

April 19, 2012

L-2012-177 10 CFR 50.90

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

Re: St. Lucie Plant Unit 2 Docket No. 50-389 Renewed Facility Operating License No. NPF-16

> Supplemental Response to NRC Mechanical and Civil Engineering Branch (EMCB) Regarding Extended Power Uprate License Amendment Request

References:

- R. L. Anderson (FPL) to U.S. Nuclear Regulatory Commission (L-2011-021), "License Amendment Request for Extended Power Uprate," February 25, 2011, Accession No. ML110730116.
- (2) Email from T. Orf (NRC) to C. Wasik (FPL), "St. Lucie 2 EPU draft RAIs Mechanical & Civil Engineering Branch (EMCB)," January 13, 2012.
- (3) R. L. Anderson (FPL) to U.S. Nuclear Regulatory Commission (L-2012-059), "Response to NRC Mechanical and Civil Engineering Branch (EMCB) Request for Additional Information Regarding Extended Power Uprate License Amendment Request," February 29, 2012, Accession No. ML12065A148.

By letter L-2011-021 dated February 25, 2011 [Reference 1], Florida Power & Light Company (FPL) requested to amend Renewed Facility Operating License No. NPF-16 and revise the St. Lucie Unit 2 Technical Specifications (TS). The proposed amendment will increase the unit's licensed core thermal power level from 2700 megawatts thermal (MWt) to 3020 MWt and revise the Renewed Facility Operating License and TS to support operation at this increased core thermal power level. This represents an approximate increase of 11.85% and is therefore considered an Extended Power Uprate (EPU).

By email from the NRC Project Manager dated January 13, 2012 [Reference 2], additional information was requested by the NRC staff in the Mechanical and Civil Engineering Branch (EMCB) to support their review of the EPU License Amendment Request (LAR). The request for additional information (RAI) identified 47 questions. By letter L-2012-059 dated February 29, 2012 [Reference 3], FPL provided the requested information. In that letter, FPL also committed to provide a supplemental response to RAI EMCB-1 in a separate submittal. The attachment to this letter provides FPL's first supplemental response to RAI EMCB-1.

ADOL

This submittal does not alter the significant hazards consideration or environmental assessment previously submitted by FPL letter L-2011-021 [Reference 1].

This submittal contains no new commitments and no revisions to existing commitments.

In accordance with 10 CFR 50.91(b)(1), a copy of this letter is being forwarded to the designated State of Florida official.

Should you have any questions regarding this submittal, please contact Mr. Christopher Wasik, St. Lucie Extended Power Uprate LAR Project Manager, at 772-467-7138.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Executed on 19-April-2012

Very truly yours,

Richard L. Anderson Site Vice President St. Lucie Plant

Attachment (1)

cc: Mr. William Passetti, Florida Department of Health

## Supplemental Response to NRC Mechanical and Civil Engineering Branch (EMCB) Request for Additional Information

The following information is provided by Florida Power & Light (FPL) in response to the U. S. Nuclear Regulatory Commission's (NRC) Request for Additional Information (RAI). This information was requested to support Extended Power Uprate (EPU) License Amendment Request (LAR) for St. Lucie Nuclear Plant Unit 2 that was submitted to the NRC by FPL via letter (L-2011-021) dated February 25, 2011, Accession Number ML110730116.

In an email dated January 13, 2012 from NRC (Tracy Orf) to FPL (Chris Wasik), Subject: St. Lucie 2 EPU draft RAIs - Mechanical & Civil Engineering Branch (EMCB), the NRC requested additional information regarding FPL's request to implement the EPU. The RAI consisted of forty-seven (47) questions from the NRC's Mechanical and Civil Engineering Branch (EMCB). By letter L-2012-059 dated February 29, 2012, Accession No. ML12065A148, FPL provided the requested information. In that letter, FPL also committed to provide a supplemental response to RAI EMCB-1 in a separate submittal. This attachment provides FPL's first supplemental response to RAI EMCB-1.

## EMCB-1

The staff requests that the licensee provide assurance that all structural modifications and/or additions have been identified and designed and that all structural evaluations and required design calculations to demonstrate that all systems, structures and components (SSCs) credited to and/or affected by the proposed extended power uprate (EPU) have been completed and controlled documentation exists which finds said SSCs structurally adequate to perform their intended design functions under EPU conditions.

#### Supplemental Response:

As described in letter L-2012-059, FPL advised the NRC that with the exception of the EPU modifications listed below, applicable safety related and/or seismic piping and associated structural evaluations and design calculations for affected systems, structures and components (SSCs) credited to and/or affected by the proposed EPU have been completed. The following EPU modifications were identified as not being complete at that time:

- Main Steam, Feedwater, and Condensate Pipe Support Modification,
- Chemical and Volume Control System (CVCS) Vent Modification,
- Control Room Air Conditioning Margin Improvement.

This supplemental response provides the completed design details for the first two EPU modifications.

Piping stress summary data for the safety-related and/or seismic main steam and feedwater piping systems impacted by EPU is provided in Table 1. A list of the safety-related and/or seismic main steam and feedwater pipe support modifications that are required for the EPU is provided in Table 2. Note that the attachment steel calculations for the main steam and feedwater piping support modifications located in the Turbine Building are not complete at this time. A supplemental response will be submitted to NRC providing confirmation that these structural steel calculations are complete.

There are no safety-related and/or seismic piping or pipe support modifications for the St. Lucie Unit 2 condensate piping system.

Piping stress summary data for the chemical and volume control system (CVCS) vent modification is provided in Table 3 and a list of the associated pipe support modifications is provided in Table 4.

Design information regarding the control room air conditioning margin improvement modification is not complete. Design details regarding this EPU modification will be provided to NRC in a supplemental response.

| Та | bl | е | 1 |
|----|----|---|---|
|----|----|---|---|

| Main Steam and Feedwater Piping<br>Stress Summary at EPU Conditions |                                  |                             |                        |                           |                              |
|---------------------------------------------------------------------|----------------------------------|-----------------------------|------------------------|---------------------------|------------------------------|
| Piping Analysis<br>Description (Note 3)                             | Loading<br>Condition<br>(Note 2) | Existing<br>Stress<br>(psi) | EPU<br>Stress<br>(psi) | Allowable<br>Stress (psi) | Design<br>Margin<br>(Note 1) |
| Main Otaan Dining from                                              | Equation 8                       | 6,624                       | 9,062                  | 15,000                    | 0.60                         |
| SC 24 to Containment                                                | Equation 9U                      | 4,169                       | 10,975                 | 18,000                    | 0.61                         |
| Bonotration P 1                                                     | Equation 9F                      | 4,582                       | 10,600                 | 36,000                    | 0.29                         |
| Felletiation F-1                                                    | Equation 10                      | 8,208                       | 7,986                  | 22,500                    | 0.35                         |
| Main Steam Dining from                                              | Equation 8                       | 6,613                       | 8,711                  | 15,000                    | 0.58                         |
| SG 2P to Containment                                                | Equation 9U                      | 4,755                       | 11,025                 | 18,000                    | 0.61                         |
| Bonstration P 2                                                     | Equation 9F                      | 5,033                       | 11,037                 | 36,000                    | 0.31                         |
| Fenetration F-2                                                     | Equation 10                      | 8,427                       | 7,943                  | 22,500                    | 0.35                         |
| Main Steam Dining from                                              | Equation 8                       | 7,828                       | 7,926                  | 15,000                    | 0.53                         |
| Containment Penetrations                                            | Equation 9U                      | 9,567                       | 13,170                 | 18,000                    | 0.73                         |
| P 1 and P 2 to HP Turbine                                           | Equation 9F                      | 5,693                       | 13,186                 | 36,000                    | 0.37                         |
|                                                                     | Equation 10                      | 19,149                      | 20,535                 | 22,500                    | 0.91                         |
| Ecodyptor Diping from                                               | Equation 8                       | 5,222                       | 6,061                  | 15,000                    | 0.40                         |
| Containment Population                                              | Equation 9U                      | 8,840                       | 10,013                 | 18,000                    | 0.56                         |
| P 3 to SC 24                                                        | Equation 9F                      | 8,276                       | 9,477                  | 36,000                    | 0.26                         |
| F-3 to 3G-2A                                                        | Equation 10                      | 14,089                      | 12,096                 | 22,500                    | 0.54                         |
| Ecodyystor Diping from                                              | Equation 8                       | 5,664                       | 6,325                  | 15,000                    | 0.42                         |
| Containment Panetration                                             | Equation 9U                      | 7,567                       | 9,010                  | 18,000                    | 0.50                         |
|                                                                     | Equation 9F                      | 9,144                       | 9,339                  | 36,000                    | 0.26                         |
| F-4 (0 30-2B                                                        | Equation 10                      | 9,330                       | 11,304                 | 22,500                    | 0.50                         |
| Feedwater Piping from                                               | Equation 8                       | 8,321                       | 8,730                  | 15,000                    | 0.58                         |
| Feedwater Pumps to                                                  | Equation 9U                      | 7,371                       | 13,911                 | 18,000                    | 0.77                         |
| Containment Penetrations                                            | Equation 9F                      | 7,371                       | 13,924                 | 36,000                    | 0.39                         |
| P-3 and P-4                                                         | Equation 10                      | 16,119                      | 17,950                 | 22,500                    | 0.80                         |

Notes:

1. Stress Interaction Ratio (also called "Design Margin") is based on the ratio of EPU stress divided by the Allowable stress.

2. The pipe stress analysis equation numbers listed in this table correspond to ASME Section III, NB-3650, NC-3650, and ND-3650 equation numbers.

3. Description is based on pipe stress analysis segment of a given system included in the analysis.

| Ta | able | 2 |
|----|------|---|
|----|------|---|

| Main Steam and Feedwater<br>Pipe Support Modifications for EPU Conditions |                        |        |                    |                        |                          |
|---------------------------------------------------------------------------|------------------------|--------|--------------------|------------------------|--------------------------|
| Item                                                                      | Support Mark<br>Number | System | Pipe Size<br>(in.) | Building<br>Location   | Modification Description |
| 1                                                                         | MS-4100-6080           | MS     | 34                 | Reactor<br>Containment | New support              |
| 2                                                                         | MS-4101-315A           | MS     | 34                 | Reactor<br>Containment | New support              |
| 3                                                                         | MS-4102-274            | MS     | 38                 | Turbine Bldg           | Add weld                 |
| 4                                                                         | MS-4102-32B            | MS     | 38                 | Turbine Bldg           | Add cover plate          |
| 5                                                                         | MS-4102-48             | MS     | 38                 | Turbine Bldg           | Add tube steel brace     |
| 6                                                                         | MS-4102-3910           | MS     | 38                 | Turbine Bldg           | Add weld                 |
| 7                                                                         | BF-4004-258            | FW     | 20                 | Turbine Bldg           | Add weld                 |
| 8                                                                         | BF-4004-38             | FW     | 20                 | Turbine Bldg           | Replace snubbers         |
| Notes:<br>FW = Feedwater<br>MS = Main Steam                               |                        |        |                    |                        |                          |

# Table 3

| Maximum Piping Stress for Chemical and Volume Control<br>(CVCS) Vent Modification |                                     |                                |                                        |              |  |
|-----------------------------------------------------------------------------------|-------------------------------------|--------------------------------|----------------------------------------|--------------|--|
| Code<br>Equation                                                                  | Existing<br>Maximum<br>Stress (psi) | EPU<br>Maximum<br>Stress (psi) | Allowable<br>Stress <sup>1</sup> (psi) | Stress Ratio |  |
| Equation 8                                                                        | 4835                                | 4979                           | 17200                                  | . 0.289      |  |
| Equation 9B                                                                       | 6386                                | 12037                          | 20640                                  | 0.583        |  |
| Equation 9D                                                                       | 6974                                | 17186                          | 41280                                  | 0.416        |  |
| Equation 10                                                                       | 13222                               | 9950                           | 27800                                  | 0.358        |  |

## Note:

1. The allowable stress values are based on a design temperature of 250°F.

L-2012-177 Attachment Page 5 of 5

| Та | bl | е | 4 |
|----|----|---|---|
|----|----|---|---|

| Pipe Supports Affected by Chemical and Volume Control<br>(CVCS) Vent Modification |                             |                              |             |
|-----------------------------------------------------------------------------------|-----------------------------|------------------------------|-------------|
| Piping System                                                                     | Pipe Support Mark<br>Number | Support Attribute Of Concern | Resolution  |
|                                                                                   | CH-136-R1                   | Added pipe line CH-1011      | New Support |
|                                                                                   | CH-136-R2                   | Added pipe line CH-1011      | New Support |
|                                                                                   | CH-136-R3                   | Added pipe line CH-1011      | New Support |
| ~                                                                                 | CH-136-R4                   | Added pipe line CH-1012      | New Support |
|                                                                                   | CH-136-R5                   | Added pipe line CH-1004      | New Support |
|                                                                                   | CH-136-R6                   | Added pipe line CH-1004      | New Support |
|                                                                                   | CH-136-R7                   | Added pipe line CH-1019      | New Support |
|                                                                                   | CH-136-R8                   | Added pipe line CH-1017      | New Support |
|                                                                                   | CH-136-R9                   | Added pipe line CH-1019      | New Support |
|                                                                                   | CH-136-R10                  | Added pipe line CH-1007      | New Support |
|                                                                                   | CH-136-R11                  | Added pipe line CH-1013      | New Support |
|                                                                                   | CH-136-R12                  | Added pipe line CH-1013      | New Support |
|                                                                                   | CH-136-R13                  | Added pipe line CH-1013      | New Support |
|                                                                                   | CH-136-R14                  | Added pipe line CH-1013      | New Support |
|                                                                                   | CH-136-R15                  | Added pipe line CH-1014      | New Support |
| Chomical and                                                                      | CH-136-R16                  | Added pipe line CH-1005      | New Support |
| Volume Control                                                                    | CH-136-R17                  | Added pipe line CH-1020      | New Support |
| System (CVCS)                                                                     | CH-136-R18                  | Added pipe line CH-1015      | New Support |
| Vent Modification                                                                 | CH-136-R19                  | Added pipe line CH-1015      | New Support |
|                                                                                   | CH-136-R20                  | Added pipe line CH-1015      | New Support |
|                                                                                   | CH-136-R21                  | Added pipe line CH-1015      | New Support |
|                                                                                   | CH-136-R22                  | Added pipe line CH-1016      | New Support |
|                                                                                   | CH-136-R23                  | Added pipe line CH-1006      | New Support |
|                                                                                   | CH-136-R24                  | Added pipe line CH-1006      | New Support |
|                                                                                   | CH-136-R25                  | Added pipe line CH-1006      | New Support |
|                                                                                   | CH-136-R26                  | Added pipe line CH-1021      | New Support |
|                                                                                   | CH-136-R27                  | Added pipe line CH-1018      | New Support |
|                                                                                   | CH-136-R28                  | Added pipe line CH-1008      | New Support |
|                                                                                   | CH-136-R29                  | Added pipe line CH-1008      | New Support |
|                                                                                   | CH-2082-39                  | Existing Support             | Acceptable  |
|                                                                                   | CH-2082-101                 | Existing Support             | Acceptable  |
|                                                                                   | CH-2082-106                 | Existing Support             | Acceptable  |
|                                                                                   | CH-2082-115                 | Existing Support             | Acceptable  |
|                                                                                   | CH-2082-126                 | Existing Support             | Acceptable  |