generation

Nuclear Steam Supply Systems Redacted

March 22, 2012

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All Rights Reserved. This document is the property of Babcock & Wilcox Nuclear Energy, Inc. (B&W).

Nuclear Island Systems

- Systems Design Approach
- Reactor Coolant System (RCS)
- Reactor Coolant Inventory and Purification System (RCI)
- Emergency Core Cooling System (ECC)
- Auxiliary Condenser System (CNX)
- Fuel Handling System (FHS)
- Summary

Systems Design Approach

- Utilize unique features of the integral RCS to increase system response time
 - Large coolant inventory
 - Small coolant penetrations
- Eliminate use of soluble boron in normal operation
- Utilize non-safety systems to respond to day-to-day plant transients
 - Simplifies operator workload
 - Provides defense in depth
 - Minimizes reliance on emergency systems
- Maximize the flexibility of non-safety systems
 - All major RCS support functions incorporated into RCI
 - Reduce system and component count

Systems Design Approach-cont.

- Use passive safety systems
- PRA informed design
 - System diversity
 - Component diversity
 - Defense in depth

]

[CCI per Affidavit 4(a)-(d)]

RCS Design Changes

- Power increase
 - Core thermal power increased from 425 to 530 MWt
 - Fuel assemblies[][CCI per Affidavit 4(a)-(d)]
 - Additional steam generator tubes added
 - RCS flow increased
- Reactor coolant pumps
 - Internal mixed flow pumps replaced with canned pumps using external motors
 - Upper steam generator and pressurizer modified

RCS Safety Functions

- Maintain pressure boundary integrity
- Remove core decay heat via natural circulation
- Provide overpressure protection for all RCS pressure boundary components for design basis events
- Provide a method of venting of non-condensable gases following severe accidents
- Provide means of unlatching the control rods

RCS Non-Safety Functions

- Provide forced circulation of reactor coolant to transfer heat produced in the core to the secondary side
- Maintain steam-water interface in the pressurizer

]

Key Features of the Integral RCS

Feature	B&W 177	Typical Gen 3 PWR	B&W mPower
Rated Core power (MW _{th})	2568	3415	530
Core average linear heat rate (kW _t /m)	18.7	18.7	I I
Average flow velocity through the core (m/s)	4.8	4.8	
RCS volume (m ³)	325	272	
RCS volume to power ratio (m ³ /MW _t)	0.14	0.08	
Maximum LOCA area (m ²) *	1.3	1.0	
RCS volume/LOCA area ratio (m ³ /m ²)	250	270]
		[CCI per Affidavit 4(a)-(d)]	

RCS volume and small break sizes allow simplification of RCS safety systems

* Assumes double ended break

5-9

Unique RCS Characteristics

RCI Design Changes

Reactor Coolant Inventory & Purification System Safety Functions

[CCI per Affidavit 4(a)-(d)]

Reactor Coolant Inventory & Purification System Non-Safety Functions

[

[CCI per Affidavit 4(a)-(d)]

[CCI per Affidavit 4(a)-(d)]

L

[CCI per Affidavit 4(a)-(d)]

I

[CCI per Affidavit 4(a)-(d)]

L

[CCI per Affidavit 4(a)-(d)]

ECCS Design Changes

[CCI per Affidavit 4(a)-(d)]

ECCS Safety Functions

]

[CCI per Affidavit 4(a)-(d)]

ECCS Process Flow Diagram

ECCS [

[CCI per Affidavit 4(a)-(d)]

ECCS [

[CCI per Affidavit 4(a)-(d)]

[CCI per Affidavit 4(a)-(d)]

ECCS [

[CCI per Affidavit 4(a)-(d)]

© 2012 The Babcock & Wilcox Company. All rights reserved.

[CCI per Affidavit 4(a)-(d)]

ECCS Challenges

]

[CCI per Affidavit 4(a)-(d)]

© 2012 The Babcock & Wilcox Company. All rights reserved.

1

Auxiliary Condenser System (CNX) Functions

CNX Process Flow Diagram

Fuel Handling System (FHS)

- System Functions:
 - Transfer new and spent fuel assemblies and control equipment into and out of containment and the reactor service building while maintaining subcriticality and preventing fuel damage.
 - Store new and spent fuel assemblies and control equipment in seismically qualified storage racks while maintaining subcriticality and preventing fuel damage.

Fuel Handling System (FHS)

• Key Design Features:

0

.

6

0

6

Reliability Assurance Program

The purpose of the Reliability Assurance Program (RAP) is to ensure:

- The plant is designed, constructed and operated consistent with assumptions and risk insights for risk-significant Systems, Structures and Components (SSCs).
- Risk-significant SSCs are selected and maintained so that they do not degrade to an unacceptable level during the life of the plant.
- The frequency of transients to risk-significant SSCs is minimized.
- These SSC will function reliably when challenged.

Reliability Assurance Program (cont.)

- Consistent with ISG-018, implementation of D-RAP in the mPower Project will be accomplished in the following phases:
- <u>Phase I</u>: Develop: (1) Design Reliability Assurance Program (D-RAP), a standard plant design list of risk-significant SSCs, and Tier 1 ITAAC
- <u>Phase II</u>: Develop a plant-specific list of risk-significant SSCs; define the integration of RAP SSCs into existing programs; and ensure that RAP SSCs have been placed under the appropriate programs
- <u>Phase III</u>: Apply reliability assurance to procurement, fabrication, construction and preoperational testing activities

- Plant safety is enhanced by:
 - Unique features of the integral RCS that increase system response time
 - Elimination of soluble boron for normal operation
 - Flexible, non-safety systems that can respond to day-to-day plant transients
 - Use of passive safety systems
 - [▶

[CCI per Affidavit 4(a)-(d)]

PRA risk insights guiding design to maximize reliability

Risk Informed – Simplification - Defense in Depth