generation *mPoyer* B&W mPower Core and Fuel Design Redacted

March 22, 2012

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved. This presentation is the property of Babcock & Wilcox Nuclear Energy, Inc.

Shortened and Simplified Conventional Fuel Assembly Design

 Fuel assembly conceptually similar to [a conventional 17x17 square lattice PWR, with the exception that is shorter

> [CCI per Affidavit 4(a)-(d)] Guide tube (GT) layout in the mPower fuel lattice [CCI per Affidavit 4(a)-(d)]

Lattice Layout Example

ſ

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

Reference Core Design parameters

Total number of assemblies	[
Estimated core loading	[CCI per Affidavit 4(a)
Rated thermal power level	530 MWt
Rated thermal power density	[] [CCI per Affidavit 4(a)-(d)]
Rated core flow	30.0 Mlb/hr
Bypass flow	[/] [CCI per Affidavit 4(a)-(d)]
Reference dome pressure	2050.0 psia
Reference reactor mid-plane pressure	
Reference inlet temperature	:] [CCl per Affidavit 4(a)-(d)]
Reference outlet temperature	608 °F
Subcooling (outlet)	[] [CCI per Affidavit 4(a)-(d)]

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

6-6

generation

mPower Reference Core Design Parameters

Energy Parameters	
Cycle length	48 months
Cycle capacity factor	[
Cycle energy (estimated)	1
EOC Power Level	e A fan fan en fan en fan en fan fan fan fan fan fan fan fan fan fa
Cycle hot target k-effective	
Cycle cold target k-effective] [CCI per Affidavit 4(a)-(d)]
Margin	Parameters
Minimum cold shutdown margin	[
Maximum nodal peaking] [CCI per Affidavit 4(a)-(d)]
Control	Parameters
Exposure between sequence exchanges	
Control rod utilization	3
Parked control rod positions preferred	I] [CCI per Affidavit 4(a)-(d)]

mPower

Core Loading – Fuel Assembly Types

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

1

]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

]

EOC Radial Exposure Distribution

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

Lattice Studies – MCNPX vs. CASMO-5

] [CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

6-18

Radial Reflector Thermal Flux Profile

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

6-19

Radial Reflector Total Flux Profile

Core Thermal-Hydraulic Subchannel Analysis

VIPRE-01 mod 2.4f95 is used to model the core thermalhydraulics

5] [CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

6-21

Cycle Plot - MDNBR

[CCI per Affidavit 4(a)-(d)]

Cycle Plot – Peak Centerline Fuel Temperature

[CCI per Affidavit 4(a)-(d)]

Axial Plot- Centerline Fuel Temperature

Critical Heat Flux Testing

- Testing is being conducted at Stern Laboratories in Hamilton, Ontario, Canada
- Two test series have been completed
 - [
- Three additional tests are planned in 2012 (Tentative plan)
 - [

CHF Test Bundle

Unit cell test bundle before insertion into the flow channel

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

Example of Test Results

ſ

Critical Heat Flux Correlation Development

[

SERVICE STREET, STREET,

[CCI per Affidavit 4(a)-(d)]

1

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

6-28

Fuel Design Status

- Preliminary Mechanical Design and Testing
- Reference Static Core Design Cycle
- CHF Testing and Correlation Development
- Methods to be Submitted in Topical Reports
- Best Estimate Transient Analyses
- Method of Operations