Content Overview

Section 1
- Purpose and Introduction
- Clinical Overview

Section 2
- Handling and Safety of Radium-223 Chloride

Section 3
- Licensing Issues and Recommendations for NRC Consideration
Purpose

- Present the clinical and radiation safety aspects of radium-223 chloride
- Discuss licensing options for radium-223 chloride
 - Option 1: Licensing under § 35.300
 - Option 2: Licensing under § 35.1000
- Obtain ACMUI perspective regarding licensing of radium-223 chloride
Introduction

- **Product name** Radium-223 chloride solution for injection
- **Interim Tradename** Alpharadin
- **Chemical name** Radium-223 chloride (²²³RaCl₂)
- **Proposed Indication** Treatment of castration resistant (hormone refractory) prostate cancer patients with bone metastases
Introduction (cont’d)

<table>
<thead>
<tr>
<th>Dosage Form</th>
<th>Sterile, isotonic aqueous solution of radium-223 chloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route of Admin.</td>
<td>Intravenous injection</td>
</tr>
<tr>
<td>Dosing Regimen</td>
<td>50 kBq per kg body weight (95 mCi for a 70 kg patient) given at 4 week intervals for 6 cycles</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Institute for Energy Technology (IFE), Norway</td>
</tr>
<tr>
<td></td>
<td>Algeta ASA, Norway (for release)</td>
</tr>
</tbody>
</table>
Current Development Status

- Currently under investigation for the treatment of castration resistant (hormone refractory) prostate cancer patients with bone metastasis
- ALSYMPCA (Phase III pivotal trial) interim analysis results were positive in June 2011
- FDA Fast Track designation granted on August 18, 2011
- Expanded access program in the US will start enrolling in 2Q12
- NDA submission planned in 2Q12
Clinical Overview
- Radium-223 acts as a calcium mimetic
- Naturally targets new bone growth in and around bone metastases
Radium-223 Properties

- Radium-223 chloride is an investigational alpha-emitting radiopharmaceutical
- $t_{1/2} = 11.43$ days
- It decays via a series of α, β and γ emitting daughters

Radium-223 Properties (cont’d)

- Of the total decay energy\(^1\)
 - 95.3% emitted as \(\alpha\) particles
 - 3.6% emitted as \(\beta\) particles
 - 1.1% emitted as photons (\(\gamma\) or X-rays)
- Easily measured on standard equipment

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Energy (keV)</th>
<th>Intensity % per decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{223})Ra</td>
<td>11.7</td>
<td>22.90</td>
</tr>
<tr>
<td>(^{223})Ra</td>
<td>45.8</td>
<td>12.70</td>
</tr>
<tr>
<td>(^{223})Ra</td>
<td>55.8</td>
<td>18.50</td>
</tr>
<tr>
<td>(^{223})Ra</td>
<td>81.1</td>
<td>15.20</td>
</tr>
<tr>
<td>(^{223})Ra</td>
<td>83.8</td>
<td>25.10</td>
</tr>
<tr>
<td>(^{223})Ra</td>
<td>94.9</td>
<td>11.50</td>
</tr>
<tr>
<td>(^{223})Ra</td>
<td>269.5</td>
<td>13.90</td>
</tr>
<tr>
<td>(^{219})Rn</td>
<td>271.2</td>
<td>10.80</td>
</tr>
<tr>
<td>(^{211})Bi</td>
<td>351.1</td>
<td>13.00</td>
</tr>
</tbody>
</table>

\(^2\) ENSDF Decay Data in the MIRD (Medical Internal Radiation Dose) Format. Only emissions with an intensity of 10 % or more have been included.
Radium-223 Chloride is a Bone-Seeking Radionuclide

The target is: Hydroxyapatite $\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2$

Histologic section of an osteoblastic bone metastasis in a patient with prostate cancer. Note the presence of abundant woven bone distributed as a mesh in between cords of tumor cells.

Radium-223 Chloride is a Bone-Seeking Radionuclide

Radium-223 has preferential uptake in areas of new bone formation

Normal spongy bone

Osteoblastic zone

Microautoradiography from a dog injected with radium-223
Distribution of α-particle tracks in normal spongy bone and an osteoblastic zone

Clinical Development
Overview of Phase I Studies

ATI-BC-1 (n = 31)
- Safety / tolerability, preliminary efficacy, PK
- Prostate and breast cancer
- Single escalating and multiple doses:
 - 46–250 kBq/kg

BC1-05 (n = 6)
- HRPC with bone metastases
- Biodistribution, PK, dosimetry
- 100 kBq/kg × 2 at 2-week interval

BC1-08 (n = 10)
- HRPC with bone metastases
- Safety, biodistribution, PK, dosimetry
- Single dose: 50–200 kBq/kg
- (optional dose 50 kBq/kg after 6 weeks)

Phase 2 Studies

Clinical Development
Overview of Phase II and III Studies

BC1-02 $(n = 64)^{1,2}$
HRPC with bone metastases requiring EBRT
Multiple doses: 4×50 kBq/kg or placebo at 4-week intervals

BC1-04 $(n = 122)^{3}$
HRPC with bone metastases
Multiple doses: 3×25, 50, or 80 kBq/kg at 6-week intervals

BC1-03 $(n = 100)^{4}$
HRPC with painful bone metastases
Single doses: 5, 25, 50, or 100 kBq/kg

ALSYMPCA5
Randomized Phase 3 Study

5. www.clinicaltrials.gov. NCT00699751
Enrollment: 921 patients with symptomatic CRPC and skeletal metastases
136 centers in 19 countries (7 centers in the US) enrolled patients

TREATMENT PHASE
- 6 injections at 4-week intervals

FOLLOW-UP PHASE

Stratification factors
- Total ALP < 220 U/L vs ≥ 220 U/L
- Bisphosphonate use (Yes vs No)
- Prior docetaxel (Yes vs No)

*Plus best standard of care
Assessments
ALSYMPCA Overall Survival

Radium-223, n = 541
Median OS: 14.0 months
HR 0.695; 95% CI, 0.552-0.875
P = 0.00185

Placebo, n = 268
Median OS: 11.2 months

<table>
<thead>
<tr>
<th>Month</th>
<th>Radium-223</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>541</td>
<td>268</td>
</tr>
<tr>
<td>3</td>
<td>450</td>
<td>218</td>
</tr>
<tr>
<td>6</td>
<td>330</td>
<td>147</td>
</tr>
<tr>
<td>9</td>
<td>213</td>
<td>89</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>49</td>
</tr>
<tr>
<td>15</td>
<td>72</td>
<td>28</td>
</tr>
<tr>
<td>18</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
ALSYMPCA Adverse Events of Interest

Hematologic

<table>
<thead>
<tr>
<th></th>
<th>All Grades</th>
<th></th>
<th>Grades 3 or 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radium-223 (n = 509)</td>
<td>Placebo (n = 253)</td>
<td>Radium-223 (n = 509)</td>
<td>Placebo (n = 253)</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Hematologic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>136 (27)</td>
<td>69 (27)</td>
<td>54 (11)</td>
<td>29 (12)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>20 (4)</td>
<td>2 (1)</td>
<td>9 (2)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>42 (8)</td>
<td>14 (6)</td>
<td>22 (4)</td>
<td>4 (2)</td>
</tr>
</tbody>
</table>
ALSYMPCA Adverse Events of Interest
Non-Hematologic

<table>
<thead>
<tr>
<th></th>
<th>All Grades</th>
<th>Grades 3 or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radium-223 (n = 509)</td>
<td>Placebo (n = 253)</td>
</tr>
<tr>
<td>Bone pain</td>
<td>217 (43)</td>
<td>147 (58)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>112 (22)</td>
<td>34 (13)</td>
</tr>
<tr>
<td>Nausea</td>
<td>174 (34)</td>
<td>80 (32)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>88 (17)</td>
<td>32 (13)</td>
</tr>
<tr>
<td>Constipation</td>
<td>89 (18)</td>
<td>46 (18)</td>
</tr>
</tbody>
</table>
Conclusion

In the ALSYMPCA Phase III study evaluating castration resistant (hormone refractory) prostate cancer patients with bone metastases:

• Radium-223 significantly prolonged OS compared to placebo
• Radium-223 was well tolerated compared with placebo
• To date more than 1000 patients have been treated with radium-223 chloride within the clinical development program
 • During the ongoing 3 year follow-up period for ALSYMPCA, there have been no reports of secondary malignancies associated with exposure to radium-223 chloride to date
Section 2:
Handling and Safety of Radium-223 Chloride

Erik Merten, Ph.D.
Global Chemical and Pharmaceutical Development
Radiopharmaceuticals
General Aspects of Handling & Safety

Although radionuclide therapy with Radium-223 Chloride uses α particles in contrast to established standard treatments, standard radiation safety practices already employed by sites are adequate for safe handling.
The Drug Product:
A Ready-to-Use Radium-223 Chloride Solution for Intravenous Injection

Vialled product - standardized, stable and ready to use

- 10 mL vial containing ~6 mL solution
- Direct i.v. injection via syringe (no generators, elutions, chelating involved)
- 6 MBq (162 µCi) Radium-223 per vial at calibration date
- Predominant alpha decay
- Shelf-life = 28 days
- Decay-in-storage to non-radioactive daughter product

If a licensee requests a unit dosage in a syringe, a radiopharmacy can provide unit doses to the site.
External Radiation Exposure Associated with Radium-223 Chloride Handling is Low

Dose rates as calculated values\(^1\)
(All data presented are unshielded values)

<table>
<thead>
<tr>
<th>Distance from vial</th>
<th>µSv/h per MBq</th>
<th>µSv/h per patient dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ra-223</td>
<td>Tc-99m</td>
</tr>
<tr>
<td>Ra-223</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Tc-99m</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>one meter</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>one centimeter</td>
<td>~ 200</td>
<td>~12*</td>
</tr>
<tr>
<td></td>
<td>~200</td>
<td>2460*</td>
</tr>
</tbody>
</table>

* Estimated finger dose per minute, assuming handling of unshielded source

\(^1\) reference: Exposure rate constants published by David S. Smith & Michael G. Stabin
(Health Physics 2012; 102:271-291)
Generally, Patient Doses Being Handled are Considerably Lower Compared to Common Radiopharmaceuticals

<table>
<thead>
<tr>
<th>Radiopharmaceutical</th>
<th>Application</th>
<th>Patient Dose (MBq)</th>
<th>Dose (µCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra-223 Chloride</td>
<td>Bone Mets</td>
<td>3.5 MBq*</td>
<td>(95 µCi)</td>
</tr>
<tr>
<td>F-18 FDG</td>
<td>PET Imaging</td>
<td>300 MBq</td>
<td>(8100 µCi)</td>
</tr>
<tr>
<td>Tc-99m HDP</td>
<td>Scintigraphy</td>
<td>740 MBq</td>
<td>(12700 µCi)</td>
</tr>
<tr>
<td>Y-90 Ibritumomab Tiuxetan</td>
<td>NHL</td>
<td>1184 MBq</td>
<td>(32000 µCi)</td>
</tr>
<tr>
<td>Sm-153 EDTMP</td>
<td>Bone pain</td>
<td>2590 MBq</td>
<td>(70000 µCi)</td>
</tr>
<tr>
<td>I-131 Tositumomab</td>
<td>NHL</td>
<td>3108 MBq</td>
<td>(84000 µCi)</td>
</tr>
</tbody>
</table>

* 70 kg body weight
Straightforward Application Procedure Supports Safe Handling, Especially Avoidance of Contamination of Surfaces or Accidental Intake

Delivery:
TYPE A certified package containing:
- Vial
- Shielding container
- Shipment documents
- Certificate of analysis
- Table for decay correction

Dosing and Administration:
1. Calculate the patient dose volume (50 kBq/kg body weight)
2. Draw up the desired volume into a syringe
3. Inject the product into the patient (slow i.v. injection)

Note: If a licensee requests a unit dosage in a syringe, the radiopharmacy will perform steps 1 and 2; the licensee will perform step 3.
Dosing and Administration
Dose Calibrator is Not Required for Radium-223 Chloride

10 CFR 35.63 (Determination of administered dosages pre-administration)

• Direct measurement (i.e. use of a dose calibrator) is not required to determine administered dosage

• If licensee receives vial: Measurement can be made using a combination of volumetric measurements and mathematical calculations, based on the measurement made by an appropriately licensed preparer

• If licensee receives patient-ready dosage in syringe: Measurement can be made by a decay correction, based on the activity determined by an appropriately licensed preparer
Dosing and Administration
Dose Calibrator is Not Required for Radium-223 Chloride (cont’d)

10 CFR 35.41(Procedures for administrations requiring a written directive)

- Need to verify that the administration is in accordance with the WD
- Data from clinical trial indicated that, on average, 0.7% of the administered activity remained in syringe after injection (no residual activity >3%). For a typical 3.5 MBq administration, this corresponds to a residual activity of 0.66 μCi, an activity that cannot be accurately measured in a dose calibrator.
Dosing and Administration
Dose Calibrator is Not Required for Radium-223 Chloride (cont’d)

- Given these data (and further that the administered activity can be +/-10%), a thorough flushing procedure followed by a visual assessment of the syringe is recommended as the standard procedure for verifying that the administration is in accordance with the written directive in the commercial setting.

- In the event of an issue encountered during administration that precludes complete administration of the patient-specific dosage, a direct measurement of the residual activity should be made (instruments other than a dose calibrator, such as a calibrated survey meter, can be used for this purpose.)
Waste Disposal
No Specific Precautions Needed for Radium-223 Chloride After Decay-in-Storage

- Due to the short physical half life of radium-223 (11.4 days), it can be disposed of in a suitable clinical waste stream after an appropriate amount of time (decay-in-storage) pursuant to 10 CFR 35.92.

- Photon emissions allow for contamination monitoring and control measures against background by standard survey meters.

⇒ No instruments dedicated to α-emission detection needed.
After Being Treated with Radium-223 Chloride, Patient is Immediately Releasable Pursuant to 10 CFR 35.75

Administered activity approx. 3.5 MBq (95 µCi) for a 70 kg patient

External radiation exposure to others

- Dose rate at 1 m from patient:

 = 0.0002 mrem/hr MBq x 3.5 MBq = 0.007 mrem/hr

- 1000 hours constant exposure = 7 mrem (<< 500 mrem limit)
Internal radiation exposure to others

- ~ 75% is excreted from the body within 1 week, mainly via feces
- Little (about 5%) excretion through urine
- Contamination and intake of activity highly unlikely

Although regulations do not require patient instructions to be provided since the risk of radiation exposure to others is below the regulatory limit, some instructions will be provided, e.g. hygiene measures
Sites Provided With Relevant Information Material and Instructions Needed for Safe Handling of Radium-223 Chloride

- Staggered approach
 - Mandatory: Thorough review of information materials
 - As needed: Q&A sessions via T-Con with Bayer experts
 - On request: Site visits*

- Information materials consist of video, slide deck and SOP’s

- Specific instructions are related to dose preparation, e.g.
 - Dose volume calculation
 - Dose drawing

- Receipt and review of material is confirmed by site
 - Confirmation is tracked
 - New employees: responsibility of site to inform and instruct

- Helpdesk (Bayer technical staff) available for support

* Case by case decision
In Summary, Standard Radiation Safety Practices are Adequate for Safe Handling of Radium-223 Chloride

- Radium-223 chloride is a ready-to-use radiopharmaceutical solution for injection which can be used as an out-patient treatment.
- Compared to other radiopharmaceuticals, administered activity and associated dose rates are considerably lower.
- The presence of some photon (x and γ) emissions allows for measurement of the product with standard instrumentation.
- The risk of radiation exposure is minimal when using established standard radiation safety practices and hygiene measures.
- Some drug specific information, e.g. dose preparation, will be provided to safely administer Ra-223 chloride.
- Over 1000 patients have been treated in clinical studies without any radiation safety incidents.
Section 3: Licensing Issues and Recommendations for NRC Consideration

Jeffry A. Siegel, Ph.D.
Bayer Consultant
223Ra: Licensing Under § 35.300

- Pursuant to § 35.300, licensee may use any unsealed byproduct material prepared for medical use and for which written directive required that is either obtained from or prepared by those specified in the rule.
- Logistics of administering and providing radiation safety support for the radiopharmaceutical, 223Ra, are similar to any other radiopharmaceutical already regulated under § 35.300.
- 223Ra emits betas, photons, and treatment involves low administered activities (microcuries) and dose rates.
- Only additional training needed is product-specific and will be provided by manufacturer (i.e., training for prescribing and information about radiation safety practices specific for medical use of 223Ra).
AUs
Gray Areas for Licensing of 223Ra Under § 35.300

- Which dosage category for 223Ra pursuant to § 35.390(b)(1)(ii)(G):
 1. Parenteral admin of any beta emitter, or a photon-emitting radionuclide with a photon energy less than 150 keV, for which a WD is required
 223Ra emits betas ($\sim 4\%$ of E emitted as βs); or
 2. Parenteral admin of any other radionuclide, for which a WD is required

- § 35.57 Do AUs identified on licenses prior to 4/29/05 have “deemed” status for medical use of 223Ra? If so, no further cases/training required and they can serve as preceptors for, and supervisors of, AU applicants

FRN for Final Rule (Vol. 67, No. 79, 4/24/02): These AUs have “deemed” status, i.e., they will continue to be recognized as AUs for type(s) of use(s) of byproduct material for which they already have AU status → authorized for therapeutic use of unsealed byproduct material pursuant to § 35.930
Preliminary draft rule language (5/6/2011) in pre-rulemaking stage

- § 35.390(b)(1)(ii)(G). The issue is work experience for α emitters. “Contrary to what has been intended, the current language in category 4 does not allow the category to encompass any byproduct material, since the NRC staff has determined that no pure alpha emitter exists.”

- Expand from 4 → 6 dosage categories: New Dosage Category 5: Parenteral administration of any radionuclide that is primarily used for its alpha radiation characteristics, for which a written directive is required

 Forecasts NRC’s intention to license alpha emitters under § 35.300
§ 35.1000
New Medical Use/Emerging Technology

NRC to determine if medical use of 223Ra requires licensing under § 35.1000 (e.g., if specific risks associated with medical use of 223Ra warrant additional regulatory requirements) or if this “new” technology is type of use already regulated under § 35.300

- 90Y microspheres regulated under § 35.1000
- AU to meet T&E pursuant to § 35.390 plus additional training required: operation of delivery system, safety procedures and clinical use (to include minimum of 3 supervised hands-on cases by AU or manufacturer representative)
- 90Y microspheres are brachytherapy devices, unlike 223Ra, which is a radiopharmaceutical (unsealed source)
Licensing Proposals for Medical Use of ^{223}Ra Chloride

1. License under § 35.300 based on existing dosage category (3) pursuant to § 35.390(b)(1)(ii)(G)(3)

2. License under § 35.300 based on existing dosage category (4) pursuant to § 35.390(b)(1)(ii)(G)(4)
 - AUs identified on a license prior to April 29, 2005 will have deemed status for the medical use of ^{223}Ra

3. License under § 35.300, but temporarily place under § 35.1000 until Expanded Part 35 rulemaking finalized, and then move to § 35.300
 - AUs identified on a license prior to April 29, 2005 will have deemed status for the medical use of ^{223}Ra