31日 16：00）
（3）その他異常に関する報告

- タービン建屋地下 1 階の発煙は消火確認（11日22：55）
- 原子力災害対策特別措置法第10条通報（13日13：09）

2 産業保安

○電気（3月31日 19：30現在）
－東北電力（3月31日 18：00現在）
停電戸数：約17万戸（延べ停電戸数 約486万戸）
停電地域：青森県 三八の一部地域（約 2 百戸）
岩手県 一部地域（約 3 万 1 千戸）
宮城県 一部地域（約10万4干戸）
福島県 一部地域（約3万7千戸）
－東京電力
停電は3月19日01：00までに復旧済（延べ停電戸数 約405万戸）
－北海道電力
停電は3月12日 14：00 までに復旧済（延べ停電戸数 約 3 千戸）
－中部電力
停電は3月12日17：11に復旧済（延べ停電戸数 約4百戸）

［参考情報］現在停止中の発電所（原子力発電所を除く）

－東京電力（31 日 09：00 現在）※地震により停止中の発電所
広野火力発電所 2，4号機
常陸那珂火力発電所 1 号機
鹿島火力発電所 2，3，5，6号機
－東北電力（31日 18：00 現在）
仙台火力発電所 4 号機
新仙台火力発電所 1，2号機
原町火力発電所 1，2号機

○都市ガス（3月31日20：00現在）
－供給停止戸数 約 34 万戸（延べ供給停止戸数 約 50 万戸）
※供給停止戸数には，家屋倒壊等が確認された戸数を含む。

○一般ガス（3月31日20：00現在）
死亡事故：地震との関係も含め原因詳細調査中。
－盛岡ガス（盛岡市）死者 1 名，負傷者 10 名
14日08：00 デパートの地下での爆発
－東部ガス（いわき市）死者 1 名
12日11：30 一般住宅での漏えいガスに着火
北海道，山形県，秋田県においては，供給停止の報告はない。各社の供給停止状況は以下の通り。（家屋倒壊等が確認された戸数は含まな い。）

- 仙台市営ガス 244，891戸供給停止
- 塩釜ガス（塩釜市）9，290戸供給停止
- 釜石ガス（釜石市）5，483 戸供給停止
- 常磐共同ガス（いわき市）5，298戸供給停止
- 東北ガス（白河市）12戸供給停止
- 常磐都市ガス（いわき市）286戸供給停止
- 気仙沼市営ガス（気仙沼市）858戸供給停止
- 石巻ガス（石巻市）8， 542 戸供給停止

○簡易ガス（3月31日20：00現在）
各社の供給停止状況は以下の通り。（家屋倒壊等が確認された戸数は含まない。）

- 宮城ガス（仙台市） 970 戸供給停止
- 釜石瓦斯（釜石市） 580 戸供給停止
- 仙台プロパン（亘理郡山元町） 161 戸供給停止
- 仙南ガス（柴田郡柴田町）1，216戸供給停止
- カメイ（東松島市矢本町）66戸供給停止
- いわきガス（いわき市）136戸供給停止
- 三重商会（大船渡市）12 戸供給停止
- 名取岩沼農業協同組合（岩沼市）163戸供給停止
（名取市） 65 戸供給停止
- ガス \＆ライフ（東松島市） 341 戸供給停止
- 鳴瀬ガス（東松島市） 217 戸供給停止

○熱供給（3月31日 20：00現在）
－小名浜配湯（いわき市小名浜）供給停止

OLPガス（3月27日 15：30現在）
死亡事故：地震との関係も含め原因詳細調査中
－福島県いわき市 死者 1 名
13日午前中 共同住宅でガス爆発

○コンビナート（3月27日 15：30現在）
－コスモ石油千葉製油所（千葉県市原市）
LPG貯槽の支柱が折れ，破損。ガス漏れ火災。
重傷者 1 名，軽傷 5 名。 3 月 21 日午前鎮火。
－JX日鉱日石エネルギー（株）仙台製油所（宮城県仙台市）
出荷設備エリアで爆発，火災が発生。3月15日午後鎮火。

3 原子力安全•保安院等の対応

【3月11日】
14：46 地震発生と同時に原子力安全•保安院に災害対策本部設置
15：42 福島第一原子力発電所にて原子力災害対策特別措置法第10条通報

16：36福島第一原子力発電所1，2号機にて事業者が同法第15条事象 （非常用炉心冷却装置注水不能）発生判断（16：45通報）
18：08 福島第二原子力発電所1号機にて原子力災害対策特別措置法第10条通報
18：33 福島第二原子力発電所1，2，4号機にて原子力災害対策特別措置法第1 O 条通報
19：03 緊急事態宣言（政府原子力災害対策本部及び同現地対策本部設置）
20：50 福島県対策本部は，福島第一原子力発電所1号機の半径 2 km の住人に避難指示を出した。（ 2 km 以内の住人は 1,864 人）
$21: 23$ 内閣総理大臣より，福島県知事，大熊町長及び双葉町長に対し，東京電力（株）福島第一原子力発電所で発生した事故に関し，原子力災害対策特別措置法第 15 条第 3 項の規定に基づく指示を出した。
－福島第一原子力発電所から半径 3 km 圏内の住民に対する避難指示。
－福島第一原子カ発電所から半径 10 km 圏内の住民に対する屋内退避指示。
24：00 池田経済産業副大臣現地対策本部到着
【3月12日】
0：49 福島第一原子力発電所 1 号機にて事業者が同法第 15 条事象（格納容器圧力異常上昇）発生判断（01：20 通報）
5：22 福島第二原子力発電所1号機にて事業者が原子力災害対策特別措置法第15条事象（圧力抑制機能喪失）発生判断（6：27通報）
5：32 福島第二原子力発電所2号機にて事業者が原子力災害対策特別措置法第15条事象（圧力抑制機能喪失）発生判断（6：27通報）
5：44 総理指示により福島第一原子力発電所の 10 km 圏内に避難指示
$6: 07$ 福島第二原子力発電所 4 号機にて原子力災害対策特別措置法第1
5 条事象（圧力抑制機能喪失）発生
6：50 原子炉等規制法第64条第3項の規定に基づき，福島第一原子力発電所第 1 号機及び第 2 号機に設置された原子炉格納容器内の圧力を抑制することを命じた。
7：45 内閣総理大臣より，福島県知事，広野町長，樽葉町長，富岡町長及び大熊町長に対し，東京電力（株）福島第二原子力発電所で発生し た事故に関し，原子力災害対策特別措置法第 15 条第 3 項の規定 に基づく指示を出した。
－福島第二原子力発電所から半径 3 km 圏内の住民に対する避難指示。
－福島第二原子力発電所から半径 10 km 圏内の住民に対する屋内退避指示。
17：00 福島第一原子力発電所にて原子力災害対策特別措置法第15条事象（敷地境界放射線量異常上昇）である旨，受信
17：39 内閣総理大臣が福島第二原子力発電所の避難区域
－福島第二原子力発電所から半径 10 km 圏内の住民に対する避難 を指示。
18：25 内閣総理大臣が福島第一原子力発電所の避難区域
－福島第一原子力発電所から半径 20 km 圏内の住民に対する避難を指示。
19：55 福島第一原子力発電所1号機の海水注入について総理指示
20：05 総理指示を踏まえ，原子炉等規制法第64条第3項の規定に基づ き，福島第一原子力発電所第1号機の海水注入等を命じた。
20：20 福島第一原子力発電所1号機の海水注入を開始
【3月13日】
5：38 福島第一原子力発電所 3 号機にて原子力災害対策特別措置法第1 5 条事象（全注水機能喪失）である旨，受信。
当該サイトについて，東京電力において現在，電源及び注水機能の回復と，ベントのための作業を実施中。
9：01 福島第一原子力発電所にて原子力災害対策特別措置法第15条事象（敷地境界放射線量異常上昇）である旨，受信
9：08 福島第一原子力発電所3号機の圧力抑制及び真水注入を開始
9：20 福島第一原子力発電所3号機の耐圧ベント弁開放
9：30 福島県知事，大熊町長，双葉町長，富岡町長，浪江町長に対し，原子力災害対策特別措置法に基づき，放射能除染スクリーニング の内容について指示
13：09 女川原子力発電所にて原子力災害対策特別措置法第10条通報

13：12 福島第一原子力発電所 3 号機の注入を真水から海水に切り替え
14 ：36 福島第一原子力発電所にて原子力災害対策特別措置法第 15 条事象（敷地境界放射線量異常上昇）である旨，受信
【3月14日】
1： 10 福島第一原子力発電所 1 号機及び 3 号機の注入をくみ上げ箇所の海水が少なくなったため停止。
3：20 福島第一原子力発電所3号機の海水注入を再開
4：40 福島第一原子力発電所にて原子力災害対策特別措置法第 15 条事象（敷地境界放射線量異常上昇）である旨，受信
5：38 福島第一原子力発電所にて原子力災害対策特別措置法第15条事象（敷地境界放射線量異常上昇）である旨，受信
7：52 福島第一原子力発電所 3 号機にて原子力災害対策特別措置法第1 5 条事象（格納容器圧力異常上昇）である旨，受信。
$13: 25$ 福島第一原子力発電所 2 号機にて原子力災害対策特別措置法第1 5 条事象（原子炉冷却機能垩失）である旨，受信。
22：13 福島第二原子力発電所にて原子力災害対策特別措置法第10条通報

22：35 福島第一原子カ発電所にて原子カ災害対策特別措置法第15条事象（敷地境界放射線量異常上昇）である旨，受信
【3月15日】
0：OO 国際原子力機関（I A E A）専門家派遣の受け入れを決定
I AEA天野事務局長による原子力発電所の被害に関する専門家派遣の意向を受け，原子力安全•保安院はIAEAによる知見あ る専門家の派遣を受け入れることとした。なお，実際の受け入れ日程等については，今後調整を行う。
0：O O 米国原子力規制委員会（NRC）専門家派遣の受け入れを決定
7：21 福島第一原子力発電所にて原子力災害対策特別措置法第15条事象（敷地境界放射線量異常上昇）である旨，受信
7：24（独）日本原子力研究開発機構東海研究開発センター核燃料サイ クルエ学研究所にて原子力災害対策特別措置法第10条通報
7：44（独）日本原子力研究開発機構原子力科学研究所にて原子力災害対策特別措置法第 10 条通報
8：54 福島第一原子力発電所にて原子力災害対策特別措置法第15条事象（敷地境界放射線量異常上昇）である旨，受信
10：30 経済産業大臣が原子炉等規制法に基づき，4号機の消火及び再臨界の防止，2号機の原子炉内への早期注水及びドライウェルのベン トの実施について指示
10：59 今後の事態の長期化を考慮し，現地対策本部の機能を福島県庁内

へ移転することを決定。
11：OO 内閣総理大臣が福島第一原子力発電所の避難区域 －炉内の状況を考慮して，新たに福島第一原子力発電所から半径 2 0 km 圏～ 30 km 圏内の住民に対する屋内退避を指示
16：30 福島第一原子力発電所にて原子力災害対策特別措置法第15条事象（敷地境界放射線量異常上昇）である旨，受信
22：00 経済産業大臣が原子炉等規制法に基づき，4号機の使用済燃料プ一ルへの注水の実施を指示
23：46 福島第一原子力発電所にて原子力災害対策特別措置法第15条事象（敷地境界放射線量異常上昇）である旨，受信
【3月18日】
$13: 00$ 文部科学省にて，福島第一，第二原子力発電所の緊急時における全国的モニタリング調査の強化を決定
15：55 原子炉等規制法第62条の3に基づき，東京電力（株）福島第一原子力発電所第1•2•3•4号機における事故故障等（原子炉建屋内の放射性物質の非管理区域への漏えい）の報告を受理
16：48 原子炉等規制法第62条の3に基づき，日本原子力発電（株）東海第二発電所における事故故障等（非常用ディーゼル発電機 2 C 海水 ポンプ用電動機の故障）の報告を受理
【3月19日】
7：446号機の非常用ディーゼル発電機2台目（A）起動 5 号機の残留熱除去系（RHR）ポンプ（C）が起動し，使用済燃料プールの冷却を開始（電源：6号機の非常用ディーゼル発電機））の旨を受信
8：58 福島第一原子力発電所にて原子力災害対策特別措置法第15条事象（敷地境界放射線量異常上昇）である旨，受信
【3月20日】
23：30 原子力災害対策現地本部から，放射能除染スクリーニングレベル の基準を以下のとおり変更する旨，県知事及び関係市町村長（富岡町，双葉町，大熊町，浪江町，川内村，樽葉町，南相馬市，田村市，葛尾村，広野町，いわき市，飯舘村）宛に指示
【3月21日】
7：45 原子力災害対策現地本部から「安定ヨウ素剤の服用について」と して，安定ヨウ素剤の服用は，本部の指示を受け，医療関係者の立 ち会いのもとで服用するものであり，個人の判断で服用しない旨の指示を，県知事及び関係市町村長（富岡町，双葉町，大熊町，浪江町，川内村，楢葉町，南相馬市，田村市，葛尾村，広野町，いわき市，飯舘村）宛に発出

16：45 原子カ災害対策現地本部長から「屋内退避圏内での暖房器具の使用に係る換気について」として，一酸化炭素中毒等の防止の観点及び被ばぐ低減の観点から，屋内において換気を必要とする暖房器具を使用する場合の対応について屋内退避圏内の住民に周知する旨の指示を福島県知事及び市町村長（いわき市，田村市，南相馬市，広野町，川内村，浪江町，葛尾村，飯館村）宛に発出。
17：50 原子力災害対策本部長から，ホウレンソウ及びカキナ，原乳に ついて当分の間，出荷を控えるよう，関係事業者等に要請すること の指示を福島県，茨城県，杤木県及び群馬県の各知事宛に発出。
【3月22日】
16：00 原子力安全委員会緊急技術助言組織から，3月22日付け東京電力の「海水分析結果について」に関する原子力安全•保安院からの助言依頼について，回答（助言）を受理。
【3月25日】
原子力安全•保安院は，東京電力株式会社に対し，3月24日に発生した福島第一原子力発電所3号機タービン建屋における作業員の被ばくに関し，再発防止の観点から，直ちに放射線管理を見直し，改善するよう，口頭で指示。
【3月28日】
原子力安全•保安院は，東京電力株式会社に対し，3月27日に東京電力（株）が発表した福島第一原子力発電所2号機タービン建屋地下階溜まり水の測定に係る評価の誤りについて，再発防止を図るよう，口頭で指示。
13：50 原子力安全•保安院は，原子力安全委員会臨時会議助言（福島第一発電所 2 号機タービン建屋地下 1 階の滞留水について）を受け，東京電力株式会社に対し，海水モニタリングポイントの追加や地下水モニタリングの実施について，口頭で指示。

原子力安全•保安院は，東京電力（株）に対し，タービン建屋の屋外で確認された水に係る報告が遅れたことに対し，重要な情報に ついては，社内の情報伝達をスムーズにするとともに，適時適切 に報告が行われるように指導。
【3月29日】
11：16 原子炉等規制法第62条の3及び電気関係報告規則第3条に基 づき，東北電力（株）女川原子力発電所における事故故障等（津波に よる 2 号機原子炉補機冷却水ポンプ（B）等の故障及び 1 号機補助ボ イラー重油タンクの倒壊）についての報告を受理。

原子力災害被災者支援の体制強化のため，経済産業大臣をチ一 ム長とする「原子カ被災者生活支援チーム」の設置，関係市町村

への訪問等を実施。

【3月30日】
各電気事業者等に対し，平成23年福島第一•第二原子力発電所事故を踏まえた他の発電所の緊急安全対策の実施に係る指示文書を発出し，手交。
【3月31日】
原子力安全•保安院は，東京電力（株）に対し，31日の福島第二原子力発電所への街宣車の進入について，核物質防護等に係る対策に万全を期すよう口頭で指示。

原子力安全•保安院は，東京電力（株）に対し，作業員の放射線管理に万全を期すように注意喚起。
【4月1日】
原子力安全•保安院は，東京電力（株）に対し，核種分析結果の誤りについて以下の3点について適切な対応をとるように厳重注意。
－核種分析の過去の評価結果について，どの核種について評価 の誤りがあるかを明らかにし，すみやかに再評価を行うこと。
－評価の誤りが発生した原因を調査するとともに，再発防止の徹底を行うこと。
－評価結果の誤り等については判明した段階で，早急に連絡を行うこと。
＜被ばくの可能性（4月1日9：30現在）＞
1．住民の被ばく
（1）二本松市福島県男女共生センターにおいて，双葉厚生病院からの避難者約 60 名を含む 133 名の測定を行い，13，000cpm 以上の 23 名に除染を実施した。
（2）この他，福島県が用意した民間バスで，双葉厚生病院から川俣町済生会川俣病院へ移動した 35 名については，県対策本部は被ばくしていない と判断。
（3）バスにより避難した双葉町の住民約100名について，100名のうち，9名について測定した結果，以下の通りだった。県外（宮城県）に分かれて避難したが，その後合流してニ本松市福島男女共生センターへ移動。

カウント数	人数
$18,000 \mathrm{cpm}$	1 名
$30,000 \sim 36,000 \mathrm{cpm}$	1 名
$40,000 \mathrm{cpm}$	1 名

$40,000 \mathrm{cpm}$ 弱＊	1 名
ごく小さい値	5 名

※（1回目の測定では $100,000 \mathrm{cpm}$ を超え，その後靴を脱いで測定した結果計測されたもの）
（4）3月12日から3月15日にかけて，大熊町のオフサイトセンターに おいて，スクリーニングを開始。現在までに 162 名が検査済み。初め除染の基準値を $6,000 \mathrm{cpm}$ とし，110名が $6,000 \mathrm{cpm}$ 未満， 41 名が $6,000 \mathrm{cpm}$以上の値を示した。後に基準値を $13,000 \mathrm{cpm}$ と引き上げた際には， 8 名 が $13,000 \mathrm{cpm}$ 未満， 3 名が $13,000 \mathrm{cpm}$ 以上の値を示した。

検査を受けた 162 名のうち， 5 名が除染処置を施した後，病院へ搬送 された。
（5）福島県において，避難した 10 km 圏内の入院患者と病院関係者の避難を実施。関係者のスクリーニングを行った結果，3名について除染後も高い数値が検出されたため，第2次被ばく医療機関へ搬送。この搬送に関係した消防職員 60 名のスクリーニングで 3 名について，バックグラン ドの 2 倍以上程度の放射線が検出されたため， 60 名に対し除染を行った。
（6）福島県は3月13日からスクリーニングを開始。避難所を巡回，保健所等13ヶ所（常設）で実施中。3月29日までに106，095人に対し実施。そのうち，100，000 cmm 以上の値を示した者は102人であっ たが，100， 000 cpm 以上の数値を示した者についても脱衣等をし，再計測 したところ，100，000cpm 以下に減少し，健康に影響を及ぼす事例はみら れなかった。

2．従業員等の被ばく

福島第一原子力発電所で作業していた従業員で 100 mSv を超過した作業員 は，計21名。

なお，当該作業員 3 名のうち， 2 名については，両足の皮膚に放射性物質 の付着を確認し，ベータ線熱傷の可能性があると判断されたことから，24日に福島県立医科大学附属病院へ搬送し，その後，25日に作業員3名とも千葉県にある放射線医学総合研究所に到着。検査の結果， 2 人の足の被ばく量は $2 \sim 3 \mathrm{~Sv}$ と推定され，足及び内部被ばく共に治療が必要となるレベルで はなかったが，3名とも，入院して経過を見ることとなった。28日正午頃 3 名の方がすべて退院した。

3．その他

（1）福島第一原発で作業していた自衛隊員4名が爆発により負傷。うち，1

名は放医研に搬送され，検査の結果，外傷のみで，被ばくによる健康被害はないと判断され，3月17日に退院。防衛省において，その他自衛官の被ばくは確認されず。
（2）警察官について，警察庁において 2 名の除染の実施を確認。異常の報告はなし。
（3）3月24日，川俣町保健センター等において，1～15歳までの66名の小児に対する甲状腺の検査を実施。問題となるしべルではなかった。
（4）3月26日～27日，いわき市保健所において，1～15歳までの1 37 名の小児に対する甲状腺の検査を実施。問題となるしベルではなか った。
＜放射能除染スクリーニングレベルに関する指示＞
（1）3月20日，原子力災害対策現地本部から，放射能除染スクリーニン グレベルの基準を以下のとおり変更する旨，県知事及び関係市町村長（富岡町，双葉町，大熊町，浪江町，川内村，橧葉町，南相馬市，田村市，葛尾村，広野町，いわき市，飯舘村）宛に指示。

旧：γ 線サーベイメーターにより 40 ベクレル $/ \mathrm{c} \mathrm{m}^{2}$ または $6,000 \mathrm{cpm}$新：1マイクロシーベルト／時（ 10 cm 離れた場所での線量率）または これに相当する $100,000 \mathrm{cpm}$

〈避難時における安定ヨウ素剤投与の指示＞
（1）3月16日，原子力災害対策現地本部から，「避難区域（半径 20 km ） からの避難時における安定ヨウ素剤投与の指示」を県知事及び市町村（富岡町，双葉町，大熊町，浪江町，川内村，鷍葉町，南相馬市，田村市，葛尾村，広野町，いわき市，飯館村）宛に発出。
（2）3月21日，原子カ災害対策現地本部から「安定ヨウ素剤の服用につ いて」として，安定ヨウ素剤の服用は，本部の指示を受け，医療関係者 の立ち会いのもとで服用するものであり，個人の判断で服用しない旨の指示を，県知事及び関係市町村長（富岡町，双葉町，大熊町，浪江町，川内村，榼葉町，南相馬市，田村市，葛尾村，広野町，いわき市，飯舘村）宛に発出。
＜負傷者の状況（3月31日 15：00現在）＞
1．3月11日の地震による負傷者

- 社員2名（軽傷，既に仕事復帰）
- 協力会社2名（うち 1 名両足骨折で入院中）
- 行方不明 2 名（社員。4号タービン建屋内）

2．3月12日の福島第一原子力発電所 1 号機の爆発による負傷者
－ 1 号機付近で爆発と発煙が発生した際に 4 名（社員 2 名，協力会社 2 名） が 1 号タービン建屋付近（管理区域外）で負傷。川内診療所で診療。社員 2 名は既に仕事復帰。協力会社の 2 名は自宅療養中。

3．3月14日の福島第一原子力発電所 3 号機の爆発による負傷者

- 社員 4 名（既に仕事復帰）
- 協力会社 3 名（既に仕事復帰）
- 自衛隊 4 名（うち 1 名は内部被ばくの可能性を考慮し，「（独）放射線医学総合研究所」へ搬送。診察の結果内部被ばくはなし。3月17日退院）

4．その他の被害
－3月22日，23日に共用プールで仮設電源盤の作業中に協力会社の 2 名 が負傷し，産業医のいる福島第二原子力発電所へ搬送。（1名は既に仕事復帰，残り1名は自宅療養中）

- 3月12日に急病人1名発生（脳梗塞，救急車搬送，入院中）
- 3月12日に管理区域外にて社員1名が左胸の痛みを訴えて救急車を要請 （意識あり，現在，自宅療養中。）
－3月13日に社員2名が中央制御室での全面マスク着用中に不調を訴え，福島第二の産業医の受診を受けるべく搬送（1名は既に仕事復帰，残り1名は自宅療養中）
＜住民避難の状況（4月1日9：30現在）＞
3月15日11：00，内閣総理大臣の指示により，福島第一原子力発電所半径2 0 km から 30 km 圏内の住民に対して，屋内退避を指示。その旨を福島県及 び関係自治体へ連絡。

福島第一原子力発電所 20 km 圏外及び福島第二原子力発電所 10 km 圏外 への避難は，措置済。
－福島第一原子力発電所 20 km から 30 km 圏内の屋内退避について，徹底中。

- 福島県と連携して，屋内退避圏内の住民の生活支援等を実施。
- 3月28日，官房長官から福島第一原子力発電所から半径 20 km 圏内の立ち入り規制の継続について発言。同日，原子力災害現地対策本部から関係市町村に対して，20 km圏内の避難地域への立入禁止について通知。

＜飲食物への指示＞

原子力災害対策本部長より，福島県，茨城県，栃木県，群馬県の知事に対し
て，以下の品目について，当分の間，出荷等を控えるよう指示。
（1）出荷制限•摂取制限品目（3月29日現在）

都道府県	出荷制限品目	摂取制限品目
福島県	非結球性葉菜類，結球性葉菜類，アブラナ科の花蕾類（ホウ レンソウ，キャベツ，ブロッコ リー，カリフラワー，小松菜，茎立菜，信夫冬菜，アブラナ， ちぢれ菜，山東菜，紅菜苔，カ キナなど），カブ，原乳	非結球性葉菜類，結球性葉菜類及 びアブラナ科の花蕾類（ホウレン ソウ，キャベッ，ブロッコリー， カリフラワー，小松菜，茎立菜，信夫冬菜，アブラナ，アブラナ， ちぢれ菜，山東菜，紅菜苔，カキ ナなど）
茨城県	ホウレンソウ，カキナ，パセリ，原乳	
栃木県	ホウレンソウ，カキナ	
群馬県	ホウレンソウ，カキナ	

（2）水道水の飲用制限の要請（3月31日23：00現在）

制限範囲	水道事業（対象自治体）
利用するすべての住民	飯舘村飯舘簡易水道事業（福島県飯舘村）
乳児 －対応を継続している水道事業	伊達市月舘簡易水道事業（福島県伊達市）
－対応を継続している水道用水供給事業	なし

＜屋内退避圏内での暖房器具の使用に係る換気についての指示＞
3月21日，原子力災害対策現地本部長から「屋内退避圏内での暖房器具の使用に係る換気について」として，一酸化炭素中毒等の防止の観点及び被ばく低減の観点から，屋内において換気を必要とする暖房器具を使用する場合の対応について屋内退避圏内の住民に周知する旨の指示を福島県知事及び市町村長 （いわき市，田村市，南相馬市，広野町，川内村，浪江町，葛尾村，飯館村）宛に発出。

〈消防機関の活動状況〉
－3月22日，11：00～14：00頃：新潟市消防局及び浜松市消防局が大型除染シ ステムの東京電力による設営を指導。
－3月23日，8：30～9：30，13：30～14：30：新潟市消防局及び浜松市消防局が大型除染システムの東京電力による運用を指導。

```
(本発表資料のお問い合わせ)
原子力安全•保安院
原子カ安全広報課:吉澤,杉山
電話:03-3501-1505
    0 3-3501-5890
```


【東北地方太平洋沖地震】

1．災害概要

（1）発生日時：平成23年3月11日（金）14：46発生
（2）発生場所：震源三陸沖（北緯 38 度，東経 142.9 度）
深さ 10 km ，マグニチュード 9.0
（3）各地の震度
○震度4以上の地域
震度 7 宮城県北部
震度 6 強 茨城県北部，茨城県南部
震度5強 青森県三八上北
震度5弱 新潟県中越
震度 4
○震度 4 以上の市町村
震度6強 福島県椎葉町，富岡町，大熊町，双葉町
震度 6 弱 宮城県石巻市，女川町（発電所の震度計による），東海村
震度 5 弱 新潟県刈羽村
震度 4 青森県六ケ所村，東通村，新潟県柏崎市，神奈川県横須賀市
震度1 北海道泊村

From:
Sent:
To:
Cc:
Subject:
Attachments:

OST01 HOC
Friday, April 01, 2011 6:37 AM
PMT02 Hoc; PMT11 Hoc; Hoc, PMT12
FOIA Response.hoc Resource
FW: 1APR 1925 Speedi Data
FUKUSHIMA1 air concentrationüi19-20hüj.gif; FUKUSHIMA1 air concentrationüi20-21hüj.gif, FUKUSHIMA1 air concentrationüi21-22hüj.gif, FUKUSHIMA1 air doseüi19-20hüj.gif; FUKUSHIMA1 air doseüi20-21hüj.gif, FUKUSHIMA1 air dọseüi21-22hüj.gif; FUKUSHIMA1 wind(19hüj.gif
-----Original Message--..-
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Friday, April 01, 2011 6:35 AM
To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03 HOC
Subject: FW: 1APR 1925 Speedi Data

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Friday, April 01, 2011 6:33:51 AM
To: ${ }^{(b)(6)}$
(b) (6)

Subject: 1APR 1925 Speedi Data
Auto forwarded by a Rule

1APR 1925 Speedi Data attached
on behalf of the Japan Emergency Command Center, +81-3-3224-5533

Lynda Hinds
Staff Assistant to Ambassador John V．Roos U．S．Embassy
1－10－5 Akasaka，Minato－ku
Tokyo 107－8420
Tel．（03）3224－5370

Twitter．com／AmbassadorRoos
－－－－Original Message－－－－－
From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Friday，April 01， 2011 7：25 PM
To：（b）（6）
（b）（6）

Subject：4／1 19時SPEEDI単位量放出図形イメージの送付
関係者各位

お世話になっております。
原子力安全技術センターSPEEDI担当です。
4／1 19時のSPEEDI単位量放出図形のイメージデータを送付致します。 ご確認のほど，よろしくお願い致します。

Please find attached 19：00［01－Apr］SPEEDI Data NUSTEC

From:	OST01 HOC
Sent:	Friday, April 01, 2011 8:32 AM
To:	PMTO2 Hoc; PMT11 Hoc; Hoc, PMT12
Cc:	FOIA Response.hoc Resource
Subject:	FW: 1APR 2128 Speedi Data
Attachments:	FUKUSHIMA1 air concentrationüi21-22hüj.gif; FUKUSHIMA1 air
	concentrationüi22-23hüj.gif; FUKUSHIMA1 air concentrationüi23-00hüj.gif;
	FUKUSHIMA1 air doseüi21-22hüj.gif; FUKUSHIMA1 air doseüi22-23hüj.gif;
	FUKUSHIMA1 air doseüi23-00hüj.gif; FUKUSHIMA1 wind(21hüj.gif

-----Original Message-....-
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Friday, April 01, 2011 8:31 AM
To: LIAO7 HOC; OST01 HOC; OSTO2 HOC; OST03 HOC
Subject: FW: 1APR 2128 Speedi Data

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Friday, April 01, 2011 8:29:51 AM
To: (b)(6)
(b)(6)

Subject: 1APR 2128 Speedi Data
Auto forwarded by a Rule
1APR 2128 Speedi Data attached
Lynda Hinds
Staff Assistant

$$
x+x / 154
$$

（03）3224－5370
－－－－－Original Message－－－－－
From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Friday，April 01， 2011 9：28 PM
$\overline{\mathrm{T}} \mathrm{O}$（b）（6） （b）（6）

Subject：4／1 21時SPEEDI単位量放出図形イメージの送付

関保者各位

お世話になっております。
原子力安全技術センター SPEEDI担当です。
4／1 21時のSPEEDI単位量放出図形のイメージデータを送付致します。 ご確認のほど，よろしくお願い致します。

Please find attached 21：00［01－Apr］SPEEDI Data
NUSTEC

From:
Sent:
To:
C:
Subject:
Attachments:

OSTO1 HOC
Friday, April 01, 2011 12:18 AM
PMT02 Hoc; PMT11 Hoc; Hoc, PMT12
FOIA Response.hoc Resource
FW: 4/1, 12:00 SPEEDI Data
FUKUSHIMA1 air concentrationüi12-13hüj.gif; FUKUSHIMA1 air concentrationüi13-14hüj.gif; FUKUSHIMA1 air concentrationüi14-15hüj.gif; FUKUSHIMA1 air doseüi12-13hüj.gif; FUKUSHIMA1 air doseüi13-14hüj.gif; FUKUSHIMA1 air doseüi14-15hüj.gif; FUKUSHIMA1 wind(12hüj.gif
-----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Friday, April 01, 2011 12:18 AM
To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03 HOC
Subject: FW: 4/1, 12:00 SPEEDI Data

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Friday, April 01, 2011 12:10:01 AM
To, (b)(6)
$\overline{(b)(6)}$

Subject: 4/1, 12:00 SPEEDI Data
Auto forwarded by a Rule

Attached please find 4/1, 12:00 SPEEDI Data.

SBU
This email is UNCLASSIFIED

Naomi Walcott

Emergency Action Officer
Japan Emergency Command Center
U．S．Embassy Tokyo
－－－－－Original Message－－－．
From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Friday，April 01， 2011 12：31 PM
To：（b）（6）
（b）（6）

Subject：4／1 12時SPEEDI単位量放出図形イメージの送付
関係者各位
お世話になっております。
原子力安全技術センター SPEEDI担当です。
4／1 12時のSPEEDI単位量放出図形のイメージデータを送付致します。 ご確認のほど，よろしくお願い致します。

Please find attached 12：00［01－Apr］SPEEDI Data
NUSTEC

	（2011／04／81） 福鼻第1 広域図 サスト中心： $141^{\circ} 02^{\prime} 10^{\prime \prime}$ 領域瓷度 $=: 92 \mathrm{~km} \times 92 \mathrm{k}$ 衣示高度 $=120.00 \mathrm{~m}$ 大気安定度：C型 㖕算モデル名＝PHYSIC 計算メッジュ幅 水平方向 ［凡例］ （標澷领域の場合 $=5 \mathrm{~m} / \mathrm{s}$

From:	OSTO1 HOC
Sent:	Friday, April 01, 2011 5:33 AM
To:	PMTO2 Hoc; PMT11 Hoc; Hoc, PMT12
Cc:	FOIA Response.hoc Resource
Subject:	FW: 1APR 1829 Speedi Data
Attachments:	FUKUSHIMA1 air concentrationüi18-19hüj.gif; FUKUSHIMA1 air
	concentrationüi19-20hüj.gif; FUKUSHIMA1 air concentrationüi20-21hüj.gif;
	FUKUSHIMA1 air doseüi18-19hüj.gif; FUKUSHIMA1 air doseüi19-20hüj.gif;
	FUKUSHIMA1 air doseüi20-21hüj.gif; FUKUSHIMA1 wind(18hüj.gif

-.---Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Friday, April 01, 2011 5:32 AM
To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03 HOC
Subject: FW: 1APR 1829 Speedi Data

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Friday, April 01, 2011 5:30:30 AM
To: (b)(6)
(b)(6)

Subject: 1APR 1829 SpeediData
Auto forwarded by a Rule

1APR 1829 Speedi Data attached
on behalf of the Japan Emergency Command Center，＋81－3－3224－5533

Lynda Hinds
Staff Assistant to Ambassador John V．Roos U．S．Embassy
1－10－5 Akasaka，Minato－ku
Tokyo 107－8420
Tel．（03）3224－5370

Twitter．com／AmbassadorRoos
－－－－－Original Message－－－－－
From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Friday，April 01， 2011 6：29 PM
To：（b）（6）
（b）（6）

Subject：4／1 18時SPEEDI単位量放出図形イメージの送付

関係者各位

お世話になっております。
原子力安全技術センター SPEEDI担当です。
4／1 18時のSPEEDI単位量放出図形のイメージデータを送付致します。 ご確認のほど，よろしくお願い致します。

Please find attached 18：00［01－Apr］SPEEDI Data
NUSTEC

From:	OSTO1 HOC
Sent:	Sunday, April 03, 2011 8:17 PM
Cc:	FOIA Response.hoc Resource
Subject:	FW: 4APR 0831 Speedi Data
Attachments:	FUKUSHIMA1 air concentrationüi08-09hüj.gif; FUKUSHIMA1 air
	concentrationüi09-10hüj.gif, FUKUSHIMA1 air concentrationüi10-11hüj.gif;
	FUKUSHIMA1 air doseüi08-09hüj.gif; FUKUSHIMA1 air doseüi09-10hüj.gif,
	FUKUSHIMA1 air doseüi10-11hüj.gif; FUKUSHIMA1 wind(08hüj.gif

[^10]From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Sunday, April 03, 2011 8:12:58 PM
subject: 4APR 0831 Speedidata
Auto forwarded by a Rule
tynda Hinds
Staff Assistant
$x \times x / 157$
(03) 3224-5370
－－－－－Original Message－－．．－
From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Monday，April 04， 2011 8：31 AM
To：（b）（6）
（b）（6）

Subject：4／4 08時SPEEDI単位量放出図形イメージの送付
関係者各位

お世話になっております。
原子力安全技術センター SPEEDI担当です。
4／4 08時のSPEEDI単位量放出図形のイメージデータを送付致します。
ご確認のほど，よろしくお願い致します。

Please find attached 08：00［04－Apr］SPEEDI Data
NUSTEC

	4 風速場（地上高） GPV＋期 湢䍓第 1 広域图 ナイト中心： $141^{\circ} 02^{\prime} 10^{\prime}$ 大条安定諾：D 計算モデル名 $=$ PHYSIC 計算メッシュ幅 水平方向 ［凡例］ 標準風速（褾濅領域の場合 $=10 \mathrm{~m} / \mathrm{s}$ 08時定期福岛1－2号伊

From:	OST01 HOC
Sent:	Sunday, April 03, $20118: 38$ PM
To:	PMTO2 Hoc; PMT11 Hoc; Hoc, PMT12
Cc:	FOIA Response.hoc Resource
Subject:	FW: 4APR 0934 Speedi Data
Attachments:	FUKUSHIMA1 air concentrationüi09-10hüj.gif; FUKUSHIMA1 air
	concentrationüi10-11hüj.gif; FUKUSHIMA1 air concentrationüi11-12hüj.gif;
	FUKUSHIMA1 air doseüi09-10hüj.gif; FUKUSHIMA1 air doseüilo-11hüj.gif;
	FUKUSHIMA1 air doseüil1-12hüj.gif; FUKUSHIMA1 wind(09hüj.gif

-----Original Message-----
From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Sunday, April 03, 2011 8:36 PM
TO: LIA07 HOC; OST01 HOC; OSTO2 HOC; OST03 HOC
Subject: FW: 4APR 0934 Speedi Data

From: JapanEmbassy, TaskForce[SMTP:JAPANEMBASSYTASKFORCE@STATE.GOV]
Sent: Sunday, April 03, 2011 8:34:51 PM
To, ${ }^{(b)(6)}$
(b)(6)

Subject: 4APR 0934 Speedi Data
Auto forwarded by a Rule

Lynda Hinds
Staff Assistant

From：nustec［mailto：spd01＠nustec．or．jp］
Sent：Monday，April 04，2011 9：34 AM
To：（b）（6）
（b）（6）

Subject：4／4 09時SPEEDI単位量放出図形イメージの送付

関係者各位

お世話になっております。

原子力安全技術センターSPEEDI担当です。
4／4 09時のSPEEDI単位量放出図形のイメージデータを送付致します。
ご確認のほど，よろしくお願い致します。

Please find attached 09：00［04－Apr］SPEEDI Data
NUSTEC

From: ET03 Hoc

Sent:
Monday, April 04, 2011 7:13 AM
To:

Cc:
Evans, Michele; Sheron, Brian; Johnson, Michael; Booger, Bruce; Zimmerman, Roy; Carpenter, Cynthia; Wiggins, Jim; Weber, Michael; Virgilio, Martin ET02 Hoc
Subject:
WebEOC Accounts

You have all been assigned an account in the HOC WebEOC system. This system can be accessed from anywhere in the NRC network by using the following link:
http://148.184.213.135

You will be prompted for a user name and password, your user name is your first name and last name with a space between (e.g. James Doe). If this is the first time you are logging into WebEOC your password is ${ }^{(b)(6)}$ Once you login you will be prompted to change your password, we suggest using your birth date in the format mmddyyyy).

Once you login you can select any position. If you have any questions please contact the EST Response Operations System Manager at ET02.hoc@nrc.gov or 301-816-5100 extension 5802.

$$
x+x / 159
$$

When: Monday, April 04, 2011 3:00 PM -5:15 PM (GMT-05:00) Eastern Time (US \& Canada).
Where: T-2B3 (Bridgeline: 1-888-790-6563 passcode-89130\#)
Note: The GMT offset above does not reflect daylight saving time adjustments.
~~*~*~*~*~*~* ${ }^{*}{ }^{*}$ ~*
3/21/11 - Updated to include additional attendees (S.Cianci x1714)

Contacts:
Liz Jacobs-Baynard (415-8709)
Clare Kasputys (415-1767)
A bridge line has been established for this meeting: 1-888-790-6563, passcode $-(\mathrm{b})(6)$

When: Monday, April 4, 2011 3:00 PM-5:15 PM Eastern Time.
Where: O17B4

A meeting has been scheduled for $4 / 4 / 11,3: 00 \mathrm{pm}-5: 15 \mathrm{pm}$, Room 017B4, with Darren Ash to discuss the Information Technology, Information Management, and Administrative Services; and Financial Management and Policy Support with Jim Dyer Business Lines FY 2013 Budget Request.

Purpose: To review and discuss key aspects of the FY 2013 budget request for the Information Technology, Information Management, Administrative Services, Outreach, and Financial Management Business Lines.

Outcome: (1) Understanding of major aspects of the FY 2013 base budget request for Business Lines; (2) Understanding of significant items in Scenario A (potential reductions) and Scenario B (potential additions), and the associated programmatic impacts and benefits.

Process: Lead offices should provide a brief budget overview of the Business Line and discuss the Business Line Summaries, including the base budget, Scenario A, and Scenario B. The discussion should not exceed 15 minutes for each of the Business Lines, after which 15 minutes will be reserved for questions and answers. The schedule for Business Line discussions is as follows:

Administrative Services (ADM) 3:00 pm - 3:15pm
Generic Homeland Security (ADM) 3:15pm - 3:30pm
Human Resource Management (HR) 3:30 pm - 3:45 pm
Outreach (HR) 3:45 pm - 4:00 pm
Information Management (OIS) 4:00pm-4:15pm
Information Technology (OIS) 4:15pm-4:30pm

Financial Management (CFO) 4:30pm-4:45pm
Policy Support (CFO) 4:45pm - 5:00pm

Questions and Answers 5:00pm - 5:15pm

Rct 3/1
POC-Clare Kasputys

AGENDA

When: Monday, April 4, 2011 3:00 PM-5:15 PM Eastern Time.
Where: 017B4
~~*~*~*~*~*~*~*~*
A meeting has been scheduled for 4/4/11, 3:00pm-5:15pm, Room 017B4, with Darren Ash to discuss the Information Technology, Information Management, and Administrative Services; and Financial Management and Policy Support with Jim Dyer Business Lines FY 2013 Budget Request.

Purpose: To review and discuss key aspects of the FY 2013 budget request for the information Technology, Information Management, Administrative Services, Outreach, and Financial Management Business Lines.

Outcome: (1) Understanding of major aspects of the FY 2013 base budget request for Business Lines; (2) Understanding of significant items in Scenario A (potential reductions) and Scenario B (potential additions), and the associated programmatic impacts and benefits.

Process: Lead offices should provide a brief budget overview of the Business Line and discuss the Business Line Summaries, including the base budget, Scenario A, and Scenario B. The discussion should not exceed 15 minutes for each of the Business Lines, after which 15 minutes will be reserved for questions and answers. The schedule for Business Line discussions is as follows:

Administrative Services (ADM) 3:00pm-3:15pm
Generic Homeland Security (ADM) $\quad 3: 15 \mathrm{pm}-3: 30 \mathrm{pm}$
Human Resource Management (HR) $3: 30 \mathrm{pm}-3: 45 \mathrm{pm}$
Outreach (HR)
$3: 45 \mathrm{pm}-4: 00 \mathrm{pm}$
Information Management (OIS)
Information Technology (OIS)
Financial Management (CFO)
Policy Support (CFO)
Questions and Answers
4:00pm-4:15pm
4:15pm-4:30pm
4:30pm - 4:45pm
4:45pm-5:00pm
5:00pm - $5: 15 \mathrm{pm}$

A bridge line has been established for this meeting: 1-888-790-6563, passcode \square
(b)(6)

Contacts:
Liz Jacobs-Baynard (415-8709)
Clare Kasputys (415-1767)

From:

Sent:

To:

LAO2 Hoc
Wednesday, April 06, 2011 2:37 PM
Diane, Margaret; Mamish, Nader; Abrams, Charlotte; Wittick, Brian; Afshar-Tous, Mugeh; 'ShafferMR@state.gov'; Bloom, Steven; Schwartzman, Jennifer, Tobin, Jennifer, Mayros, Lauren; Jones, Andrea; English, Lance; Smiroldo, Elizabeth; Young, Francis; Henderson, Karen; Ramsey, Jack; Shepherd, Jill; Baker, Stephen; Emche, Danielle; Fragoyannis, Nancy; LIA03 Hoc; Stahl, Eric; Owens, Janice; Fehst, Geraldine; Foggia, Kirk; Breskovic, Clarence; LIA08 Hoc; LIA02 Hoc; LIA06 Hoc
Subject:

TRANSITION REPORT FOR APRIL 6, 0630-1530
Skip to Lauren

UPDATES DURING SHIFT

- Coordination of IAEA and U.S. Efforts. While the IAEA's Incident and Emergency Centre (IEC) has not agreed to be a formal "clearinghouse" (i.e., actively reaching out to all IAEA member states requesting that all assistance efforts be coordinated through the IEC), they are tracking all offers for assistance via a database that was posted on ENAC last week. For the effort to be effective, they need input from countries, and they do not have anything from the United States. It was our initial understanding that DoD (Navy) is taking a logistical leadership role in coordinating equipment-provision efforts for the USG. However, INPO has taken the lead on equipment issues although the State Department had taken a lead role in the "Consortium." US Embassy Tokyo had established a tracking system to compile assistance requests from the Japanese and offers from USG entities. INPO had been separately tracking equipment requests (see INPO item below). The Embassy and INPO tracking have been merged. On April 5, LT received the latest equipment request matrices from USAID, originated by the Tokyo embassy. OMB indicated to LT on April $5^{\text {th }}$ conference call that they intend to start approving all finances for equipment purchases for Japan.
- Air Cards. Received request from Danielle to have air cards deactivated due to malfunctioning and potential losses. Requested clarification of which were missing and which desired to be deactivated. Notified Joe Turner of OIS. He will have someone work on to turn off all air cards issued for Japan. Action: follow up.
- Mailbox size limits. Team requested verification that mailboxes had size limits increased due to difficulties sending emails. Notified Joe Turner in OIS. OIS will provide a list of email accounts that have been increased. Action: follow up.
- Plant Status Updates. James Whitney, NSIR has requested that all of the "Plant Status" news releases on ENAC be sent to him to assist other government agencies in their analysis of the situation. Action: Send james.whitney@nrc.gov "plant status updates" on ENAC as they come in (last one sent on 12:30 pm on 4/6).

FUTURE ACTIONS/OPEN ITEMS

- News Reports on IAEA "Recommendation" to Extend Evacuation Zone: News media is reporting that the IAEA has called on Japan to extend the evacuation zone around Fukushima, based on abnormal levels of radiation detected in a village outside the current evacuation zone. This was not a special announcement nor a formal recommendation from the IAEA. Instead, the reports result from information
provided at the March 30 IAEA technical briefing, at which DDG Denis Flory reported on the location of the abnormal radiation levels and noted that they were located outside the evacuation zone. When asked a direct question about whether the IAEA was recommending that Japan extend the zone, DDG Flory stated only that the IAEA was encouraging the "counterpart" to "carefully assess the situation." Full summary of technical briefing here: http://iaea.org/newscenter/news/tsunamiupdate01.html, relevant paragraph is the fourth paragraph under item \#2, "Radiation Monitoring." Jen Schwartzman verified with Mark Shaffer that no formal announcement has come from IAEA in this regard.
- Taiwan Conference Call. PMT and RST are available for a 1200 EST one-time conference call with Taiwan, date TBD. The 1500-2300 EST shift on March 31 received a call from Taiwan POC (June-Yuan (JY) Huang, ${ }^{(b)(6)}$. He said Danielle Emche had offered the conference call (and Danielle's suggestion stems from DOS push). He doesn't see a need for an immediate conference call. He will call again to set up a date. He would like the conference call to start with a briefing on the technical status at Fukushima and then he will ask questions. Action: Be aware that Mr. Huang will be calling back to set up a specific date. After he calls with a date please notify/confirm time and date with PMT and RST. Int'I liaison should sit in on the call.
- Deputies Committee Decisions and Action Items: SECY has been sending summaries of the Deputies Committee meetings as they are received and the LT Director/Coordinator have been tracking any actions pertinent to the LT. There are currently no international liaison tasks resulting from these meetings but the LT Director will inform us if this changes. Action: Mark Shaffer would like to see the summaries. We sent him everything we had already received but he would need future summaries beginning with the March 30 meeting. Summaries received on $4 / 4$ were sent. (no additional summaries issued since 4/4)
- Translators. $24 / 7$ translation coverage in the HOC has been suspended. Kirk Foggie confirmed that there is only one known NRC employee that speaks Japanese (at the moment) but there is a Japanese foreign assignee and other options available. Also, Tony Nakanishi may be available to provide translation assistance. USAID is paying for an NRC-dedicated translator in Tokyo. If we need items translated and cannot get assistance from within NRC, we can rely on them. Action: If in need of USAID translation support, fax the document to $+81-3-3224-5538$ and send a scanned (PDF) copy to the Japan site team as a backup.
- INPO: All equipment requests are now going through INPO. They are consolidating all available information. Contact information for INPO is 770-644-8118 or email at inpoercassistance@inpo.org.
- NRC Health Unit request: The NRC team members were given KI before they left. At this time the guidance is to not take the KI while on duty in Tokyo. However, due to the still-fluid nature of the environmental hazards posed by radioactive isotopes, there still exists a possibility that KI could be required at some point. Should it become necessary to have the NRC team take the KI, the LIA02/LIA03 international liaisons would be responsible for receiving the advice from ADM/Dr. Cadoux and to get the information to the team immediately.
- Request for meteorological data. PMT notified LIA02/03 of their need for meteorological data. Action: If you receive meteorological communications which do not already have PMT on distribution, please ensure PMT is cc'ed on the email (send to PMT02 and PMT12) and walk a hard copy back to the meteorologists.
- Japan Relief Team Dosimetry. LIA03 sent an email to LiasonJapan (original team) asking for them to email back their dosimetry numbers. All of original team except Casto have returned, so his should be only number missing, if any.
- Daily calls with UK/France/Canada. Calls will take place at 0930 with RST and PMT to discuss reactorrelated and radiation-related information, respectively, with regulatory representatives from these three countries. Everyone should call into the HOO to be connected. Finland and the IAEA may also participate
on an intermittent basis. The new number to call into i \square fand the pin is (b)(6) NOTE: There is no call on the weekends.
- Daily NRC Japan Team - RST/PMT Call. The time of the call varies. As of $4 / 5$ it was 2100 with RST and PMT have been notified of the call and international liaison should plan on participating (OIP staff in Japan don't necessarily participate). All parties should call into 301-816-5120 and use pass-code ${ }^{(b)(6)}$
- Laptop shuffling in Japan. Some laptops (the blue-top ones) still have difficulty printing so the ground team has requested the assistance of CSC in "re-assigning" the laptops that work well to the members of the $3^{\text {rd }}$ team (since the $2^{\text {nd }}$ team members leave Japan in the next day or two). No action for OIP but we may be requested to assist if there are any difficulties. We should also note that if future teams go to Japan, they should take non-blue-top or personal laptops to make it easier to connect to the Embassy printer.
- Update Japan Traveler Information Document on LIA03 with Return Team info - Per request from LT Director please update the traveler table as NRC Japan Travel Team members return to U.S. ACTION: Await reply emails from returned travelers and update the Document on LIA03.
- Announcement of French nuclear safety meeting in May: Reuters is reporting that Sarkozy has announced plans for a high-level meeting of "G20 nuclear industry officials" in Paris in May 2011 "to define international nuclear safety standards." The article states that Sarkozy "declared this [meeting] would lay the groundwork for the IAEA high-level meeting on June 20-24. We are seeking additional information on this announcement from official channels. Message sent to Eric at 0400 inquiring whether he has heard anything via his French contacts (noting that ASN will be meeting with the NRC Team in the next day or two). Report any new information learned to OIP management and ET. The policy to delay meeting will be articulated by DOS high level representatives at a G-20 meeting in Abu Dhabi the week of April 4. The French announced their intent to convene this meeting, and stated that the Japanese Prime Minister is supportive. Action: OIP will continue to interact with interagency as appropriate and update ET.

DAILY ACTIONS/REMINDERS

- International updates must be sent to LIAO7 (to be put in the HOO Status Update) before the end of every shift as well as posted on the LT status board (different than the LT Log).
- The 3-12 PM shift should try and work on the one pager and the 7 AM-3 PM should finalize and send to Margie. Please include information from email from Danielle and Eric. Margie reminds us that the write-up should not contain technical details, which are already captured in other reports, and should be marked "Official Use Only - Foreign Government Information."
- Both shifts are responsible for sending all emails to the FOIA email address. Open new email, copy previous day's emails as an attachment and send to FOIA Response.hoc@nrc.gov. Also it would be helpful to mark the red flag on the right to show which emails were sent.
- The international team should sit in on calls with the ET and team leader (Chuck or Dan) to take notes and provide a short summary of what was discussed via email to OIP reps on Japan Team. The Chairman's briefing has been moved to 0800 while he is in Vienna, April 4-6, and will involve a three way call with Casto, ET, and Chairman. [Japan 13 hours ahead, Vienna 6 hours ahead]
- Prior to any international call you set up, please make sure you contact the HOOs to let them know that you are going to have an international call.
- Reminder to Keep Mark Shaffer in-the-loop at shaffermr@state.gov, regardless of time of day, regardless of whether he is in the office or asleep. Especially cc Mark on all communication to IAEA.
- Request from RST and PMT to keep them updated on who is currently in Japan on NRC team.
- Please make sure to keep the NRC Japan travelers list updated (check the last updated date) and post a new copy on LIA02 cabinet as changes occur.
- OIP (Int'I Liaison Watch) has been tasked with providing IAEA ENAC daily summary to Commissioner's TAs and EDO POC. OIP is also being asked to place a cover page on this report indicating the sensitivity of the information. IAEA has been asked to include a statement on each page of the ENAC summary report and cover page indicating sensitive of the information. The document will be provided by email

TOFFICTAL USE-ONLY

From:
Sent:
To:

LIAO2 Hoc
Tuesday, April 05, 2011 11:18 PM
Doane, Margaret; Mamish, Nader; Abrams, Charlotte; Wittick, Brian; Afshar-Tous, Mugeh; 'ShafferMR@state.gov'; Bloom, Steven; Schwartzman, Jennifer; Tobin, Jennifer; Mayros, Lauren; Jones, Andrea; English, Lance; Smiroldo, Elizabeth; Young, Francis; Henderson, Karen; Ramsey, Jack; Shepherd, Jill; Baker, Stephen; Emche, Danielle; Fragoyannis, Nancy; LIA03 Hoc; Stahl, Eric; Owens, Janice; Fehst, Geraldine; Foggie, Kirk; Breskovic, Clarence; LA 008 Hoc; LIA02 Hoc; LA06 Hoc
Subject:
Attachments:

OUO- Transition Report April 5, 1430-2330
FYI -- FW: notes from our 4 Apr 2011 teleconference; Full debriefing from 1600 classified conference call with DOD-treat as Official Use Only

OFFHGHALUSE-ONTY

TRANSITION REPORT FOR APRIL 5, 1430-2330
Brian to Skip

UPDATES DURING SHIFT

- Coordination of IAEA and U.S. Efforts. While the IAEA's Incident and Emergency Centre (IEC) has not agreed to be a formal "clearinghouse" (i.e., actively reaching out to all IAEA member states requesting that all assistance efforts be coordinated through the IEC), they are tracking all offers for assistance via a database that was posted on ENAC last week. For the effort to be effective, they need input from countries, and they do not have anything from the United States. It was our initial understanding that DoD (Navy) is taking a logistical leadership role in coordinating equipment-provision efforts for the USG. However, INPO has taken the lead on equipment issues although the State Department had taken a lead role in the "Consortium." US Embassy Tokyo had established a tracking system to compile assistance requests from the Japanese and offers from USG entities. INPO had been separately tracking equipment requests (see INPO item below). The Embassy and INPO tracking have been merged. On April 5, LT received the latest equipment request matrices from USAID, originated by the Tokyo embassy. OMB indicated to LT on April $5^{\text {th }}$ conference call that they intend to start approving all finances for equipment purchases for Japan.
- Nuclear Technical Advisory Group. Attached are meeting notes from 4/4 conference call. Note discussion concerning expected increase in requests to import LLRW.
- Air Cards. Received request from Danielle to have air cards deactivated due to malfunctioning and potential losses. Requested clarification of which were missing and which desired to be deactivated. Notified Joe Turner of OIS. Action: follow up.
- Mailbox size limits. Team requested verification that mailboxes had size limits increased due to difficulties sending emails. Notified Joe Turner in OIS. Action: follow up.
- Plant Status Updates. James Whitney, NSIR has requested that all of the "Plant Status" news releases on ENAC be sent to him to assist other government agencies in their analysis of the situation. Action: Send james.whitney@nrc.gov "plant status updates" on ENAC as they come in (last one sent on 1600 shift on 4/5).
- News Reports on IAEA "Recommendation" to Extend Evacuation Zone: News media is reporting that the IAEA has called on Japan to extend the evacuation zone around Fukushima, based on abnormal levels of radiation detected in a village outside the current evacuation zone. This was not a special announcement nor a formal recommendation from the IAEA. Instead, the reports result from information provided at the March 30 IAEA technical briefing, at which DDG Denis Flory reported on the location of the abnormal radiation levels and noted that they were located outside the evacuation zone. When asked a direct question about whether the IAEA was recommending that Japan extend the zone, DDG Flory stated only that the IAEA was encouraging the "counterpart" to "carefully assess the situation." Full summary of technical briefing here: http://iaea.org/newscenter/news/tsunamiupdate01.html, relevant paragraph is the fourth paragraph under item \#2, "Radiation Monitoring." Jen Schwartzman verified with Mark Shaffer that no formal announcement has come from IAEA in this regard.
- Taiwan Conference Call. PMT and RST are available for a 1200 EST one-time conference call with Taiwan, date TBD. The 1500-2300 EST shift on March 31 received a call from Taiwan POC (June-Yuan (JY) Huang, ${ }^{(b)(6)}$. He said Danielle Emche had offered the conference call (and Danielle's suggestion stems from DOS push). He doesn't see a need for an immediate conference call. He will call again to set up a date. He would like the conference call to start with a briefing on the technical status at Fukushima and then he will ask questions. Action: Be aware that Mr. Huang will be calling back to set up a specific date. After he calls with a date please notify/confirm time and date with PMT and RST. Int'I liaison should sit in on the call.
- Deputies Committee Decisions and Action Items: SECY has been sending summaries of the Deputies Committee meetings as they are received and the LT Director/Coordinator have been tracking any actions pertinent to the LT. There are currently no international liaison tasks resulting from these meetings but the LT Director will inform us if this changes. Action: Mark Shaffer would like to see the summaries. We sent him everything we had already received but he would need future summaries beginning with the March 30 meeting. Summaries received on $4 / 4$ were sent.
- Translators. $24 / 7$ translation coverage in the HOC has been suspended. Kirk Foggie confirmed that there is only one known NRC employee that speaks Japanese (at the moment) but there is a Japanese foreign assignee and other options available. Also, Tony Nakanishi may be available to provide translation assistance. USAID is paying for an NRC-dedicated translator in Tokyo. If we need items translated and cannot get assistance from within NRC, we can rely on them. Action: If in need of USAID translation support, fax the document to $+81-3-3224-5538$ and send a scanned (PDF) copy to the Japan site team as a backup.
- INPO: All equipment requests are now going through INPO. They are consolidating all available information. Contact information for INPO is 770-644-8118 or email at inpoercassistance@inpo.org.
- NRC Health Unit request: The NRC team members were given KI before they left. At this time the guidance is to not take the KI while on duty in Tokyo. However, due to the still-fluid nature of the environmental hazards posed by radioactive isotopes, there still exists a possibility that KI could be required at some point. Should it become necessary to have the NRC team take the KI, the LIA02/LIA03 international liaisons would be responsible for receiving the advice from ADM/Dr. Cadoux and to get the information to the team immediately.
- Request for meteorological data. PMT notified LIA02/03 of their need for meteorological data. Action: If you receive meteorological communications which do not already have PMT on distribution, please ensure PMT is cc'ed on the email (send to PMT02 and PMT12) and walk a hard copy back to the meteorologists.
- Japan Relief Team Dosimetry. LIA03 sent an email to LiasonJapan (original team) asking for them to email back their dosimetry numbers. All of original team except Casto have returned, so his should be only number missing, if any.
- Daily calls with UK/France/Canada. Calls will take place at 0930 with RST and PMT to discuss reactorrelated and radiation-related information, respectively, with regulatory representatives from these three countries. Everyone should call into the HOO to be connected. Finland_and the IAEA may also participate on an-intermittent basis. The new number to call into is ${ }^{(b)(6)}$ (b)(6) NOTE: There is no call on the weekends.
- Daily NRC Japan Team - RST/PMT Call. The time of the call varies. As of $4 / 5$ it was $\mathbf{2 1 0 0}$ with RST and PMT have been notified of the call and international liaison should plan on participating (OIP staff in Japan don't necessarily participate). All parties should call into 301-816-5120 and use pass-code ${ }^{(b)(6)}$
- Laptop shuffling in Japan. Some laptops (the blue-top ones) still have difficulty printing so the ground team has requested the assistance of CSC in "re-assigning" the laptops that work well to the members of the $3^{\text {rd }}$ team (since the $2^{\text {nd }}$ team members leave Japan in the next day or two). No action for OIP but we may be requested to assist if there are any difficulties. We should also note that if future teams go to Japan, they should take non-blue-top or personal laptops to make it easier to connect to the Embassy printer.
- Update Japan Traveler Information Document on LIA03 with Return Team info - Per request from LT Director please update the traveler table as NRC Japan Travel Team members return to U.S. ACTION: Await reply emails from returned travelers and update the Document on LIA03.
- Announcement of French nuclear safety meeting in May: Reuters is reporting that Sarkozy has announced plans for a high-level meeting of "G20 nuclear industry officials" in Paris in May 2011 "to define international nuclear safety standards." The article states that Sarkozy "declared this [meeting] would lay the groundwork for the IAEA high-level meeting on June 20-24. We are seeking additional information on this announcement from official channels. Message sent to Eric at 0400 inquiring whether he has heard anything via his French contacts (noting that ASN will be meeting with the NRC Team in the next day or two). Report any new information learned to OIP management and ET. The policy to delay meeting will be articulated by DOS high level representatives at a G-20 meeting in Abu Dhabi the week of April 4. The French announced their intent to convene this meeting, and stated that the Japanese Prime Minister is supportive. Action: OIP will continue to interact with interagency as appropriate and update ET.

DAILY ACTIONS/REMINDERS

- International updates must be sent to LIA07 (to be put in the HOO Status Update) before the end of every shift as well as posted on the LT status board (different than the LT Log).
- The 3-12 PM shift should try and work on the one pager and the 7 AM - 3 PM should finalize and send to Margie. Please include information from email from Danielle and Eric. Margie reminds us that the write-up should not contain technical details, which are already captured in other reports, and should be marked "Official Use Only - Foreign Government Information."
- Both shifts are responsible for sending all emails to the FOIA email address. Open new email, copy previous day's emails as an attachment and send to FOIA Response.hoc@nrc.gov. Also it would be helpful to mark the red flag on the right to show which emails were sent.
- The international team should sit in on calls with the ET and team leader (Chuck or Dan) to take notes and provide a short summary of what was discussed via email to OIP reps on Japan Team. The Chairman's briefing has been moved to 0800 while he is in Vienna, April 4-6, and will involve a three way call with Casto, ET, and Chairman. [Japan 13 hours ahead, Vienna 6 hours ahead]
- Prior to any intemational call you set up, please make sure you contact the HOOs to let them know that you are going to have an international call.
- Reminder to Keep Mark Shaffer in-the-loop at shaffermr@state.gov, regardless of time of day, regardless of whether he is in the office or asleep. Especially cc Mark on all communication to IAEA.
- Request from RST and PMT to keep them updated on who is currently in Japan on NRC team.
- Please make sure to keep the NRC Japan travelers list updated (check the last updated date) and post a new copy on LIA02 cabinet as changes occur.

OIP has been tasked with providing IAEA ENAC daily summary to Commissioner's TAs and EDO POC. OIP is also being asked to place a cover page on this report indicating the sensitivity of the information. The document will be provided by email.

From: HOO Hoc
Sent: Thursday, April 07, 2011 8:05 PM
To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03 HOC
Subject:
FW: Agenda and documents for the 2000 hrs Consortium Call image001.jpg

```
Headquarters Operations Officer
U.S. Nuclear Regulatory Commission
Phone: 301-816-5100
Fax: 301-816-5151
email: hoo.hoc@nrc.gov
secure e-mail: hoo1@nrc.sgov.gov
eU.S.NRC
```



```
Bureritige frople uld the F.Netrowmom
```

From: Cherry, Ronald C [mailto:CherryRC@state.gov]
Sent: Thursday, April 07, 2011 7:57 PM
To $\sqrt{(b)(6)}$
(b)(6)

Cc: LIA08 Hoc
Subject: Re: Agenda and documents for the 2000hrs Consortium Call

Ill join this call a few minutes late because of a meeting I'm in now.
Thanks.
Ron
This has been sent from my Blackberry

From: (b)(6)

To, ${ }^{(b)(6)}$
(b)(6)
-Sent: Thu Apr 07 19:16:17 2011
Subject: RE: Agenda and documents for the 2000hrs Consortium Call
Let's please use the DOE updated version of the spreadsheet for the call tonight. It was attached to the email sent at 1812 below.

Thanks,

Mark Lombard

Liaison Team Director
U.S. Nuclear Regulatory Commission

Operations Center

From: LIA01 Hoc
Sent: Thursday, April 07, 2011 6:12 PM
To: (b)(6)

(b)(6)

-Cc: LIA08 Hoc; LIA06 HOC
Subject: FW: Agenda and documents for the 2000hrs Consortium Call
FYI

From: Tilden, Jay [mailto:Jay.Tilden@nnsa.doe.gov]
Sent: Thursday, April 07, 2011 6:09 PM
To: LIA01 Hoc; Caponiti, Alice; Cherry, Ron
Cc: NITOPS; Duncan, Aleshia (State Dept); DL-Policy Working Group; DL-NERT-All
Subject: RE: Agenda and documents for the 2000hrs Consortium Call

Alice, Ron, et al
I will be on this again...I have cancelled all hopes of a personal life at this point. Attached is my update based on NITOPS and our telecom last night. These updates were largely "uploaded" to the Embassy run-list, which I will also attach. Thanks - Jay

Jay A. Tilden

Japan Logistics Coordinator \&
Dir.
NA-47, NNSA
202-586-3165
-----Original Appointment-----
From: LIAO1 Hoc [mailto:LIAD1. Hoc@nrc.gov]
Sent: Thursday, April 07, 2011 2:19 PM
To: (b)(6)
(b)(6)

Subject: Agenda and documents for the 2000 hrs Consortium Call
When: Thursday, April 07, 2011 8:00 PM-9:00 PM (GMT-05:00) Eastern Time (US \& Canada).
Where:

Attached please find the documents for today's Consortium call at 2000 hrs .
Thanks
<< File: Consortium Call Summary from 40611 2000.docx >> << File: Agenda 40720112000 (2).docx >> << File: Japanese Government Action Items and Material Request List (Consortium Call) 4620112100 Version. x Isx \gg

From:	LAO2 Hoc
Sent:	Thursday, April 07, 2011 2:48 PM
To:	LAO2 Hoc; Doane, Margaret; Marish, Nader
Cc:	Abrams, Charlotte; Wittick, Brian; Afshar-Tous, Mugeh; 'ShafferMR@state.gov'; Bloom,
	Steven; Schwartzman, Jennifer, Tobin, Jennifer; Mayros, Lauren; Jones, Andrea; English,
	Lance; Smiroldo, Elizabeth; Young, Francis; Henderson, Karen; Ramsey, Jack; Shepherd,
	Jill; Baker, Stephen; Emche, Danielle; Fragoyannis, Nancy; LA03 Hoc; Stahl, Eric; Owens,
	Janice; Fehst, Geraldine; Foggie, Kirk; Breskovic, Clarence; LA08 Hoc; LAO6 Hoc
	OUO- Transition Report April 7, 0630-1530

-OFFICIALUSEONLY

Transition report for April 7, 0630 to 1500
 Skip to Steve

Updates during Shift

- Fourth Team to Japan. The first member, Brian Wittick, for the next team has been identified. Support will be needed. Currently USAID will be the funding source.
- Coordination of IAEA and U.S. Efforts. While the IAEA's Incident and Emergency Centre (IEC) has not agreed to be a formal "clearinghouse" (ie., actively reaching out to all IAEA member states requesting that all assistance efforts be coordinated through the IEC), they are tracking all offers for assistance via a database that was posted on ENAC last week. For the effort to be effective, they need input from countries, and they do not have anything from the United States. It was our initial understanding that DoD (Navy) is taking a logistical leadership role in coordinating equipment-provision efforts for the USG. However, INPO has taken the lead on equipment issues although the State Department had taken a lead role in the "Consortium." US Embassy Tokyo had established a tracking system to compile assistance requests from the Japanese and offers from USG entities. INPO had been separately tracking equipment requests (see INPO item below). The Embassy and INPO tracking have been merged. On April 5, LT received the latest equipment request matrices from USAID, originated by the Tokyo embassy. OMB indicated to LT on April $5^{\text {th }}$ conference call that they intend to start approving all finances for equipment purchases for Japan.
- Air Cards. Received request from Danielle to have air cards deactivated due to malfunctioning and potential losses. Requested clarification of which were missing and which desired to be deactivated. Notified Joe Turner of OIS. Action: Email send $4 / 7$ to follow up on status.
- Mailbox size limits. Team requested verification that mailboxes had size limits increased due to difficulties sending emails. Notified Joe Turner in OIS. Action: Email send $4 / 7$ to follow up on status.
- Plant Status Updates. James Whitney, NSIR has requested that all of the "Plant Status" news releases on ENAC be sent to him to assist other government agencies in their analysis of the situation. Action: Send james.whitney@nrc.pov "plant status updates" on ENAC as they come in (last one sent on day shift on 4/7).
- TEPCO Earthquake Info. Vince Holahan, the NRC staff member embedded with PACCOM, has requested to be on the distribution list for the Japanese earthquake info sent from TEPCO. ACTION: Please forward these emails to him as they are received.
- Request to Share RST Document with Foreign Governments: The Governments of Canada, the UK and Finland have requested that the RST share their "Stability Document," which they have discussed during their daily call with these governments. The request has been forwarded on to the ET, who is assessing what information is contained in the document before deciding on whether or not to share the document The document is still in draft (awaiting interagency comments). PMT was given permission to read the draft document to conference call members. Release of this document will be addressed as part of the process being developed to address the release of a document to NY Times. ACTION: Continue to follow.
- Government Shutdown - NRC Japan Team wants to know what will happen if the USG shuts down. This decision has yet to be made by the Chairman and EDO. Indications that the NRC has funding to continue at least one week after USG shutdown. ACTION: If the USG does shut down, please make sure to inform the NRC Japan team right away and try to find out as much information for them as possible.
- 1 Pager for Margie's Morning Meeting - Danielle requested that the draft be sent to her so she could add to it overnight. She will send back any updates via email. ACTION: Work off of the draft sent back from Danielle. If she doesn't send back any updates overnight, then work off of the draft .

Future Actions/OPEN ITEMS

- News Reports on IAEA "Recommendation" to Extend Evacuation Zone: News media is reporting that the IAEA has called on Japan to extend the evacuation zone around Fukushima, based on abnormal levels of radiation detected in a village outside the current evacuation zone. This was neither a special announcement nor a formal recommendation from the IAEA. Instead, the reports result from information provided at the March 30 IAEA technical briefing, at which DDG Denis Flory reported on the location of the abnormal radiation levels and noted that they were located outside the evacuation zone. When asked a direct question about whether the IAEA was recommending that Japan extend the zone, DDG Flory stated only that the IAEA was encouraging the "counterpart" to "carefully assess the situation." Full summary of technical briefing here: http://iaea.org/newscenter/news/tsunamiupdate01.html, relevant paragraph is the fourth paragraph under item \#2, "Radiation Monitoring." Jen Schwartzman verified with Mark Shaffer that no formal announcement has come from IAEA in this regard.
- Taiwan Conference Call. There will not be a call.
- Deputies Committee Decisions and Action Items: SECY has been sending summaries of the Deputies Committee meetings as they are received and the LT Director/Coordinator have been tracking any actions pertinent to the LT. There are currently no international liaison tasks resulting from these meetings but the LT Director will inform us if this changes. Action: Mark Shaffer would like to see the summaries. . Summaries received on $4 / 7$ were sent.
- Translators. $24 / 7$ translation coverage in the HOC has been suspended. Kirk Foggie confirmed that there is only one known NRC employee that speaks Japanese (at the moment) but there is a Japanese foreign assignee and other options available. Also, Tony Nakanishi may be available to provide translation assistance. USAID is paying for an NRC-dedicated translator in Tokyo. If we need items translated and cannot get assistance from within NRC, we can rely on them. Action: If in need of USAID translation support, fax the document to $+81-3-$ 3224-5538 and send a scanned (PDF) copy to the Japan site team as a backup.
- INPO: All equipment requests are now going through INPO. They are consolidating all available information. Contact information for INPO is 770-644-8118 or email at inpoercassistance@inpo.org.
- NRC Health Unit request: The NRC team members were given KI before they left. At this time the guidance is to not take the KI while on duty in Tokyo. However, due to the still-fluid nature of the environmental hazards posed by radioactive isotopes, there still exists a possibility that KI could be required at some point. Should it become necessary to have the NRC team take the KI, the LIAO2/LIAO3 international liaisons would be responsible for receiving the advice from ADM/Dr. Cadoux and to get the information to the team immediately.
- Daily calls with UK/France/Canada. Calls will take place at 0930 with RST and PMT to discuss reactor-related and radiation-related information, respectively, with regulatory representatives from these three countries. Everyone should call into the HOO to be connected, Finland and the IAEA may also participate on an intermittent basis. The new number to call into is (b)(6)
- Daily NRC Japan Team - RST/PMT Call. The time of the call varies. As of $4 / 5$ it was $\mathbf{2 1 0 0}$ with RST and PMT have been notified of the call and international liaison should plan on participating (OIP staff in Japan don't necessarily participate). All parties should call into 301-816-5120 and use pass-code $(\mathrm{b})(6)$
- Laptop shuffling in Japan. Some laptops (the blue-top ones) still have difficulty printing so the ground team has requested the assistance of CSC in "re-assigning" the laptops that work well to the members of the $3^{\text {rd }}$ team (since the $2^{\text {nd }}$ team members leave Japan in the next day or two). No action for OIP but we may be requested to assist if there are any difficulties. We should also note that if future teams go to Japan, they should take non-blue-top or personal laptops to make it easier to connect to the Embassy printer.
- Update Japan Traveler Information Document on LIA03 with Return Team info - Per request from LT Director please update the traveler table as NRC Japan Travel Team members return to U.S. ACTION: Await reply emails from returned travelers and update the Document on LIA03.
- Announcement of French nuclear safety meeting in May: Reuters is reporting that Sarkozy has announced plans for a high-level meeting of "G20 nuclear industry officials" in Paris in May 2011 "to define international nuclear safety standards." The article states that Sarkozy "declared this [meeting] would lay the groundwork for the IAEA high-level meeting on June 20-24. We are seeking additional information on this announcement from official channels. Message sent to Eric at 0400 inquiring whether he has heard anything via his French contacts (noting that ASN will be meeting with the NRC Team in the next day or two). Report any new information learned to OIP management and ET. The policy to delay meeting will be articulated by DOS high level representatives at a G-20 meeting in Abu Dhabi the week of April 4. The French announced their intent to convene this meeting, and stated that the Japanese Prime Minister is supportive. Action: OIP will continue to interact with interagency as appropriate and update ET.

DAILY ACTIONS/REMINDERS

- International updates must be sent to LIAO7 (to be put in the HOO Status Update) before the end of every shift as well as posted on the LT status board (different than the LT Log).
- The 3-12 PM shift should try and work on the one pager and the $7 \mathrm{AM}-3$ PM should finalize and send to Margie. Please include information from email from Danielle and Eric. Margie reminds us that the write-up should not contain technical details, which are already captured in other reports, and should be marked "Official Use Only Foreign Government Information."
- Both shifts are responsible for sending all emails to the FOIA email address. Open new email, copy previous day's emails as an attachment and send to FOIA Response.hoc@nrc.gov. Also it would be helpful to mark the red flag on the right to show which emails were sent.
- The international team should sit in on calls with the ET and team leader (Chuck or Dan) to take notes and provide a short summary of what was discussed via email to OIP reps on Japan Team. The Chairman's briefing has been
moved to 0800 while he is in Vienna, April 4-6, and will involve a three way call with Casto, ET , and Chairman. [Japan 13 hours ahead, Vienna 6 hours ahead]
- Prior to any international call you set up, please make sure you contact the HOOs to let them know that you are going to have an international call.
- Reminder to Keep Mark Shaffer in-the-loop at shaffermr@state.gov, regardless of time of day, regardless of whether he is in the office or asleep. Especially cc Mark on all communication to IAEA.
- Request from RST and PMT to keep them updated on who is currently in Japan on NRC team.
- Please make sure to keep the NRC Japan travelers list updated (check the last updated date) and post a new copy on LIA02 cabinet as changes occur.
- OIP has been tasked with providing IAEA ENAC daily summary to Commissioner's TAs and EDO POC. OIP is also being asked to place a cover page on this report indicating the sensitivity of the information. The document will be provided by email.

From:	OSTO1 HOC
Sent:	Friday, April 08, 2011 9:16 AM
To:	RST01 Hoc
Cc:	FOIA Response.hoc Resource
Subject:	FW: Radiation data by MEXT
Attachments:	(English)20110408_01.pdf; (English)20110408_02.pdf; (English)20110408_03.pdf;
	(English)20110408_04.pdf; (English)20110408_05.pdf; (English)20110408_06.pdf;
	(English)20110408_07.pdf; (English)20110408_08.pdf; (English)20110408_09.pdf;
	(English)20110408_10.pdf; (English)20110408_11.pdf; (English)20110408_12.pdf;
	(English)20110408_13.pdf; (English)20110408_14.pdf

-----Original Message-----
From: HOO Hoc
Sent: Friday, April 08, 2011 9:10 AM
To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03 HOC
Subject: FW: Radiation data by MEXT

Headquarters Operations Officer
U.S. Nuclear Regulatory Commission

Phone: 301-816-5100
Fax: 301-816-5151
email: hoo.hoc@nrc.gov
secure e-mail: hoo1@nrc.sgov.gov

-----Original Message-----

From: eda@mext.go.jp [mailto:eda@mext.go.jp]
Sent: Friday, April 08, 2011 9:08 AM
To. (b)(6)
(b)(6)
, $(\mathrm{b})(6)$

Subject: Radiation data by MEXT

Dear Sir,

Please see attached the document.
I am sorry for delaying in sending English files.

Sincerely yours,
Kei EDA
EOC, Ministry of Education,Culture, Sports, Science \& Technology (MEXT), Japan

Readings of Integrated Dose at Monitoring Post out of Fukushima Dai-ichi NPP

Monitoring Time

- March 23th~April 7th
(Monitoring Post:7, 31~34, 71, 79)
- March 23th ~ 28 th, April 3rd ~ 7 th
(Monitoring Post:71)
- March 24th~April 7th
(Monitoring Post: 1, 15)
- March 25th~April 1st,April 3rd ~7th
(Monitoring Post: 84)
- March 31th~ April 1st, April 3rd ~ 7 th
(Monitoring Post: 38)
- April 1st~April 7th
(Monitoring Post: 39)
- April 2nd~April 7th
(Monitoring Post: 76)
- April 3th~April 7th
(Monitoring Post: 80)
Monitoring Post
(explanatory note)
【 Monitoring Post number】
Readings of Integrated Dose $※$ <increment from the last monitoring> (average dose per hour)
Readings of Integrated Dose indicate that accumulation of dose from each starting date till April 7th, for 4 days to 15 days.

Unit: μ Sv per hour

Flight route of helicopter monitoring on April 7，out of Fukushima Dai－ichi NPP （【1】～【12】：Major Monitoring Point）

Ministry of Education，Culture，Sports，Science and Technology（MEXT）

Sampling Point	Sampling Time and Date	Radioactivity Concentration（ $\mathrm{Bq} / \mathrm{m} 3)$		Reading （ $\mu \mathrm{Sv} / \mathrm{h}$ ）	Monitoring Point by monitoring car
		${ }^{131}$ ］	${ }^{137} \mathrm{Cs}$		
［1－1］（About45kmNorth／West）	3／23 10：45～10：55	4.0	1.2	5.5	［3］
［1－2］（About40kmNorth／West）	3／23 10：50～11：10	5.2	＜1．2	9.0	［36】
$【 1-3 】$ （About $30 \mathrm{kmWest} /$ North／West）	3／23 13：54～14：17	8.0	<1.4	9.4	【21】
［1－4］（About35kmWest）	3／23 12：40～13：02	2.8	<1.1	2.3	【15】
［1－4］（About35kmWest） Survey1st	3／24 10：58～11：09	3.1	<0.99	2	
【1－4】（About35kmWest） Survey2nd	3／24 11：58～12：09	2.4	1.3	2.8	
【1－4】（About 35 kmWest ） Survey3rd	3／24 12：58～13：09	2.5	<1.2	2.5	
【1－4】（About35kmWest） Survey4th	3／24 13：58～14：09	2.2	1.6	2.2	
【1－4】（About35kmWest） Survey5th	3／24 14：58～15：09	2.8	<1.2	2.5	
【1－4】（About35kmWest） Survey6th	3／24 15：58～16：09	2.1	<1.0	2.2	
【1－5】（About25kmSouth） Vehicle－Borne Survey1st	3／23 13：15～13：58	530.0	6.6	$5.5 \sim 14.0$	【71】
【1－5】（About25kmSouth） Vehicle－Borne Survey2nd	3／23 14：30～15：10	180.0	2.3	$5.5 \sim 14.0$	
（1－5】（About25kmSouth） Vehicle－Borne Survey3rd	3／23 15：20～15：59	110.0	2.1	$5.5 \sim 14.0$	
【1－5】（About25kmSouth） Vehicle－Borne Survey1st	3／24 10：06～10：44	5.9	<0.66	5.6	
【1－5】（About25kmSouth） Vehicle－Borne Survey2nd	3／24 10：53～11：33	9.2	<0.71	5.6	
【1－5】（About25kmSouth） Vehicle－Borne Survey3rd	3／24 11：44～12：26	12.0	1.1	5.6	
【1－5】（About25kmSouth） Vehicle－Borne	3／25 11：51～12：38	43.0	2.0	$4.1 \sim 5.5$	
【1－5】（About25kmSouth） Survey 1 st	3／25 13：12～13：42	23.0	1.4	2	
【1－5】（About25kmSouth） Survey2nd	3／25 14：12～14：42	19.0	1.3	2.8	
【1－5】（About25kmSouth） Survey3rd	3／25 15：12～15：42	24.0	2.5	2.5	
【1－5】（About25kmSouth） Survey4th	3／25 16：12～16：42	10.0	1.3	2.2	
【1－5】（About25kmSouth） Survey1st	3／26 12：47～13：21	13.0	1.3	3.9	
【1－5】（About25kmSouth） Survey2nd	3／26 14：21～14：57	10.0	1.5	3.9	
［1－5］（About25kmSouth） Vehicle－Borne Survey1st	3／27 12：36～13：26	20.0	0.8	$2.8 \sim 3.8$	
［1－5］（About25kmSouth） Survey1st	3／27 13：58～14：33	7.1	<0.98	3.8	
【1－5】（About25kmSouth） Survey2nd	3／27 15：33～16：08	6.6	<1.0	3.8	
【1－5】（About25kmSouth） Survey3rd	3／27 16：16～16：53	10.0	<1.1	3.8	
【1～5】（About25kmSouth） Vehicle－Borne Survey2nd	3／27 14：43～15：18	5.5	1.2	$2.8 \sim 3.8$	
【1－5】（About25kmSouth） Survey1st	3／28 9：48～13：03	6.6	0.57	3.0	

Sampling Point	Sampling Time and Date	Radioactivity Concentration（Bq／m3）		Reading （ $\mu \mathrm{Sv} / \mathrm{h}$ ）	Monitoring Point by monitoring car
		${ }^{131}$ I	${ }^{137} \mathrm{Cs}$		
【1－5】（About25kmSouth） Survey2nd	3／28 13：23～14：07	54.0	8.0	3.0	
（1－5】（About25kmSouth） Survey3rd	3／28 14：18～15：19	20.0	3.0	3.0	
【1－5】（About25kmSouth） Survey1st	3／31 12：22～13：12	24.0	4.5	2.1	
【1－5】（About25kmSouth） Survey2nd	3／31 13：17～14：01	18.0	1.3	2.0	
【1－5】（About25kmSouth） Survey3rd	3／31 14：06～14：50	13.0	1.0	1.9	
$\begin{gathered} \text { 【1-5】(About25kmSouth) } \\ \text { Survey4th } \end{gathered}$	3／31－15：00～15：44	13.0	＜0．79	2.0	
【1－7】（About 35 km North） Survey1st	3／25 12：58～13：09	3.5	＜0．99	3.2	
【1－7】（About35kmNorth） Survey2nd	3／25 13：58～14：09	4.3	1.6	3.2	
$\begin{gathered} \text { 【1-7】(About } 35 \mathrm{kmNorth}) \\ \text { Survey3rd } \end{gathered}$	3／25 14：57～15：08	15.0	<0.98	3.2	
【1－7】（About35kmNorth） Survey4th	3／25 15：58～16：09	22.0	1.1	3.2	
［1－7】（About35kmNorth） Survey5th	3／26 11：27～11：38	2.9	1.0	1.5	
【1－7】（About35kmNorth） Survey6th	3／26 13：00～13：11	2.2	1.3	1.5	
【1－8】（About45kmNorth） Survey1st	3／28 13：00～16：00	19.0	3.2	0．6～1．2	【5】

Sampling Point	Sampling Time and Date	Radiaactivity Concentratior：－：－			【61】
		${ }^{131}$ I	${ }^{137} \mathrm{Cs}$	（1）0，	
（2－1］（About40kmNorth／West） Surveylst	$3 / 29$ 12：50～13：45	4.2	0.73	7.0	
$\begin{aligned} & \text { (2-1)(About40kmNorth/West) } \\ & \text { Survey2nd } \end{aligned}$	3／29 13：49～14：46	3.4	0.79	7.0	
\qquad	3／29 14：47～15：50	2.9	<0.74	7.0	
$\begin{gathered} (2-1) \text { (About 40kmNorth/West) } \\ \text { Surveylst } \end{gathered}$	$3 / 3011: 15 \sim 11: 35$	4.8	<1.8	6.7	
$\begin{gathered} \text { (2-1](About 40kmNorth/West) } \\ \text { Survey2nd } \end{gathered}$	3／30 12：15～12：35	4.7	2.00	7.2	
$\begin{gathered} \text { (2-1) (About40kmNorth/West) } \\ \text { Survey3rd } \\ \hline \end{gathered}$	3／30 13：15～13：35	3.4	1.80	7.0	
[2-1](About40kmNorth/West) Survey 4 th	3／30 14：15～14：35	28.0	20.00	7.4	
$\begin{aligned} & {[2-1] \text { (About } 40 \mathrm{kmNorth} / \text { West) }} \\ & \text { Survey5th } \end{aligned}$	3／30 15：15～15：35	7.7	1.90	7.5	
［2－4］（About25kmNorth）	3／29 11：17～12：15	75.0	46.0	1.7	【80】
（2－4）（About25kmNorth） Survey2nd	3／29 12：15～13：15	29.0	34.0	0.4	
（2－4）（About25kmNorth） Survey3rd	3／29 13：15～14：15	32.0	23.0	0.6	
［2－4］（About25kmNorth） Survey 4th	3／29 14：15～15：00	29.0	25.0	0.5	
［2－4］（About25kmNorth） Surveylst	3／30 11：09～11：29	1.8	0.5	0.0	
［2－4］（About25kmNorth） Survey2nd	3／30 12：10～12：30	1.6	0.5	0.8	
［2－4］（About25kmNorth） Survey3rd	3／30 13：10～13：30	1.2	0.4	0.2	
【2－4］（About25kmNorth） Survey 4 th	3／30 14：10～14：30	1.5	0.5	0.3	
【2－4】（About25kmNorth） Survey5th	$3 / 3015: 10 \sim 15: 30$	1.1	<0.49	0.6	
$\begin{aligned} & \text { (2~4】(About25kmNorth) } \\ & \text { Survey } 1 \mathrm{st} \end{aligned}$	4／1 12：33～12：48	1.5	1.0	1.2	
［2～4］（About25kmNorth） Survey2nd	4／1 13：33～13：55	2.2	0.85	1.2	
（2－4）（About25kmNorth） Survey3rd	4／1 14：33～14：53	1.9	＜0．7	1.2	
（2－4】（About25kmNorth） Survey 4th	4／1 15：33～15：53	1.7	1.0	1.2	
（2－7）（About $35 \mathrm{KmNorth/West)}$	3／29 12：00～13：00	0.95	0.59	8.0	［46］
（2－7）（About $35 \mathrm{KmNorth} /$ West）	3／29 13：00～14：00	0.66	<0.70	8.0	
（2－7）（About $35 \mathrm{KmNorth/West)}$	3／29 14：00～15：00	0.75	<0.76	8.0	
（2－7）（About $35 \mathrm{KmNorth/West)}$	3／29 15：00～16：00	0.90	<0.58	8.0	
（2－7）（About $35 \mathrm{KmNorth/West)}$	3／29 16：00～17：00	0.69	<0.59	8.0	
（2－7］（About $35 \mathrm{KmNorth} /$ West） Survey 1 st	3／30 12：11～12：31	1.9	1.0	13.9	
（2－7］（About $35 \mathrm{KmNorth} /$ West） Survey2nd	3／30 13：11～13：33	1.3	1.0	15.2	
（2－7）（About $35 \mathrm{KmNorth} /$ West） Survey3rd	3／30 14：11～14：32	89.0	91.0	14.6	
［2－7］（About35KmNorth／West） Survey 4th	3／30 15：11～15：32	180.0	140.0	15.0	
［3－1］（About30kmNorth／West） Survey1st	3／24 11：20～11：41	43.0	2.0	30	
［3－1］（About30kmNorth／West） Survey2nd	3／24 12：20～12：40	3.3	<0.98	30	
（3－1）（About30kmNorth／West） Survey3rd	3／24 13：20～13：42	3.8	＜1．2	30	
［3－1］（About30kmNorth／West） Survey 4 th	3／24 14：20～14：42	3.8	1.5	30	
$\begin{gathered} \text { [3-1)(About30kmNorth/West) } \\ \text { Survey } 5 \text { th } \end{gathered}$	3／24 15：20～15：42	3.3	1.7	30	

Readings are already announced in "Readings at Monitoring Post out of 20 Km Zone of Fukushima Dai-ichi NPP" air dose rate: It has announced separately.

Readings of dust sampling（2／2）
\square ：the readings in this thick－frame box are new．

Sampling Point	Sampling Time and Date	Radioactivity Concentration（ $\mathrm{Bq} / \mathrm{m} 3$ ）		$\begin{gathered} \text { Reading (} \mu \\ \text { Sv/h) } \\ \hline \end{gathered}$
		${ }^{131}$ I	${ }^{137} \mathrm{Cs}$	
【1）（About 60 km North／West）	3／19 18：30～18：50	1.22	ND	7.2
	3／20 18：30～18：50	203.00	32.20	5.0
	3／21 18：30～18：50	2.50	ND	4.5
	3／22 18：30～18：50	3.06	ND	5.2
	3／23 19：38～19：58	3.69	1.20	4.0
	3／24 18：30～18：55	ND	ND	3.6
	$3 / 25$ 19：10～19：20	24.00	14.20	2.5
	3／26 18：30～18：40	1.75	ND	2.5
	3／27 18：30～18：50	0.87	ND	3.5
	3／28 18：33～18：43	1.13	ND	3.2
	3／29 18：30～18：50	1.56	ND	2.1
	3／30 18：40～19：00	0.91	ND	2.0
	3／31 18：30～18：45	2.34	0.56	2.6
	4／1 18：30～18：40	2.92	1.28	2.7
	4／2 18：37～18：50	2.36	0.52	1.9
	4／3 18：30～18：40	1.86	ND	2.0
	4／4 18：33～18：43	0.72	ND	1.5
	4／5 19：09～19：19	1.99	LTD	1.8
	4／6 18：48～18：58	0.70	ND	1.5
［2－1］（About40 kmNorth／West）	3／21 13：00～13：20	12.80	2.37	4.1
	3／22 12：26～12：46	5.87	ND	4.2
	3／23 12：50～13：10	2.99	ND	16.8
	3／24 13：30～13：50	5.80	1.51	10.0
	3／25 12：45～13：05	5.87	ND	12.3
	3／26 12：26～12：46	5.39	1.33	7.8
	3／27 12：06～12：26	2.22	ND	11.2
	3／28 12：05～12：25	1.66	ND	9.6
	3／29 12：07～12：27	2.42	6.79	9.2
	3／30 13：22～13：42	3.47	LTD	8.5
	3／31 11：50～12：10	1.74	LTD	8.0
	4／1 12：00～12：20	1.78	1.69	7.7
	4／2 11：46～12：06	0.84	ND	8.6
	4／3 11：18～11：38	ND	0.78	7.7
	4／4 11：07～11：27	LTD	1.36	7.2
	4／5 11：55～12：15	LTD	ND	6.4
	4／6 11：45～12：05	LTD	ND	6.9
【2－2】（About45 kmNorth／West）	3／22 11：10～11：30	10.50	ND	7.8
	3／23 11：31～11：51	1.47	ND	6.0
	3／24 11：20～11：40	1.47	ND	2.0
	3／25 11：25～11：45	2.15	ND	7.5
	3／26 11：10～11：30	1.19	ND	4.3
	3／27 10：50～11：10	2.97	ND	5.5
	3／28 11：00～11：20	1.66	0.87	5.5
	3／29 11：30～11：23	1.10	2.02	4.8
	$3 / 30$ 11：37～11：57	1.38	1.11	4.6
	3／31 10：40～11：00	1.36	ND	4.8
	4／1 10：40～11：00	ND	LTD	3.3
	4／2 10：31～10：51	ND	ND	3.2
	4／3 10：12～10：32	ND	ND	3.7
	4／4 10：05～10：25	LTD	ND	3.1
	4／5 10：45～11：05	4.07	ND	2.8
	4／6 10：37～10：57	ND	ND	3.9

Sampling Point	Sampling Time and Date	Radioativity Concentration（Ba／m3）		$\begin{gathered} \text { Reading }(\mu \\ S v / \mathrm{h}) \end{gathered}$
		${ }^{131}$ I	${ }^{137} \mathrm{Cs}$	
［2－3】（About40kmWest）	3／21 12：30～12：50	3.74	ND	0.9
	3／22 11：32～11：52	3.92	ND	2.2
	$3 / 23$ 11：50～12：10	1.75	ND	1.0
	3／24 12：12～12：32	0.97	ND	－
	3／25 13：33～13：53	37.00	1.45	0.8
	3／26 11：52～12：12	1.77	ND	0.8
	3／27 11：48～12：08	1.07	ND	0.8
	3／28 11：39～11：59	ND	ND	0.4
	3／29 13：44～13：54	2.29	0.63	0.7
	3／30 12：25～12：35	1.59	ND	0.5
	3／31 12：05～12：15	2.07	ND	0.5
	4／1 12：11～12：31	ND	ND	0.3
	4／2 11：24～11：44	LTD	ND	0.3
	4／3 11：18～11：38	ND	ND	0.3
	4／4 11：17～11：37	ND	ND	0.3
	4／5 11：45～11：55	LTD	LTD	0.4
	4／6 11：28～11：38	LTD	ND	0.4
［2－4］（About25kmNorth）	3／21 14：20～14：40	13.20	0.74	2.8
	3／22 13：35～13：55	3.81	ND	1.8
	3／23 14：10～14：30	2.62	ND	1.1
	3／24 14：55～15：15	193.00	2.94	1.2
	3／25 14：20～14：40	16.10	ND	0.7
	3／26 13：57～14：17	2.62	ND	1.3
	3／27 13：38～13：58	1.31	ND	1.4
	3／28 13：30～13：50	16.40	2.80	0.7
	3／29 13：30～13：50	63.40	38.60	1.0
	3／30 14：50～15：10	ND	LTD	0．0～1．3
	3／31 13：20～13：40	5.02	1.63	1.4
	4／1 13：40～14：00	2.66	LTD	1.2
	4／2 13：14～13：34	0.80	ND	1.2
	4／3 12：38～12：58	LTD	ND	1.0
	4／4 12：26～12：46	0.85	1.80	0.7
	4／5 13：07～13：27	6.99	1.43	0.6
	4／6 12：01～12：21	8.81	2.68	0.9
【2－5】（About40 kmSouth／West）	3／20 13：57～14：17	24.00	1.75	0.6
	3／21 13：37～13：57	2.69	ND	0.5
	3／22 12：32～12：52	6.29	ND	0.4
	3／23 12：50～13：10	1.86	ND	0.5
	3／24 13：21～13：41	1.19	ND	－
	3／25 13：35～13：55	12.40	ND	0.4
	3／26 11：55～12：15	ND	ND	0.6
	$3 / 27$ 11：05～11：25	1.04	ND	0.5
	3／28 11：25～11：45	0.82	ND	－
	3／29 11：25～11：45	0.89	ND	0.3
	3／30 11：00～11：20	ND	ND	0.3
	3／31 11：07～11：27	ND	ND	0.3
	4／1 10：49～11：09	0.74	ND	0.3
	4／2 10：42～11：02	LTD	ND	0.3
	4／3 10：21～10：41	ND	ND	0.3
	4／4 10：19～10：39	ND	ND	0.3
	4／5 10：51～ $11: 11$	ND	ND	0.3
	4／6 10：35～10：55	ND	ND	0.3

Sampling Point	Sampling Time and Date	Racioactivity Concentration($\mathrm{Bq}_{4} / \mathrm{m} 3$)		$\begin{gathered} \text { Reading (} \mu \\ \text { Sv } / \mathrm{h}) \end{gathered}$
		${ }^{131} \mathrm{I}$	${ }^{137} \mathrm{Cs}$	
[2-6] (About 45 kmSouth)	3/20 15:25~15:45	6.89	ND	0.6
	3/21 15:00~15:20	28.90	ND	1.5
	3/22 14:00~14:20	17.00	ND	0.6
	3/23 14:15~14:35	6.93	ND	1.0
	3/24 15:12~15:32	8.25	ND	1.4
	3/25 13:47~14:07	40.60	ND	1.1
	3/27 12:30~12:50	1.55	ND	0.8
	3/28 13:10~13:30	3.56	ND	0.3
	3/29 12:55~13:15	2.68	ND	0.7
	3/30 12:32~12:52	4.59	1.56	0.3
	3/31 12:42~13:02	1.65	ND	0.7
	4/1 12:16~12:36	1.00	ND	0.8
	4/2 12:02~12:22	47.3	5.93	1.4
	4/3 11:42~12:02	LTD	ND	0.4
	4/4 11:43~12:03	0.9	ND	0.7
	4/5 12:12~12:32	0.9	ND	0.6
	4/6 11:55~12:15	LTD	ND	0.6
[2-7](About35 kmNorth/West)	3/25 15:05~15:22	555.00	12.40	12.0
	3/26 14:06~14:26	1.54	ND	8.8
	$3 / 27 \quad 13: 51 \sim 14: 11$	1.02	ND	8.7
	3/28 13:39~13:59	2.14	ND	8.4
	3/29 15:02~15:12	3.51	1.46	8.0
	3/30 14:05~14:15	1.33	0.89	13.9~15.4
	3/31 13:35~13:45	2.49	1.38	6.9
	4/1 14:13~14:33	LTD	ND	6.5
	4/2 13:22~13:42	LTD	ND	6.5
	4/3 13:12~ $13: 32$	ND	ND	6.1
	4/4 13:15~13:35	ND	ND	5.8
	4/5 13:43~13:53	ND	ND	5.6
	4/6 13:01~13:11	1.26	1.34	5.4
【2-8】(About50km North/West)	3/24 12:05~12:25	2.71	ND	-
	3/25 16:13~16:33	34.00	ND	-
	3/26 15:15~15:35	ND	ND	-
	3/27 14:52~ 15:12	ND	ND	-
	3/28 14:38~14:58	ND	ND	-
	3/29 15:59~16:09	1.60	ND	1.6
	3/30 16:05~16:15	2.09	0.77	-
	3/31. 14:25~14:35	1.04	LTD	-
	4/1 15:09~15:29	ND	ND	-
	4/2 14:18~14:38	ND	ND	-
	4/3 14:07~14:27	ND	ND	-
	4/4 14:10~14:30	ND	ND	-
	4/5 14:24~14:34	ND	ND	-
	4/6 13:43~13:53	LTD	0.74	-
[2-9](About45km West/North/West)	3/25 11:32~11:52	8.67	ND	-
	3/26 10:10~10:30	7.98	ND	-
	3/27 10:28~10:48	ND	ND	-
	3/28 10:12~10:32	0.78	ND	-
	3/29 11:56~12:06	2.53	0.59	-
	$3 / 30$ 11:00~11:10	1.54	ND	-
	3/31 10:40~10:50	1.34	0.92	-
	4/1 10:52~11:12	ND	ND	-
	4/2 9:59~10:19	ND	ND	-
	4/3 10:00~10:20	ND	ND	-
	4/4 9:56~10:16	ND	ND	-
	4/5 10:39~10:49	0.82	LTD	-
	4/6 10:18~10:28	1.00	0.69	-
[2-10](About50kmNorth)) $3 / 2516: 25 \sim 16: 45$	- 33.60	0.84	-

LTD: Less than detectable ND: Not Detected
The government requests Fukushima Prefecture to gain the readings above

Readings of soil monitoring
\square
：the readings in this thick－frame box are new．

Sampling Point	Sampling Time and Date	Radioactivity Concentration（B9／m3）		Reading$(\mu \mathrm{Sv} / \mathrm{h})$	Monitoring Point by monitoring car
		${ }^{131}$ I	${ }^{137} \mathrm{Cs}$		
［1－1）（About45kmNorth／West）	2011／3／31 11：19	29，000	9，400	4.8	［3］
（1－1）（About45kmNorth／West）	2011／4／1 10：18	11.000	2.900	3.3	（3）
［1－1］（About45kmNorth／West）	2011／4／2 10：59	25，000	9，000	2.8	（3）
【1－2】（About $40 \mathrm{kmNorth/West)}$	2011／4／3 9：52	41，000	21，000	5.4	［36】
（13）（About 40 kmWest ）	2011／4／1 11：58	3，300	1，200	0.5	（13）
［2］（About $55 \mathrm{kmNorth/West)}$	2011／3／31 10：20	48，000	15，000	4.1	（2）
（2）（About $55 \mathrm{kmNorth} /$ West）	2011／3／31 14：35	16，000	6，300	2.1	2）
［2］（About55kmNorth／West）	2011／4／1 9：22	31，000	8，800	3.8	2）
［2］（About55kmNorth／West）	2011／4／19：42	13，000	5，700	3.8	2）
（2）（About55kmNorth／West）	2011／4／2 9：33	53,000	20，000	3.5	（2）
（2－4］（About25kmNorth）	2011／4／3 11：57	7，300	3，600	1.0	［80］
［2－4】（About25kmNorth）	2011／4／4 12：09	4，400	2，500	1.0	［80］
【3－1】（About30kmNorth／West）	2011／3／23 11：10	200，000	45，000	103.0	［33］
【3－1】（About30kmNorth／West）	2011／3／25 14：45	251，000	60，100	27.0	［33］
［3－1】（About30kmNorth／West）	2011／3／25 14：45	341，000＊1	68，500＊1	27.0	［33］
［3－1】（About30kmNorth／West）	2011／3／26 10：55	15，000	3，000	26.0	［33］
【3－1】（About30kmNorth／West）	2011／3／27 12：15	93，000	29，000	20.0	［33】
【3－1】（About30kmNorth／West）	2011／3／28 11：18	110，000	36，000	43.0	【33】
【3－1】（About30kmNorth／West）	2011／3／29 11：18	220，000	65，000	18.9	［33］
［3－1］（About30kmNorth／West）	2011／3／30 11：30	190，000	70，000	17.3	［33］
［3－1］（About30kmNorth／West）	2011／3／31 11：23	160，000	67，000	18.2	［33】
［3－1】（About30kmNorth／West）	2011／4／1 11：36	130，000	40，000	18.2	［33］
［3－1】（About30kmNorth／West）	2011／4／2 12：10	61，000	6，200	21.0	［33］
［3－1】（About30kmNorth／West）	2011／4／3 11：11	69，000	18，000	21.3	［33］
［3－1］（About30kmNorth／West）	2011／4／4 11：12	125，510	76，429	18.6	【33】
［3－1】（About $30 \mathrm{kmNorth/West} \mathrm{)}$	2011／4／5 11：15	88，243	55，001	16.3	［33）
［3－1）（About30kmNorth／West）	2011／4／6 12：19	90，816	66，192	13.2	［33）
［3－2】（About30kmNorth／West）	2011／3／23 13：17	92，000	15，000	15.0	［34】
［3－3］（About 35 kmWest ）	2011／3／23 12：50	11.000	3，300	2.3	［15】
［3－3］（About35kmWest）	2011／3／24 12：58	4，900	220	2.5	［15］
【3－4】（About $40 \mathrm{kmNorth/West)}$	2011／3／23 11：08	33，000	8，600	2.8	［11］
【3－5】（About50kmNorth／West）	2011／3／23 10：30	4，200	770	2.8	［4］
【3－6】（About30kmWest／North／West）	2011／3／23 14：00	70，000	12,000	9.4	［21】
［3－6】（About30kmWest／North／West）	2011／3／26 15：33	13，000	2，900	6.5	【21】
【3－6】（About $30 \mathrm{kmWest/North/West)}$	2011／3／28 11：03	14，000	4，600	5.3	【21】
【3－6】（About30kmWest／North／West）	2011／3／29 11：34	25，000	7.100	－	【21】
【3－7】（About25kmSouth）	2011／3／23 13：00	69，000	2，600	14.0	【71】
【3－8】（About25kmSouth）	2011／3／23 16：22	140，000	2，900	14.0	【71）
【3－9】（About45kmNorth）	2011／3／25 11：24	6，900	1，600	2.7	【5］
［3－9］（About45kmNorth）	2011／3／26 10：48	6，900	1，600	1.0	［5］
【3－9】（About45kmNorth）	2011／3／26 12：30	110，000	2，800	1.0	【5】
［3－9］（About $45 \mathrm{kmNorth)}$	2011／3／28 13：00	12,000	4，100	$0.6 \sim 1.2$	［5］
【3－10】（About35kmNorth）	2011／3／25 12：18	11.000	3，300	3.7	［6］
［3－10】（About $35 \mathrm{kmNorth)}$	2011／3／26 11：12	14，000	3，800	1.5	［6］
［3－10］（About35kmNorth）	2011／3／28 10：32	11，000	3，600	1.2	［6］
［3－10］（About35kmNorth）	2011／3／29 15：20	8，400	3，200	1.3	【6】
［3－10］（About $35 \mathrm{kmNorth} \mathrm{)}$	2011／3／30 15：54	6，100	2，000	1.4	【6】
［3－10］（About35kmNorth）	2011／3／31 12：18	9，600	4，700	1.3	［6］
［3－10】（About35kmNorth）	2011／4／1 11：35	5，400	2，800	1.0	［6］
［3－10）（About $35 \mathrm{kmNorth)}$	2011／4／2 12：49	7，800	4，400	1.0	［6］
［3－10】（About $35 \mathrm{kmNorth)}$	2011／4／3 11：15	4，900	1，700	1.1	［6］
［3－10］（About $35 \mathrm{kmNorth)}$	2011／4／4 11：18	5.500	4，300	1.2	［6］
［3－10］（About35kmNorth）	2011／4／5 11：21	4，600	3.900	1.3	［6］
［3－10］（About35kmNorth）	2011／4／6 11：56	5，100	3.900	1.0	［6］
［3－10］（About35kmNorth）	2011／4／7 11：18	4，200	3，600	0.6	［6］
［3－11］（About35kmNorth）	2011／3／25 12：33	8.000	1，300	3.2	［7］
［3－11］（About35kmNorth）	2011／3／26 11：33	13，000	4，300	1.5	［7］
［3－11】（About35kmNorth）	2011／3／28 10：38	8，200	2，000	3.3	［7］

Sampling Point	Sampling Time and Date	Radioactivity Concentration（Bq／m3）		Reading （ $\mu \mathrm{Sv} / \mathrm{h}$ ）	Monitoring Point by monitoring car
		${ }^{131} 1$	${ }^{137} \mathrm{Cs}$		
［3－12］（About30kmWest／North／West）	2011／3／25 14：13	29，000	627	30.5	［31】
［3－12］（About30kmWest／North／West）	2011／3／26 10：15	22，000	1，600	17.8	［31］
［3－12］（About30kmWest／North／West）	2011／3／27 11：30	120，000	27，000	25.0	［31］
［3－12］（About30kmWest／North／West）	2011／3／28 10：29	120，000	28，000	23.0	【31】
【3－12】（About30kmWest／North／West）	2011／3／29 9：59	710，000	220，000	18.3	［31］
［3－12］（About30kmWest／North／West）	2011／3／30 10：50	710，000	290，000	16.3	【31】
【3－12】（About30kmWest／North／West）	2011／3／31 10：45	50，000	15，000	－	［31］
［3－12】（About30kmWest／North／West）	2011／4／1 10：39	79，000	29，000	15.4	［31］
【3－12】（About30kmWest／North／West）	2011／4／2 11：42	21，000	5，400	14.0	［31］
［3－12）（About30kmWest／North／West）	2011／4／3 10：36	60，000	27，000	12.5	［31］
［3－12】（About30kmWest／North／West）	2011／4／4 10：27	143，900	6，907	9.8	［31］
［3－12）（About30kmWest／North／West）	2011／4／5 10：42	103，970	68，209	10.6	［31】
［3－12）（About30kmWest／North／West）	2011／4／6 11：45	84.819	51，942	10.9	（31］
［3－13］（About30kmNorth／West）	2011／3／25 14：30	88，700	9，260	65.0	［32］
［3－13】（About30kmNorth／West）	2011／3／26 10：40	290，000	33，000	46.0	［32】
［3－13】（About30kmNorth／West）	2011／3／27 11：55	550，000	80，000	45.0	［32】
［3－13】（About30kmNorth／West）	2011／3／28 10：51	210，000	9，200	50.0	［32】
［3－13］（About30kmNorth／West）	2011／3／29 10：57	660，000	94，000	43.0	【32】
［3－13］（About30kmNorth／West）	2011／3／30 11：08	260，000	52，000	41.6	［32】
［3－13］（About30kmNorth／West）	2011／3／31 11：04	91，000	40，000	38.0	［32】
［3－13］（About30kmNorth／West）	2011／4／1 11：01	250，000	130，000	36.2	【32】
［3－13］（About30kmNorth／West）	2011／4／2 11：55	120，000	35，000	34.0	［32］
［3－13】（About30kmNorth／West）	2011／4／3 10：56	280，000	110，000	32.7	［32］
［3－13］（About30kmNorth／West）	2011／4／4 10：50	157.730	98，551	32.7	［32】
［3－13］（About30kmNorth／West）	2011／4／5 10：59	201，800	103，390	26.0	［32］
（3－13）（About30kmNorth／West）	2011／4／6 11：59	125，200	58，761	25.8	［32］
［3－14］（About40kmNorth／West）	2011／3／25 15：35	73，000	18，000	7.0	【36】
［3－14］（About 40 km North／West）	2011／3／26 19：30	49，000	9，300	7.8	【36】
［3－14】（About40kmNorth／West）	2011／3／28 9：15	65，000	21，000	8.0	【36】
［3－14］（About $40 \mathrm{kmNorth/West)}$	2011／3／29 9：41	63，000	21，000	6.0	【36】
［3－14］（About $40 \mathrm{kmNorth/West)}$	2011／3／30 10：18	71，000	24，000	5.6	［36］
【3－14】（About40kmNorth／West）	2011／3／31 10：21	59，000	28，000	5.3	［36］
［3－14］（About40kmNorth／West）	2011／4／1 10：11	54，000	23，000	5.7	［36］
［3－14】（About $40 \mathrm{kmNorth/West)}$	2011／4／2 11：20	54，000	26，000	5.1	［36］
【3－14】（About40kmNorth／West）	2011／4／4 9：52	6，600	3，300	5.2	［36］
［3－14】（About40kmNorth／West）	2011／4／5 9：26	31，000	20，000	4.6	［36］
［3－14］（About40kmNorth／West）	2011／4／6 11：05	41,000	25，000	4.1	［36］
［3－14］（About $40 \mathrm{kmNorth/West)}$	2011／4／7 10：02	39，000	29，000	4.1	［36］
［3－15］（About25kmSouth）	2011／3／25 14：15	560	410	5.5	［71］
［3－15］（About25kmSouth）	2011／3／26 12：55	31，000	1，800	3.9	【71】
［3－15］（About25kmSouth）	2011／3／28 9：54	42，000	1，500	3.0	【71】
［3－16］（About $45 \mathrm{kmNorth/West)}$	2011／3／28 16：18	7,800	3，500	1.7	－
［37］（About50kmNorth／West）	2011／4／1 9：59	15.000	16，000	4.6	【37】
【37】（About50kmNorth／West）	2011／4／2 10：40	20,000	20，000	4.3	［37］
【72】（About30kmSouth）	2011／3／31 12：00	18，000	1，500	1.5	（72）
【72】（About30kmSouth）	2011／4／1 12：46	24，000	2，400	1.6	【72】
【72】（About30kmSouth）	2011／4／3 13：33	22，000	2.200	1.2	【72】
【72】（About30kmSouth）	2011／4／4 12：51	19，000	1.700	1.5	【72】
【73）（About 35 kmSouth ）	2011／3／31 12：39	13，000	1，100	1.3	【73】
【73】（About 35 km South）	2011／4／1 12：02	14，000	1，100	1.4	【73】
【73】（About35kmSouth）	2011／4／3 12：57	9，900	1.400	1.2	【73】
【73】（About35kmSouth）	2011／4／4 12：30	8.200	800	1.1	［73］
【74】（About35kmSouth）	2011／3／31 13：18	4，300	330	0.5	【74】
［74］（About35kmSouth）	2011／4／1 11：13	5，900	710	0.3	【74】
［74］（About35kmSouth）	2011／4／3 11：51	3，700	410	0.4	［74］
［74］（About $35 \mathrm{kmSouth)}$	2011／4／4 11：26	4.300	440	0.6	【74】
［75］（About45kmSouth）	2011／3／31 14：03	14，000	650	0.7	【75】
［75］（About45kmSouth）	2011／4／1 10：34	20,000	1，300	0.8	【75】
【75】（About45kmSouth）	2011／4／3 11：19	14，000	1，200	0.4	【75】
【75］（About45kmSouth）	2011／4／4 10：50	14，000	1，300	0.7	【75】
【76】（About20kmSouth／West）	2011／4／4 12：04	5，500	1，800	0.8	【76】
【83】（About20kmNorth／West）	2011／3／30 15：40	340，000	170，000	59.3	【83】

＊1 For referance，the sample is collected from about 5 mm of soil．（Samples are usually collected from about 5 cm of soil．）
Readings are already announced in＂Readings at Monitoring Post out of 20 Km Zone of Fukushima Dai－ichi NPP＂
\square
the readings in this thick－frame box are new．

Sampling Point	Addrass of 5 ampling P oin	Sample	Sort or Region	Sampling Time and Date	Rediostivir Concentration（Eq／ky）		Reading （ $\mu \mathrm{Sv} / \mathrm{h}$ ）	Note
					${ }^{131}$ I	${ }^{137} \mathrm{Cs}$		
$\lfloor 2-1](\text { About } 40$ kmNorth/West)	Iitate Village	Weed	Leaf Vegitable	2011／3／18 12：20	2，520，000	1，800，000	Over 30	
$\begin{aligned} & (2-1) \text { (About40 } \\ & \text { kmNorth/West) } \end{aligned}$	Itate Village	Weed	Leaf Vegitable	2011／3／19 11：40	845，000	1，010，000	26.5	
$\begin{aligned} & {[2-1] \text { (About } 40} \\ & \text { kmNorth/West) } \end{aligned}$	Itate Village	Weed	Leaf Vegitable	2011／3／20 12：40	2，540，000	2，650，000	25.8	
$\begin{aligned} & \text { [2-1](About4O } \\ & \text { kmNorth/West) } \end{aligned}$	Iitate Village	Weed	Leaf Vegitable	2011／3／21 12：32	1，330，000	1，240．000	20.4	
$\begin{aligned} & (2-1) \text { (About } 40 \\ & \text { kmNorth/West) } \end{aligned}$	Iltate Village	Weed	Leaf Vegitable	2011／3／22 12：00	1，110，000	1，600，000	15.3	
$\begin{aligned} & {[2-1)(\text { About } 40} \\ & \mathrm{km} \text { North/West) } \end{aligned}$	Iitate Village	Weed	Leaf Vegitable	2011／3／23 11：30	819，000	1，620，000	16.8	
$\begin{aligned} & \text { (2-1)(About40 } \\ & \mathrm{kmNorth} / \text { West) } \end{aligned}$	litate Village	Weed	Leaf Vegitable	2011／3／24 13：05	805，000	1，050，000	13.2	
［2－1］（About40 $\mathrm{kmNorth} /$ West）	litate Village	Weed	Leaf Vegitable	2011／3／25 12：20	400，000	398，000	12.3	
$\begin{aligned} & (2-1)(\text { About } 40 \\ & \mathrm{kmNorth} / \text { West) } \end{aligned}$	Iitate Village	Weed	Leaf Vegitable	2011／3／26 12：00	1，030，000	2，870，000	10.2	
$\begin{aligned} & \text { [2-1](About40 } \\ & \mathrm{kmNorth} / \text { West) } \end{aligned}$	litate Village	Weed	Leaf Vegitable	2011／3／27 11：40	508.000	910，000	11.2	
$\begin{aligned} & {[2-1) \text { (About } 40} \\ & \mathrm{kmNorth} / \text { West) } \end{aligned}$	Itate Village	Weed	Leaf Vegitable	2011／3／28 11：50	381，000	480，000	9.6	
$\begin{aligned} & {[2-1) \text { (About } 40} \\ & \text { kmNorth/West) } \end{aligned}$	Iltate Village	Weed	Leaf Vegitable	2011／3／29 11：10	330，000	311.000	9.2	
$\begin{aligned} & \hline(2-1) \text { (About40 } \\ & \text { kmNorth/West) } \end{aligned}$	Iitate Village	Weed	Leaf Vegitable	2011／3／30 12：25	576，000	1，890，000	8.5	
$\begin{aligned} & {[2-1)(\text { About } 40} \\ & \text { kmNorth/West) } \end{aligned}$	litate Village	Weed	Leaf Vegitable	2011／3／31 11：30	303，000	1，620，000	8.0	
$\begin{aligned} & {[2-1](\text { About } 40} \\ & \mathrm{kmNorth/West)} \end{aligned}$	Itate Village	Weed	Leaf Vegitable	2011／4／1 11：30	219，000	725.000	7.7	
$\begin{aligned} & {[2-1) \text { (About } 40} \\ & \mathrm{kmNorth} / \text { West }) \end{aligned}$	Iitate Village	Weed	Leaf Vegitable	2011／4／2 11：24	171，000	863，000	8.6	
$\begin{aligned} & \text { [2-1)(About40 } \\ & \mathrm{kmNorth} / \text { West) } \end{aligned}$	litate Village	Weed	Leaf Vegitable	2011／4／3 10：55	301，000	1，420，000	7.7	
【2－1】（About40 km North／West）	litate Village	Weed	Leaf Vegitable	2011／4／4 10：05	192，000	275，000	7.2	
【2－1】（About40 $\mathrm{kmNorth} /$ West）	fitate Village	Weed	Leaf Vegitable	2011／4／5 11：31	297，000	1，440，000	6.4	
（2－1）（About40 km North／West）	Iltate Village	Weed	Leaf Vegitable	2011／4／6 11：23	161，000	1，070，000	6.9	
（2－2）（About45 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／18 11：45	173，000	72，800	－	
［2－2］（About45 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／19 11：00	184.000	65，100	－	
【2－2】（About45 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／20 12：05	308，000	138，000	4.2	
【2－2】（About45 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／21 12：03	315，000	120，000	3.5	
【2－2】（About45 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／22 11：00	180，000	89，000	7.8	
【2－2】（About45 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／23 11：30	170，000	73，700	5.5	
【2－2】（About45 kmNorth／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／23 11：30	74，400	23，100	5.5	No Washed ＊ 1
（2－2）（About45 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／23 11：30	46，200	16，000	5.5	Washed＊${ }^{1}$
［2－2】（About45 kmNorth／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／24 11：20	141，000	43，200	5.0	
【2－2】（About45 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／25 11：30	155，000	53，000	7.5	
［2－2］（About45 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／26 11：20	79，500	54，700	4.3	
【2－2】（About45 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／27 10：45	50，000	32，900	5.5	
【2－2】（About45 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitabie	2011／3／28 11：05	46，000	33，600	5.5	
【2－2】（About45 kmNorth／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／29 11：00	71，900	67，900	4.8	
（2－2）（ABout45 kmNorth／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／30 11：35	33.500	27，500	4.6	
（2－2）（About45 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／31 10：35	33，000	34，100	4.8	
（2－2）（About45 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／1 10：35	52.600	45，300	3.3	
［2－2］（About45 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／2 10：34	34，100	36.200	3.2	

Sampling Point	Addross ofSampling Point	Sample	Sort or Region	Sampling Time and Date	Rediosectivit Concentration（84 $4 / \mathrm{kl}$		Reading （ $\mu \mathrm{Sv} / \mathrm{h}$ ）	Note
					${ }^{131}$ I	${ }^{137} \mathrm{Cs}$		
［2－2】（About45 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／3 10：10	16，500	16，700	3.7	
（2－2）（About45 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／4 10：05	46.500	61，000	3.1	
（2－2】（About45 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／5 10：39	31，200	60，900	2.8	
（2－2）（About45 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／6 10：38	31，200	61，200	3.9	
$\begin{gathered} (2-3) \text { (About40 } \\ \mathrm{kmWest} \text {) } \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／18 11：35	36，000	40，100	1.6	
$\begin{gathered} {[2-3] \text { (About40 }} \\ \text { kmWest) } \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／19 11：35	68，000	38，500	0.8	
$\begin{gathered} \text { (2-3)(About40 } \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／20 12：40	75，700	50，000	0.7	
$\begin{gathered} {[2-3 \backslash \text { (About40 }} \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／21 12：30	30，800	25，000	0.7	
$\begin{gathered} {[2-3] \text { (About } 40} \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／22 11：30	43，200	25，000	1.4	
$\begin{gathered} {[2-3](\text { About } 40} \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／23 11：50	24，100	17，000	1.0	
$\begin{gathered} (2-3)(\text { About } 40 \\ \text { kmWest) } \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／24 11：35	29，400	32，600	0.5	
$\begin{gathered} {[2-3)(\text { About } 40} \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／25 13：28	23，400	13，700	0.8	
$\begin{gathered} \text { [2-3](About40 } \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitabie	2011／3／26 11：35	33，100	10.700	0.6	
$\begin{gathered} {[2-3] \text { (About } 40} \\ \text { kmWest) } \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／27 11：45	33，300	19，800	0.4	
$\begin{gathered} (2-3) \text { (About } 40 \\ \mathrm{~km} \text { West) } \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／28 11：36	37，000	22，400	0.7	
$\underset{\text { kmWest) }}{\substack{[2-3 \backslash(A b o u t 40}}$	Tamura City	Weed	Leaf Vegitable	2011／3／29 13：35	24，800	34，500	0.7	
$\begin{gathered} {[2-3] \text { (About40 }} \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／30 12：30	18，600	18.800	0.5	
$\begin{gathered} {[2-3] \text { (About } 40} \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／3／31 12：10	15.500	11，500	0.5	
$\begin{gathered} {[2-3](\text { About } 40} \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／4／1 12：21	15，800	17，200	0.3	
$\begin{gathered} \text { [2-3](About40 } \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／4／2 11：29	15，500	14，500	0.3	
$\begin{gathered} \text { [2-3](About40 } \\ \text { kmWest) } \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／4／3 11：28	9.640	6.140	0.3	
$\begin{gathered} {[2-3](\text { About } 40} \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／4／4 11：25	8，760	6，810	0.3	
$\begin{gathered} \text { [2-3】(About40 } \\ \mathrm{kmWest}) \end{gathered}$	Tamura City	Weed	Leaf Vegitable	2011／4／5 11：42	7.450	7，480	0.4	
$\underset{\substack{(2-3) \text { (About40 } \\ \mathrm{kmWest})}}{ }$	Tamura City	Weed	Leaf Vegitable	2011／4／6 11：24	6，380	8.020	0.4	
$\begin{gathered} \text { [2-4](About25 } \\ \text { kmNorth) } \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／3／18 13：30	88，600	17，800	－	
$\begin{gathered} \hline \text { [2-4](About25 } \\ \mathrm{km} \text { North) } \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／3／19 13：00	455.000	24，900	－	
$\begin{gathered} {[2-4] \text { (About25 }} \\ \mathrm{km} \text { North) } \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／3／20 14：30	497，000	24，700	3.4	
$\begin{gathered} {[2-4] \text { (About25 }} \\ \mathrm{km} \text { North) } \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／3／21 14：07	289，000	13，400	2.8	
$\begin{gathered} {[2-4] \text { (About25 }} \\ \text { kmNorth) } \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／3／22 13：35	140，000	17，200	1.8	
【2－4】（About25 kmNorth）	Minamisouma City	Weed	Leaf Vegitable	2011／3／23 14：10	185，000	17.200	1.1	
（2－4】（About25 kmNorth）	Minamisouma City	Weed	Leaf Vegitable	2011／3／24 14：40	184，000	27，900	1.2	
【2－4】（About25 kmNorth）	Minamisouma City	Weed	Leaf Vegitable	2011／3／25 14：20	217，000	18，800	0.7	
［2－4］（About25 $\mathrm{kmNorth})$	Minamisouma City	Weed	Leaf Vegitable	2011／3／26 13：50	83，700	10，500	1.3	
$\begin{gathered} \text { 【2-4】(About25 } \\ \mathrm{km} \text { North) } \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／3／27 13：25	161，000	39，900	1.4	
$\begin{gathered} (2-4)(\text { About } 25 \\ \mathrm{kmNorth}) \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／3／28 13：27	113.000	23，900	0.7	
$\begin{gathered} \text { 【2-4】(About25 } \\ \mathrm{kmNorth}) \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／3／29 13：30	109.000	17，000	1.0	
［2－4】（About25 kmNorth）	Minamisouma City	Weed	Leaf Vegitable	2011／3／30 14：45	113.000	13，100	0．0～1．3	
$\begin{gathered} \text { [2-4】(About25 } \\ \mathrm{kmNorth}) \end{gathered}$	Minamisouma City	Weed	Leaf Vegitabie	2011／3／31 13：15	65，100	20，600	1.4	
$\begin{gathered} {[2-4 】(\text { About25 }} \\ \mathrm{km} \text { North }) \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／4／1 13：40	44，900	12，400	1.2	
$\begin{gathered} {[2-4](\text { About } 25} \\ \mathrm{kmNorth}) \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／4／2 13：13	89，200	28，400	0.5	
【2－4】（About25 km North）	Minamisouma City	Weed	Leaf Vegitable	2011／4／3 12：35	170，000	84，200	1.0	
[2-4](About25 km North）	Minamisouma City	Weed	Leaf Vegitable	2011／4／4 12：20	55，500	21，500	0.7	
$\begin{gathered} \text { [2-4](About25 } \\ \mathrm{km} \text { North) } \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／4／5 13：05	68，900	55，200	0.6	
$\begin{gathered} {[2-4] \text { (About25 }} \\ \mathrm{kmNorth}) \end{gathered}$	Minamisouma City	Weed	Leaf Vegitable	2011／4／6 13：03	45，700	22，900	0.9	

Sampling Point	Address ofSampling Pbint	Sample	Sort or Region	Sampling Time and Date	Radioactivity Consentration（Bu／ke）		Reading （ $\mu \mathrm{Sv} / \mathrm{h}$ ）	Note
					${ }^{131}$ I	${ }^{137} \mathrm{Cs}$		
$\begin{aligned} & \text { [2-5](About 40 } \\ & \mathrm{kmSouth} / \text { West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／18 12：35	181，000	28.300	0.9	
［2－5］（About40 kmSouth／West）	Ono Town	Weed	Leaf Vegitable	2011／3／19 12：15	201，000	73，800	0.7	
【2－5］（About40 kmSouth／West）	Ono Town	Weed	Leaf Vegitable	2011／3／20 13：50	36，900	11，700	0.6	
$\begin{aligned} & {[2-5] \text { (About 40 }} \\ & \mathrm{kmSouth} / \text { West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／21 13：40	20，300	11，200	0.4	
$\begin{aligned} & {[2-5](\text { About } 40} \\ & \mathrm{kmSouth} / \text { West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／22 12：40	32，000	8，120	0.5	
$\begin{aligned} & (2-5) \text { (About } 40 \\ & \text { kmSouth/West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／23 12：50	22，300	10，300	0.5	
$\begin{aligned} & {[2-5) \text { (About } 40} \\ & \mathrm{~km} \text { South/West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／24 13：18	29，700	4.900	0.4	
$\begin{aligned} & {[2-5] \text { (About40 }} \\ & \mathrm{kmSouth} / \text { West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／25 11：30	21，800	8，040	0.4	
$\begin{aligned} & (2-5)(\text { About } 40 \\ & \mathrm{kmSouth} / \text { West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／26 11：50	25，800	5.150	0.6	
$\begin{aligned} & {[2-5](\text { About } 40} \\ & \mathrm{kmSouth} / \text { West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／27 11：10	18，600	4，970	0.5	
$\begin{aligned} & {[2-5)(\text { About } 40} \\ & \mathrm{kmSouth} / \text { West }) \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／28 11：25	16.700	4.550	－	
$\begin{aligned} & {[2-5] \text { (About40 }} \\ & \mathrm{kmSouth} / \text { West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／29 11：30	16，700	3.770	0.3	
（2－5）（About40 $\mathrm{kmSouth} /$ West）	Ono Town	Weed	Leaf Vegitable	2011／3／30 11：08	10，300	6，280	0.3	
$\begin{aligned} & {[2-5) \text { (About } 40} \\ & \mathrm{kmSouth} / \text { West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／3／31 11：11	9，960	6.600	0.3	
〔2－5】（About40 $\mathrm{kmSouth} /$ West）	Ono Town	Weed	Leaf Vegitable	2011／4／1 10：52	9.390	5，470	0.3	
（2－5）（About40 $\mathrm{kmSouth} /$ West）	Ono Town	Weed	Leaf Vegitable	2011／4／2 10：46	6，590	3，830	0.3	
$\begin{aligned} & {[2-5] \text { (About40 }} \\ & \text { kmSouth/West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／4／3 10：20	5，400	3，160	0.3	
$\begin{aligned} & {[2-5](\text { About } 40} \\ & \mathrm{kmSouth} / \text { West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／4／4 10：17	4，080	4，090	0.3	
$\begin{aligned} & {[2-5] \text { (About40 }} \\ & \text { kmSouth/West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／4／5 10：52	5，170	3.570	0.3	
$\begin{aligned} & {[2-5) \text { (About40 }} \\ & \mathrm{kmSouth} / \text { West) } \end{aligned}$	Ono Town	Weed	Leaf Vegitable	2011／4／6 10：38	4，230	2.780	0.3	
$\begin{gathered} {[2-6] \text { (About45 }} \\ \text { kmSouth) } \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／3／18 13：15	690，000	17.400	－	
［2－6】（About45 km South）	Iwaki City	Weed	Leaf Vegitable	2011／3／18 13：40	468，000	10，100	－	
$\begin{gathered} {[2-6](\text { About } 45} \\ \mathrm{kmSouth}) \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／3／20 15：25	548，000	17，500	0.6	
$\begin{gathered} \text { [2-6\\ (About45 } \\ \mathrm{kmSouth}) \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／3／21 15：10	115.000	2，380	1.5	
$\begin{gathered} \text { (2-6】(About45 } \\ \mathrm{kmSouth}) \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／3／22 13：50	448，000	18，600	0.6	
$\begin{gathered} \begin{array}{c} (2-6)(\text { About } 45 \\ \mathrm{kmSouth}) \end{array} \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／3／23 14：20	451，000	30，300	1.0	
$\begin{aligned} & {[2-6] \text { (About45 }} \\ & \text { kmSouth) } \end{aligned}$	Iwaki City	Weed	Leaf Vegitable	2011／3／24 15：00	454，000	6，210	1.4	
【2－6】（About45 kmSouth）	Iwaki City	Weed	Leaf Vegitable	2011／3／25 13：45	170，000	6，860	1.1	
$\begin{gathered} {[2-6] \text { (About45 }} \\ \mathrm{kmSouth}) \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／3／26 13：50	291，000	12，800	1.0	
【2－6】（About45 kmSouth）	Iwaki City	Weed	Leaf Vegitable	2011／3／27 12：30	126，000	7，470	0.8	
（2－6）（About45 kmSouth）	Iwaki City	Weed	Leaf Vegitable	2011／3／28 12：50	71，800	4，370	0.3	
$\begin{gathered} (2-6) \text { (About45 } \\ \mathrm{kmSouth}) \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／3／29 13：05	132，000	9，310	0.7	
$\begin{gathered} \begin{array}{c} \text { (2-6】(About45 } \\ \mathrm{kmSouth}) \end{array} \\ \hline \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／3／30 12：30	121，000	10，100	0.3	
［2－6】（About45 $\mathrm{kmSouth})$	Iwaki City	Weed	Leaf Vegitable	2011／3／31 12：51	81.600	4，990	0.7	
$\begin{gathered} {[2-6] \text { (About } 45} \\ \mathrm{~km} \text { South) } \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／4／1 12：19	166，000	7.180	0.8	
$\begin{gathered} (2-6) \text { (About45 } \\ \mathrm{kmSouth}) \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／4／2 12：03	99，200	2，980	1.4	
$\begin{gathered} (2-6] \text { (About45 } \\ \mathrm{kmSouth}) \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／4／3 11：45	35，600	3，320	0.4	
$\begin{gathered} {[2-6\rceil \text { (About45 }} \\ \mathrm{kmSouth}) \end{gathered}$	Iwaki City	Weed	Leaf Vegitable	2011／4／4 11：46	110.000	13.300	0.7	
$\underset{\substack{\text { (2-6】(About45 } \\ \mathrm{km} \text { South) }}}{ }$	Iwaki City	Weed	Leaf Vegitable	2011／4／5 12：10	46．800	4.190	0.6	
（2－6）（About45 kmSouth）	Iwaki City	Weed	Leaf Vegitable	2011／4／6 12：04	37，500	5，150	0.6	
（2－7）（About35 kmNorth／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／25 15：07	663，000	497，000	12.0	
（2－7）（About35 kmNorth／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／26 14：03	488.000	571，000	8.8	
（2－7）（About35 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／27 13：44	402，000	490，000	8.7	
（2－7）（About35 kmNorth／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／28 13：39	443.000	689，000	8.4	

Sampling Point	Addross of Sampling Point	Sample	Sort or Region	Sampling Time and Date	Rediostivivy Concentraion（ $\mathrm{B}_{\text {／} / \mathrm{kg} \text { ）}}$		Reading （ $\mu \mathrm{Sv} / \mathrm{h}$ ）	Note
					${ }^{131}$ I	${ }^{137} \mathrm{Cs}$		
（2－7）（About35 kmNorth／West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／29 14：50	242，000	383，000	8.0	
（2－7）（About35 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／30 14：00	267，000	338，000	13．9～15．4	
（2－7）（About35 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／3／31 13：40	227，000	465，000	6.9	
（2－7）（About35 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／1 14：23	503，000	968，000	6.5	
［2－7］（About35 kmNorth／West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／2 13：30	256，000	811，000	6.5	
【2－7）（About35 $\mathrm{kmNorth} /$ West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／3 13：22	153，000	373，000	6.0	
［2－7］（About35 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／4 13：24	119.000	367，000	5.8	
【2－7】（About35 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／5 13：40	189.000	409，000	5.6	
［2－7）（About35 km North／West）	Kawamata Town	Weed	Leaf Vegitable	2011／4／6 12：57	162.000	275，000	5.4	
［2－8］（About50 kmNorth／West）	Date City	Weed	Leaf Vegitable	2011／3／25 16：18	77.100	40，700	－	
［2－8】（About50 $\mathrm{km} / \mathrm{North} /$ West）	Date City	Weed	Leaf Vegitable	2011／3／26 15：13	39，400	24，000	－	
（2－8）（About50 km North／West）	Date City	Weed	Leaf Vegitable	2011／3／27 15：50	43，900	44，600	－	
［2－8］（About50 km North／West）	Date City	Weed	Leaf Vegitable	2011／3／28 14：37	43，300	52.000	－	
【2－8】（About50 km North／West）	Date City	Weed	Leaf Vegitable	2011／3／29 15：50	37.100	62，100	1.6	
$(2-8)(\text { About } 50$ km North／West）	Date City	Weed	Leaf Vegitable	2011／3／30 16：05	33，800	44，300	－	
【2－8】（About50 km North／West）	Date City	Weed	Leaf Vegitable	2011／3／31 14：25	22，500	24，500	－	
［2－8】（About50 km North／West）	Date City	Weed	Leaf Vegitable	2011／4／1 15：14	72，000	91，600	－	
（2－8】（About50 $\mathrm{kmNorth} /$ West）	Date City	Weed	Leaf Vegitabie	2011／4／2 14：29	60.300	73.400	－	
［2－8］（About50 km North／West）	Date City	Weed	Leaf Vegitable	2011／4／3 14：13	42.700	56，000	－	
（2－8）（About50 km North／West）	Date City	Weed	Leaf Vegitable	2011／4／4 14：16	22，700	56，700	－	
（2－8）（About50 $\mathrm{kmNorth} /$ West）	Date City	Weed	Leaf Vegitabie	2011／4／5 14：25	24.800	46，800	－	
（2－8）（About50 kmNorth／West）	Date City	Weed	Leaf Vegitable	2011／4／6 13：40	11，700	22，500	－	
kmWest／North／West	Nihonmatsu City	Weed	Leaf Vegitable	2011／3／25 11：40	73.400	235，000	－	
【2－9】（About45 kmWest／North／West	Nihonmatsu City	Weed	Leaf Vegitable	2011／3／26 10：13	24，300	106，000	－	
（2－9）（About45 $\mathrm{kmWest} /$ North／West	Nihonmatsu City	Weed	Leaf Vegitable	2011／3／27 10：30	73.400	230，000	－	
$\begin{array}{\|c\|} \hline(2-9)(\text { About 45 } \\ \mathrm{kmWest} / \text { North/West } \end{array}$	Nihonmatsu City	Weed	Leaf Vegitable	2011／3／28 10：13	34，500	223，000	－	
$\begin{array}{\|c\|} \hline(2-9] \text { (About45 } \\ \mathrm{kmW} \text { West/North/West } \end{array}$	Nihonmatsu City	Weed	Leaf Vegitable	2011／3／29 11：45	34，000	160，000	－	
$\begin{array}{\|c\|} \hline(2-9 】(A b o u t 45 \\ \mathrm{kmWe} \text { West/North/West } \end{array}$	Nihonmatsu City	Weed	Leaf Vegitable	2011／3／30 10：35	31，500	153.000	－	
$\begin{array}{c\|} (2-9) \text { (About45 } \\ \mathrm{km} \text { West/North/West } \end{array}$	Nihonmatsu City	Weed	Leaf Vegitable	2011／3／31 10：50	17，700	131，000	－	
$\begin{array}{\|c\|} \hline(2-9)(\text { About45 } \\ \mathrm{kmWest} / \text { North/West } \end{array}$	Nihonmatsu City	Weed	Leaf Vegitable	2011／4／1 11：03	23，600	135.000	－	
$\begin{array}{\|c\|} \hline(2-9)(\text { About45 } \\ \mathrm{kmWest} / \text { North/West } \end{array}$	Nihonmatsu City	Weed	Leaf Vegitable	2011／4／2 10：08	35，000	217，000	－	
$\begin{array}{\|c\|} \hline(2-9)(\text { About 45 } \\ \mathrm{kmWest} / \text { North/West } \end{array}$	Nihonmatsu City	Weed	Leaf Vegitable	2011／4／3 10：05	27，500	161，000	－	
$\begin{array}{c\|} \hline(2-9](\text { About45 } \\ \mathrm{kmWest} / \mathrm{North} / \text { West } \end{array}$	Nihonmatsu City	Weed	Leaf Vegitable	2011／4／4 10：04	21，800	170，000	－	
kmWest／North／West	Nihonmatsu City	Weed	Leaf Vegitable	2011／4／5 10：35	15，800	208，000	－	
kmWest／North／West	Nihonmatsu City	Weed	Leaf Vegitable	2011／4／6 10：13	7，870	66，100	－	
$\begin{gathered} (2-10) \text { (About50 } \\ \mathrm{km} \text { North) } \end{gathered}$	Shinchi Town	Weed	Leaf Vegitable	2011／3／25 16：20	29.300	12.500	－	

The government requests Fukushima Prefecture to gain the readings above．
As a general rule，samples are measured in the state of NOT washed．
＊ 1 ：These are the readings of same sample in two different state，of washed and of not washed．

Sampling Point	Address of Sampling Point	Sample	Sort or Region	Sampling Time and Date	Rasionativity Concentration（Bo／kv）		Note
					${ }^{131} \mathrm{I}$	${ }^{137} \mathrm{C}_{5}$	
【2－1】（About 40 km North／West）	litate Village	Island Water	Pond Water	2011／3／18 12：20	2，090	511	
	litate Village	Island Water	Pond Water	2011／3／19 11：36	2，450	940	
	litate Village	Island Water	Pond Water	2011／3／20 12：40	2.010	437	
	litate Village	Island Water	Pond Water	2011／3／21 12：35	1，720	246	
	litate Village	Island Water	Pond Water	2011／3／22 12：00	1，330	172	
	litate Village	Island Water	Pond Water	2011／3／23 12：25	1，260	145	
	litate Village	Island Water	Pond Water	2011／3／24 13：05	1.330	268	
	litate Village	Island Water	Pond Water	2011／3／25 12：20	1，280	507	
	litate Village	Island Water	Pond Water	2011／3／26 12：00	835	162	
	litate Village	Island Water	Pond Water	2011／3／27 11：40	828	145	
	litate Village	Island Water	Pond Water	2011／3／28 11：50	884	183	
	litate Village	Island Water	Pond Water	2011／3／29 11：50	701	158	
	litate Village	Island Water	Pond Water	2011／3／30 12：25	629	113	
	litate Village	Island Water	Pond Water	2011／3／31 11：30	610	192	
	litate Village	Island Water	Pond Water	2011／4／1 11：30	612	192	
	litate Village	Island Water	Pond Water	2011／4／2 11：23	465	139	
	litate Village	Island Water	Pond Water	2011／4／3 10：55	393	106	
	litate Village	Island Water	Pond Water	2011／4／4 10：50	439	75	
	litate Village	Island Water	Pond Water	2011／4／5 11：31	357	86	
	litate Village	Isiand Water	Pond Water	2011／4／6 11：23	306	91	
	litate Village	Island Soil	Soil	2011／3／19 11：40	300，000	28，100	
	litate Village	Island Soil	Soil	2011／3／20 12：40	1，170，000	163，000	
	litate Village	Isiand Soil	Soil	2011／3／21 12：32	207，000	39，900	
	litate Village	Isiand Soil	Soil	2011／3／22 12：00	256，000	57，400	
	litate Village	Island Soil	Soil	2011／3／23 12：25	135.000	32，200	
	litate Village	Island Soil	Soil	2011／3／24 13：05	45.500	1，870	
	litate Village	Island Soil	Soil	2011／3／25 13：05	265，000	27，900	
	Jitate Village	Island Soil	Soil	2011／3／26 12：00	564，000	227，000	
	litate Village	Island Soil	Soil	2011／3／26 15：20	82，000	28，000	
	litate Village	Island Soil	Soil	2011／3／27 11：40	169，000	29，100	
	litate Village	Island Soil	Soil	2011／3／27 12：00	69，800	20，800	
	litate Village	Island Soil	Soil	2011／3／28 11：50	14，000	2.040	
	litate Village	Island Soii	Soil	2011／3／28 12：10	23，100	860	
	litate Village	Island Soil	Soil	2011／3／29 11：50	53，700	5，650	
	litate Village	Island Soil	Soil	2011／3／29 12：10	58，400	25，100	
	litate Village	Island Soil	Soil	2011／3／30 12：25	89，000	32．300	
	litate Village	Island Soil	Soil	2011／3／30 12：45	11，900	408	
	litate Village	Island Soil	Soil	2011／3／31 11：30	149，000	27，600	
	litate Village	Island Soil	Soil	2011／3／31 11：45	60，800	26，500	
	litate Village	Island Soil	Soil	2011／4／1 11：30	146，000	43，700	
	litate Village	Island Soil	Soil	2011／4／1 12：05	21，400	1.410	
	litate Village	Island Soil	Soil	2011／4／2 11：24	55，500	8， 140	
	Iitate Village	Island Soil	Soil	2011／4／2 11：48	61，900	30，800	
	litate Village	Isiand Soil	Soil	2011／4／3 10：55	103，000	27，600	
	litate Village	Island Soil	Soil	2011／4／3 11：15	9，670	885	
	litate Village	Island Soil	Soil	2011／4／4 10：50	70，000	21，200	
	Jitate Village	Island Soil	Soil	2011／4／4 11：10	40，400	23.100	
	litate Village	Island Soil	Soil	2011／4／5 11：31	31，600	8.280	
	Iitate Village	Island Soil	Soil	2011／4／5 11：53	59，300	24，500	
	Iitate Village	Isiand Soil	Soil	2011／4／6 11：23	5，970	2，930	
	litate Village	Island Soil	Soil	2011／4／6 11：47	31，100	12.100	
【2-2】 （About 45 km North／West）	Kawamata Town	island Soil	Soil	2011／3／18 11：45	84，300	14，200	
	Kawamata Town	Isiand Soil	Soil	2011／3／19 11：00	85，400	8，690	
	Kawamata Town	Island Soil	Soil	2011／3／20 12：04	151，000	15，100	
	Kawamata Town	Island Soil	Soil	2011／3／21 12：10	157，000	16，500	
	Kawamata Town	Island Soil	Soil	2011／3／22 11：00	38，900	4，720	
	Kawamata Town	Island Soil	Soil	2011／3／23 11：30	44，600．	6，010	
	Kawamata Town	Island Soil	Soil	2011／3／24 11：20	21，500	1，160	
	Kawamata Town	Island Soil	Soil	2011／3／26 11：20	29，300	3，760	
	Kawamata Town	Island Soil	Soil	2011／3／27 10：45	44，900	7，580	
	Kawamata Town	1siand Soill	Soil	2011／3／28 11：05	31，100	2，470	
	Kawamata Town	Island Soil	Soil	2011／3／29 11：00	34，400	5.900	
	Kawamata Town	Island Soil	Soil	2011／3／30 11：35	23，800	5.280	
	Kawamata Town	Island Soil	Soil	2011／3／31 10：35	32，300	6，810	
	Kawamata Town	Island Soil	Soil	2011／4／1 10：35	19，500	5，130	
	Kawamata Town	Island Soil	Soil	2011／4／2 10：39	22，000	5，740	
	Kawamata Town	Island Soil	Soil	2011／4／3 10：10	18，800	8，140	
	Kawamata Town	Island Soil	Soil	2011／4／4 10：05	18，800	8，020	
	Kawamata Town	Island Soil	Soil	2011／4／5 10：39	28，300	6.700	
	Kawamata Town	Island Soil	Soil	2011／4／6 10：38	16.400	5，320	

Sampling Point	Address of Sampling Point	Sample	Sort or Region	Sampling Time and Date	Fandostinity Concentration (Boa/ke)		Note
					${ }^{131}$ I	${ }^{137} \mathrm{Cs}$	
[2-3](About40kmWest)	Tamura City	Island Soil	Soil	2011/3/18 11:50	19,300	3.510	
	Tamura City	Island Soil	Soil	2011/3/19 11:35	6.970	1,260	
	Tamura City	Island Soil	Soil	2011/3/20 12:40	5,390	1.250	
	Tamura City	Island Soil	Soil	2011/3/21 12:30	3,000	390	
	Tamura City	Island Soil	Soil	2011/3/22 11:30	7,290	1,290	
	Tamura City	Island Soil	Soil	2011/3/24 11:35	6,600	1,310	
	Tamura City	Island Soil	Soil	2011/3/25 13:35	5,480	778	
	Tamura City	Island Soil	Soil	2011/3/26 11:51	5.250	1,010	
	Tamura City	Island Soil	Soil	2011/3/27 11:45	3.700	796	
	Tamura City	Island Soil	Soil	2011/3/28 11:37	4.360	1.110	
	Tamura City	Island Soil	Soil	2011/3/29 13:35	5,080	1.610	
	Tamura City	Island Soil	Soil	2011/3/30 12:30	5.040	834	
	Tamura City	Island Soil	Soil	2011/3/31 12:10	3,530	1,180	
	Tamura City	Island Soil	Soil	2011/4/1 12:19	3,160	934	
	Tamura City	Island Soil	Soil	2011/4/2 11:27	2,200	803	
	Tamura City	Island Soil	Soil	2011/4/3 11:25	3,130	1,530	
	Tamura City	Island Soil	Soil	2011/4/4 11:23	3,070	1.570	
	Tamura City	Island Soil	Soil	2011/4/5 11:42	2.860	1.410	
	Tamura City	Island Soil	Soil	2011/4/6 11:28	772	127	
[2-4](About25kmNorth)	Minamisouma City	Island Soil	Soil	2011/3/18 13:30	22,600	3,280	
	Minamisouma City	Island Soil	Soil	2011/3/19 13:00	35,800	4,040	
	Minamisouma City	Island Soil	Soil	2011/3/20 14:30	35,800	4,850	
	Minamisouma City	Island Soil	Soil	2011/3/21 14:07	83,200	8,660	
	Minamisouma City	Island Soil	Soil	2011/3/23 14:10	16,600	1,720	
	Minamisouma $\mathrm{City}^{\text {ch }}$	Island Soil	Soil	2011/3/24 14:40	14,900	1,990	
	Minamisouma City	Island Soil	Soil	2011/3/25 14:20	2,480	189	
	Minamisouma City	Island Soil	Soil	2011/3/26 13:50	15.100	2,490	
	Minamisouma City	Island Soil	Soil	2011/3/27 13:25	10,100	1,520	
	Minamisouma City	Istand Soil	Soil	2011/3/28 13:27	7,730	1,330	
	Minamisouma City	Island Soil	Soil	2011/3/29 13:30	9,010	2,200	
	Minamisouma City	Island Soil	Soil	2011/3/30 14:45	14,900	3,300	
	Minamisouma City	Isiand Soil	Soil	2011/3/31 13:15	7,980	2,850	
	Minamisouma City	Island Soil	Soil	2011/4/1 13:40	10,200	2,900	
	Minamisouma City	Island Soil	Soil	2011/4/2 13:17	8,210	2,410	
	Minamisouma City	Island Soil	Soil	2011/4/3 12:35	4,730	1,810	
	Minamisouma City	Island Soil	Soil	2011/4/4 12:20	14,800	4,770	
	Minamisouma City	Island Soil	Soil	2011/4/5 13:05	2,770	621	
	Minamisouma City	Island Soil	Soil	2011/4/6 13:03	1.860	425	
【2-5】 (About $40 \mathrm{kmSouth} /$ West)	Ono Town	Island Water	Rain Water	2011/3/22 12:40	7.440	107	
	Ono Town	Island Water	Rain Water	2011/3/25 11:38	3,000	800	
	Ono Town	Island Soil	Soil	2011/3/18 12:30	8,170	2,260	
	Ono Town	Island Soil	Soil	2011/3/19 12:15	14,100	4,630	
	Ono Town	Island Soil	Soil	2011/3/20 13:50	10,300	3,020	
	Ono Town	Island Soil	Soil	2011/3/21 13:40	4,830	910	
	Ono Town	Island Soil	Soil	2011/3/22 11:40	3,220	466	
	Ono Town	Island Soil	Soil	2011/3/23 12:50	6,430	1,590	
	Ono Town	Island Soil	Soil	2011/3/24 13:18	2,830	747	
	Ono Town	Island Soil	Soil	2011/3/25 11:39	3,000	800	
	Ono Town	Island Soil	Soil	2011/3/26 11:50	1.510	159	
	Ono Town	Island Soil	Soil	2011/3/27 11:10	2.140	158	
	Ono Town	Island Soil	Soil	2011/3/28 11:25	505	59	
	Ono Town	Island Soil	Soil	2011/3/29 11:30	2,290	161	
	Ono Town	Island Soil	Soil	2011/3/30 11:02	2,230	947	
	Ono Town	Island Soil	Soil	2011/3/31 11:10	1,690	342	
	Ono Town	Island Soil	Soil	2011/4/1 10:50	1.450	281	
	Ono Town	Istand Soil	Soil	2011/4/2 10:40	1.390	600	
	Ono Town	Island Soil	Soil	2011/4/3 10:22	1.280	671	
	Ono Town	Island Soil	Soil	2011/4/4 10:17	791	139	
	Ona Town	Island Soil	Soil	2011/4/5 10:48	1.410	1.040	
	Ono Town	Island Soil	Soil	2011/4/6 10:35	650	240	

Sampling Point	Address of Sampling Point	Sample	Sort or Region	Sampling Time and Date	Faciosctivity Conemention（ $\mathrm{Ba} / \mathrm{kg}$ ）		Note
					${ }^{131} 1$	${ }^{137} \mathrm{Cs}$	
【2－6】（About 45 kmSouth ）	Iwaki City	Island Soil	Soil	2011／3／19 13：15	12，600	288	
	Iwaki City	Island Soil	Soil	2011／3／20 15：17	14，600	460	
	Iwaki City	Island Soil	Soil	2011／3／21 15：10	30，700	1.220	
	Iwaki City	Island Soil	Soil	2011／3／22 13：50	1，960	1，290	
	Iwaki City	Island Soil	Soil	2011／3／23 14：20	32，600	840	
	Iwaki City	Island Soil	Soil	2011／3／24 15：00	27.100	951	
	Iwaki City	Istand Soil	Soil	2011／3／25 13：45	23.900	519	
	Iwaki City	Island Soil	Soil	2011／3／26 13：50	41，100	875	
	Iwaki City	Island Soil	Soil	2011／3／27 12：30	25，100	849	
	Iwaki City	Island Soil	Soil	2011／3／28 12：50	11，500	465	
	Iwaki City	Island Soil	Soil	2011／3／29 13：05	15，700	617	
	Iwaki City	Island Soil	Soil	2011／3／30 12：30	1，420	ND	
	Jwaki City	Island Soil	Soil	2011／3／31 12：51	8.370	150	
	Iwaki City	Island Soil	Soil	2011／4／1 12：17	1.540	50	
	Iwaki City	Island Soil	Soil	2011／4／2 12：04	12，600	540	
	Iwaki City	Island Soil	Soil	2011／4／3 11：45	1，400	56	
	Iwaki City	Island Soil	Soil	2011／4／4 11：46	2，070	24	
	Iwaki City	Isiand Soil	Soil	2011／4／5 12：10	1.280	21	
	Iwaki City	Island Soil	Soil	2011／4／6 12：04	993	37	
［2－7】（About35 kmNorth／West）	Kawamata Town	Island Soil	Soil	2011／3／25 15：05	112，000	21，800	
	Kawamata Town	Island Soil	Soil	2011／3／26 13：59	100，000	21，900	
	Kawamata Town	Island Soil	Soil	2011／3／27 13：47	50，800	7，350	
	Kawamata Town	Island Soil	Soil	2011／3／28 13：39	39，800	4，330	
	Kawamata Town	Island Soil	Soil	2011／3／29 14：50	61，800	23，400	
	Kawamata Town	Island Soil	Soil	2011／3／30 14：00	42，600	7，750	
	Kawamata Town	Island Soil	Soil	2011／3／31 13：40	14，700	949	
	Kawamata Town	Island Soil	Soil	2011／4／1 14：22	26，400	3，900	
	Kawamata Town	Island Soil	Soil	2011／4／2 13：28	19,400	5，340	
	Kawamata Town	Island Soil	Soil	2011／4／3 13：20	43，000	22，000	
	Kawamata Town	Island Soil	Soil	2011／4／4 13：23	65，900	38，500	
	Kawamata Town	Island Soil	Soil	2011／4／5 13：40	39，300	16.300	
	Kawamata Town	Island Soil	Soil	2011／4／6 12：57	30，600	19，800	
［2－8］（About50 kmNorth／West）	Date City	Island Soil	Soil	2011／3／24 12：10	41，200	6，850	
	Date City	Island Soil	Soil	2011／3／25 16：15	20，800	3，790	
	Date City	Island Soil	Soil	2011／3／26 15：13	16，000	3，740	
	Date City	Island Soil	Soil	2011／3／27 14：54	16，900	3，070	
	Date City	Island Soil	Soil	2011／3／28 14：34	22，300	5，320	
	Date City	Island Soil	Soil	2011／3／29 15：50	25，700	5，800	
	Date City	Island Soil	Soil	2011／3／30 16：05	20，500	3，360	
	Date City	Island Soil	Soil	2011／3／31 14：25	27.200	6，740	
	Date City	Island Soil	Soil	2011／4／1 15：12	27.000	6，030	
	Date City	Island Soii	Soil	2011／4／2 14：27	21.100	6，100	
	Date City	Island Soil	Soil	2011／4／314：11	25，800	8.510	
	Date City	Island Soil	Soil	2011／4／4 14：15	8.270	2，640	
	Date City	Island Soil	Soil	2011／4／5 14：25	18.900	7，180	
	Date City	Island Soil	Soil	2011／4／6 13：40	3，870	494	
［2－9］（About45 kmWest／North／West）	Nihonmatsu City	Island Soil	Soil	2011／3／25 11：35	32，900	9，330	
	Nihonmatsu City	Island Soil	Soil	2011／3／26 10：14	39，000	16，900	
	Nihonmatsu City	Island Soil	Soil	2011／3／27 10：26	49，300	22，700	
	Nihonmatsu City	Island Soil	Soil	2011／3／28 10：13	34，100	15，700	
	Nihonmatsu City	Island Soil	Soil	2011／3／29 11：45	36，400	21，100	
	Nihonmatsu City	Island Soil	Soil	2011／3／30 10：35	24.000	14，800	
	Nihonmatsu City	Island Soil	Soil	2011／3／31 10：50	24，400	14，200	
	Nihonmatsu City	Island Soil	Soil	2011／4／1 11：05	17，800	10，500	
	Nihonmatsu City	Island Soil	Soil	2011／4／2 10：05	5，010	12.700	
	Nihonmatsu City	Island Soil	Soil	2011／4／3 10：04	21，100	15，500	
	Nihonmatsu City	Island Soil	Soil	2011／4／4 10：02	20，300	19，200	
	Nihonmatsu City	Island Soil	Soil	2011／4／5 10：35	17.800	15，800	
	Nihonmatsu City	Island Soil	Soil	2011／4／6 10：13	12.000.	8.000	
T2 TOTROUNSO	Shinchi Town	Island Soil	Soil	2011／3／25 16：20	44	3，740	
（Reference）							
［2－11］（About5 kmSouth／West）	Ookuma Town	Island Soil	Soil	2011／3／31 13：00	423，000	98，100	

The government requests Fukushima Prefecture to gain the readings above．
 *Figures for Miyagi Prefecture are measured by transportable monitoring post.
*in Fukushima Prefecture. the monitoring post in Futaba-gun is focated at an
-In Fukushima Prefecture, the monitoring post in Futaba-gun is located at an evacuated area, since it is difficult to measure,
gures were measured in Momiviyama (Fukushima Ciy) an alternative.
In Shimane Prefecture, readings are measured by alternative machine from $5 p m$ on April 4 because of setting up the equipment
*These figures are estimated as $1 \mu \mathrm{~Gy} / \mathrm{h}=1 \mu \mathrm{SV} / \mathrm{h}$.
*The table was made by MEXT, based on the reports from prefectures.

Reading of environmental radioactivity level by prefecture

2011.4.8 13:00											($\mu \mathrm{Sv} / \mathrm{h}$)
		4/8									
		0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	Usual Value Band
1	Hokkaido(Sapporo)	0.029	$\underline{0.029}$	0.028	$\underline{0.028}$	0.029	$\underline{0.029}$	0.030	0.030	0.031	$0.02 \sim 0.105$
2	Aomori(Aomori)	0.027	0.027	0.028	0.028	$\underline{0.029}$	0.031	0.032	0.031	0.030	$0.017 \sim 0.102$
3	Iwate (Morioka)	$\underline{0.024}$	0.025	0.025	$\underline{0.026}$	$\underline{0.025}$	0.026	0.027	0.027	0.027	$0.014 \sim 0.084$
4	Miyagi(Sendai)	$\underline{\underline{0.078}}$	0.078	0.078	$\underline{0.078}$	$\underline{0.078}$	0.078	$\underline{0.078}$	0.079	0.080	$0.0176 \sim 0.0513$
5	Akita (Akita)		$\underline{0.036}$	0.036	$\underline{0.037}$	0.038	0.040	0.041	0.042	0.042	$0.022 \sim 0.086$
6	Yamagata (Yamagata)	0.060	$\underline{0.060}$	0.060	0.060	0.060	0.060	0.060	0.060	0.060	$0.025 \sim 0.082$
7	Fukushima(Fukushima)	2.300	2.300	2.300	2.300	$\underline{2} 300$	2.300	2.300	2.300	$\underline{2.300}$	$0.037 \sim 0.046$
8	Ibaraki(Mito)	0.154	0.154	0.154	$\underline{0.153}$	$\underline{0.153}$	0.153	0.153	0.154	0.153	$0.036 \sim 0.056$
9	Tochigi(Utsunomiya)	0.077	0.077	0.077	$\underline{0.077}$	0.077	0.077	0.077	0.077	0.076	$0.030 \sim 0.067$
10	Gunma (Maebashi)	0.045	0.045	0.045	0.044	0.045	0.045	$\underline{0.046}$	0.045	0.045	$0.017 \sim 0.045$
11	Saitama(Saitama)	0.066	$\underline{0.066}$	0.066	0.066	$\underline{0.066}$	0.066	0.066	0.066	0.066	$0.031 \sim 0.060$
12	Chiba(Ishihara)	0.059	$\underline{0.059}$	0.058	0.059	$\underline{0.059}$	0.058	$\underline{0.059}$	0.058	0.058	$0.022 \sim 0.044$
13	Tokyo(Shinjuku)	0.085	$\underline{0.085}$	0.085	0.085	0.085	0.085	$\underline{0.085}$	0.085	0.085	$0.028 \sim 0.079$
14	Kanagawa (Chigasaki)	0.060	0.060	$\underline{0.060}$	$\underline{0.060}$	0.060	$\underline{0.060}$	0.060	0.060	$\underline{0.059}$	$0.035 \sim 0.069$
15	Niigata (Niigata)	$\underline{0.048}$	0.048	0.048	$\underline{0.048}$	$\underline{0.048}$	0.048	0.047	0.048	0.047	$0.031 \sim 0.153$
16	Toyama(Imizu)	$\underline{0.047}$	0.048	0.048	$\underline{0.048}$	$\underline{0} 0.047$	$\underline{0.047}$	0.047	0.047	0.047	$0.029 \sim 0.147$
17	Ishikawa(Kanazawa)	$\underline{0.048}$	$\underline{0.047}$	0.048	$\underline{0.048}$	$\underline{0.048}$	0.047	0.042	$\underline{0.047}$	$\underline{0.048}$	$0.0291 \sim 0.1275$
18	Fukui(Fukui)	0.045	0.045	$\underline{0.045}$	0.046	$\underline{0.046}$	0.046	0.045	0.046	0.048	$0.032 \sim 0.097$
19	Yamanashi (Kohu)	$\underline{0.043}$	$\underline{0.044}$	$\underline{0.045}$	$\underline{0.044}$	0.044	0.045	0.045	0.045	0.044	$0.040 \sim 0.064$
20	Nagano(Nagano)	0.044	$\underline{0.043}$	0.044	$\underline{0.043}$	$\underline{0.043}$	0.043	0.043	$\underline{0.043}$	0.042	$0.0299 \sim 0.0974$
21	Gifu(Kakamigahara)	$\underline{0.060}$	0.060	$\underline{0.060}$	0.060	$\underline{0.060}$	$\underline{0.060}$	0.060	$\underline{0.060}$	0.060	$0.057 \sim 0.110$
22	Shizuoka (Shizuoka)	0.040	0.040	0.040	0.040	$\underline{0.040}$	0.039	$\underline{0.040}$	0.040	$\underline{0.040}$	$0.0281 \sim 0.0765$
23	Aichi(Nagoya)	0.039	$\underline{0.039}$	$\underline{0.039}$	$\underline{0.039}$	$\underline{0.039}$	0.039	0.039	0.039	$\underline{0.039}$	$0.035 \sim 0.074$
24	Mie (Yokkaichi)	$\underline{0} 046$	0.046	$\underline{0.046}$	$\underline{0.046}$	$\underline{0.046}$	$\underline{0.046}$	0.046	0.046	$\underline{0.046}$	$0.0416 \sim 0.0789$
25	Shiga (Otsu)	0.032	$\underline{0.032}$	$\underline{0.032}$	$\underline{0.033}$	0.033	0.033	0.033	0.033	0.034	$0.031 \sim 0.061$
26	Kyoto(Kyoto)	$\underline{0.038}$	$\underline{0.038}$	0.038	$\underline{0.038}$	$\underline{0.038}$	0.038	0.039	0.039	0.039	$0.033 \sim 0.087$
27	Osaka(Osaka)	0.042	0.042	$\underline{0.042}$	0.042	0.042	0.042	0.042	$\underline{0.042}$	0.042	$0.042 \sim 0.061$
28	Hyogo (Kobe)	0.036	0.036	$\underline{0.036}$	0.036	$\underline{0.036}$	$\underline{0.036}$	$\underline{0.036}$	0.036	0.036	$0.035 \sim 0.076$
29	Nara (Nara)	0.047	$\underline{0.048}$	$\underline{0.048}$	$\underline{0.048}$	0.048	$\underline{0.048}$	$\underline{0.048}$	0.048	$\underline{0.048}$	$0.046 \sim 0.08$
30	Wakayama(Wakayama)	0.031	0.031	$\underline{0.031}$	0.031	$\underline{0.031}$	0.031	0.031	0.031	0.031	$0.031 \sim 0.056$
31	Tottori(Tohhaku)	0.063	$\underline{0.063}$	0.063	$\underline{0.063}$	$\underline{0.063}$	0.063	0.064	0.064	0.064	$0.036 \sim 0.11$
32	Shimane (Matsue)	0.047	$\underline{0.047}$	0.047	0.050	$\underline{0.052}$	0.052	0.051	0.051	0.052	$0.037 \sim 0.131$
33	Okayama(Okayama)	0.049	0.049	0.049	$\underline{0.050}$	0.049	0.050	0.050	0.049	0.050	$0.043 \sim 0.104$
34	Hiroshima(Hiroshima)	$\underline{0.046}$	$\underline{0.046}$	0.046	$\underline{0.045}$	$\underline{0.046}$	$\underline{0.049}$	$\underline{0.049}$	0.048	0.047	$0.035 \sim 0.069$
35	Yamaguchi(Yamaguchi)	0.093	0.094	0.097	0.100	0.100	$\underline{0.099}$	$\underline{0.096}$	0.095	0.095	$0.084 \sim 0.128$
36	Tokushima(Tokushima)	0.037	0.037	0.037	$\underline{0.037}$	$\underline{0.037}$	0.037	0.037	0.037	0.037	$0.037 \sim 0.067$
37	Kagawa (Takamastu)	$\underline{0.061}$	0.061	0.062	0.062	$\underline{0.063}$	$\underline{0.063}$	0.059	0.055	$\underline{0.055}$	$0.051 \sim 0.077$
38	Ehime (Matsuyama)	$\underline{0.047}$	0.047	$\underline{0.047}$	$\underline{0.047}$	$\underline{0.047}$	0.047	0.046	0.047	0.047	$0.045 \sim 0.074$
39	Kochi (Kochi)	$\underline{0.024}$	0.025	0.024	0.024	$\underline{0} 024$	0.024	0.026	0.026	0.025	$0.023 \sim 0.076$
40	Fukuoka(Dazaifu)	0.042	$\underline{0.048}$	$\underline{0.046}$	0.040	0.037	0.037	0.037	0.037	0.038	$0.034 \sim 0.079$
41	Saga(Saga)	0.044	0.044	0.046	$\underline{0.043}$	0.042	$\underline{0.043}$	$\underline{0.042}$	0.044	0.046	$0.037 \sim 0.086$
42	Nagasaki(Ohmura)	0.034	0.031	0.032	0.031	0.031	0.031	0.032	0.032	0.036	$0.027 \sim 0.069$
43	Kumamoto (Uto)	0.027	0.027	0.028	$\underline{0.029}$	$\underline{0.027}$	0.027	0.027	$\underline{0.028}$	0.030	$0.021 \sim 0.067$
44	Oita (Oita)	0.049	0.049	0.049	$\underline{0.049}$	0.050	0.050	$\underline{0.050}$	0.050	0.049	$0.048 \sim 0.085$
45	Miyazaki(Miyazaki)	0.026	0.026	0.026	$\underline{0.026}$	$\underline{0.026}$	0.026	0.026	$\underline{0.026}$	0.026	$0.0243 \sim 0.0664$
46	Kagoshima(Kagoshima)	0034	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	$0.0306 \sim 0.0943$
47	Okinawa(Uruma)	$\underline{0.021}$	0.021	0.021	$\underline{0.021}$	$\underline{0.021}$	0.021	0.021	0.021	0.021	$0.0133 \sim 0.0575$

*Figures for Miyagi Prefecture are measured by transportable monitoring post
*In Fukushima Prefecture, the monitoring post in Futaba-gun is located at an evacuated area, since it is difficult to measure
figures were measured in Momiliyama (Fukushima City) as an alternative.
In Shimane Prefecture, readings are measured by alternative machine from 5pm on April 4 because of setting up the equipment.
Blanks are caused by device maintenance, but the area was measured by Monitoring Posts.
*These figures are estimated as : $\mu \mathrm{Gy} / \mathrm{h}=1 \mu \mathrm{~Sv} / \mathrm{h}$.
*The table was made by MEXT, based on the reports from prefectures

Readings at Monitoring Post out of 20 Km Zone of Fukushima Dai－ichi NPP

As of 10：00 April 8， 2011
Ministry of Education，Culture．Sports，Science and Technology（MEXT）
OMonitoring Outputs by MEXT＊Boldface and underlined readings are new．
＊ 1 measured by Geiger－Müler counter
＊2 measured by ionization chamber type survey meter
＊3 measured by Nal scintillator detector
＊ 4 variation range of the measuring data in measuring time

Monitoring Post （length from NPP）	Monitoring Time	Reading（unit：$\mu \mathrm{Sv} / \mathrm{h}$ ）	Weather	Reading by
Reading Point［1］（About60kmNorth／West）	2011／4／7 15：24	1.5 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【1】（About60kmNorth／West）	2011／4／7 8：38	$1.5 * 2$	No Rain	MEXT
Reading Point 【2】（About55kmNorth／West）	2011／4／79：09	3.1 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【3】（About $45 \mathrm{kmNorth/West)}$	2011／4／7 10：17	4.0 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【4】（About50kmNorth／West）	2011／4／7 9：26	1.1 ＊2	No Rain	MEXT
Reading Point 【5】（About $45 \mathrm{kmNorth)}$	2011／4／7 10：56	0.4 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【6】（About $35 \mathrm{kmNorth} \mathrm{)}$	2011／4／7 11：17	0.6 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【7】（About $35 \mathrm{kmNorth)}$	2011／4／7 11：34	0.7 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【10】（About40kmNorth／West）	2011／4／79：41	1.0 ＊2	No Rain	MEXT
Reading Point 【11】（About $40 \mathrm{kmNorth/West} \mathrm{)}$	2011／4／7 9：50	1.5 ＊2	No Rain	MEXT
Reading Point［12］（About40kmWest）	2011／4／7 10：26	0.3 ＊2	No Rain	MEXT
Reading Point 【13】（About40kmWest）	2011／4／7 10：36	0.5 ＊	No Rain	MEXT
Reading Point 【14】（About35kmWest）	2011／4／7 10：46	0.2 ＊2	No Rain	MEXT
Reading Point 【15】（About35kmWest）	2011／4／7 11：04	1.3 ＊2	No Rain	MEXT

＊ 1 measured by Geiger－Müller counter
＊ 2 measured by ionization chamber type survey meter
＊ 3 measured by Nal scintillator detector
＊ 4 variation range of the measuring data in measuring time

Monitoring Post （length from NPP）	Monitoring Time	Reading（unit ：$\mu \mathrm{Sv} / \mathrm{h}$ ）	Weather	Reading by
Reading Point 【20】（About45kmNorth／West）	2011／4／7 10：13	0.7 ＊2	No Rain	MEXT
Reading Point 【21】（About 30kmWest／North／West）	2011／4／7 12：58	$3.4 * 2$	No Rain	MEXT
Reading Point 【22】（About35kmWest／North／West）	2011／4／7 13：09	0.4 ＊2	No Rain	MEXT
Reading Point 【23】（About35kmWest／North／West）	2011／4／7 13：18	0.3 ＊2	No Rain	MEXT
Reading Point 【31】（About30kmWest／North／West）	2011／4／7 10：26	$11.4{ }^{* 2}$	No Rain	MEXT
Reading Point 【32】（About30kmNorth／West）	2011／4／7 10：43	27.8 ＊2	No Rain	MEXT
Reading Point 【33】（About30kmNorth／West）	2011／4／7 10：56	19.5 ＊2	No Rain	MEXT
Reading Point 【34】（About30kmNorth／West）	2011／4／7 12：07	6.1 ＊2	No Rain	MEXT
Reading Point 【36】（About40kmNorth／West）	2011／4／7 9：59	4.1 ＊2	No Rain	MEXT
Reading Point 【37】（About50kmNorth／West）	2011／4／7 10：06	$4.7 * 2$	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【38】（About $35 \mathrm{kmSouth)}$	2011／4／7 12：30	0.7 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【39】（About45kmNorth）	2011／4／7 10：39	$1.1{ }^{* 2}$	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【41】（About20kmWest）	2011／4／7 13：10	$0.8 * 2$	No Rain	Electric power company
Reading Point 【41】（About20kmWest）	2011／4／7 9：50	$0.8 * 2$	No Rain	Electric power company
Reading Point 【42】（About30kmWest）	2011／4／7 13：15	$1.0 * 2$	No Rain	Electric power company
Reading Point 【42】（About30kmWest）	2011／4／7 10：15	1.0 ＊2	No Rain	Electric power company
Reading Point【43】（About20kmSouth／West）	2011／4／7 15：00	0.5 ＊	No Rain	Electric power company
Reading Point【43】（About20kmSouth／West）	2011／4／7 11：00	0.5 ＊	No Rain	Electric power company

＊ 1 measured by Geiger－Müller counter
＊ 2 measured by ionization chamber type survey meter
＊ 3 measured by Nal scintillator detector
＊ 4 variation range of the measuring data in measuring time

Monitoring Post （length from NPP）	Monitoring Time	Reading（unit：$\mu \mathrm{Sv} / \mathrm{h}$ ）	Weather	Reading by
Reading Point 【44】（About30kmSouth）	2011／4／7 13：50	0.9 ＊2	No Rain	Electric power company
Reading Point［44］（About30kmSouth）	2011／4／7 9：50	1.0 ＊2	No Rain	Electric power company
Reading Point［45］（About20kmSouth）	2011／4／7 13：09	1.5 ＊2	No Rain	Electric power company
Reading Point 【45】（About20kmSouth）	2011／4／7 10：02	1.3 ＊2	No Rain	Electric power company
Reading Point 【46】（About30kmNorth／West）	2011／4／7 14：00	5.2 ＊2	No Rain	Electric power company
Reading Point 【46】（About30kmNorth／West）	2011／4／7 10：35	5.3 ＊	No Rain	Electric power company
Reading Point 【51】（About 40 km South／West）	2011／4／7 13：38	$0.2 * 3$	No Rain	Fukushima Prefecture
Reading Point 【51】（About $40 \mathrm{kmSouth/West)}$	2011／4／7 10：44	0.2 ＊3	No Rain	Fukushima Prefecture
Reading Point 【52】（About40kmWest）	2011／4／7 14：10	0.3 ＊3	No Rain	Fukushima Prefecture
Reading Point【52】（About40kmWest）	2011／4／7 11：24	$0.4 * 3$	No Rain	Fukushima Prefecture
Reading Point 【61】（About40kmNorth／West）	2011／4／7 14：09	5.0 ＊3	No Rain	Fukushima Prefecture
Reading Point 【61】（About $40 \mathrm{kmNorth/West)}$	2011／4／7 12：05	5.0 ＊3	No Rain	Fukushima Prefecture
Reading Point【61】（About40kmNorth／West）	2011／4／7 10：07	$5.6 * 3$	No Rain	MEXT
Reading Point 【62】（About $40 \mathrm{kmNorth/West)}$	2011／4／7 14：21	$6.4 * 3$	No Rain	Fukushima Prefecture
Reading Point 【62】（About $40 \mathrm{kmNorth/West)}$	2011／4／7 11：56	$6.5 * 3$	No Rain	Fukushima Prefecture
Reading Point 【62】（About40kmNorth／West）	2011／4／7 9：50	6.3 ＊3	No Rain	MEXT
Reading Point 【63】（About $45 \mathrm{kmNorth/West)}$	2011／4／7 14：44	2.2 ＊3	No Rain	Fukushima Prefecture
Reading Point 【63】（About $45 \mathrm{kmNorth/West)}$	2011／4／7 10：53	$2.4 * 3$	No Rain	Fukushima Prefecture
Reading Point 【63】（About45kmNorth／West）	2011／4／7 9：33	2.5 ＊3	No Rain	MEXT
Reading Point 【11】（About25kmSouth）	2011／4／7 15：43	$1.0{ }_{-}^{* 2}$	No Rain	Police（counter NBC operations unit）

＊ 1 measured by Geiger－Mülier counter
＊ 2 measured by ionization chamber type survey meter
＊ 3 measured by Nal scintillator detector
＊ 4 variation range of the measuring data in measuring time

Monitoring Post （length from NPP）	Monitoring Time	Reading（unit ：$\mu \mathrm{Sv} / \mathrm{h}$ ）	Weather	Reading by
Reading Point 【71】（About $25 \mathrm{kmSouth)}$	2011／4／7 13：32	0.5 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point［71】（About25kmSouth）	2011／4／7 8：15	1.0 ＊2	No Rain	Police（ counter NBC operations unit）
Reading Point 【72】（About30kmSouth）	2011／4／7 16：10	$0.7{ }^{* 2}$	No．Rain	Police（ counter NBC operations unit）
Reading Point 【72】（About30kmSouth）	2011／4／7 13：00	0.7 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【72】（About30kmSouth）	2011／4／7 8：46	0.8 ＊2	No Rain	Police（ counter NBC operations unit）
Reading Point 【73】（About35kmSouth）	2011／4／7 12：41	0.8 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【73】（About 35kmSouth）	2011／4／7 16：28	0.2 ＊2	No Rain	MEXT
Reading Point 【73】（About $35 \mathrm{kmSouth)}$	2011／4／7 9：05	0.5 ＊2	No Rain	Police（ counter NBC operations unit）
Reading Point［74】（About35kmSouth）	2011／4／7 11：38	0.3 ＊2	No Rain	MEXT
Reading Point 【74】（About35kmSouth）	2011／4／7 7：29	0.3 ＊2	No Rain	Police（ counter NBC operations unit）
Reading Point 【75】（About 45kmSouth）	2011／4／7．18：19	$0.1{ }^{* 2}$	No Rain	Police（counter NBC operations unit）
Reading Point 【75】（About $45 \mathrm{kmSouth)}$	2011／4／7 10：53	0.3 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【75】（About45kmSouth）	2011／4／7 7：04	0.1 ＊2	No Rain	Police（ counter NBC operations unit ）
Reading Point【76】（About20kmSouth／West）	2011／4／7 12：07	0.3 ＊2	No Rain	Police（ counter NBC operations unit）
Reading Point 【76】（About20kmSouth／West）	2011／4／7 11：39	0.3 ＊2	No Rain	MEXT
Reading Point 【77】（About25kmSouth／West）	2011／4／7 11：48	$1.5{ }^{* 2}$	No Rain	Police（ counter NBC operations unit）
Reading Point 【78】（About45kmNorth／West）	2011／4／7 19：28	$0.7 * 2$	No Rain	Police（counter NBC operations unit）
Reading Point 【78】（About $45 \mathrm{kmNorth/West)}$	2011／4／7 8：03	1.3 ＊2	No Rain	Police（ counter NBC operations unit ）
Reading Point【79】（About30kmNorth／West）	2011／4／7 11：31	14.8 ＊2	No Rain	MEXT
Reading Point 【80】（About25kmNorth）	2011／4／7 11：56	0.9 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【80】（About25kmNorth）	2011／4／79：11	0.4 ＊2	No Rain	Police（ counter NBC operations unit ）

＊ 1 measured by Geiger－Müller counter
＊ 2 measured by ionization chamber type survey meter
＊ 3 measured by Nal scintillator detector
＊ 4 variation range of the measuring data in measuring time

Monitoring Post （length from NPP）	Monitoring Time	Reading（unit ：$\mu \mathrm{Sv} / \mathrm{h}$ ）	Weather	Reading by
Reading Point 【83】（About20kmNorth／West）	2011／4／7 11：51	58.5 ＊2	No Rain	MEXT
Reading Point【84】（About 40 km South／West）	2011／4／7 10：20	0.5 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point［85】（About60kmNorth／West）	2011／4／7 14：00	0.8 ＊2	No Rain	Ministry of Defense
Reading Point 【85】（About60kmNorth／West）	2011／4／7 6：00	0.4 ＊2	No Rain	Ministry of Defense
Reading Point［86］（About55kmWest）	2011／4／7 14：00	0.6 ＊2	No Rain	Ministry of Defense
Reading Point【86】（About55kmWest）	2011／4／7 6：00	1.2 ＊2	No Rain	Ministry of Defense
Reading Point 【87】（About30kmWest／South／West）	2011／4／7 14：00	0.9 ＊2	No Rain	Ministry of Defense
Reading Point 【87］（About30kmWest／South／West）	2011／4／7 6：00	0.5 ＊2	No Rain	Ministry of Defense
Reading Point 【89】（About60kmWest）	2011／4／7 12：00	$2.3 * *$	No Rain	Ministry of Defense
Reading Point【101】（About55kmNorth／West）	2011／4／7 9：38	$1.4 * 2$	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point【102】（About50knNorth／West）	2011／4／7 13：46	1.6 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point［103］（About20kmNorth）	2011／4／7 11：57	0.7 ＊2	No Rain	MEXT
Reading Point【104】（About25kmWest／North／West）	2011／4／7 12：23	2.8 ＊2	No Rain	MEXT
Reading Point［105】（About20kmWest）	2011／4／7 12：06	0.3 ＊2	No Rain	MEXT
Reading Point【106】（About30kmSouth／West）	2011／4／7 12：58	0.1 ＊2	No Rain	MEXT
Reading Point【107］（About25kmNorth／North／West）	2011／4／7 10：56	3.3 ＊2	No Rain	MEXT
Reading Point【108】（About30kmNorth／North／West）	2011／4／7 10：30	3.6 ＊2	No Rain	MEXT

Sampling points out of Fukushima Dai-ichi NPP

Readings of Helicopter Monitoring at Monitoring Post out of 30 km Zone of Fukushima Dai－ichi NPP

April 8， 2011
Ministry of Education，Culture，Sports，Science and Technology（MEXT）
1．Measurement environment
Time and Date ：from April 7th 10：09 to April 7th 15：45
Weather：cloudy after fine，south wind
Flight condition：Average Flight Altitude during monitoring 150～300m
Average Flight Speed $100 \sim 120 \mathrm{Km} / \mathrm{h}$
2．Readings at Monitoring Post out of 30 Km Zone of Fukushima Dai－ichi NPP

Main Reading Point	City	Latitude longitude	Altitude above sea level［ above ground leve $1]$（m）	Monitor ing Time	Readings（ $\mu \mathrm{Sv} / \mathrm{h}$ ）
【1】	Nasushiobara City （Tochigi Prefecture）	$\left\|\begin{array}{cc} 36^{\circ} & 55.5^{\prime} \mathrm{N} \\ 140^{\circ} & 01.4^{\prime} \mathrm{E} \end{array}\right\|$	$\begin{gathered} 604 \\ {[331]} \end{gathered}$	10：51	0.0670
【2】	Nishigo Village（Fukushima Prefecture）	$\left\|\begin{array}{cc} 37^{\circ} & 06.3^{\prime} \mathrm{N} \\ 140^{\circ} & 09.3^{\prime} \mathrm{E} \end{array}\right\|$	$\begin{gathered} 733 \\ {[295]} \end{gathered}$	11：02	0.0733
【 3 】	Iwaki City （Fukushima Prefecture）	$\begin{array}{ll} 36^{\circ} & 58.5^{\prime} \mathrm{N} \\ 140^{\circ} & 45.1^{\prime} \mathrm{E} \end{array}$	$\begin{gathered} 369 \\ {[278]} \end{gathered}$	11：29	0.0852
【4】	Tamura City（Fukush ima Prefecture）	$\begin{array}{cc\|} \hline 37^{\circ} & 25.2^{\prime} \mathrm{N} \\ 140^{\circ} & 34.9^{\prime} \mathrm{E} \end{array}$	$\begin{gathered} 780 \\ {[249]} \end{gathered}$	12：55	0.0624
【5】	Kawamata town （Fukushima Prefecture）	$\left\|\begin{array}{cc} 37^{\circ} & 35.5^{\prime} \mathrm{N} \\ 140^{\circ} & 42.9^{\prime} \mathrm{E} \end{array}\right\|$	$\begin{gathered} 851 \\ {[216]} \end{gathered}$	13：06	0.611
［6】	Souma City（Fukushi ma Prefecture）	$\begin{array}{\|cc\|} \hline 37^{\circ} & 48.8^{\prime} \mathrm{N} \\ 140^{\circ} & 55.2^{\prime} \mathrm{E} \end{array}$	$\begin{gathered} 310 \\ {[300]} \end{gathered}$	13：22	0.0966
【7】	Date City （Fukushima Prefecture）	$\left\|\begin{array}{cc} 37^{\circ} & 49.2^{\prime} \mathrm{N} \\ 140^{\circ} & 37.1^{\prime} \mathrm{E} \end{array}\right\|$	$\begin{gathered} 448 \\ {[380]} \end{gathered}$	13：36	0.198
【8】	Fukushima City（Fukushima Prefecture）	$\left\|\begin{array}{ll} 37^{\circ} & 45.5^{\prime} \mathrm{N} \\ 140^{\circ} & 29.2^{\prime} \mathrm{E} \end{array}\right\|$	$\begin{gathered} 449 \\ {[388]} \end{gathered}$	13：43	0． 108

【9 】	Nihonmatu City （Fukushima Prefecture）	$37^{\circ} 33.6^{\prime} \mathrm{N}$ $140^{\circ} 32.1^{\prime} \mathrm{E}$	578 $[239]$	$13: 54$	0.0442
【1 0 】	Tamura City（Fukushima Prefecture）	$36^{\circ} 25.5^{\prime} \mathrm{N}$ $140^{\circ} 35.0^{\prime} \mathrm{E}$	772 $[312]$	$14: 02$	0.0469
【1 1 】	Hitachi City （Ibaraki Prefecture）	$35^{\circ} 38.6^{\prime} \mathrm{N}$ $139^{\circ} 40.2^{\prime} \mathrm{E}$	493 $[449]$	$15: 01$	0.0503
【1 2 】	Mito City（Ibaraki Prefecture）	$35^{\circ} 24.1^{\prime} \mathrm{N}$ $139^{\circ} 27.7^{\prime} \mathrm{E}$	470 $[460]$	$15: 10$	0.0503

※ 1 ：Route of Flight
Tokyo heliport \rightarrow Nasushiobara City \rightarrow Nishigo Village \rightarrow Iwaki City（Taira Shin－nihon Heliport）\rightarrow Tamura City \rightarrow Kawamata town \rightarrow Souma City \rightarrow Date City \rightarrow Fukushima City \rightarrow Nihonmatu City \rightarrow Tamura City \rightarrow Hitachi City \rightarrow Mito City
\rightarrow Tokyo Heliport
※ 2 ：Reading in the sky above Fukushima Pref．during comprehensive disaster－preparedness drill conducted by Fukushima Pref．
in 2008 is $0.01 \sim 0.03 \mu \mathrm{~Sv} / \mathrm{h}$（measured on October 22，2008）

Monitoring data at Ibaraki prefecture (1/1)

2011/4/8 13:00		$\mu \mathrm{Sv} / \mathrm{h}$	
Date and Time	JAEA nuclear science research institute (Tokai-village in Ibarakiorefecture)	JAEA Nuclear fuel cycle engineering laboratory (Tokai-village in Ibarakiorefecture)	Yayoi in Tokyo University (Tokai-village in Ibarakiprefecture)
4/7			
0:00	1.20	0.67	0.94
1:00	1.20	0.67	0.92
2:00	1.19	0.67	1.01
3:00	1.20	0.67	0.95
4:00	1.19	0.67	0.92
5:00	1.19	0.67	0.93
6:00	1.19	0.67	0.93
7:00	1.19	0.67	0.96
8:00	1.19	0.67	0.97
9:00	1.19	0.66	0.95
10:00	1.19	0.66	0.92
11:00	1.18	0.66	1.00
12:00	1.18	0.66	0.96
13:00	1.18	0.66	1.09
14:00	1.17	0.66	1.01
15:00	1.17	0.66	1.02
16:00	1.17	0.66	1.00
17:00	1.17	0.66	0.99
18:00	1.16	0.66	0.98
19:00	1.17	0.66	1.01
20:00	1.17	0.66	1.06
21:00	1.17	$\underline{0.65}$	0.97
22:00	1.17	0.66	0.97
23:00	1.17	0.66	$\underline{0.95}$
4/8			
$0: 00$	1.17	0.65	1.00
$1: 00$	1.17	0.65	1.01
2:00	1.17	0.65	1.02
$3: 00$	1.17	0.65	1.02
4:00	1.17	0.65	$\underline{0.96}$
5:00	1.17	0.65	0.92
6:00	1.17	$\underline{0.65}$	$\underline{0.99}$
7:00	1.16	0.65	0.99
8:00	1.16	0.65	0.99
9:00	1.15	$\underline{0.65}$	$\underline{0.95}$
10:00	$\underline{1.15}$	$\underline{0.65}$	
11:00	1.15	0.64	
12:00	1.15	0.64	

※The readings are measured once every hour from March 24th.
The readings of JAEA nuclear science research institute and JAEA Nuclear fuel cycle engineering laboratory are also put on their websites in below.

JAEA nuclear science research institute
http://erms.jaea.go.jp/Chart.htm
JAEA nuclear fuel cycle engineering laboratory
http://www.jaea.go.jp/04/ztokai/kankyo/realtime/tbl_10mStPo01.html

$2011.4 .8 \quad 13.00$		$(\mathrm{Bq} / \mathrm{kg})$			
	Prefecture (City)	Drinking Water			
			I-131	Cs-134.Cs-137	Remarks
1	Hokkaido (Sapporo City)	Not Detectable		Not Detectable	
2	Aomori(Aomori City)	Not Detectable		Not Detectable	
3	Iwate(Morioka City)	0.15	(Under the reference value)	Not Detectable	.
4	Miyagi	-		-	*Refer to the website of Miyagi Pref. (http://www.pref.miyagijp/genta i/Press/PressH230315.html)
5	Akita (Akita City)	Not Detectable		Not Detectable	
6	Yamagata (Yamagata City)	Not Detectable		Not Detectabie	
7	Fukushima	-		-	*Refer to the website of Fukushima Pref. (http://www.pref.fukushima.jp/j/ index.htm)
8	lbaraki(Hitachinaka City)	1.9	(Under the reference value)	0.76 (Under the reference value)	
9	Tochigi(Utsunomiya City)	5.2	(Under the reference value)	4.0 (Under the reference value)	
10	Gunma (Maebashi City)	0.91	(Under the reference value)	Not Detectable	
11.	Saitama (Saitama City)	1.0	(Under the reference value)	0.48 (Under the reference value)	
12	Chiba(Ichihara City)	0.29	(Under the reference value)	0.53 (Under the reference value)	
13	Tokyo(Shinjuku Ward)	1.4	(Under the reference value)	0.60 (Under the reference value)	
14	Kanagawa (Chigasaki City)	1.1	(Under the reference value)	Not Dotectable	
15	Niigata(Niigata City)	0.53	(Under the reference value)	Not Detectable	
16	Toyama(Imizu City)	Not Detectable		Not Detectabie	
17	Ishikawa (Kanazawa City)	Not Detectable		Not Detectable	
18	Fukui (Fukui City)	Not Detectable		Not Detectable	
19	Yamanashi(Kofu City)	Not Detectable		Not Detectable	
20	Nagano(Nagano City)	Not Detectable		Not Detectable	
21	Gifu(Kakamigahara City)	Not Detectable		Not Detectable	
22	Shizuoka(Shizuoka City)	Not Detectable		Not Detectable	
23	Aichi (Nagoya City)	Not Detectable		Not Detectable	
24.	Mie(Yokkaichi City)	Not Detectable		Not Detectable	
25	Shiga (Otsu City)	Not Detectable		Not Detectable	
26	Kyoto(Kyoto City)	Not Detectable		Not Detectable	
27	Osaka(Osaka City)	Not Detectable		Not Detectable	
28	Hyogo(Kabe City)	Not Detectable		Not Detectable	
29	Nara (Nara City)	Not Detectable		Not Detectable	
30	Wakayama (Wakayama City)	Not Detectable		Not Detectable	
31	Tottori(Tohaku District)	Not Detectable		Not Detectable	
32	Shimane (Matsue City)	Not Detectable		Not Detactable	
33	Okayama(Okayama City)	Not Detectable		Not Detectable	
34	Hiroshima (Hiroshima City)	Not Detectable		Not Detectable	
35	Yamaguchi (Ube City)	Not Detectable		Not Detectable	
36	Tokushima (Tokushima City)	Not Detectable		Not Detectable	
37	Kagawa (Takamatsu City)	Not Detectable		Not Detectable	
38	Ehime (Yawatahama City)	Not Detectable		Not Detectable	
39	Kochi(Kochi City)	Not Detectable		Not Detectable	
40	Fukuoka (Dazaifu City)	Not Detectable		Not Detectable	
41	Saga (Saga City)	Not Detectable		Not Detectable	
42	Nagasaki(Omura City)	Not Detectable		Not Detectable	
43	Kumamoto (Uto City)	Not Detectable		Not Detectable	
44	Oita (Oita City)	Not Detectable		Not Detectable	
45	Miyazaki (Miyazaki City)	Not Detectable		Not Detectable	
46	Kagoshima(Kagoshima City)	Not Detectable		Not Detectable	
47	Okinawa (Naha City)	Not Detectable		Not Detectable	

*These figures are estimated as $1 \mathrm{~Bq} /$ liter $=1 \mathrm{~Bq} / \mathrm{kg}$
*The table was made by MEXT, based on the reports from prefectures.
*"Emergency Preparedness for Nuclear Facilities (The Nuclear Safety Commission of Japan)". The index of drinking water based on the indicator about the restriction of food intake, $1-131$: More than $300 \mathrm{~Bq} / \mathrm{kg} . \mathrm{Cs}-137:$ More than $200 \mathrm{~Bq} / \mathrm{kg}$

Readings at Monitoring Post out of 20 Km Zone of Fukushima Dai－ichi NPP

OMonitoring Outputs by MEXT			As of 13：00 April 8， 2011 Ministry of Education，Culture， Sports，Science and Technology （MEXT） ＊ 2 measured by ionization chamber type survey meter ＊ 3 measured by NaI scintillator detector ＊ 4 variation range of the measuring data in	
Monitoring Post （length from NPP）	Monitoring Time	Reading（unit ：$\mu \mathrm{Sv} / \mathrm{h}$ ）	Weather	－Reading by
Reading Point 【1】（About60KmNorthwest）	2011／4／8 8：31	$0.8{ }^{* 2}$	No Rain	MEXT
Reading Point 【2】（About55KmNorthWest）	2011／4／89：10	3.5 ＊	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point［3］（About45KmNorthWest）	2011／4／8 10：20	2.8 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【4】（About50KmNorthWest）	2011／4／8 9：29	2.3 ＊2	No Rain	MEXT
Reading Point 【5】（About45KmNorth）	2011／4／8 11：03	0.5 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point［6】（About35KmNorth）	2011／4／8 11：25	0.6 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point 【7】（About $35 \mathrm{KmNorth)}$	2011／4／8 11：39	0.7 ＊2	No Rain	JAEA（Japan Atomic Energy Agency）
Reading Point【10】（About $40 \mathrm{KmNorthWest)}$	2011／4／8 9：43	1.7 ＊2	No Rain	MEXT
Reading Point【11】（About40KmNorthWest）	2011／4／89：54	1.9 ＊2	No Rain	MEXT
Reading Point［12］（About40KmWest）	2011／4／8 10：32	0.7 ＊2	No Rain	MEXT
Reading Point【13】（About $40 \mathrm{KmWest)}$	2011／4／8 10：39	1.0 ＊2	No Rain	MEXT
Reading Point 【14】（About35KmWest）	2011／4／8 10：49	0.8 ＊2	No Rain	MEXT
Reading Point【15】（About $35 \mathrm{KmWest)}$	2011／4／8 10：59	1.3 ＊2	No Rain	MEXT
Reading Point【20】（About45KmNorthWest）	2011／4／8 10：18	1.3 ＊2	No Rain	MEXT

* 2 measured by ionization chamber type survey meter
* 3 measured by Nal scintillator detector
* 4 variation range of the measuring data in

Monitoring Post (length from NPP)	Monitoring Time	Reading (unit : $\mu \mathrm{Sv} / \mathrm{h}$)	Weather	Reading by

Readings of integrated Dose at Monitoring Post out of 20 Km Zone of Fukushima Dai-ichi NPP
As of 10:00 April 8, 2011
Ministry of Education. Culture, Sports, Science and Technology (MEXT)

notes: The parenthetic figures in the column "Integrated Dose" indicates the values of readings of integrated dose devided by accumulated time (z / c).

- Reading by MEXT
- The figures of 0.0 in the column "Date and Time (last monitoring)" indicate that there was new instlation in the area

From:	OSTO1 HOC
Sent:	Friday, April $08,20117: 58$ PM
To:	LAO8 Hoc; LIA06 HoC
Subject:	FW: request to NRC to facilitate detection measurements

FYI

From: Virgilio, Martin
Sent: Friday, April 08, 2011 6:26 PM
To: Zimmerman, Roy; Leeds, Eric
Cc: OST01 HOC; Weber, Michael
Subject: RE: request to NRC to facilitate detection measurements.

Roy

I would tend to agree this is either an NRR or a Regional issue. Although I must confess that I do not understand what they are asking for.

Marty

From: Zimmerman, Roy
Sent: Friday, April 08, 2011 5:43 PM
To: Leeds, Eric; Virgilio, Martin
Cc: OST01 HOC; Weber, Michael
Subject: RE: request to NRC to facilitate detection measurements.
Would suggest this be handled by the line organization, pis advise, the

From: OST01 HOC
Sent: Friday, April 08, 2011 5:09 PM
To: Zimmerman, Roy
Subject: FW: request to NRC to facilitate detection measurements.

FYI.

From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Friday, April 08, 2011 4:27 PM
To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03. HOC
Subject: FW: request to NRC to facilitate detection measurements.

From: NITOPS[SMTP:NITOPS@NNSA.DOE.GOV]
Sent: Friday, April 08, 2011 4:26:34 PM
To: HOO Hoc; Hoc, PMT12
Subject: FW: request to NRC to facilitate detection measurements.
Auto forwarded by a Rule
$x+x / 166$

NITOPS,

Lon Horiuchi (CONTR)

From: Tilden, Jay
Sent: Friday, April 08, 2011 4:20 PM
To: NITOPS
Cc: Georgevich, Vladimir (CONTR); Aoki, Steven; 'Joseph.Rivers@nrc.gov'
Subject: RE: request to NRC to facilitate detection measurements.

NITOPS - please pass on to NRC Operations Center for action.

NRC Ops,

We are requesting your help with facilitating access to a reactor for three of our scientist to calibrate diagnostic equipment at one of the nuclear power plants listed below. We would like this radiation diagnostic team to be given permission to enter one of the US reactor plants to take radiation measurements for the purpose of calibrating the instrumentation in the presence of an operating reactor with a realistic shielding and operational core geometry configurations that are most similar to the reactors in Japan. Our goal is to validate whether this equipment could be used at the Fukushima NPP and determine additional details regarding damaged core geometry.

We need NRC's help in getting appropriate permissions. We have identified four reactors in the US that fit that profile. They are ranked 1-4 in terms of convenience for our detection folks to get to them. These reactors are:

1) Cooper-Nebraska
2) Palo-lowa
3) Oyster Creek-New Jersey
4) Nine Mile Point-New York

The diagnostic team would comprise of 3 Q cleared individuals with appropriate Radiation Worker Training. We would welcome help from hosting plant by providing us with the following:

1. 2 day access to various points in and around the plant to calibrate equipment (a list could be compiled if needed)
2. Escort by knowledgeable Facilities Engineering Tech Rep who knows the facility and its materials, thicknesses, etc.
3. Plant POC contact info to work out the details prior to deployment.

Vlad Georgevich is the POC/coordinator for this request. He can be contacted at Fell (b)(6)

[^11]| From: | Brenner, Eliot |
| :--- | :--- |
| To: | Hayden, Elizabeth |
| Subject: | Fw: Action: Please provide by noon Monday April 11 -Office POC to support Ops Center |
| Date: | Saturday, April 09, 2011 9:34:51 PM |
| Attachments: | 04082011 Memo to EDO.Operations Center Staffing Reduction Japan Event.odf |
| Importance: | High |

Fyi

Eliot Brenner
Director, Office of Public Affairs
US Nuclear Regulatory Commission
Protecting People and the Environment
3014158200
C:(b) (6)
Sent from my Blackberry

From: Evans, Michele
To: Leeds, Eric; Moore, Scott; Haney, Catherine; Kokajko, Lawrence; Johnson, Michael; Sheron, Brian; Mamish, Nader; Schmidt, Rebecca; Brenner, Eliot
Cc: Booger, Bruce; Ruland, William; Lewis, Robert; Flanders, Scott; Zimmerman, Roy; Uhle, Jennifer; Diane, Margaret; Hayden, Elizabeth; Powell, Amy; Wiggins, Jim; Dyer, Jim; Carpenter, Cynthia; Tracy, Glenn; Cohen, Miriam; Stewart, Sharon; McDermott, Brian; Morris, Scott; Correia, Richard; Marshall, Jane; Holahan, Patricia; FOIA Response.hoc Resource
Sent: Sat Apr 09 16:32:31 2011
Subject: Action: Please provide by noon Monday April 11 - Office POC to support Ops Center
Office Directors (NRR, NMSS, FSME, NRO, RES, OIP, OCA, OPA):
As described in the attached document, the Chairman has approved reduction of the Ops Center staffing for the Japanese event. We intend to implement this reduced staffing level as of day shift on Monday $4 / 11$ at 7 am . At that point in time, the goal is to reduce to 6 individuals on each shift - ET director, two RST representatives, one PMT representative, one LT representative, and an ET admin assistant.

We are defining the roles and responsibilities of these positions and considering changes to the work we are doing in the Ops Center given the reduction in staff. For example, we will be producing shorter, less frequent status updates, participating in less conference calls, and providing less briefings.

In order to continue to provide high quality support to the site team in Japan, we do expect to provide more requests for action to the line organization. In order to control these requests within each office, please provide an office point of contact (and alternate if deemed necessary), to me by noon on Monday, April 11.

Thank you for your continued support of this effort.
Michele
Michele Evans
Acting Deputy OD, NSIR

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

April 8, 2011

MEMORANDUM TO:

FROM:

SUBJECT:
R. William Borchardt

Executive Director for Operations

Gregory B. Jaczko

APPROVAL OF OPERATIONS CENTER STAFFING REDUCTION IN SUPPORT OF THE JAPAN EVENT

The Operations Center has been staffed around-the-clock with an event response team since March 11, 2011, responding to the event at the Fukushima Daiichi nuclear power facility in Japan. Operations Center staff members are supporting the site team, supporting NRC senior management, and maintaining liaison with other federal agencies responding to the event.

I have been briefed by the staff and understand their proposal recommending a reduction in the Operations Center staffing in response to the event. Provided that adequate support to the site team can be maintained, I approve the staff's recommendation to reduce the Operations Center response team to one team directed by a member of the Executive Team (ET), and consisting of two members from the Reactor Safety Team (RST), one member of the Protective Measures Team (PMT), and one member of the Liaison Team (LT) to provide immediate support to the site team, and one assistant to the ET director. The team should be supplemented as necessary based on workload, and line organizations should be tasked as a high priority for support as needed. The team should be staffed around-the-clock as long as the site team is staffed.

Additionally, the site team should be staffed to a level recommended by the site team Director in order to provide adequate support to the U.S. Ambassador and Government of Japan. I approve the staff's recommendation to extend tour lengths for members of the site team to three weeks in order to provide better continuity in their liaison efforts.

```
cc: Commissioner Svinicki
    Commissioner Apostolakis
    Commissioner Magwood
    Commissioner Ostendorff
```

From:
Sent:
To:
Subject:

HOO Hoc < HOO.Hoc@nrc.gov>
Saturday, April 09, 2011 9:27 AM
LIAO HOC; OST01 HOC; OST02 HOC; OST03 HOC
FW: request to NRC to facilitate detection measurements.

From: NITOPS[SMTP:NITOPS@NNSA.DOE.GOVI
Sent: Saturday, April 09, 2011 9:26:59 AM
To: Hoc, PMT12; PMT02 Hoc; HOO Hoc
Cc: NITOPS
Subject: FW: request to NRC to facilitate detection measurements.
Auto forwarded by a Rule

PM,

Please be advised of the e-mail below.

```
Perry
Nuclear Incident Team (NIT)
Office of Emergency Response (NA-42)
National Nuclear Security Administration
U.S. Department of Energy
nitops@nnsa.doe.gov
nit@doe.sgov.gov
202-586-8100
From: Tilden, Jay
Sent: Friday, April 08, 2011 4:20 PM
To: NITOPS
Cc: Georgevich, Vladimir (CONTR); Aoki, Steven; 'Joseph.Rivers@nrc.gov'
Subject: RE: request to NRC to facilitate detection measurements.
```

NITOPS - please pass on to NRC Operations Center for action.

NRC Ops,

We are requesting your help with facilitating access to a reactor for three of our scientist to calibrate diagnostic equipment at one of the nuclear power plants listed below. We would like this radiation diagnostic team to be given permission to enter one of the US reactor plants to take radiation measurements for the purpose of calibrating the instrumentation in the presence of an operating reactor with a realistic shielding and operational core geometry configurations that are most similar to the reactors in Japan. Our goal is to validate whether this equipment could be used at the Fukushima NPP and determine additional details regarding damaged core geometry.

We need NRC's help in getting appropriate permissions. We have identified four reactors in the US that fit that profile. They are ranked 1-4 in terms of convenience for our detection folks to get to them. These reactors are:

1) Cooper-Nebraska
2) Palo-lowa

$$
x x+168
$$

3) Oyster Creek-New Jersey
4) Nine Mile Point-New York

The diagnostic team would comprise of 3 Q cleared individuals with appropriate Radiation Worker Training. We would welcome help from hosting plant by providing us with the following:

1. 2 day access to various points in and around the plant to calibrate equipment (a list could be compiled if needed)
2. Escort by knowledgeable Facilities Engineering Tech Rep who knows the facility and its materials, thicknesses, etc.
3. Plant POC contact info to work out the details prior to deployment.

Vlad Georgevich is the POC/coordinator for this request. He can be contacted at cell(b)(6)

Jay A. Tilden
Japan Logistics Coordinator \&
Dir.
NA-47, NNSA
202-586-3165

From:	Leeds, Eric
Sent:	Saturday, April 09, 2011 10:27 AM
To:	Zimmerman, Roy; Virgilio, Martin
Cc:	OST01 HOC; Weber, Michael; ET05 Hoc; Giitter, Joseph; Boner, Bruce; Nelson, Robert;
	Howell, Art
Subject:	Re: request to NRC to facilitate detection measurements.

NRR will coordinate with the regions to make it happen. We're all over it.

From: Zimmerman, Roy
To: Virgilio, Martin; Leeds, Eric
Cc: OST01 HOC; Weber, Michael; ET05 Hoc
Sent: Fri Apr 08 18:34:05 2011
Subject: RE: request to NRC to facilitate detection measurements.
I'd suggest my good friend Eric take this one and his staff work with NNSA and then regions \qquad if he is agreeable. However, If preferred, we will work it from the Ops Center.

From: Virgilio, Martin
Sent: Friday, April 08, 2011 6:26 PM
To: Zimmerman, Roy; Leeds, Eric
Cc: OST01 HOC; Weber, Michael
Subject: RE: request to NRC to facilitate detection measurements.

Roy

I would tend to agree this is either an NRR or a Regional issue. Although I must confess that I do not understand what they are asking for.

Marty

From: Zimmerman, Roy
Sent: Friday; April 08, 2011 5:43 PM
To: Leeds, Eric; Virgilio, Martin
Cc: OST01 HOC; Weber, Michael
Subject: RE: request to NRC to facilitate detection measurements.
Would suggest this be handled by the line organization, ils advise, th x

From: OSTO1 HOC
Sent: Friday, April 08, 2011 5:09 PM
To: Zimmerman, Roy
Subject: FW: request to NRC to facilitate detection measurements.

FYI.

From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
Sent: Friday, April 08, 2011 4:27 PM

To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03 HOC
Subject: FW: request to NRC to facilitate detection measurements.

From: NITOPS[SMTP:NITOPS@NNSA.DOE.GOV]
Sent: Friday, April 08, 2011 4:26:34 PM
To: HOO Hoc; Hoc, PMT12
Subject: FW: request to NRC to facilitate detection measurements.

Auto forwarded by a Rule

NITOPS,

Lon Horiuchi (CONTR)

From: Tilden, Jay
Sent: Friday, April 08, 2011 4:20 PM
To: NITOPS
Cc: Georgevich, Vladimir (CONTR); Aoki, Steven; 'Joseph.Rivers@nrc.gov'
Subject: RE: request to NRC to facilitate detection measurements.

NITOPS - please pass on to NRC Operations Center for action.

NRC Ops,

We are requesting your help with facilitating access to a reactor for three of our scientist to calibrate diagnostic equipment at one of the nuclear power plants listed below. We would like this radiation diagnostic team to be given permission to enter one of the US reactor plants to take radiation measurements for the purpose of calibrating the instrumentation in the presence of an operating reactor with a realistic shielding and operational core geometry configurations that are most similar to the reactors in Japan. Our goal is to validate whether this equipment could be used at the Fukushima NPP and determine additional details regarding damaged core geometry.

We need NRC's help in getting appropriate permissions. We have identified four reactors in the US that fit that profile. They are ranked 1-4 in terms of convenience for our detection folks to get to them. These reactors are:

1) Cooper-Nebraska
2) Palo-lowa
3) Oyster Creek-New Jersey
4) Nine Mile Point-New York

The diagnostic team would comprise of 3 Q cleared individuals with appropriate Radiation Worker Training. We would welcome help from hosting plant by providing us with the following:

1. 2 day access to various points in and around the plant to calibrate equipment (a list could be compiled if needed)
2. Escort by knowledgeable Facilities Engineering Tech Rep who knows the facility and its materials, thicknesses, etc.
3. Plant POC contact info to work out the details prior to deployment.

Vlad Georgevich is the POC/coordinator for this request. He can be contacted at $[$ cell $[$ (b)(6) $]$

Jay A. Tilden
Japan Logistics Coordinator \&
Dir.
NA-47, NNSA
202-586-3165

From:

Sent:
To:
Cc:

LIA02 Hoc
Saturday, April 09، 2011 3:32 PM
LIA02 Hoc; Mamish, Nader, Doane, Margaret
Abrams, Charlotte; Wittick, Brian; Afshar-Tous, Mugeh; 'ShafferMR@state.gov'; Bloom, Steven; Schwartzman, Jennifer; Tobin, Jennifer; Mayros, Lauren; Jones, Andrea; English, Lance; Smiroldo, Elizabeth; Young, Francis; Henderson, Karen; Ramsey, Jack; Shepherd, Jill; Baker, Stephen; Emche, Danielle; Fragoyannis, Nancy; LIA03 Hoc; Stahl, Eric; Owens, Janice; Fehst, Geraldine; Foggie, Kirk; Breskovic, Clarence; LA08 Hoc; LA06 Hoc OUO: Transition Report-Apr 9-6:30-1530

Subject:

TRANSITION REPORT FOR APRIL 9, 0630-1530

Mugeh to Keri

Updates during Shift

- Fourth Team to Japan. Members for team\#4 will leave this week. Brian Wittick left on 4/9; Steve Garchow (RIV), Heather Gepford (RII), Tony Huffert (RES), Jeff Mitman (NRR), Carl Moore (RIII), and Steve Reynolds (RIII) will leave on $4 / 12$. Additional travelers may be identified to leave on $4 / 14$. USAID is the funding source. Action: Added Team \#4 list of travelers and emergency contact information to both the Japan Traveler List, and Japan Traveler Contact/Emergency contact information file. Both files are located on LIA02 desktop.
- Coordination of IAEA and U.S. Efforts. While the IAEA's Incident and Emergency Centre (IEC) has not agreed to be a formal "clearinghouse" (i.e., actively reaching out to all IAEA member states requesting that all assistance efforts be coordinated through the IEC), they are tracking all offers for assistance via a database that was posted on ENAC last week. For the effort to be effective, they need input from countries, and they do not have anything from the United States. The State Department is the lead in the "Consortium." INPO is the lead on equipment issues. Although US Embassy Tokyo had established a tracking system to compile assistance requests from the Japanese and offers from USG entities, INPO had been separately tracking equipment requests (see INPO item below). The Embassy and INPO tracking have been merged. On April $5^{\text {th }}$, LT received the latest equipment request matrices from USAID, originated by the Tokyo embassy. During April $5^{\text {th }}$ conference call, OMB indicated to LT that they intend to start approving all finances for equipment purchases for Japan.
- Mailbox size limits. Team requested verification that mailboxes had size limits increased due to difficulties sending emails. On $4 / 7$ received response from Joe Turner/OIS that email box sizes for those in Japan are being monitored daily for max capacity. Action: Notified Joe Turner about Team\#4 travelers. Notify Joe Turner as new travelers are identified to leave for Japan.
- Plant Status Updates. James Whitney, NSIR has requested that all of the "Plant Status" news releases on ENAC be sent to him to assist other government agencies in their analysis of the situation. Action: Send james.whitney@nrc.gov "plant status updates" on ENAC as they come in (sent during day shift on 4/9).
- TEPCO Earthquake Info. Vince Holahan, the NRC staff member embedded with PACCOM, has requested to be on the distribution list for the Japanese earthquake info sent from TEPCO. Action: Please forward these emails to Vince. Holahan@nrc.gov as they are received.
- Request to Share RST Document with Foreign Governments: The Governments of Canada, the UK and Finland have requested that the RST share their "Stability Document," which they have discussed during their daily call with these governments. The request was forwarded to the ET, who is assessing what information is contained in the document before deciding on whether or not to share the document. The document is still in draft (awaiting interagency comments). PMT was given permission to read the draft document to conference call members. Release of this document will be addressed as part of the process being developed to address the release of a document to

NY Times. Action: Continue to follow. UPDATE: A copy of the RST Stability Document was released to Mark and he was instructed not to release it to any other organization and that it was for his use only.

- 1 Pager for Margie's Morning Meeting - Danielle/Eric requested that the draft be sent to them to add to it overnight. They will send back updates via email. Action: Work off of the draft sent back from them. If they don't send back any updates overnight, then work off of the draft completed.

Future Actions/OPEN ITEMS

- News Reports on IAEA "Recommendation" to Extend Evacuation Zone: News media is reporting that the IAEA has called on Japan to extend the evacuation zone around Fukushima, based on abnormal levels of radiation detected in a village outside the current evacuation zone. This was neither a special announcement nor a formal recommendation from the IAEA. Instead, the reports result from information provided at the March 30 IAEA technical briefing, at which DDG Denis Flory reported on the location of the abnormal radiation levels and noted that they were located outside the evacuation zone. When asked a direct question about whether the IAEA was recommending that Japan extend the zone, DDG Flory stated only that the IAEA was encouraging the "counterpart" to "carefully assess the situation." Full summary of technical briefing here: http://iaea.org/newscenter/news/tsunamiupdate01.html, relevant paragraph is the fourth paragraph under item \#2, "Radiation Monitoring." Jen Schwartzman verified with Mark Shaffer that no formal announcement has come from IAEA in this regard.
- Deputies Committee Decisions and Action Items: SECY has been sending summaries of the Deputies Committee meetings as they are received and the LT Director/Coordinator have been tracking any actions pertinent to the LT. There are currently no international liaison tasks resulting from these meetings but the LT Director will inform us if this changes. Action: Mark Shaffer would like to see the summaries.
- Translators. $24 / 7$ translation coverage in the HOC has been suspended. Mike Call who is in Japan until $4 / 16$ speaks Japanese. At HQ there is a Japanese foreign assignee and other options available. Also, Tony Nakanishi may be available to provide translation assistance. USAID is paying for an NRC-dedicated translator in Tokyo. If we need items translated and cannot get assistance from within NRC, we can rely on them. Action: If in need of USAID translation support, fax the document to $+81-3-3224-5538$ and send a scanned (PDF) copy to the Japan site team as a backup.
- INPO: All equipment requests are now going through INPO. They are consolidating all available information. Contact information for INPO is 770-644-8118 or email at inpoercassistance@inpo.org.
- NRC Health Unit request: The NRC team members were given KI before they left. At this time the guidance is to not take the KI while on duty in Tokyo. However, due to the still-fluid nature of the environmental hazards posed by radioactive isotopes, there is still the possibility that KI could be required at some point. Should it become necessary to have the NRC team take the KI, the LIA02/LIA03 international liaisons would be responsible for receiving the advice from ADM/Dr. Cadoux and to get the information to the team immediately.
- Daily calls with UK/France/Canada. Calls will take place at 0930 with RST and PMT to discuss reactor-related and radiation-related information, respectively, with regulatory representatives from these three countries. Everyone should call into the HOO to be connected. Finland and the IAEA may also participate on an intermittent basis. The new number to call into is $(b)(6) \ldots$ and the pin is $(b)(6)$ NOTE: There is no call on the weekends.
- Daily NRC Japan Team - RST/PMT Call. The time of the call varies. As of $4 / 5$ it was 2100 with RST and PMT have been notified of the call and international liaison should plan on participating (OIP staff in Japan don't necessarily participate). All parties should call into 301-816-5120 and use pass-codd $($ (b)(6)
- Laptop shuffling in Japan. Some laptops (the blue-top ones) still have difficulty printing so the ground team has requested the assistance of CSC in "re-assigning" the laptops that work well to the members of the $3^{\text {rd }}$ team (since the $2^{\text {nd }}$ team members leave Japan by 4/13). ACTION: No action for OIP but we may be requested to assist if there are any difficulties. We should also note that if future teams go to Japan, they should take non-blue-top or personal laptops to make it easier to connect to the Embassy printer.
- Update Japan Traveler Information Document on LIA02 with Return Team info - from LT Director please update the traveler table as NRC Japan Travel Team members return to U.S. ACTION: Await reply emails from returned travelers and update the Document on LIA02.
- Announcement of French nuclear safety meeting in May: Reuters is reporting that Sarkozy has announced plans for a high-level meeting of "G20 nuclear industry officials" in Paris in May 2011 "to define international nuclear safety standards." The article states that Sarkozy "declared this [meeting] would lay the groundwork for the IAEA high-level meeting on June 20-24. We are seeking additional information on this announcement from official channels. Message sent to Eric at 0400 inquiring whether he has heard anything via his French contacts (noting that ASN will be meeting with the NRC Team in the next day or two). Report any new information learned to OIP management and ET. The policy to delay meeting will be articulated by DOS high level representatives at a G-20 meeting in Abu Dhabi the week of April 4. The French announced their intent to convene this meeting, and stated that the Japanese Prime Minister is supportive. ACTION: OIP will continue to interact with interagency as appropriate and update ET.

DAILY ACTIONSIREMINDERS

- International updates must be sent to LIA07 (to be put in the HOO Status Update) before the end of every shift as well as posted on the LT status board (different than the LT Log).
- The 3-12 PM shift should try and work on the one pager and the 7 AM - 3 PM should finalize and send to Margie. Please include information from email from Danielle and Eric. Margie reminds us that the write-up should not contain technical details, which are already captured in other reports, and should be marked "Official Use Only Foreign Government Information."
- Both shifts are responsible for sending all emails to the FOIA email address. Open new email, copy previous day's emails as an attachment and send to FOIA Response.hoc@nrc.gov. Also it would be helpful to mark the red flag on the right to show which emails were sent.
- The international team should sit in on calls with the ET and team leader (Chuck or Dan) to take notes and provide a short summary of what was discussed via email to OIP reps on Japan Team. The Chairman's briefing has been moved to 0800 while he is in Vienna, April 4-6, and will involve a three way call with Casto, ET, and Chairman. [Japan 13 hours ahead, Vienna 6 hours ahead]
- Prior to any international call you set up, please make sure you contact the HOOs to let them know that you are going to have an international call.
- Reminder to Keep Mark Shaffer in-the-loop at shaffermr@state.gov, regardless of time of day, regardless of whether he is in the office or asleep. Especially cc Mark on all communication to IAEA.
- Reminder to keep ISN/NESS on the distribution list for the NRC Japan situation reports ISN-NESS-DL@state.gov.
- Keep RST and PMT updated on who is currently in Japan on NRC team.
- Please make sure to keep the NRC Japan travelers list updated (check the last updated date) and post a new copy on LIA02 cabinet as changes occur.
- OIP has been tasked with providing IAEA ENAC daily summary to Commissioner's TAs and EDO POC. OIP is also being asked to place a cover page on this report indicating the sensitivity of the information. The document will be provided by email.

From:	OSTO1 HOC
Sent:	Sunday, April 10, 2011 5:10 AM
To:	RSTO1 Hoc; PMT01 Hoc; PMT02 Hoc; PMT11 Hoc
Subject:	FW: Radiation data by MEXT
Attachments:	(Japanese)20110410_13.pdf; (unofficial)(Japanese)20110410_13with lat_long.pdf;
	(Japanese)20110410_14.pdf

-----Original Message-----
From: HOO Hoc
Sent: Sunday, April 10, 2011 5:08 AM
To: LIA07 Hoc; OST01 HOC; OST02 HOC; OST03 HOC
Subject: FW: Radiation data by MEXT

- --Original Message-----

From: eda@mext.go.jp [mailto:eda@mext.go.jp]
Sent: Sunday, April 10, 2011 3:46 AM
To: $(b)(6)$
(b)(6)

Subject: Radiation data by MEXT

Dear Sir,

Please see attached the document.

Sincerely yours,
Kei EDA
EOC, Ministry of Education,Culture, Sports, Science \& Technology (MEXT), Japan

福島第一原子力発電所の20km以遠のモニタリング結果について

○文部科学省が集計した結果 注）太下線データが今回追加分
＊ 1 GM（ガイガーミューラー計数管）における値
＊2 電離箱における値
＊ 3 Nal（ヨウ化ナトリウム）シンチレータにおける値
＊ 4 測定時間内における測定値の変動範囲

場所（福島第1発電所からの距離）	測定日時	数値（マイクロシーベルト／時） （紀載のない限り屋外）	測定位置				測定位置 の備考	天候	実施者
測定エリア【1】（約60km北西）	4月10日8時30分	0.3 ＊	$\mathrm{N}:$	3740°	44 ${ }^{\text {2 }}$	$\frac{12.6]^{\prime \prime}}{02.9)^{\prime \prime}}$	$\begin{aligned} & 20110330 \\ & \text { 確認 } \\ & \hline \end{aligned}$	降雨なし	日本原子力研究開発機構
測定エリア【2】（約55km北西）	4月10日8時53分	2.6 ＊	N：	$\begin{array}{r} 37^{\circ} \\ 140^{\circ} \end{array}$	$\begin{aligned} & 41 \\ & 33^{\prime} \end{aligned}$	$\begin{aligned} & 12.7^{\prime \prime \prime} \\ & 29.3^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 20110330 \\ & \hline \text { 碓認 } \\ & \hline \end{aligned}$	降雨なし	日本原子力研究開発機構
測定エリア【3】（約45km北西）	4月10日9時47分	2.9 ＊2	$\mathrm{N}:$	$\begin{array}{r} 37^{\circ} \\ 140^{\circ} \\ \hline \end{array}$	$\begin{aligned} & 45^{\prime} \\ & 44^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 40.5 " \prime \prime \\ & 19.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 20110330 \\ \hline \text { 碓鹪 } \\ \hline \end{array}$	降雨なし	日本原子力研究開発機構
測定エリア【4】（約50km北西）	4月10日9時14分	1.9 ＊	N：	3740 ${ }^{\circ}$	39.		$\begin{array}{\|l\|} \hline 20110330 \\ \hline \text { 碓認 } \\ \hline \end{array}$	降雨なし	文部科学省
測定エリア【5】（約45km北）	4月10日10時24分	0.6 ＊2	N：	3740°	47，		$\begin{aligned} & 20110330 \\ & \hline \text { 碓認 } \\ & \hline \end{aligned}$	降雨なし	日本原子力研究開発機構
測定エリア【6】（約35km北）	4月10日10時49分	1.2 ＊	N：	3740°	${ }^{42} 5$.	09．5 04.6	$\begin{aligned} & 20110330 \\ & \hline \text { 碓認 } \\ & \hline \end{aligned}$	降雨なし	日本原子力研究開発機構
澌定エリア 【71（絇 35 km 北）	4月10日11時01分	$0.7{ }^{+2}$	N：	1470 ${ }^{\circ}$	41，	49，0］${ }^{\text {［1］}}$		隆雨なし	且本原子力研究開発塂樓
測定エリア【10】（約40km北西）	4月10日9時27分	1.6 ＊	N：	140，	36.			降雨なし	文部科学省
測定エリア【11】（約40km北西）	4月10日9時35分	1.9 ＊2	N：	$377^{\circ}{ }^{\circ}$	34.	00．0］	$\begin{array}{\|l\|} \hline 20110330 \\ \hline \text { 难認 } \\ \hline \end{array}$	降雨なし	文部科学省
利定エリア【12】（約40km西）	4月10日11封15分	120－	N：	3740°	25．${ }^{3}{ }^{\text {a }}$	$\frac{53.6}{44.2}{ }^{-1}$	$\begin{aligned} & 20110330 \\ & \hline \text { 醀置 } \\ & \hline \end{aligned}$	隆雨なし	文部科学省
測定エリア［13］（楼40km西）	4月10日11時23公	1．6＊	N：	3740 ${ }^{\circ}$	26，	$\frac{21.5}{20.7}$	$\begin{aligned} & 20110330 \\ & \hline \text { 篧致 } \\ & \hline \end{aligned}$	䧝雨なし	文部科学省
測定エリア【141（粷35km西）	4R10日11封29公	0.8 ＊	N：	$\frac{137}{140}$	26 38			隆雨なし	文部科学省
測定エリア［15】（絇35km西）	4月10日11時42公	1.5 ＊	N：	3740．	26^{\prime}	54．0 ${ }^{2}$	$\begin{aligned} & 20110330 \\ & \hline \text { 暹豇 } \\ & \hline \end{aligned}$	䧾雨なし	文部科堂省
測定エリア【20】（約45km北西）	4月10日9時58分	1.6 ＊2	N：	3740 ${ }^{\circ}$	29.	24．2 ${ }^{\text {²，}}$	$\begin{array}{\|l\|} 20110330 \\ \hline \text { 碓認 } \\ \hline \end{array}$	降雨なし	文部科学省
測定エリア［21］（約30km西北西）	4月10日10時24分	5.9 ＊	$\mathrm{N}:$	3740°	$30^{\circ}{ }^{\circ}$	28．7＂${ }^{\text {08．7＂}}$	$\begin{array}{\|l\|} \hline 20110330 \\ \hline \text { 碓認 } \\ \hline \end{array}$	降雨なし	文部科学省
測定エリア【22］（約35km西北西）	4月10日10時12分	2.0 ＊2	N：	3740°	$30^{\circ}{ }^{\circ}$	41．3 $28.8{ }^{\prime \prime}$	$\begin{aligned} & 20110330 \\ & \hline \text { 確認 } \end{aligned}$	降雨なし	文部科学省

H23．4．12 13：00

※このデータは，表記の3カ所における空間線量率を1時間毎に計測したもの。日本原子力研究開発機構原子力科学研究所及び日本原子力研究開発機畨㧡燃料サイクルエ学研究所のデータは，それぞれ以下 のホームページでも掲載されている。

日本原子力研究開発機構原子力科学研究所

http：／／erms．jaea．go．jp／Chart．htm
日本原子力研究開発機粮核燃料サイクルエ学研究所
http：／／www．jaea．go．jp／04／ztokai／kankyo／realtime／tbl＿10mStPo01．html

福島第一原子力発電所の20km以遠のモ：ニタリング結果について

平成23年4月12日 13 時 00 分現在文 部 科 学 省

○文部科学省が集計した結果

＊ 1 GM（ガイガーミューラ一計数管）における値 ＊ 2 電離箱における値
＊ 3 NaI （ヨウ化ナトリウム）シンチレータにおける値 ＊ 4 測定時間内における測定値の変動範囲

測定場所	測定日時	$\begin{gathered} \text { 数値 } \\ \text { (マイクロシーべハ時) } \\ \text { (記載のない限り屋外) } \end{gathered}$	天候	実施者
測定エリア【84】いわき市三和町蔗㙁	4月12日10時57分	0.6 ＊2	降雨なし	日本原子力研究開発機構
測定エリア【85】福島市荒井原宿	4月12日6時00分	0.3 ＊2	降雨なし	防衛省
測定エリア【86】群山市大洳町長在工門林	4月12日6時00分	1.2 ＊2	降雨なし	防衛省
測定エリア【87】双菜矿川内村上川内花／内	4月12日6時00分	$1.1{ }^{* 2}$	降雨なし	防衛省

福島県葛尾村などの走行モニタリング結果

単位：マイクロシーベルト毎時

From:	LIAO2 Hoc
Sent:	Sunday, April 10, 2011 4:07 PM
To:	LIA08 Hoc; LA03 Hoc; UA10 Hoc
Subject:	FW: OUO: Transition Report April 10, 0600-1530

From: LIA03 Hoc
Sent: Sunday, April 10, 2011 4:07 PM
TO: LIA08 Hoc; LIA02 Hoc; LIA10 Hoc
Subject: FW: OUO: Transition Report April 10, 0600-1530

From: LIA02 Hoc
Sent: Sunday, April 10, 2011 4:07 PM
To: Mamish, Nader; Doane, Margaret; LIA03 Hoc
Cc: Abrams, Charlotte; Wittick, Brian; Afshar-Tous, Mugeh; 'ShafferMR@state.gov'; Bloom, Steven; Schwartzman, Jennifer; Tobin, Jennifer; Mayros, Lauren; Jones, Andrea; English, Lance; Smiroldo, Elizabeth; Young, Francis; Henderson, Karen; Ramsey, Jack; Shepherd, Jill; Baker, Stephen; Emche, Danielle; Fragoyannis, Nancy; LIA03 Hoc; Stahl, Eric; Owens, Janice; Fehst, Geraldine; Foggie, Kirk; Breskovic, Clarence; LIA08 Hoc; LIA06 Hoc
Subject: OUO: Transition Report April 10, 0600-1530

-OFPTCTALUSEONLY

TRANSITION REPORT FOR APRIL 10, 0630-1530
 Elizabeth to Keri

Updates during Shift

- A draft paper prepared by the Site Team's Michel Hay, entitled "NRC Response to Fukushima Event," (subject line "Global Assessment") was forwarded to a number of stakeholders. LIA02 provided edits, then forwarded the draft to International Liaisons for their review and comment. This document does not yet include RST input, but that is in the works. Action: track comments and status of report. Send IAEA Liaison final draft.
- Fourth Team to Japan. Members for team\#4 will leave this week. Brian Wittick left on 4/9; Steve Garchow (RIV), Heather Gepford (RII), Tony Huffert (RES), Jeff Mitman (NRR), Carl Moore (RIII), and Steve Reynolds (RIII) will leave on $4 / 12$. A heads up was sent from Karen Jackson on $4 / 10$ noting that USAID was not working over the weekend, and normally needs 4 days to process travel. USAID is the funding source. Action: Contact USAID and tell them (as per request from Marty Virgilio) that all 6 travelers who are yet to be departed are to be considered "emergent" (sic) and to please expedite their travel. Monitor USAID for response; inform team\#4 travelers of results. Added Team \#4 additional emergency contact information to both the Japan Traveler Contact/Emergency contact information file. Was contacted by several of the travelers with checklist questions and general info, esp. related to arranging travel. Put them in touch with Mary Carter of OIP and others who can help coordinate and answer questions. Forwarded requests for blackberries to Karen Jackson; they are being processed. Also update Team \#4 grid as requested traveler information comes in. Other travelers may emerge.
- Coordination of IAEA and U.S. Efforts. While the IAEA's Incident and Emergency Centre (IEC) has not agreed to be a formal "clearinghouse" (i.e., actively reaching out to all IAEA member states requesting that all assistance efforts be coordinated through the IEC), they are tracking all offers for assistance via a database that was posted on ENAC last week. For the effort to be effective, they need input from countries, and they do not have anything from the

United States. The State Department is the lead in the "Consortium." INPO is the lead on equipment issues. Although US Embassy Tokyo had established a tracking system to compile assistance requests from the Japanese and offers from USG entities, INPO had been separately tracking equipment requests (see INPO item below). The Embassy and INPO tracking have been merged. On April $5^{\text {th }}$, LT received the latest equipment request matrices from USAID, originated by the Tokyo embassy. During April $5^{\text {th }}$ conference call, OMB indicated to LT that they intend to start approving all finances for equipment purchases for Japan.

- Watch schedule is changing in Ops Center. The line organization will be involved more, and work in the Ops Center will include fewer people (6 people). An overall report defining changes to the Watch schedule and strategy is being developed by the ET. Outlook has been changed so that all three International Desk computers receive all email sent to each computer. There are folders for the other computers. This will capture all the messages and allow us to avoid checking more than one computer. ACTION: The OIP checklist will need to be changed regarding whom to contact for obtaining blackberries, laptops, etc., as Karen Jackson on ET02 Hoc will no longer be that person (someone within OIS should be identified by management). Karen said a transfer plan should be set up such that the blackberries remain in Japan, but get reset using new travelers' emall accounts from our end as team members are replaced.
- Mailbox size limits. Team requested verification that mailboxes had size limits increased due to difficulties sending emails. On $4 / 7$ received response from Joe Turner/OIS that email box sizes for those in Japan are being monitored daily for max capacity. Action: Notified Joe Turner about Team\#4 travelers. Notify Joe Turner as new travelers are identified to leave for Japan.
- Plant Status Updates. James Whitney, NSIR has requested that all of the "Plant Status" news releases on ENAC be sent to him to assist other government agencies in their analysis of the situation. Action: Send james.whitney@nrc.gov "plant status updates" on ENAC as they come in (sent during day shift on 4/10).
- TEPCO Earthquake Info. Vince Holahan, the NRC staff member embedded with PACCOM, has requested to be on the distribution list for the Japanese earthquake info sent from TEPCO. Action: Please forward these emails to Vince.Holahan@nrc.gov as they are received (sent during day shift on 4/10).
- Request to Share RST Document with Foreign Governments: The Governments of Canada, the UK and Finland have requested that the RST share their "Stability Document," which they have discussed during their daily call with these governments. The request was forwarded to the ET, who is assessing what information is contained in the document before deciding on whether or not to share the document. The document is still in draft (awaiting interagency comments). PMT was given permission to read the draft document to conference call members. Release of this document will be addressed as part of the process being developed to address the release of a document to NY Times. Action: Continue to follow. UPDATE (correction): The RST Stability Document was not released to Mark Shaffer (as was previously reported). When the RST Stability Report section is completed, the final draft should be sent to Mark Shaffer, along with the requestors from Canada, UK, and Finland, as well as the Japan team.
- 1 Pager for Margie's Morning Meeting - Danielle/Eric requested that the draft be sent to them to add to it overnight. They will send back updates via email. Action: Work off of the draft sent back from them. A final is in the works for the $4 / 10 / 11$ one-pager, including Danielle's additions. (In future iterations, if they don't send back any updates overnight, then work off of the draft completed.)

Future Actions/OPEN ITEMS

- News Reports on IAEA "Recommendation" to Extend Evacuation Zone: News media is reporting that the IAEA has called on Japan to extend the evacuation zone around Fukushima, based on abnormal levels of radiation detected in a village outside the current evacuation zone. This was neither a special announcement nor a formal recommendation from the IAEA. Instead, the reports result from information provided at the March 30 IAEA technical briefing, at which DDG Denis Flory reported on the location of the abnormal radiation levels and noted that they were located outside the evacuation zone. When asked a direct question about whether the IAEA was recommending that Japan extend the zone, DDG Flory stated only that the IAEA was encouraging the "counterpart" to "carefully assess the situation." Full summary of technical briefing here: http://iaea.org/newscenter/news/tsunamiupdate01.html, relevant paragraph is the fourth paragraph under item \#2, "Radiation Monitoring." Jen Schwartzman verified with Mark Shaffer that no formal announcement has come from IAEA in this regard.
- Deputies Committee Decisions and Action Items: SECY has been sending summaries of the Deputies Committee meetings as they are received and the LT Director/Coordinator have been tracking any actions pertinent to the

LT. There are currently no international liaison tasks resulting from these meetings but the LT Director will inform us if this changes. Action: Mark Shaffer would like to see the summaries.

- Translators. $24 / 7$ translation coverage in the HOC has been suspended. Mike Call who is in Japan until $4 / 16$ speaks Japanese. At HQ there is a Japanese foreign assignee and other options available. Also, Tony Nakanishi may be available to provide translation assistance. USAID is paying for an NRC-dedicated translator in Tokyo. If we need items translated and cannot get assistance from within NRC, we can rely on them. Action: If in need of USAID translation support, fax the document to $+81-3-3224-5538$ and send a scanned (PDF) copy to the Japan site team as a backup.
- INPO: All equipment requests are now going through INPO. They are consolidating all available information. Contact information for INPO is 770-644-8118 or email at inpoercassistance@inpo.org.
- NRC Health Unit request: The NRC team members were given KI before they left. At this time the guidance is to not take the KI while on duty in Tokyo. However, due to the still-fluid nature of the environmental hazards posed by radioactive isotopes, there is still the possibility that KI could be required at some point. Should it become necessary to have the NRC team take the KI, the LIA02/LIA03 international liaisons would be responsible for receiving the advice from ADM/Dr. Cadoux and to get the information to the team immediately.
- Daily calls with UK/France/Canada. Calls will take place at 0930 with RST and PMT to discuss reactor-related and radiation-related information, respectively, with regulatory representatives from these three countries. Everyone should call into the HOO to be connected. Finland and the IAEA may also participate on an intermittent basis. The new number to call into is (b)(6) land the pin is $(\mathrm{b})(6)$ NOTE: There is no call on the weekends.
- Daily NRC Japan Team - RST/PMT Call. The time of the call varies. As of $4 / 5$ it was 2100 with RST and PMT have been notified of the call and international liaison should plan on participating (OIP staff in Japan don't necessarily participate). All parties should call into 301-816-5120 and use pass-code $(\mathrm{b})(6)$
- Laptop shuffling in Japan. Some laptops (the blue-top ones) still have difficulty printing so the ground team has requested the assistance of CSC in "re-assigning" the laptops that work well to the members of the $3^{\text {rd }}$ team (since the $2^{\text {nd }}$ team members leave Japan by $4 / 13$). ACTION: No action for OIP' but we may be requested to assist if there are any difficulties. We should also note that if future teams go to Japan, they should take non-blue-top or personal laptops to make it easier to connect to the Embassy printer.
- Update Japan Traveler Information Document on LIA02 with Return Team info - from LT Director please update the traveler table as NRC Japan Travel Team members return to U.S. ACTION: Await reply emails from returned travelers and update the Document on LIA02.
- Announcement of French nuclear safety meeting in May: Reuters is reporting that Sarkozy has announced plans for a high-level meeting of "G20 nuclear industry officials" in Paris in May 2011 "to define international nuclear safety standards." The article states that Sarkozy "declared this [meeting] would lay the groundwork for the IAEA high-level meeting on June 20-24. We are seeking additional information on this announcement from official channels. Message sent to Eric at 0400 inquiring whether he has heard anything via his French contacts (noting that ASN will be meeting with the NRC Team in the next day or two). Report any new information learned to OIP management and ET. The policy to delay meeting will be articulated by DOS high level representatives at a G-20 meeting in Abu Dhabi the week of April 4. The French announced their intent to convene this meeting, and stated that the Japanese Prime Minister is supportive. ACTION: OIP will continue to interact with interagency as appropriate and update ET.

DAILY ACTIONS/REMINDERS

- International updates must be sent to LIA07 (to be put in the HOO Status Update) before the end of every shift as well as posted on the LT status board (different than the LT Log).
- The 3-12 PM shift should try and work on the one pager and the 7 AM-3 PM should finalize and send to Margie. Please include information from email from Danielle and Eric. Margie reminds us that the write-up should not contain technical details, which are already captured in other reports, and should be marked "Official Use Only Foreign Government Information."
- Both shifts are responsible for sending all emails to the FOIA email address. Open new email, copy previous day's emails as an attachment and send to FOIA Response.hoc@nrc.gov. Also it would be helpful to mark the red flag on the right to show which emails were sent.
- The international team should sit in on calls with the ET and team leader (Chuck or Dan) to take notes and provide a short summary of what was discussed via email to OIP reps on Japan Team. The Chairman's briefing has been moved to 0800 while he is in Vienna, April 4-6, and will involve a three way call with Casto, ET, and Chairman. [Japan 13 hours ahead, Vienna 6 hours ahead]
- Prior to any international call you set up, please make sure you contact the HOOs to let them know that you are going to have an international call.
- Reminder to Keep Mark Shaffer in-the-loop at shaffermr@state.gov, regardless of time of day, regardless of whether he is in the office or asleep. Especially cc Mark on all communication to IAEA.
- Reminder to keep ISN/NESS on the distribution list for the NRC Japan situation reports ISN-NESS-DL@state.gov.
- Keep RST and PMT updated on who is currently in Japan on NRC team.
- Please make sure to keep the NRC Japan travelers list updated (check the last updated date) and post a new copy on LIA02 cabinet as changes occur.
- OIP has been tasked with providing IAEA ENAC daily summary to Commissioner's TAs and EDO POC. OIP is also being asked to place a cover page on this report indicating the sensitivity of the information. The document will be provided by email.

From:	LIO1 Hoc
Sent:	Monday, April 11, 2011 5:16 PM
To:	OSTO1 HOC
Subject:	Reoccurring Daily Actions and Calls Rev 27.docx
Attachments:	Reoccurring Daily Actions and Calls Rev 27.docx

For your use
$x \times x / 173$

Reoccurring Daily Actions and Calls (Information Rolled into Transition Team Reoccuring Calls in the EOC in ET Misc. Docs)				
		\		
1500	One Pager (end of shitt)	ET, Response Advisor	Provide Input to EBT Coordinato	
1500	Congressional call		OCA lead - Audiencice is Congressional staff who have or are near a plant; Oversight committees; House \&Senate leadership	
1700	PACOM J2call	RSTPMT	Occurs in SGT Room on Mon, Wed, Fri. PACOM will dial int $301-415-5393$.	
1700	HHS call with 50 states and federal patners	LT/State Liaison	Meeting occurs each Tuesdayand Thursday evening, as organized by HHS (N.Natarajan). HHS provides bridge line day of call	
1700	DOE Science Panel	RES	Brian Sheron and Richard Lee, out of the box solutions.	
1700	RSTPMT call with Japan Team		Daily update for Site Team and HQ (convenient time for the Site Team)	
1900	Call wilh Vince Hoiahan PACCOM		Status of Radiological COndtions Vince Direct Line - 808.477.9536, if no answer 808.477.9286 or SWO 808.477.8173 Cell\|(b)	6)
2000	HHS Call with Paciic	HHS	Meestinöoccurrs each Wed evevening. Call in 888-455-7847, (bl) 6) is the passcode. PMT lo participate	
2000	Call with Industry Consortium (daily)		ET Led High--Evel discussions with industy and NRC Site Team	
2100	PMT call with Japan Team		Daily update for Site Team and HQ (converient time for the Site Team)	
2200	One Pager (end of shiti)	ET,Response Advisor	Provide Input to EBT Coordinator	
2200	One pager	EBT	Update chaiman via email using one-pager	

Reoccurring Daily Actions and Calls

(Information Rolled into Transition Team Reoccuring Calls in Web EOC in ET Misc. Docs)

.Time (EDT)	Description	Lead Team	Action/Purpose of the Call
0300	RST/PMT call with Japan Team		Daily update for Site Team and HQ (convenient time for Site Team
0600	One Pager (end of shitt)	ET, Response Advisof	Provide input to EBT Coordinator
0600	Congressional Update		Taken From Status Update (Confimw $/$ OCA
0830	Daily call with Chuck Casto/site Team	ET	Update chairman and staff during turnver
0845	Chairman Joins the Daily Call	ET	
	Deputy Secrelaries (as scheduled)	ET	White House lead (-Chairman participates) -Interagency discussion
0930	UK/Canada/France Call	RST/PMT (aranged by HOO) Bridgelb)(6)	Information Exchange. Focused on Operational issues (Combining PMT call fom 1400 for Dose issues. Starting 3/28)
1000	Input due to for Status Update	All	Inpuis due to EBT for Status Update
1000	TAs \& CAs briefing	$\left[\begin{array}{c} E T \\ \text { (aranaged by Hook } \\ (0) \mid[6) \end{array}\right.$	ET Director lead briefed Commission TAs and Ods (Tiuesday and Thiursday ONLY)
1100	ESF8-PPublic Health \& Medical Services)		HHS Secretary Operations Center lead -Interagency discussion NOTE call will be held on (Tuescayss only.).
1100	Technical Coordination with Industry Consortium		Technical discussion
1100	Into Exchange: US Environmental Monitoring Data	Arranged by NEI	"Radiological Slatus \& Implications" call between NRC, NEI, EPA, DOE, OSTP. NEI or OSTP will set up the bridge line. (weekry afteter 4/5; next call to be April 12at11:00)
1230	NTAG teleconferencee (chaired by NSS)	PMT Director to lead	Nuclear Technical Advisony Group -email sent out daily wilh phone \# and pass code
1400	USAID 87..33.4037 Password (bb)	LT/OCA	-Interagency discussion: Federal pre-coordination takes place at $1: 45$ and then the 2pm call with Congressional staff. (Tuesday Only)
1400	Advisory Team (A-Team)	White HouselPMT	Call witt the White House to help with coordination and ensure PMTWhite House is aware of current information
Apil 11,2011 1300hrs Reo		Reocuring Daily Actions and CatkRevr 27 M: LT Reoccuring Calt Rev 27	

From:	OSTO1 HOC
Sent:	Friday, April 29, 2011 3:20 PM
To:	FOIA Response.hoc Resource
Subject:	FW: battery and other questions
Importance:	High

From: HOC, PMT12
Sent: Friday, April 29, 2011 2:24 PM
To: OST01 HOC
Subject: FW: battery and other questions
Importance: High

From: Milligan, Patricia
Sent: Friday, April 29, 2011 10:42 AM
To: Hoc, PMT12
Subject: Pw: battery and other questions
Importance: High
Can you get dave the answer? Thanks
Sent from my NRC Blackberry
' patricia A Mulligan, CHP RAh
(b)(6)

From: Decker, David
To: Milligan, Patricia
Cc: McDermott, Brian
Sent: Fri Apr 29 10:15:41 2011
Subject: FW: battery and other questions
Trish,
Here is an e-mail I just got from one of Congressman Markey's staffers with a question about battery life (at Fukushima I believe). She's trying to clarify whether it was 67 hours or $8-10$ hours. Any help on this is much appreciated. Thanks.

David

From: Freedhoff, Michal [mailto:Michal.Freedhoff@mail.house.gov]
Sent: Friday, April 29, 2011 10:07 AM
To: Powell, Amy; Decker, David
Cc: Freedhoff, Michal
Subject: battery and other questions
Importance: High

Amy and David

$$
x \times x / 174
$$

I am looking at the April 18 NRC presentation given by Patricia Milligan at the preparedness conference. It's too large to email to you (I already tried. ()) Slide 8 says that the station batteries were depleted in 8 -10 hours. NRC staff have previously told me that in fact the batteries were depleted in 67 hours because that is how long the RCICs worked, and when I questioned that number. I was then told that this duration was possible because the batteries were only running the RCICs and not everything else. Now I see that NRC is still maintaining an 8-10 hour battery lifetime in other venues. Which is it - and if it was $8-10$ hours, does that alter the staff's view of the RCICs?

Thanks
Michal

Michal Ilana Freedhoff, Ph.D.

Policy Director
Office of Congressman Edward J. Markey (D-MA)
2108 Rayburn House Office Building
Washington, DC 20515
202-225-2836

From:
Sent:
To:
Subject:
Attachments:

OST01 HOC
Thursday, April 28, 2011 7:32 AM
FOIA Response.hoc Resource
FW: USNRC Earthquake-Tsunami Update 0427111200 EDT
USNRC Earthquake-Tsunami Update 042711 Revision 1, 1200 EDT.pdf

From: LIA08 Hoc
Sent: Wednesday, April 27, 2011 11:50 AM
To: A Green; A Rock; Al Coons; Aleshia Duncan; alexancg; Anthony Herbold; Appleman Binkert; B Green;ARusso; Bill King; Bill King; Bruce Howard; C Lay; C Noser; C Ops; Charles Burrows; Charles Donnell; Christopher Meadow; Conrad Burnside; D Drakeley; D May; D Murakami; D Webb; Damian Peko; Dan Feighert; Darrell Mammons; DhS ops; DOE NIT; DOT; DTRA; DTRA; Dudek; E Wright; Elmer Naples; EOP; EPA; EPA2; Eric Sinibaldi; F Lewis; G Szeto; G Whitmire; George Higdon; gregopk; Gregory Simonson; Gretchen McCoy; H; Harry Sherwood; HHS; I Clark; Intel DIA; J Barnes; J Bartlett; J Moeller; J Noonkester; J Szymanski; J Tippets; James Purvis; Japan Embassy Task Force/ Jason CIA; Jason Pepin; Jeremy Demott; Jeremy Morrow; Jeremyft1; Jim Kish; Johanna Berkey; Jobri Holdren; Joyce Connery; K Donald; K Gonzalez; K Ousley; Karyn Keller; Kyle Viayra; L Mayer; Lee Nickel; Lisa; Lisa Hammond; Lukas McMichael; M Huchla; M Kerber; M Lansley; M Thon; M Thon2; maceck; MARFORPAC CAT All Hazards Div; MARFORPAC'CAT G2; Mark Shaffer; markwb2; Marshall Shull; Michelle Ralston; Nan Calhoun; Navy; NICC; NMIC; NOC; NOC Duty Director; Nulcear SSA; P Gardner; pentagon; Peter Lyons; Phillip Barks; R Roesler; R Schueneman; Rebecca Thomson; roberhh; Ron Cherry; Ron McCabe; S Basie; S Buntman; S Levy; scotc1; Seamus O'Boyle; seiden; state; Stephen Trautman; Steve Colman; Steve Horwitz; T Roberts; Thomas Conran; Thomas Ier; Tim Greten; Timothy Hitzelberger; Trent Hughes; Troy Heytens; USDA, John; USMC; Vanessa Quinn; Victoria Kinsey; w luff; W Young; Will Friese; William Harding; William Webb; A Aviles;' A Brown; A Estes; A Hough; A Tribble; B goldberg; B Moffat; B'Perry; B Woo; Beavers, Shane; Bringer, Andrew; Brooks, Andrae; Brown, Michael; C Fiore; C Good; C Kim; Carlos Islas; CPF CATN5; Craig Gaddis; D Fletcher; D Putthoff; D Scully; D Smith; D Souza; D Wade; D Williams; David Graves; DOE DART; E Fiser; E kaye; E Price; E Shetland; E Train; Elder, Troy M SGT MIL USA USARPAC; Eric Wright; F Bantell; Fossum, Sgt Zachary; Guathier, Ronald; H Zito; Hickam; Hickam; J Blankenburg; J Kreykes; J McCallister; J Rhodes; J Rivera; J Scarbrough; J Soderbeck; J Stewart; J Trussler; James Williams; JR Haley; JF505-MAIN-JOC-J2; JTF505-MAIN-JOC-J2-INTEL-ANAY; K Bollow; K Bollow; K Tomlinson; Koluch, SSgt Eric; L BoIling; LElkins; L Heinrich; L Walter; Laurel Steinhurst ; M Howsare; M Kabbur; M Nguyen; M Opfer; M Taafe; Marina Llewellyn; Michael Anderson; Michael Eberlein; Monaghan, Dylan; N Albritton; N Albritton; NCMI Ops; Office of Secretary of Defense Watch Officer; Olson, Niels; OST01 HOC; P Almquist; P Higginbotham; P Higgins; P Lyons; P Smalley; P Somboonnakron; PACOM; PACOM; Past Sombookpakron; Powers, Jeffrey; R Backley; R Fisher; R Garrett; R Naff; R Stephenson; R Tashma; Reid Tanaka; Richard, Sgt William; Robert Duke; Robert P; RST01 Hoc; RST01B Hoc; RST03 Hoc; S Aoki; S Jerabek; Sean Basie; Shirey, Sgt Eric; Simmers, Keith; Spencer Nordgran; Spurlock, Kenneth; Stephen Greco; T Lawman; T Miller; T True; Thomas Vavoso; Tovar, SSgt Eric; (b) (6) , USFJ; USFJ Intel; V Raphael; Valerie Makino; Vaughn, Sgt Jerrod; Walter Hokett; Wanda Ayuso; William Brysacz
Subject: USNRC Earthquake-Tsunami Update 0427111200 EDT

*******NOTE:TRE ATTACHEDTSPOROFFICAL-USE ONLY*******

The next NRC Update will be distributed at 1200 EDT on Thursday, April 28, 2011

*******NOTE:THE ATTACHEDTSFOR OFFIEAL-USEONLY********

Beth Reed
Liaison Team Coordinator
US Nuclear Regulatory Commission
email: lia08.hoc@nrc.gov
Desk Ph: 301-816-5185

[^0]: Subject: 3/29, 12:00 SPEEDI Data
 Auto forwarded by a Rule

 Attached please find 3/29, 12:00 SPEEDI Data.
 Naomi Walcott
 Emergency Action Officer
 $x+x / 128$

[^1]: DISCLAIMER:
 This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this e-mail, please notify the sender immediately by return e-mait and permanently delete the original and any copy or printout of this e-mail and any attachments.
 Thank you.

[^2]:

[^3]:

[^4]:

[^5]:

[^6]: From: Kenagy, W DavidISMTP:KENAGYWD@STATE.GOV]
 Sent: Friday, April 01, 2011 10:50:04 AM
 To: Kenagy, W David; vince.mcclelland@nnsa.doe.gov; Rodriguez, Veronica; ann.heinrich@nnsa.doe.gov; HOO Hoc; HOO2 Hoc; Huffman, William; decair.sara@epamail.epa.gov; timothy.greten@dhs gov;
 maria.marinissen@hhs.gov (b)(6) doehqeoc@oem.doe.gov;
 hhs.soc@hhs.gov; iames.kish@dhs.gov; HOO Hoc; Smith, Brooke:
 Zubarev, Jill E; Shaffer, Mark R; nitops@nnsa.doe.gov; Skypek, Thomas M; (b)(6) clark.ray@epamail.epa.gov; Stern, Warren; Mentz, John W; DeLaware, Robin; Burkart, Alex R; Metz, Patricia J; Fladeboe, Jan P; Withers, Anne M; Lowe, Thomas J; Lewis, Brian M; SES-O_OS; EAP-J-Office-DL; O'Brien, Thomas P; Lane, Charles D; Conlon, John N; Foughty, Michael A; Mahaffey, Charles T;

 ## (b)(6) Jih, Rongsong

 Subject: RE: IAEA distributed documents
 Auto forwarded by a Rule

[^7]:

[^8]:

[^9]:

[^10]: -----Original Message--.-.
 From: HOO Hoc [mailto:HOO.Hoc@nrc.gov]
 Sent: Sunday, April 03, 2011 8:16 PM
 To: LIA07 Hoc; OST01 HOC; OSTO2 HOC; OST03 HOC
 Subject: FW: 4APR 0831 Speedi Data

[^11]: Jay A. Tilden
 Japan Logistics Coordinator \&
 Dir.
 NA-47, NNSA
 202-586-3165

