FINAL DATA REPORT Revision 0 GEOTECHNICAL EXPLORATION AND TESTING SUPPLEMENT 2 DOMINION POWER NORTH ANNA NUCLEAR POWER STATION NORTH ANNA 3 PROJECT MINERAL, LOUISA COUNTY, VIRGINIA December 16, 2009 #### **VOLUME 1** APPENDIX C.1 Geovision Downhole and P-S Logging Report Prepared By: MACTEC ENGINEERING AND CONSULTING, INC. RALEIGH, NORTH CAROLINA MACTEC PROJECT No. 6468-09-2473 Prepared For: Bechtel Power Corporation Subcontractor No. 25161-500-HC4-CY00-00001 ## DOCUMENTATION OF TECHNICAL REVIEW SUBCONTRACTOR WORK PRODUCT Project Name: NORTH ANNA 3 PROJECT Project Number: 6468-09-2473 Project Manager: Steve Criscenzo Project Principals: Al Tice and Steve Copley The report described below has been prepared by the named subcontractor retained in accordance with the MACTEC QAPD. The work and report have been reviewed by a MACTEC technically qualified person. Comments on the work or report, if any, have been satisfactorily addressed by the subcontractor. The attached report is approved in accordance with section QS-7 of MACTEC's QAPD The information and date contained in the attached report are hereby released by MACTEC for project use. | REPORT: North Anna Project 3 GEOVision Report, Revision 0 11-3-2009 | | |---|--| | SUBCONTRACTOR: GEOVision Geophysical Services | | | DATE OF ACCEPTANCE: 11-4-09 TECHNICAL REVIEWER: Wight B. | | DCN-NAP274 #### **FINAL REPORT** ## BORING GEOPHYSICS BORINGS M-10DH AND M-30DH # NORTH ANNA 3 PROJECT NORTH ANNA NUCLEAR STATION Report 9333-01 rev 0 November 3, 2009 #### **FINAL REPORT** ## BORING GEOPHYSICS BORINGS M-10DH AND M-30DH ## NORTH ANNA 3 PROJECT NORTH ANNA NUCLEAR STATION Report 9333-01 rev 0 November 3, 2009 #### **Prepared for:** MACTEC Engineering and Consulting, Inc. 3301 Atlantic Avenue Raleigh, N. C. 27604 919-876-0416 MACTEC Job number 6468-09-2473 #### Prepared by GEOVision Geophysical Services 1124 Olympic Drive Corona, California 92881 (951) 549-1234 #### **TABLE OF CONTENTS** | TABLE OF CONTENTS | 3 | |---|----| | TABLE OF FIGURES | 4 | | TABLE OF TABLES | | | | | | INTRODUCTION | 0 | | SCOPE OF WORK | 6 | | INSTRUMENTATION | 8 | | Suspension Instrumentation | | | CALIPER / NATURAL GAMMA INSTRUMENTATION | | | RESISTIVITY / SPONTANEOUS POTENTIAL / NATURAL GAMMA INSTRUMENTATION | | | MEASUREMENT PROCEDURES | | | Suspension Measurement Procedures | | | CALIPER / NATURAL GAMMA MEASUREMENT PROCEDURES | | | RESISTIVITY / SPONTANEOUS POTENTIAL MEASUREMENT PROCEDURES | | | ACOUSTIC TELEVIEWER / BORING DEVIATION MEASUREMENT PROCEDURES | 20 | | DATA ANALYSIS | 21 | | SUSPENSION ANALYSIS | 21 | | Caliper / Natural Gamma Analysis | | | RESISTIVITY / NATURAL GAMMA / SPONTANEOUS POTENTIAL ANALYSIS | | | ACOUSTIC TELEVIEWER / BORING DEVIATION ANALYSIS | 24 | | RESULTS | 25 | | Suspension Results | | | Caliper/ Natural Gamma Results | | | RESISTIVITY / SPONTANEOUS POTENTIAL RESULTS | | | ACOUSTIC TELEVIEWER / BORING DEVIATION RESULTS | | | SUMMARY | 28 | | DISCUSSION OF SUSPENSION RESULTS | | | DISCUSSION OF CALIPER / NATURAL GAMMA RESULTS | | | DISCUSSION OF RESISTIVITY / SPONTANEOUS POTENTIAL RESULTS | | | DISCUSSION OF ACOUSTIC TELEVIEWER / BORING DEVIATION RESULTS | | | Suspension Data Reliability | | ### **Table of Figures** | Figure 1: Concept illustration of P-S logging system | 32 | | | | |--|----|--|--|--| | Figure 2. Example Calibration Curve for Caliper Probe | 33 | | | | | Figure 3: Example of filtered (1400 Hz lowpass) record | | | | | | Figure 4. Example of unfiltered record | | | | | | Figure 5: Boring M-10DH, Suspension R1-R2 P- and S _H -wave velocities | | | | | | Figure 6: Boring M-10DH, Caliper, Natural gamma, Resistivity and SP logs | | | | | | Figure 7. Boring M-10DH, Deviation Projection | | | | | | Figure 8: Boring M-30DH, Suspension R1-R2 P- and S _H -wave velocities | | | | | | Figure 9. Boring M-30DH, Caliper, Natural gamma, Resistivity and SP logs | | | | | | Figure 10. Boring M-30DH, Deviation Projection | | | | | | Table of Tables | | | | | | Table 1 Boring locations and logging dates | 34 | | | | | Table 2. Logging dates and depth ranges | 34 | | | | | Table 3. Boring Bottom Depths and After Survey Depth Error (ASDE) | | | | | | Table 4. Boring Deviation Data Summary | | | | | | Table 5. Boring M-10DH, Suspension R1-R2 depths and P- and S _H -wave velocities | 39 | | | | | Table 6 Boring M-30DH Suspension R1-R2 depths and P- and Su-wave velocities | | | | | #### **APPENDICES** APPENDIX A SUSPENSION VELOCITY MEASUREMENT COMPARISON OF SOURCE TO RECEIVER 1 AND RECEIVER 1 TO **RECEIVER 2 ANALYSIS RESULTS** APPENDIX B CALIPER, NATURAL GAMMA, RESISTIVITY, AND SPONTANEOUS POTENTIAL LOGS APPENDIX C ACOUSTIC TELEVIEWER DIP LOGS APPENDIX D GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE CALIBRATION PROCEDURES AND CALIBRATION RECORDS APPENDIX E BORING GEOPHYSICAL LOGGING FIELD DATA LOGS APPENDIX F BORING GEOPHYSICAL LOGGING FIELD MEASUREMENT **PROCEDURES** Project 6468-09-2473 INTRODUCTION Boring geophysical measurements were collected in two uncased borings located at the North Anna Nuclear Power Station, located in Louisa County, Virginia. Geophysical data acquisition was performed between September 15 and 17, 2009 by Charles Carter and Victor Gonzalez of GEOVision. Data analysis and report preparation were performed by Robert Steller and reviewed by John Diehl of GEOVision. The work was performed under subcontract with MACTEC Engineering and Consulting, Inc., (MACTEC) with J. Allan Tice serving as the point of contact for MACTEC. This report describes the field measurements, data analysis, and results of this work. **SCOPE OF WORK** This report presents the results of boring geophysical measurements collected between September 15 and 17, 2009, in two uncased borings, as detailed in Table 1. The purpose of these studies was to supplement stratigraphic information obtained during MACTEC's soil and rock sampling program and to acquire shear wave velocities and compressional wave velocities as a function of depth. The OYO Suspension PS Logging System was used to obtain in-situ horizontal shear and compressional wave velocity measurements at 1.6 foot intervals. The acquired data were analyzed and a profile of velocity versus depth was produced for both compressional and horizontally polarized shear waves. A Robertson Geologging 3ACS 3-arm mechanical caliper probe was used to collect boring diameter and natural gamma data at 0.05 foot intervals. November 3, 2009 Page 6 of 217 DCN# NAP272 DCN NAP307 Project 6468-09-2473 A Robertson Geologging ELXG probe was used to collect long and short normal resistivity, single point resistance, self potential, and natural gamma data at 0.05 foot intervals. A Robertson Geologging High Resolution Acoustic Televiewer (HiRAT) probe was used to collect Acoustic televiewer images of the boring walls, and boring deviation data, at 0.008 foot intervals. A detailed reference for the velocity measurement techniques used in this study is: <u>Guidelines for Determining Design Basis Ground Motions</u>, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8. Project 6468-09-2473 INSTRUMENTATION **Suspension Instrumentation** Suspension soil and rock velocity measurements were performed using the suspension PS logging system, manufactured by OYO Corporation. This system directly determines the average in-situ horizontal shear and compressional wave velocity measurements of a 3.3 foot high segment of the rock and soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the rock and soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths. The suspension system probe consists of a combined reversible polarity solenoid horizontal shear-wave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figure 1. The separation of the two receivers is 3.3 feet, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The total length of the probe as used in these surveys is 19 feet, with the center point of the receiver pair 12.1 feet above the bottom end of the probe. The probe receives control signals from, and sends the digitized receiver signals to, instrumentation on the surface via an armored 4 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 3.28 foot circumference sheave fitted with a digital rotary encoder. The entire probe is suspended in the boring by the cable, therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure wave is converted to P and S_H-waves in the surrounding soil and rock as it impinges upon the wall of the boring. These waves propagate through the soil and rock surrounding the boring, in November 3, 2009 Page 8 of 21 DCN# NAP27 DCN NAP30 Project 6468-09-2473 turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location. Separation of the P and S_H -waves at the receivers is performed using the following steps: - Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H -wave signals. - 2. At each depth, S_H-wave signals are recorded with the source actuated in opposite directions,
producing S_H-wave signals of opposite polarity, providing a characteristic S_H-wave signature distinct from the P-wave signal. - 3. The 6.3 foot separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver. In faster soils or rock, the isolation cylinder is extended to allow greater separation of the P- and S_H-wave signals. - 4. In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering. - 5. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe (meter versus centimeter scale), preventing significant energy transmission through the fluid medium. In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows: - 1. The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded. - 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded. - 3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H -wave arrivals; reversal of the source changes the polarity of the S_H -wave pattern but not the P-wave pattern. Project 6468-09-2473 The data from each receiver during each source activation are recorded as a different channel on the recording system. The Suspension PS system has six channels (two simultaneous recording channels), each with a 1024 sample record. The recorded data are displayed as six channels with a common time scale. Data are stored on disk for further processing. Up to 8 sampling sequences can be summed to improve the signal to noise ratio of the signals. Review of the displayed data on the recorder or computer screen allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and summing number to optimize the quality of the data before recording. Verification of the calibration of the Suspension PS digital recorder is performed every twelve months using a NIST traceable frequency source and counter, as outlined in Appendix D. An additional post-project calibration was performed following the field work, and is included in Appendix D. #### Caliper / Natural Gamma Instrumentation Caliper and natural gamma data were collected using a Model 3ACS 3-leg caliper probe, serial number 6621, manufactured by Robertson Geologging, Ltd. With the short arm configuration used in these surveys, the probes permitted measurement of boring diameters between 1.6 and 12 inches. With this tool, caliper measurements were collected concurrent with measurement of natural gamma emission from the boring walls. The probe was 6.82 feet long, and 1.5 inches in diameter. Project 6468-09-2473 This probe is useful in the following studies: Measurement of boring diameter and volume Location of hard and soft formations Location of fissures, caving, pinching and casing damage Bed boundary identification Strata correlation between borings The probe receives control signals from, and sends the digitized measurement values to, a Robertson Micrologger II on the surface via an armored 4 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 3.28 foot circumference sheave fitted with a digital rotary encoder. The probe and depth data are transmitted by USB link from the Micrologger unit to a laptop computer where it is displayed and stored on hard disk. The caliper consists of three arms, each with a toothed quadrant at their base, pivoted in the lower probe body. A toothed rack engages with each quadrant, thus constraining the arms to move together. Linear movement of the rack is converted to opening and closing of the arms. Springs hold the arms open in the operating position. A motor drive is provided to retract the arms, allowing the probe to be lowered into the boring. The rack is coupled to a potentiometer which converts movement into a voltage sensed by the probe's microprocessor. Natural gamma measurements rely upon small quantities of radioactive material contained in all rocks to emit gamma radiation as they decay. Trace amounts of Uranium and Thorium are present in a few minerals, whereas potassium-bearing minerals such as feldspar, mica and clays will include traces of a radioactive isotope of Potassium. These emit gamma radiation as they decay with an extremely long half-life. This radiation is detected by scintillation - the production of a tiny flash of light when gamma rays strike a crystal of sodium iodide. The light is converted into an electrical pulse by a photomultiplier tube. Pulses above a threshold value of 60 KeV are counted by the probe's microprocessor. The measurement is useful because the Project 6468-09-2473 radioactive elements are concentrated in certain rock types e.g. clay or shales, and depleted in others e.g. sandstone or coal. Resistivity / Spontaneous Potential / Natural Gamma Instrumentation Resistivity, spontaneous potential and natural gamma data were collected using a Model ELXG electric log probe, S/N 5490, manufactured by Robertson Geologging, Ltd. This probe measures Single Point Resistance (SPR), short normal (16") resistivity, long normal (64") resistivity, Spontaneous Potential (SP) and natural gamma. The probe is 8.20 feet long, and 1.73 inches in diameter. This probe is useful in the following studies: Bed boundary identification Strata correlation between borings • Strata geometry and type (shale indication) The probe receives control signals from, and sends the digitized measurement values to, a Robertson Micrologger II on the surface via an armored 4 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 3.28 foot circumference sheave fitted with a digital rotary encoder. The probe and depth data are transmitted by USB link from the Micrologger unit to a laptop computer where they are displayed and stored on hard disk. The resistivity section of the probe operates by driving an alternating current into the formation from the central SPR/DRIVE electrode. The current returns via the logging cable armor. To ensure adequate penetration of the formation the logging cable is insulated for approximately 30 feet from the cablehead. Voltages are measured between the 16" and 64" electrodes and the remote earth connection at surface, as noted below: November 3, 2009 Page 12 of 2 DCN# NAP2 DCN NAP3 Project 6468-09-2473 Single Point Resistance (SPR): The current flowing to the cable armor is measured along with the voltage at the SPR electrode. The voltage divided by current gives resistance. Self Potential (SP): This is the DC bias of the 16" electrode with respect to the voltage return at the surface (ground stake). Data quality is dependant upon good grounding at the surface. This is achieved with a metal stake driven into the mud-pit or the soil adjacent to the boring. **Acoustic Televiewer / Boring Deviation Instrumentation** An acoustic image and boring deviation data were collected in all three borings using a High Resolution Acoustic Televiewer probe (HiRAT), serial number 6641, manufactured by Robertson Geologging, Ltd. The probe is 7.58 feet long, and 1.9 inches in diameter, and is fitted with upper and lower four-band centralizers. In this application, this probe is useful in the following studies: Measurement of boring inclination and deviation from vertical • Determination of need to correct soil and geophysical log depths to true vertical depths Acoustic imaging of the boring wall to identify fractures, dikes, and weathered zones, and determine dip and azimuth of these features The probe receives control signals from, and sends the digitized measurement values to, a Robertson Micrologger II on the surface via an armored 4 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 3.28 foot circumference sheave fitted with a digital rotary encoder. The probe and depth data are transmitted by USB link from the Micrologger unit to a laptop computer where it is displayed and stored on hard disk. This system produces images of the boring wall based upon the amplitude and travel time of an ultrasonic beam reflected from the formation wall. The ultrasonic energy is generated by a piezoelectric transducer at a frequency of 1.4 MHz. A periodic acoustic energy wave is emitted by the transducer and travels through the acoustic head and boring fluid until it reaches the interface between the boring fluid and the boring wall. Here a portion of the energy is reflected back to the transducer, the remainder continuing on into the formation. By careful time sequencing, the piezoelectric transducer acts as both the transmitter of the ultrasonic pulse and receiver of the reflected wave. The travel time of the energy wave is the period between transmission of the source energy pulse and the return of the reflected wave measured at the point of maximum wave amplitude. The magnitude of the wave energy is measured in dB, a unit-less ratio of the detected echo wave amplitude divided by the amplitude of the transmitted wave. The strength of the reflected signal depends primarily upon the impedance contrast of the boring fluid and the boring wall formation. In these rock borings, the contrast between the clear water filling the boring and the rock formation
generally provides high contrast. The changes in contrast between native rock and dikes provide imaging of fracture fillings. The acoustic wave propagates along the axis of the probe and then is reflected perpendicular to this axis by a reflector that focuses the beam to a 0.1-inch diameter spot about 2 inches from the central axis of the probe. This reflector is mounted on the shaft of a stepper motor enabling the position of the measurement to be rotated through 360°. Sampling rates of 90, 180 and 360 measured points per revolution are available. During these surveys, data were collected at 360 samples per revolution. It should be noted that during logging the probe is moving in the boring, so that the measured points describe a very fine pitch spiral. Project 6468-09-2473 The probe contains a fluxgate magnetometer to monitor magnetic north, and all raw televiewer data are referenced to magnetic north. Also, a three-axis accelerometer is enclosed in the probe, and boring deviation data are recorded during the logging runs, to permit correction of structure dip angle from apparent dip, (referenced to boring axis), to true dip (referenced to a vertical axis) in non-vertical borings. The data are presented on a computer screen for operator review during the logging run, and stored on hard disk for later processing. Project 6468-09-2473 MEASUREMENT PROCEDURES **Suspension Measurement Procedures** The borings were filled with bentonite or polymer based drilling mud and logged from the bottom of the surface casing down to the bottom of the boring, as listed in Table 2. 4-inch steel casing placed in the top 44 to 90 feet of softer soils above bedrock contact during the measurements in the lower rock portion of the borings. The casing was then removed, and measurements were performed in the upper soil portion of the borings, as indicated in Table 2. Measurements followed the GEOVision Procedure for P-S Suspension Seismic Velocity Logging, revision 1.4, as presented in Appendix F. This procedure was supplied to and approved by MACTEC in advance of the work. In each boring, the probe was positioned with the top of the probe at the top of the casing, and the electronic depth counter was set to the specified length of the probe, minus the height of the casing stick-up, as verified with a tape measure, and recorded on the field logs. The probe was lowered to the bottom of the boring, stopping at 1.6 foot intervals to collect data, as summarized in Table 2. At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth was reviewed on the computer display, and recorded on disk before moving to the next depth. Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the boring, and the after survey depth error (ASDE) was calculated, as summarized in Table 3. Calibration procedures and records for the suspension PS measurement system are presented in Appendix D. GEOVision standard field log sheets for all borings are reproduced in Appendix E and **GEO**Vision standard field procedures are reproduced in Appendix F. Caliper / Natural Gamma Measurement Procedures The borings were filled with bentonite or polymer based drilling mud and logged from the bottom of the boring up until the caliper entered the bottom of the surface casing, as listed in Table 2. Measurements followed ASTM D6167-97 (Re-approved 2004) Conducting Borehole Geophysical Logging – Mechanical Caliper. Prior to and following each logging run, the caliper tool was verified, using the manufacturer's supplied three point calibration jig, and a PVC coupling provided by MACTEC with an inside diameter traceable to NIST. The three point jig is a circular plate with a series of holes in the top surface into which the tips of the caliper arms fit. This has circles of diameters from 2 to 12 inches. The calibration jig is placed over a bucket with the probe standing upright with its nose section passing through the jig's central hole. The caliper probe arms are opened under program control, and a log is recorded as the tips of the arms are placed in the holes on the calibration jig and inside the PVC coupling. The measured dimensions, as displayed on the recording computer screen was recorded on the field log sheet, as well as in the digital files, and compared with the calibration jig dimensions. These files are presented in LAS 2.0 format in the boring specific sub-directories of the data disk (CD-R) labeled Report 9333-02 that accompanies this report. If the verification records did not fall within +/- 0.05 inches of the calibration jig values, the caliper tool was re-calibrated, using the three point calibration jig, and the log repeated. As with the verification, the tips of the caliper arms are placed in the holes marked with the required diameter. During calibration, the value of the current calibration point, as stamped on the jig, is entered via the control computer. The system counts for 15 seconds to make an average of the response. The procedure is repeated for the second and third required openings. The computation and generation of the calibration coefficient file is entirely automatic. The calibration file is simply the set of coefficients of a quadratic curve which fits the three data points. Figure 2 shows the response of a caliper probe using data gathered during calibration. Natural gamma was not calibrated in the field, as it is a qualitative measurement, not a quantitative value, and is used only to assist in picking transitions between stratigraphic units, as Project 6468-09-2473 described in ASTM D6274-98 (Re-approved 2004), Conducting Borehole Geophysical Logging - Gamma. In each boring, the probe was positioned with the top of the probe at the top of the casing, and the electronic depth counter was set to the specified length of the probe, minus the height of the casing stick-up, as verified with a tape measure, and recorded on the field logs. The probe was lowered to the bottom of the boring, where the caliper legs were opened, and data collection The probe was then returned to the surface at 10 feet/minute, collecting data continuously at 0.05 foot spacing, as summarized in Table 2. Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the boring, and the after survey depth error (ASDE) was calculated, as summarized in Table 3. Resistivity / Spontaneous Potential Measurement Procedures The borings were filled with bentonite or polymer based drilling mud and logged from the bottom of the boring up until the yoke electrode cleared the surface of the drilling mud at nominal 39 foot depth, or the probe entered the surface casing, as summarized in Table 2. The probe was connected to the logging cable using a 32.8 foot long insulating cable section or "yoke". The probe head was insulated by wrapping all exposed metal of the cablehead and probe with self-amalgamating insulation tape. The 32.8 foot insulating yoke was checked for any damage, and repaired with self-amalgamating insulation tape as needed. The reference ground stake was driven firmly into the mud pit, and connected to the ground socket on the winch switch box. This sonde was not calibrated in the field, as it is used to provide qualitative measurements, not quantitative values, and is used only to assist in picking transitions between stratigraphic units, as described in ASTM D5753-05, Planning and Conducting Borehole Geophysical Surveys. A Project 6468-09-2473 functional test is performed prior to each logging run by applying fixed resistance values across the probe electrodes, as well as a 100 millivolt signal across the SP electrodes, and recording the resultant output of the system. These functional checks are presented in LAS 2.0 format in the boring specific sub-directories of the data directory on the data disk (CD-R) labeled Report 9333-02 that accompanies this report. Natural gamma was not calibrated in the field, as it is a qualitative measurement, not a quantitative value, and is used only to assist in picking transitions between stratigraphic units, as described in ASTM D6274-98 (Re-approved 2004), Conducting Borehole Geophysical Logging - Gamma. In each boring, the probe was positioned with the top of the yoke electrode at the top of the casing, and the electronic depth counter was set to the specified length of the probe and yoke, minus the height of the casing stick-up, as verified with a tape measure, and recorded in the field logs. The probe was lowered to the bottom of the boring, where data collection was begun. The probe was then returned to the surface at 10 feet/minute, collecting data continuously at 0.05 foot spacing, until the yoke electrode cleared the surface of the drilling mud at nominal 39 foot depth, or the probe entered the surface casing, as summarized in Table 2. The natural gamma data collected in these logs is redundant with the data collected in the caliper / natural gamma logs, and the caliper / natural data may be used to verify the natural gamma data collected in these logs. Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the boring, and the after survey depth error (ASDE) was calculated, as summarized in Table 3. Project 6468-09-2473 **Acoustic Televiewer / Boring Deviation Measurement Procedures** The borings were filled with bentonite or polymer based drilling mud and logged from the bottom of the boring up to the surface, as listed in Table 2. Measurements followed the **GEO**Vision Hi-RAT Field Procedure, revision 1.0, as presented in Appendix F. This procedure was supplied to and approved by MACTEC in advance of the work. Prior to use, the HiRAT probe tiltmeter and compass
functions were checked by comparison with a Brunton surveyors' compass, and the results recorded on the field logs. In each boring, the televiewer probe was positioned with the top of the probe at the top of the casing, and the electronic depth counter was set to the specified length of the probe, minus the height of the casing stick-up, as verified with a tape measure, and recorded on the field logs. The probe was lowered to the bottom of the boring, and data collection begun. The probe was then returned to the surface at 3.0 feet/minute, collecting data continuously at 0.008 foot intervals, as summarized in Table 2. Upon completion of the measurements, the probe zero depth indication at grade was verified prior to removal from the boring and the after survey depth error (ASDE) was calculated, as summarized in Table 3. #### **DATA ANALYSIS** #### **Suspension Analysis** Using the proprietary OYO program PSLOG.EXE version 1.0, included on the data disk (CD-R) labeled Report 9333-02 that accompanies this report, the recorded digital waveforms were analyzed to locate the most prominent first minima, first maxima, or first break on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 3.3 foot segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data. The time picks were then transferred into an EXCEL template (EXCEL version 2003 SP2) to complete the velocity calculations based upon the arrival time picks made in PSLOG. The PSLOG pick files and the EXCEL analysis files are included in the boring specific directories on the data disk (CD-R) labeled Report 9333-02 that accompanies this report. The P-wave velocity over the 6.3 foot interval from source to receiver 1 (S-R1) was also picked using PSLOG, and calculated and plotted in EXCEL, for comparison with the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 4.8 feet to correspond to the mid-point of the 6.3 foot S-R1 interval. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting 0.3 milliseconds, the calculated and experimentally verified delay from source trigger pulse (beginning of record) to source impact. This delay corresponds to the duration of acceleration of the solenoid before impact. As with the P-wave records, using PSLOG, the recorded digital waveforms were analyzed to locate the presence of clear S_H-wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the S_H-wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital FFT - IFFT lowpass filtering was used to remove the higher frequency P-wave signal from the S_H-wave Project 6468-09-2473 signal. Different filter cutoffs were used to separate P- and S_H-waves at different depths, ranging from 600 Hz in the slowest zones to 4000 Hz in the regions of highest velocity. At each depth, the filter frequency was selected to be at least twice the fundamental frequency of the S_H- wave signal being filtered. Generally, the first maxima were picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted. The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical bias in the source or by boring inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations. As with the P-wave data, S_H-wave velocity calculated from the travel time over the 6.3 foot interval from source to receiver 1 was calculated and plotted for comparison with the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 4.8 foot to correspond to the mid-point of the 6.3 foot S-R1 interval. Travel times were obtained by picking the first break of the S_H-wave signal at the near receiver and subtracting 0.3 milliseconds, the calculated and experimentally verified delay from the beginning of the record at the source trigger pulse to source impact. Independent review of these data and analysis were performed by John Diehl of **GEO**Vision. Figure 3 shows an example of R1 - R2 measurements on a sample filtered suspension record. In Figure 3, the time difference over the 3.3 foot interval of 1.88 milliseconds for the horizontal signals is equivalent to an S_H-wave velocity of 1745 feet/second. Whenever possible, time differences were determined from several phase points on the S_H-waveform records to verify the data obtained from the first arrival of the S_H-wave pulse. Figure 4 displays the same record before filtering of the S_H -waveform record with a 1400 Hz FFT - IFFT digital lowpass filter, Project 6468-09-2473 illustrating the presence of higher frequency P-wave energy at the beginning of the record, and distortion of the lower frequency S_H-wave by residual P-wave signal. Caliper / Natural Gamma Analysis No analysis is required with the caliper or natural gamma data, however depths to identifiable boring features were compared to verify compatible depth readings on all logs. Using WellCAD software version 4.3, these data were combined with the resistivity, ELOG based natural gamma and spontaneous potential (SP) logs, and converted to LAS and PDF formats for transmittal to the client. Resistivity / Natural Gamma / Spontaneous Potential Analysis No analysis is required with the resistivity, natural gamma or spontaneous potential data, however depths to identifiable boring features were compared to verify compatible depth readings on all logs. Using WellCAD software version 4.3, these data were combined with the caliper and caliper-based natural gamma logs, and converted to LAS and PDF formats for transmittal to the client. Project 6468-09-2473 **Acoustic Televiewer / Boring Deviation Analysis** The collected Acoustic Televiewer data was processed with Robertson Geologging's RGLDIP program, version 6.2, to identify boring features and to extract the deviation data and produce an ASCII file and plots of deviation data. Sinusoidal projections of both open and hairline fractures in the boring walls were interactively picked on the acoustic reflection image or acoustic travel time image, and are presented on the logs as red sinusoids superimposed over the televiewer images. Bedrock contact, and other bedding planes, when visible, were picked on the same images and are presented on the logs as green sinusoids. The sinusoidal projections were processed to correct for the plunge of the borings using the recorded data from the accelerometers located in the probe, and presented graphically, in what is referred to as "tadpole", or "arrow" format, with true dip indicated by the position of the arrow head on the plot. Direction of dip (not strike) is indicated by the direction of the arrow tail, with true north being "up". These values are presented numerically in columns to the left of the arrow graphic plots. These depth and dip data of the joints and foliation are also presented as .txt files in the boring specific sub-directories on the data disk (CD-R) labeled Report 9333-02 that accompanies this report, and summarized in Table 4. The televiewer images were processed to create a simulated core image of the borings. It should be considered that the pseudo-core represents a core that would have the full 3.8-inch diameter of the boring, not the 2.5-inch diameter of the cores removed during drilling, so that direct comparison is not possible. Also, the unwrapped image is viewed from the perspective of an observer in the center of the boring looking outward. The simulated core image is viewed from the "outside" of the boring looking inward, so there is a reversal of the position of east and west relative to north between the two images. Project 6468-09-2473 RESULTS **Suspension Results** Suspension R1-R2 P- and S_H-wave velocities are plotted in Figures 5 and 8. The suspension velocity data presented in these figures are presented in Tables 5 and 6. The PSLOG and EXCEL analysis files for each boring are included in the boring specific directories on the data disk (CD-R) labeled Report 9333-02 that accompanies this report, along with the raw and filtered waveforms. P- and S_H-wave velocity data from R1-R2 and S-R1 analysis, as discussed in the "Suspension Analysis" section of this report, are plotted together in Figures A-1 and A-2 to aid in visual comparison. It must be noted that R1-R2 data is an average velocity over a 3.3 foot segment of the soil column; S-R1 data is an average over 6.3 feet, creating a significant smoothing relative to the R1-R2 plots. S-R1 data are presented in Tables A-1 and A-2, and included in the EXCEL analysis files for each boring on the data disk (CD-R) labeled Report 9333-02 that accompanies this report. Calibration procedures and records for the suspension measurement system are presented in Appendix D. The **GEO**Vision standard field log sheets for all borings are reproduced in Appendix E. The **GEO***Vision* standard field procedures are reproduced in Appendix F. Project 6468-09-2473 Caliper/ Natural Gamma Results Caliper and natural gamma data are presented in combined log plots with resistivity and spontaneous potential as single page logs in Figures 6 and 9, as well as multi-page logs in Appendix B. LAS 2.0 data and Acrobat
files of the plots for each boring are included in the boring specific sub-directories on the data disk (CD-R) labeled Report 9333-02 that accompanies this report. Resistivity / Spontaneous Potential Results Resistivity and spontaneous potential data is presented in combined log plots with caliper and natural gamma data as single page logs in Figures 6 and 9, as well as multi-page logs in Appendix B. LAS 2.0 data and Acrobat files of the plots for each boring are included in the boring specific sub-directories on the data disk (CD-R) labeled Report 9333-02 that accompanies this report. **Acoustic Televiewer / Boring Deviation Results** Acoustic televiewer amplitude images and simulated core images are presented in Appendix C, with identified features super-imposed on the images. Features were picked as hairline fractures and bedding planes (as identified as features only present on the amplitude display) and open fractures (as identified as features present on both amplitude and travel-time displays). The same logs are presented in .pdf format in the boring specific sub-directories on the data disk (CD-R) labeled Report 9333-02 that accompanies this report. Fracture and planar feature depth, dip angle and azimuth of dip data are provided numerically on the log sheets, as well as in text format on the data CD-R. Boring deviation data is presented graphically in Figures 7 and 10, and summarized in Table 4. Deviation data plots in Acrobat format and deviation data at 1.0 foot stations are presented in text format in the boring specific sub-directories of the data disk (CD-R) labeled Report 9333-02 that accompanies this report. #### **SUMMARY** #### **Discussion of Suspension Results** Suspension PS velocity data are ideally collected in an uncased fluid filled boring, drilled with rotary mud (rotary wash) methods. The lower portions of the borings at this site were ideal for collection of suspension PS velocity data. Suspension PS velocity data quality is judged based upon 5 criteria: - 1. Consistent data between receiver to receiver (R1 R2) and source to receiver (S R1)data. - 2. Consistent relationship between P-wave and S_H -wave (excluding transition to saturated soils) - 3. Consistency between data from adjacent depth intervals. - 4. Clarity of P-wave and S_H-wave onset, as well as damping of later oscillations. - 5. Consistency of profile between adjacent borings, if available. M-10DH: These data show excellent correlation between R1 - R2 and S - R1 data, as well as excellent correlation between P-wave and S_H-wave velocities. S_H-wave onsets are generally clear, and later oscillations are well damped. P-wave arrivals are weak, as is generally the case in hard rock borings, and above water table in soil. In the hard rock, low velocity regions correspond well with fracture zones identified on the acoustic televiewer logs. This is an excellent rock velocity data set, with good soil velocity data. M-30DH: These data show excellent correlation between R1 - R2 and S - R1 data, as well as excellent correlation between P-wave and S_H-wave velocities. S_H-wave onsets are generally clear, and later oscillations are well damped. P-wave arrivals are weak, as is generally the case in hard rock borings, and above water table in soil. In the hard rock, low velocity regions correspond well with fracture zones identified on the acoustic televiewer logs. This is an excellent rock velocity data set, with good soil velocity data. Project 6468-09-2473 **Discussion of Caliper / Natural Gamma Results** Caliper and natural gamma data was collected for the entire depth of each boring. The caliper logs for all these borings show very consistent gauge in competent rock, with minor tapering downhole due to bit wear. Some fracturing is noted, but below the rock contact, the borings are generally tight. Natural gamma was collected with this tool in all the borings, as well as with the ELOG probe, and the comparison between the two data sets provides an almost exact match, verifying the performance of the natural gamma measuring systems. Discussion of Resistivity / Spontaneous Potential Results Both long and short normal resistivity and single point resistance provide clear delineation of different lithologic units and changes within the bedrock, showing drops in resistivity at weathered zones that correspond with changes in natural gamma and velocity data. The electrical data is not valid above 40 feet, as the upper yoke electrode moves out of the boring fluid at this depth. The natural gamma data agrees well with the natural gamma data collected with the caliper probe. The comparison between the two data sets provides an almost exact match, verifying the performance of the natural gamma measuring systems. Discussion of Acoustic Televiewer / Boring Deviation Results The acoustic televiewer data quality in the rock section of both borings is very good, providing clear images of a number of fractures and beading planes. Many of the borings exhibit diagonal banding (zebra striping) caused by rapid reaming down the boring with new core bits that are slightly larger than the gauge of the original boring. This creates a spiral wear pattern in the boring that alters the characteristic smooth surface of diamond cored borings. This wear pattern can have a significant impact on acoustic televiewer image quality, and in these borings may conceal smaller features. It will not conceal fractures, however. , 2009 Page 29 of 21 DCN# NAP272 DCN NAP30 Project 6468-09-2473 Location of fractures and weathered zones on the televiewer logs correspond precisely with increases in caliper log diameter and suspension PS velocity drops. The borings were inclined at 3.9 degrees, or less, from vertical, and the maximum error in depth value was 0.5 feet in 200 ft, or less than 0.3 percent, as presented in Table 4. This error is less than depth errors from other causes, and no adjustment of log depth is indicated. **Quality Assurance** These boring geophysical measurements were performed using industry-standard or better methods for measurements and analyses. All work was performed under GEOVision data collection and processing procedures, which include: • Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation • Use of standard field data logs • Use of independent verification of velocity data by comparison of receiver-to-receiver and source-to-receiver velocities • Independent review of calculations and results by a registered professional engineer, geologist, or geophysicist. #### **Suspension Data Reliability** P- and S_H -wave velocity measurement using the Suspension Method gives average velocities over a 3.3 foot interval of depth. This high resolution results in the scatter of values shown in the graphs. Individual measurements are very reliable with estimated precision of \pm 5%. Standardized field procedures and comparison checks contribute to the reliability of these data. Figure 1: Concept illustration of P-S logging system Figure 2. Example Calibration Curve for Caliper Probe | BORING | DATES | | COORDINATES* - FEET | | | |-------------|--------------|------------|---------------------|-------------|--| | DESIGNATION | LOGGED | ELEVATION* | NORTH (Y) | EAST (X) | | | M-10DH | 9/16-17/2009 | 323.61 | 3909243.32 | 11685945.83 | | | M-30DH | 9/15-17/2009 | 313.34 | 3909694.92 | 11685381.66 | | ^{*} All points referenced to Control Monument 7 and adjusted to reflect the following Datums Horizontal – VSPCS South Zone, NAD 83(CORS96)(EPOCH:2002) Elevation - NAVD88 (Geoid03) Survey data provided by MACTEC Table 1 Boring locations and logging dates | BORING
NUMBER | TOOL AND RUN
NUMBER | DEPTH
RANGE
(FEET) | OPEN
HOLE
(FEET) | DEPTH TO
BOTTOM OF
CASING
(FEET) | SAMPLE
INTERVAL
(FEET) | DATE
LOGGED | |------------------|------------------------|--------------------------|------------------------|---|------------------------------|----------------| | M-10DH | ELOG/GAMMA 1 | 200.1 - 86.0 | 200.1 | 89.8 STEEL | 0.05 | 9/16/2009 | | M-10DH | SUSPENSION 1 | 91.9 – 187.0 | - | 89.8 STEEL | 1.6 | 9/16/2009 | | M-10DH | ACOUSTIC TELEVIEWER 1 | 196.9 - 86.9 | - | 89.8 STEEL | 0.008 | 9/16/2009 | | M-10DH | CALIPER/GAMMA 1 | 198.8 - 84.0 | - | 89.8 STEEL | 0.05 | 9/16/2009 | | M-10DH | ELOG/GAMMA 2 | 105.6 – 36.6 | - | 7.0 STEEL | 0.05 | 9/16/2009 | | M-10DH | SUSPENSION 2 | 8.2 – 98.4 | - | 7.0 STEEL | 1.6 | 9/17/2009 | | M-10DH | CALIPER/GAMMA 2 | 100.9 – 3.9 | - | 7.0 STEEL | 0.05 | 9/17/2009 | | M-10DH | ACOUSTIC TELEVIEWER 2 | 99.4 – 2.8 | - | 7.0 STEEL | 0.008 | 9/18/2009 | | M-30DH | ELOG/GAMMA 1 | 200.5 - 39.6 | 200.5 | 44.0 STEEL | 0.05 | 9/15/2009 | | M-30DH | ELOG/GAMMA 2 | 75.0 – 39.9 | - | 44.0 STEEL | 0.05 | 9/15/2009 | | M-30DH | SUSPENSION 1 | 45.9 – 187.0 | - | 44.0 STEEL | 1.6 | 9/15/2009 | | M-30DH | ACOUSTIC TELEVIEWER 1 | 200.2 - 40.2 | - | 44.0 STEEL | 0.008 | 9/16/2009 | | M-30DH | ACOUSTIC TELEVIEWER 2 | 55.4 – 41.8 | - | 44.0 STEEL | 0.008 | 9/16/2009 | | M-30DH | CALIPER/GAMMA 1 | 200.1 – 33.2 | - | 44.0 STEEL | 0.05 | 9/16/2009 | | M-30DH | ELOG/GAMMA 3 | 65.4 – 34.3 | - | 7.0 STEEL | 0.05 | 9/17/2009 | | M-30DH | SUSPENSION 2 | 8.2 – 52.5 | - | 7.0 STEEL | 1.6 | 9/17/2009 | | M-30DH | ACOUSTIC TELEVIEWER 3 | 45.9 – 5.9 | - | 7.0 STEEL | 0.008 | 9/17/2009 | | M-30DH | CALIPER/GAMMA 2 | 50.7 – 3.3 | - | 7.0 STEEL | 0.05 | 9/17/2009 | - PROBE DID NOT TOUCH BOTTOM OF BORING Table 2. Logging dates and depth ranges DCN# NAP272 DCN NAP307 | BORING
NUMBER | TOOL AND RUN
NUMBER | TOOL HIT BOTTOM
DEPTH (FEET) | DRILLER DEPTH
(FEET) | STARTING
DEPTH
REF.
(FEET) | ENDING
DEPTH
REF.
(FEET) | ASDE
(FEET) | |------------------|------------------------|---------------------------------|-------------------------|-------------------------------------|-----------------------------------|----------------| |
M-10DH | ELOG/GAMMA 1 | 201.1 | 201.9 | 39.5 | 39.5 | 0 | | M-10DH | SUSPENSION 1 | - | | 6.7 | 6.7 | 0 | | M-10DH | ACOUSTIC TELEVIEWER 1 | - | | 3.2 | 3.2 | 0 | | M-10DH | CALIPER/GAMMA 1 | - | | 5.3 | 5.3 | 0 | | M-10DH | ELOG/GAMMA 2 | - | | 32.2 | 32.2 | 0 | | M-10DH | SUSPENSION 2 | - | | 5.4 | 5.4 | 0 | | M-10DH | CALIPER/GAMMA 2 | - | | 4.0 | 4.0 | 0 | | M-10DH | ACOUSTIC TELEVIEWER 2 | - | | 2.8 | 2.7 | 0.1 | | M-30DH | ELOG/GAMMA 1 | 200.5 | 201.7 | 39.9 | 39.6 | 0.3 | | M-30DH | ELOG/GAMMA 2 | - | | 39.9 | 40.0 | 0.1 | | M-30DH | SUSPENSION 1 | - | | 7.1 | 7.1 | 0 | | M-30DH | ACOUSTIC TELEVIEWER 1 | - | | 3.6 | 3.6 | 0 | | M-30DH | ACOUSTIC TELEVIEWER 2 | - | | 3.6 | 3.6 | 0 | | M-30DH | CALIPER/GAMMA 1 | - | | 5.7 | 5.7 | 0 | | M-30DH | ELOG/GAMMA 3 | - | | 37.7 | 37.8 | 0.1 | | M-30DH | SUSPENSION 2 | - | | 4.9 | 4.9 | 0 | | M-30DH | ACOUSTIC TELEVIEWER 3 | - | | 1.4 | 1.4 | 0 | | M-30DH | CALIPER/GAMMA 2 | - | | 3.5 | 3.5 | 0 | ⁻ PROBE DID NOT TOUCH BOTTOM OF BORING Table 3. Boring Bottom Depths and After Survey Depth Error (ASDE) | BORING | MEAN DEVIATION | SURVEY | VERTICAL | DEPTH | HORIZONTAL | |--------|----------------|--------|----------|--------|------------| | NUMBER | AND AZIMUTH | DEPTH | DEPTH | ERROR | OFFSET | | NUMBER | (DEGREES) | (FEET) | (FEET) | (FEET) | (FEET) | | M-10DH | 3.9 – N328 | 196.9 | 196.4 | 0.5 | 13.3 | | M-30DH | 1.6 – N159 | 200.2 | 200.2 | 0 | 5.5 | Table 4. Boring Deviation Data Summary Figure 3: Example of filtered (1400 Hz lowpass) record Figure 4. Example of unfiltered record ## NORTH ANNA BORING M-10DH Receiver to Receiver V_s and V_p Analysis Figure 5: Boring M-10DH, Suspension R1-R2 P- and S_H-wave velocities Table 5. Boring M-10DH, Suspension R1-R2 depths and P- and S_H-wave velocities ## Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-10DH | American Units | | | | | |---------------------|----------------|----------------|-----------|--| | Depth at | 1 | ocity | | | | Midpoint
Between | | _ | Poisson's | | | Receivers | V _s | V _p | Ratio | | | (ft) | (ft/s) | (ft/s) | | | | 8.2 | 300 | 740 | 0.40 | | | 9.8 | 370 | 690 | 0.29 | | | 11.5 | 370 | 840 | 0.38 | | | 13.1 | 460 | 970 | 0.36 | | | 14.8 | 510 | 1010 | 0.33 | | | 16.4 | 530 | 960 | 0.28 | | | 18.0 | 520 | 890 | 0.24 | | | 19.7 | 500 | 980 | 0.32 | | | 21.3 | 490 | 960 | 0.32 | | | 23.0 | 560 | 1610 | 0.43 | | | 24.6 | 520 | 2800 | 0.48 | | | 26.3 | 550 | 3170 | 0.48 | | | 27.9 | 670 | 4360 | 0.49 | | | 29.5 | 690 | 4630 | 0.49 | | | 31.2 | 790 | 5460 | 0.49 | | | 32.8 | 650 | 4420 | 0.49 | | | 34.5 | 880 | 5050 | 0.48 | | | 36.1 | 1000 | 5900 | 0.49 | | | 37.7 | 1210 | 6060 | 0.48 | | | 39.4 | 1110 | 5170 | 0.48 | | | 41.0 | 1000 | 4980 | 0.48 | | | 42.7 | 890 | 5850 | 0.49 | | | 44.3 | 730 | 5650 | 0.49 | | | 45.9 | 690 | 5420 | 0.49 | | | 47.6 | 880 | 4900 | 0.48 | | | 49.2 | 970 | 5460 | 0.48 | | | 50.9 | 1030 | 5700 | 0.48 | | | 52.5 | 980 | 5900 | 0.49 | | | 54.1 | 960 | 5850 | 0.49 | | | 55.8 | 1030 | 5510 | 0.48 | | | 57.4 | 1170 | 6010 | 0.48 | | | 59.1 | 1000 | 5850 | 0.49 | | | 60.7 | 1030 | 5650 | 0.48 | | | 62.3 | 1070 | 6290 | 0.49 | | | 64.0 | 1060 | 6010 | 0.48 | | | 65.6 | 1370 | 6230 | 0.47 | | | | Metric Units | | | | | |-----------|----------------|-------|-----------|--|--| | Depth at | • | | | | | | Midpoint | | | | | | | Between | | | Poisson's | | | | Receivers | V _s | V_p | Ratio | | | | (m) | (m/s) | (m/s) | | | | | 2.5 | 90 | 230 | 0.40 | | | | 3.0 | 110 | 210 | 0.29 | | | | 3.5 | 110 | 250 | 0.38 | | | | 4.0 | 140 | 300 | 0.36 | | | | 4.5 | 160 | 310 | 0.33 | | | | 5.0 | 160 | 290 | 0.28 | | | | 5.5 | 160 | 270 | 0.24 | | | | 6.0 | 150 | 300 | 0.32 | | | | 6.5 | 150 | 290 | 0.32 | | | | 7.0 | 170 | 490 | 0.43 | | | | 7.5 | 160 | 850 | 0.48 | | | | 8.0 | 170 | 970 | 0.48 | | | | 8.5 | 200 | 1330 | 0.49 | | | | 9.0 | 210 | 1410 | 0.49 | | | | 9.5 | 240 | 1670 | 0.49 | | | | 10.0 | 200 | 1350 | 0.49 | | | | 10.5 | 270 | 1540 | 0.48 | | | | 11.0 | 300 | 1800 | 0.49 | | | | 11.5 | 370 | 1850 | 0.48 | | | | 12.0 | 340 | 1580 | 0.48 | | | | 12.5 | 300 | 1520 | 0.48 | | | | 13.0 | 270 | 1780 | 0.49 | | | | 13.5 | 220 | 1720 | 0.49 | | | | 14.0 | 210 | 1650 | 0.49 | | | | 14.5 | 270 | 1490 | 0.48 | | | | 15.0 | 290 | 1670 | 0.48 | | | | 15.5 | 310 | 1740 | 0.48 | | | | 16.0 | 300 | 1800 | 0.49 | | | | 16.5 | 290 | 1780 | 0.49 | | | | 17.0 | 310 | 1680 | 0.48 | | | | 17.5 | 360 | 1830 | 0.48 | | | | 18.0 | 300 | 1780 | 0.49 | | | | 18.5 | 310 | 1720 | 0.48 | | | | 19.0 | 330 | 1920 | 0.49 | | | | 19.5 | 320 | 1830 | 0.48 | | | | 20.0 | 420 | 1900 | 0.47 | | | ## Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-10DH | American Units | | | | | |----------------|-----------------|----------------|-----------|--| | Depth at | oth at Velocity | | | | | Midpoint | | | | | | Between | | | Poisson's | | | Receivers | V _s | V _p | Ratio | | | (ft) | (ft/s) | (ft/s) | | | | 67.3 | 1460 | 6170 | 0.47 | | | 68.9 | 1150 | 6290 | 0.48 | | | 70.5 | 1710 | 5510 | 0.45 | | | 72.2 | 2040 | 5850 | 0.43 | | | 73.8 | 1690 | 6350 | 0.46 | | | 75.5 | 1310 | 5750 | 0.47 | | | 77.1 | 1130 | 5420 | 0.48 | | | 78.7 | 970 | 5510 | 0.48 | | | 80.4 | 1150 | 5750 | 0.48 | | | 82.0 | 1260 | 5900 | 0.48 | | | 83.7 | 1410 | 5950 | 0.47 | | | 85.3 | 1460 | 6010 | 0.47 | | | 86.9 | 1250 | 6170 | 0.48 | | | 88.6 | 1340 | 6230 | 0.48 | | | 90.2 | 1590 | 6410 | 0.47 | | | 91.9 | 1450 | 6410 | 0.47 | | | 93.5 | 1420 | 6410 | 0.47 | | | 95.1 | 1350 | 6170 | 0.47 | | | 96.8 | 1230 | 5750 | 0.48 | | | 98.4 | 1290 | 5950 | 0.48 | | | 100.1 | 1520 | 6410 | 0.47 | | | 101.7 | 1620 | 6290 | 0.46 | | | 103.7 | 1340 | 6060 | 0.47 | | | 105.0 | 1400 | 6290 | 0.47 | | | 106.6 | 2100 | 6800 | 0.45 | | | 108.3 | 2220 | 7580 | 0.45 | | | 109.9 | 2500 | 7330 | 0.43 | | | 111.6 | 3140 | 6940 | 0.37 | | | 113.2 | 5210 | 9950 | 0.31 | | | 114.8 | 4630 | 11110 | 0.39 | | | 116.5 | 4760 | 11900 | 0.40 | | | 118.1 | 5380 | 10930 | 0.34 | | | 119.8 | 4540 | 12350 | 0.42 | | | 121.4 | 4220 | 10930 | 0.41 | | | 123.0 | 5800 | 12820 | 0.37 | | | 124.7 | 5560 | 11900 | 0.36 | | | 126.3 | 5250 | 11700 | 0.37 | | | 128.0 | 6940 | 11900 | 0.24 | | | 129.6 | 5380 | 13330 | 0.40 | | | | Metric Units | | | | | |-----------|----------------|----------------|-----------|--|--| | Depth at | 1 | city | | | | | Midpoint | | | | | | | Between | | | Poisson's | | | | Receivers | V _s | V _p | Ratio | | | | (m) | (m/s) | (m/s) | | | | | 20.5 | 450 | 1880 | 0.47 | | | | 21.0 | 350 | 1920 | 0.48 | | | | 21.5 | 520 | 1680 | 0.45 | | | | 22.0 | 620 | 1780 | 0.43 | | | | 22.5 | 520 | 1940 | 0.46 | | | | 23.0 | 400 | 1750 | 0.47 | | | | 23.5 | 340 | 1650 | 0.48 | | | | 24.0 | 290 | 1680 | 0.48 | | | | 24.5 | 350 | 1750 | 0.48 | | | | 25.0 | 380 | 1800 | 0.48 | | | | 25.5 | 430 | 1810 | 0.47 | | | | 26.0 | 440 | 1830 | 0.47 | | | | 26.5 | 380 | 1880 | 0.48 | | | | 27.0 | 410 | 1900 | 0.48 | | | | 27.5 | 490 | 1950 | 0.47 | | | | 28.0 | 440 | 1950 | 0.47 | | | | 28.5 | 430 | 1950 | 0.47 | | | | 29.0 | 410 | 1880 | 0.47 | | | | 29.5 | 370 | 1750 | 0.48 | | | | 30.0 | 390 | 1810 | 0.48 | | | | 30.5 | 460 | 1950 | 0.47 | | | | 31.0 | 490 | 1920 | 0.46 | | | | 31.6 | 410 | 1850 | 0.47 | | | | 32.0 | 430 | 1920 | 0.47 | | | | 32.5 | 640 | 2070 | 0.45 | | | | 33.0 | 680 | 2310 | 0.45 | | | | 33.5 | 760 | 2230 | 0.43 | | | | 34.0 | 960 | 2120 | 0.37 | | | | 34.5 | 1590 | 3030 | 0.31 | | | | 35.0 | 1410 | 3390 | 0.39 | | | | 35.5 | 1450 | 3630 | 0.40 | | | | 36.0 | 1640 | 3330 | 0.34 | | | | 36.5 | 1380 | 3760 | 0.42 | | | | 37.0 | 1290 | 3330 | 0.41 | | | | 37.5 | 1770 | 3910 | 0.37 | | | | 38.0 | 1690 | 3630 | 0.36 | | | | 38.5 | 1600 | 3560 | 0.37 | | | | 39.0 | 2120 | 3630 | 0.24 | | | | 39.5 | 1640 | 4060 | 0.40 | | | November 3, 2009 ## Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-10DH | Depth at | Velo | ocity | | |-----------|----------------|----------------|-----------| | Midpoint | | | | | Between | | | Poisson's | | Receivers | V _s | V _p | Ratio | | (ft) | (ft/s) | (ft/s) | | | 131.2 | 5700 | 13330 | 0.39 | | 132.9 | 4870 | 13330 | 0.42 | | 133.9 | 6140 | 13330 | 0.37 | | 136.2 | 5130 | 12580 | 0.40 | | 137.8 | 6600 | 15150 | 0.38 | | 139.4 | 5380 | 14180 | 0.42 | | 141.1 | 4900 | 10930 | 0.37 | | 142.7 | 6380 | 13070 | 0.34 | | 144.4 | 8950 | 15150 | 0.23 | | 146.0 | 5380 | 13610 | 0.41 | | 147.6 | 6840 | 14490 | 0.36 | | 149.3 | 8600 | 13890 | 0.19 | | 150.9 | 7530 | 14810 | 0.33 | | 152.6 | 6870 | 11900 | 0.25 | | 154.2 | 6730 | 15500 | 0.38 | | 155.8 | 7750 | 15150 | 0.32 | | 157.5 | 10580 | 18520 | 0.26 | | 159.1 | 10580 | 19050 | 0.28 | | 160.8 | 10580 | 19610 | 0.29 | | 162.4 | 10750 | 17540 | 0.20 | | 164.0 | 8440 | 15870 | 0.30 | | 165.7 | 11110 | 18020 | 0.19 | | 167.3 | 8180 | 17540 | 0.36 | | 169.0 | 10580 | 19050 | 0.28 | | 170.6 | 10670 | 19610 | 0.29 | | 172.2 | 10180 | 16670 | 0.20 | | 173.9 | 7890 | 15870 | 0.34 | | 175.5 | 8600 | 14810 | 0.25 | | 177.2 | 9520 | 17540 | 0.29 | | 178.8 | 8440 | 17540 | 0.35 | | 180.5 | 9800 | 18020 | 0.29 | | 182.1 | 10670 | 17540 | 0.21 | | 183.7 | 8600 | 15500 | 0.28 | | 185.4 | 7800 | 18020 | 0.38 | | 187.0 | 8440 | 17540 | 0.35 | | | Metric Units | | | | | |-----------|----------------|----------------|-----------|--|--| | Depth at | Velo | city | | | | | Midpoint | | | | | | | Between | | | Poisson's | | | | Receivers | V _s | V _p | Ratio | | | | (m) | (m/s) | (m/s) | | | | | 40.0 | 1740 | 4060 | 0.39 | | | | 40.5 | 1480 | 4060 | 0.42 | | | | 40.8 | 1870 | 4060 | 0.37 | | | | 41.5 | 1560 | 3830 | 0.40 | | | | 42.0 | 2010 | 4620 | 0.38 | | | | 42.5 | 1640 | 4320 | 0.42 | | | | 43.0 | 1490 | 3330 | 0.37 | | | | 43.5 | 1940 | 3980 | 0.34 | | | | 44.0 | 2730 | 4620 | 0.23 | | | | 44.5 | 1640 | 4150 | 0.41 | | | | 45.0
 2080 | 4420 | 0.36 | | | | 45.5 | 2620 | 4230 | 0.19 | | | | 46.0 | 2300 | 4520 | 0.33 | | | | 46.5 | 2090 | 3630 | 0.25 | | | | 47.0 | 2050 | 4730 | 0.38 | | | | 47.5 | 2360 | 4620 | 0.32 | | | | 48.0 | 3230 | 5640 | 0.26 | | | | 48.5 | 3230 | 5810 | 0.28 | | | | 49.0 | 3230 | 5980 | 0.29 | | | | 49.5 | 3280 | 5350 | 0.20 | | | | 50.0 | 2570 | 4840 | 0.30 | | | | 50.5 | 3390 | 5490 | 0.19 | | | | 51.0 | 2490 | 5350 | 0.36 | | | | 51.5 | 3230 | 5810 | 0.28 | | | | 52.0 | 3250 | 5980 | 0.29 | | | | 52.5 | 3100 | 5080 | 0.20 | | | | 53.0 | 2400 | 4840 | 0.34 | | | | 53.5 | 2620 | 4520 | 0.25 | | | | 54.0 | 2900 | 5350 | 0.29 | | | | 54.5 | 2570 | 5350 | 0.35 | | | | 55.0 | 2990 | 5490 | 0.29 | | | | 55.5 | 3250 | 5350 | 0.21 | | | | 56.0 | 2620 | 4730 | 0.28 | | | | 56.5 | 2380 | 5490 | 0.38 | | | | 57.0 | 2570 | 5350 | 0.35 | | | **Notes:** "-" means no data available at that particular interval of depth. Page 41 of 217 DCN# NAP272 DCN NAP307 Figure 6: Boring M-10DH, Caliper, Natural gamma, Resistivity and SP logs Deviated borehole in orthographic projection, viewed from N58 Figure 7. Boring M-10DH, Deviation Projection #### **NORTH ANNA BORING M-30DH** Receiver to Receiver V_s and V_p Analysis Figure 8: Boring M-30DH, Suspension R1-R2 P- and S_H-wave velocities Table 6. Boring M-30DH, Suspension R1-R2 depths and P- and S_H-wave velocities #### Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-30DH | Depth at | Depth at Velocity | | | |-----------|-------------------|--------|-----------| | Midpoint | | | | | Between | | | Poisson's | | Receivers | V _s | V_p | Ratio | | (ft) | (ft/s) | (ft/s) | | | 8.2 | 650 | 1110 | 0.24 | | 9.8 | 830 | 1330 | 0.18 | | 11.5 | 870 | 1160 | - | | 13.1 | 890 | 1380 | 0.13 | | 14.8 | 960 | 1680 | 0.26 | | 16.4 | 870 | 1410 | 0.19 | | 18.0 | 840 | 1530 | 0.29 | | 19.7 | 760 | 1390 | 0.29 | | 21.3 | 710 | 1310 | 0.29 | | 23.0 | 560 | 1130 | 0.34 | | 24.6 | 1200 | 2220 | 0.29 | | 26.3 | 1370 | 2280 | 0.22 | | 27.9 | 1030 | 1900 | 0.29 | | 29.5 | 1020 | 1980 | 0.32 | | 31.2 | 810 | 1630 | 0.34 | | 32.8 | 990 | 1850 | 0.30 | | 34.5 | 1020 | 2010 | 0.33 | | 36.1 | 1270 | 4760 | 0.46 | | 37.7 | 2210 | 6600 | 0.44 | | 39.4 | 2300 | 7020 | 0.44 | | 41.0 | 3400 | 5750 | 0.23 | | 42.7 | 2660 | 7410 | 0.43 | | 44.3 | 4420 | 11300 | 0.41 | | 45.9 | 5800 | 10260 | 0.27 | | 47.6 | 7490 | 13610 | 0.28 | | 49.2 | 8550 | 14180 | 0.21 | | 50.9 | 7840 | 15500 | 0.33 | | 52.5 | 7090 | 14810 | 0.35 | | 54.1 | 8890 | 15500 | 0.26 | | 55.8 | 9130 | 19610 | 0.36 | | 57.4 | 9260 | 18520 | 0.33 | | 59.1 | 10260 | 18520 | 0.28 | | 60.7 | 9130 | 17540 | 0.31 | | 62.3 | 8230 | 17090 | 0.35 | | 64.0 | 9520 | 15870 | 0.22 | | 65.6 | 9660 | 19610 | 0.34 | | 67.3 | 10930 | 16670 | 0.12 | | Depth at | Metric Units Depth at Velocity | | | |-----------|---------------------------------|----------------|-----------| | Midpoint | | | | | Between | | | Poisson's | | Receivers | V _s | V _p | Ratio | | (m) | (m/s) | (m/s) | | | 2.5 | 200 | 340 | 0.24 | | 3.0 | 250 | 400 | 0.18 | | 3.5 | 260 | 350 | - | | 4.0 | 270 | 420 | 0.13 | | 4.5 | 290 | 510 | 0.26 | | 5.0 | 260 | 430 | 0.19 | | 5.5 | 260 | 470 | 0.29 | | 6.0 | 230 | 420 | 0.29 | | 6.5 | 220 | 400 | 0.29 | | 7.0 | 170 | 340 | 0.34 | | 7.5 | 370 | 680 | 0.29 | | 8.0 | 420 | 700 | 0.22 | | 8.5 | 310 | 580 | 0.29 | | 9.0 | 310 | 600 | 0.32 | | 9.5 | 250 | 500 | 0.34 | | 10.0 | 300 | 560 | 0.30 | | 10.5 | 310 | 610 | 0.33 | | 11.0 | 390 | 1450 | 0.46 | | 11.5 | 670 | 2010 | 0.44 | | 12.0 | 700 | 2140 | 0.44 | | 12.5 | 1040 | 1750 | 0.23 | | 13.0 | 810 | 2260 | 0.43 | | 13.5 | 1350 | 3440 | 0.41 | | 14.0 | 1770 | 3130 | 0.27 | | 14.5 | 2280 | 4150 | 0.28 | | 15.0 | 2610 | 4320 | 0.21 | | 15.5 | 2390 | 4730 | 0.33 | | 16.0 | 2160 | 4520 | 0.35 | | 16.5 | 2710 | 4730 | 0.26 | | 17.0 | 2780 | 5980 | 0.36 | | 17.5 | 2820 | 5640 | 0.33 | | 18.0 | 3130 | 5640 | 0.28 | | 18.5 | 2780 | 5350 | 0.31 | | 19.0 | 2510 | 5210 | 0.35 | | 19.5 | 2900 | 4840 | 0.22 | | 20.0 | 2940 | 5980 | 0.34 | | 20.5 | 3330 | 5080 | 0.12 | ## Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-30DH | Depth at | | | | | |-----------|--------|----------------|-----------|--| | Midpoint | | | | | | Between | | | Poisson's | | | Receivers | V_s | V _p | Ratio | | | (ft) | (ft/s) | (ft/s) | | | | 68.9 | 8130 | 14490 | 0.27 | | | 70.5 | 7250 | 16260 | 0.38 | | | 72.2 | 6800 | 15500 | 0.38 | | | 73.8 | 9800 | 19610 | 0.33 | | | 75.5 | 10420 | 19610 | 0.30 | | | 77.1 | 10420 | 17540 | 0.23 | | | 78.7 | 10750 | 17540 | 0.20 | | | 80.4 | 10750 | 18520 | 0.25 | | | 82.0 | 10670 | 18520 | 0.25 | | | 83.7 | 10500 | 18020 | 0.24 | | | 85.3 | 10340 | 18520 | 0.27 | | | 86.9 | 10500 | 18020 | 0.24 | | | 88.6 | 10580 | 18020 | 0.24 | | | 90.2 | 10670 | 18020 | 0.23 | | | 91.9 | 10670 | 18020 | 0.23 | | | 93.5 | 10580 | 19050 | 0.28 | | | 95.1 | 10750 | 18020 | 0.22 | | | 96.8 | 10750 | 18520 | 0.25 | | | 98.4 | 10840 | 19610 | 0.28 | | | 100.1 | 10750 | 20200 | 0.30 | | | 101.7 | 10750 | 19610 | 0.28 | | | 103.4 | 10750 | 18020 | 0.22 | | | 105.0 | 10580 | 18020 | 0.24 | | | 107.0 | 10750 | 17540 | 0.20 | | | 108.3 | 10580 | 18020 | 0.24 | | | 109.9 | 10340 | 18520 | 0.27 | | | 111.6 | 9660 | 18020 | 0.30 | | | 113.2 | 10030 | 18020 | 0.28 | | | 114.8 | 10580 | 17540 | 0.21 | | | 116.5 | 10670 | 18020 | 0.23 | | | 118.1 | 10260 | 19050 | 0.30 | | | 120.1 | 11020 | 18520 | 0.23 | | | 121.7 | 11490 | 17540 | 0.12 | | | 123.0 | 7050 | 14490 | 0.34 | | | 124.7 | 5950 | 15150 | 0.41 | | | 126.3 | 9950 | 20830 | 0.35 | | | 128.0 | 10750 | 19610 | 0.28 | | | 129.6 | 10930 | 19610 | 0.27 | | | 131.2 | 10930 | 18520 | 0.23 | | | Depth at | Depth at Velocity | | | |-----------|-------------------|-------|-----------| | Midpoint | | _ | | | Between | | | Poisson's | | Receivers | V_s | V_p | Ratio | | (m) | (m/s) | (m/s) | | | 21.0 | 2480 | 4420 | 0.27 | | 21.5 | 2210 | 4960 | 0.38 | | 22.0 | 2070 | 4730 | 0.38 | | 22.5 | 2990 | 5980 | 0.33 | | 23.0 | 3180 | 5980 | 0.30 | | 23.5 | 3180 | 5350 | 0.23 | | 24.0 | 3280 | 5350 | 0.20 | | 24.5 | 3280 | 5640 | 0.25 | | 25.0 | 3250 | 5640 | 0.25 | | 25.5 | 3200 | 5490 | 0.24 | | 26.0 | 3150 | 5640 | 0.27 | | 26.5 | 3200 | 5490 | 0.24 | | 27.0 | 3230 | 5490 | 0.24 | | 27.5 | 3250 | 5490 | 0.23 | | 28.0 | 3250 | 5490 | 0.23 | | 28.5 | 3230 | 5810 | 0.28 | | 29.0 | 3280 | 5490 | 0.22 | | 29.5 | 3280 | 5640 | 0.25 | | 30.0 | 3300 | 5980 | 0.28 | | 30.5 | 3280 | 6160 | 0.30 | | 31.0 | 3280 | 5980 | 0.28 | | 31.5 | 3280 | 5490 | 0.22 | | 32.0 | 3230 | 5490 | 0.24 | | 32.6 | 3280 | 5350 | 0.20 | | 33.0 | 3230 | 5490 | 0.24 | | 33.5 | 3150 | 5640 | 0.27 | | 34.0 | 2940 | 5490 | 0.30 | | 34.5 | 3060 | 5490 | 0.28 | | 35.0 | 3230 | 5350 | 0.21 | | 35.5 | 3250 | 5490 | 0.23 | | 36.0 | 3130 | 5810 | 0.30 | | 36.6 | 3360 | 5640 | 0.23 | | 37.1 | 3500 | 5350 | 0.12 | | 37.5 | 2150 | 4420 | 0.34 | | 38.0 | 1810 | 4620 | 0.41 | | 38.5 | 3030 | 6350 | 0.35 | | 39.0 | 3280 | 5980 | 0.28 | | 39.5 | 3330 | 5980 | 0.27 | | 40.0 | 3330 | 5640 | 0.23 | #### Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-30DH | Depth at | Velo | ocity | | |-----------|----------------|----------------|-----------| | Midpoint | | | | | Between | | | Poisson's | | Receivers | V _s | V _p | Ratio | | (ft) | (ft/s) | (ft/s) | | | 132.9 | 11020 | 18020 | 0.20 | | 134.5 | 11020 | 20830 | 0.31 | | 136.5 | 10840 | 19050 | 0.26 | | 137.8 | 10670 | 19050 | 0.27 | | 139.4 | 10500 | 18520 | 0.26 | | 141.1 | 10420 | 18520 | 0.27 | | 142.7 | 10750 | 18520 | 0.25 | | 144.4 | 10750 | 17540 | 0.20 | | 146.0 | 10750 | 18520 | 0.25 | | 147.6 | 10930 | 20200 | 0.29 | | 149.3 | 10930 | 18020 | 0.21 | | 150.9 | 11300 | 18020 | 0.18 | | 152.6 | 11110 | 18520 | 0.22 | | 154.2 | 10580 | 19610 | 0.29 | | 155.8 | 10260 | 17540 | 0.24 | | 157.5 | 8830 | 16670 | 0.30 | | 159.1 | 9130 | 18520 | 0.34 | | 160.8 | 10670 | 18520 | 0.25 | | 162.4 | 10930 | 19610 | 0.27 | | 164.0 | 10670 | 19050 | 0.27 | | 165.7 | 10840 | 20200 | 0.30 | | 167.3 | 10840 | 18520 | 0.24 | | 169.0 | 9660 | 17540 | 0.28 | | 170.9 | 9730 | 17540 | 0.28 | | 172.2 | 10670 | 17540 | 0.21 | | 173.9 | 11200 | 20200 | 0.28 | | 175.5 | 10840 | 18020 | 0.22 | | 177.2 | 10750 | 19610 | 0.28 | | 178.8 | 10260 | 19050 | 0.30 | | 180.5 | 10580 | 19050 | 0.28 | | 182.1 | 9590 | 18520 | 0.32 | | 183.7 | 9460 | 19050 | 0.34 | | 185.4 | 10420 | 17090 | 0.20 | | 187.0 | 9520 | 19050 | 0.33 | | Metric Units | | | | | |--------------|----------------|----------------|-----------|--| | Depth at | Velo | city | | | | Midpoint | | | | | | Between | | | Poisson's | | | Receivers | V _s | V _p | Ratio | | | (m) | (m/s) | (m/s) | | | | 40.5 | 3360 | 5490 | 0.20 | | | 41.0 | 3360 | 6350 | 0.31 | | | 41.6 | 3300 | 5810 | 0.26 | | | 42.0 | 3250 | 5810 | 0.27 | | | 42.5 | 3200 | 5640 | 0.26 | | | 43.0 | 3180 | 5640 | 0.27 | | | 43.5 | 3280 | 5640 | 0.25 | | | 44.0 | 3280 | 5350 | 0.20 | | | 44.5 | 3280 | 5640 | 0.25 | | | 45.0 | 3330 | 6160 | 0.29 | | | 45.5 | 3330 | 5490 | 0.21 | | | 46.0 | 3440 | 5490 | 0.18 | | | 46.5 | 3390 | 5640 | 0.22 | | | 47.0 | 3230 | 5980 | 0.29 | | | 47.5 | 3130 | 5350 | 0.24 | | | 48.0 | 2690 | 5080 | 0.30 | | | 48.5 | 2780 | 5640 | 0.34 | | | 49.0 | 3250 | 5640 | 0.25 | | | 49.5 | 3330 | 5980 | 0.27 | | | 50.0 | 3250 | 5810 | 0.27 | | | 50.5 | 3300 | 6160 | 0.30 | | | 51.0 | 3300 | 5640 | 0.24 | | | 51.5 | 2940 | 5350 | 0.28 | | | 52.1 | 2970 | 5350 | 0.28 | | | 52.5 | 3250 | 5350 | 0.21 | | | 53.0 | 3420 | 6160 | 0.28 | | | 53.5 | 3300 | 5490 | 0.22 | | | 54.0 | 3280 | 5980 | 0.28 | | | 54.5 | 3130 | 5810 | 0.30 | | | 55.0 | 3230 | 5810 | 0.28 | | | 55.5 | 2920 | 5640 | 0.32 | | | 56.0 | 2880 | 5810 | 0.34 | | | 56.5 | 3180 | 5210 | 0.20 | | | 57.0 | 2900 | 5810 | 0.33 | | Notes: "-" means no data
available at that particular interval of depth. Figure 9. Boring M-30DH, Caliper, Natural gamma, Resistivity and SP logs Deviated borehole in orthographic projection, viewed from N249 Figure 10. Boring M-30DH, Deviation Projection #### **APPENDIX A** # SUSPENSION VELOCITY MEASUREMENT COMPARISON OF SOURCE TO RECEIVER 1 AND RECEIVER 1 TO RECEIVER 2 ANALYSIS RESULTS #### **NORTH ANNA BORING M-10DH** Source to Receiver and Receiver to Receiver Analysis Figure A-1: Boring M-10DH, Suspension S-R1 P- and S_H-wave velocities Table A-1. Boring M-10DH, Suspension S-R1 depths and P- and S_H-wave velocities ## Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-10DH | American Units | | | | |--|----------------|--------------|--------------------| | Depth at
Midpoint | | ocity | | | Between
Source and
Near Receiver | V _s | V_p | Poisson's
Ratio | | (ft) | (ft/s) | (ft/s) | | | 13.0 | 570 | 960 | 0.23 | | 14.7 | 590 | 1000 | 0.23 | | 16.3 | 620 | 1040 | 0.22 | | 18.0 | 660 | 1070 | 0.18 | | 19.6 | 590 | 1070 | 0.28 | | 21.2 | 540 | 1130 | 0.35 | | 22.9 | 520 | 1260 | 0.40 | | 24.5 | 490 | 1450 | 0.44 | | 26.2 | 490 | 2170 | 0.47 | | 27.8 | 510 | 3790 | 0.49 | | 29.4 | 570 | 4620 | 0.49 | | 31.1 | 600 | 4590 | 0.49 | | 32.7 | 710 | 4640 | 0.49 | | 34.4 | 790 | 4520 | 0.48 | | 36.0 | 860 | 4870 | 0.48 | | 37.6 | 910 | 5230 | 0.48 | | 39.3 | 880 | 5060 | 0.48 | | 40.9 | 760 | 5060 | 0.49 | | 42.6 | 730 | 5000 | 0.49 | | 44.2 | 730 | 5190 | 0.49 | | 45.8 | 750 | 5360 | 0.49 | | 47.5 | 780 | 5410 | 0.49 | | 49.1 | 860 | 5500 | 0.49 | | 50.8 | 890 | 5940 | 0.49 | | 52.4 | 910 | 6030 | 0.49 | | 54.0 | 910 | 6180 | 0.49 | | 55.7 | 920 | 6180 | 0.49 | | 57.3 | 980 | 6090 | 0.49 | | 59.0 | 1000 | 5920 | 0.49 | | 60.6
62.2 | 1040 | 6030
6000 | 0.48
0.48 | | | 1060
1100 | | 0.48 | | 63.9 | 1160 | 6180 | 0.48 | | 65.5
67.2 | 1230 | 6030
5890 | 0.48 | | 68.8 | 1360 | 5890 | 0.46 | | 70.5 | 1 | 5860 | 0.47 | | | 1590
1760 | | | | 72.1 | 1 | 5920 | 0.45 | | 73.7
75.4 | 1720 | 5940 | 0.45 | | | 1360 | 6060 | 0.47 | | 77.0 | 1210 | 5970 | 0.48 | | Metric Units | | | | |----------------------|----------------|----------------|---------------------| | Depth at Midpoint | | | | | Between Source | 7010 | city | | | and Near
Receiver | V _s | V _p | Poisson'
s Ratio | | (m) | (m/s) | (m/s) | | | 4.0 | 170 | 290 | 0.23 | | 4.5 | 180 | 310 | 0.23 | | 5.0 | 190 | 320 | 0.22 | | 5.5 | 200 | 330 | 0.18 | | 6.0 | 180 | 330 | 0.28 | | 6.5 | 160 | 350 | 0.35 | | 7.0 | 160 | 380 | 0.40 | | 7.5 | 150 | 440 | 0.44 | | 8.0 | 150 | 660 | 0.47 | | 8.5 | 160 | 1160 | 0.49 | | 9.0 | 170 | 1410 | 0.49 | | 9.5 | 180 | 1400 | 0.49 | | 10.0 | 220 | 1410 | 0.49 | | 10.5 | 240 | 1380 | 0.48 | | 11.0 | 260 | 1480 | 0.48 | | 11.5 | 280 | 1590 | 0.48 | | 12.0 | 270 | 1540 | 0.48 | | 12.5 | 230 | 1540 | 0.49 | | 13.0 | 220 | 1530 | 0.49 | | 13.5 | 220 | 1580 | 0.49 | | 14.0 | 230 | 1640 | 0.49 | | 14.5 | 240 | 1650 | 0.49 | | 15.0 | 260 | 1680 | 0.49 | | 15.5 | 270 | 1810 | 0.49 | | 16.0 | 280 | 1840 | 0.49 | | 16.5 | 280 | 1880 | 0.49 | | 17.0 | 280 | 1880 | 0.49 | | 17.5 | 300 | 1860 | 0.49 | | 18.0 | 310 | 1800 | 0.49 | | 18.5 | 320 | 1840 | 0.48 | | 19.0 | 320 | 1830 | 0.48 | | 19.5 | 340 | 1880 | 0.48 | | 20.0 | 350 | 1840 | 0.48 | | 20.5 | 380 | 1790 | 0.48 | | 21.0 | 410 | 1790 | 0.47 | | 21.5 | 480 | 1790 | 0.46 | | 22.0 | 540 | 1800 | 0.45 | | 22.5 | 530 | 1810 | 0.45 | | 23.0 | 410 | 1850 | 0.47 | | 23.5 | 370 | 1820 | 0.48 | Page 52 of 217 DCN# NAP272 DCN NAP307 ## Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-10DH | American Units | | | | | |-----------------------|----------------|----------------|-----------|--| | | Depth at | | | | | Midpoint | Velo | ocity | | | | Between
Source and | | | Poisson's | | | Near Receiver | V _s | V _p | Ratio | | | (ft) | (ft/s) | (ft/s) | 110.010 | | | 78.7 | 1180 | 5920 | 0.48 | | | 80.3 | 1180 | 5920 | 0.48 | | | 81.9 | 1220 | 6150 | 0.48 | | | 83.6 | 1270 | 6210 | 0.48 | | | 85.2 | 1290 | 6330 | 0.48 | | | 86.9 | 1320 | 6330 | 0.48 | | | 88.5 | 1330 | 6590 | 0.48 | | | 90.1 | 1360 | 6700 | 0.48 | | | 91.8 | 1400 | 6660 | 0.48 | | | 93.4 | 1370 | 6590 | 0.48 | | | 95.1 | 1360 | 6360 | 0.48 | | | 96.7 | 1400 | 6150 | 0.47 | | | 98.3 | 1370 | 6150 | 0.47 | | | 100.0 | 1320 | 6270 | 0.48 | | | 101.6 | 1400 | 6270 | 0.47 | | | 103.3 | 1440 | 6390 | 0.47 | | | 104.9 | 1500 | 6530 | 0.47 | | | 106.5 | 1510 | 6530 | 0.47 | | | 108.5 | 2000 | 7030 | 0.46 | | | 109.8 | 2180 | 7450 | 0.45 | | | 111.5 | 2800 | 7910 | 0.43 | | | 113.1 | 3230 | 8440 | 0.41 | | | 114.7 | 3880 | 10050 | 0.41 | | | 116.4 | 5700 | 11010 | 0.32 | | | 118.0 | 5410 | 11410 | 0.35 | | | 119.7 | 5190 | 11940 | 0.38 | | | 121.3 | 5100 | 12170 | 0.39 | | | 122.9 | 4760 | 13190 | 0.43 | | | 124.6 | 5360 | 12660 | 0.39 | | | 126.2 | 5750 | 12790 | 0.37 | | | 127.9 | 5970 | 13470 | 0.38 | | | 129.5 | 5750 | 13470 | 0.39 | | | 131.1 | 6030 | 14550 | 0.40 | | | 132.8 | 6530 | 13610 | 0.35 | | | 134.4 | 5970 | 13760 | 0.38 | | | 136.1 | 6590 | 14390 | 0.37 | | | 137.7 | 6730 | 13190 | 0.32 | | | 138.7 | 6590 | 14720 | 0.37 | | | 141.0 | 6300 | 13050 | 0.35 | | | 142.6 | 6700 | 13470 | 0.34 | | | 144.3 | 6560 | 14890 | 0.38 | | | 145.9 | 6730 | 15440 | 0.38 | | | Metric Units | | | | | |-------------------------|----------------|----------------|----------|--| | Depth at Midpoint | Velo | city | | | | Between Source and Near | | | Poisson' | | | Receiver | V _s | V _p | s Ratio | | | (m) | (m/s) | (m/s) | | | | 24.0 | 360 | 1800 | 0.48 | | | 24.5 | 360 | 1800 | 0.48 | | | 25.0 | 370 | 1870 | 0.48 | | | 25.5 | 390 | 1890 | 0.48 | | | 26.0 | 390 | 1930 | 0.48 | | | 26.5 | 400 | 1930 | 0.48 | | | 27.0 | 400 | 2010 | 0.48 | | | 27.5 | 410 | 2040 | 0.48 | | | 28.0 | 430 | 2030 | 0.48 | | | 28.5 | 420 | 2010 | 0.48 | | | 29.0 | 410 | 1940 | 0.48 | | | 29.5 | 430 | 1870 | 0.47 | | | 30.0 | 420 | 1870 | 0.47 | | | 30.5 | 400 | 1910 | 0.48 | | | 31.0 | 430 | 1910 | 0.47 | | | 31.5 | 440 | 1950 | 0.47 | | | 32.0 | 460 | 1990 | 0.47 | | | 32.5 | 460 | 1990 | 0.47 | | | 33.1 | 610 | 2140 | 0.46 | | | 33.5 | 670 | 2270 | 0.45 | | | 34.0 | 850 | 2410 | 0.43 | | | 34.5 | 980 | 2570 | 0.41 | | | 35.0 | 1180 | 3060 | 0.41 | | | 35.5 | 1740 | 3360 | 0.32 | | | 36.0 | 1650 | 3480 | 0.35 | | | 36.5 | 1580 | 3640 | 0.38 | | | 37.0 | 1560 | 3710 | 0.39 | | | 37.5 | 1450 | 4020 | 0.43 | | | 38.0 | 1640 | 3860 | 0.39 | | | 38.5 | 1750 | 3900 | 0.37 | | | 39.0 | 1820 | 4110 | 0.38 | | | 39.5 | 1750 | 4110 | 0.39 | | | 40.0 | 1840 | 4440 | 0.40 | | | 40.5 | 1990 | 4150 | 0.35 | | | 41.0 | 1820 | 4190 | 0.38 | | | 41.5 | 2010 | 4380 | 0.37 | | | 42.0 | 2050 | 4020 | 0.32 | | | 42.3 | 2010 | 4490 | 0.37 | | | 43.0 | 1920 | 3980 | 0.35 | | | 43.5 | 2040 | 4110 | 0.34 | | | 44.0 | 2000 | 4540 | 0.38 | | | 44.5 | 2050 | 4710 | 0.38 | | ## Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-10DH | American Units | | | | |--|----------------|--------|--------------------| | Depth at
Midpoint | Velo | city | | | Between
Source and
Near Receiver | V _s | V_p | Poisson's
Ratio | | (ft) | (ft/s) | (ft/s) | | | 147.6 | 7110 | 14070 | 0.33 | | 149.2 | 7540 | 14390 | 0.31 | | 150.8 | 8330 | 13760 | 0.21 | | 152.5 | 6490 | 15070 | 0.39 | | 154.1 | 6840 | 16230 | 0.39 | | 155.8 | 8380 | 16660 | 0.33 | | 157.4 | 9240 | 16440 | 0.27 | | 159.0 | 10820 | 17580 | 0.20 | | 160.7 | 11110 | 18350 | 0.21 | | 162.3 | 10380 | 17580 | 0.23 | | 164.0 | 9310 | 17830 | 0.31 | | 165.6 | 9520 | 17110 | 0.28 | | 167.2 | 11200 | 17830 | 0.17 | | 168.9 | 9890 | 18620 | 0.30 | | 170.5 | 11110 | 18090 | 0.20 | | 172.2 | 11010 | 17830 | 0.19 | | 173.8 | 9740 | 17110 | 0.26 | | 175.4 | 9520 | 17340 | 0.28 | | 177.1 | 10130 | 16880 | 0.22 | | 178.7 | 10730 | 17580 | 0.20 | | 180.4 | 10820 | 17580 | 0.20 | | 182.0 | 10380 | 17830 | 0.24 | | 183.6 | 9450 | 18090 | 0.31 | | 185.3 | 9740 | 16660 | 0.24 | | 186.9 | 9380 | 18090 | 0.32 | | 188.6 | 11010 | 18900 | 0.24 | | 190.2 | 11300 | 18090 | 0.18 | | 191.8 | 11010 | 17830 | 0.19 | | Metric Units | | | | |--|----------------|----------------|---------------------| | Depth at Midpoint | Velo | city | | | Between Source
and Near
Receiver | V _s | V _p | Poisson'
s Ratio | | (m) | (m/s) | (m/s) | | | 45.0 | 2170 | 4290 | 0.33 | | 45.5 | 2300 | 4380 | 0.31 | | 46.0 | 2540 | 4190 | 0.21 | | 46.5 | 1980 | 4590 | 0.39 | | 47.0 | 2090 | 4950 | 0.39 | | 47.5 | 2560 | 5080 | 0.33 | | 48.0 | 2820 | 5010 | 0.27 | | 48.5 | 3300 | 5360 | 0.20 | | 49.0 | 3380 | 5590 | 0.21 | | 49.5 | 3160 | 5360 | 0.23 | | 50.0 | 2840 | 5430 | 0.31 | | 50.5 | 2900 | 5210 | 0.28 | | 51.0 | 3410 | 5430 | 0.17 | | 51.5 | 3010 | 5670 | 0.30 | | 52.0 | 3380 | 5510 | 0.20 | | 52.5 | 3360 | 5430 | 0.19 | | 53.0 | 2970 | 5210 | 0.26 | | 53.5 | 2900 | 5290 | 0.28 | | 54.0 | 3090 | 5150 | 0.22 | | 54.5 | 3270 | 5360 | 0.20 | | 55.0 | 3300 | 5360 | 0.20 | | 55.5 | 3160 | 5430 | 0.24 | | 56.0 | 2880 | 5510 | 0.31 | | 56.5 | 2970 | 5080 | 0.24 | | 57.0 | 2860 | 5510 | 0.32 | | 57.5 | 3360 | 5760 | 0.24 | | 58.0 | 3450 | 5510 | 0.18 | | 58.5 | 3360 | 5430 | 0.19 | **Notes:** "-" means no data available at that particular interval of depth. November 3, 2009 #### **NORTH ANNA BORING M-30DH** Source to Receiver and Receiver to Receiver Analysis Figure A-2: Boring M-30DH, Suspension S-R1 P- and S_H-wave velocities Table A-2. Boring M-30DH, Suspension S-R1 depths and P- and S_H-wave velocities ## Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-30DH | American Units | | | | |
---------------------------------|----------------|----------------|--------------------|--| | Depth at
Midpoint
Between | | ocity | | | | Source and
Near Receiver | V _s | V _p | Poisson's
Ratio | | | (ft) | (ft/s) | (ft/s) | | | | 13.0 | 690 | 1280 | 0.30 | | | 14.7 | 720 | 1350 | 0.30 | | | 16.3 | 800 | 1430 | 0.27 | | | 18.0 | 820 | 1460 | 0.27 | | | 19.6 | 820 | 1470 | 0.27 | | | 21.2 | 840 | 1440 | 0.24 | | | 22.9 | 790 | 1480 | 0.30 | | | 24.5 | 820 | 1500 | 0.29 | | | 26.2 | 880 | 1630 | 0.30 | | | 27.8 | 970 | 1850 | 0.31 | | | 29.4 | 1060 | 2080 | 0.32 | | | 31.1 | 1170 | 2270 | 0.32 | | | 32.7 | 1220 | 2620 | 0.36 | | | 34.4 | 1250 | 3070 | 0.40 | | | 36.0 | 1280 | 4250 | 0.45 | | | 37.6 | 1410 | 5360 | 0.46 | | | 39.3 | 1570 | 6660 | 0.47 | | | 40.9 | 1780 | 7030 | 0.47 | | | 42.6 | 2750 | 7720 | 0.43 | | | 44.2 | 4460 | 9890 | 0.37 | | | 45.8 | 4950 | 10910 | 0.37 | | | 47.5 | 5460 | 11510 | 0.35 | | | 49.1 | 6530 | 12410 | 0.31 | | | 50.8 | 7910 | 13470 | 0.24 | | | 52.4 | 8330 | 14720 | 0.26 | | | 54.0 | 9450 | 15440 | 0.20 | | | 55.7 | 10050 | 17110 | 0.24 | | | 57.3 | 9890 | 17580 | 0.27 | | | 59.0 | 9590 | 17110 | 0.27 | | | 60.6 | 9170 | 18090 | 0.33 | | | 62.2 | 9310 | 18090 | 0.32 | | | 63.9 | 9590 | 17110 | 0.27 | | | 65.5 | 9890 | 17580 | 0.27 | | | 67.2 | 10050 | 16660 | 0.21 | | | 68.8 | 8550 | 16440 | 0.31 | | | 70.5 | 7360 | 15830 | 0.36 | | | 72.1 | 6660 | 17580 | 0.42 | | | 73.7 | 8550 | 18090 | 0.36 | | | 75.4 | 11110 | 19780 | 0.27 | | | 77.0 | 11110 | 19180 | 0.25 | | | Metric Units | | | | |-------------------------------------|----------------|-----------------------|---------------------| | Depth at Midpoint
Between Source | Velo | city | | | and Near
Receiver | V _s | V _p | Poisson'
s Ratio | | (m) | (m/s) | (m/s) | | | 4.0 | 210 | 390 | 0.30 | | 4.5 | 220 | 410 | 0.30 | | 5.0 | 240 | 430 | 0.27 | | 5.5 | 250 | 440 | 0.27 | | 6.0 | 250 | 450 | 0.27 | | 6.5 | 260 | 440 | 0.24 | | 7.0 | 240 | 450 | 0.30 | | 7.5 | 250 | 460 | 0.29 | | 8.0 | 270 | 500 | 0.30 | | 8.5 | 300 | 560 | 0.31 | | 9.0 | 320 | 630 | 0.32 | | 9.5 | 360 | 690 | 0.32 | | 10.0 | 370 | 800 | 0.36 | | 10.5 | 380 | 940 | 0.40 | | 11.0 | 390 | 1290 | 0.45 | | 11.5 | 430 | 1640 | 0.46 | | 12.0 | 480 | 2030 | 0.47 | | 12.5 | 540 | 2140 | 0.47 | | 13.0 | 840 | 2350 | 0.43 | | 13.5 | 1360 | 3010 | 0.37 | | 14.0 | 1510 | 3330 | 0.37 | | 14.5 | 1660 | 3510 | 0.35 | | 15.0 | 1990 | 3780 | 0.31 | | 15.5 | 2410 | 4110 | 0.24 | | 16.0 | 2540 | 4490 | 0.26 | | 16.5 | 2880 | 4710 | 0.20 | | 17.0 | 3060 | 5210 | 0.24 | | 17.5 | 3010 | 5360 | 0.27 | | 18.0 | 2920 | 5210 | 0.27 | | 18.5 | 2800 | 5510 | 0.33 | | 19.0 | 2840 | 5510 | 0.32 | | 19.5 | 2920 | 5210 | 0.27 | | 20.0 | 3010 | 5360 | 0.27 | | 20.5 | 3060 | 5080 | 0.21 | | 21.0 | 2610 | 5010 | 0.31 | | 21.5 | 2240 | 4820 | 0.36 | | 22.0 | 2030 | 5360 | 0.42 | | 22.5 | 2610 | 5510 | 0.36 | | 23.0 | 3380 | 6030 | 0.27 | | 23.5 | 3380 | 5850 | 0.25 | ## Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-30DH | American Units | | | | |---------------------|----------------|--------|-----------| | Depth at | V-1- | - 14 | | | Midpoint
Between | Veic | city | | | Source and | | | Poisson's | | Near Receiver | V _s | V_p | Ratio | | (ft) | (ft/s) | (ft/s) | | | 78.7 | 10910 | 19180 | 0.26 | | 80.3 | 10730 | 19180 | 0.27 | | 81.9 | 10730 | 19180 | 0.27 | | 83.6 | 10730 | 18620 | 0.25 | | 85.2 | 10550 | 19180 | 0.28 | | 86.9 | 10290 | 18090 | 0.26 | | 88.5 | 10380 | 17830 | 0.24 | | 90.1 | 10550 | 18350 | 0.25 | | 91.8 | 10820 | 19180 | 0.27 | | 93.4 | 11010 | 19180 | 0.25 | | 95.1 | 10730 | 18620 | 0.25 | | 96.7 | 11010 | 19480 | 0.27 | | 98.3 | 10730 | 18350 | 0.24 | | 100.0 | 10820 | 18350 | 0.23 | | 101.6 | 11110 | 19780 | 0.27 | | 103.3 | 11010 | 19480 | 0.27 | | 104.9 | 11110 | 19180 | 0.25 | | 106.5 | 10640 | 18090 | 0.24 | | 108.2 | 10640 | 18620 | 0.26 | | 109.8 | 10640 | 19480 | 0.29 | | 111.8 | 10460 | 18900 | 0.28 | | 113.1 | 10290 | 18620 | 0.28 | | 114.7 | 10550 | 19180 | 0.28 | | 116.4 | 10460 | 19180 | 0.29 | | 118.0 | 10820 | 19480 | 0.28 | | 119.7 | 10820 | 18900 | 0.26 | | 121.3 | 10380 | 18090 | 0.25 | | 122.9 | 10210 | 17110 | 0.22 | | 124.9 | 9810 | 17580 | 0.27 | | 126.6 | 10550 | 16880 | 0.18 | | 127.9 | 10820 | 17340 | 0.18 | | 129.5 | 11110 | 17830 | 0.18 | | 131.1 | 11200 | 18900 | 0.23 | | 132.8 | 11110 | 19180 | 0.25 | | 134.4 | 11110 | 18620 | 0.22 | | 136.1 | 11200 | 19180 | 0.24 | | 137.7 | 11110 | 18900 | 0.24 | | 139.3 | 11010 | 18350 | 0.22 | | 141.3 | 11010 | 18090 | 0.21 | | 142.6 | 11010 | 19180 | 0.25 | | 144.3 | 10910 | 18350 | 0.23 | | 145.9 | 10820 | 18350 | 0.23 | | Metric Units | | | | | |-------------------------------------|----------------|----------------|----------|--| | Depth at Midpoint
Between Source | Velo | city | | | | and Near | | | Poisson' | | | Receiver | V _s | V _p | s Ratio | | | (m) | (m/s) | (m/s) | | | | 24.0 | 3330 | 5850 | 0.26 | | | 24.5 | 3270 | 5850 | 0.27 | | | 25.0 | 3270 | 5850 | 0.27 | | | 25.5 | 3270 | 5670 | 0.25 | | | 26.0 | 3220 | 5850 | 0.28 | | | 26.5 | 3140 | 5510 | 0.26 | | | 27.0 | 3160 | 5430 | 0.24 | | | 27.5 | 3220 | 5590 | 0.25 | | | 28.0 | 3300 | 5850 | 0.27 | | | 28.5 | 3360 | 5850 | 0.25 | | | 29.0 | 3270 | 5670 | 0.25 | | | 29.5 | 3360 | 5940 | 0.27 | | | 30.0 | 3270 | 5590 | 0.24 | | | 30.5 | 3300 | 5590 | 0.23 | | | 31.0 | 3380 | 6030 | 0.27 | | | 31.5 | 3360 | 5940 | 0.27 | | | 32.0 | 3380 | 5850 | 0.25 | | | 32.5 | 3240 | 5510 | 0.24 | | | 33.0 | 3240 | 5670 | 0.26 | | | 33.5 | 3240 | 5940 | 0.29 | | | 34.1 | 3190 | 5760 | 0.28 | | | 34.5 | 3140 | 5670 | 0.28 | | | 35.0 | 3220 | 5850 | 0.28 | | | 35.5 | 3190 | 5850 | 0.29 | | | 36.0 | 3300 | 5940 | 0.28 | | | 36.5 | 3300 | 5760 | 0.26 | | | 37.0 | 3160 | 5510 | 0.25 | | | 37.5 | 3110 | 5210 | 0.22 | | | 38.1 | 2990 | 5360 | 0.27 | | | 38.6 | 3220 | 5150 | 0.18 | | | 39.0 | 3300 | 5290 | 0.18 | | | 39.5 | 3380 | 5430 | 0.18 | | | 40.0 | 3410 | 5760 | 0.23 | | | 40.5 | 3380 | 5850 | 0.25 | | | 41.0 | 3380 | 5670 | 0.22 | | | 41.5 | 3410 | 5850 | 0.24 | | | 42.0 | 3380 | 5760 | 0.24 | | | 42.5 | 3360 | 5590 | 0.22 | | | 43.1 | 3360 | 5510 | 0.21 | | | 43.5 | 3360 | 5850 | 0.25 | | | 44.0 | 3330 | 5590 | 0.23 | | | 44.5 | 3300 | 5590 | 0.23 | | ## Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-30DH | American Units | | | | | | |--|----------------|--------|--------------------|--|--| | Depth at
Midpoint | Velocity | | | | | | Between
Source and
Near Receiver | V _s | V_p | Poisson's
Ratio | | | | (ft) | (ft/s) | (ft/s) | | | | | 147.6 | 11010 | 18620 | 0.23 | | | | 149.2 | 11110 | 18900 | 0.24 | | | | 150.8 | 11110 | 18620 | 0.22 | | | | 152.5 | 10910 | 18900 | 0.25 | | | | 154.1 | 10820 | 19480 | 0.28 | | | | 155.8 | 10730 | 19480 | 0.28 | | | | 157.4 | 10130 | 18620 | 0.29 | | | | 159.0 | 9520 | 18900 | 0.33 | | | | 160.7 | 9970 | 19780 | 0.33 | | | | 162.3 | 10550 | 19780 | 0.30 | | | | 164.0 | 10910 | 20100 | 0.29 | | | | 165.6 | 10730 | 20100 | 0.30 | | | | 167.2 | 10910 | 19780 | 0.28 | | | | 168.9 | 10910 | 18900 | 0.25 | | | | 170.5 | 10460 | 18350 | 0.26 | | | | 172.2 | 10730 | 19180 | 0.27 | | | | 173.8 | 10910 | 18620 | 0.24 | | | | 175.8 | 11010 | 18900 | 0.24 | | | | 177.1 | 10910 | 18620 | 0.24 | | | | 178.7 | 10730 | 18350 | 0.24 | | | | 180.4 | 10550 | 18350 | 0.25 | | | | 182.0 | 9380 | 18350 | 0.32 | | | | 183.6 | 8610 | 17830 | 0.35 | | | | 185.3 | 9310 | 18900 | 0.34 | | | | 186.9 | 9970 | 18350 | 0.29 | | | | 188.6 | 9970 | 18350 | 0.29 | | | | 190.2 | 10130 | 19780 | 0.32 | | | | 191.8 | 10910 | 18900 | 0.25 | | | | Metric Units | | | | | | |--|----------------|----------------|---------------------|--|--| | Depth at Midpoint | Velocity | | | | | | Between Source
and Near
Receiver | V _s | V _p | Poisson'
s Ratio | | | | (m) | (m/s) | (m/s) | | | | | 45.0 | 3360 | 5670 | 0.23 | | | | 45.5 | 3380 | 5760 | 0.24 | | | | 46.0 | 3380 | 5670 | 0.22 | | | | 46.5 | 3330 | 5760 | 0.25 | | | | 47.0 | 3300 | 5940 | 0.28 | | | | 47.5 | 3270 | 5940 | 0.28 | | | | 48.0 | 3090 | 5670 | 0.29 | | | | 48.5 | 2900 | 5760 | 0.33 | | | | 49.0 | 3040 | 6030 | 0.33 | | | | 49.5 | 3220 | 6030 | 0.30 | | | | 50.0 | 3330 | 6130 | 0.29 | | | | 50.5 | 3270 | 6130 | 0.30 | | | | 51.0 | 3330 | 6030 | 0.28 | | | | 51.5 | 3330 | 5760 | 0.25 | | | | 52.0 | 3190 | 5590 | 0.26 | | | | 52.5 | 3270 | 5850 | 0.27 | | | | 53.0 | 3330 | 5670 | 0.24 | | | | 53.6 | 3360 | 5760 | 0.24 | | | | 54.0 | 3330 | 5670 | 0.24 | | | | 54.5 | 3270 | 5590 | 0.24 | | | | 55.0 | 3220 | 5590 | 0.25 | | | | 55.5 | 2860 | 5590 | 0.32 | | | | 56.0 | 2630 | 5430 | 0.35 | | | | 56.5 | 2840 | 5760 | 0.34 | | | | 57.0 | 3040 | 5590 | 0.29 | | | | 57.5 | 3040 | 5590 | 0.29 | | | | 58.0 | 3090 | 6030 | 0.32 | | | | 58.5 | 3330 | 5760 | 0.25 | | | **Notes:** "-" means no data available at that particular interval of depth. November 3, 2009 ## APPENDIX B CALIPER, NATURAL GAMMA, RESISTIVITY, AND SPONTANEOUS POTENTIAL LOGS North Anna Boring M-10DH ELOG, Caliper and Natural Gamma rev 1 Sheet 1 of 3 North Anna Boring M-10DH ELOG, Caliper and Natural Gamma rev 1 Sheet 2 of 3 North Anna Boring M-30DH ELOG, Caliper and Natural Gamma rev 1 Sheet 1 of 3 North Anna Boring M-30DH ELOG, Caliper and Natural Gamma rev 1 Sheet 2 of 3