Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards 592nd Meeting: Open Session
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Thursday, March 8, 2012

Work Order No.: NRC-1493

Pages 1-281

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

DISCLAIMER

UNITED STATES NUCLEAR REGULATORY COMMISSION'S ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

The contents of this transcript of the proceeding of the United States Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards, as reported herein, is a record of the discussions recorded at the meeting.

This transcript has not been reviewed, corrected, and edited, and it may contain inaccuracies.

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	592 nd MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	+ + + +
8	OPEN SESSION
9	+ + + +
10	THURSDAY
11	MARCH 8, 2012
12	+ + + + +
13	ROCKVILLE, MARYLAND
14	+ + + + +
15	The Advisory Committee met at the Nuclear
16	Regulatory Commission, Two White Flint North, Room
17	T2B1, 11545 Rockville Pike, at 8:30 a.m., J. Sam
18	Armijo, Chairman, presiding.
19	<u>COMMITTEE MEMBERS</u> :
20	J. SAM ARMIJO, Chairman
21	JOHN W. STETKAR, Vice Chairman
22	HAROLD B. RAY, Member-at-Large
23	SAID ABDEL-KHALIK, Member
24	SANJOY BANERJEE, Member
25	DENNIS C. BLEY, Member
l	I

		2
1	CHARLES H. BROWN, JR. Member	
2	DANA A. POWERS, Member	
3	JOY REMPE, Member	
4	MICHAEL T. RYAN, Member	
5	STEPHEN P. SCHULTZ, Member	
6	WILLIAM J. SHACK, Member	
7	JOHN D. SIEBER, Member	
8	GORDON R. SKILLMAN, Member	
9	NRC STAFF PRESENT:	
10	KATHY WEAVER, Designated Federal Official	
11	GETACHEW TESFAYE	
12	SHANLAI LU	
13	SHIE-JENG PENG	
14	JEAN-CLAUDE DEHMEL	
15	DAVID RUDLAND	
16	AL CSONTOS	
17	TIM LUPOLD	
18	CHRIS BROWN	
19	ROB TREGONING	
20	ALLEN HOWE	
21	JASON PAIGE	
22	TONY ULSES	
23	PAUL CLIFFORD	
24	BENJAMIN PARKS	
25		
	I	

		3
1	ALSO PRESENT:	
2	DARRELL GARDNER	
3	TIM STACK	
4	BRIAN MCINTYRE	
5	SAM HOBBS	
6	STEVE KLINE	
7	STEVE MIRSKY	
8	MIKE KILEY	
9	STEVE HALE	
10	MARK AVERETT	
11	CARL O'FARRILL	
12	RUDY GIL	
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
I	I	

	4
1	T-A-B-L-E O-F C-O-N-T-E-N-T-S
2	
3	Selected Chapters of the SER with Open Items
4	Associated with the U.S. EPR Design Certification
5	Application
6	Remarks by the Subcommittee Charman 6
7	Getachew Tesfaye 8
8	Briefing by AREVA
9	Briefing by NRC
10	Turkey Point Units 3 and 4 Extended
11	Power Uprate Application
12	Remarks by the Subcommittee Chairman
13	Briefing by and discussions
14	with representatives of the NRC staff and
15	Florida Power & Light Company regarding
16	Turkey Point Units 3 and 4 Extended
17	Power Uprate Application 235
18	Adjourn
19	
20	
21	
22	
23	
24	
25	

	5
1	PROCEEDINGS
2	8:29 a.m.
3	CHAIR ARMIJO: Good morning.
4	The meeting will now come to order. This
5	is the first day of the 592nd Meeting of the Advisory
6	Committee on Reactor Safeguards.
7	During today's meeting the Committee will
8	consider the following:
9	Selected Chapters of the Safety Evaluation
10	Reports with Open Items Associated with the US
11	Evolutionary Power Reactor (EPR) Design Certification
12	Application;
13	2: Source Terms for Small Modular
14	Reactors;
15	3: Extremely Low Probability of Rupture;
16	4: Turkey Point Units 3 and 4 Extended
17	Power Uprate Application.
18	The meeting is being conducted in
19	accordance with the provisions of the Federal Advisory
20	Committee Act.
21	Ms. Kathy Weaver is the Designated Federal
22	Official for the initial portion of the meeting.
23	There will be a phone bridge line. To
24	preclude interruption of the meeting, the phone will
25	be placed in a listen-in mode during the presentations
ļ	1

(202) 234-4433

	6
1	and Committee discussion.
2	A transcript of portions of the meeting is
3	being kept and it is requested that the speakers use
4	one of the microphones, identify themselves and speak
5	with sufficient clarity and volume so that they can be
6	readily heard.
7	I will begin with an item of current
8	interest. Mr. Charles Brown, Mr. Harold Ray and Dr.
9	Michael Ryan have all been reappointed for another
10	term as Members of the Advisory Committee on Reactor
11	Safeguards. We are fortunate to have them reappointed
12	and to have them accept. Congratulations.
13	(Applause).
14	CHAIR ARMIJO: With that, I will now turn
15	the meeting over to Dr. Dana Powers who will lead us
16	through the discussions related to the selected
17	chapters of the SER or the U.S. EPR Design
18	Certification application.
19	MEMBER POWERS: Thank you, Mr. Chairman.
20	As most of you know, we have been going
21	the EPR Design Certification, the SER with open items.
22	The general strategy is that we've reviewed the SER
23	with open items and passed that on to a second phase
24	provided we find no barriers to resolution of those
25	open items. This gives us an opportunity to look and
	I

(202) 234-4433

identify an open item.

1

2 What you're going to see is a fairly eclectic set of chapters presented here today. 3 This 4 strategy that the staff had proposed for the review I 5 deeply suspicious of because of its rather was piecemeal approach, and quite frankly I didn't think 6 7 it was going to work. And, in fact, it has worked 8 marvelously and it has worked marvelously largely 9 because the staff has enforced a discipline they don't 10 bring us chapters until they feel that there a path to resolution, and the Applicant has been extremely 11 accommodating and has done technically excellent work 12 in what they presented to the Committee. 13 So, it has 14 in fact worked.

But because it's piecemeal, I've asked 15 first of all, that the Applicant in his presentation 16 provide us an overview of the EPR design for reminders 17 of you who are not on the Subcommittee what the 18 19 general design objectives of this rather interesting reactor are. And it is particularly important that we 20 understand this because these reactors are being 21 constructed worldwide and we have plans to construct 22 at least one or two of them here in the United States, 23 24 maybe more.

I've also asked that the staff review

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

7

	8
1	their general strategy, and I've asked in their
2	presentation to emphasize the many occasions where
3	they have done completely independent analyses of
4	particular technical aspects. I personally find this
5	when they do independent analyses particularly
6	comforting in their examination of these issues
7	because there's just two eyeballs looking at the same
8	issue, both of them coming up with positive results.
9	You can derive some satisfaction from that.
10	The upshot if you're looking of raging
11	controversies in these presentation, you're not going
12	to find them. On the other hand, this is an interim
13	part of the overall review. We will get to review
14	this material again when the open items have been
15	closed.
16	With that introduction, I'm going to ask
17	the Getachew to testify, give us some opening
18	comments.
19	MR. TESFAYE: Thank you, Dr. Powers.
20	Good morning everyone. My name is
21	Getachew Tesfaye. I'm the NRC Project Manager for
22	AREVA's U.S. EPR Design Certification Project.
23	The staff has completed a presentation of
24	the review of the Design Certification, that is the
25	Safety Evaluation Report with open items. So the SER
ļ	

(202) 234-4433

(202) 234-4433

	9
1	can be a chapter-by-chapter presentation of the Safety
2	Evaluation Report with open items began on November 3,
3	2009 and concluded on February 23, 2012.
4	On April 8, 2008 we briefed the ACRS Full
5	Committee on seven chapters that were completed
6	through March 2010. These are Chapters 2, 4, 5, 8, 12
7	and 17.
8	On April 21, 2010 we received a letter
9	from the ACRS Full Committee Chairman on these seven
10	chapters. The letter states that ACRS has not
11	identified any issues that merits further discussion.
12	On May 27, 2010 the staff submitted its
13	reply to ACRS.
14	Today we will brief the Full Committee on
15	Chapters 6, 7, 11, 13, 15, 16 and 18. As Dr. Powers
16	indicated, this is going to be a very high level
17	briefing with highlights of confirmatory items,
18	confirmatory analysis that we have independently
19	performed to certify our safety findings.
20	We plan to conclude our Full Committee
21	briefing on the Safety Evaluation Report with open
22	items in May of this year with a briefing on the
23	remaining four chapters, Chapters 3, 9, 14 and 19.
24	Thank you, Mr. Chairman.
25	MEMBER POWERS: Thank you.

(202) 234-4433

	10
1	Just for Members information, the chapters
2	we're looking at are Emergency Safety Features,
3	Digital I&C, Radwaste Management, Conduct of Ops,
4	Transient and Accident Analysis, Tech Specs, Human
5	Factors.
6	At this point, I will ask our vendor if he
7	wanted to begin the presentation from AREVA.
8	MR. GARDNER: Certainly. Thank you, Dr.
9	Powers.
10	Good morning, Mr. Chairman and Members of
11	the Committee.
12	AREVA's glad to be back here today to
13	MEMBER POWERS: Oh, lie to us again.
14	This is a heck of a way to start a presentation, lying
15	to the Committee.
16	MR. GARDNER: We are continuing to make
17	good progress moving through the Design Certification
18	review with the staff and with the Subcommittee. For
19	this session of the Committee, AREVA will present a
20	summary level overview of the U.S. EPR design as well
21	as selected FSAR chapters as has been described by Dr.
22	Powers.
23	Our presentation for this Committee is
24	non-proprietary, however should Member questions
25	involve material that AREVA considers proprietary, we
I	I

(202) 234-4433

	11
1	would request that the session be closed or deferred
2	until such time as we could have a closed session
3	MEMBER POWERS: Or we just stop the
4	questioning.
5	MR. GARDNER: The AREVA team presenting
6	today will be Tim Stack and Brian McIntyre. We look
7	forward to your interactions today.
8	Tim?
9	MR. STACK: Thank you, Darrell.
10	And as Darrell said, my name is Tim Stack
11	from AREVA and I'll be doing the presentation today.
12	When we look at this presentation, it
13	largely follows the same style we had in April of 2010
14	where we gave an overview, which is about a third of
15	the slides. Then we'll do a high level of the
16	chapters. We tried to go through some of the chapters
17	that are easier pretty quickly. Obviously, you will be
18	more than welcome to stop and ask questions. Mr.
19	McIntyre will not be happy if I make that request, but
20	that's okay.
21	And with that, we'll move on.
22	As Darrell indicated and as Dr. Powers
23	indicated, first we'll give a quick overview of the
24	design. As a part of that we'll cover the main
25	objectives of what we tried to accomplish with the
	I

(202) 234-4433

	12
1	EPR, the major design features, the main safety
2	systems, how we protect it from external hazards and
3	what we've included for severe accident mitigation.
4	Then we'll do a chapter overview chapter-by-chapter
5	where we'll basically just cover what are the topics
6	in the chapter and what are the main highlights.
7	Keep in mind while we go through this,
8	typically most of these ACRS presentations to the
9	Subcommittee are anywhere from 30 to as much as 150
10	slides. So we're trying to get those down into two or
11	three slides per chapter so we could just cover the
12	main highlights.
13	With that in mind, as far as the EPR
14	overview and the development of objectives, it is an
15	evolutionary active plant. It's based on existing PWR
16	technology based on what we've learned from our
17	operating plants, our construction experience as well
18	as our R&D.
19	The main goals were improved economics for
20	our customers and improved safety for our customers
21	and the public as well.
22	On the safety side we have:
23	Improvements in design margins compared to
24	the operating fleet;
25	We have an increased redundancy as well as
	I

(202) 234-4433

	13
1	separation of safety trains;
2	We've received a lower core damage
3	frequency versus the operating fleet;
4	We've included severe accident features
5	from ground up as well as design for external hazards
6	from the ground up, and;
7	Then we've also worked to keep exposure
8	down to the workers and the public.
9	When you look at the major design
10	features, the easiest way to look at these is pretty
11	much comparing and contrasting them with the operating
12	fleet.
13	For the nuclear island what we see is that
14	we have a proven four-loop design, PWR design very
15	much like many operating plants in the United States
16	and abroad.
17	We have a four-train safety system
18	architecture versus a typical two-train architecture
19	in the U.S.
20	We have a double containment versus
21	typically having a single containment.
22	We have an in-containment refueling water
23	storage tank versus having an RWST that's located
24	outside containment. We'll cover some of the
25	advantages of that in more detail a little bit later.
I	

(202) 234-4433

	14
1	We've included severe accident features
2	from the initial design of the plant versus trying to
3	backfit them or backfitting Severe Accident Management
4	Guides like we've done in the operating fleet.
5	We have separate safety buildings versus
6	having all the safety trains in one nuclear aux
7	building.
8	We have an advanced digital design for the
9	control room versus having an analog design.
10	And those are the main features of the
11	nuclear island.
12	Then we move over to the electrical
13	design. The design shed power to house load versus
14	most operating plants can only tolerate partial load
15	rejections and continue to operate.
16	We've included four emergency diesel
17	generators versus most operating plants only having
18	two.
19	We have two smaller diverse station
20	blackout diesel generators and most operating plants
21	only had one if they credit an alternate ac source.
22	And from the site characteristics
23	standpoint we've designed for airplane crash for both
24	military and commercial on an air track, and we've
25	designed for explosion pressure waves as an external
I	1

(202) 234-4433

	15
1	hazard as well.
2	In general, we feel the EPR reflects the
3	full benefits of the operating experience and all the
4	21st century requirements.
5	When you look at the general layout of the
6	NSSS, what you see is that the very conventional 4-
7	loop design related to a reactor vessel in the middle,
8	four steam generators, a pressurizer, four reactor
9	coolant pumps. That portion of it as far as the
10	general layout is very standard.
11	One of the items that was changed in this
12	compared to the operating fleet was increasing volumes
13	of the primary and secondary to slow down the primary
14	system response and the secondary system respond.
15	We'll cover some of the action times later in the
16	presentation that we've included for operator action
17	times when we cover Chapter 15. But in general, the
18	NSSS is built on our operating system that's coming
19	primarily from the French N4 plants and the German
20	Konvoi units.
21	The four train architecture, I'll show the
22	picture and we'll explain our N+2 concept as well as
23	some of the physical separation. On one of our later
24	slides I'll do the overall basic layout of the site.
25	What you see in this is we have our
ļ	1

(202) 234-4433

1 reactor building here in the center. I go in here to 2 This is the fuel building that is here, the bottom. which is divided into two division. Then there are 3 4 four safeguards buildings: Safeguards 2, Safeguards 5 2, Safequards 3 and Safequards 4. The main control room is housed in Safeguards 2 and 3. We'll cover this 6 7 in a later slide well. 8 What you see is this blue structure is a 9 shielding structure that's covering the blue building, 10 the reactor building and Safeguards 2 and 3. We'll explain the physical protection a little bit more in 11 the next slide. 12 When we look at our N+2 concept, basically 13 14 where we are designing is we will postulate a single 15 failure Division 1. We will postulate preventive 16 maintenance in Division 2. We will postulate the 17 initiating event defeats one of these safequards streams in Division 3, for example, like broken ECCS 18 19 injection line such that that line is not providing an accident-mitigating feature function. 20 And then finally, we'll go to the fourth division and it will 21 be provided the accident-mitigating function. 22 In general, we need to energize two out of 23 24 four divisions for success. And again, that's in not knowing which one has the break in it such that we 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

16

	17
1	would have to energize two divisions.
2	When you look at the main safety systems
3	of the plant
4	MEMBER BLEY: But you only need one
5	actually working for success, is that right?
6	MR. STACK: In most events we only need
7	one. In selected accidents, we need two.
8	MEMBER BLEY: Okay.
9	MR. STACK: So, for example, if we look at
10	a steam line break, we will initially align one and we
11	will realign a second operating train to an intact
12	generator.
13	MEMBER BLEY: Yes.
14	MR. STACK: But for most accidents, we
15	only need one.
16	MEMBER BLEY: Okay.
17	MR. STACK: When we look at the main
18	safety systems in the plant, we have basically for
19	safety injection we have passive accumulators, we have
20	the low-head safety injection system with a combined
21	RHR system in meeting that safety injection. All
22	those are pretty typical for the operating fleet. And
23	we have our in-containment refueling water storage
24	tank.
25	So, when you look at the alignment of
l	1

(202) 234-4433

18 these you would start with the IRWST. From those sections take it for the medium-head safety injection; that's going to tie in and pump into a cold leg. There's also an accumulator on that discharging into the cold leg.

The low-head safety injection we're also 6 7 taking a section off the IRWST. It's going through an 8 RHR heat exchanger to remove heat from the fluid. And 9 it's being directed initially back to the cold leg. 10 But one hour into the event we will also realign the pump to provide hot 11 discharge of the LHSI leq That's aimed at suppressing core boiling. injection. 12 So we actually have both alignments that are made up 13 14 from an ECCS perspective.

What we do not show in here, we also have an extra borating system. The extra borating system is providing highly concentrated boric acid. Basically, it's relied on for tube rupture mitigation and achieving core shutdown requirements.

In addition, in one train we have a non-20 safety related containment spray or containment heat 21 removal system which is really providing 22 severe accident mitigation such that we are taking a section 23 24 off the IRWST, we're pumping it through a heat exchanger and back into the containment. And for 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	19
1	severe accident mitigation that's providing the long
2	term heat removal.
3	MEMBER SIEBER: How long were your coolant
4	pump seals be tight without cooling
5	MR. STACK: For reactor coolant pump seals
6	we have a Stansfield seal system. We have three seals
7	like you typically would on a reactor coolant pump,
8	and then there's a Stansfield seal which provides
9	positive closure. Right now the Stansfield seals are
10	qualified for the SBO durations that we have.
11	MEMBER SIEBER: Which are? What are those
12	durations?
13	MR. STACK: Right now our required
14	duration is eight hours. We've done other testing to
15	demonstrate they'll go well beyond eight hours.
16	MEMBER SIEBER: Okay. Thank you.
17	MR. STACK: You're welcome.
18	So, basically that covered the primary
19	side. We'll move over to the secondary side now.
20	On the secondary side we have four trains
21	which are identical. And what you see in these is we
22	will have emergency feedback delivery from an EFW tank
23	or coolant. We'll take suction from that to an
24	emergency feedwater pump. We will discharge to a steam
25	generator.
I	

(202) 234-4433

	20
1	Coming on the steam side, we'll have a
2	main steam isolation valve. We're not showing all the
3	details, obviously there's a bypass around it as well.
4	On the upstream side we will have a main
5	stream relief frame which provides 50 percent of the
6	heat removal, and then we will have two 25 percent
7	spring-loaded safeties.
8	And when we look at the main steam relief
9	train, it's somewhat unique for the United States.
10	It's used in the Konvoi units. It's providing safety
11	grade depressurization. It's relied as a part of the
12	LOCA accident mitigation as well as the tube rupture
13	accident mitigation. And it's also allowing you to do
14	safety grade cold safe shutdown.
15	So that's basically the steam side. In
16	addition on this what we see is our four emergency
17	feedwater pumps are all motored waters, they're all
18	backed by the off-site grid, as well as the EDGs. Two
19	of four of those are also backed by Station Blackout
20	diesel generators. And then we show the inner
21	connecting there's also inner connecting piping on
22	the suction side and discharge side to allow us to
23	interconnect the water sources as well as the
24	discharge.
25	MEMBER SIEBER: So you used the main

(202) 234-4433

	21
1	feedwater pumps also as auxiliary feedwater pumps
2	MR. STACK: No.
3	MEMBER SIEBER: They're separate?
4	MR. STACK: When you look at the pumps in
5	general on the plant, we have four motor-drive main
6	feedwater pumps, which are providing normal main
7	feedwater. For startup and shutdown we have a separate
8	starter feedwater pump such that we're not relying on
9	emergency feedwater for startup and shutdown. And then
10	we have the four emergency feedback water pumps.
11	MEMBER SIEBER: Okay.
12	MEMBER SKILLMAN: Tim, why are the
13	emergency feedwater pumps all motor-driver versus some
14	turbine-driven?
15	MR. STACK: The main reason is really
16	twofold. In many of the operating plants, as you well
17	know, we've had problems with the turbine-drive pumps.
18	They've tripped on moisture induction.
19	MEMBER SKILLMAN: Yes.
20	MR. STACK: We've also had problems with
21	high-energy line breaks in the buildings that they're
22	resident in. So, as soon as we out a turbine-drive
23	pump in one of our safeguards buildings, we
24	immediately have to deal with all the high-energy line
25	breaks with them.
ļ	I

(202) 234-4433

22 1 We've also done reliability analysis and risk study to look at what would happen if we changed 2 some of the pumps, let's say two out of four, from 3 4 motor-driven to turbine-driven. What we determined is 5 result of that was we really didn't get any а 6 significant safety benefit. 7 We also knew that we were going to have more reliability problems with the turbine-driven 8 9 pumps than the motor-driven pumps. So that was our main rationale for let's stick with the motor-driven 10 pumps and let's get away from the turbine-driven 11 pumps, which again have been problematic. 12 13 MEMBER SKILLMAN: How are you assuring 14 that common cause isn't an issue here, because that's 15 the reason people have a diverse kind of pump? 16 MR. STACK: In general on these, we would 17 look at if you were looking at common cause there with the emergency feedwater pumps, this whole method of 18 19 secondary heat removal is backed by a primary feed and

20 bleed as diverse means.

MEMBER BLEY: Okay.

MEMBER SKILLMAN: Thank you, Tim.

23 MR. STACK: And then let's go and look at 24 external hazard and protection and shielding. And what 25 we have in the design, shown in brown, is an inner

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

21

22

	23
1	post-tension concrete containment building with a
2	steel liner. We also have separately an outer wall
3	that's reinforced concrete. The outer wall is
4	providing airplane crush protection as well as
5	protection from an explosion pressure wave.
6	Looking at the annulus between these two,
7	we have a filter vented annulus for dose control, and
8	that's the general method that we're using for dose
9	management and as well as for protection.
10	MEMBER BLEY: How big is that annular
11	area?
12	MR. STACK: The annulus
13	MEMBER BLEY: The width of it?
14	MR. STACK: I'm going back and trying to
15	see if I have the exact dimension.
16	MEMBER BLEY: It wasn't Sandra Sloan
17	MR. STACK: It's about a Sandra Sloan.
18	MEMBER BLEY: It's pretty good size.
19	MR. STACK: It's pretty good size.
20	I was looking if I have my dimension on
21	the
22	CHAIR ARMIJO: You probably could play a
23	handball game in there.
24	MEMBER BLEY: Six or seven feet, give or
25	take.
	I

	24
1	MR. STACK: So now we're going to talk a
2	little bit more about our so that was showing you
3	here that we have the blue shield building is
4	providing protection. And I showed in my early slide
5	where we provide that protection. First that we do,
6	quicker review of the site layout, and this is really
7	covering the nuclear island the turbine island.
8	And let's get oriented first in the
9	center. We have the reactor building, below it we have
10	the fuel building. Again, we have Safeguards 1, 2, 3
11	and 4. Again, in Safeguards 2 and 3 that's where the
12	main control room is.
13	Immediately adjacent to it we have an
14	access building.
15	Down here we have an nuclear auxiliary
16	building and a radwaste building.
17	Additionally, we have two diesel buildings
18	which house, this one on the side diesels 1 and 2 and
19	on this side 3 and 4. And then down at the bottom we
20	have ultimate heat sink towers here, 1 and 2 and then
21	the top 3 and 4.
22	Then above it we're showing the turbine
23	building and adjacent to the turbine building we have
24	the switchgear building.
25	MEMBER BANERJEE: What's these alternative
ļ	1

(202) 234-4433

	25
1	sink towers?
2	MR. STACK: Mechanical draft cooling
3	towers.
4	MEMBER BLEY: I'm getting out of the
5	safety buildings, but what's in the auxiliary
6	building?
7	MR. STACK: Basically anything else that's
8	not relied on for basic you know, and a lot of
9	these we will go and have other auxiliary for the
10	plant going back I'm drawing a blank right off the
11	top of my head. In general, in a lot of these you'll
12	find some equipment related to the CVCS that's not
13	safety-related and it's not required to be housed in
14	one the safety-related buildings. I can look that up
15	real quick, though.
16	MEMBER BANERJEE: How much heat do each of
17	these cooling towers remove?
18	MR. STACK: When you're sitting and
19	looking at their their normal duty is based on the
20	limits of either the design basis duty or the normal
21	heat rejection for the train. And they have to
22	accommodate both.
23	MEMBER BANERJEE: How much is that?
24	MR. STACK: I would have to go and look it
25	up. My recollection is about
I	I

(202) 234-4433

	26
1	MEMBER BANERJEE: Roughly.
2	MR. STACK: roughly 300 million BTUs is
3	what my memory tells me. But but what I will say is
4	we will be happy to look that number up.
5	MEMBER BANERJEE: Could you use per second
6	or something or hour, whatever?
7	MR. STACK: BTUs per hour. Thank you.
8	MEMBER BANERJEE: Okay. But the standard
9	is certain number of megawtts.
10	MR. STACK: Yes, it does. I haven't
11	committed that one to memory.
12	MEMBER BANERJEE: Okay. Okay.
13	MR. STACK: Okay.
14	MEMBER BANERJEE: And how much power do
15	they draw?
16	MR. STACK: As far as the the power
17	consumption is included in the EDG sizing because
18	they're carried by the EDGs.
19	MEMBER BANERJEE: But they wouldn't fall
20	short without the EDGs?
21	MR. STACK: That's correct.
22	MEMBER SIEBER: Are your diesels radiator
23	cooled or service water cooled?
24	MR. STACK: The EDGs are water cooled.
25	MEMBER SIEBER: Service water cooled?
I	

	27
1	Well, yes, service cooled to them.
2	MEMBER SIEBER: Okay.
3	MR. STACK: And the SBO diesels are air
4	cooled.
5	MEMBER SIEBER: Radiators?
6	MR. STACK: Yes.
7	MEMBER SIEBER: Okay.
8	MR. STACK: So we looked at this, so I'll
9	come back to our external hazard protection. What you
10	see is the shield building shown on the previous slide
11	is really covering the reactor building, the fuel
12	building and Safeguards 2 and 3, and again that's
13	where the main control room is. So we're physically
14	shielding those buildings and we provide physical
15	separation for the buildings that are shown in grey
16	such that at most we will damage two trains if you
17	were to have an airplane crash that was to hit these
18	diesels buildings or hit these cooling towers. The
19	other ones on the opposite side will be physically
20	protected by separation.
21	So that's the overall strategy for
22	external hazard protection.
23	Severe accident mitigation, we're just
24	about to the end of our background. Our design
25	features considered the phenomena that were considered
ļ	

(202) 234-4433

28 in SECY-90-016 and SECY-93-087. And when we look at the main features in this, there's a high pressure core melt depressurization system which is shown up in here where there are two trains with two valves in each train where we can depressurize the primary system. We also have an ex-vessel stabilization

8 conditioning and cooling system -- lots of words. The 9 quantity that's held up in the discharge channel from underneath the reactor vessel first and then it's 10 discharged into its cooling channel. In that cooling 11 channel initially for the first 12 hours it gets 12 cooling from the IRWST and then by that point in time 13 14 we would initiate the active containment spray system 15 that it takes up from there and provide cooling back to that location as well. 16

And then on the hydrogen side we've included passive autocatalytic recombiners for hydrogen management versus igniters.

20And those are the main features for severe21accident mitigation.

22 MEMBER BANERJEE: Were are the recombiner 23 space? They are right at the top or all over? 24 MR. STACK: They are located throughout 25 the containment. If memory serves me, I believe there

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	29
1	are 47 of them, give or take.
2	MEMBER BANERJEE: Okay.
3	VICE CHAIR STETKAR: Tim, I was looking at
4	something else. The second bullet on the passive ex-
5	vessel melt stabilization, the last I recall is the
6	IRWST lines to the core whatever you call it, core
7	spreading compartments are normally isolated by
8	normally closed motor operated de-energized valves
9	that the operators have to energize and open to then
10	expose the rupture discs. Is that still part of the
11	design or have you
12	MR. STACK: It is.
13	VICE CHAIR STETKAR: It is? Okay. So it's
14	not truly passive in the sense that somebody has to
15	line it up first, actively open the isolation valves
16	such that then it becomes purely passive?
17	MR. STACK: And when you look at the
18	decision making and you have a conflict between core
19	cooling with the IRWST as well as severe accident, and
20	it's a balance between the two.
21	VICE CHAIR STETKAR: Yes, yes. The word
22	"passive" has a lot of little hooks in it
23	MR. STACK: I understand. Semi-passive is
24	probably great.
25	Okay. So that basically concludes the
ļ	I

	30
1	background section. And we'll now move into the
2	overview of the chapters themselves.
3	And just by way of background, again we
4	mention that it's an evolutionary active plant. We've
5	used the proven analytical methodologies. We followed
6	the SRP as well as Reg. Guide 1.206. We've minimized
7	the exemptions and exceptions, and we haven't applied
8	RTNSS as a part of this design or as part of the
9	licensing process for the U.S. EPR
10	VICE CHAIR STETKAR: But you do have a
11	Design Reliability Assurance Program?
12	MR. STACK: Yes.
13	VICE CHAIR STETKAR: Okay.
14	MR. STACK: So now we'll start moving into
15	the guts of the chapters, and first Chapter 6:
16	Engineered Safety Features. And again, try to cover
17	the highlights in these. You're all familiar with what
18	the topics are. The only thing that I would mention
19	here that's extra is an extra borating system is
20	included in here, which you typically wouldn't find.
21	As far as the focus on the engineered
22	safeguards, really I'm just going to predominately
23	look at the containment systems and then the ECCS
24	systems.
25	And for the containment I mentioned
Į	I

(202) 234-4433

	31
1	previously, again, it's a post-tension concrete
2	containment with a steel liner. We mentioned having
3	our reinforced concrete shield wall.
4	It's a large dry containment when you look
5	at it, 2.8 million cubic feet, but there are some that
6	are bigger, like Bellefonte that are large dry
7	containment. Some that are somewhat smaller,
8	Calloway. But it's still a large dry containment.
9	Much, much bigger than most of the operating fleet.
10	Perspective to that, the design pressure
11	is 62 pounds gauge.
12	In the bottom of this we have a 500,000
13	gallon RWST, give you an idea of the magnitude of it.
14	When you look at the design and we have a
15	two-zone containment, the area in brown is an
16	equipment area that's separated out and basically
17	effectively compartmentalized and isolated with unit
18	net power. And then there's a service area outside of
19	that. Those two zones of the containment are
20	innerconnected by what we refer as a CONVECT system.
21	And what you have is basically rupture flows at the
22	top of, like the steam generator compartments here and
23	then there'll be dampers in the lower sections of
24	these that get actuated such that on a hydrogen line
25	break we convert the two-zone containment into one-
Į	I

(202) 234-4433

	32
1	zone containment.
2	We mentioned previously the passive
3	hydrogen reduction system with the recombiners and
4	then the filtered, vented annulus for the dose
5	control.
6	Of note in this is that the U.S. EPR does
7	not rely on safety-related containment spray or
8	containment fan coolers for heat removal.
9	MEMBER SIEBER: Does the containment have
10	an equipment hatch?
11	MR. STACK: Yes.
12	MEMBER SIEBER: Is it big enough to take
13	a steam generator tube assembly?
14	MR. STACK: It's big enough to take a
15	steam generator.
16	MEMBER SIEBER: Oh, it's that big? Okay.
17	So you don't anticipate that some time in the future
18	extra openings would be
19	MR. STACK: For the containment? No.
20	MEMBER SIEBER: Okay. That's turned out
21	to be a problem in post-containment.
22	MR. STACK: Yes. The containment hatch
23	itself is I'm not sure the exact dimension, but
24	it's over 20 feet. It is a large penetration.
25	MEMBER SIEBER: So it will even take the
l	I

(202) 234-4433

	33
1	steam separator equipment?
2	MR. STACK: Yes.
3	MEMBER SIEBER: Okay. Thank you.
4	MR. STACK: On the ECCS side, so that
5	covered the containment side and we move over to
6	MEMBER SKILLMAN: Tim, before you jump to
7	slide 15, on 14 no fan coolers or containment sprays.
8	What's the short answer? Do you simply absorb enough
9	heat with the masses so as to keep the post-LOCA
10	pressure below 62?
11	MR. STACK: The short answer is basically
12	what you're doing is the steaming from the core is
13	going to be collecting on the surfaces whether they
14	be concrete or steel inside the containment. And
15	initially you're removing heat from the sump, but when
16	we convert from cold leg injection to hot leg
17	injection, we suppress core boiling. And it's really
18	the combination of the ECCS providing hot leg and cold
19	leg injection and stopping core boiling and then
20	removing the balance of the heat from the sump is a
21	success of how you can eliminate the containment spray
22	as a safety-related system.
23	MEMBER SKILLMAN: I'm just intrigued by
24	the idea that you do not have boxcar fans or sprays
25	and you've intentionally increased the size of the
I	1

(202) 234-4433

	34
1	components to get fluid mass greater, so you've got
2	greater mass with that energy and you're still
3	maintaining the containment pressure.
4	MR. STACK: Right. Just to clarify that,
5	we do have fan coolers and we have non-safety-related
6	fan coolers and we have the non-safety-related severe
7	accident spray. Okay. The equipment exists, it's not
8	safety-related.
9	MEMBER SKILLMAN: What you're saying is
10	it's not credited for the severe accident?
11	MR. STACK: Yes, sir.
12	MEMBER SKILLMAN: Understand. Thank you.
13	MR. STACK: On the ECCS side, previously
14	we mentioned generally out of the safety injections,
15	additionally from the ECCS perspective we are
16	crediting, and I mentioned the MSRTs, Main Steam
17	Relief Train previously, we are crediting a partial
18	cool down of the steam generators to lower secondary
19	pressure and lower primary pressure as a part of the
20	safety injection scheme. And that's lowering primary
21	pressure below the shutoff head of the medium head
22	safety injection pumps. And that's relied on as part
23	of the LOCA mitigation.
24	And then relative to the IRWST, again it's
25	providing a single source of water. It eliminates the
ļ	

(202) 234-4433

need to switch over from recirculation mode from outside containment to inside containment like you would normally have. It also supplies sufficient static head that you don't have to piggyback either the medium head safety injection plans for this plant or high head safety plans like you normally do on the operating fleet.

It's providing normal functionality for 8 9 filling the cavity, what have you, and it's also providing flooding for the severe accident mitigation. 10 And again, the list point on here is going 11 back to the containment heat removal relative to 12 manual reassignment of the LHSI at 60 minutes to 13 14 suppress core boiling.

Tim, in this regard with 15 MEMBER SCHULTZ: regard to ECCS capabilities, is that a two-train 16 requirement or a one-train requirement to respond to 17 the sizes of LOCA that you might have? 18

19 STACK: As far as these safety MR. injection systems are all working. 20

MEMBER SCHULTZ: How many do you need? 21 Oh, how many do you need on 22 MR. STACK: 23 these? 24

MEMBER SCHULTZ: That's right.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. STACK: Okay. From the standpoint of

25

1

2

3

4

5

6

7

1 ECCS you need one for success to provide core cooling. However, I'll clarify with this: I mentioned before 2 3 that we're energizing two. So for example, back here 4 when we look at a case like this, we can have -- let's 5 say I was to break this cold leg right here, and this was an active train and this low head safety injection 6 7 pump was pumping into the break such that it's not 8 providing any core cooling. It may not be providing 9 core cooling, but it is providing heat removal from the sump because it's energized and it's active. 10 And we are crediting that function because it's not 11 impaired by the accident. Okay? 12 MEMBER SCHULTZ: Understand. 13 Thank you. 14 STACK: Okay. So basically, that MR. 15 covers the ECCS side. Now we're going to move into 16 everybody's favorite topic, I&C. 17 MEMBER POWERS: No, no, no. It is not everybody's favorite topic. It is only Charlie's 18 19 favorite topic. Even he is beginning to waver a little bit on that. 20 MEMBER BROWN: My favorite topic? 21 22 MEMBER POWERS: Yes. MEMBER SIEBER: It's all analog, so don't 23 24 worry about it. MR. STACK: So, in Chapter 7 I won't spend 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

36

	37
1	time covering, the topics are for the Reg Guide as far
2	as the content.
3	In trying to synthesize Chapter 7 down
4	into a reasonable number of slides from an overview is
5	always a challenge. What I tried to do here is
6	avoiding the desire to show a picture, I decided to
7	use a table as a more simplified way to convey what
8	the design includes. And what we have, an I'll just
9	cover the main highlights of the I&C design.
10	And the way this table is laid out, it's
11	broken out into you can see a system name, what it's
12	basic function, the safety class, the number of
13	channels and the technology.
14	We'll first cover what's going on with
15	this as far as the safety system, then we'll cover
16	what's backing up the safety systems as a diverse
17	actuation system. Then we'll move on to the non-
18	safety side of this.
19	So when you look at the safety side, when
20	you start with the human-machine interface that starts
21	with our safety information and control system, it's
22	effectively providing backup HMI. The main HMI that's
23	going to be done in this plant is with the normal
24	control interface. But basically that our SICS system
25	is providing the safety-grade means for control.

(202) 234-4433

	38
1	Again, it's safety-related. And all the safety
2	systems as a matter of fact in all the systems that
3	are shown here other than the last one are a process
4	automation of all 4-channel.
5	One of the other things you'll in all the
6	safety systems, they all use our TELEPERM TXS platform
7	as the family of equipment, which is the family of
8	equipment installed at Oconee that was used in the RPS
9	and ESFAS replacement.
10	When we look at the safety systems,
11	though, we start with the human-machine interface with
12	our SICS system.
13	We have a protection system which is
14	providing safety grade reactor tip and ESFAS
15	actuation.
16	We have a safety grade safety automation
17	system which providing safety grade control.
18	Then we move to the input side on the
19	Signal Conditioning System. Signal Conditional
20	Distribution System.
21	And then we move to the output side and we
22	have our Priority Actuation Control System.
23	So basically, that's the general structure
24	of the safety-related I&C. Again, each of these is
25	built on the TXS platform.
Į	

(202) 234-4433

39
A few things to note in this as well.
You'll see that most of this is microprocessor-based,
certain parts are not. The PACS module in particular
is going to be a PLD that's going to be a 100 percent
combinatorially tested. And we'll cover a few more
comments on that in the next slide.
So that's basically the safety system.
You have a human-machine interface, safety grade
actuation, safety grade control, an input side and
output side.
To backup that safety system, we have a
Diverse Actuation System, our DAS system, which is
going to be supplemental grade and quality. It is not
going to be implemented in a microprocessor-based
system as far as the technology is concerned.
Then we move to our non-safety side where
we have our Process Information Control System.
Again, this is the primary interface that the
operators would routinely use to control the plant.
And that would be with an industrial platform.
Then we have a Reactor Control
Surveillance and Limitation System which is
controlling reactivity. And then finally our Main

Process Automation System which is really covering the other process system in the plant.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	40
1	And the other comment there on that is,
2	again, that's four channel on the nuclear island, two
3	channel on the turbine island.
4	So, that's the general architecture of the
5	overall I&C.
6	MEMBER BLEY: Tim, as you going to tell us
7	more or will you tell us more about what you mean by
8	100 percent combinatorial tested?
9	MR. STACK: I will cover an item on this
10	slide. Just briefly we have made a commitment to do
11	full 100 percent testing of that PLD. That's really
12	aimed at ensuring that we do not have common cause
13	failures of that model.
14	MEMBER BLEY: Are you testing signals
15	beyond the range you're expecting them to be when you
16	talk about 100 percent combinatorial testing?
17	MR. STACK: The best way to answer your
18	question in this is probably to direct you to our
19	technical report that lays out our test plan that
20	we've submitted on how we're going to do our testing.
21	MEMBER BLEY: Okay.
22	MEMBER BROWN: Can I provide an
23	observation.
24	MEMBER BLEY: Yes, Charlie. I'd
25	appreciate it.
	I

41 1 MEMBER BROWN: I wish you had included 2 their magic figure of their system just for the eye 3 candy and the eye strain and the brain strain that you 4 undergo. But we did go through it very extensively. 5 And you can correct me if I'm wrong on this, but PLDs are roughly combination combinatorial 6 7 type discrete logic functions. So you have a very --8 a well known input and process state. It's not like 9 a microprocessor where data is being thrown all over the place and executing routines and maybe it'll get 10 them and maybe it won't and all that stuff. It's like 11 we built computers in the '50s with discrete 12 components. Fundamentally, that's fairly simplified. 13 14 So, you can pretty well define what the 15 input states are and what they will do in terms of the 16 response in terms of the testing. So that was 17 virtually impossible doing on a software-based system. When they talk about microprocessor PLD and then in 18 19 nonmicroprocessor, the old nonmicroprocessor system is really blacksmith technology. It's analog type setups 20 for that particular setup. 21 And if you look at the PLD agent for this 22 before, I mean AP -- was it 85, there's one of the 23 24 other projects like FPGA, they're kind of like field-

programmable data, but they're all different but

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	42
1	they're all in this logic device family.
2	So, I don't think that's a big problem.
3	I came through that. This is a very integrated system
4	of all the ones we've looked at, more integrated in my
5	opinion than the other plants. That is why I wished we
6	had the big the one picture that we had a
7	discussion of in the informal meeting, and then they
8	presented in the Subcommittee meeting. Just to get an
9	idea.
10	VICE CHAIR STETKAR: My simple response to
11	your question is no.
12	MEMBER BLEY: That's what I figured.
13	Okay.
14	VICE CHAIR STETKAR: But that's just me.
15	MEMBER BROWN: It probably doesn't I
16	mean, fundamentally the combination of logic
17	MEMBER BLEY: The phrase, it caught my
18	ear. I'm going to go look at that test report.
19	MEMBER BROWN: You can test all the
20	different logic functions
21	MEMBER BLEY: Yes.
22	MEMBER BROWN: But you cannot test across
23	every exceeding exceeding every range of every
24	function that you may put in. That's the way I would
25	define it.
I	I

(202) 234-4433

43 1 MEMBER SIEBER: And there is adequate separation of channels? 2 Yes, but because of the 3 MEMBER BROWN: 4 nature of it you're fundamentally really not going to 5 confuse another channel with something going on at one of the other ones. So, anyway --6 7 MEMBER SIEBER: That sounds pretty good. 8 MEMBER BROWN: -- that's a complicated 9 observation. 10 Do you happen to have backup slide with that really eye strain --11 MR. STACK: You didn't like that. 12 You didn't like that. 13 14 MEMBER BROWN: No. I just wanted the Committee to be able to understand --15 MR. STACK: You told us no. 16 17 MEMBER BROWN: I didn't tell you no. Oh, I'm sorry. 18 19 MEMBER REMPE: And he complained about a slide and he likes it. 20 MEMBER BROWN: No, I didn't say I liked 21 It was inadequate to describe the 22 it. Okay. functionality and how the system operates. 23 24 MR. STACK: Okay. BROWN: But it describe the 25 MEMBER

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	44
1	complexity of the system that they're proposing.
2	MR. STACK: Okay. So the truth is, is
3	this mechanical engineer is not going to be explaining
4	that.
5	MEMBER BROWN: I didn't think so. That's
6	why I made an observation.
7	MR. STACK: Okay. So, main features of
8	the Distributed Control System are the menu that's
9	online: Self-testing, a very robust architecture
10	which is aimed at providing defense-in-depth,
11	diversity, redundancy, independence and priority
12	setting.
13	There is a high degree of automation which
14	is aimed at reducing operator burden.
15	We just had an interesting discussion on
16	the PACS modules and the combinatorial testing, and we
17	will get you that test report number that's laying out
18	how the testing will be done.
19	We also mentioned that we have in our
20	Diverse Actuation System, that will be a
21	nonmicroprocessor-based system which is aimed at
22	avoiding common cause failures in the protection
23	system software.
24	Then from the communication side from our
25	protection system and our SAS system they're uni-
	·

(202) 234-4433

directional to the non-safety systems. One way 2 directed communication that's isolated. From an interdivisional communication standpoint within the PS divisions we only rely on that for voting logic. And those are isolated with optical communication.

And then on the SAS side we rely 6 on 7 interdivisional communication when necessary to perform a safety function. One of the examples I've 8 9 listed here is looking at CCW interlocks for our RCP 10 thermal barrier coolers. And basically what you're seeing is you have four reactor cooling pumps each of 11 them needs cooling to the thermal barriers, and that's 12 the safety-related means to the thermal barriers are 13 14 cooled. Normally, you only have one train of 15 component cooling water providing cooling to that. And if you lost the one train, you're going to swap to 16 an alternate which requires you to know the status of 17 when one's lost and you can pick up the other. 18 So, 19 you need information on both trains in order to provide the safety function. 20

And then finally, we provide a service 21 unit for maintenance on the protection system in SAS. 22 That is not continuously connected and we provide 23 24 switched that will preclude you from connecting that to more than one division at a time. 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

5

(202) 234-4433

45

	46
1	MEMBER BROWN: Before you leave
2	MR. STACK: Okay.
3	MEMBER BROWN: One other comment for the
4	Committee. Fundamental, if you look at this system
5	it's similar to the systems in some of the other
6	advanced reactor designs. It is fundamentally it
7	uses microprocessors for all its voting logic which
8	puts it in a state of being fundamentally not
9	independent of each other. You can contaminate, you
10	can lock them up and the one major open item is the
11	application of their hardware watchdog timer. How does
12	it execute? How does it operate? Is it truly
13	independent because there is some touch points with
14	some software. So the issues have been brought up and
15	that's part of an open item that will be resolved.
16	This is still an open item within the overall SER
17	evaluation, so just to let you know that the other
18	point that we will probably get into is the cyber
19	security aspects of the way the data is transmitted to
20	the main control room and then off to the corporate
21	function. There's effectively one place that could be
22	broken into and then destroy all the data going to the
23	main control room. That's my opinion, by the way. I'm
24	sure they do not share that opinion, but I will. It's
25	going to be subject to some more discussion at a later
ļ	I

(202) 234-4433

	47
1	date.
2	And they're not happy with that. We kind
3	of ignored it the last time.
4	MR. STACK: Okay. The last part about the
5	I&C for the EPR that is actually is more unique as
6	well, and this is more as part of the I&C and the
7	overall core protection. We utilize self-powered
8	neutron detectors within the core in lieu ex-core
9	detectors with selected types of trips. And what you
10	see in here, and we talk about 72 of these and what
11	the benefits are and why did we do this. And what you
12	see is there are 12 strings of detectors, each one of
13	these at this axial plane is showing one of the
14	strings of detectors, and there's six axial locations.
15	So you have six by 12 or 72 of them that are
16	monitoring flux in the core, locally monitoring in the
17	core. We are using that for our low DNBR trips and
18	our high linear power density trips.
19	In order to make this technology work, and
20	part of the reason behind that is this is a large
21	core. It's 241 fuel assemblies and we get much better
22	data and knowledge about what the core is doing
23	internally than we would by ex-core trips.
24	So what we have done is for these two
25	types of trips we are relying on all 72 of the SPND
	I

(202) 234-4433

(202) 234-4433

	48
1	inputs to each of the channels to take the each of
2	the four protection system channels to take their
3	protective action. The benefits are from IEEE 603 it
4	provides more direct measurement of the neutron flux
5	and it reduces our uncertainties with our ex-core
6	based trips.
7	A little cartoon generally showing how it
8	works. But in general, what you're looking at making
9	each of these look like a surrogate of the hot channel
10	and then making trips based on that such that we have
11	a very accurate trip based on local conditions in the
12	core.
13	MEMBER ABDEL-KHALIK: How does the minimum
14	DNBR algorithm account for potential variability in
15	flow due to lower-plenum anomaly?
16	MR. STACK: Relative to this, I would have
17	to defer to our fuels people. If we would like to
18	have follow-up discussion with them on that, we can.
19	I can't speak to the details of the uncertainties and
20	how they've accommodated the flow uncertainties.
21	MEMBER ABDEL-KHALIK: So the blue block on
22	the left, does that refer to total core flow?
23	MR. STACK: Yes.
24	MEMBER ABDEL-KHALIK: So you have no idea
25	how locally within a specific channel the flow rate
	I

(202) 234-4433

	49
1	might be?
2	MR. STACK: No.
3	MEMBER ABDEL-KHALIK: And how you account
4	for that potential variability then?
5	MR. STACK: When you look at some of the
6	variability even on flowing to the core, there's first
7	of a kind of testing in the core flow and the
8	distribution to the inlet to the core. So we have a
9	lot of first of a kind testing that's showing the
10	based on here's the number of flow rates we get,
11	here's the flow distribution we except from first of
12	a kind testing that we do when we design a
13	distribution valve.
14	MEMBER ABDEL-KHALIK: But if goes into the
15	algorithm, it's the total flow. That doesn't account
16	for that variability.
17	MR. STACK: And what I'm trying to say in
18	this, I would need to go back and see how our people
19	accommodated the variation flow when they did their
20	calculations. I don't know that off the top of my
21	head.
22	There is a topical report that was
23	submitted
24	MEMBER ABDEL-KHALIK: We would appreciate
25	a follow-up
I	1

	50
1	MR. STACK: Okay. We'll get it.
2	MEMBER ABDEL-KHALIK: Okay. Thank you.
3	MEMBER SKILLMAN: Tim, let me ask, you've
4	identified two trips that are based on the SPND. Are
5	the high flux, the high rate of flux and common trips
6	triggered by your ex-core detectors?
7	MR. STACK: The other trips don't rely on
8	this. These are the only ones that rely on this.
9	MEMBER SKILLMAN: I understand that. So
10	what I'm asking is do the other flux-related trips
11	depend on the ex-core detectors?
12	MR. STACK: They do. They're not relying
13	on this.
14	MEMBER SKILLMAN: Thanks.
15	MR. STACK: Okay.
16	MEMBER BROWN: Flip back just one moment
17	just to clarify something. Try to trigger my memory.
18	The 72 SPND signals are needed in all four, that means
19	all 72 detectors feed all four channels?
20	MR. STACK: That's correct.
21	MEMBER BROWN: Okay. However, I'm trying
22	to remember the last discussion. You can have a fair
23	number of failures of individual detectors
24	MR. STACK: Yes.
25	MEMBER BROWN: before you and I've
	I

(202) 234-4433

	51
1	forgotten how many that is.
2	MR. STACK: Six.
3	MEMBER BROWN: Okay. Throughout the
4	entire 72, is that correct?
5	MR. STACK: Yes. So what happens on the
6	failure of the detectors, we have failure of the
7	detectors. When a detector failure is sensed, we use
8	more conservative trip setpoints. And we've treated
9	undetected failures as a part of the safety analysis.
10	MR. GARDNER: That's an open item, the
11	MEMBER BROWN: Yes, I thought it was. I
12	just couldn't remember from the discussion.
13	MR. GARDNER: But the detector is part of
14	the methodology where it results in a more
15	conservative setpoint.
16	MEMBER BROWN: But then there's the other
17	issue is then what about the undetected ones that you
18	may not know about?
19	MR. STACK: And that's the one where it's
20	going to be treated as an open item and it will be
21	treated as a part of the safety analysis.
22	MEMBER BROWN: Okay. And the other point,
23	I guess I want to make sure, at least I understand
24	again, is that out of this 12 strings, six detectors
25	in each, those are not summed, they're individual
I	I

(202) 234-4433

52 1 siqnals that come out and they're processed 2 individually by the instrumentation, isn't that correct? 3 4 MR. STACK: There's an algorithm in the 5 topical --MEMBER BROWN: Yes, I understand. But each 6 7 detector is sensed --8 MR. STACK: Yes. MEMBER BROWN: -- it's not like the 9 signals come out of six of them, they're all combined 10 and then they go off to the processing? 11 MR. STACK: 12 Yes. MEMBER BROWN: Okay. I just wanted to 13 14 make sure I understand that. 15 MEMBER REMPE: So this type of detector system, is that going to be used it the Finland plant? 16 MR. STACK: It is. 17 MEMBER REMPE: It is? 18 MR. STACK: Yes, this is used in all the 19 20 EPRs. MEMBER REMPE: Okay. And this will be the 21 first time in the EPR that it will have been used, 22 23 right? MR. STACK: In the U.S. 24 MEMBER BROWN: In the U.S. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	53
1	MEMBER REMPE: And overseas, have you
2	used it in the
3	MR. STACK: The first application of this
4	will be in Finland at OL3.
5	MEMBER REMPE: Okay.
6	VICE CHAIR STETKAR: I think the staff
7	wanted to make a comment.
8	MR. LU: This is Shanlai Lu.
9	And to answer your question about a CHF
10	correlation and your question regarding the core flow.
11	And AREVA did have a design below the lower plate
12	there is flow distribution flow structure to allow
13	uniform flow going through the core. And they had a
14	scaled test. And so staff reviewed that and that is
15	the reason we can rely on single bounded correlation
16	plus the uniform flow assumptions with the core to
17	perform in the application
18	All right. That part of it, we already
19	reviewed that part.
20	MR. STACK: Okay. With that, we will wrap
21	up I&C. Want to continue on I&C?
22	MEMBER BROWN: I'd just want to
23	MEMBER POWERS: I don't.
24	MR. STACK: Okay. We'll move on into
25	Chapter 11, Radwaste Management.
l	I

	54
1	Briefly through this, the main highlights
2	on our radwaste management are that you see various
3	technologies used with it for both processing with
4	evaporators, centrifuge and demineralizers. That's
5	aimed at European experience with the different
6	technologies and providing flexibility.
7	We also see solid waste volume reduction
8	as a part of the basic design in the radwaste systems
9	as well as main steam rad monitors that are used in
10	the steam generator tube rupture mitigation.
11	Overall what you see is the liquid gas and
12	solid waste meet 109 CFR 20 Appendix B requirements
13	Pretty standard as far as this is concerned.
14	MEMBER RYAN: Can you put some kind of an
15	estimate on volume or the reduction you mentioned a
16	minute ago on this?
17	MR. STACK: I cannot off the top of my
18	head, but we can get you that answer.
19	MEMBER RYAN: Okay. That's be great.
20	MR. STACK: And that's really, again, the
21	radwaste management in this is pretty typical.
22	Next, another easy chapter, Chapter 13:
23	Conduct of Operations. Again, the topics are standard
24	topics in this. In general when you look at Chapter 13
25	most of the conduct of operations is for the conduct
	I

(202) 234-4433

	55
1	of the COL applicant.
2	Another item I will mention in here is
3	that the emergency operating procedures will be
4	symptom-based versus event-based as far as the
5	strategy that's going to be used in those.
6	Moving on to Chapter 15. Another favorite
7	topic.
8	MEMBER BLEY: Are you going to have the
9	procedures available for the control room
10	electronically?
11	MR. STACK: Yes.
12	MEMBER BLEY: Okay. Any special features
13	that you're planning about those, or just kind of like
14	the paper procedures would be?
15	MR. STACK: There has been much discussion
16	on the content of how that is going to be.
17	Darrell, I will ask you
18	MR. GARDNER: I was going to say, I don't
19	think it's part of the Design Certification so there's
20	a lot of talk about how it would be implemented in the
21	actual plant. But as part of the Design Certification
22	other than the concept of computer-based procedures,
23	I don't believe we specifically provided any detail.
24	That would be, you know, at the choosing at the COL
25	applicant.
l	I

(202) 234-4433

	56
1	MEMBER BLEY: Okay. So you're not doing
2	that as part
3	MR. GARDNER: No. That's part of Design
4	Certification.
5	MEMBER BLEY: Do you have a current mock-
6	up of your control room that your COLs can take a look
7	at?
8	MR. STACK: The COLs can take a look at
9	some of that. The other thing that they can do is we
10	are building plants in Finland, in France and in
11	China.
12	MEMBER BLEY: Right.
13	MR. STACK: And they have the opportunity
14	to review those designs and their progress in those
15	designs.
16	MEMBER BLEY: Okay.
17	MR. STACK: Moving into Chapter 15: The
18	Transient and Accident Analyses, standard set of
19	topics that are to be covered.
20	Highlights of this. Again, what we've
21	done is are design features relative to U.S. EPR
22	similar to existing PWRS? Some of the features that
23	are highlights, though. First, the front line safety
24	systems. Again, what's generally different is we're
25	taking credit for the fact that we have four trains of
ļ	1

(202) 234-4433

	57
1	safety systems for safety injection, RHR, emergency
2	feedwater and the main steam relief trains. I'll
3	mention again, we do have selected two train systems.
4	And to probably answer your question why do you have
5	some two train systems. Simplest example if you were
6	to think about containment isolation or feedwater
7	isolation, it doesn't make sense to have four
8	isolation valves on every penetration. So it was clear
9	that we were going to get some places where we wanted
10	to use selected two train systems. And you look at
11	the two train systems what you find is that they are
12	not impaired by an accident initiator that they are
13	required to mitigate.
14	So, for example, the annulus ventilation,
15	steam line breaks, feedline breaks, LOCAs cannot
16	impair them directly. And on the extra borating
17	system, it's not relied on for LOCA mitigation.
18	Moving to the in core fueling on the
19	storage tank, we showed that one previously. It's
20	part of what the main features are, it's being the
21	source of the ECCS. Again, no switch over of any type
22	required.
23	Operator action times. The operation
24	action times are for the Chapter 15 accidents are 30
25	minutes from the main control room, 60 minutes for
	I

(202) 234-4433

	58
1	actions outside the main control room that are
2	required.
3	VICE CHAIR STETKAR: Tim, if I recall your
4	remote shutdown system is not designed for operator
5	control for design basis accident, is that correct?
6	MR. STACK: That's correct.
7	VICE CHAIR STETKAR: Okay.
8	MR. STACK: It's when you're using
9	VICE CHAIR STETKAR: It's the ability to
10	maintain hot shutdown for transients?
11	MR. STACK: Well, you're using it also for
12	mitigation of fires, taking the plant cold.
13	VICE CHAIR STETKAR: Do you take it to
14	cold from that?
15	MR. STACK: Yes.
16	VICE CHAIR STETKAR: Okay. But not for a
17	LOCA?
18	MR. STACK: It's not relied on for that.
19	We mentioned previously the automatic
20	partial cool down of the steam generators, this is
21	with the main steam relief trains on the safety
22	injection signal. Again, that's being used as part of
23	LOCA mitigation.
24	We have safety-related warm and high
25	activity in the steam lines for tube rupture
I	

(202) 234-4433

	59
1	mitigation.
2	VICE CHAIR STETKAR: For other Members who
3	may or may not be familiar with European versions of
4	this design, this is a bit different from the European
5	version because this is simply an alarm function and
6	not an automatic actuation function as it is in
7	European versions of this design.
8	MR. STACK: And part of what's happening
9	with that is the number of tubes you're breaking and
10	how fast things go down for the U.S. versus Europe.
11	VICE CHAIR STETKAR: The number of tubes
12	you have to assume are breaking in your licensing
13	analysis?
14	MR. STACK: Yes, sir.
15	We also have an automatic trip of the
16	reactor coolant pumps for LOCA mitigation. Most of the
17	operating plants, that's a scripted fast action, one
18	or two minute reactor trip where it's an automatic
19	reactor trip.
20	We mentioned our use of the ESPNDs for the
21	low NDBR and the linear power density trip, and then
22	finally we've used the alternative source term for our
23	base analysis.
24	CHAIR ARMIJO: What is the current level
25	at which you have a high linear power density trip?
I	I

(202) 234-4433

	60
1	MR. STACK: I'm not sure
2	CHAIR ARMIJO: Is it ten percent above
3	normal operating power or is it you know, what is
4	that value at which you trip the reactor?
5	MR. STACK: Well, in the high linear power
6	density it's looking at a local flux at that level,
7	and it's setting it to what it's limits are at. It's
8	not necessarily like an ex-core based trip.
9	One of the other things that's happening
10	again with the SPND-based trips, I mean you have
11	failures, you continue to select different setpoints
12	that are more conservative. So in these, it doesn't
13	have a fixed setpoint at all times. If you use SPNDs,
14	I'll get you a different I'll go to a different
15	setpoint.
16	CHAIR ARMIJO: Well, let me ask it a
17	different way then. You have one string of SPNDs
18	MR. STACK: Yes.
19	CHAIR ARMIJO: and you detect some high
20	linear power discrepancy. What happens then? You
21	reset or
22	MR. STACK: And I chose this picture.
23	Basically when you're looking at the DNBR trips,
24	you're looking at an axial profile. In the linear
25	power density, you're cutting an axial plane. So
I	

(202) 234-4433

61 1 you're looking at these 12 at this level and you're comparing those with the hot spot at that elevation. 2 CHAIR ARMIJO: And if the power is higher 3 4 than your expectations --MR. STACK: Then you're going to trip the 5 6 reactor. 7 CHAIR ARMIJO: And what is that trip 8 delta? Is it ten percent above peak normal operating 9 peak power or is --And I do not know the limits 10 MR. STACK: on that and the basic, but the alternative but we can 11 get that for you. 12 CHAIR ARMIJO: Yes, would you please? 13 14 MR. STACK: Okay. Shanlai, did you have 15 MR. GARDNER: 16 anything? Yes. This is Shanlai. 17 MR. LU: I answered the question to the degree of 18 19 what I am able to remember at this point, and I think AREVA pointed out about we rely on the localized rate 20 of regeneration at the limit and there is a certain 21 margin for them to trip the reactor. And that margin 22 we reviewed, too. 23 24 CHAIR ARMIJO: Yes. I'm just asking what the value --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	MR. LU: And I remember it was two
2	years ago.
3	(Many talking at one time.)
4	MEMBER SCHULTZ: Tim, is that localized
5	and you mentioned it was on plan based question.
6	MR. STACK: Yes. What's happening is that
7	you're basically making all you're figuring out
8	where the hot spot is at that elevation and you're
9	biasing all these others to read like they're the hot
10	spot.
11	MEMBER REMPE: Could you talk a little bit
12	more about the SPNDs? Are they all the same emitter?
13	How about your lifetime, are you planning ever
14	refueling outage you're going to have to replace them
15	or how long do they last?
16	MR. STACK: I cannot remember the details
17	of the life is ESPNDs. We can also get that you.
18	MEMBER REMPE: Okay. And are they all the
19	same emitter and what is the emitter they're using?
20	MR. STACK: I believe it was well, let
21	me not go there. I would rather get you the answer
22	right.
23	MEMBER REMPE: That's fine. It's not
24	urgent.
25	MR. GARDNER: If the staff knows?

(202) 234-4433

	63
1	MR. LU: Yes. This is staff to answer a
2	question.
3	We do have a online calibration system.
4	MEMBER REMPE: Okay.
5	MR. LU: And they do that, at the minimum
6	they do that every 15 days. But they can go up to
7	every ten minutes, 15 minutes to recalculate the SPND
8	in case they see the failure. They are degraded I'm
9	sorry.
10	MEMBER REMPE: Yes.
11	MR. STACK: So, I'm not sure if that
12	answered your question.
13	MEMBER REMPE: I got a little more. I'm
14	just curious.
15	MR. STACK: Okay. It struck me you were
16	interested with the overall life and how long do they
17	last as far how often do they need
18	MEMBER REMPE: The expected lifetime, and
19	then also I assume they're all the same emitter and
20	what it is.
21	MEMBER ABDEL-KHALIK: If I can follow-up
22	on something else that was provided earlier by the
23	staff regarding the DNBR trip and the impact of slow
24	maldistribution you indicated that AREVA had submitted
25	a topical report describing a scale test to measure
	I

(202) 234-4433

	64
1	the flow distribution. I assume that this was a
2	geometrically similar scale test, but is it
3	dynamically similar test?
4	MR. STACK: We can follow-up with that. We
5	can certainly point you to the topical report.
6	MEMBER ABDEL-KHALIK: Has the topical
7	report been submitted and reviewed by the
8	Subcommittee.
9	MR. LU: Yes, staff has reviewed that and
10	we presented report.
11	MEMBER ABDEL-KHALIK: No, no, no. I'm
12	asking whether it was submitted to the ACRS
13	Subcommittee.
14	MEMBER POWERS: No. No, it was not.
15	MEMBER ABDEL-KHALIK: We would like to get
16	a copy of that.
17	MR. STACK: Very good.
18	So basically that's going to, I know we're
19	at a very, very high level. That's going to complete
20	our overview of Chapter 15 as far as kind of what's
21	unique and special about it.
22	Looking into Chapter 16 on Tech Specs.
23	The generic tech spec for the U.S. EPR is the approved
24	standard tech spec format. You can see the format
25	that's there.

(202) 234-4433

As far as a pattern, we chose NUREG-1431 as the primary tech spec that we were going to pattern after and most of the tech specs follow that. That was for a Westinghouse PWR. In addition to that, we've used other standard tech spec NUREGs as well as other precedents as appropriate.

7 For example, when you look at NUREG-1341 it uses a risk-based tech spec for the accumulators. 8 9 We're using deterministic, we're not using risk-based 10 tech specs, so we use the B&W tech spec value as our But in general when you look at these, we've 11 pattern. chosen 12 other precedent that's been used some previously or we've chosen that precedent being either 13 14 one of the tech specs 1431 or one of the others as 15 well as selected other precedents from other licensing 16 applications.

And then we mention the N+2 safety concept here again in words of what that is, and that N+2 concept is embodied in the tech specs.

The main features that are different that we'd like highlight on the tech specs themselves, first in Section 3.3 on the Instrumentation for the digital lines, due to the nature of the I&C itself, we chose to use LCOs and actions that were component based versus function based like you typically would

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	66
1	see. We've also included tech specs for the diverse
2	actuation system as a part of that.
3	In 3.4 we've allowed for limited 3-loop
4	operation with the reactor coolant pumps.
5	MEMBER BROWN: What do you mean by
6	"component-based?"
7	MR. STACK: Okay. If we can look at a
8	component as an STND or pressure transmitter, or you
9	can step up to other components as part of the
10	equipment versus a whole channel being done.
11	Microprocessor units versus, say, a function of
12	reactor trip on pressurizer pressure. It's a function-
13	based tech spec as opposed to, for example, if there's
14	hardware processing those trips.
15	MEMBER BROWN: Okay. I guess I don't
16	totally understand. I know a microprocessor fails,
17	the channel goes out.
18	MR. STACK: Right.
19	MEMBER BROWN: So, I mean you do have the
20	A and B subsystems in some parts for each channel, but
21	that's not replicated, and that's in the ALUs if I
22	remember there's something like that. It's not
23	replicated everywhere.
24	MR. STACK: In the tech specs we'll
25	provide limits on what's required for operability and
I	I

(202) 234-4433

	67
1	they will dictate shutting the plant down
2	MEMBER BROWN: Yes, I can understand it on
3	the detector or, you know input data processing. It's
4	just when you get farther into the guts of a channel
5	I wasn't quite sure what you all meant by that.
6	MR. STACK: But again, the limits on those
7	whether it's an APU or an ALU have all been laid out
8	in the tech specs themselves.
9	MR. GARDNER: I will say that it's still
10	an open item that we're working with the staff to
11	resolve
12	MEMBER BROWN: Okay.
13	MR. GARDNER: and what it's going to
14	finally going to look like when it's all said and
15	done.
16	MEMBER BROWN: Well, that might be subject
17	for some additional discussion then later is what
18	you're talking about; how that gets resolved. All
19	right.
20	MEMBER ABDEL-KHALIK: How do you specify
21	the LCO for a component if it is providing if it is
22	supporting several functions? What determines the
23	time then? Which function is dictating?
24	MR. GARDNER: In the timing for the LCOs
25	and the actions are really based on the precedent set
I	I

(202) 234-4433

68 1 for the operating fleet that are deterministicallybased. 2 3 MR. STACK: We're also trying to capture 4 actions that look at what things will be effected by 5 the loss of the component so that you end up with an action. If you're having to look at all the actions, 6 7 it should be taken due to the loss of that component 8 in prescribing those actions. 9 MEMBER ABDEL-KHALIK: One of them must be most limiting I would imagine, and that sets the LCO 10 that specific component regardless of what 11 for function is it impacting. 12 You could have, say, a 13 MR. GARDNER: 14 shutdown action. But there may also be other actions 15 maybe that's not limiting, but independent actions 16 that need to be taken due to that failure. There may 17 be just different actions. I don't know if I would characterize them as limiting limiting. 18 or not 19 They're actions that need to be taken due to the failure. 20 It's not like you would pick one and not 21 You need to do those other things. 22 do the other. MEMBER ABDEL-KHALIK: Yes, I understand. 23 24 I understand. But whether it's a 24 hour LCO or a 72 hour LCO, I'm trying to figure out which action 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	dictates what time would be associated with that LCO.
2	MR. GARDNER: We're still working it. I
3	will say again, as Mr. Brown alluded to, that within
4	the digital control system, even within a specific
5	division, there's redundancy built into that. So
6	there's multiple logic units, multiple control units
7	within a single division, so you have to have a lot of
8	equipment component failures before you're into the
9	division not being able to perform a function.
10	MEMBER SKILLMAN: Tim, I'd like you to
11	explain limited 3-loop operation and talk a little bit
12	about connecting that thought to the broadness of the
13	core in the flow distribution that was asked about.
14	MR. STACK: Okay. And what's happened on
15	this is we've gone and analyzed for limited 3-loop
16	operation. Right now if I look at my notes, the LCO
17	on that is two hours. Basically what the intention is
18	let me back up.
19	We've had other plants where we've sheared
20	shafts we've operated. We've operated on when we had
21	to reactor coolant pumps per loop per steam generator.
22	We would continue operation, automatic reduction in
23	power and continued operation safe continued
24	operation for plants where we had multiple reactor
25	coolant pumps per steam generator.
I	I

(202) 234-4433

	70
1	And here we've analyzed for using one
2	reactor coolant pump in a loop. We're setting the LCO
3	at two hours. Basically what we're trying to do is
4	include provisions to will allow you to have some
5	pretty much an immediate problem that has an immediate
6	fix, otherwise we're going cold. So it's not like
7	we're going to operate for an extended period of time
8	in this configuration.
9	MEMBER SKILLMAN: So the intention is to
10	always operate with four loops operating and only in
11	a casualty situation operate for two hours with less
12	than four?
13	MR. STACK: You could characterize it that
14	way.
15	MEMBER SKILLMAN: Okay. Will this flow
16	situation be represented in this topical report that
17	we've requested?
18	MR. STACK: This is analyzed as a part of
19	the safety analysis.
20	MEMBER SKILLMAN: Are the downcomers in
21	the reactor vessel stripped? Each of your cold legs
22	enters the reactor vessel, right? Flow goes down,
23	right, into the lower plenum? In theory it's made
24	uniform by this gridding in the lower planum
25	MR. GARDNER: Yes.
	I

(202) 234-4433

	71
1	MEMBER SKILLMAN: so that there's
2	uniform flow into the fuel assemblies?
3	MR. STACK: Right.
4	MEMBER SKILLMAN: A three pump operation.
5	You do have a pressure disturbance and you have
6	asymmetrical flow then non-symmetrical flow.
7	MR. STACK: I understand.
8	MEMBER SKILLMAN: So, I'm curious whether
9	or not this is represented in this typical report.
10	As far as the one that did the initial
11	testing, I'm wondering whether or not
12	MEMBER ABDEL-KHALIK: The scale testing.
13	MR. STACK: The scale testing.
14	MEMBER SKILLMAN: Yes. I'm wondering
15	whether or not in a 3-loop operation you really have
16	uniform flow across the face of the core from the
17	bottom up.
18	MR. STACK: I understand. We'll confirm
19	that as a part of the scale testing.
20	MEMBER SKILLMAN: Thank you. Let me ask
21	one other question. When you're in three loop
22	operation does the idle loop flow backwards?
23	MR. STACK: Well, I'm trying to think on
24	this. I have not gone back and reviewed the analysis
25	on that. I'm too familiar with the B&W plants where
l	

(202) 234-4433

	72
1	it does.
2	MEMBER SKILLMAN: Me, too. I'd like to
3	know. Flow reversal is peculiar when you're in that
4	situation, the reactor coolant system is different.
5	Thank you.
6	MR. STACK: Okay. In section 3.6
7	Containment Systems. Again, we did not include a
8	containment spray. We talked previously about why
9	that was not credited for the safety analysis and it
10	does not appear on the tech specs.
11	And then finally in Section 3.8 Electrical
12	Power Systems. One of the features we mentioned in
13	the April of 2010 discussion of alternate feeds in the
14	electrical power distribution system. And basically
15	what happens in the alternate feeds is you provide
16	ties between divisional pairs. Here divisions 1 and
17	2 are one divisional pair and divisions 3 and 4 are
18	another divisional pair. The reason why you do that
19	is we have certain safety-related SSCs that if I had
20	a divisional EDG that was out of service, they would
21	lose the level of redundancy that they need. So what
22	we're doing as a part of this is when we make up the
23	alternate feed, we're sizing the diesel to carry its
24	full division plus its alternate-fed loads. And it's
25	capable of carrying that in this design. And this
	1

(202) 234-4433

	73
1	tech spec acknowledges this portion of the tech
2	spec acknowledges that as something unique to the
3	design.
4	Chapter 18: Human Factors. This is just
5	an overview of what the topics are from Human Factors.
6	As far as highlights, our HFE program is
7	really described in nine implementation plans that
8	have been reviewed by the NRC staff. These programs
9	will be implemented by the COL Applicants. We've
10	provided a Tier 1 DAC, Design Acceptance Criteria, for
11	these. Our HFE program does it is consistent with
12	NUREG-9711, Rev 2.
13	When we look at the scope of the program
14	it's covering the main control room, the main shutdown
15	stations, tech support center and risk significant
16	local control stations as a part of it.
17	When we look at our past analysis it
18	covers a broad range of actions from looking at
19	operations, maintenance, testing as well as safety
20	critical actions in different operating modes. It also
21	includes risk significant human actions that have been
22	identified in Chapter 15 of the PRA. And then finally,
23	unique tasks that have not been utilized on existing
24	PWRs, for example things related to some of our severe
25	accident heat removal or we don't have something
ļ	I

(202) 234-4433

74 1 equivalent to that on our operating plants. 2 VICE CHAIR STETKAR: Tim, we had a 3 briefing on this topic, according to my notes, last 4 August. So, it's been a while. At the time that the 5 third bullet under your task analysis, we had some questions about how that the process that you were 6 7 using to identify risk significant human actions in 8 particular for shutdown mode, because you were 9 numerically weighting those by the relative risk 10 during shutdown rather than considering their contribution to the shutdown risk. Have you made any 11 changes in that process, do you know? 12 MR. STACK: We are still working through 13 14 the details of that, and we will provide an answer 15 back on that question. 16 VICE CHAIR STETKAR: I was just curious 17 whether any evolution had happened. Okay. Thanks. MR. GARDNER: And we do acknowledge the 18 19 caution and understand it and appreciate you clarifying that later. 20 VICE CHAIR STETKAR: Okay. Thanks. 21 MR. GARDNER: But we are going to get that 22 23 answer. 24 VICE CHAIR STETKAR: I was just -because, you know it's been a few months. 25 I was just

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	curious.
2	MR. STACK: And the last two points in
3	this slide are basically the human system interface
4	we're doing virtually and physical mock-ups with some
5	part task situation. And then finally an integrated
6	system validation on a full scope simulator to ensure
7	that our HFE program does all the things it needs to
8	do.
9	VICE CHAIR STETKAR: If my notes are
10	correct, you said that each of those integrated V&V
11	scenarios, you typically planned to evaluate somewhere
12	in the ballpark of 25 to 50, and that's not an
13	absolute number, but it's not 3 and it's 300 type
14	scenarios. And each of those scenarios challenge
15	several different types of operator interactions. Is
16	that correct?
17	MR. STACK: Yes.
18	VICE CHAIR STETKAR: Okay. Okay. Thank
19	you. Just to get a sense of kind of the scope of that
20	last bullet.
21	MR. STACK: And with that, that concludes
22	our presentation of the EPR review as well as our
23	chapter evaluation. Before we turn it over to
24	Getachew, I'll ask are there any other remaining
25	questions?
I	

(202) 234-4433

	76
1	Thank you.
2	MEMBER POWERS: Thank you, Tim.
3	At that point we'll ask the staff to
4	present their assessment and Safety Evaluation Report.
5	It's worth reminding the Committee that
6	the staff has provided us with a Safety Evaluation
7	Report in which they highlight the open items they
8	have, but bring it to us only when they feel that
9	there is a pathway to resolution of those open items.
10	And again, that is the feature of this approach to the
11	Design Certification that makes it feasible to do this
12	in somewhat of a piecemeal fashion.
13	Bonjour.
14	
15	MR. TESFAYE: Good morning again.
16	The purpose of this briefing is to go over
17	the highlights of the staff's findings in the areas we
18	made in certifying, and also to give you some
19	information regarding independent confirmatory
20	analysis the staff has done on these chapters.
21	Before I do that, I will go over the
22	history of this project for those who are not familiar
23	with what we've done.
24	Again here, I have with me three members
25	of the technical staff:
I	1

	77
1	Dr. She-Peng give us an analysis of what
2	they've done on Chapter 6.
3	Mr. Jean-Claude Dehmel on Chapter 11 and'
4	Dr. Shanlai Lu on Chapter 15.
5	And these are the major milestones for the
6	U.S. EPA Design Certification application review.
7	The application was submitted in December
8	of 2007.
9	We completed Phase 1 of the review, which
10	is the preliminary Safety Evaluation Report with
11	request for additional information.
12	And then we presented, as I mentioned
13	during my opening remark to the Full Committee, the
14	first three chapters that was completed in 2010.
15	And basically the application was
16	completed this year, February 9th. And we completed
17	the Subcommittee presentation two weeks ago. Today
18	we're here to present you 6, 7, 11, 13, 15, 16 and 18.
19	And we hope to complete our Full Committee briefing
20	next May.
21	Our review schedule, as I said earlier,
22	Phase 1 is completed. Phase 2 is completed. We hope
23	to complete Phase 3 in July. Completion of Phase 3 is
24	defined as the staff responding to ACRS letter. We
25	hope to get the ACRS letter May, and hopefully we'll
Į	I

(202) 234-4433

	78
1	provide the response in June and testing will be
2	completed in July.
3	We don't have any review currently in the
4	schedule for the rest of the phases. AREVA just
5	submitted to us their schedule for closing the open
6	items last month. And so we are currently developing
7	a schedule for phases 4 through rulemaking.
8	Our review strategy, I have described this
9	before. I'll just go over it.
10	The pre-application activities started
11	three years prior to the application was submitted.
12	And during this time AREVA engaged the staff with the
13	unique features of the design, the U.S. EPR design.
14	And they also submitted some topical reports that was
15	reviewed and approved prior to the application came
16	in. Topical reports suggesting costing methods and
17	quality issues and the like.
18	And also during the application phase we
19	hold frequent teleconferences, mainly weekly and
20	several audits and public meetings on key topics.
21	We also used electronic RAI system, which
22	really facilitated getting the information readily.
23	And as Dr. Powers mentioned a couple of
24	times, we practiced a phase discipline. In other
25	words before we complete and move on from Phase 2 to
ļ	1

(202) 234-4433

	79
1	Phase 3 and Phase 4, we have to make sure the open
2	items have a clear path forward to resolution. That
3	has always ben respect to that, and we try not to
4	generate any new RAIs in Phase 4 unless they're
5	prompted by design change. And in the case of
6	Fukushima we expect RAIs in Phase 4.
7	So, we stuck to the phased discipline and
8	the 500 or so open items that we have identified in
9	Phase 3 review, they all have a clear path to
10	resolution.
11	Now going through the chapters. Chapter
12	6 these are the SRP sections where we get second
13	findings. As you can see for two sections,
14	subcompartment analysis and containment heat removal,
15	we have not made a safety finding yet. There was no
16	in Phase 2 there was not clear path to resolution, so
17	we have deferred those two reviews to Phase 4.
18	The containment heat removal is due to
19	GSI-191: Related Activities. So we'll bring those to
20	the Committee during Phase 5 of the review.
21	In Chapter 6 there are a total of 35 open
22	items. And this is, you know in addition to the two
23	sections that I mentioned earlier.
24	And with that, I will ask Dr. Peng to
25	describe a couple of the confirmatory analysis the
I	

(202) 234-4433

	80
1	staff has done to support their safety findings.
2	Dr. Peng?
3	DR. PENG: Good morning, lady and
4	gentlemen.
5	I got this assignment to present less
6	three items, but I will pass. They only give me ten
7	seconds to present, okay?
8	The first slide you will see, I would like
9	to give attention to the pressure peak due to the
10	LOCA break around the rapid cooling cold leg pump
11	suction side.
12	You probably cannot see. My first peak is
13	about 68 psi, 70 psi and at 28 seconds. But my next
14	slide will give you a clearer picture.
15	I will bring to your attention, the second
16	peak is around
17	MEMBER ABDEL-KHALIK: This is psia.
18	DR. PENG: psia.
19	MEMBER ABDEL-KHALIK: psig.
20	DR. PENG: Yes. Now the second peak is
21	around the 3600 seconds and almost the same time at a
22	magnitude about 68 psia. The design pressure is 62
23	psig, that's the 76.7 psia. So we have about seven psi
24	margin.
25	I would like you to understand according
I	

(202) 234-4433

	81
1	to our SRP we need the containment ratio to be less
2	than 50 percent of the peak at the end of 24 hours.
3	So, this will show that they already meet the
4	requirement. It means that heat is more resistance
5	capable to decay of this accident.
6	Next slide, please.
7	This is a log-scale, give you a better
8	idea of how the peak going. And a comparison between
9	MELCOR and GOTHIC.
10	Oh, by the way, the GOTHIC and MELCOR both
11	has been V&Ved completely. And the testing to decide
12	these capabilities show that GOTHIC can have about 3
13	psi over prediction of the major value. And MELCOR can
14	have 4 psi over the test results.
15	Are there any questions? I don't have
16	anymore time.
17	MR. TESFAYE: Take your time. You have two
18	seconds left.
19	MEMBER POWERS: That was good.
20	MR. TESFAYE: I think that you've gotten
21	the idea that the kind of confirmatory analysis we've
22	done on Chapter 6. Thank you, Dr. Peng.
23	MEMBER POWERS: Again, I myself just
24	derive a huge amount of confidence when I see these
25	independent confirmatory analyses.
I	1

(202) 234-4433

	82
1	MR. TESFAYE: Thank you.
2	The next one is Chapter 7. In Chapter 7
3	the staff has identified 36 open items, and it has
4	gone through some of them. But an open item here is
5	with Dr. Brown requested this regarding the watchdog
6	timer.
7	MEMBER BROWN: I noticed the Reactor Trip
8	System has zero down, and I just wanted to remind you
9	that from a Committee standpoint, my standpoint that
10	that issue is open relative to the watchdog timer and
11	its ability to
12	MR. TESFAYE: Yes.
13	MEMBER BROWN: satisfy through closeout
14	a reactor trip if all the processors lock up. So, I
15	know you show a zero there, but
16	MR. TESFAYE: It's a zero. This is
17	indicating what was described in the Safety Evaluation
18	Report
19	MEMBER BROWN: I understand that.
20	MR. TESFAYE: And, of course, we have
21	generated an RAI to follow your request as an open
22	item.
23	MEMBER BROWN: Thank you very much.
24	MR. TESFAYE: That will be tracked and
25	will be discussed in Phase 5 of our
Į	1

(202) 234-4433

	83
1	MEMBER BROWN: Thank you very much.
2	Chapter 11 we have 24 open items and we
3	have done several confirmatory analysis, and I have
4	here Jean-Claude Dehmel to describe.
5	MR. DEHMEL: And so for the confirmatory
6	analysis, I have two slides. One liquid effluents,
7	Chapter 121.2 and another one with gaseous effluents,
8	the next slide.
9	So, basically what we do is we look at the
10	Applicant's information. We try to find the sources
11	and the basis of the information for the input
12	parameters to the computer codes. The GALE code for
13	the liquid and gaseous effluents with reference to the
14	case, as well as the GASPAR code for associated doses.
15	And then we plug in the data into our own
16	versions of the code and crank out the results and try
17	to see where there are matches or no matches. And
18	typically, this is a majority process.
19	To start with it, it's rarely that any
20	application, this is not unique, has all the
21	information that we need. So, what we do is glean the
22	information that is available. And, obviously, in this
23	case it's above and beyond Chapter 11. We have to go
24	to Chapter 6 in some cases, Chapter 12 or even in
25	Chapter 15 and maybe Chapter 9 and Chapter 10
	1

(202) 234-4433

	84
1	depending on the situation.
2	And then plug in the data. And in some
3	cases since we try to move the process forward, we
4	make assumptions for information that' not there,
5	possibly the Applicant used the raw data, wherever
6	that is. So this could be information from NUREG-
7	0016, for example for the GALE code or the appropriate
8	NUREGs for dose calculations.
9	And then if we have discrepancies or
10	differences in the result, then we generate RAI. And
11	this takes, you know, three or four rounds before we
12	come to a general agreement on resulting doses.
13	The obvious requirements here are
14	compliance with Part 20, Appendix B concentration
15	limits as well as doses to members of the public that
16	go beyond EAB in compliance with the Appendix I
17	requirement, the design objectives for liquid
18	effluents.
19	One thing that was not done in this
20	application is because of the unique aspect well,
21	not unique aspect, because initially application, the
22	Applicant did not provide information on a cost-
23	benefit analysis associated with one of the elements
24	of Appendix I because you need site-specific

information with respect to population distribution as

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	85
1	well as agricultural production in the areas within 50
2	mile radius, and other site-specific information.
3	So that part of the analysis is now
4	mandated in the context of the COL application
5	package. So the actual application, the utility that
6	comes forward or the consortium that comes forward has
7	to provide that analysis.
8	Next slide, please.
9	So it's a similar pattern with the
10	releases and the source term and Appendix I
11	requirement. And as with Chapter 11.2, there are these
12	COL accident analysis that kind of anticipate
13	operational occurrences, which some of it were initial
14	in Chapter 15 but have been relinquished or moved into
15	Chapter 11 having to do with, in this case, the
16	failure of a gas component and the associated release
17	of noble gases and iodine and the impact of EAB.
18	That's all. Are there any questions?
19	MR. TESFAYE: Thank you, Jean-Claude.
20	All right. Going to Chapter 13. As has
21	already been said, most of this chapter is COL
22	information item. There were three open items on the
23	physical protection area, and I believe they are in
24	the process of being closed out. Nothing significant
25	in this chapter.
	I

(202) 234-4433

	86
1	Chapter 15, we have 16 open items in
2	Chapter 15. And also in the case of Chapter 6, GSI-
3	191, a portion of Chapter 15 is also marked included
4	in this safety evaluation with open items. That is a
5	Phase 4 activity.
6	In Chapter 15 we have done some
7	confirmatory analysis, Shanlai will describe what
8	we've done.
9	MR. LU: Okay. Next slide.
10	I think as part of our review, applicable
11	to Chapter 13 because that's focused for Reactor
12	System Branch of the review, we do a lot of analysis.
13	And it's not just unique to the U.S. EPR, for AP1000,
14	ESWR and we do that too. So that's what we are using
15	to identify the issues and also to resolve the issues.
16	Sometimes we actually end up reducing the number of
17	RAIs because we know the magnitude of the issue and so
18	we ask to validate so we can make sense to ask RAIs.
19	So, that's the tool. It's not a nonsensing
20	calculation. Okay.
21	And then since we did a lot which was
22	in the Subcommittee based our presentation and the
23	slides, the curves and equations, animations, movies.
24	So let me summarize the type of analysis that we've
25	been doing.
ļ	I

(202) 234-4433

	87
1	And for LOCA, to verify the large break
2	LOCA and ECCS performance, and then do the LOCA
3	analysis, thermal hydraulic analysis.
4	And for transient and accident analysis we
5	have performed a couple of neutronics and thermal
6	hydraulics analysis using own codes.
7	And fuel thermal performance, this is one
8	of the issues that came up from the LOCA topical
9	report review, and so this is part Chapter 15.6.5
10	review. And we said "Okay, there is one issue related
11	to this initial stored energy." So we performed a
12	detail fuel thermal performance analysis.
13	For LOCA we run Applicant's code, that's
14	RELAP5, we ran our own code, TRACE and RELAP5; so all
15	three codes, separately and analyzing same type of
16	large break LOCA event and also for small break LOCA.
17	And what we confirmed is the EPR has quite a lot of
18	margin, hundreds of degrees PCT margin.
19	As a part of our transient and accident
20	analysis and as mentioned by AREVA we did have a
21	unique DNBR and a high degree of
22	MEMBER BROWN: What do you mean by "quite
23	a lot of margin"?
24	MR. LU: Quite a lot of margin is
25	comparing with
I	I

```
(202) 234-4433
```

	88
1	MEMBER BROWN: I know, but PCP is it 50
2	degrees, is it 200 degrees?
3	MR. LU: It's actually close to 500.
4	MEMBER BROWN: Well, okay. Well, that's
5	in the calibration, I was just trying to
6	MR. LU: That's a lot of margin. A lot of
7	margin.
8	MEMBER BROWN: It's in the eye of the
9	beholder.
10	MR. LU: So I give you a lot, yes. Okay.
11	CHAIR ARMIJO: So you have included the
12	thermal conductivity degradation issue?
13	MR. LU: Yes. That has been resolved and
14	simply because of that it is no longer 600 degrees.
15	MEMBER ABDEL-KHALIK: Yes, that's right.
16	MR. LU: But even including that one,
17	that's still not much of it.
18	For transient and accident analysis, we
19	did confirm the online DNBR and medium power density
20	protection system and based on SPND.
21	And one of the questions that the
22	Committee asked is that for uniform flow, actually we
23	reviewed that. And as part of our confirmatory
24	analysis we did the TRACE analysis. And the TRACE
25	divided the core and the downcomer into six regions.
	I

(202) 234-4433

	89
1	So that's a part of the uniform flow, we did not
2	believe it was an issue
3	MEMBER ABDEL-KHALIK: In your review of
4	this topical report do you know whether the Reynolds
5	number in the scaled test matched the Reynolds number
6	in the actual plate?
7	MR. LU: Actually, we only scaled the
8	plate itself, but it flows and it's one-to-one flow.
9	So one-to-one we use the same structure proposed, so
10	the number is identical.
11	We are talking about the shape of the
12	structure?
13	MEMBER ABDEL-KHALIK: Right. Are they
14	geometrically similar?
15	MR. LU: They're geometrically Identical
16	in terms of holes, but that is a separate test. So
17	it's not the entire whole of the core.
18	MEMBER ABDEL-KHALIK: The problem is lower
19	plenum anomaly is a large scale phenomenon.
20	MR. LU: Okay.
21	MEMBER ABDEL-KHALIK: It is not a local
22	phenomenon.
23	MR. LU: Okay.
24	MEMBER ABDEL-KHALIK: So if you're telling
25	me that you looked at matching essentially the local
ļ	I

	90
1	geometry rather than duplicating the global geometry,
2	I'm not sure that you can detect any flow anomalies
3	that would result in the lower plenum on a larger
4	scale, including
5	MR. LU: Right.
6	MEMBER ABDEL-KHALIK: the 3-loop
7	operation question.
8	MEMBER SKILLMAN: That is the question I'm
9	waiting to ask.
10	MR. LU: Okay. I think I can give you
11	just one more. I don't know whether we have time to
12	describe in detail.
13	MR. TESFAYE: Go ahead.
14	MR. LU: For the 3-loop operation, we did
15	not particularly performance the specific analysis to
16	address the 3-loop operation. But we did have a
17	feedwater heater trip analysis which only one train
18	has feedwater heater trip, not everything, all four
19	trains. With that one, we had nonuniform flow with
20	temperature going down towards the downcomer. And then
21	with that one, even with the TRACE analysis, we did
22	not see significant difference of the DNBR. And then
23	also, we did not see the and since we saw so much
24	margin with the SPND and with the algorithm itself, we
25	did not see the need to even go further.
ļ	I

(202) 234-4433

91 1 MEMBER SKILLMAN: Did you intend to do a 2 transition from four pump operation to three pump 3 operation analysis --4 MR. LU: Well --5 MEMBER SKILLMAN: Let me finish. 6 MR. LU: Okay. Sure. 7 MEMBER SKILLMAN: Two things happens: The 8 flow goes up. 9 MR. LU: Yes. 10 MEMBER SKILLMAN: Because the pumps flow further out on their head capacity curve, and one loop 11 turns backwards. And so you end up with a very 12 different reactor coolant system. 13 14 Now, I'd be curious has that been 15 analyzed, particularly against the flow anomaly issue 16 that Dr. Khalik has asked? Because you can get a non-17 symmetrical flow up through the base of the core. You can starve a quarter of the core. 18 19 Yes, I understand your question. MR. LU: 20 At this point we have not done particular analysis by ourself. And if I recall 21 3-loop correctly, I thought that that was part of the trip 22 that would have been initiated if you really get into 23 that kind of flow scenario. But I cannot remember 24 correctly enough. It was two years ago. 25 I have to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	get back to you on that.
2	MEMBER SKILLMAN: Since that operating
3	stage has been described, I think there ought to be
4	action to ensure there is analysis to show that the
5	transition from 4-loops to 3-loops thermal hydraulics
6	and the nuclear correlation, show that we do not have
7	DNBR concerns.
8	MR. TESFAYE: Yes, we will follow-up on
9	that.
10	VICE CHAIR STETKAR: Designed a trip. They
11	run back power automatically
12	MEMBER SIEBER: Is there an overpower trip
13	setdown for 3-loop operation?
14	MR. LU: I cannot remember. No. I cannot
15	now
16	VICE CHAIR STETKAR: Yes.
17	MR. LU: I cannot remember. And I
18	remember it was
19	MEMBER SIEBER: You should be and trip
20	shutdown went down to 66 percent when you went from 4-
21	loops to 3-loops.
22	MR. LU: Yes. Then it is a automatic
23	issue, it should be, right? Yes. That's what I
24	remember, but I cannot really like I say, I'll get
25	back to you on it.
	I

(202) 234-4433

	93
1	MEMBER SKILLMAN: I'd like to follow-up on
2	this.
3	MR. LU: Sure.
4	MEMBER SKILLMAN: Thank you.
5	MR. TESFAYE: We'll follow-up this one.
6	MEMBER SIEBER: Generally you end up with
7	even though there's flow anomalies, you have more flow
8	with a 3-loop operation per thermal megawatt than you
9	do for four of you have that anomaly for this
10	MR. LU: That's what yes, thank you.
11	MEMBER BROWN: One other question.
12	There's an open item on the undetected failures of
13	STND. Right now there are analysis on one string of
14	six, I guess.
15	MR. LU: That's right. That's right.
16	MEMBER BROWN: Have you all done
17	sensitivity studies to determine just that yet or are
18	you waiting?
19	MR. LU: Okay. I'll answer the question.
20	MEMBER BROWN: Okay. I'll let you answer
21	the question if it's obvious.
22	MR. LU: Actually it's an RAI. It's an
23	open item.
24	MEMBER BROWN: Okay. So that's one is
25	still so you haven't done any independent
I	1

(202) 234-4433

	94
1	analyses
2	MR. LU: No, we have not. And again,
3	because we asked in that RAI, particularly we're
4	expecting another revision of the topical report
5	coming in.
6	MEMBER BROWN: Would that effect a local
7	DNBR issue if you've got flow anomalies and then
8	you've got undetected failures of some
9	MR. LU: It depends on the assumptions of
10	where.
11	MEMBER BROWN: I understand that. But
12	that's the finding it
13	MR. LU: That's the question. And
14	actually, this was one of the questions the staff
15	between Reactor Systems and Digital I&C Branch we
16	cannot resist questioning them. I think we identified
17	the issue and had similar questions as what's the
18	impact to the detect of the DNBR and the linear
19	generation rate.
20	MEMBER BROWN: Okay.
21	MR. LU: And if you one and that all
22	depends on where you assume that particular
23	unidentifiable failure.
24	MEMBER BROWN: Okay. So we'll hear more
25	about that in the future is what you're telling me?
I	

(202) 234-4433

	95
1	MR. LU: I guess so.
2	MEMBER BROWN: All right. You guess so?
3	MR. TESFAYE: Yes. The answer is yes. And
4	that topical report is one of two topical reports will
5	be falling in Phase 4.
6	MEMBER BROWN: Okay.
7	MR. TESFAYE: The other one is mechanical
8	fuel design topical report. So we'll hear more about
9	on the topical report on the future.
10	MR. LU: Yes. This is Phase 2
11	MEMBER BROWN: I understand. It just
12	seemed to be a number of factors that go into that
13	relative to the detectors of full anomalies and
14	backflow from the 3-loop and all the rest of it.
15	MEMBER SKILLMAN: Getachew, I heard you
16	say yes we'll follow up
17	MR. TESFAYE: Yes.
18	MEMBER SKILLMAN: on the transition of
19	3.
20	MR. LU: Okay. For rod-ejection accident,
21	we also compared the peak power value and we
22	recalculated with RELAP, whatever RELAP calculated.
23	And we used our own code, TRACE and PARCS so we could
24	connect this code, and then used a SCALE code starting
25	from the exposure burnup assumptions based on that
	I

(202) 234-4433

1	by the Applicant and we generated our own cross-
2	sectional library, our own thermal hydraulics model,
3	our own model to compare. So that's going to be the
4	scope of work we did as part of the rod-ejection
5	accident confirmatory analyses.

The thermal performance analysis is an 6 7 interesting one. And as part of a large LOCA topical report review and also the review of analysis 15.6.5 8 9 review, and then we found out they are using RODEX-3A, which was a legacy fuel performance code to calculate 10 the initial stored energy for the LOCA analysis. And 11 we found out that particular code has a deficiency of 12 conductivity model. And after we the thermal 13 14 identified that, we performed our own analysis and also based -- we used that fuel thermal performance 15 analysis code FRAP-CON and RODEX-4 came from AREVA. 16 And RODEX-4 has the cracked thermal conductivity 17 model. And then we ran those codes. And then we used 18 that calculated resulted and feeding into the TRACE 19 20 and RELAP5 and trying to figure out what's the impact 21 of the PRT. It turned out to be the significant in a loop, not significant if changed to the limit by the 22 23 significant interest of the PCT from 1400-1500 to 24 close to 1700. So therefore, and then we found that it's not only this RODEX-3A, was not only used for EPR 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

96

	97
1	but for our present fleet, too. And so we issued a
2	Generic Information Notice. And later we found not
3	only AREVA, GE and Westinghouse and they all used
4	legacy code which did not take into account the
5	thermal conductivity degradation which resulted in the
6	mostly right now there is a resulting error in
7	cladding temperature. So therefore, following the
8	first IN particularly issued 2011-21 to all licensees
9	in the operating fleet and also the COL applicant
10	regarding this particular issue.
11	And in that second IN was mainly
12	calculated to the licensees using Westinghouse
13	methodology.
14	So, therefore I give you a sense of what
15	we have been doing as part of the EPR confirmatory
16	analysis and then resulting the review also. And then
17	also what actions will follow those confirmatory
18	analysis.
19	MEMBER SCHULTZ: Shanlai, was the RODEX-4
20	analysis also utilized for the rod-ejection accident?
21	Is there a reason you used the thermal conductivity
22	degradation for rod-ejection also?
23	MR.LU: Well, I cannot remember. I do not
24	recall. No. RODEX-4 was not no, I cannot remember
25	now. No, it was not used as part of rod-ejection.
	I

(202) 234-4433

(202) 234-4433

	98
1	RODEX-4 was used later for the heat up of fuel by
2	AREVA. And we found out that code does have a good
3	thermal conductivity model built into that code.
4	MEMBER SCHULTZ: What was being used for
5	rod-ejection? Was FRAP-CON used for rod-ejection
6	comparative analysis?
7	MR. LU: No, we did not really perform the
8	confirmatory analysis for using FRAP-CON to confirm
9	the rod-ejection. For rod-ejection our focus was on
10	the peak power and then the duration of the peak
11	power.
12	MEMBER SHACK: I think Steve's question is
13	that thermal conductivity effects more than just the
14	LOCA analysis, which
15	MEMBER SCHULTZ: I am looking for the
16	center-line melting issues associated with rod-
17	ejection, for example.
18	MR. LU: Okay. Okay. Okay. That part we
19	did take a look. And then another one is after we
20	issued 2009-23, e have a sweep however of the
21	question, and both NRR and NRO, we took an action
22	together and take a look at what's the you know,
23	the impact of the you know of the thermal
24	conductivity to it, not only just LOCA but also for
25	all the transient and including rod-ejection.
	I

(202) 234-4433

99 1 CHAIR ARMIJO: Related to transients, do you recall the how close you came to the one percent 2 cladding strain limit? 3 4 MR. LU: Can you repeat that question 5 again? CHAIR ARMIJO: The PCMI effect has a one 6 7 percent cladding strain limit and normally there's 8 plenty of margin. 9 MR. LU: Right. 10 CHAIR ARMIJO: But after you put in the thermal conductivity degradation effect, how close did 11 you get to the one percent strain? 12 13 MR. LU: I cannot remember. I can get back 14 to you. 15 CHAIR ARMIJO: Can you provide that or has the licensee -- even if you have that, I'd like to see 16 those numbers. 17 MR. LU: Yes, we can get back to you. 18 19 That was done by another reviewer on this topic. MEMBER SCHULTZ: A reference on the 20 reevaluation associated with thermal conductivity 21 degradation would be good. I'd appreciate that. 22 23 MR. LU: Yes. 24 MEMBER SCHULTZ: Thank you. We'll get back to you on this 25 MR. LU:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	one.
2	I think that's the conclusion that I have
3	for Chapter 15 analysis.
4	MR. TESFAYE: Thank you, Shanlai.
5	Next up is Chapter 16. We have 30 open
6	items, but the significant open item was what was
7	discussed earlier, the component-based tech spec for
8	the I&C portion, that's an open item. That's, of
9	course, with the current application so the staff is
10	currently review that. So, we get back to you in Phase
11	5 of this review.
12	Chapter 18 doesn't show any open items,
13	the safety evaluation we issued didn't have any open
14	items. However, the question Mr. Stetkar asked is
15	still an open item. I was hoping to get that result
16	on the issue in an RAI. But as I see it now, I think
17	we're going to track it as an open item. The staff
18	will issue an RAI and it will discussed in Phase 5.
19	And that's what I have. And the next time
20	will be the remaining four chapters in May.
21	MEMBER POWERS: Thank you.
22	Our intention is to issue a letter that we
23	will indicate that we are prepared to allow these
24	chapters to go into Phase 4 and indicate what we think
25	some additional RAIs are remaining, but many open
I	

(202) 234-4433

	101
1	items have to be reconsidered. And like we have done
2	in the past.
3	But the Committee felt that our intention
4	in May is to do the same kind of review on another
5	subset of chapters. And that should begin we bring
6	to a close our Phase 3 review of this application.
7	But it is not the last time we will see this
8	application.
9	MR. TESFAYE: Understand.
10	MEMBER POWERS: But again, I have to again
11	thank both the Applicant and the staff for what
12	Getachew called the phased discipline, which is
13	bringing to us material with open items but with some
14	idea of how those will be resolved and some confidence
15	that they can be resolved. That has been very
16	helpful. And again, I think that for all the work they
17	have done to help to facilitate this operation, it's
18	worked much better than I thought it would work.
19	With that, I'll ask if the Committee has
20	any additional questions? So I will ask Mr. Skillman,
21	Professor Abdel-Khalik if they would give me a
22	paragraph on their issue that they have identified
23	here.
24	And with that, I'll turn it over to you,
25	Mr. Chairman.

(202) 234-4433

	102
1	VICE CHAIR STETKAR: I believe we are
2	CHAIR ARMIJO: Do we have anybody on the
3	bridge line that might want to ask a question? If you
4	are, please identify yourself.
5	Pretty silent. We should open the bridge
6	line just in case.
7	IF there's anyone on the bridge line who
8	would like to make a comment, please identify yourself
9	or at least make sound.
10	Okay. Hearing no sound, we're going to
11	take a break and reconvene at 10:45.
12	(Whereupon, at 10:45 a.m. a recess until
13	10:46 a.m.)
14	VICE CHAIR STETKAR: We're back in session
15	and for this session we're going to hear about source
16	terms for Small Modular Reactors and Dr. Bley will
17	lead it.
18	MEMBER BLEY: Thank you, Chair Stetkar,
19	I'm Chairman of the Future Plant Design subcommittees.
20	And a lot of the issues that are going to arise with
21	small reactors we really need to understand the source
22	term. As yet staff hasn't really gotten far into
23	their development of design specific review plans,
24	certainly not at this level.
25	But we have an information briefing today
I	I

(202) 234-4433

	103
1	from NEI and some representatives here from the major
2	new products that are coming in this way, mPower,
3	NuScale and Westinghouse. And we're going to hear the
4	beginnings of their work on source terms and where
5	that's headed.
6	And we'd, I think, especially like to hear
7	areas where you see there are issues and uncertainties
8	that need to get resolved. And I look forward to your
9	presentation. Thank you very much for being here.
10	Sam, you're taking, Sam Hobbs.
11	MR. HOBBS: All right. My name is Sam
12	Hobbs and I work for Enercon Services. And I'm here
13	on behalf of the NEI Small Modular Reactor working
14	group in the modularity area which happens to be the
15	area in that working group that is working to develop
16	a source term positions paper.
17	And the basic situation is that what we
18	would like to do is we would like to establish a good
19	technical basis for evaluating radionuclide
20	inventories in SMRs and how they get released and how
21	they get transported out. We are doing initial focus
22	on integrated Pressurized Water Reactors. And I'll
23	talk a little more about that later on.
24	The situation there is that for water-
25	cooled small modular reactors with up to five percent
ļ	I

(202) 234-4433

	104
1	UO2 fuel a lot of the regulatory issues are fairly
2	well known. And that's not completely true although
3	there are certainly areas where, because of the
4	differences in scale, there will be some differences.
5	But what we would like to do is identify
6	the source term related design and operations
7	attributes that are different from those of large LWRs
8	and to propose some potential regulatory requirements
9	in light of the existing regulatory requirements,
10	identify some areas for focused research.
11	Now, the task force itself is not going to
12	be conducting research, we don't have any funding with
13	that. But what we would like to do, and we'll talk a
14	little more about this later, is to identify areas
15	where research can be beneficial for Small Modular
16	Reactors. And the actual research is going to have to
17	be conducted by others.
18	Essentially the guiding principles that
19	we're going to be trying to use is we're going to be
20	trying to rely on established or prior work to the
21	extent that we can. And, as I said, we're going to
22	focus on iPWRs, and we would try to identify the iPWR
23	attributes and commonalities between the major
24	designs.
25	One of the things that is going on is that
I	1

(202) 234-4433

105 1 there are certainly other designs, there's the Next Generation Nuclear Plant which is 2 а qas-cooled 3 There is the possibility of much more exotic reactor. 4 technology, such as Hyperion. 5 And what we are trying to do is that we would like maintain consideration 6 to of the 7 developments in those areas and to the extent that 8 they have done things that are useful, we'd like to be 9 informed about those areas but we also don't want to 10 close any doors for them as a result of positions that we try to take. 11 And I think that is something that's going 12 to be very crucial. We do have someone from NGNP that 13 14 has volunteered to assist and advise us from time to 15 And we have a representative from Hyperion who time. 16 has actually come and listened in on our working group 17 meetings. So we are trying not to operate in a 18 19 vacuum and yet we are trying to very much emphasize Integrated Pressurized Water Reactors. 20 the Next slide, please. 21 What I'd like to do is do a real broad 22 assessment of source term identification plant design 23 24 and operations, accidents beyond Design Basis events. And we think that accidents beyond the standard Design 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

106 1 Basis events are going to be a very important consideration for small modular reactors. If you take 2 3 the current regulations and you take traditional LOCA 4 accidents for the Integrated Pressurized-water 5 reactors we do not really have a large break LOCA. We have some smaller break LOCAs but we 6 don't have a large break LOCA that would lead to core 7 8 damage. And so what we're going to be grappling with, 9 among other things, is trying to define scenarios that make sense and which we can talk about what would 10 really happen and what would be important so that we 11 don't neglect those areas that need to be covered to 12 make sure that we stay safe. 13 MEMBER POWERS: Do you have accidents that 14 15 result in the ballooning and rupture of cladding in the fuel? 16 17 MR. HOBBS: I have not seen an accident analysis that results in that. I'd certainly be 18 19 willing to entertain any responses that we might have from any of the vendors that are here. Steve or Ed. 20 Steve? 21 22 (No response) MR. HOBBS: The accident scenarios that I 23 24 have seen, that have been laid out to me basically, and I hate to use this terminology, but they're fairly 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	boring. If you go in and you take a look at a
2	simulated accident, which in some cases is simulated
3	in this particular scenario by opening a valve and
4	allowing a discharge, and sure enough you see the
5	color of the valve change indicating that it has
6	opened. And about ten minutes later you begin to see
7	some water, you see some alarms, you see some water
8	level changes but it develops very, very slowly.
9	And I have not yet seen accident scenarios
10	proposed that actually lead to core damage. And yet
11	I don't see how, if we're going to be responsible in
12	terms of trying to assure public health and safety,
13	that we can neglect the possibility that that's going
14	to happen.
15	And so that's the reason that I've said I
16	think we're going to have to be looking at beyond
17	Design Basis accidents, in some scenarios, to come up
18	with something that will allow us to have designs that
19	will protect the health and safety of the public.
20	MEMBER POWERS: The only reason I asked is
21	that the first release of radionuclides actually come
22	from the coolant, because you have a certain amount of
23	contamination that's a trivial amount of activity,
24	typically. Where you get significant amounts of
25	activity is when you balloon and rupture the cladding.
ļ	I

(202) 234-4433

(202) 234-4433

108 1 And it's not dependant on having a large break LOCA, or any other accident sequence, it's 2 rupturing of 3 the cladding and venting the qap 4 inventory. You know the gap inventory is a peculiar 5 definition because it's not just the material that's 6 in the gap, it's more than that. And whether that's 7 beyond Design Basis or within the Design Basis, not so 8 much important as it is ballooning and rupturing the 9 cladding. 10 MR. HOBBS: Right. I certainly would agree that that would be my understanding is that 11 that's where you see significant accident source terms 12 is when you get into scenarios that that happens. 13 14 MEMBER POWERS: And typically the problem 15 that you run into is that any kind of a transient 16 event that the cladding, it's relatively thin sheet of 17 metal. Relatively easy to over-pressurize and rupture it. 18 19 MR. HOBBS: As I have said I think that is an area that we know we're going to have to deal with. 20 One of the things that we actually want to do is 21 identify, evaluate potential regulatory applications, 22 areas where we think regulations may have to be 23 24 modified or adapted and to identify areas where research would be beneficial for the integrated PWRs. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	What we're going to be trying to be doing
2	is to define some specific research topics where those
3	are appropriate.
4	MEMBER POWERS: A lot of it gives
5	standings to what you define as research to people
6	that call themselves researchers tend to go off and
7	tell you they're looking at fundamental mechanisms and
8	things like that. People that don't call themselves
9	researchers would define research as just looking at
10	the literature and just seeing what's available. How
11	are you defining research here?
12	MR. HOBBS: I think it's a combination of
13	those. We obviously don't want to neglect the
14	research and the work that has been done to date. And
15	I think it would be very foolish to do that.
16	On the other hand there are areas where
17	new things need to be done and we have initiated some
18	conversations with EPRI to find out where they are
19	going and what they are doing. How we might have some
20	common interest with some ongoing research.
21	They are actually considering, and I think
22	that it is an area that would possibly be beneficial
23	to us, some decontamination factors for aerosols and
24	for escape of radionuclides through cracks. So that
25	is a potential area. That is not an area that we have
I	

(202) 234-4433

	110
1	identified and focused on as something that we're
2	absolutely going to do.
3	And I will talk a little more about some
4	other areas where we think some research, or possibly
5	some development, may be needed as we get a little
6	further along in the discussion.
7	MEMBER POWERS: Assuredly the transport of
8	aerosol through narrow openings has been an active
9	area of survey for some period of time. And usually
10	the controversies that arise is people tend to look at
11	Norwood's criteria on that and not look at all the
12	criteria for determining whether things deposit or not
13	in cracking and whatnot.
14	My understanding is that the Europeans
15	have initiated some additional work on that. For
16	looking at just looking at things like just gas flow-
17	through cracking but they also intend to look once
18	again at the issue of aerosol deposition in the
19	cracking.
20	And it's been done before, the Dutch
21	looked at fairly extensively back in the 80s. And the
22	problems with those results is that reactor accidents
23	aren't as benign as people draw them on paper. There
24	are shocks and vibrations going through systems.
25	And when the researchers looked at
I	I

(202) 234-4433

	111
1	deposition they found it to be reversed relatively
2	easily by shocking and vibrating things.
3	MR. HOBBS: All right. And one of the
4	areas that, as I understand it, they're looking at
5	aerosol droplet sizes and at the possibility of trying
6	to establish droplet sizes that are more appropriate
7	for potential accident scenarios. And that does not
8	address what you just said with regard to shocking the
9	system and possibly exacerbating the releases as a
10	result of that.
11	MEMBER POWERS: Particle size is an area
12	that depends on where you're talking about. But
13	typically in the containment it's a relatively
14	developed technical field. People are pretty good at
15	predicting these things I think.
16	MALE PARTICIPANT: Again it depends on how
17	accurate you wanted it.
18	MEMBER POWERS: Yes, there's always this
19	problem of scientific adequacy and regulatory adequacy
20	and how much you know. No issue ever gets resolved in
21	a scientific fashion. Every research report that's
22	ever been written always has this section, further
23	work can be done, you know, babble, babble, babble.
24	Sometimes we say well it's good enough for regulatory
25	or safety analysis, we don't need it after the third
l	I

(202) 234-4433

	112
1	significant digit.
2	MR. HOBBS: I've actually written some of
3	those sections myself.
4	MEMBER POWERS: Oh yes, we all have.
5	MEMBER SCHULTZ: Sam, I've taken what
6	you've said so far to mean that you're looking for
7	programs, EPRIs programs for example, where the
8	technology or the evaluations, the research that
9	they're doing, it's not aimed at SMR., but it's
10	research that is being done that may be applicable to
11	SMR?
12	MR. HOBBS: At this point that is what
13	they have been doing. We are hoping to have some
14	further discussions with EPRI and to find out if there
15	are some areas that would be more directed that EPRI
16	might have funding available.
17	If and when we can get the definitions
18	done to the right extent we may want to seek funding
19	from other sources than from the EPRI's Committee that
20	actually funds that directly.
21	Potentially we could be wanting to talk to
22	Department of Energy, we have not done that yet. I
23	think it would be premature for us to do that at this
24	point because I don't think we have a definition of
25	the kinds of things we would like to look at at this
	I

(202) 234-4433

	113
1	point. But the Advanced Nuclear Power Division in
2	EPRI does have some work ongoing that does appear to
3	have potential of being applicable.
4	And so we certainly don't want to ignore
5	that. And that's not just a matter of literature
6	research, but it may be that with some very small
7	extensions to that research that it would be even more
8	applicable to us.
9	MEMBER SCHULTZ: Still a lot of work to be
10	done defining, refining boundary conditions and such.
11	MR. HOBBS: Yes, absolutely. And to
12	define and refine what we think is needed. And quite
13	honestly we're not there yet.
14	MEMBER SCHULTZ: Thank you.
15	MR. HOBBS: We formed this working group
16	and the working group has had one meeting. And so
17	that makes it a little awkward to talk about the
18	details technically and specifically. And yet there
19	was a desire to try to keep ACRS and NRC staff
20	informed and we didn't want to neglect this
21	opportunity to do that.
22	MEMBER SCHULTZ: That helps to define
23	where you are. Thank you.
24	MR. HOBBS: Okay.
25	CHAIR ARMIJO: It's my understanding that
l	

	114
1	these designs are intended to prevent the core from
2	ever being damaged or uncovered as a result of any of
3	your design bases accidents. So how are you going to
4	create a situation where you would actually generate
5	aerosols and all of these things?
6	Or is that your intent? To just say well
7	forget the fact that we won't uncover the core, we're
8	still going to postulate? It's kind of strange but,
9	you know, I don't understand what you're doing.
10	MR. HOBBS: Well I cannot speak with
11	certainty to where all of the vendors are going to go
12	because I'm not personally affiliated with any
13	specific vendor. And yet, it is my understanding that
14	we are going to have to do that.
15	MEMBER POWERS: Part 100 pretty much
16	requires you to do that.
17	MR. HOBBS: I'm sorry?
18	MEMBER POWERS: Part 100 pretty much
19	requires you to do that. I mean it's a defense in
20	depth measure
21	CHAIR ARMIJO: So it's a non-mechanistic
22	release?
23	MEMBER POWERS: Absolutely. It simply
24	says that, I mean the thesis behind it is, yes, we're
25	sure that all your accident prevention measures work.
ļ	I

(202) 234-4433

	115
1	We're sure all your emergency response systems work.
2	But in the off chance they don't, please tell us what
3	mitigation capabilities you have should you get a
4	release.
5	Now what the alternate source terms says
6	is, and by the way that release into the containment,
7	here's a prescription but it would be better if you
8	had one that was peculiar to your cell. And please
9	develop it. And it actually outlines kind of what you
10	have to do. But yes, it's a defense in depth measure.
11	It's one of the best regulations in the
12	notebook because it's completely technology
13	independent. So it's particularly suitable for you
14	guys with innovative designs because it's not
15	dependent on what it looks like.
16	MR. HOBBS: Yet, on the other hand, I do
17	think that there is some desire, once you've decided
18	that you're going to uncover the core, through
19	whatever mechanism you're going to do that, that you
20	would like to do mechanistic source terms to the
21	extent that you can. And not just talk about going
22	back to the days of TID 14844 of saying we'll just
23	take a certain percentage.
24	And I've certainly seen even some pretty

25 modern publications from IAEA that suggest some

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	percentages. And, in the end, that may not be an
2	unreasonable number to have come up with. And yet
3	you'd like to have some basis for it.
4	MEMBER POWERS: Yes, I mean the alternate
5	source term definitely lays out a pattern for you to
6	use. Fairly realistic thing, it plays the 14844. The
7	problem with using 14844 is it's not realistic.
8	MR. HOBBS: I understand.
9	MEMBER RAY: It is a little hard to
10	calculate risk though, non-mechanistically, if you're
11	using PRA and risk informed regulation and all that.
12	MEMBER POWERS: You typically don't. Part
13	100 has
14	MEMBER RAY: I understand. I'm just
15	making an observation that if you can't imagine how
16	something can happen it's hard to assign a probability
17	to it.
18	MR. HOBBS: In terms of taking a look at
19	the integrated pressurized water reactor commonalities
20	the designs are extensions of proven technologies.
21	We're using modified PWR fuel assemblies. Significant
22	increased use of passive features. And, in some
23	cases, there are multi-module considerations to be
24	taken into account.
25	In terms of operations areas, there are
I	I

(202) 234-4433

questions with regard to the control room, the 2 operations, surveillance maintenance, and fuel 3 handling and storage. And there are some innovative 4 approaches in some cases that are going to lead to probably some interesting discussions with the regulators. 6

7 MEMBER SKILLMAN: Sam, before you change slides, please. The multi-module consideration, looks 8 9 like you conceive of a situation where the modules are 10 added incrementally. So at one point in time in one of these plants there is one or maybe two modules with 11 the isotope burden that comes from the burn up and the 12 power history on that one or two modules, but in time 13 14 perhaps there's 16 or 20 modules and each one has it's 15 own fission product inventory. Its own actinides and 16 its own transuranics.

17 What consideration is being given to what is really a riddle of burn up, decay, leading to a 18 19 full plant source term versus just a single module source term? 20

I would be speculating if I 21 MR. HOBBS: spoke to that in detail. But we have had some 22 discussions and the NuScale, in particular, was 23 24 thinking about up to 12 modules. The Generation mPower, the material that I've seen typically looks at 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

	118
1	either two modules or four.
2	And certainly I think what you have to do
3	is you do have to look at the varying burn ups and
4	with 12 modules, which would be in some cases perhaps
5	the most complex case, which would be one of the
6	designs that we're talking about.
7	Eventually you would get into a situation
8	that would, in some fashion, be a burn up and source
9	term equilibrium in that you would be having, on a
10	very significant percentage of the time, you would be
11	having one module in refueling and the other 11
12	generating. And then they would be in varying stages
13	of decay and of having developed a source term
14	inventory.
15	That's perhaps not quite as much of an
16	equilibrium situation with two modules or with four
17	modules, but you would still need to be looking at
18	that.
19	The other thing that I think we're
20	particularly concerned with would be are there, and
21	I'll use this term loosely recognizing that there are
22	people in this room that know a great deal more about
23	probabilistic risk than I do, but of common mode
24	failures or of common systems. And an obvious
25	potential example would be radwaste systems that if
I	I

(202) 234-4433

119 you have multiple modules there are economies of scale 1 for having a single radwaste system that's serving 2 3 multiple modules. In the case of one of the reactors, in the 4 5 case NuScale, there is one very obvious common feature that is shared between all of the modules, and that is 6 7 the pool that the modules are submerged in. There are 8 probably some other shared systems and components that 9 need to be thought about and we're not planning to try 10 to address Fukushima issues directly until the regulations I think settle out. 11 But I think you can take a look at what 12 happened in Fukushima and see that there was a major 13 external event that had all sorts of unforeseen 14 15 And what we would like to do is try to consequences. 16 avoid situations where we haven't had some amount of 17 foresight in going forward and in understanding the source terms. 18 Thank you. 19 MEMBER SKILLMAN: MR. HOBBS: Was that responsive? 20 I'd like to think that it was and yet I feel like I'm talking 21 22 in generalities. MEMBER SKILLMAN: The burning thought I 23 24 have is having multiple modules, with differing power histories and therefore different fission product 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 inventories. And as Dr. Powers said, there will I
2 believe need to be a requirement to determine what is
3 the consequence of release of some fraction of that
4 burden, that radionuclide burden.

5 And so I've got a good old module A that's I've got module B 6 been out there for 24 months. that's had some problems so it's only got 16 weeks of 7 8 effective full power. I've got module number three 9 that's a year and a half in. So I have, basically, a 10 riddle of different power histories amonq these And now if I say, what is the source term 11 modules. for the whole plant, the answer I believe is it 12 It changes from one week to the next, one 13 varies. 14 minute to the next.

15 But it's just a linear MEMBER POWERS: 16 factor. And the subject on behavior of the 17 radionuclides is computed basically in a logarithmic fashion. And so the fact that you have two or three, 18 19 factors of two or three uncertainty in the source term pales to the fact that you've got order of magnitude 20 uncertainty and your subsequent calculation will be 21 22 age here.

I mean we agonize over this all the time. We used to use source terms always with end of life fuel and people said well that's not fair. You should

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

121 1 use a more representative one. We go through all the machinations, the various burn ups in the core and 2 things like that trying, but it doesn't make any 3 4 difference. The uncertainty is associated with the subsequent behavior of the radionuclides. 5 6 MEMBER SKILLMAN: I'll take Dr. Powers' 7 word for it, thank you. 8 MEMBER POWERS: I mean you can do it. 9 It's one of those things that you can do so you just 10 go ahead and do it, because the tools all exist. But it will not, in the end, change significantly what the 11 answer is that you get. 12 MEMBER SCHULTZ: All right. So, Sam, this 13 14 is a general slide showing the commonalities among the 15 iPWR grouping? Because they're also commonalities to 16 where we are today with LWR. 17 MR. HOBBS: Yes. MEMBER SCHULTZ: All of these topics? 18 19 MR. HOBBS: All of the topics. Including even the multi-module topics from multi-unit plants. 20 MEMBER SCHULTZ: And you didn't discuss 21 storage but that's certainly a feature associated with 22 release and emergency planning on it's own? 23 24 MR. HOBBS: Yes, absolutely. And the last the fuel handling and storage is the last 25 topic,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	button on the slide and that is an area that I think
2	we will be concerned with.
3	We did, at least for a handful of the
4	parameters, looked at Generation mPower, NuScale Power
5	and Westinghouse in terms of things that are
6	potentially common or that have some differences.
7	Containment, all of the containments are
8	below grade. Two of them the containments are
9	submerged. With control rod drives we have two that
10	are in vessel, one that is outside vessel.
11	Reactor coolant pumps. We have pumps
12	inside RPVs with external motors. Seal-less pumps
13	inside RPV with external rotors and one natural
14	circulation driven system that does not have reactor
15	coolant pumps.
16	All of them have integral steam
17	generators. Two of them are once through, one is
18	Helical Coil.
19	Refueling frequency is up to four years
20	for Generation mPower. Two years for NuScale and for
21	Westinghouse. So there will be a realm of things that
22	are very similar here and yet things where there'll be
23	some differences. And I wanted to put this out so
24	that there would be some understanding of what we're
25	dealing with with regard to trying to come up with
Į	I

(202) 234-4433

	123
1	both commonalities and differences in terms of going
2	forward and developing a position paper.
3	In terms of technical considerations, and
4	we've actually talked about the very first bullet
5	here, the definition of licensing basis events. And
6	the fact that we are likely going to have some
7	difficulty in defining a significant core damage
8	event. And so we're probably going to be looking at
9	things that traditionally would be beyond basis events
10	as a part of a licensing basis event and that's going
11	to be perhaps a little tricky but nevertheless it's
12	something that we're going to have to deal with.
13	In terms of general areas we're looking at
14	magnitude of releases timing. We'd like credit for
15	passive design and credit for other design features.
16	Source term treatments. I think the
17	question of what we're going to do is you can have
18	non-mechanistic source terms or you can have
19	mechanistic or you can have a mixed or hybrid approach
20	using some elements of each. And I suspect that we
21	will probably end up depending on the particular
22	scenario and accident analysis that we're looking at
23	with a mixed or hybrid approach. And in some cases we
24	will probably want to do mechanistic source terms. In
25	other cases that may not be something that would be
Į	1

(202) 234-4433

	124
1	appropriate or necessary.
2	MEMBER ABDEL-KHALIK: So there are no
3	reactivity or power-maldistribution events that could
4	actually result in local fuel failure in any of these
5	designs?
6	MR. HOBBS: I will defer to the vendor
7	representative who are here. I don't know of any but
8	that doesn't necessarily mean that that is not the
9	case. Steve and Ed?
10	MEMBER BLEY: If you'd come to the
11	microphone and say who you are and speak.
12	MR. KLINE: Steve Kline with Bechtel,
13	representing mPower. To this point we haven't
14	identified a situation that results in that. But
15	obviously we're fairly early in our analysis at this
16	point so it's ongoing. But to my knowledge we haven't
17	identified anything that results in that type of
18	situation yet.
19	MR. MIRSKY: Steve Mirsky, NuScale Power.
20	Since of the three designs we have an external control
21	rod drive mechanism from the reactor vessel, we have
22	identified the fact that we will be evaluating the rod
23	ejection accident.
24	MEMBER ABDEL-KHALIK: Thanks.
25	MEMBER BLEY: Sam, go ahead.
	1

(202) 234-4433

	125
1	MR. HOBBS: All right. In terms of the
2	detailed technical considerations
3	MEMBER BLEY: Can I ask you a sort of an
4	organizational question? I mean your efforts focused
5	on the source terms but you're crossing the boundaries
6	with Design Basis events, licensing basis events, how
7	the vendors will approach licensing issues and risk
8	assessment issues, Probabilistic Risk Assessment. Are
9	you trying to address all of those issues? Is this an
10	integrated program? Or is the focus strictly on
11	source terms but with kind of feelers out to the other
12	areas or is that all coming through the designers?
13	MR. HOBBS: I think that it would be more
14	accurate to say that the NEI is going to be focused on
15	source terms with feelers into the other areas. I
16	certainly would be willing to be corrected if someone
17	has some other thoughts, but that's been my
18	understanding and the presumption that I've been
19	trying to do the work on here.
20	MEMBER BLEY: Okay, thanks.
21	MR. HOBBS: But it does, it crosses
22	boundaries. And that's both unfortunate and
23	interesting.
24	MEMBER BLEY: Yes.
25	MR. HOBBS: In terms of the detailed
	I

1 technical considerations, we've touched on a number of these things in earlier discussion, fission 2 and 3 activation, product inventory. Release reactions, 4 timing of release, radionuclide composition, physical 5 and chemical form of releases, the release thermal fuel damage mechanisms. And those are 6 enerqy, 7 familiar I think to the NRC staff, certainly familiar 8 even to the non-iPWR community in terms of Small 9 Modular reactors.

10 In terms of trying to make sure I didn't leave anything off of this slide I particularly looked 11 at NGNP white paper for guidance and, in fact, the 12 very information that they talked about was all 13 14 relevant to us as well in terms of the very big 15 Certainly differences in terms of specifics. picture. 16 MEMBER BLEY: So pretty good list. Are 17 there areas in here where you currently expect that you're going to have to do new Maybe 18 work? 19 experiments, maybe R&D efforts, or can you say that 20 yet?

21 MR. HOBBS: I don't think we can say that 22 yet for sure. I think that the concern that I have 23 heard expressed, probably more than any other, is the 24 timing of releases. And obviously the longer it is 25 before you have a release the more opportunity there

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	127
1	is for the very short-lived isotopes to decay. And so
2	that's of significant consideration. Whether that
3	will result in specific new or additional research I
4	think it would be premature to say.
5	MEMBER BLEY: Okay.
6	MR. HOBBS: But that, to me, seems to be
7	one of the keys that I have heard come up time and
8	again in the discussions that we've had.
9	In terms of non-safety considerations, I
10	think that there is a tendency for passive reactors to
11	say we have an accident so the operator ties his hands
12	behind his back and he doesn't do anything for 72
13	hours.
14	Well, I've never known an operator who
15	would have consented to that and that is certainly not
16	what we would want to see happening. We would want to
17	see the operators taking the right actions. And for
18	any active design feature that are available to kick
19	in and to minimize accident consequences.
20	None of these reactors are going to depend
21	on stand-by diesels that have to start in ten seconds,
22	as is the current operating in large water reactor
23	considerations. And yet I suspect all of them are
24	going to have some sort of standby power onsite. And
25	if you did have a loss of power event we would expect
ļ	I

(202) 234-4433

128 1 that standby power to be available and to be put into place as quickly as possible. 2 3 And so that would be an area of an active 4 design feature that we would take advantage of, but would not rely on, for a regulatory consideration. 5 The same think with operator actions. And I don't 6 7 have, necessarily, real good examples of what the operator would do and I think it depends somewhat on 8 9 the specifics of the particular design. In terms of 10 _ _ Turn your spray on and it 11 MEMBER POWERS: will eliminate all of your source term --12 13 MR. HOBBS: I'm sorry? 14 MEMBER POWERS: Turn your spray on and 15 it'll eliminate your source term conditions. 16 MR. HOBBS: Well I'm not sure that we have 17 spray in every case. MEMBER POWERS: Oh if you had sprays then 18 19 you wouldn't have to worry about this stuff. MR. HOBBS: Well, I'm not sure I'll get to 20 make that decision, Dr. Powers. 21 MEMBER POWERS: Well maybe it just gives 22 you another set of things to worry about. 23 24 MR. HOBBS: In terms of the scope of the regulatory evaluation and the areas that we're trying 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

129 1 look at, looking at Part 52 and Part 50 to as applicable. And there are certainly scenarios in Part 2 50 that talk about LOCAs and that imply large-break 3 4 LOCAs and obviously we're going to have to be 5 grappling with that. We've already talked about that accident 6 some extent in terms of analysis to definitions and approaches. 7 In terms of regulatory guides, obviously 8 9 we're going to be taking into account Regulatory Guide 10 1.206, which in some cases provides some pretty good quidance. Regulatory Guide 1.183, and we've already 11 talked about Alternate Source Terms somewhat. And 12 then in terms of the prescriptive approach. 13 14 Standard review plan --15 I see you have that up MEMBER BLEY: 16 Are you closely following or are you actually there. in discussions with staff about the design specific 17 modifications. Design specific review plans that are 18 19 under development in licensing the SMRs? MR. HOBBS: I am not. 20 MEMBER BLEY: I hope your project is along 21 the way. 22 MR. HOBBS: It is my understanding 23 Yes. that all of the vendors are in those discussions with 24 the appropriate staff members. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	MEMBER BLEY: Okay. That makes sense,
2	thanks.
3	MR. HOBBS: But I'm personally not because
4	I'm not actually involved in those specifics.
5	MEMBER BLEY: Okay.
6	MR. HOBBS: No one seems to want to jump
7	forward and speak to that issue. With regard to the
8	Standard Review Plan, NUREG-0800, when we started off
9	we listed a series of chapters that we thought were
10	particularly relevant. And then we began adding
11	chapters and adding chapters. And I think eventually
12	I ended up that I didn't have Chapter 1 on. I didn't
13	have Chapter 16 on since that was more or less the
14	recipient of the results.
15	And I didn't have Chapter 17 on.
16	Virtually every other chapter seemed to have some sort
17	of implications with regard to source terms. There
18	might have been one or two I always draw a little
19	bit of a blank on administrative programs as to which
20	chapter that is. And most of the chapters I know
21	pretty well.
22	But generally what we're going to be doing
23	is we will looking through the accident scenarios that
24	would present themselves. Whether it is site
25	oriented, whether it is related to structures, to the
ļ	I

(202) 234-4433

5 When you get to Chapter 15, I think there is a tremendous tendency to focus on the traditional 6 7 bad actor in Chapter 15, double-ended quillotine break of the largest pipe that is going in and out of the 8 9 reactor. And that turns out not to be nearly as big 10 a deal for a small modular reactor with passive design because it's not a terribly large pipe. The steam 11 generators are all integral to the reactor vessel so 12 that you don't have that sort of a consideration. 13

And you generally end up with fairly small line breaks, which is not to say those are not significant and don't have to be dealt with. And yet, the fact is, Chapter 15 has got a very large number of postulated accidents.

Fuel handling events, control rod drive ejection, which in some case, at least one of the cases would be relevant. Reactor coolant pump failure, which even with internal reactor coolant pumps certainly you're going to want to know what's happening if you get a sudden failure of a pump.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

So there are a vast array of accidents in

(202) 234-4433

25

1

2

3

4

	132
1	Chapter 15 which are traditionally postulated. And
2	there are also accidents that are postulated outside
3	Chapter 15, such as tank ruptures, that need to be
4	looked at. And to some extent those will look
5	somewhat similar to current generation of reactors,
6	it'll be on a different scale. Different design
7	specifics, but we're not trying to neglect that.
8	And yet, on the other hand, what we do
9	need to look at very seriously is the accidents that
10	will lead to core damage. And so we're struggling
11	somewhat with that.
12	MEMBER POWERS: If I were thinking about
13	this and what's been done that might be applicable to
14	this I would say that the biggest hole that you will
15	probably identify will be the fuel handling accidents,
16	because you have such a unique system and because
17	those are not typically extraordinarily important for
18	large plants compared to the double guillotine-type
19	pipe break.
20	It might be a bigger hole for you. And
21	you're not going to find a huge volume of literature,
22	I suspect, out there. I'm just guessing.
23	MR. HOBBS: Okay. That certainly is a
24	reasonable speculation. Something that I think that
25	we will have to deal with. During one of the SMR.
I	I

(202) 234-4433

workshops we did have a staff member that talked about the fact that the moving a containment into an area as a part of the refueling operations. And that's certainly something that is unique to one of the designs. And so I'm sure that that will not be the only unique feature.

7 And some of the other unique features 8 might not be applicable to all of the reactors but I 9 think we will end up having to deal with those. 10 That's not a fuel handling action per se but it's certainly something that impinges 11 on refueling 12 operations.

In terms of applications of source term 13 14 modeling, we're looking at the whole realm of 15 considerations. Plant design, being able to handle component design and operational life issues. 16 Being 17 able to do design in such a fashion that we're considering worker safety. 18

In terms of normal operations none of these topics, operational leakage, fuel handling or refueling, maintenance or in-service inspection or testing, are new per se and yet all of them with Small Modular Reactors are going to be somewhat different in scale. And different in approach. And so those are things that we're going to be having to take a look at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	134
1	consider.
2	Decommissioning, ultimately, will also be
3	a consideration. So those are some of the areas that
4	we're in particular going to look at.
5	MEMBER SKILLMAN: Before you change that
6	slide, let me ask this question please, Sam.
7	MR. HOBBS: Sure.
8	MEMBER SKILLMAN: It seems you have one of
9	these plants that has a dozen modules, I guess as I
10	envision it you have basically maybe a 300-megawatt
11	core and you've got a dozen of them. And so you've
12	got 100/150-megawatt turbine, you've got a dozen of
13	those. And it seems like there is going to be a
14	requirement for the people that operate this plant to
15	spend a whole lot more time on the secondary side.
16	Care and feeding of the turbine, hotwell, drainage,
17	return of water for heating to the steam generator.
18	For now we have one high-pressure turbine
19	and maybe two or three low-pressure rotors and full
20	attention riveted on this one big machine plus the
21	reactor. Now there is attention on maybe a dozen
22	machines and a dozen turbines. To the extent that
23	there's any leakage then this leakage is confined to
24	that one turbine that is handling that one reactor.
25	It seems like there is going to be an

(202) 234-4433

MR. HOBBS: Let me address a little bit 6 7 the scale. In that the one design that we're 8 currently looking at in terms of that would have that 9 many modules would be the NuScale design, which, as I 10 recall, is about a 45-megawatt design. So that we're talking a little smaller scale. In the case of 11 Westinghouse 12 generation mPower the designs, and 13 certainly talking а larger scale but also 14 significantly fewer modules that are currently 15 envisioned, I think either two or four instead of 16 twelve.

And certainly the secondary side is going 17 to require a great deal of attention. But I think 18 19 even the multiple modules are going to require more attention regardless. In terms of what the interface 20 will be between modules with regard to source terms, 21 I think that's an area that I'm not prepared to try to 22 address right now. But it's certainly something that 23 24 we need to think about.

MEMBER SKILLMAN: Thank you.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

please?

(202) 234-4433

135

	136
1	MR. HOBBS: I don't know that that was
2	very responsive, but that's the best I can do right
3	now.
4	MEMBER SKILLMAN: Thank you.
5	MR. HOBBS: Other areas where we're
6	looking at applications of source term modeling
7	include, obviously, accident analysis. We talked
8	about Design Basis and beyond Design Basis, in
9	particular control room dose is likely to be of a
10	significant consideration for a couple of reasons.
11	Security, our primary thinking there is
12	that what we're going to be doing with regard to
13	source terms will be useful to security personnel in
14	terms of being able to identify a Design Basis threat
15	source term. I don't envision at this time that we're
16	going to have a lot of addressing of the security
17	issues as a result of the NEI position paper.
18	And yet, to the extent that we can
19	establish the criteria and approach, they will
20	probably have some implications there.
21	Emergency preparedness, we actually do
22	have an emergency preparedness representative who is
23	very active across a number of different facilities
24	and who is involved in our working group.
25	MEMBER SCHULTZ: Sam, can I take from this
ļ	I

(202) 234-4433

	137
1	slide, the way at least it's laid out, that there's
2	some thinking that there might be a Design Basis
3	approach associated with control room dose, onsite
4	dose, calculations? And then, with respect to offsite
5	consequences and emergency planning, there might be a
6	beyond Design Basis approach aimed at, as Dana was
7	saying, a Part 100 expectation requirement?
8	MR. HOBBS: Dr. Schultz, I think it would
9	probably be premature to reach that conclusion. So I
10	wouldn't want to say that. This may have been an
11	unfortunate way of organizing the slide.
12	MEMBER SCHULTZ: So it's not there yet?
13	MR. HOBBS: It's not there yet.
14	MEMBER SCHULTZ: Thank you.
15	MR. HOBBS: In terms of potential research
16	areas, and I'd like to emphasize that we are very
17	early in the stages of trying to identify potential
18	research. As I had commented earlier, our working
19	group has had one meeting. We're going to be trying
20	to plan an additional meeting as well as an
21	interaction with EPRI in the relatively near future.
22	And so we'll be further along in another month or two.
23	But areas that we had originally talked
24	about was beyond Design Basis computer code
25	development and verification. And I think there are
l	I

(202) 234-4433

a number of computer codes that are being used, MELCOR is one that comes to mind, that I guess got used on the SOARCA Project. And I think there are some subsidiary codes, or developed codes from that. I think MACC is another code that was also used there that as I understand was closely affiliated with MELCOR.

And one of the things that we're concerned 8 about is verification and validation of the code, 9 10 because that is an area that is not necessarily easy We have had some very preliminary one-liner 11 to do. interactions with the Nuclear Regulatory Commission in 12 SMR workshops with regard to that where one of the 13 14 primary concerns, I think, is the qualification of the 15 analyst, which is certainly something that I think 16 needs to be given a lot of attention. And yet, I think we're also concerned with the validation of the 17 codes and with whether we'll be able to do that. 18

We're particularly interested in passive removal mechanisms in small containments and then small reactor coolant system volumes. We haven't gone very far in terms of trying to define that.

23 MEMBER BANERJEE: What codes are you 24 thinking about for that?

MR. HOBBS: For the passive removal

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

	139
1	mechanisms? I don't know, we haven't defined that.
2	MEMBER BANERJEE: You might consider the
3	role of non-condensables. It's almost the codes that
4	we use don't necessarily take these into account very
5	well.
6	MR. HOBBS: All right. Thank you. We
7	will certainly be studying the transcripts of this
8	meeting very closely. I've heard a lot of good
9	suggestions today.
10	We have some concern about atmospheric
11	dispersion at close distances, in particular less than
12	100 meters. One of the areas that I think is of
13	concern is control room dose. In the case of small
14	modular reactors the control room is relatively close
15	to the containment. It is relatively close to the
16	release point. And the typical mechanism of
17	atmospheric dispersion is probably not appropriate.
18	I'm not sure where we're going to go with
19	that but it's an area that we've identified that we
20	might need some additional work. There's some
21	potentially applicable existing research
22	MEMBER BANERJEE: You may actually need to
23	do some, you know, because of buildings and all sorts
24	of things, you might have to take more of a sort of
25	CFD-type approach of close distances. I know there
Į	I

(202) 234-4433

	140
1	are differing options about that.
2	MR. HOBBS: I'm sorry, I'm not familiar.
3	MEMBER BANERJEE: For computational fluid
4	dynamics dispersion rather than the sort of averaged
5	type approaches that are taken at far distances away
6	from the source.
7	MEMBER POWERS: CFD works pretty well for
8	the dispersion portion of it. It's horrible for the
9	deposition.
10	MEMBER BANERJEE: Yes, because of course
11	the turbulence is not properly understood.
12	MEMBER BLEY: You just wanted to do this
13	so you could ask questions, right?
14	(Laughter)
15	MEMBER POWERS: Well I mean the problem
16	that it basically boils down to is CFD is most
17	comfortable treating particles as though they were
18	point particles whereas they're actually finite. And
19	so you have to go in and do something with it to
20	handle the finiteness and size of the particles.
21	MEMBER BANERJEE: It's a hard problem.
22	MEMBER POWERS: It's a hard problem to do
23	that.
24	MEMBER BANERJEE: Which is why we don't
25	give much credit for deposition GSI-191 using
l	I

(202) 234-4433

	141
1	MEMBER POWERS: I wondered why you didn't
2	do that. You actually had a reason for doing that?
3	It wasn't capricious and arbitrary?
4	MR. HOBBS: In terms of potentially
5	applicable existing research
6	MEMBER POWERS: Oh let me interrupt, and
7	say it is my perception that the Department of Energy,
8	for its nuclear facilities, they're not reactors but
9	other kinds of facilities, has been struggling with
10	this near source dispersion sort of thing. And there
11	may actually be a model up at Los Alamos that has some
12	pedigree to it.
13	MR. HOBBS: Thank you, very much.
14	MEMBER POWERS: Yes, in connection with,
15	you know, they're building a plutonium facility and
16	lots of people agonize over plutonium. And they're
17	all near source kinds of dispersion problems. And so
18	it's my perception that they've agonized on it. And
19	that pretty much exhausts my knowledge of it. But
20	they might be a good place to check first before you
21	tried to do something yourself.
22	MR. HOBBS: Thank you. Thank you very
23	much.
24	MEMBER BANERJEE: And at one point
25	Lawrence Livermore did some work as well. I've
I	1

(202) 234-4433

	142
1	forgotten the name of his code, but he did some work.
2	MEMBER SCHULTZ: And Argonne Laboratory
3	has done that too.
4	MEMBER POWERS: It's just a real headache
5	for their radioactive material facilities and so it's
6	very analogous too, so you might want to check with
7	them.
8	MR. HOBBS: All right, thank you. Those
9	suggestions are the tip of the iceberg on literature
10	research and yet it keeps you from neglecting an area
11	that you hadn't thought about.
12	MEMBER POWERS: Well the trouble is this
13	stuff is not going to show up in the literature.
14	MR. HOBBS: So you're going to have to
15	MEMBER POWERS: Just call them. Call the
16	DOE counterpart. Like EM and DOE and ask them and
17	they probably get you quickly on the track and
18	probably even tell you what they like and dislike
19	about the models.
20	MR. HOBBS: All right. Thank you very
21	much. In terms of potentially applicable existing
22	research, we're already talked some about the EPRI
23	studies of removal mechanisms for escape of
24	radionuclides through cracks. I think we may have
25	exhausted that already. It's our understanding that
I	1

(202) 234-4433

	143
1	PNL is engaged in a chi over q study.
2	And I believe that, actually, NRC research
3	has been assisting in funding some iodine studies that
4	are coming to fruition fairly soon. Right now the
5	name of that program escapes me. But perhaps someone
6	would like to go to Europe to hear the results of that
7	research this summer. I don't think that's something
8	that I'll be doing but that's a possibility.
9	In terms of our research strategy, is that
10	we're looking for potential sponsoring organizations.
11	DOE is a possibility. We have not yet engaged in
12	conversations with DOE. National Laboratories are a
13	possible organization that might have some interest.
14	EPRI, and we have at least had a discussion with EPRI
15	and plan to have some further discussions with them.
16	MEMBER BLEY: Sam, following up on what
17	Dana said, my memory is that the Army, the Army's
18	Chemical Weapons Destruction Program, did some work on
19	close in dispersions, non-energetic, work a few years
20	back, Sandia may have helped done that.
21	MR. HOBBS: All right. Thank you. And
22	obviously in addition to DOE and the National Labs and
23	EPRI there may be some universities that either could
24	be engaged or possibly have some ongoing work already.
25	We're trying to identify possible funding. We have
	I

(202) 234-4433

	144
1	some very significant concerns with meeting the near
2	term technical and regulatory needs. What we would
3	not like to do is to launch research that isn't going
4	to be beneficial in the relatively short-term.
5	If there is follow-on research to that
6	that would be beneficial in the longer term we'd
7	certainly be delighted to see that launched. But what
8	we are really interested in is something that will
9	enable us to proceed or give us some direction to
10	proceed in the relatively short term.
11	As commented before that we are, as a
12	working group, not going to be in a position to fund
13	the research, so we will be looking for funding and
14	for people who are interested in these subjects to
15	provide some funding and/or some assistance in those
16	areas.
17	In terms of our path forward. We are in
18	the very early stages of establishing a dialogue with
19	the NRC. Identifying involved branches and the
20	personnel to talk to. I'd like to put in a plug for
21	the small modular reactor workshops. I think those
22	have been invaluable. They have been going on, as I
23	recall, since October of 2010, and have been going on
24	more or less quarterly. And that dialogue has been
25	very helpful. And we have had people that have shown
I	1

(202) 234-4433

	145
1	up that have provided some informal suggestions at
2	some of those workshops that has been very useful.
3	And of course we're also very interested
4	in seeing what the NRC is doing and thinking about,
5	both in terms of the design specific review standards
6	and I believe the terminology is the IIPR that they're
7	currently working on.
8	We are going to be trying to develop a
9	position paper. I don't have a date yet for when
10	we're going to be doing that. This year, but I don't
11	want to commit to anything more ambitious than that,
12	although perhaps we'll be able to beat that. I've
13	seen some of these position papers go through 15 or 20
14	reviews and revision cycles so I'm not going to be too
15	ambitious in terms of a time line.
16	And, lastly, and I've said this before but
17	I'll say it again, we need to pursue the
18	identification and scoping of the research activities
19	that will have a potential benefit for SMR.
20	deployment. And that concludes what I have to say.
21	If there are any further questions I'd be glad to do
22	what I can to answer.
23	MEMBER RAY: I assume you're presuming a
24	Part 52, ultimately?
25	MR. HOBBS: I would say yes and I'll
I	

(202) 234-4433

	146
1	qualify that slightly.
2	MEMBER RAY: Good. I think that's wise.
3	MEMBER SIEBER: Have your own part.
4	MR. HOBBS: I'm sorry?
5	MEMBER SIEBER: You'd like to have your
6	own part, right?
7	MR. HOBBS: Well actually my real reason
8	for qualifying it is that we have at least one
9	potential applicant that is talking about coming in
10	through Part 50 initially.
11	MEMBER RAY: That's the right way to do it
12	in my opinion, but that's just my opinion.
13	MR. HOBBS: And so we certainly don't want
14	to say that we only want to do Part 52 and see the
15	door shut on potential utility applicants as well.
16	MEMBER BLEY: Anything else from the
17	Committee? Any comments from the public on this?
18	Sam, thank you very much for a great presentation and
19	discussion. Mr. Chairman, back to you, early.
20	CHAIR ARMIJO: Well thank you very much,
21	Dennis. So what we'll do is we'll take a break for
22	lunch and we will reconvene at 1:15.
23	(Whereupon, the above-mentioned matter
24	went off the record at 11:54 a.m. and resumed at 1:14
25	p.m.)

(202) 234-4433

	147
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	1:14 p.m.
3	CHAIR ARMIJO: Okay. Good afternoon.
4	This afternoon I'll take the lead introducing the xLPR
5	Project. That's the Extremely Low Probability of
6	Rupture Project. The Materials, Metallurgy and
7	Reactor Fuels subcommittee was briefed on this project
8	in September of last year, we provided feedback and
9	comments.
10	The project intends to develop a
11	probabilistic fracture mechanics tool for use in leak
12	before break evaluations of PWR cooling boundary
13	components fabricated from nickel-base alloys and
14	operated in environments capable of causing primary
15	water stress corrosion cracks to initiate and grow.
16	Since its initiation in 2009 the project
17	has completed a pilot study and its goal is to have a
18	working version, Version 2.0, of the xLPR code ready
19	for use later, late in 2013. The staff is requesting
20	a letter from the Committee, hopefully favorable,
21	providing technical feedback as well as an overall
22	opinion of the work.
23	With that introduction I'd like to turn
24	the presentation over to David Rudland.
25	MR. RUDLAND: Thank you. Again my name is
I	I

148 Dave Rudland and I am a senior materials engineer in the Office of Research, Division of Engineering, Component Integrity Branch. My branch chief is Al Csontos sitting back there, and actually for the next three months of my rotation to NRR/DE in the Piping

three months of my rotation to NRR/DE in the Piping and NDE Branch and Tim Lupold's my branch chief during my rotation.

Again as Tim pointed out, the purpose of 8 9 the meeting is to give an overview of the Extremely Low Probability of Rupture Program. 10 I'd like to try to achieve a common understanding of where we are in 11 What is it? What are the motivations? 12 What's xLPR. Priority and our path forward. 13 the status? I want to 14 get your review and advice on the project. And as Sam 15 pointed out, I'd like to get a letter that talks about the efficacy of the project. 16

In talking with the subcommittee we also requested that we have a review and advice meeting with them at least once a year, giving them an update. And I think we'll probably do that more instead of on the project maybe on subtopics that are within xLPR, since xLPR is a very broad topic.

I'm going to start with a little background and the regulatory need for this project, why we're doing this. I'm going to go into a little

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	149
1	bit about the plan and what we plan to do and what we
2	have been doing in Version 1.0. I'm going to talk
3	about the pilot study, which was a feasibility study
4	on whether or not it is even feasible to do this type
5	of project and give you the sample of those results.
6	I'm going to talk about our plans for
7	Version 2.0. Our schedule and the path forward.
8	In 10CFR50 Appendix A, there's GDC-4 that
9	allows the local dynamic effects associated with large
10	break pipe rupture be excluded from the Design Basis
11	if it can be demonstrated that those probabilities of
12	rupture are extremely low.
13	And these local dynamic effects are things
14	like pipe whip restraints and jet impingement shields
15	that are there to protect the other equipment in cases
16	possibly the break actually were to occur.
17	And this portion of the regulations allows
18	the industry to remove these things, which is a great
19	cost savings. And it allows for better inspections
20	and things like that, so it's a great advantage to
21	them to be able to remove that.
22	The staff developed a conservative, flaw-
23	tolerance deterministic approach back in the 80s that
24	demonstrated that the pipe would leak before a break.
25	Using a set of safety factors and deterministic
I	1

(202) 234-4433

	150
1	fracture mechanics. And at the time, when GDC-4 was
2	revised, it was determined that this deterministic,
3	conservative analysis would equate to an extremely low
4	probability of rupture. It was only qualitative
5	MEMBER SKILLMAN: Excuse me.
6	MR. RUDLAND: I'm sorry, yes.
7	MEMBER SKILLMAN: David, let me ask this
8	question. When this project is complete would it be
9	predictable that a utility that had been struggling
10	with pipe break, perhaps on the secondary side, where
11	the plant is really aged and the utility is reluctant
12	to put in shields and wagon wheels and things like
13	that? Would this final product enable that utility to
14	use this tool to modify or exclude a piece of pipe or
15	a location?
16	MR. RUDLAND: I think that the LBB
17	applications are mainly for the primary system. But
18	the code itself is going to be structured to be able
19	to handle any type of location. And as long as the
20	basis and technical background for the analysis is
21	justified and approved by the NRC, yes, I don't see
22	why not.
23	MEMBER SKILLMAN: So the answer is
24	probably yes?
25	MR. RUDLAND: Yes.
ļ	I

(202) 234-4433

	151
1	MEMBER SHACK: But you're not planning on
2	putting like flow-induced corrosion type thinning in
3	it? You are?
4	MR. RUDLAND: Yes, sure. The code's going
5	to be flexible enough to be able to handle that. If
6	there's an application and a need there's no reason it
7	couldn't.
8	Again, this initial study is focused just
9	on the LBB plants that have been already approved,
10	which I'll talk about in a second, and those
11	mechanisms associated with that. There's no reason
12	why, the way that we structured this code, that it
13	can't handle those types of models.
14	So in talking about LBB, many of the PWRs
15	have the reactor coolant piping approved for LBB. So
16	they've been able to go in and remove those jet
17	impingement shields. And some of the PWRs have the
18	RCL branch piping also approved.
19	The first LBB approval occurred in about
20	1984, and again, they were done for mostly the PWRs.
21	At that time IGSCC was active in the PWR heat effect
22	zones for the stainless steel piping. And
23	MEMBER SHACK: BWRs.
24	MR. RUDLAND: Did I say, I'm sorry, B,
25	BWRs, I misspoke. BWRs. The SRP3.6.3 that was
	I

(202) 234-4433

	152
1	written stipulates no active degradation mechanisms.
2	So those plants, in many cases, didn't even apply for
3	LBB because they had an active degradation mechanism.
4	But at the time the PWRs did not have anything active
5	so they were able to apply and get approved for LBB.
6	However, we started seeing some cracking
7	in the mid-90s in the PWRs, in Alloy 600 materials.
8	And we had our first crack that was formed in a
9	dissimilar metal weld, butt-weld, of hot leg to a
10	reactor nozzle at V.C. Summer plant that actually was
11	a leaking axial crack.
12	During that time period the staff had
13	developed an LBB Reg Guide to handle the LBB issues.
14	But it didn't include this active degradation because
15	at the time the ones that had been approved didn't
16	have any active degradation mechanisms.
17	So the work on the LBB Reg Guide was put
18	on hold for the PWSCC issue. And then in 2009 we
19	kicked off this xLPR Project because the NRC staff at
20	the time decided to take a two-tier approach to
21	handling the PWSCC problem. The industry embarked on
22	a mitigation and inspection schedule that they had
23	defined to help mitigate this problem and to inspect
24	it.
25	And qualitatively that was acceptable to
Į	I

(202) 234-4433

153 but in the long-term we wanted to quantitatively assess these probabilities of rupture. So xLPR was started, again, in 2009, conducted this pilot study, which I'll talk about in a second. And we plan to release the code itself, Version 2.0, applicable to LBB lines in 2013.

7 MEMBER BLEY: David, just to put this in 8 perspective for me, since your first line up there was 9 oil and gas, and since the PG&E San Bruno break 10 occurred as a result of a pressure excursion, not some external attack on the pipe. How does that fit in 11 with what they did, what you're doing? Have you 12 it enough to understand if 13 looked at that's а 14 challenge or if there's some reason that's not 15 applicable? Or it's about the right frequency?

Yes, typical LBB, especially 16 MR. RUDLAND: 17 the LBB that was done back in the oil and gas time was all deterministically based, right. So they used a 18 19 thumb safety factors. Consensus safety rule of factors, in their design. And with that it doesn't 20 exclude the probability of some event occurring. 21 And yet, I'm not too familiar exactly with the specifics 22 of what caused that failure, but as you point out most 23 24 of the failures in oil and gas are third party damage 25 type of --

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

the

NRC

154 1 MEMBER BLEY: Yes, but this wasn't 2 apparently. 3 MR. RUDLAND: The probability of that 4 stuff is always there, depending on the conditions And this ensures enough reasonable 5 that they had. 6 assurance --7 MEMBER BLEY: But it hasn't drawn your 8 attention to something that you really need to understand to see if --9 10 MR. RUDLAND: No because the conditions within a nuclear plant are a lot different than that 11 in the oil and gas. 12 MEMBER BLEY: Yes, indeed they are, but --13 14 (Off the record comments.) MR. RUDLAND: What it does is it allows us 15 to calibrate our probabilistic models with actual 16 17 operating experience, which we don't have a lot of in the nuclear plants because there has been --18 19 MEMBER BLEY: But they've got an awful lot, so maybe it's in line. 20 CHAIR ARMIJO: Well the only things we've 21 actually ruptured have been flow-accelerated corrosion 22 23 pipe. 24 MR. RUDLAND: That's right. MEMBER BLEY: That's true. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

155 1 CHAIR ARMIJO: -- anything else has leaked. 2 3 MR. RUDLAND: Been leaking. Again, like 4 I pointed out, PWSCC emergent issue really hit the 5 butt welds of the large reactor nozzles in the early 2000s. And through MRP-139, which was an industry 6 7 document that dictated a inspection and mitigation plan, they set forth to mitigate and decrease the 8 inspection interval on all of the metal welds in PWRs 9 that were associated with the LBB lines. 10 MEMBER SHACK: Do you what fraction of 11 PWRs actually have nickle welds? 12 MR. RUDLAND: Of the PWRs? 13 14 MEMBER SHACK: Yes. 15 MR. RUDLAND: Oh my gosh, I think it's a 16 very high percentage. I don't think there's very many that don't. The ones that do use stainless steel. 17 MEMBER SHACK: Yes, I mean there are some 18 19 that are all stainless. 20 MR. RUDLAND: Yes there are some, but not 21 very many. But you think that the 22 MEMBER SHACK: overwhelming majority use --23 24 MR. RUDLAND: Yes, we have a database actually put together of the LBB that has plant-by-25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	156
1	plant and the lines that have been approved in the DM
2	welds. I don't recall off the top of my head, but
3	it's most of them. Yes, it's most of them.
4	That industry initiative, MRP-139, has
5	been rolled into Code Case 770 through the ASME Code
6	and incorporated into 50.55(a). So it's within that
7	time period, shown here on this flowchart, that an
8	inspection mitigation short-term effort has been set
9	into regulations. Within that also is when xLPR will
10	be developed fully with, again, a hope that we can
11	attack the regulation on a more long-term aspect in
12	around 2015, after we finish Version 2.0 and write the
13	basis for that to change the regulation.
14	CHAIR ARMIJO: Now, David, the industry
15	people don't have to apply any kind of mitigation
16	unless they've detected something that's indicative of
17	a flaw or
18	MR. RUDLAND: That's not true.
19	CHAIR ARMIJO: They have to apply
20	MR. RUDLAND: Yes, they have to follow the
21	inspection, they have to follow this 50.55(a), Cold
22	Case 770 for even the unmitigated cases. If it
23	severely hinders them and lowers their inspection
24	intervals if they don't do something.
25	CHAIR ARMIJO: Oh, okay. All right.
	I

(202) 234-4433

	157
1	MR. RUDLAND: So they have to do this. So
2	again, in the long term we want to do this in a
3	quantitative way, by developing a probabilistic
4	assessment tool that we can use to directly assess
5	compliance with the Regulation.
6	And, to Bill's point, what we want to do
7	is we want to make this code as flexible and adaptable
8	as possible so that the money we spend here is not
9	only applicable to LBB lines, but is also applicable
10	to all range of problems associated with the reactor
11	coolant system.
12	CHAIR ARMIJO: That would include if you
13	have a different failure mechanism, IGSCC, flow
14	accelerated corrosion?
15	MR. RUDLAND: Absolutely.
16	CHAIR ARMIJO: But you'd have to develop
17	a module to deal with that?
18	MR. RUDLAND: That's right. Yes, the
19	model and the mechanisms has to be well understood and
20	characterized in order to be able to incorporate it
21	into the code. So we tried to develop a framework
22	that will do that. We've also tried to develop a
23	framework and process that is fully vetted within the
24	technical community by the subject matter experts.
25	We're doing this in a cooperative effort.
Į	1

(202) 234-4433

	158
1	We've decided to kick off a cooperative effort EPRI to
2	do this so that we could share in ideas and in
3	resources in that they have some resources that are
4	very valuable to the program and so does the NRC.
5	So through a memorandum of understanding
6	we have developing, we've become in this effort. And
7	we put the program together such that it is equally
8	staffed by folks from either NRC and their contractors
9	or EPRI and their contractors. So we have equal
10	representation across the board on all of the working
11	groups.
12	The thought of developing this type of
13	code is very difficult. It's a challenging, it's a
14	daunting task to be able to do this, when we kicked it
15	off in 2009. So we thought the best way to handle
16	that was to go ahead and do a feasibility study, a
17	pilot study, to assess how effective it is to not only
18	develop this kind of code but work in the environment
19	that we want to work in. And make sure that we can do
20	it efficiently.
21	CHAIR ARMIJO: David, I jumped ahead
22	because you talked about this MOU with EPRI. And you
23	have a slide showing all the organizations that are
24	contributing or working in some way, which includes
25	National Laboratories, Exelon, Areva, Westinghouse.
I	I

(202) 234-4433

	159
1	Are these people really working on this thing
2	MR. RUDLAND: Oh yes.
3	CHAIR ARMIJO: Or is this just labels?
4	MR. RUDLAND: Yes, like this box here that
5	I have on this thing shows the different groups. And
6	so for instance the models group is broken down into
7	several subgroups. And the subgroups represent some
8	of the major fracture mechanics and technical based
9	applications, crack initiations and crack growth. And
10	then the subject matter experts in there, each of
11	those teams have a couple of different, sometimes up
12	to even a dozen different people, working on that
13	particular problem.
14	So all those people that are on that list,
15	that we'll get to here in a second but that Sam was
16	talking about, are being funded through this project
17	by one means or another. And are working on the
18	project.
19	CHAIR ARMIJO: Either by EPRI, their own
20	parent company or by NRC?
21	MR. RUDLAND: That's correct.
22	CHAIR ARMIJO: And is NRC the lead
23	organization? That's where I want to get you? Or is
24	it sort of like
25	MR. RUDLAND: It's a consensus, so we're
I	I

	160
1	splitting. So the top level development effort is
2	being led by one NRC staff member and one EPRI staff
3	member.
4	CHAIR ARMIJO: Okay, I understand.
5	MEMBER REMPE: Will there be additional
6	validation efforts after this is all done?
7	MR. RUDLAND: Yes, we have a very
8	extensive validation effort that we plan to go
9	through. A verification and validation effort for the
10	code. We're developing this thing under a very strict
11	QA program and part of that is to develop a V&V plan.
12	MEMBER REMPE: New data or existing data?
13	MR. RUDLAND: Whatever data we have.
14	Operational data or laboratory data. Depending on the
15	models that we're talking about.
16	MEMBER REMPE: But no new data obtained,
17	existing data?
18	MR. RUDLAND: We are developing some new
19	data.
20	MEMBER REMPE: Oh, okay.
21	MR. RUDLAND: Yes, so for instance there's
22	some stability issues that we have in complex cracks
23	in dissimilar metal welds and how they fail. So we're
24	actually doing laboratory experiments. And they're
25	developing laboratory experiments on crack growth rate
	I

(202) 234-4433

161 1 data for some of the Alloy-52 materials, and 152 materials, the higher chrome content that are more 2 So it's all happening within the 3 resistant to PWSCC. 4 auspice of this xLPR effort. 5 CHAIR ARMIJO: David, when you --MEMBER SCHULTZ: It's a software QA 6 7 program as well as a V&V program? 8 MR. RUDLAND: Yes. 9 MEMBER SCHULTZ: Thank you. MR. RUDLAND: And I'll talk a little bit 10 about that towards the end of the presentation. 11 MEMBER POWERS: When you talk about having 12 data and rigorous QA program, do you subject those 13 14 data to the kind of review that one does in connection 15 with experimental results used for thermal hydraulics codes, like what do they call it, the I want to say 16 CSARP but it's not CSARP. 17 (Simultaneous speaking) 18 19 MEMBER BLEY: CSAU. MEMBER POWERS: Yes, CSAU, kind of review 20 where you look at, not only uncertainties in the data, 21 but the applicability of that data to the environment 22 that you're considering? 23 MR. RUDLAND: Well we tried to consider 24 You know, the problem with the data that we 25 all that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	have and the data that we're generating is it's not
2	necessarily always sufficient to be able to fully
3	understand the uncertainties and their impact. And so
4	sometimes judgement calls have to be made.
5	Engineering judgement calls have to be made on the
6	type of uncertainty that is and its impact. And how
7	it can be categorized, but we're attempting to do
8	that, yes.
9	MEMBER POWERS: Well I mean it seems to me
10	like the CSAU methodology sets up a framework that's
11	very rigorous for that, why don't you just use their
12	framework?
13	MR. RUDLAND: Well it's something that
14	we'll looking into. What was that again, sorry?
15	MALE PARTICIPANT: CSAU. Code scaling
16	analysis uncertainty.
17	MR. RUDLAND: Code scaling analysis of
18	uncertainty.
19	MEMBER POWERS: And it's applicability.
20	MEMBER BANERJEE: Applicability.
21	MEMBER POWERS: It is something that is
22	designed primarily with thermal-hydraulic issues in
23	mind say mutatis mutandis, but still it's a fairly
24	rigorous kind of an approach. And I mean one of the
25	biggest dangers in developing any kind of a
I	1

(202) 234-4433

163 1 phenomenological code is treat data as though they were points of universal validity. And when the code 2 3 doesn't pass through those points exactly there must 4 be something wrong with the code. 5 That will frustrate you to death. And the CSAU, I mean, it's, to say the least, the people who 6 7 developed it were anally retentive. But it is the 8 most rigorous formulation that I can think of for 9 doing these things. 10 MR. RUDLAND: Yes, I will definitely look into it. Thank you. 11 One point onto Sam's 12 MR. CSONTOS: We are working crossover here 13 question earlier. 14 cooperatively with EPRI but we are independent and 15 we're separate from when we're developing this program 16 there are two leads, one from EPRI one NRC, because we 17 are independent yet we cooperate in development so it's an MOU. 18 19 CHAIR ARMIJO: The reason I was asking the question is if EPRI decides to disengage or drop or 20 reduce their effort and reduce their funding that 21 leaves you guys hanging out to dry? 22 MR. RUDLAND: Yes, that's right. 23 24 CHAIR ARMIJO: But so far you haven't seen any indication of that? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	MR. CSONTOS: Yes, and like Dave was
2	saying, there are lots of data and inputs and other
3	models and et cetera that EPRI does have that comes
4	into it that's very valuable.
5	CHAIR ARMIJO: This is something that they
6	already have?
7	MR. CSONTOS: They already have it, yes.
8	For example plant specific data, we don't have some of
9	that information.
10	MR. RUDLAND: And they are rather
11	motivated to stay involved also. To quickly go
12	through the process, this is nothing revolutionary or
13	new here. But for the process we take all of the
14	variables that are uncertain and we try and to
15	characterize that and classify those uncertainties as
16	either irreducible or as uncertainties that can be
17	associated with lack of knowledge.
18	And we stick those through a stochastic or
19	Monte Carlo type of technique and develop a failure
20	frequency. The failure frequency is a distribution in
21	itself. So at a particular time we can know what the
22	average failure of frequency is and where we sit in
23	terms of the 95th percentile.
24	CHAIR ARMIJO: This is the approach of a
25	PTF approach?
	I

(202) 234-4433

MR. RUDLAND: Right, this is an approach of probabilistic fracture mechanics. On any of those types of things, this is the same way that it works. And then through improved knowledge we may not be able to change what the average failure frequency is but we can have better confidence and we can have a smaller amount of uncertainty along that particular failure frequency.

9 And so one of the goals of this program is 10 not only to be able to do this but to be able to point 11 to the places where we can continue research and 12 improve our understanding so that we can reduce those 13 types of uncertainties.

14 As Sam pointed out that was kind of general to most PFMs. So specific for xLPR we look at 15 a weld-by-weld or joint-by-joint basis. And through 16 17 inputs that are random in nature, we then have initiation models that will initiate flaws, cracks, 18 19 within the piping. Those initiations may be single initiations, they may be multiple initiations. 20

We then allow them to grow by whatever the mechanisms are that are active in the particular analysis. Those cracks may coalesce, may join up, making longer cracks.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MEMBER BANERJEE: Are there good models

(202) 234-4433

25

1

2

3

4

5

6

7

8

	166
1	for this or is there a lot of model uncertainty?
2	MR. RUDLAND: It depends. For instance
3	crack initiation there's a lot of model uncertainty,
4	yes. We know a lot more, much more confident on crack
5	growth than we do on crack initiation. And things
6	like that.
7	MEMBER BANERJEE: But do they branch in
8	things or what happens?
9	MR. RUDLAND: They do. They do, PWSCC is
10	a very branching type of mechanism.
11	MEMBER BANERJEE: So do you have good
12	models for this?
13	MR. RUDLAND: We have adequate models for
14	this. And we have adequate determination of the
15	uncertainties. What it doesn't do, it really doesn't
16	allow us to be able to look at out of plane growth and
17	all that kind of stuff. Now the cracks, the drivers
18	of these types of cracks, the PWSCC cracks at least,
19	are very stress driven. All right, if the environment
20	is appropriate and the materials appropriate then it's
21	going to go where the stresses are.
22	And if we're able to predict well enough
23	where the stresses are then we can pick the path
24	appropriately or pick the stress appropriately to
25	estimate the crack growth lengths.

(202) 234-4433

	167
1	CHAIR ARMIJO: David, the initiation step
2	is probably the weakest part of any of these analysis.
3	What kind of data do you have on PWSCC initiation?
4	Laboratory test data or
5	MR. RUDLAND: There's a couple of sets of
6	test data, a couple of different types of data that
7	are out there. One are laboratory data, and they're
8	very simple tests done in an environment where a
9	constant load is put on or a constant stress is put on
10	and time is marked is when they start to see flaws.
11	It's pretty simple models.
12	Then there's operational history. So we
13	have a bunch of operational histories.
14	CHAIR ARMIJO: The reason I was getting at
15	it is when I worked on BWR ISGCC many years ago and
16	initiations was everything with that mechanism. And
17	what we did to develop improved materials, more
18	resistant materials, we looked at the operational
19	experience and found what had seemed to be a cause and
20	then we reproduced that in the laboratory. And the
21	worst things you could do, of course, create a high
22	residual ID stress on these weldments and the way to
23	do that was very poor welding practice, very high
24	input welds.
25	But probably the worst thing you could do,
Į	

(202) 234-4433

168 1 we could crack almost anything by doing what we called abusive ID grinding. So post-weld grinding, which a 2 3 lot of welders like to do because that way they can 4 pass their x-ray requirements. But they leave the 5 material looking beautiful but totally susceptible to stress corrosion cracking. 6 7 And what I was trying to get at is will 8 you address those fabrication issues in your 9 initiation model? Because I think that's what makes 10 a huge difference. I don't know if it makes much difference on PWSCC but it's day and night with IGSCC. 11 I suspect that it will MR. 12 RUDLAND: because it's basically the same mechanism. 13 14 CHAIR ARMIJO: It creates a surface layer 15 that's got enormous residual tensile stresses and the 16 cracks initiate there. 17 MR. RUDLAND: What we did in the pilot study in Version 1.0 was that we took an empirically 18 19 driven relationship and fit it to the operational history. We didn't really use the laboratory data. 20 There's a slight disconnect that we're seeing between 21 the laboratory data and the operational data. 22 So we

24 empirical relationship for Version 1.0, for the 25 feasibility study.

took the operational data and we fit that to an

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

23

169 1 For Version 2.0 what we've done is we've actually kicked off a PWSCC expert panel to try to 2 3 figure out what's the best way to handle this. And 4 it's funny that you say that because at the first 5 meeting of our expert panel that's one of the first things the experts said was, you know, because of 6 7 these surface stresses and the surface treatments, 8 it's difficult to be able to really then characterize 9 what the stresses are at the ID surface. 10 So it's probably best to take stress out of the initiation and just fit it to the operational 11 data and then you have what you have, because you 12 don't know what these heavy stresses really are in a 13 14 lot of cases. And then again, that panel met once, 15 they're meeting again several times before they make a recommendation on how we should move forward on 16 17 Version 2.0. Your points are very well taken and --CHAIR ARMIJO: Well you know laboratory 18 19 work can clear up a lot of these questions but those are expensive kind of tests. 20 21 MR. RUDLAND: They are. 22 MEMBER BANERJEE: So the cracks mainly propagate due to stress, the stress field? 23 24 MR. RUDLAND: Under this type of cracking, this intergranular cracking yes. It's a combination 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	of environment, which is attacking the material, and
2	loss of chrome. And then the crack is driven by the
3	stress through the wall thickness intergranularly.
4	MEMBER BANERJEE: Stress and temperature?
5	MR. RUDLAND: Stress and temperature,
6	correct, yes. They're stress and temperature
7	activated.
8	MEMBER BANERJEE: So you have a relatively
9	simple model?
10	MR. RUDLAND: It's relatively simple, yes.
11	Especially the empirical model for the initiation is
12	very simple, very simple model that we're able to
13	calibrate and then develop uncertainties by the
14	operational data. But again, the problem again with
15	that is that the operational data there hasn't been
16	very much. Especially in terms of the lines we're
17	looking at, there hasn't been very much. So we have
18	to use other data making approximations on that also.
19	The code also then goes through and allows
20	for the application of inspection, through inspection
21	intervals and mitigations. If anything happens to get
22	through and leak, becomes a through-wall crack, the
23	code calculates when that occurs and calculates a leak
24	rate. Keeps track of the leak rate as the crack is
25	larger. If it isn't removed it may fail so there's a
	I

(202) 234-4433

	171
1	stability check. If a particular run, a particular
2	pipe, does fail then code is exited, if not it
3	continues along through the life cycle of that.
4	So it's a time-based flow problem we allow
5	the program to go until something fails and then we
6	correct for things like leakage detection and
7	inspection and things like that after the run is
8	complete.
9	MR. CSONTOS: And just to go to the
10	question of models, a lot of these models that have
11	been developed, except for the initiation, have been
12	used a lot in our deterministic evaluations of plant
13	operational issues during the outage season when we
14	see facts. Dave fills out and runs those calcs. So
15	those deterministic pieces have been brought into this
16	so they've been vetted in the regulatory arena prior
17	to being in here.
18	MR. RUDLAND: Taking that same chart I
19	just showed and putting into more of a flow chart.
20	The purple boxes represent the deterministic fracture
21	mechanics based modules. And the way the code is
22	structured is that those modules are self-contained.
23	They are verified and validated separately and
24	compiled and plugged into the framework at a later
25	time.

(202) 234-4433

	172
1	So these are actually self-contained and
2	V&V'd modules that are linked together. In the pilot
3	study we chose to do a double-nested loop so that we
4	could separate out the aleatory uncertainty, or the
5	uncertainty that is random. And against that that is
6	the lack of knowledge type of uncertainty. And we do
7	that so that we can understand the effects. Because
8	we know if we can reduce that epistemic uncertainty we
9	want to know how much that actually effects the total
10	uncertainty in the problem.
11	MEMBER POWERS: Can I understand why the
12	crack growth module feeds into crack initiation
13	module?
14	MR. RUDLAND: Because in some cases we
15	have pre-existing defects. And so what we do is we
16	allow a crack growth increment to occur from a pre-
17	existing defect, or from a defect that existed in the
18	prior loop of that. We want to make sure we get that
19	crack growth before we check for the next crack.
20	CHAIR ARMIJO: So crack initiation here
21	means pre-existing mechanical cracks?
22	MR. RUDLAND: No. In this case the purple
23	module is actually initiating a crack due to a
24	mechanism. Pre-existing defects would occur outside
25	of this and during the sampling phase. A pre-existing
ļ	

(202) 234-4433

	173
1	defect would come in. This is actually the time loop
2	flowchart. So anything that occurs outside of that is
3	not show on this particular flowchart.
4	MEMBER POWERS: So what you're saying is
5	in case time-step you grow the cracks, then you check
6	to see if you've initiated new cracks?
7	MR. RUDLAND: That's correct.
8	MEMBER POWERS: Okay. And then you check
9	to see if you've coalescence from the existing?
10	MR. RUDLAND: That's correct.
11	MEMBER POWERS: A wise code developer of
12	my acquaintance, which seems like a contradiction in
13	terms, once told me that the interphase between two
14	models is itself a model. And it tends to the hardest
15	one to validate. Do you have that problem here?
16	MR. RUDLAND: Maybe, but the time steps
17	are not very large. The time steps are relatively
18	small over the course of a life of a plant, the time
19	steps are small. So I think that type of uncertainty
20	is not very large.
21	MEMBER POWERS: I think what he was
22	speaking to is the differences in phenomenology
23	between two models themselves provide boundary
24	conditions for the next model and that itself is a
25	model. And the problem is that frequently it's quite
I	

(202) 234-4433

1741 impossible to do a test that actually tests the 2 Or you wouldn't put a model in there. interface. MR. RUDLAND: That's right. Yes, and for 3 4 instance correct initiation and growth in a model, I 5 quess, could be the correlation between those two. Ι mean sometimes that's difficult to understand whether 6 7 or not they're correlated or not. And that's 8 something we're actually looking into. And hopefully 9 from some experiments we can determine what that 10 correlation is or use it's sensitivity studies to determine its actual impact on the probabilities at 11 the end. 12 13 How are we going to use xLPR? Well, 14 again, like I mentioned at the end of the day we plan

15 to get a failure frequency per year for a particular problem. And that failure frequency then will be set 16 17 on a run for typical parameters, for a problem. Then we will do something to it. In this case we'll put on 18 19 optimized weld overlay over the top of the а dissimilar metal weld attempting to mitigate 20 the PWSCC. 21

And that will probably shift the probabilities to the left. It could possibly also reduce the amount of uncertainty on that particular set of probabilities. And then, at the end of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	day, we have to develop a criteria to set up whether
2	or not a shift is acceptable, how much of a shift is
3	acceptable or what the level of probabilities are that
4	are acceptable.
5	So we actually have a group within the
6	program that's trying to develop the acceptability
7	criteria for these types of results.
8	CHAIR ARMIJO: Within your code could you
9	look separately, after you put that overlay on, could
10	you look separately to see if you've got through-wall
11	compressive stresses on all parts of that structure?
12	MR. RUDLAND: Well that's a model. That's
13	a model output, so the model will tell us that.
14	CHAIR ARMIJO: Because if that happens
15	then the game's over.
16	MR. RUDLAND: Yes, there's always a
17	probability that it's not effective. And so have to
18	turn
19	CHAIR ARMIJO: Do you have something in
20	your model that says
21	MR. RUDLAND: Yes, something didn't happen
22	right. Yes, that's right.
23	CHAIR ARMIJO: Okay.
24	MR. RUDLAND: And that's really what
25	drives those numbers, because those numbers are
ļ	1

(202) 234-4433

	176
1	relatively small.
2	CHAIR ARMIJO: Yes.
3	MR. RUDLAND: So this is the graph that
4	Sam was talking about earlier, just showing the team
5	members. These are the team members for the pilot
6	study in Version 1.0 development. We actually have
7	more folks working on Version 2.0. We've actually
8	expanded the models group significantly. And there's
9	more of the EPRI folks involved than were involved in
10	the first version.
11	CHAIR ARMIJO: A lot.
12	MR. RUDLAND: Yes, we have a lot of people
13	involved in working on this project.
14	MEMBER POWERS: There's a wise old saying
15	about too many cooks.
16	MR. RUDLAND: We only have one or two
17	cooks. And we've got a lot of, you know, vegetables.
18	MEMBER SCHULTZ: There's also some
19	repetition.
20	MR. RUDLAND: There are some repetition,
21	you see my name up there a couple of times actually.
22	But we've really developed a very good working
23	relationship. We've developed a consensus-based
24	decision making document so that can orderly discuss
25	technical details and make decisions on a relatively
ļ	I

(202) 234-4433

	177
1	easy scale.
2	We have a kind of like a differing
3	professional opinion procedure if we actually have
4	somebody that vehemently disagrees with what we're
5	doing, they have a way of documenting that and taking
6	that through the approval process.
7	So we've spent a lot of time developing
8	the structure behind this program. And it's worked
9	over the last two years, been very efficient and
10	worked very well. And the cooperative effort has been
11	amazing, I think, in how well we've worked together.
12	So this pilot study. Again, we wanted to
13	do a feasibility study and we actually had three main
14	goals. We wanted to take a look at this structure
15	that I just talked about. As a structure, can it
16	work? I mean when you get 70 people working on a
17	project together can you actually develop a workable
18	tool?
19	MEMBER POWERS: No.
20	MR. RUDLAND: That's a good question.
21	MEMBER POWERS: The answer to that is no.
22	MR. RUDLAND: I think we were able to do
23	it relatively well. We also needed to determine what
24	the appropriate probabilistic framework was. There
25	was some question about which way we should go so we

(202) 234-4433

1 wanted to look at that. And then we also wanted to 2 know if its even feasible to develop the type of code 3 that we want. A modular based code for probabilistic 4 fracture mechanics.

5 The pilot study was focused only on dissimilar metal weld in a surge nozzle, pressurizer 6 7 to surge nozzle dissimilar metal weld. We chose that 8 because when we started this project that had just 9 finished up a pretty extensive effort looking at some 10 flaws and failure analyses for Wolf Creek Power Plant, and the industry had developed an MRP-216 document 11 that had loads and geometry and a lot of things for 12 the pressurized to surge nozzles, so we thought that 13 14 was a good place to start.

15 CHAIR ARMIJO: If I remember right the 16 Wolf Creek indications came out, they weren't actual 17 leaks were they?

18 MR. RUDLAND: No, they were just19 indications. They were circumferential indications.

CHAIR ARMIJO: So you never could confirm
whether those were stress corrosion cracks because
they went and overlaid the suckers and moved on.
MR. RUDLAND: That's correct.
CHAIR ARMIJO: So you didn't know it was

25 a preexisting fabrication defect or a stress corrosion

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	179
1	crack?
2	MR. RUDLAND: But what we did was we
3	assumed it was PWSCC and we did a bunch of analyses
4	and developed a bunch of data and pulled a bunch of
5	things together for the nine plants that were being
6	affected by the outcome of those analyses. And then
7	we used that data in xLPR is what we did.
8	CHAIR ARMIJO: Okay.
9	MR. RUDLAND: So yes, they never took up
10	boat samples, they never checked to if it was PWSCC.
11	For the framework, what we did was we had
12	some differing opinions on how we should move forward
13	with the framework. There was some that thought we
14	should go fully open-source, that everything from all
15	the way down to the random number generator should be
16	developed with an open-source, and maintained that way
17	through the life cycle of the software.
18	And there were others that thought well we
19	could leverage some commercial software that's out
20	there that does that kind of stuff and keeps QA and
21	control and versioning of that separate from xLPR. So
22	that's not a burden on either EPRI or the NRC as we go
23	through the life cycle of the software.
24	So what we did in the pilot study is we
25	decided to just develop them both in a rougher manner.
ļ	I

(202) 234-4433

	180
1	In more of a pilot study effort and not a full
2	developmental effort. At the end of the day what we
3	did is we used the same deterministic modules in each
4	one of these codes.
5	So the purple boxes from a few slides
6	before, we used those same modules in each one of
7	these frameworks. And the only thing the frameworks
8	did was control the flow of the code, the time of the
9	code, the sampling and the data reduction at the end.
10	And the codes, at the end of day, give the same
11	results.
12	But one of the things we wanted to do was
13	we wanted to investigate this and determine how we
14	were going to chose what the proper framework was.
15	And I'll talk about that choice here in a little bit.
16	But we have two distinct frameworks that we developed
17	in the pilot study.
18	Uncertainties. We already talked some
19	about uncertainties. And we struggled a lot in the
20	pilot study because we really didn't the pilot
21	study, again, was just a feasibility study and we
22	weren't focused on trying to get the right absolute
23	values for the answers.
24	And so what we did was we made some
25	choices. The models and inputs groups came to a
I	1

(202) 234-4433

	181
1	consensus on those uncertainties. It was satisfactory
2	for the pilot study but I think it needs to be further
3	investigated. And we are further investigating it in
4	Version 2.0, on how to choose and classify and
5	propagate those uncertainties.
6	So these are the choices that we chose for
7	Version 1.0. Some of the things like crack initiation
8	was chosen as an epistemic uncertainty and we'll see
9	in a second that that made a huge impact on the
10	results.
11	We used things such as importance sampling
12	and Latin Hypercube and Monte Carlo analyses and
13	discrete probability distributions, all in an effort
14	to see which ones seems to work best and which ones
15	gave us the best feasibility of being able to do
16	reasonably timed runs for this particular code.
17	MEMBER POWERS: I don't understand your
18	choice of Latin Hypercube sampling. Artificially
19	narrows your uncertainty distribution.
20	MR. RUDLAND: Latin Hypercube?
21	MEMBER POWERS: Yes.
22	MR. RUDLAND: Well Latin Hypercube also
23	give you a better sampling across the whole
24	distribution. A more uniform sampling across the
25	whole distribution. I think that was why it was
ļ	I

(202) 234-4433

	182
1	chosen for the epistemic uncertainties.
2	MEMBER POWERS: Yes, but what you're
3	interested in is what the breadth is. And you've
4	artificially narrowed it. It will not convert to the
5	true distribution.
6	MR. RUDLAND: Well, what are you worried
7	about? The tails, is that the concern?
8	MEMBER POWERS: Sure.
9	MR. RUDLAND: Well that's why we used the
10	importance sampling. So what we did was we ran Latin
11	Hypercube and Aleator and Monte Carlo first to
12	determine where the issues were and then we
13	importance-sampled on those variables that were
14	driving the problem to catch those tails.
15	MEMBER POWERS: Why didn't you just use
16	Monte Carlo on both?
17	MR. RUDLAND: That time is very long.
18	CHAIR ARMIJO: Let him get to the next
19	slide and we'll some interesting
20	MEMBER POWERS: You probably don't need
21	any more samples for Monte Carlo than you do for Latin
22	Hypercube. How many are using on Latin Hypercube?
23	MR. RUDLAND: How many did we use? We
24	had, for most of the runs, we had in the order of
25	about a 1,000
I	

(202) 234-4433

	183
1	MEMBER POWERS: Oh Lord. If you've got
2	that many samples you should not be using Latin
3	Hypercube.
4	MR. RUDLAND: Okay. I will take that back
5	to the computational group, which is being run by
6	Sandia by the way.
7	MEMBER POWERS: Well you tell us they're
8	being run by the guy that's apostle of Latin Hypercube
9	sampling. Yes, with 1,000, I mean
10	MR. RUDLAND: Well the 1,000 was actually
11	done on Monte Carlo and we did 50 on
12	MEMBER POWERS: Yes, 50 is enough. You
13	can use Monte Carlo. The other thing you're gaining
14	is a picture of the optics of where the samples are
15	and you're losing badly on things like simple
16	statistical interpretation.
17	MR. RUDLAND: I'm going to get you and
18	Helton in the room.
19	MEMBER POWERS: And we could fight as much
20	as we do at Sandia.
21	MR. RUDLAND: As you'll notice when showed
22	some of the results we couldn't do it without
23	importance sampling or some kind of adaptive type of
24	sampling anyway, because the tails are driving the
25	problem, of course.
ļ	

(202) 234-4433

	184
1	MEMBER POWERS: Yes, and your Latin
2	Hypercube inevitably will narrow those. Now maybe you
3	can live with the narrowing but you're going to have
4	a problem with every time you present by saying
5	you're narrowing your distributions artificially here.
6	And why would you want to do that? If the tails are
7	in fact what are important to you. You've got more
8	than, it has been a very long time since I have had 50
9	in a sample.
10	And your sampling uncertainty is not
11	relieved by doing the Latin Hypercube sampling. It is
12	exactly the same. So you haven't gained anything
13	there. And you're losing a lot. The other question
14	is how are you handling the correlation among your
15	parametric uncertain quantities?
16	MEMBER SCHULTZ: It would be neat if he
17	flipped up the next slide. Flip up the next slide,
18	David. This is really curious, Dana, if you look at
19	these results. Especially if you know which
20	parameters are being run with the Latin Hypercube and
21	which ones are being run with the Monte Carlo and why
22	you get these wildly different shapes of the
23	uncertainty distributions by changing one parameter
24	from epistemic to aleatory. Look at those
25	distributions and now tell me what's going on.
I	I

(202) 234-4433

	185
1	MEMBER POWERS: There is only one that's
2	important.
3	(Simultaneous speaking)
4	MR. RUDLAND: But to get back to your
5	question. So your question is how do we handle the
6	correlations. That's a good question. And I don't
7	know if I can answer that or if I'm the right person
8	to answer that, but we can get that answer for you.
9	The input parameters are correlated and we're able to
10	sample them based on the correlation factors. But we
11	can get those answers for you.
12	In terms of this slide, this is some of
13	the results out of the pilot study. And as you've
14	probably noticed, on the left-hand side the gray
15	lines, going up and down, are the individual epistemic
16	realizations. And you can see that there isn't much
17	variation in those at all, they're pretty vertical.
18	So there isn't much in there that's really
19	effecting, in one particular epistemic realization,
20	there's not much effect of the aleatory uncertainty.
21	The red line is the mean line and the green line that
22	you see there is the 95th percentile.
23	When you take the crack initiation and
24	drop it over into the aleatory now you see that those
25	gray lines are now folding over, because you've got a
ļ	I

(202) 234-4433

186 1 lot more effect of that uncertainty. And that the crack initiation is really driving that problem. 2 3 Doesn't change the mean, the mean's the 4 But 95th percentile is extremely different. So same. the problem is really being driven by the crack 5 initiation. And not only that but there's something 6 7 else because there's still a spread across the data, going from left to right, which is telling me that I 8 9 still have some epistemic uncertainty that's driving 10 the problem. But in terms of the quantiles, especially, crack initiation is driving the problem. 11 MEMBER SCHULTZ: Dana, do you have any 12 idea why that behavior would change so much if you're 13 14 doing just a sampling algorithm and have enough 15 Why those shapes would change if you're samples? 16 doing --17 MEMBER POWERS: I would send you to Helton to understand. 18 19 MEMBER SCHULTZ: I have no idea. RUDLAND: I think the reason is 20 MR. because on the left-hand side, 21 in one of those 22 epistemic realizations, there is aleatorv no uncertainty. So it's either happening or it isn't. 23 24 You're either getting rupture or you're not. There's no uncertainty about it. That's why the lines are 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	vertical.
2	But when you go to this plot over here, on
3	the left-hand side, it's not vertical anymore. Now
4	there some effect of that aleatory uncertainty.
5	MEMBER BLEY: But that's the extremes.
6	The means ride the same in both of them and the bulk
7	of the distribution is the same. You just get these
8	extremes which come from the flip-flop on the yes/no
9	epistemic, that you always see.
10	MR. RUDLAND: There's an epistemic
11	uncertainty
12	MEMBER BLEY: But the bulk of that hasn't
13	changed. I mean it's just
14	MR. RUDLAND: The spread going across, the
15	difference between the mean and the 95th percentile,
16	each of those is really representing that epistemic
17	uncertainty. So we still have something very large in
18	there, epistemically, that's driving this
19	distribution.
20	MEMBER BLEY: And you can see that
21	epistemic glitch, over and over and over and over
22	again, all the way through.
23	MR. RUDLAND: That's right.
24	MEMBER SCHULTZ: I mean that's all it was,
25	is just
I	I

(202) 234-4433

188 1 MR. RUDLAND: So let's just look at the 2 mean results for a bit here now since we just talked a little about the distribution. 3 This is one of the 4 example results, just showing the effects of some of 5 the inspection and mitigation techniques. This blue line is a case for a Westinghouse-type pressurized 6 7 surge nozzle, dissimilar weld with a stainless steel safe vent close by. With no inspections, no leak 8 9 detection and no mitigation. So we have a cumulative probability of 10 rupture after 60 years of about five times 10^{-3} . We 11 then ran a case with mitigation, mechanical stress 12 improvement type of mitigation, at 20 years. 13 Reduced 14 the cumulative probability of rupture by about two 15 orders of magnitude. We then went back to the original and a 16 17 ten-year ISI and a one gallon per minute leak detection limit. And reduced it from, again, five 18 times 10^{-3} down to about five times 10^{-6} . 19 If I combined all three of them I've got this orange line 20 down at the bottom that's pretty close to one times 21 10^{-9} . 22 23 MEMBER SKILLMAN: David, what is the 24 mechanical mitigation that is vour red line? Physically what is mechanical mitigation? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

189 1 MR. RUDLAND: Mechanical stress 2 improvement is a clamping that's done remote from the 3 weld of interest. So about a pipe diameter away or so 4 from the weld of interest, they take a clamp and they squeeze the pipe and plastically deform it. 5 Ιt imparts a bending stress back to the dissimilar weld 6 7 which puts the ID in compression. 8 MEMBER SKILLMAN: I see. So it's a hoop 9 stress --Yes, actually it's both. 10 MR. RUDLAND: It's a hoop stress under there but it actually changes 11 the axial stress at the weld. 12 So you increase the stress 13 MEMBER BROWN: 14 at one part to increase the clamping stress, or the --15 That's right, basically put MR. RUDLAND: 16 a bend in it, it's like you're taking the pipe and 17 you're bending it, right. CHAIR ARMIJO: You wind up with tensile 18 19 stresses somewhere else but not in --20 MEMBER SHACK: It's puts the tensile stresses away from the weld. 21 MR. RUDLAND: You put the tensile stresses 22 where it's not susceptible. 23 24 CHAIR ARMIJO: Squeezed out, stretched 25 out.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	190
1	MEMBER SKILLMAN: Like a Weiner-dog
2	balloon.
3	(Simultaneous speaking)
4	MR. RUDLAND: Non-susceptible material.
5	It's about a one percent strain.
6	MEMBER BROWN: Do you also get wall
7	thinning?
8	MR. RUDLAND: You'll get wall thinning.
9	What you do is you get almost like a denting in the
10	pipe, so the pipe is Yes, so it's by one percent.
11	MEMBER SIEBER: The clamp stays on
12	forever?
13	MR. RUDLAND: No, it's plastically
14	deformed. So all you got is the plastic deformation
15	that's causing the reduction in the stress. Turns out
16	to be elastic back at the weld that we're talking
17	about, but it's plastic under the clamping device.
18	MEMBER BROWN: So it stays the way it
19	looks? It stays that way.
20	MR. RUDLAND: Yes, it stays that way. And
21	if you run your finger across it you can feel it.
22	MEMBER BROWN: It has to stay that way.
23	CHAIR ARMIJO: Why go through these things
24	when you can just do this big weld overlay? And that
25	does

(202) 234-4433

	191
1	MR. RUDLAND: The industry has choices due
2	to money, accessibility. In order to access this it's
3	tough, because they've got to clear away whatever,
4	sometimes they're working in the sand boxes to get the
5	clamps down in there. And I went and watched a demo
6	and the guy that's putting stuff on has actually got
7	to hang by his feet to get in there to put the shims
8	in so that they get the right amount of clamping going
9	on. So it's not an easy thing to do. And so they
10	have choices.
11	CHAIR ARMIJO: It's easier than weld
12	overlay.
13	MR. RUDLAND: It's easier than weld
14	overlay. It's a lot less I think in terms of the
15	time.
16	MEMBER POWERS: Do they charge money to
17	watch for this? Do you think some of that's spread in
18	the curves you showed, that series of curves is, just
19	due to the geometry of the crack consolidation?
20	MR. RUDLAND: Could be. What it is, it's
21	more in the stresses that are driving it than anything
22	else. There's a big uncertainty in the stresses. And
23	then since the uncertainty carries through the entire
24	project, the entire run.
25	MEMBER ABDEL-KHALIK: How did the ten-year

(202) 234-4433

	192
1	in service inspection impact the mean probability of
2	rupture?
3	MR. RUDLAND: I don't have that separated
4	out in this plot. But for this mechanism the growth
5	rate is very high and so the effects are very small.
6	So for it to get about order and a half magnitude drop
7	in cumulative probability you've got to go down to
8	about a two-year ISI.
9	CHAIR ARMIJO: I'm trying to understand
10	that. When you do the ISI you can detect these things
11	
12	MR. RUDLAND: Yes, the probability of
13	detecting them.
14	CHAIR ARMIJO: Probability of detecting
15	goes up and so at that point you do something about
16	it, right?
17	MR. RUDLAND: Do something about it,
18	that's right.
19	CHAIR ARMIJO: You do the
20	MR. RUDLAND: In the pilot study we took
21	it out and said that it's done. It's not going to
22	ever get worse, the crack is gone and the pipe has got
23	non-susceptible material and doesn't crack. That what
24	we did in the pilot study for a crack that was found
25	by inspection.
I	

(202) 234-4433

	193
1	MEMBER ABDEL-KHALIK: Oh, I see. You
2	catch it before it's detectible then you assume that
3	it's been mitigated
4	MR. RUDLAND: Right, in Version 1.0. In
5	Version 2.0 we're doing something a little different,
6	but in Version 1.0 that's what we did.
7	MEMBER ABDEL-KHALIK: But in reality
8	though it doesn't, right? It doesn't necessarily have
9	an impact.
10	MR. RUDLAND: Yes.
11	MEMBER ABDEL-KHALIK: You're not going to
12	be able to mitigate all the cracks.
13	MR. RUDLAND: They do. I mean, if they
14	find a crack now they mitigate it. Especially in one
15	of these dissimilar metal welds they have to, yes.
16	And most of time what they do is they either shorten
17	the inspection interval and keep and eye on it, but I
18	don't think there's ever been one left in service,
19	Tim.
20	MR. LUPOLD: We've never left one in this
21	country in service.
22	MEMBER ABDEL-KHALIK: Your name and speak
23	in the microphone.
24	MR. LUPOLD: There's never been a PWSCC
25	crack left in service in this country that we know
ļ	I

(202) 234-4433

	194
1	about. Now there has been in Europe.
2	MR. RUDLAND: So even if an indication is
3	found in these dissimilar welds they don't even wait
4	to make sure it is PWSCC, they
5	MEMBER ABDEL-KHALIK: They just measure
6	it.
7	CHAIR ARMIJO: Just put it to bed.
8	MEMBER SCHULTZ: You didn't show, for this
9	presentation, the separate slides. And during the
10	subcommittee meeting there was a question about if you
11	look individually at the effects from inspection or
12	leak detection each of those individually seem rather
13	modest. This shows the composite effect, roughly a
14	factor of 1,000 in this example. But there were more
15	dramatic examples. Do you yet have a feel for why
16	that compounds
17	MR. RUDLAND: Did you get my write-up I
18	wrote up?
19	MEMBER SCHULTZ: I did not.
20	MR. RUDLAND: I did, I sent the write-up,
21	oh yes, it was like a three or page write-up.
22	(Simultaneous speaking)
23	MR. BROWN: It was attached to the meeting
24	minutes.
25	MEMBER SCHULTZ: Okay, I didn't get the
l	I

(202) 234-4433

	195
1	meeting minutes.
2	MR. RUDLAND: Let me see if I can
3	summarize quickly for you.
4	MEMBER SCHULTZ: That's okay if we have it
5	I can read it, in the interest of time.
6	MR. RUDLAND: Yes, basically it's the
7	difference between dependant and independent
8	inspection. So if you find something or you don't
9	find something, you equal probability of finding, or
10	a better probability of finding it the next time. And
11	those things begin to add up and that's why you'll end
12	up with an effect that's a lot bigger than the
13	individual effect.
14	MEMBER SCHULTZ: I'll get it. I'm sorry,
15	I'll get it.
16	MR. RUDLAND: All right, and if there's
17	any further questions.
18	MEMBER SCHULTZ: I either got it and
19	ignored it or Thanks.
20	MR. RUDLAND: I didn't hear anything so I
21	thought everybody was satisfied with my explanation.
22	MR. RUDLAND: How many other welds are
23	there in the coolant system
24	(Simultaneous speaking)
25	CHAIR ARMIJO: Let's try and have one
Į	I

(202) 234-4433

	196
1	meeting, please.
2	MR. RUDLAND: How many are there?
3	MEMBER SIEBER: Yes. I would imagine
4	there's a lot.
5	MR. RUDLAND: There's not as many as you
6	think. You know, anytime that the reactor is weld to
7	a stainless steel pipe it happens. So the hot
8	leg/cold leg areas or to the
9	MEMBER SIEBER: That's carbon steel to
10	stainless?
11	MR. RUDLAND: That's right. So they use
12	this incanel weld to combine those.
13	MEMBER SIEBER: Incanel is the bad actor
14	in every one?
15	MR. RUDLAND: Right. So like the
16	pressurizer also. There are That's right.
17	MEMBER SIEBER: That's the alloy? Okay.
18	MR. RUDLAND: Now at the reactor coolant
19	pump they also have it there where it goes, sometimes,
20	from the carbon steel to the cast housing of the
21	reactor coolant pump also. Yes.
22	MEMBER ABDEL-KHALIK: I have a similar
23	question about the one gallon per minute leak
24	detection system. Okay, so you have a leak of that
25	magnitude. You fix it. This scenario has more than
Į	1

(202) 234-4433

	197
1	one leak that gets fixed during this 60-year period or
2	just one?
3	MR. RUDLAND: No, just one. Any single
4	realization, a single run through the time loop, if a
5	leak is found it's repaired and you're done.
6	MEMBER ABDEL-KHALIK: No, but you continue
7	
8	MR. RUDLAND: Again, it's assumed that it
9	becomes mitigated after the leak is detected.
10	CHAIR ARMIJO: But, Dave, the shape of
11	your curve, that dotted blue line, the way I read it,
12	maybe I'm misreading it, is that the one gpm leak was
13	found when it finally leveled off and from then on it
14	didn't grow?
15	MR. RUDLAND: No, and they're found
16	anytime throughout the life. Again, this is a
17	cumulative probability. So you've got things adding
18	up as you're moving along. And the cracks aren't
19	initiating all at one time, they're a random process
20	also. So some cracks are initiating at 20 years in
21	some realizations and some realizations they're not,
22	they're happening at 10 years. And sometimes they're
23	happening at 30 years.
24	And so whenever those cracks become
25	leakers and the leaks are greater than one gpm they're
ļ	I

(202) 234-4433

	198
1	removed from the analysis and considered completely
2	mitigated.
3	CHAIR ARMIJO: So unless you do the
4	mechanical stress improvement or weld overlay
5	initiation is still going on even though you
6	MR. RUDLAND: Anytime you change the
7	stress it changes the initiation behavior in the
8	future. So if you change the stresses then initiation
9	behavior in the future has been changed.
10	CHAIR ARMIJO: Now in this model do you
11	have anything equivalent to what the BWR people do
12	with hydrogen, water chemistry, noble metal, chemical
13	additions? Any of the chemistry effects?
14	MR. RUDLAND: Yes. In this
15	CHAIR ARMIJO: I didn't see a model in
16	there, in your various modules, that had a water
17	chemistry.
18	MR. RUDLAND: It's built into the crack
19	initiation and crack growth modules.
20	CHAIR ARMIJO: It's a subset?
21	MR. RUDLAND: So there are corrections and
22	different models depending on the water chemistry in
23	those particular modules. So for instance in the
24	pilot study the only thing we had in there was the
25	addition of hydrogen, which has been shown to slow
I	I

(202) 234-4433

	199
1	down PWSCC crack growth.
2	CHAIR ARMIJO: Oh it has?
3	MR. RUDLAND: In the laboratories, yes.
4	But the proposals for Version 2.0 are to add zinc to
5	the water, which is supposed to effect the crack
6	initiation parameters. I mean the technical basis
7	haven't been investigated yet but that's some of the
8	things that are being considered.
9	Again, this hydrogen addition are the
10	things that we're wanting to put into Version 2.0. I
11	think I detailed that a little bit more in the
12	subcommittee meeting, but didn't have time to do that
13	here at this meeting.
14	MR. CSONTOS: And zinc. The zinc addition
15	too?
16	MR. RUDLAND: I said that. So at the end
17	of the day the project team developed this code, ran
18	the sensitivity studies and determined that it was
19	feasible to develop this modular based code. We were
20	able to do that. We actually had an independent
21	contractor some in, develop a module and insert it
22	into the code by himself. He was able to do that, so
23	it was module enough that an independent contractor,
24	not involved in this project, was able to do that.
25	And we did it within this cooperative
I	I

(202) 234-4433

program with the people you saw working here. So I think we did a pretty good job of being able to do 2 this within this cooperative environment between EPRI and the NRC.

5 However, we did have some problems. We 6 did have some management problems. We originally had 7 an overarching program integration board that looked 8 over the entire project made up of, I think, 12 or 13 9 And getting 12 or 13 engineers in a room, engineers. 10 at the same time, to make a decision was not an easy So we raised that a little bit and so we didn't 11 task. have such a top-heavy management structure in the 12 13 project.

14 There was also a bunch of technical issues 15 that learned. In the end of the day we also chose 16 this commercial software. Not because it was any 17 better worse than the open-source software or developed, but I think it was thought that in terms of 18 19 revisions and maintenance in the long term, it would be cheaper to do this through a commercial entity than 20 tot allow a national lab or something like that to be 21 able to control that portion of the software. 22

So in the fall we kicked off Version 2.0 23 24 and our objective for Version 2.0 is to basically grow from what we've learned in Version 1.0, but to focus 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

	201
1	on the systems, models, mechanisms that are applicable
2	to the LBB lines.
3	MEMBER BROWN: Can you hold on a minute.
4	Did you say commercial qualified or whatever
5	MR. RUDLAND: Commercial software.
6	MEMBER BROWN: Commercial software and
7	open-source. I would have imagined that the
8	commercial software that you got had test developed by
9	somebody.
10	MR. RUDLAND: Yes.
11	MEMBER BROWN: Therefore it's theirs?
12	MR. RUDLAND: It is theirs.
13	MEMBER BROWN: All the code is theirs.
14	Which means you don't know all the details of all
15	their codes?
16	MR. RUDLAND: That's true.
17	MEMBER BROWN: Whereas with the open-
18	source software largely you have, yes you don't have
19	somebody in charge of it, it's different maintenance
20	characteristic. But at least you know all the little
21	nuances that are involved. And I only bring that up
22	because just based on some experience.
23	MEMBER POWERS: Well usually Sanjoy brings
24	it up.
25	MEMBER BROWN: Well the problem with the
I	1

(202) 234-4433

1 proprietary code is they can make changes in some areas which may have an impact on your results but 2 3 which you are not aware of when you finally go to use 4 an updated, upgraded version. As we frequently find 5 out when we download upgrades to commercial code on our computers. And then all of sudden it just stops. 6 7 MR. RUDLAND: Yes. You know we considered all this and the issue about --8 9 MEMBER BROWN: Well one other thing. It's 10 not so much it stops, obviously you know you've got a problem. It's what you don't know what's going on in 11 the background which may affect and maybe make your 12 results not representative of reality, because you 13 14 haven't done what I call test or experimental 15 verification of every little thing as you go along. 16 And say does it still meet those. BANERJEE: Well what is the 17 MEMBER commercial code? 18 19 MR. RUDLAND: It's called GoldSim. It was developed as part of the Yucca Mountain effort. 20 DOE used that in their Yucca Mountain submission. 21 22 MEMBER BANERJEE: I mean where is your source code? 23 24 MR. RUDLAND: I do not have a source code for GoldSim, no. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

202

	203
1	MEMBER BANERJEE: But you could get it?
2	MR. RUDLAND: Well, let me talk about that
3	for a second. So what we decided was that when it
4	comes to the revision changes for GoldSim it still has
5	to go through the same V&V effort through the program
6	so when
7	MEMBER BROWN: What program? Their
8	program?
9	MR. RUDLAND: Their program and our
10	program. So if a version changes we still have to run
11	through our V&V effort again to make sure that
12	whatever change they made to their code doesn't effect
13	our V&V software packages. So that's one.
14	CHAIR ARMIJO: That's if you're informed,
15	right?
16	MR. RUDLAND: Pardon me?
17	CHAIR ARMIJO: You would always be
18	informed of changes that they made?
19	MR. RUDLAND: Of course, sorry. That's
20	right. And they're very good. It's not a very big
21	company to begin with, and they're very good because
22	the NRC and DOE has been a very good customer for a
23	very long time.
24	MEMBER SCHULTZ: Like large corporations
25	called General Motors and Airlines and so forth. Is
I	

(202) 234-4433

	204
1	there something in place in case
2	MR. RUDLAND: Yes. So what we're doing is
3	we're working out an escrow program so if they go
4	belly up, for instance, then we'll get the source
5	code.
6	MEMBER SCHULTZ: Oh, okay.
7	MR. RUDLAND: And they're working it out
8	into the escrow agreement with GoldSim.
9	MR. CSONTOS: As well as this software,
10	commercial software, has been approved for use by NRC
11	for NMSS and FSME for their efforts in some of the
12	radioactive-waste arena. So for our side it's been
13	already approved, it's been V&V'd for that specific
14	version of it. And so any other version probably has
15	to work with NMSS because we then get a V&V for the
16	next version or whatever.
17	MR. RUDLAND: They're actually part of the
18	project team because we're using them to make
19	modifications to the code to suit our needs for this
20	project. But they have other kinds, you know, they
21	have a whiskey distillery client where they
22	MEMBER SCHULTZ: Okay so they are
23	MR. RUDLAND: It's not just us.
24	(Simultaneous speaking)
25	MEMBER REMPE: If a company, they're not
I	

(202) 234-4433

	205
1	a participant, but they want to use it for an
2	application, do they pay?
3	MR. RUDLAND: No. You have to pay a
4	royalty if you're a developer. So to develop the code
5	you have to pay a royalty, but then the code is
6	compiled and rolled out in a player version, kind of
7	like Adobe, so then you don't have to pay the license
8	in order to run the code. You can change the input,
9	you can change whatever the developer put on the GUI
10	screens. You just can't change the code.
11	CHAIR ARMIJO: Okay, David, we've probably
12	got to move along here.
13	MR. RUDLAND: Okay. So in Version 2.0 we
14	want to focus on these LBB lines. And we have
15	developed and expanded the team that we had and the QA
16	program that we had in Version 1.0. And the groups
17	are in the process, most of them are finished,
18	developing work plans, manpower resources, to do this
19	Version 2.0 code.
20	And one of the things that's very
21	important that I've been touting around when I've been
22	making presentations on xPLR is that we've been
23	talking a lot about the models that go in xLPR and the
24	models that will be in xLPR but it doesn't guarantee
25	regulatory approval. So we're still developing the
I	I

(202) 234-4433

	206
1	process of how best to handle the regulatory approval
2	of things that xLPR are used for in the future.
3	We're going to be making some additions.
4	I've labeled some things in red and some things in
5	black. The things in reds are the ones that we are
6	taking on first. So again, PWSCC was the only modeled
7	in the pilot study. We need to include environmental
8	fatigue.
9	We only looked at circumferential flaws,
10	we need to look at axial flaws. And then depending on
11	whether or not we have the manpower and the resources
12	to do it in our time frame we're going to expand it to
13	IGSCC and other mechanisms.
14	There's some issues, some mechanical and
15	fracture mechanics issues, with transitions of surface
16	cracks to through-wall cracks. As cracks begin to
17	leak they form kind of unusual shapes which can effect
18	the leak rate. We need to do some research and some
19	development in that area also, which is new compared
20	to what we did in Version 1.0.
21	CHAIR ARMIJO: David, you're not going to
22	treat, you don't think you need to treat flow
23	accelerated corrosion?
24	MR. RUDLAND: Not for the LBB lines. In
25	the primary system it's really not an issue.
	I

(202) 234-4433

	207
1	CHAIR ARMIJO: Yes, but for just basically
2	rupture of any big carbon steel line or
3	MR. RUDLAND: Yes, if we go beyond the
4	primary system we need to do that.
5	CHAIR ARMIJO: But right now you're
6	sticking with the primary?
7	MR. RUDLAND: We're not going to do that
8	with the LBB lines, no.
9	CHAIR ARMIJO: Do we have a water line
10	(Off microphone comments)
11	MR. RUDLAND: Apparently, yes.
12	MALE PARTICIPANT: On the secondary side.
13	(Off microphone comments)
14	MR. RUDLAND: Yes, there's issues in the
15	ASME code with it all the time. You know, there's
16	still code cases going on in developing and work being
17	done on flow, it's a big deal in Japan also.
18	(Off microphone comments)
19	MR. RUDLAND: Oh, that's right. And then
20	you update your model.
21	(Off microphone comments)
22	MR. RUDLAND: Interaction effects, yes.
23	MEMBER POWERS: It strikes me as a heck of
24	a good idea, because I just don't want to be
25	(Off microphone comments)
ļ	I

(202) 234-4433

	208
1	MR. RUDLAND: To the framework we're going
2	to be doing some modifications from the Version 1
3	code. We're going to be focusing on uncertainty
4	propagation and advanced methodologies, and maybe
5	we'll be concentrating on getting rid of Latin
6	hypercube, I don't know. But we're going to be
7	looking at those kinds of things.
8	(Simultaneous speaking)
9	MEMBER POWERS: And like a dog with a bone
10	you'll never give it up, but that's okay. Every time
11	you show up here I'll ask you.
12	(Off microphone comments)
13	MR. RUDLAND: I won't mention it next
14	time.
15	MEMBER POWERS: I'll remember.
16	MR. RUDLAND: So we're going to be looking
17	at a bunch of advanced methodologies to help improve
18	sampling, efficiency. We want the code to run
19	relatively quickly, so we're going to be looking at
20	many more different types of adaptive sampling methods
21	and things like that, as well as ways to propagate
22	these uncertainties without necessarily having to
23	break things up into double-nested loops and that kind
24	of thing. So we're looking at those options.
25	In terms of modeling, again we're going to
Į	I

(202) 234-4433

	209
1	be really focusing on PWSCC initiations since it
2	really is the driver, one of the main drivers.
3	I mentioned earlier, I didn't show in this
4	presentation, but I mentioned earlier about there's
5	still a bunch of epistemic uncertainty that's causing
6	this spread. Well, a lot of it comes from residual
7	stress and so we're going to be updating our residual
8	stress models. And we've been doing a lot more in
9	conjunction with that so if you are to understand the
10	uncertainties in residual stresses and how to
11	MEMBER BANERJEE: To do that do you have
12	measurements?
13	MR. RUDLAND: Yes. So we have a program
14	within the Office of Research that's looking at making
15	measurements and analyses, and we've had an
16	international round robin to try to see how well we
17	can predict the stresses and what the uncertainty is
18	compared to the experiments on these types of welds.
19	MEMBER SHACK: You treat that as an
20	epistemic uncertainty or a
21	MR. RUDLAND: Yes, right now it's an
22	epistemic uncertainty. But again, you know, like I
23	said we need to revisit some of that because there's
24	a big aleatory component to it.
25	MEMBER SHACK: Right.
ļ	I

(202) 234-4433

	210
1	MR. RUDLAND: Yes. There's no doubt.
2	MEMBER SHACK: I mean they're both there.
3	I'm not sure which is dominant at the moment.
4	MR. RUDLAND: Well, yes. I have to say
5	it's, the aleatory's pretty large, I think, but we
6	just don't know.
7	(Off microphone comments)
8	MR. RUDLAND: And then we have to update
9	our crack solutions also, our stress intensity
10	solutions, to be consistent with the residual stress
11	models that we develop.
12	CHAIR ARMIJO: Dave, just going back.
13	Have you ever run this code Version 1 all the way
14	until you actually calculate a rupture? Not a
15	probability of rupture but an actual
16	MR. RUDLAND: Every epistemic realization
17	creates a rupture, yes, or it gets to the end of the
18	time that they're allotted for the code and doesn't.
19	CHAIR ARMIJO: But, you know, as a crack
20	is growing deeper the whole state of stress in the
21	pipe changes, and your code does adjust for that?
22	Because I think that's what favors leak as opposed to
23	rupture unless you're in pure tensile loading.
24	Does your code treat those kinds of
25	things?
	I

(202) 234-4433

	211
1	(Simultaneous speaking)
2	MR. RUDLAND: Force equations and the
3	influence functions that go into determining how the
4	crack is driven takes that into account. They're
5	developed through a series of finite element analyses
6	that allows for the redistribution of stresses and
7	things like that. So it's taken into account and then
8	those models are incorporated here.
9	So the redistribution doesn't happen in
10	this thing because it's not something that needs to be
11	done here. It's done off line, the model's developed
12	and then the model's put into here. But it's all
13	accounted for.
14	CHAIR ARMIJO: There's a group of people,
15	and I'm one of them, that believe that all this
16	stress-corrosion cracking, the initiation is governed
17	entirely by residual stresses. And that once these
18	cracks nucleate and grow, if you haven't got enough
19	residual stress at the surface, i.e., surface to
20	nucleate at time after the first one, the likelihood
21	of new nucleations drops a lot, and from then on it's
22	all applied stress from plant operational stresses
23	that drive it through.
24	And I don't know if your code people think
25	that way or your modelers think that way but -
ļ	I

(202) 234-4433

	212
1	MR. RUDLAND: Yes, because you know
2	CHAIR ARMIJO: that's the way some of
3	us
4	MR. RUDLAND: the zone that's relieved
5	especially on the surface doesn't cover the
6	circumference for a flaw that initiates. So there's
7	probably a certain area that is relieved that's near
8	the crack faces.
9	CHAIR ARMIJO: Or the residual stress
10	isn't ever going to be high enough to nucleate a crack
11	but for one location.
12	MR. RUDLAND: That's a good point,
13	because a lot of times it's the really very localized
14	repairs that are causing the issue, or a grinding
15	effect or something like that.
16	(Simultaneous speaking)
17	MR. CSONTOS: There is fabrication that is
18	360 around with a back chip and reweld that I think if
19	you look at some of the earlier photos. So there's
20	substantial residual stresses in some plants, not all
21	of them, but in some plants because of the way they
22	fabricated the typical fabrication methodology.
23	So yes, in some cases you have surface
24	grinding effects that produce a superficial surface
25	layer of residual stresses. In some cases you have
I	I

(202) 234-4433

	213
1	partial small zones of repair
2	(Simultaneous speaking)
3	MR. CSONTOS: And then in some plants you
4	have a whole 360, you know, a residual stress state,
5	tensile residual stress state.
6	MR. RUDLAND: In some places you have
7	repairs you don't even know you have.
8	CHAIR ARMIJO: Right.
9	(Simultaneous speaking)
10	MEMBER SHACK: But in your model, I mean
11	if you just test surface stresses, presumably the
12	crack basically arrests?
13	MR. RUDLAND: If you only have surface
14	stresses.
15	(Simultaneous speaking)
16	MEMBER SHACK: You have a local stress
17	that leaks and then you only get a rupture if somehow
18	you keep missing the leak.
19	MR. RUDLAND: Well, it's not that is that
20	if you end up with high stresses all the way around
21	the circumference you can end up with this long, crazy
22	flaw that as soon as it leaks it's not stable. So you
23	don't get a chance for it to get caught by leak
24	detection before the rupture occurs.
25	CHAIR ARMIJO: Well, I think Bill did that
	I

(202) 234-4433

	214
1	experiment, didn't you?
2	MEMBER SHACK: I've done that once, yes.
3	CHAIR ARMIJO: If you have a pipe in pure
4	tension and you nucleate uniformly around the ID,
5	there's nothing to drive one crack ahead of the other
6	until it goes unstable and then you can have a pipe
7	rupture.
8	MR. RUDLAND: That's the flaws that we're
9	worried about, right. And that's the kind of thing
10	that these 360 repairs that Al's talking about that's
11	the kind of things that can drive those kind of
12	cracks. And in these cases a lot of times when you
13	look at these things, those are the flaws that are
14	showing up here at the ten to the minus nine
15	probability are those kind of weird cases.
16	Okay, so in the models like I talked about
17	earlier, this MSIP was the only mitigation technique
18	that we had in the Version 1 because it was just a
19	feasibility study. We are going to be putting FSWOL,
20	which is full structural weld overlay, optimized weld
21	overlay, OWOL, inlays, which is a thin removal of
22	material on the ID, replacing that with a less
23	susceptible material, another mitigation technique
24	that's considered.
25	Surface treatments like peening and those
	I

(202) 234-4433

	215
1	kinds of things are being considered as well as these
2	chemistry things I talked about earlier, the zinc and
3	the hydrogen additions. We're going to be updating
4	inspection modules and looking at a more accurate
5	crack, surface crack stability modules.
6	We have a little issue with our leak rate
7	module. It's not very efficient. So we're looking at
8	ways of rewriting or reorganizing our leak rate model
9	so that we can make that run more efficiently.
10	Some of the bigger updates that we're
11	doing now, which we have to include transient loads as
12	part of the inputs because we're going to be
13	considering fatigue. And so we're going out now and
14	trying to determine and pull together what information
15	do we need to pull from the plants in order to get all
16	the transient information.
17	So for Version 2, we're going to be
18	focusing on a reactor cooling loop from a Westinghouse
19	plant and reactor cooling loop from a B&W plant. And
20	if we have the resources and funds we're going to go
21	do another or maybe even a BWR. We'll have to see as
22	the project goes on if we have the funds to do that.
23	QA
24	MEMBER SHACK: What would be the
25	mechanisms in the B&W plant?
I	I

(202) 234-4433

	216
1	MR. RUDLAND: You mean fatigue mechanisms?
2	MEMBER SHACK: I mean the degradation
3	mechanisms you're looking at, just fatigue?
4	MR. RUDLAND: Yes, just fatigue, though I
5	think they have, I'm pretty sure there's a some
6	dissimilar metal welds in the B&Ws also.
7	MEMBER SHACK: Is there?
8	MR. RUDLAND: Right, because the hot legs
9	are carbon steel, but surge lines, I think, are
10	stainless.
11	MEMBER SHACK: Surge lines are stainless.
12	MR. RUDLAND: So there are some dissimilar
13	
14	MEMBER SKILLMAN: All the B&W plants have
15	dissimilar welds, all of them.
16	MR. RUDLAND: Yes, okay.
17	MEMBER SHACK: But high nickels.
18	MEMBER SKILLMAN: Not sure.
19	MEMBER SHACK: I mean there's certain
20	stainless to ferritic, but the question of whether
21	there's nickel
22	MR. RUDLAND: I'm almost certain there's
23	some in the surge.
24	MEMBER SHACK: Surge line, yes, there
25	could be.
l	I

	217
1	MR. RUDLAND: Version 1 was we had a
2	comprehensive configuration management system that we
3	put together for Version 1, but it wasn't coupled to
4	a complete QA program. But in Version 2 we are going
5	to have a complete QA program.
6	And at the beginning, last fall, we put
7	together a QA workshop and brought in guys from the
8	NRC, guys from the industries that were QA experts and
9	asked them, for this type of project what type of QA
10	structure do we need? What kind of structure is
11	needed so that this code can be used in a regulatory
12	framework? And from that we developed our QA program.
13	We've been kind of hinting about it as
14	we've been talking today, but it includes, you know,
15	it's structured off of a NQA-1, but it's project
16	specific and it's a developmental QA program and not
17	a release type of QA program. So it doesn't have the
18	maintenance level defined yet. It has only the
19	developmental stuff defined, but it includes
20	configuration management and V&V and all of the
21	essential parts of a quality assurance program.
22	And one of those important things again is
23	the audits, and so we will have QA audits of the
24	program that are going to be aligned with some of the
25	key deliverables that will coming up in the next
I	I

(202) 234-4433

	218
1	couple of years, and we'll have a third-party
2	independent audit done for that.
3	MEMBER SIEBER: Is it possible for some to
4	fail-break without leaking at all?
5	MR. RUDLAND: Yes. And that's kind of
6	what we're
7	MEMBER SIEBER: What's the chance of that?
8	MR. RUDLAND: Very low probability.
9	MEMBER SIEBER: Okay.
10	MR. RUDLAND: I mean again it's very
11	unlikely to occur, but it's the one that you're
12	worried about.
13	MEMBER SIEBER: Right.
14	MR. RUDLAND: And so in the case
15	especially of PWSCC you can end up with a very long
16	surface crack, and as soon as that thing leaks you
17	don't have enough area left to the pipe.
18	MEMBER SIEBER: And you're only hope is
19	ISI for that, right?
20	MR. RUDLAND: The only hope is ISI for
21	that, that ISI can catch that.
22	MEMBER SIEBER: Okay.
23	MR. RUDLAND: But again, ISI has a
24	probability of detection so there's always a chance
25	that you can end up missing it.
I	I

(202) 234-4433

	219
1	MEMBER SIEBER: Yes, right.
2	MR. RUDLAND: Especially if it's a ten-
3	year increment and the crack growth rate is so fast
4	that it initiates and grows within that ten-year
5	period.
6	MEMBER SIEBER: Okay.
7	MR. RUDLAND: This is just up here for
8	graphics. You don't need to try to read this. But
9	the point of it is that the models and inputs
10	development will be complete in early 2013. So in
11	about a year we'll be done with the models input
12	development, and then the code release is scheduled
13	for the end of 2013. So a good portion of 2013 will
14	be focused on the V&V efforts.
15	Like I mentioned, really the purpose of
16	xLPR Version 2 is to come up with a quantified
17	solution to the LBB issue, and how we deal with that
18	in terms of the GDC and the regulation is kind of
19	unclear at this point. I think the thought is that
20	we'll probably end up having a Reg Guide that will
21	demonstrate and dictate how some of these analyses, an
22	acceptable way of doing some of these analyses. We've
23	talked about maybe doing an update to the SRP but
24	again it hasn't quite been decided yet, but we're
25	going to be doing something in that level in terms of
ļ	I

(202) 234-4433

	220
1	the regulation.
2	Another aspect is that this development
3	will hopefully be able to be used in a variety of
4	different problems like we talked about. Some
5	important ones are, a research tool for prioritization
6	I think is important because it allows us to look at
7	this problem and really pinpoint where we need to
8	focus our research especially for the LBB issue. We
9	can help reduce those uncertainties and understand the
10	problem better by using a code like this.
11	It could also be used on some of the
12	problems like the transition break size or risk-
13	informed ISI or the GSI 191 problem especially since
14	some of them are talking about going risk-informed
15	with that. No guarantees. It's just an option that
16	it might be able to be used.
17	MEMBER SCHULTZ: David, have you had, I
18	know of at least one utility out there who was
19	embarking on it.
20	MR. RUDLAND: Yes, I do too.
21	MEMBER SCHULTZ: Have you had discussions
22	with them?
23	MR. RUDLAND: They've contacted me but
24	I've been kind of, kept mum about anything right now
25	especially during this part of the development. I'm
ļ	I

(202) 234-4433

	221
1	not right now involved at all from the regulatory side
2	with that.
3	MEMBER SCHULTZ: Okay.
4	MR. RUDLAND: I know there's some in the
5	room that are.
6	MEMBER SCHULTZ: I was going to say, are
7	other partners on your team more actively in
8	(Simultaneous speaking)
9	MR. TREGONING: Rob Tregoning from
10	research, I can address that. Their schedule is well
11	accelerated compared to when it
12	MEMBER SCHULTZ: That's why I was
13	interested
14	MR. TREGONING: would be ready, so
15	they're looking at other methods for quantifying break
16	frequencies in locations. And they're not doing a
17	mechanistic approach. Their evaluation is complicated
18	enough. So they're simplifying that aspect of their
19	analysis.
20	MR. RUDLAND: But problems like that could
21	be used. This program could be used for programs like
22	that. It may not be applicable to that plant's
23	problem but
24	MEMBER SCHULTZ: But if they're ahead of
25	your curve, have you had any input from them on things
ļ	I

(202) 234-4433

	222
1	that they're doing that might
2	MR. RUDLAND: I think the team members are
3	gathering input, yes. They are gathering input
4	because they're being directly involved with that kind
5	of stuff.
6	MEMBER SCHULTZ: Good. Okay, good.
7	Thanks.
8	MR. RUDLAND: And the hope is to go beyond
9	piping also, is to take a look at maybe some CRDM
10	ejections. Because there are problemistic models that
11	the NRC's developed for upper head penetration
12	ejection that could be included here. And the FAVOR
13	code was developed by Oak Ridge for the PTS problem
14	for RPV issues. And so it's possible that could be
15	ported into this type of environment also. We've
16	tried to keep this thing generic enough so that we
17	can, with minimal effort, incorporate these other
18	problems.
19	So where are we? Again, Version 2 is
20	underway. Again we started, you know, in the fall
21	with the QA development. We want to have these
22	ongoing meetings. This meeting here, I want to make
23	sure that we try to, at least yearly, talk to the
24	subcommittee that we talked to in the fall. Possibly,
25	and again not on the project as a whole but on
1	

(202) 234-4433

	223
1	individual topics like residual stress and crack
2	initiation, maybe chemistry and things like that to
3	get your ideas and input on those things.
4	We also have besides NRC and EPRI
5	management, we're developing an external review team
6	that's not associated with the project that's going to
7	give this project a recurring review of our progress.
8	And we also have internal reviews, NRR
9	technical staff that's not so involved in the
10	development is also doing technical reviews on this
11	ongoing basis. We're trying to keep this thing as
12	vetted as possible through its development.
13	MEMBER BANERJEE: So you've presented this
14	to our, what, fuels and materials subcommittee?
15	MR. RUDLAND: Yes.
16	MEMBER BANERJEE: And it involves all the
17	gory details?
18	MR. RUDLAND: Four hours, four and a half
19	hours.
20	(Simultaneous speaking)
21	MEMBER POWERS: Even more gory than this.
22	MR. RUDLAND: The problem is that there's
23	a lot of gory details and I think that's why we need
24	to
25	(Simultaneous speaking)
I	I

(202) 234-4433

	224
1	MR. RUDLAND: Yes, we need to have topical
2	meetings.
3	MEMBER SHACK: Initiation alone, four
4	hours would be
5	MR. RUDLAND: I'm going to be sick that
6	day, I think.
7	MEMBER BANERJEE: And when you say
8	external reviews, are these sort of like peer reviews?
9	MR. RUDLAND: Yes.
10	(Simultaneous speaking)
11	MEMBER SHACK: He's got everybody working
12	on it.
13	MR. RUDLAND: Well, we're getting it into
14	teams, we're gathering some professors and things like
15	that from, some folks from other countries that are
16	involved in problemistic fracture mechanics, and
17	bringing them in to do an independent review, because
18	they really haven't been involved in this development.
19	And we're trying to find people that haven't been
20	involved in the development.
21	MEMBER REMPE: That's a question I had,
22	and I'm sure if you bring in the professors for peer
23	review that the question will get asked. Is there any
24	activities of this effort that could be done at a
25	university, the V&V, or have you thought about that at
I	I

(202) 234-4433

	225
1	all? Because I'm sure they'll be asking.
2	MR. RUDLAND: Yes, I'm sure there are. I
3	mean we do have some, the industry side that there are
4	some professors that are involved.
5	MEMBER REMPE: And so some of the work is
6	actually being done by their students?
7	MR. RUDLAND: Yes, some of it's being done
8	by students, and it's going to be more so in Version
9	2, yes. And, you know, the criteria for the external
10	review, one of the criterias is just to not be
11	involved in the project, and be, you know, find a
12	technical area. So we're looking for, you know,
13	fracture mechanics guys, we're looking for statistics
14	guys. We're looking for plant guys. We're looking
15	for people that are different categories so that we
16	can put together a pretty comprehensive review team.
17	And that's kind of why we like this review team,
18	because it's very comprehensive in that aspect.
19	Version 2, then again like I said, is
20	going to be released hopefully at the end of 2013.
21	Right now we're on schedule but it's still quite a
22	ways away. And then by 2015 we're going to have a
23	technical basis and Regulatory Guide or some similar
24	type of regulation effect in 2015.
25	MEMBER SHACK: Do you have some buy-in
I	I

(202) 234-4433

	226
1	from NRR that they'll accept the problemistic fracture
2	analysis in lieu of?
3	MR. RUDLAND: Yes, I actually have a User
4	Need Request from them to develop the software, so
5	this is their idea and they want to go down this
6	route. Tim can speak to that probably better than I.
7	MR. LUPOLD: Yes, but what we'll have to
8	do is review the different modules that are developed
9	as part of this code and decide how, the appropriate
10	way to use them. We may decide that there's too much
11	uncertainty in something like the initiation and then
12	we might have to put some stipulation on how it's
13	used. But that process has to come yet, we haven't
14	worked out all the details.
15	MR. RUDLAND: One of the things that we're
16	looking at because there's so much uncertainty in
17	initiation, we're talking about putting in an option
18	in the code to just run it conditional on initiation.
19	Just take that out of the equation, you know, and we
20	can deal with it afterwards, but at least then we can
21	look at the effects of mitigation of things like that
22	without having the uncertainty of initiation clouding
23	of any answers.
24	CHAIR ARMIJO: Okay. Well, look, we're
25	getting close to running out of time. I'd like to ask
I	

(202) 234-4433

	227
1	the members if there's any questions they'd like to
2	raise or comments. Jack?
3	MEMBER SIEBER: None. I have none, thank
4	you.
5	CHAIR ARMIJO: Sanjoy?
6	MEMBER BANERJEE: Interesting, but I'm not
7	
8	CHAIR ARMIJO: You've got to come to
9	Subcommittee meeting.
10	MEMBER BANERJEE: Yes.
11	CHAIR ARMIJO: You're always welcome.
12	Steve?
13	MEMBER SCHULTZ: I'm good.
14	CHAIR ARMIJO: Dick?
15	MEMBER SKILLMAN: I'm good, thank you.
16	CHAIR ARMIJO: Dennis?
17	MEMBER BLEY: This will overwhelm
18	(Off microphone comments)
19	CHAIR ARMIJO: Dr. Powers?
20	(Simultaneous speaking)
21	MR. RUDLAND: Well, we'll keep coming back
22	and keeping you informed.
23	MEMBER POWERS: It's really interesting
24	and it's really quite an expansive approach they're
25	trying here. And I guess that all I can say is it's
I	I

(202) 234-4433

	228
1	about time. It'll be very useful if you get it done.
2	You need to give careful thought about the
3	use of the commercial software because that does have
4	some downsides to it. It has some upsides too, and
5	GoldSim is kind of almost commercial software. I mean
6	it's one of the those things where if you wanted to
7	look at the source code you probably can.
8	MEMBER BANERJEE: On that note though a
9	lot of the CFD commercial software is being made
10	available to NRC, the source code.
11	MR. RUDLAND: Source code.
12	MEMBER BANERJEE: Yes. And that we had a
13	long fight over this before some years but now it's
14	not
15	MR. RUDLAND: And to think about this
16	GoldSim Company, it's because they're small, they're
17	focused and they realize the worth of their larger
18	clients, and then maybe something like that could be
19	worked out. I don't know, I mean we'll have to see
20	where the evolution takes us.
21	CHAIR ARMIJO: Okay, Harold?
22	MEMBER RAY: No, sir.
23	CHAIR ARMIJO: Nothing? Nothing else?
24	MEMBER SHACK: I just can't figure out
25	which topic we want to pick for that subcommittee
	I

(202) 234-4433

	229
1	meeting.
2	CHAIR ARMIJO: We'll talk about that.
3	Charlie?
4	MEMBER BROWN: I'm fine.
5	CHAIR ARMIJO: And Joy?
6	MEMBER REMPE: It sounds like a great
7	effort. It's good to see industry and NRC cooperating
8	on it.
9	CHAIR ARMIJO: Yes, I would like to add
10	just a few things. I think it's a huge effort and
11	you've made a lot of progress. But I think maybe
12	you're putting too much on your plate on all the
13	things you're attempting to cover, and focusing a
14	little bit more wouldn't hurt.
15	I think there's something that you might
16	want to think about in some confirmatory laboratory
17	experiments that where you could make a prediction
18	from your codes and actually try and confirm them by
19	laboratory work. That seems to be missing from, you
20	know, you're going from existing data and just using
21	it.
22	(Simultaneous speaking)
23	CHAIR ARMIJO: Initiation thing is a real
24	challenge, and I think I'd like to see, have a
25	discussion on that somewhere in the future.
Į	I

(202) 234-4433

And you've always said you were going to incorporate the water chemistry variable, because in the BWR environment we could duplicate IGSCC and create it in our pipe test laboratory any time we wanted very predictably. We've tested pipes in tension, we've tested pipes in bending, and we're talking pretty big pipes.

And I don't know of any facilities similar 8 9 to that exist anywhere anymore for PWSCC, but if there 10 was some way that you could get some sort of confirmatory laboratory's PWSCC testing that you could 11 set up to predict the behavior based on your code and 12 have it happen in the lab that would be great, but I 13 14 don't know if it's feasible. But I would like to --

MEMBER SHACK: Sounds like a national lab project.

MR. RUDLAND: Well, I think I mentioned 17 this earlier that doing something 18 we are some 19 laboratory work on stability of these unusually shaped cracks, you know, this PWSCC gives us complex shaped 20 cracks, and we're doing laboratory pipe experiments 21 where we're taking dissimilar welds and putting cracks 22 in them and then bending them to failure to try to 23 24 understand that behavior. So some of it's happening 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	231
1	MEMBER SHACK: Getting them to grow by
2	PWSCC that's a different story.
3	(Simultaneous speaking)
4	MEMBER SHACK: And initiation's even worse
5	because that's such a slow process.
6	(Simultaneous speaking)
7	MR. CSONTOS: certain materials with
8	other types of stress-corrosion cracking versus nickle
9	and PWSCC. Do you think there's an analogue
10	(Simultaneous speaking)
11	CHAIR ARMIJO: If the model is good, yes.
12	Is there good materials
13	(Simultaneous speaking)
14	MR. CSONTOS: Like chloride stress-
15	corrosion cracking
16	(Simultaneous speaking)
17	MR. CSONTOS: Ammonia is another one. If
18	you get something like that and if we put that into
19	the code, you know, that may be a, it's just hard to
20	get initiation of
21	CHAIR ARMIJO: IGSCC, we know how to do
22	that for BWR stuff.
23	MR. CSONTOS: That's what I'm asking. And
24	so, you know, is that something that
25	CHAIR ARMIJO: Well, you know, anything
I	I

(202) 234-4433

	232
1	that gives you some sort of, experimentally I've got,
2	you know, I've predicted something and it actually
3	happens.
4	MR. RUDLAND: They're good on a small
5	scale, but there's no length to
6	CHAIR ARMIJO: I'm not saying you have to
7	test pipes, which we did, but just think about that.
8	MEMBER POWERS: Especially if you're
9	going to go to any kind of surrogate testing and
10	things like that then I think you definitely need to
11	look at the CSAU methodology, and how you take that
12	kind of an experimental result and get something that
13	you can legitimately use in the validation and
14	verification in the code.
15	MR. RUDLAND: Okay.
16	MEMBER POWERS: I don't know that you can
17	take the CSAU methodology whole and just import it
18	because it was developed for something else, but it
19	would give you what, the thermohydraulic community has
20	thought most deeply about this and they've developed
21	something that gives you some real good ideas on what
22	kinds of things you have to think about.
23	CHAIR ARMIJO: Rob?
24	MR. TREGONING: Just to clarify. You're
25	probably aware of it but not everyone is. All the
I	I

(202) 234-4433

	233
1	individual modules are verified quite extensively
2	experimentally. Now it's true that we don't have one
3	test to model the entire process from beginning to end
4	nor do I think that type of test is necessary.
5	I think what we may find is once we learn
6	enough about, and the beauty of the modular code is
7	when you learn your risk and you learn what's driving
8	your risk the first question you have is, well, is it
9	really physically driving the risk or is it driving
10	the risk just because I characterized that phenomenon
11	so poorly and I had so much uncertainty?
12	Well, that allows us to go back and
13	investigate that to see what's the case. There may
14	come a point where it may make sense to do a couple of
15	experimental tests, but planning and executing that in
16	a way that we can convince ourselves that it's even
17	representative of an actual situation is by no means
18	trivial.
19	So while that's a possibility, I think we
20	would only embark on that after very careful
21	consideration and deliberation and planning. So that
22	would not be something, at this stage I don't think
23	we're ready to even envision what that test may look
24	like. But down the road something like that may
25	become not only, you know, feasible, but may be
I	I

(202) 234-4433

	234
1	necessary to fully demonstrate conceptually. But all
2	the pieces are definitely validated through 30 to 40
3	years of experimental and analytical work.
4	CHAIR ARMIJO: Okay, I hear you. But, you
5	know, laboratory testing, you can control variables.
6	And a lot of field stuff you don't know what those
7	variables are.
8	MEMBER SHACK: Just think, Sam, try to do
9	one crack growth test, which is an easy test, and
10	think how difficult that is to get representative
11	results out of one test. And then you go to a test
12	like this where there's stresses, initiation, growth.
13	CHAIR ARMIJO: You know, maybe breaking it
14	up into a test of a specific part of a model in the
15	laboratory
16	(Simultaneous speaking)
17	CHAIR ARMIJO: and maybe that's what
18	Rob says already exists, but we'd like to look into
19	that and see
20	MR. RUDLAND: Yes, we could talk about
21	that. We've talked about the validation of the models
22	as one of the break-out talks.
23	CHAIR ARMIJO: Okay. Well, look, first
24	I'd like to thank the staff for a very good
25	presentation. And we ran a little bit longer, so I
	I

(202) 234-4433

	235
1	think we've got Turkey Point.
2	And I think we're going to try, do you
3	want to start it at 3:00?
4	MEMBER SHACK: Let's take a 15-minute
5	break.
6	CHAIR ARMIJO: Fifteen-minute, okay.
7	(Whereupon, the above-entitled matter went
8	off the record at 2:52 p.m.)
9	CHAIR ARMIJO: Okay, we would like to
10	reconvene and Dr. Shack will lead us through the
11	Turkey Point EPU discussion.
12	MEMBER SHACK: Okay, we have had two
13	subcommittee meetings now on Turkey Point EPU and a
14	meeting of our full committee in January where we
15	covered most of the issues associated with the EPU.
16	The big remaining issue of course if the
17	handling of the thermal conductivity degradation and
18	the we have heard from the licensee on that but what
19	we are going to go through today again is a
20	presentation from the staff on their evaluation, their
21	confirmatory calculations and their conclusions.
22	From the licensee, we are going to have an
23	overview of some topics that did come up in the
24	January meeting; a loss of off-site power overview and
25	their shared systems overview. Again, some of the
	I

(202) 234-4433

	236
1	features that are rather unusual about Turkey Point
2	compared to other plants.
3	So I will start off with Allen Howe for
4	the NRC.
5	MR. HOWE: All right, thank you. I am
6	Allen Howe, Deputy Director, Division of Operating
7	Reactor Licensing in the Office of Nuclear Reactor
8	Regulations. We appreciate the opportunity to brief
9	the ACRS this afternoon on the Turkey Point Extended
10	Power Uprate Application.
11	As we mentioned, we did brief the ACRS
12	Subcommittee back in December, the full committee in
13	January and went back to the Subcommittee in February.
14	At our additional briefing of the
15	Subcommittee, we addressed the resolution of several
16	open items from the full committee meeting in January
17	and our specific focus was on the thermal conductivity
18	degradation issue.
19	In today's meeting the staff will present
20	an overview of the result of our safety and technical
21	review of the licensee's application regarding thermal
22	conductivity degradation. There were no open items
23	associated with the EPU review but we had a couple of
24	clarifying questions from the February 12th or
25	February 2012 Subcommittee meeting. The staff has
ļ	I

(202) 234-4433

	237
1	provided responses to the ACRS staff and we are
2	prepared to provide any clarification during today's
3	meeting if needed.
4	Jason Paige will provide more details on
5	the discussion topics for today's meeting. But before
6	I turn it over to Jason, I just want to say that I am
7	pleased with the depth and the breadth of the staff's
8	review. In evaluating the Extended Power Uprate
9	Application, the staff addressed a diverse set of
10	technical issues, including the thermal conductivity
11	degradation issue, which required extensive
12	interaction with the licensee.
13	And at this point, I would like to turn
14	over the presentation to Jason.
15	MR. PAIGE: Thank you, Allen.
16	Good afternoon. My name is Jason Paige.
17	I am the Project Manager in the Office of NRR assigned
18	to Turkey Point.
19	First, I would like to take this
20	opportunity to thank the ACRS members for your effort
21	in reviewing the proposed EPU application and revised
22	safety evaluation.
23	I also want to express my thanks to the
24	NRC staff for conducting a thorough review of a very
25	complex application and also for providing support to
	I

(202) 234-4433

	238
1	these meetings.
2	During today's full committee meeting, you
3	will hear from both the licensee and the NRC staff in
4	providing you with specific details of the EPA
5	application. The objective is to summarize the TCD
6	issue and present the status evaluation supporting our
7	reasonable assurance determination that the proposed
8	EPU will not endanger public health and safety.
9	Before I cover the items that were
10	discussed during the February 24th ACRS subcommittee
11	meeting and agenda for today's meeting, I would like
12	to provide some background information related to the
13	proposed EPU.
14	On October 21, 2010, the licensee
15	submitted its License Amendment Request for Turkey
16	Point Units 3 and 4 EPU. The proposed amendment will
17	increase each unit's license core power level from
18	2300 megawatt-thermal to 2644 megawatt-thermal. This
19	represents a net increase in license core power of 15
20	percent, including a 13 percent power uprate and a 1.7
21	percent measurement uncertainty recapture. This is a
22	20 percent increase from the original license thermal
23	power.
24	The staff's method of review was based on
25	Review Standard 001, which is NRC's review plan for
ļ	I

(202) 234-4433

	239
1	EPUs. As you know, it provides a safety evaluation
2	template, as well as matrices that cover the multiple
3	technical areas that the staff is to review.
4	There are no associated or linked
5	licensing actions associated with the EPU application.
6	FPL previously submitted two license amendments for
7	Turkey Point, the AST amendment in 2009 and the Spent
8	Fuel Pool Criticality amendment in 2010.
9	The NRC staff approved the AST and Spent
10	Fuel Pool Criticality Analysis amendments on June 23
11	and October 31st of 2011 respectively.
12	Finally, there were numerous supplements
13	to the application, responding to multiple staff RAIs.
14	Overall there were approximately 50 supplemental
15	responses, which supported our draft safety
16	evaluation. Also the staff completed several audits
17	to complete its review and resolve open items.
18	As Allen mentioned, we briefed the ACRS
19	Subcommittee and full committees on December 14, 2011
20	and January 19, 2012, respectively and followed up
21	with additional briefings to the Subcommittee on
22	February 24, 2012.
23	The follow-up Subcommittee briefing
24	focused on the thermal conductivity degradation issue.
25	This slide shows all of the items that were resolved
ļ	I

(202) 234-4433

	240
1	and discussed during the ACRS Subcommittee meeting on
2	February 24th. All open items have resolved by the
3	staff and, as requested, the staff provided all
4	licensee supplements to address the open items to the
5	ACRS staff.
6	Also the staff provided a revised safety
7	evaluation to ACRS staff on Tuesday February 21, 2012
8	with a list of sections that were revised to close out
9	the open items.
10	At the conclusion of the February 24th
11	Subcommittee meeting, a couple of clarifying questions
12	were generated which were addressed by the staff and
13	provided to the ACRS members and staff via email. The
14	staff's presentation does not focus on these
15	clarifying questions but, as Allen stated, the staff
16	is prepared to provide clarification if requested.
17	Before I move on, as one point of
18	clarification, Dr. Graham Wallace asked a question
19	during the February 24th Subcommittee meeting
20	regarding PAD4TCD license condition that was believed
21	to be issued back in June 2002. I personally
22	apologize for the confusion. We couldn't clarify it
23	during the Subcommittee meeting but hopefully we will
24	be able to do that right now.
25	If you look at the licensee supplement, I
ļ	I

1 provided a handout to you, to everyone. It is dated 2 January 245, 2012. The licensee in this supplement 3 provided a marked-up page of the license, which 4 included the license condition that Dr. Graham Wallace 5 was referring to. If you look at the bottom of this supplement, you can see the date of June 6, 2002 and 6 7 that is where the confusion came from. This date 8 represents the last time that this page was revised 9 with the issuance of a previous License Amendment And I believe this date reflects the 10 Request. approval of license renewal for Turkey Point. 11 So once the EPU is issued with the PAD4TCD 12 license condition, this date will change on this page 13 14 to reflect the EPU issuance. 15 This slide is the topics for today's 16 discussion. The topics were determined from the 17 discussion topics from the February 24th Subcommittee meeting. 18 19 First, the licensee will provide an introduction, then FPL will provide additional details 20 and clarifying information on discussion topics from 21 the ACRS Subcommittee meeting on February 24th, which 22 are loss of offsite powers and shared systems. 23 The NRC staff will then summarize the 24 thermal conductivity degradation issue and present why 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

241

	242
1	the licensee's proposed approach is acceptable.
2	Even though the focus of today's meeting
3	is on TCD, the staff is available to address any
4	questions you might have on any other technical review
5	area.
6	Lastly, a portion of the staff's TCD
7	presentation will be a closed session, due to there
8	being proprietary information on the slides.
9	Before I turn it over to FPL, I would like
10	to also mention on behalf of the NRR staff members
11	involved in this review, we would like to say a
12	special thanks to the ACRS staff that helped in the
13	preparation for the Sub- and full Committee meetings,
14	specifically Weidong Wang.
15	Are there any questions at this point?
16	Okay, I will turn it over to Mr. Mike Kiley. He is
17	the site VP at Turkey Point.
18	MR. KILEY: All right, good afternoon. As
19	Jason said, my name is Mike Kiley. I am the Site Vice
20	President of Turkey Point. With me today is Steve
21	Hale to my immediate left. Steve is the Director of
22	EPU Licensing. To his left is Sam Shafer. He is the
23	Assistant Operations Manager at the current SRO
24	licensed facility with over 25 of experience at Turkey
25	Point.
I	I

(202) 234-4433

First of all, I would like to thank the ACRS for the opportunity to discuss the Turkey Point 2 EPU License Amendment Request today. Since the last ACRS Subcommittee or I should say the last two ACRS Subcommittees and the last full Committee meeting, we have been working very, very closely with the NRC 6 staff to close remaining open items.

8 Now we recognize and appreciate the 9 importance of the staff's questions, particularly 10 those centered on thermal conductivity degradation. The NRC staff performed a detailed review of our 11 analysis, including a multi-day audit at the site, in 12 which we presented our analysis to the staff. 13 This 14 audit and others performed by the staff have been 15 invaluable and have led to a very thorough and 16 comprehensive review of the proposed EPU.

17 Our culture at FPL and Turkey Point is grounded by a strong commitment to nuclear safety. 18 It 19 is uncompromising. This is our top priority and we do not take that responsibility lightly. So at this 20 time, I would like to turn this over to Steve Hale and 21 we look forward to being able to answer any remaining 22 questions. 23

24 MR. HALE: Okay, as Jason mentioned, the focus of our presentation really is to hopefully 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

5

7

	244
1	clarify some discussion we had at full Committee in
2	January. I wanted to talk a little bit about loss of
3	offsite power. There were a number of questions. We
4	walked through this with Subcommittee and it was
5	thought this would be a good summary to go over with
6	the full Committee.
7	With regards to dual-unit loss of offsite
8	power, we have one event where both units lost offsite
9	power. This occurred in August of 1992 with Hurricane
10	Andrew. Of course, in advance of hurricane force
11	winds, we had put both units in a safe shutdown
12	condition. So from that standpoint, we have never had
13	a case where we have had a dual-unit loss of offsite
14	power with both units at 100 percent power.
15	There have four single-unit loss of
16	offsite power events; two on each unit. These were
17	internal or associated with the switchyard not
18	specifically related to the grid.
19	There was one event that happened in 2008,
20	February of 2008, which was a partial blackout in the
21	State of Florida. This event did cause a trip of both
22	units but neither unit lost offsite power. We were
23	able to do the fast bus transfer to the startup
24	transformers and we maintained offsite power.
25	When you look at it strictly from a risk
I	

(202) 234-4433

	245
1	standpoint, the risk of a or the probability of a
2	dual-unit LOOP is about 0.02 per year. When you look
3	at it in terms of Core Damage Frequency, we are well
4	down into the low probability eight times ten to the
5	minus eight per year.
6	The transient analysis that we did perform
7	did demonstrate the specific criteria for Cat 2 events
8	as we not fill the pressurizer and we demonstrated for
9	a regular loss of offsite power that that does not
10	occur.
11	And another time that we wanted to
12	clarify, I think there was a question. We are not
13	adding any new operator actions as a result of loss of
14	offsite power with the EPU. The results are very
15	similar. It is a fairly quick transient and we are
16	not adding any new additional operator actions as a
17	result of the EPU.
18	MEMBER SCHULTZ: Steve?
19	MR. HALE: Yes.
20	MEMBER SCHULTZ: Don't flip so quickly
21	there. I guess I am, for a plant design like Turkey
22	Point, I am a bit surprised by a number that is as
23	small as eight times ten to the minus eight per year
24	for Core Damage Frequency for a loss of offsite power.
25	Do you have any information on that?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	246
1	MR. HALE: Yes, we had and it really
2	kind of leads into the next topic talking about shared
3	systems.
4	MEMBER SCHULTZ: Okay.
5	MR. HALE: I wanted to walk through that.
6	MEMBER SCHULTZ: Okay, thanks.
7	MR. HALE: We did get in okay.
8	MEMBER SCHULTZ: Thanks, I'll let you do
9	that.
10	MEMBER BROWN: Before you go on, can you
11	enlighten me, because I am not enlightened right now,
12	on how you come up with a 0.02 per year dual LOOP when
13	you have had one in 20 years?
14	MR. AVERETT: I can talk to that.
15	MEMBER SCHULTZ: Thank you.
16	MR. AVERETT: My name is Mark Averett. I
17	am the lead PRA analyst for Turkey Point.
18	And 0.02 per year you are referring to
19	the Hurricane Andrew event?
20	MEMBER BROWN: Well I just looked at 20
21	years and one drop out and I divide one by 20. I'm
22	not an analyst and I am not a PRA guy. That just
23	worked out to be five percent to me.
24	MR. AVERETT: Well, I understand. Well
25	like a lot of things in PRA, we not only use plant-
ļ	

(202) 234-4433

	247
1	specific data, we also use industry data as well. It
2	is just one event isn't really that statistically
3	significant. So we used Bayesian-update the plant-
4	specific data along with industry data to come up with
5	that number.
6	MEMBER SCHULTZ: The plant-specific data
7	with what industry data?
8	MR. AVERETT: I beg your pardon?
9	MEMBER SCHULTZ: Plant-specific data with
10	what particular industry data?
11	MR. AVERETT: U.S. nuclear industry data.
12	MEMBER SCHULTZ: If you could give me a
13	reference, it would be helpful in terms of knowing
14	what that means. I am looking at a tabulation of data
15	that has been specialized from U.S. nuclear industry
16	data to the Turkey Point site that has generic mean
17	frequency of 0.047 per year. And if I update that
18	with one event in 20 years, I don't think I get 0.02.
19	I think I get a much higher frequency. So I am
20	curious what data you use.
21	If I use data for Southern Florida, for
22	example, it probably doesn't look like other sites.
23	So if you did a Bayesian-update with using as a prior
24	data from a lot more beneficial sites, you are
25	optimistic.
I	

(202) 234-4433

	248
1	MR. AVERETT: Well what we did is we
2	typically take like the last ten years of data.
3	MEMBER SCHULTZ: If you took last year's
4	worth of data, you might get like zero. This looks at
5	data for like 40 years.
6	MR. AVERETT: Well what we do is we take
7	the last ten years' worth of data. EPRI publishes,
8	every year they publish a compendium of loss of
9	offsite power events throughout the industry. We look
10	at those industry events. We examine them to see if
11	they are applicable to Turkey Point, if it could
12	happen at Turkey Point. Things like snowstorm events
13	we don't count. Things like hurricane events we
14	weight more heavily. And we I can't compare it to
15	what you are looking at without having both sets of
16	data.
17	MEMBER SCHULTZ: This is NUREG/CR-6890
18	from Table B-2.
19	MR. AVERETTE: So we used the EPRI data.
20	MEMBER BLEY: Did you use the national
21	average? Is that what you started with?
22	MR. AVERETTE: We used national data, yes.
23	MEMBER BLEY: Okay, so you mixed in data
24	from clients with much more favorable offsite power
25	configurations than you have?
I	

(202) 234-4433

	249
1	MR. AVERETTE: Yes, but the Bayesian
2	process should take care of that.
3	MEMBER BLEY: And you did it for the last
4	ten years, not
5	MR. AVERETTE: I believe it is about the
6	last ten years.
7	MEMBER BLEY: I thought you were going to
8	tell us that you weren't going to count this
9	hurricane-related one because you shut down. And I
10	could almost see that story. But this one is a little
11	harder to buy into.
12	MR. AVERETTE: Well there is that
13	argument, too, because it had been shut down for some
14	hours before the loss of offsite power occurred.
15	MR. HALE: Well there is one area also I
16	would like to mention is the transmission system is
17	not static. As part of our discussions in getting
18	ready for this meeting, we spent quite a bit of time
19	with our transmission distribution department. They
20	have done quite a bit of upgrades since the last 20
21	years as well. Hardening, one of the things certainly
22	is better performance during hurricanes, things of
23	this sort. So you know, from that perspective, the
24	transmission system has been improved significantly
25	over the last 20 years as well.
I	I

(202) 234-4433

	250
1	But I think the intent here is to show
2	that we have never experienced a dual-unit loss of
3	offsite power with both units at 100 percent power.
4	Okay? The one case we did have dual-unit LOOP was a
5	hurricane where we are procedurally required to reduce
6	power and then go into a safe shutdown condition
7	before the onset of hurricane force winds. And the
8	results of our analysis indicate that we are very
9	similar to where we were before the EPU and we are not
10	adding any additional operator actions as a result of
11	that.
12	MEMBER SCHULTZ: Yes, you are Okay.
13	MEMBER BANERJEE: But you have a higher
14	heat load to get rid of.
15	MR. HALE: Sorry?
16	MEMBER BANERJEE: But you have a higher
17	heat load to get rid of.
18	MR. HALE: That is true but the response
19	is pretty quick to loss of offsite power event. The
20	heat up event happens very quickly. And then it
21	stabilizes fairly quickly.
22	MEMBER BANERJEE: Well what happens if you
23	use 0.1 there instead of 0.02?
24	MR. HALE: You are still relatively low.
25	MEMBER BANERJEE: Okay, so why are you?
I	

(202) 234-4433

	251
1	If you use 0.1, there is no effect. What would happen
2	if you used 0.1 instead of 0.02?
3	MR. HALE: It would be affected by
4	MEMBER BANERJEE: I mean it is not a big
5	issue.
6	MR. HALE: Yes, we were strictly
7	communicating what is used in our PRA analysis for
8	this and we thought it would be worthwhile to describe
9	what our history has been over the last 20 years.
10	MEMBER BLEY: But in a few slides you are
11	going to tell us what takes you from 0.02 down to ten
12	to the minus seven.
13	MR. HALE: Yes, that's true.
14	MEMBER BLEY: Okay, that is what I want to
15	hear.
16	MR. HALE: All right. One of the topics
17	we had for the Subcommittee, we did run through our
18	PRA and discuss that. And of course one of the
19	questions that came up was why is our probability of
20	CDF so low. One of the main reasons is because of
21	some of the design features at Turkey point that
22	facilitate or help us in those risk scenarios.
23	Our Emergency Core Cooling System, we have
24	a shared Emergency Core Cooling System. This consists
25	of two high-pressure pumps per unit, two RWSTs per
I	I

(202) 234-4433

	252
1	unit. If we get one SI signal, it initiates SI on
2	both units. In other words, you get all four pumps
3	starting and supplying flow.
4	We have four emergency diesel generators
5	on-site and each pump is powered by a separate
6	emergency diesel generator.
7	The Aux Feedwater System is fairly unique
8	in that we have three turbine-driven pumps, any one of
9	which can supply the auxiliary feedwater needs for
10	both units. We are able to accommodate and address
11	AFW needs without any AC power.
12	In addition to the turbine-driven pumps,
13	they also have a diesel-driven standby feedwater pump
14	which has its own diesel and it drives just that pump.
15	It is not an electrical diesel. It is strictly for
16	driving the standby feedwater pump.
17	As mentioned, we have four EDGs at the
18	site and an SI on either unit will initiate the
19	emergency diesel generators.
20	Also, as we mentioned at the Subcommittee
21	as part of our license renewal effort at Turkey Point,
22	the ACRS Subcommittee actually came to the Turkey
23	Point site and we demonstrated the ability to cross
24	tie the emergency diesel generators for station
25	blackout. In other words, we can actually cross tie
	I

(202) 234-4433

	253
1	emergency diesel generator from the control room and
2	one diesel can satisfy the station blackout needs of
3	both units.
4	MEMBER BROWN: Simultaneously?
5	MR. HALE: Simultaneously, yes.
6	So the combination of these things all
7	contribute significantly to our relatively low Core
8	Damage Frequency at Turkey Point.
9	Any other questions?
10	MEMBER SCHULTZ: Core Damage Frequency
11	then would apply to a dual-unit core damage event.
12	MR. HALE: Yes. Mark, if you could
13	MR. AVERETT: What is the question?
14	MEMBER SCHULTZ: That number that you
15	Because of the extent of cross ties, you pretty much
16	have to lose everything to lose either unit. Which
17	means, you have probably lost both of them. Is that
18	right?
19	MR. AVERETT: Well, the Core Damage
20	Frequency you see up there is typical of a unit, per
21	unit Core Damage Frequency. We take into account
22	dual-unit
23	MEMBER BLEY: I understand. But if you
24	had a dual-unit If you have loss of offsite power,
25	that probably because of the way you are cross-
Į	I

(202) 234-4433

	254
1	wired here, if you lose one, you probably lost them
2	both is what John said. So that is probably your
3	dual-unit Core Damage Frequency under
4	MEMBER SCHULTZ: Given the fact that your
5	shared systems can support both units, I am assuming
6	you are taking credit for anything you can share in
7	protecting the unit that you focused on. Meaning, if
8	it is gone, the other one probably doesn't have a lot
9	left.
10	MR. AVERETT: That's true. If you have a
11	dual-unit loss of offsite power and you have a station
12	blackout core damage sequence, then you have probably
13	lost both units.
14	MEMBER SCHULTZ: Okay. And you say your
15	turbine-driven aux feedwater pumps are capable without
16	AC power. Are they capable without DC power?
17	MR. AVERETT: No.
18	MEMBER SCHULTZ: Okay.
19	MR. AVERETT: But it is a full power
20	train. And then in addition to that, we have the
21	backup of the diesel driven auxiliary.
22	MEMBER BLEY: Does that require any power?
23	MR. AVERETT: What's that?
24	MEMBER BLEY: Does that require DC power
25	as well?
	I

(202) 234-4433

	255
1	MR. AVERETT: No, not the standby pump.
2	MEMBER BLEY: The diesel pump just by
3	itself.
4	MR. AVERETT: Stand-alone diesel. Right.
5	MEMBER RAY: The cross-tie of the
6	Emergency Diesel Generators, is that part of the
7	original design, do you know?
8	MR. AVERETT: No, it wasn't. The original
9	Turkey Point design was two diesels for two units.
10	MEMBER RAY: Yes, I tried mightily in
11	another life to achieve that and I never could get the
12	NRC to approve it. So I wound up getting permission
13	to manually affect the cross-tie. Because of the
14	benefit it has to the PRA. I mean, it is obvious.
15	But the potential, at least as was explained to me at
16	the time for a single failure to take out the diesel
17	from both sides was the reason I couldn't never get it
18	approved.
19	MR. AVERETT: It is key-locked in the
20	control room. Sam can walk through the process.
21	MEMBER RAY: You don't need to do that.
22	I just wondered.
23	MR. AVERETT: But no, you are right. It
24	wasn't part of the original plant design we installed.
25	In fact, I was the engineering director at the site.
	I

(202) 234-4433

	256
1	When we did this, we installed two new diesels at
2	Turkey Point in the late '80s and early '90s. And as
3	part of that design, we were also addressing station
4	blackout and we incorporated the cross-tie, swing the
5	kV bus into the design.
6	MEMBER RAY: Well, like I say, that is the
7	right thing to do in my judgment but I never could get
8	them to let me do it that way. I had to have cables
9	that I want to plug in to the switch gear.
10	MR. AVERETT: Understood. So anyway, that
11	was what we wanted to cover and hopefully we clarified
12	some of the questions that came up.
13	MEMBER SCHULTZ: I can see where the
14	cross-tie capabilities just
15	MR. AVERETT: I would like to revisit one
16	thing on the gentleman's question about whether if you
17	have a station blackout core damage sequence if indeed
18	you take out both units. In other words, a core
19	damage event for both Unit 3 and Unit 4. Sometimes
20	that is true, sometimes it is not. You could actually
21	have a situation where you could have a core damage
22	and a station blackout on say Unit 3 because you
23	forgot, the operator failed to implement station
24	blackout cross-tie.
25	MEMBER SCHULTZ: Yes, so there are some
Į	I

(202) 234-4433

	257
1	MR. AVERETT: Right, but if you have the
2	hardware there, all the diesel
3	MEMBER SCHULTZ: Hardware then you are
4	out of luck.
5	MR. AVERETT: Yes.
6	MEMBER SCHULTZ: Okay, thanks, Mark.
7	MR. AVERETT: Okay, that really completed
8	ours.
9	Similar to what we did, I just did want to
10	mention that at Point Beach we did keep a small group
11	of people here to facilitate any renews you need of
12	the letter that ACRS was going to produce. I know we
13	provide a comments and review on that. So we will
14	maintain a small group here after.
15	MEMBER SHACK: We do plan to write a
16	letter.
17	MR. AVERETT: Okay and we will provide any
18	support we can in that regard. Okay? All right,
19	thanks. We appreciate it.
20	MR. ULSES: Actually if I may, Mr.
21	Chairman, I would like to just kind of give my
22	Well, if we wait for Paul to settle here, just share
23	a few thoughts with you on TCD. And for the record,
24	my name is Tony Ulses. I am the Branch Chief for the
25	Reactor Systems branch.
I	1

(202) 234-4433

	258
1	I'm going to start up talking about TCD
2	today. This has been a challenging issue for the
3	staff. And you know, we are waiting for the responses
4	to the 50.54(f) letters. Those are not due until 19
5	March. And so quite literally, there are some generic
6	aspects of this issue that we just do not have the
7	information all in front of us yet. So at this point,
8	we are not prepared to discuss all these issues.
9	But as you recall, when we were talking to
10	you at the Subcommittee meeting, we do make a
11	commitment to come and talk to you after we have had
12	a chance to digest all the information and draw all
13	our conclusions after we review the information. And
14	we will do that after we have a chance to complete the
15	review. As soon as we possibly can we will talk to
16	Weidong and we will set this up.
17	But in the context of looking specifically
18	at the work that FP&L did to address the issue for the
19	Turkey Point station, I think what you are getting
20	here today from the staff is that the licensee very
21	aggressively approached this issue. They went back
22	and they essentially re-did their accident analysis
23	where it was necessary in order to complete this
24	action.
25	So we have drawn the conclusion of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	259
1	reasonable assurance of safe operation. That is what
2	we are going to leave you with here today. I just
3	kind of wanted to frame the issue before we get
4	started. So thank you very much.
5	MR. CLIFFORD: Thank you, Tony.
6	Hello, my name is Paul Clifford, NRR
7	Division of Safety. And you will have to use your
8	imagination to see Ben here. He will be joining us on
9	the phone when it is his turn to discuss LOCA.
10	MEMBER BANERJEE: Is he lying on the beach
11	somewhere?
12	MR. CLIFFORD: Let's imagine he is.
13	MEMBER BANERJEE: At Point B.
14	(Laughter.)
15	MR. CLIFFORD: Okay, I will be describing
16	the interim solution to the generic TCD issue that
17	FP&L has put forth to support the EPU for Turkey
18	Points 3 and 4.
19	We will be discussing the staff's review
20	of the PAD4TCD Thermal Conductivity Model. And
21	finally discussing some independent calculations which
22	were performed with the audit tool FRAPCON-3.4.
23	The original Turkey Point License
24	Amendment Request that came in in 2010 was based upon
25	a currently approved PAD 4.0 model. This is the
ļ	I

(202) 234-4433

	260
1	approved Westinghouse fuel rod thermal mechanical code
2	that has been in use, I believe, since 1999.
3	It wasn't until relatively late in the
4	staff's review that it became evident that we needed
5	to address the thermal conductivity degradation issue.
6	In response to RAIs which were issued by the staff,
7	FP&L developed an interim solution to address this
8	generic issue. It involved revising the fuel thermal
9	conductivity model within PAD and using this revised
10	model in all the downstream calculations, including
11	the fuel mechanical design.
12	MEMBER BANERJEE: Paul, what was not
13	completely clear to me is that interface between PAD
14	and say your analysis using COBRA/TRAC or whatever
15	that is used in your ASTRUM analysis. Is it just the
16	stored energy or how does it sort of filter through?
17	When I asked that question at the last Subcommittee
18	meeting, it wasn't 100 percent clear to me what all
19	those interfaces and interactions were.
20	MR. CLIFFORD: My understanding is, and
21	I'm not an ASTRUM guy, is that they use the fuel
22	performance code and they run various power histories
23	and various burnups and they come up with table sets
24	of stored energy, which would be average fuel
25	temperature as a function of burnup and as a function
I	I

(202) 234-4433

	261
1	of power level. So they have these tables of stored
2	energy for different rods.
3	MEMBER BANERJEE: So there is a table
4	look-up procedure?
5	MR. CLIFFORD: I believe so. And then
6	when they do the ASTRUM analysis and they pick a rod
7	out of the 124 cases to run, they would then, based
8	upon whoever picks their rod, it would then go to the
9	stored energy for that particular characteristics of
10	burnup and power level.
11	MEMBER BANERJEE: And how does the fission
12	gas part of it enter? Does it enter through something
13	like the
14	MR. PAIGE: Excuse me, Paul. If you are
15	going to answer that question, you have got to make
16	sure it is not proprietary information. This is still
17	open right now. So if we need to close it out.
18	MR. CLIFFORD: Yes, I would suggest that
19	we close the meeting.
20	MEMBER SHACK: Well, let's just go into
21	closed session now because the next slide starts the
22	closed session and we can do it right now.
23	MEMBER BANERJEE: I can hold the question
24	until the next slide.
25	MR. CLIFFORD: Well, we're already here.
ļ	1

(202) 234-4433

	262
1	MEMBER SHACK: We are there. So we are in
2	closed session now.
3	(Whereupon, at 3:40 p.m., the foregoing
4	proceeding went off the record for a
5	closed session and went back on the
6	record at 4:49 p.m., continuing the open
7	session.)
8	MR. CLIFFORD: Okay, Ben, I think you are
9	all set to go. I'm on slide 19.
10	MR. PARKS: Okay, thank you, Paul. I am
11	ready to begin my presentation. Is the room all set?
12	MR. CLIFFORD: I believe so.
13	MR. PARKS: Okay, thanks. I'm Ben Parks
14	with the Reactor Systems Branch. I am going to talk
15	about the thermal conductivity degradation issue and
16	the licensee's assessment on the downstream safety
17	analyses.
18	On slide 19 here we have the licensee
19	provided a disposition for most events and did some
20	explicit analysis to account for the effects in the
21	TCD-sensitive events. I have listed those events
22	here. And for the next two slides, I will explain
23	what I mean by disposition and why we ultimately
24	accepted that.
25	So for these five events, the licensee did
ļ	I

(202) 234-4433

	263
1	an explicit analysis and they concluded that those
2	events would continue to meet their acceptance
3	criteria.
4	So their disposition I have details on the
5	next slide. So if we could go to slide 20 which is
6	disposition.
7	In the RETRAN model, there are some
8	conservative features in RETRAN to offset the effects
9	of thermal conductivity degradation. The assumption
10	of an elevated average fuel pellet temperature that is
11	greater than what would be calculated by PAD 4.0 and
12	then on top of that, the entire core is initialized at
13	a peak fuel temperature. So even the fresh high-
14	powered fuel is initialized at this elevated fuel
15	temperature. And that is expected to account for the
16	TCD effects and the transient analyses.
17	So the more detailed VIPRE models that the
18	licensee uses to calculate DNBR, the steady-state rods
19	that they calculate in VIPRE, they actually model the
20	fuel to coolant heat flux and not necessarily the
21	explicit fuel rod internal conditions. And in those
22	cases, those models are insensitive to TCD.
23	The transient VIPRE models use a maximum
24	fuel temperature input. The licensee performed
25	assessments to determine whether that would impact the
ļ	I

(202) 234-4433

1 calculated departure from nuclear boiling ratio and 2 the licensee determined that the DNBR would not be 3 impacted. I believe that was for two reasons. When 4 the NRC stopped review of those, we realized that the 5 transient analyses relied on conservative assumptions. For those events the licensee determined would be 6 7 affected by a TCD, they performed explicit analysis to 8 confirm that there was margin relative to the 9 applicable acceptance criteria.

10 And basically because the transient analysis relied on conservative 11 and bounding assumptions, what they have shown even as corroborated 12 by their explicit analysis that the events are less 13 14 sensitive to the effects of thermal conductivity 15 degradation than the realistic ECCS evaluation.

And so for us, what that means is the licensee's disposition is acceptable while we wait for the generic resolution to the TCD effects because they did the explicit analysis where the analysis was needed.

21 On side 22, I will get into the realistic 22 Emergency Core Cooling System evaluation. The 23 licensee addressed TCD and introduced additional 24 operating restrictions to offset its effects in the 25 LOCA analysis. The offsetting operating restrictions

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 included a reduction in the power peaking, an increase in the reactant coolant system average temperatures, 2 3 and additional investigation of the accumulator volume 4 uncertainty. Basically what I mean by that is the 5 licensee looked into the way that the accumulator volume uncertainty was being treated, both in its tech 6 7 specs and the surveillance requirements, and in the 8 ASTRUM analysis. What the licensee determined was 9 that they were double counting their accumulator 10 volume uncertainty because the tech specs already included an allowance for that uncertainty. 11 So they tightened up that number to be more reflective of the 12 way that the plant is required to operate by tech 13 14 specs. 15 how sensitive are MEMBER BANERJEE: Ben, 16 the results to this accumulator volume uncertainty, as 17 well as there was one more, which was the number of steam generator tubes that could be plugged. Right? 18 19 I'm just wondering --I've got a couple plants in my 20 MR. PARKS: I believe Turkey Point's solution was to reduce 21 head. steam generator tube plugging from ten percent to five 22 They do not explicitly quantify the effect 23 percent. 24 of each of these parameters and basically by I will say convolving, by convoluting these together, the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

265

I	266
1	previous sector re-scattered all the results. So it
2	is hard to say explicitly how sensitive the overall
3	results are to one of these parametric changes. They
4	didn't do that sensitivity for me.
5	MEMBER ABDEL-KHALIK: How much was the
6	power peaking reduced?
7	MR. PARKS: There was a change in the SQ.
8	I think it came from 2.5 to about a 0.2 reduction, if
9	I recall. If you need the explicit number, I will
10	have to look it up. I can't remember.
11	MEMBER ABDEL-KHALIK: Can the licensee
12	provide that information, please?
13	MR. O'FARRILL: Yes, I can. This is Carl
14	O'Farrill with Florida Power and Light. We changed
15	the transient FQ from 2.4 is what we had in the
16	original submitted to 2.3. We also changed the F
17	delta-h value from 1.65 to 1.60. The study FQ was
18	changed from 2.0 to 1.9
19	MEMBER ABDEL-KHALIK: Thank you.
20	MEMBER BANERJEE: How much in the way of
21	tube clogging do you have at the moment? Is it very
22	low?
23	MR. O'FARRILL: It is well below that five
24	percent value. I don't have those numbers right in
25	front of me. It is on the order of a percent or two.
ļ	I

(202) 234-4433

	267
1	Maybe Rudy does.
2	MR. GIL: Yes, Rudy Gil, FPL. One of the
3	generators is just at two percent and the majority of
4	the generators are well below that. It is not a
5	that one is not a mechanism that we would expect would
6	grow much more.
7	MEMBER BANERJEE: Can you also just
8	recount the accumulator volume uncertainty treatment?
9	It was done at the Subcommittee meeting but it
10	wouldn't harm to get clarification on that once more.
11	I think it was Steve Hale who told us about it.
12	MR. HALE: Yes, Steve Hale, Florida Power
13	and Light.
14	What we found is the accumulator volumes
15	that were addressed in the ASTRUM analysis were based
16	on a taking the tech spec values and then applying
17	uncertainty to the tech spec values. What we found is
18	that the tech spec values already accommodated the
19	uncertainty. So essentially we were subtracting the
20	uncertainty twice as a result of that. So we just
21	corrected that one aspect of it. But we basically
22	used the tech spec values which already incorporated
23	uncertainty, rather than counting it twice.
24	MEMBER BANERJEE: Thanks.
25	MEMBER SCHULTZ: Steve, for completeness,
I	I

(202) 234-4433

	268
1	can you provide the RCS T-ave increase?
2	MR. HALE: Yes. If you will recall, when
3	Westinghouse performs these safety analysis, they do
4	it over a range of minimum to maximum T-ave.
5	For ECCS or for peak clad temperature
6	analyses, the lower T-ave is more conservative. So we
7	raised the lower bound. I can't remember what the
8	specific value was. Maybe Carl can speak to it.
9	MR. O'FARRILL: Carl O'Farrill again,
10	FP&L. We changed that value from 570 degrees to 577
11	degrees at hot full power and we operated 580
12	nominally at hot full power.
13	MEMBER BANERJEE: Okay, thanks.
14	MR. PARKS: Okay, can I continue with the
15	presentation?
16	MEMBER BANERJEE: Yes.
17	MR. PARKS: Okay. So once those
18	parameters were identified and adjusted and the new
19	TCD model incorporated into ASTRUM, all of the
20	WCOBRA/TRAC analyses were re-executed. So they used
21	124 cases to figure out what the upper tolerance on
22	PCT and oxidation, or I'm sorry upper tolerance limits
23	on those parameters are. And they re-executed all 124
24	of those cases to get their results.
25	The previous random numbers were retained,
Į	I

(202) 234-4433

Í	269
1	which was acceptable. It enables comparison of the
2	previous distribution of ASTRUM cases through the
3	corrected set of cases. And I presented to the
4	Subcommittee the effects of the changes that the
5	licensee made by comparing the previous analysis to
6	the current analysis. And basically generally what
7	you would see is there is just a shift upward in the
8	peak cladding temperatures and the results were, as I
9	said, re-scattered. And there is a burnup dependence
10	introduced into the analysis, based on the elevated
11	fuel centerline temperature.
12	MEMBER ABDEL-KHALIK: How was the increase
13	in T-ave justified?
14	MR. PARKS: I'm sorry, what was the
15	question?
16	MEMBER ABDEL-KHALIK: I guess the
17	applicant stated that T-ave, the lower limit in the
18	band of the analysis or the sampling I guess from 570
19	to 577
20	MR. O'FARRILL: This is Carl O'Farrill at
21	FP&L. The 570 was there to accommodate a temperature
22	coast down at end of cycle, should we need to do that.
23	MEMBER ABDEL-KHALIK: Right.
24	MR. O'FARRILL: So we are removing that
25	ability to do the temperature coastdown or limiting
I	I

(202) 234-4433

	270
1	the ability to do a temperature coastdown at the end
2	of cycle.
3	MEMBER ABDEL-KHALIK: Because the lower
4	the T-ave you use the higher the PCT that you
5	calculate.
6	MR. O'FARRILL: Yes.
7	MEMBER ABDEL-KHALIK: Okay. So this
8	limitation on your ability to coast down, is that a
9	license constraint or is that a condition that you are
10	imposing on them?
11	MR. O'FARRILL: It is an analysis
12	constraint that is using what we had. That was not a
13	licensing constraint or it is an analysis It is an
14	analysis constraint on our operation.
15	MEMBER ABDEL-KHALIK: An analysis
16	constraint on your operation?
17	MR. O'FARRILL: We don't typically coast
18	down at the end of cycles. It is there if we have
19	change. We have to design our cycles like 18 months
20	ahead of time. So we make assumptions on capacity
21	factors and outage duration and they are scheduling
22	for the scheduling for the operating cycle. So if any
23	of those things changes, there could be a mismatch.
24	We could be shutting down the cycle early or we could
25	be saying we are going to have to go beyond our point
I	I

(202) 234-4433

	271
1	of full energy capability.
2	And we like to have some capability to do
3	a temperature coastdown because that allows us to take
4	advantage of the negative MTC and maintain full power
5	longer for a few days.
6	MEMBER ABDEL-KHALIK: But this constraint
7	is on the first power upright cycle. Is this
8	something that you intend to do for the foreseeable
9	future?
10	MR. O'FARRILL: I think in my experience
11	we have only had two coastdowns at Turkey Point.
12	MR. CLIFFORD: Well, Carl, maybe it would
13	help. Does Turkey Point have an LCO on T-inlet, which
14	would then be used to infer what T-average was?
15	MR. O'FARRILL: We have a maximum for T-
16	ave.
17	MR. CLIFFORD: A maximum?
18	MR. O'FARRILL: Right and it is DNB-
19	related.
20	MR. CLIFFORD: Obviously there is a
21	program value for T-ave.
22	MR. O'FARRILL: There is a program value
23	that goes from hot zero power to hot full power on
24	temperature. And it includes a dead band and that is
25	where the plus or minus three degrees that we have in
I	

(202) 234-4433

	272
1	there; 580 minus is 577 and on the plus side is 583.
2	So we do the analysis on that to allow that
3	accommodation for a dead band for any kind of power
4	maneuvers that you might have to have, we can go off
5	the temperature.
6	MEMBER ABDEL-KHALIK: This is the dead
7	band for automatic rod control.
8	MR. O'FARRILL: This is the dead band that
9	the operators have as their target for T-ave when they
10	operate.
11	MEMBER ABDEL-KHALIK: Okay, it should be
12	roughly the same.
13	MR. O'FARRILL: Yes. It could be viewed
14	with what we had It is typically to have this dead
15	band in there for operations. And it is just the
16	flexibility that we had to accommodate a potential
17	temperature coastdown at the end of cycle. We are
18	just taking away that flexibility.
19	MEMBER SKILLMAN: And Carl, how hard is
20	that limit at 577 T-ave? Is that going to be a
21	restriction until PAD 5.0 is brought onto your license
22	or do you retain the ability to drop back to 570?
23	MR. O'FARRILL: We would have to do the
24	re-analysis of the large-break LOCA. So if we do that
25	and when we do that analysis, it is our hope that when
I	1

(202) 234-4433

	273
1	PAD 5.0 comes out, that we are going to gain margin
2	back and we will get to alleviate some of these
3	restrictions, particularly on peaking factor and
4	potentially on T-ave as well. We are going to
5	prioritize what we can or can't do.
6	MEMBER SKILLMAN: So your T-ave, your
7	minimum T-ave is going to be 577.
8	MR. O'FARRILL: Yes. For now it will be
9	577. That is the bottom end of the dead band at hot
10	full power.
11	MEMBER SKILLMAN: Okay, now is that a tech
12	spec requirement or an admin requirement? How is that
13	
14	MR. O'FARRILL: Not, it is a procedural
15	requirement.
16	MEMBER SKILLMAN: It's a procedural
17	requirement.
18	MR. O'FARRILL: Right. It is an operating
19	procedure requirement.
20	MEMBER SKILLMAN: Thank you, Carl.
21	MEMBER BANERJEE: I guess I don't really
22	understand why you think Well maybe I should ask
23	the staff the question.
24	The way this has been done, if I
25	understand it, it shouldn't be too different from what
I	I

```
(202) 234-4433
```

	274
1	PAD 5.0 will come out with. If it was wildly
2	different, we wouldn't feel so happy about it. So I
3	am assuming that PAD 5.0 will come up with essentially
4	the same answers. The thermal conductivities and the
5	full power seconds or whatever is in the core at the
6	start of LOCA is going to be about the same because
7	you have got the right thermal conductivity.
8	With fission gas, you are roughly right,
9	based on the old model. So why is there hope that PAD
10	5.0 will alleviate anything? Or is there any hope?
11	MR. CLIFFORD: I have no expectation that
12	there is going to be some margin recovery.
13	MEMBER BANERJEE: All right. That makes
14	much more sense. There should be none. If there is,
15	then there is something very strange,
16	counterintuitive. And if there is, you would imagine
17	that there is some pencil sharpening which has
18	produced that margin, not physical phenomenon.
19	MEMBER SHACK: There may be more room to
20	sharpen the pencil when we have PAD 5.0.
21	MEMBER BANERJEE: Well obviously. Every
22	time we do an ASTRUM run, there is more pencil
23	sharpening possible.
24	MEMBER SHACK: No, no, you are not allowed
25	to do that.
ļ	I

(202) 234-4433

275 1 MEMBER SCHULTZ: Carl, the way I understand it, you had an opportunity and a need to 2 use these four features to compensate for the new 3 4 results that were derived. And so you put all of 5 these four into the analysis. You didn't look at each one independently and say we have to add one more. 6 7 You put four in. And so when you do have the next 8 model to review, you may have an opportunity to gain 9 back one of the pieces. 10 MEMBER BANERJEE: To put more in. MR. O'FARRILL: That is correct. 11 We consulted with Westinghouse and we determined what 12 parameters could give us some margin. 13 And we looked at where we had the margin available. And so we made 14 15 changes to all of them and then the analysis was 16 redone. 17 MEMBER SCHULTZ: Thank you. MR. ULSES: I just want to briefly add 18 19 here and if obviously the change to PAD 5.0 would lead to unexpected results, those changes would be captured 20 by 50.46 reporting requirements. So the staff and I 21 will have an opportunity to review those and to make 22 sure that we agree with why that would happen. 23 24 I think generally, however, that we agree with you that we wouldn't expect any major changes but 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	276
1	the rule will capture those because the rule covers
2	both an error and a change, not just an error.
3	MR. CLIFFORD: Ben, do you want me to go
4	on slide 23?
5	MR. PARKS: Twenty-three, please. Yes,
6	Paul, thank you.
7	The next two slides deal with the results
8	of the Emergency Core Cooling System evaluation. The
9	first is the observation and then finally I will get
10	to what the actual results were.
11	Here we see the TCD increased the peak
12	cladding temperature significantly. Significant is a
13	defined term in 50.46(a)(3). This means more than 50
14	degrees. In this case, it went up a little over 100
15	degrees. I will show that comparison.
16	The TCD in my observation made the fuel
17	assembly burnup uncertainty more important. So one of
18	the sample parameters in ASTRUM is the fuel assembly
19	burnup. They seemed not to have from what I could see
20	a big effect on the results of the analysis and then
21	once you put in the corrected fuel performance model,
22	you see the burnup actually does have an important
23	result. And the more burnt fuel assemblies went up
24	in TCD a lot more.
25	The licensee is compensating margins and
I	1

(202) 234-4433

	277
1	did recapture some PCT benefits. And the PCT and
2	oxidation in the net result were higher.
3	So if we could go to slide 24, I will show
4	you what the actual results were.
5	In terms of the actual explicit analysis,
6	you can see that the predicted PCT went from 2064
7	degrees Fahrenheit up about 90 degrees to 2152. And
8	the oxidation results changed up to 10 percent for
9	local and they came own a little bit for the core-
10	wide.
11	That ASTRUM result does not include a 12
12	degree Fahrenheit mixed-core penalty. And so the
13	reported PCT is 2164 Fahrenheit.
14	MEMBER ABDEL-KHALIK: So there is a fuel
15	from another vendor that will be expected in this
16	core?
17	MR. CLIFFORD: I can answer that. They
18	are both Westinghouse fuel designs but different
19	assembly designs.
20	MEMBER ABDEL-KHALIK: Different vintage.
21	MR. CLIFFORD: But they are both
22	Westinghouse.
23	Do you want slide 25?
24	MR. PARKS: Sure, bring on 25.
25	Basically the conclusion here is that the
	I

(202) 234-4433

	278
1	ASTRUM re-analysis demonstrated compliance with the
2	50.46 acceptance criteria when accounting for TCD and
3	including those compensatory changes.
4	And that is all the formal presentation
5	material that I have. So if there are any questions,
6	I can answer those.
7	MEMBER ABDEL-KHALIK: If we go back to
8	page 22, have these three changes not been
9	implemented, do you know what that calculated peak
10	clad temperature would have been? And did you do sort
11	of a sanity check?
12	MR. PARKS: The peak clad temperature I
13	would have expected it to go over 2200. I expect that
14	one of the cases around 1950, I think, would have gone
15	up a lot higher. So not necessarily the currently
16	limiting case would have been a lot different but
17	another one would have been more limiting.
18	MEMBER BANERJEE: Ben, the currently the
19	limiting case and you told us about this at the
20	Subcommittee meeting but please refresh my memory.
21	What were the full parameters that were adjusted for
22	that case? Was it
23	MR. PARKS: Dr. Banerjee, the two high PCT
24	cases were similar in some respects that they didn't
25	have a particularly high burnup and they didn't have
I	I

(202) 234-4433

1 anything particularly out of the ordinary with respect to the power distribution. They were high PCT because 2 3 from what I could tell, they had a pretty assumption 4 regarding ECCS performance. Their accumulator volume 5 may have been a little low. The accumulator pressure 6 low so they weren't getting the accumulator was injection quickly. And the overall SI performance 7 8 temperatures would have been high, too much NOP in the 9 SI cooling water. 10 And so based on that, the two running

cases switched places and went up in PCT a bit but it was really the SI that caused them to be so high.

MEMBER BANERJEE: Thanks. That was more or less the situation, if I remember, in the previous, before the TCD correction was made as well. It was the degraded SI that caused the problem. Right? Is that consistent with my memory?

Yes, and then there were a 18 MR. PARKS: 19 population of cases that were down to two limiting They had been in the neighborhood of 16 to 1850 20 ones. and they came up higher. A lot of them came up to 21 And those were the ones that were 22 about 1950. affected by burnup and then they started coming down 23 24 again once you put in the power distributions. So some of the oddly pieced ones, they came back down. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

11

12

	280		
1	MEMBER BANERJEE: Thanks.		
2	MEMBER SHACK: Any further questions from		
3	the Committee?		
4	Any comments from anyone in the audience?		
5	MR. PAIGE: Just one comment. I just want		
6	to give a special thanks to Ben Parks. He is actually		
7	on vacation right now and he took time out to present		
8	during today's meeting.		
9	MEMBER BANERJEE: So he is really on a		
10	beach. Right?		
11	MR. PARKS: I am not on a beach. I am in		
12	the office.		
13	MEMBER BANERJEE: You are where, Ben?		
14	MEMBER POWERS: He is in an office.		
15	MEMBER SHACK: Is there anybody on the		
16	phone line?		
17	MEMBER SIEBER: There shouldn't be. It's		
18	a closed session.		
19	MEMBER SHACK: Thank you, very much to the		
20	licensee and the staff for a very good presentation.		
21	Again, I think we went through all this so I think it		
22	will be very helpful to the Committee in reaching		
23	their decision.		
24	CHAIR ARMIJO: Okay, well thank you very		
25	much. I would like to add my thanks to Paul and FPL		
I	1		

```
(202) 234-4433
```

	281
1	for their efforts. I know we have got a lot of work
2	to do between now I think we need at least a ten
3	minute break. Let's do that and we are off the
4	record.
5	(Whereupon, at 5:15 p.m., the foregoing
6	proceeding was adjourned.)
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
ļ	I

United States Nuclear Regulatory Commission

Protecting People and the Environment

Presentation to the ACRS Full Committee - 592nd Meeting

Briefing on EPR Design Certification Application Safety Evaluation Report with Open Item for Chapters 6, 7, 11, 13, 15, 16, and 18

> Getachew Tesfaye Project Manager

> > March 8, 2012

Additional Presenters:

- Shie-Jeng Peng, Chapter 6
- Jean-Claude Dehmel, Chapter 11
- Shanlai Lu, Chapter 15

Major Milestones Chronology

12/02/2004	Pre-application activities began
12/11/2007	Design Certification Application submitted
02/25/2008	Application accepted for review (docketed)
03/26/2008	Original review scheduled published
01/29/2009	Phase 1 review completed
04/08/2010	ACRS full committee briefing on Chapters 2, 4, 5, 8, 10, 12, and 17
08/10/2011	U.S. EPR FSAR, Revision 3 submitted
02/09/2012	Phase 2 review completed
02/23/2012	Phase 3, ACRS Subcommittee presentation completed
03/08/2012	ACRS full committee briefing on Chapters 6, 7, 11, 13, 15, 16, and 18
05/10/2012	ACRS full committee briefing on Chapters 3, 9, 14, and 19 is planned

Review Schedule

Task	Target Date
Phase 1 - Preliminary Safety Evaluation Report (SER) and Request for Additional Information (RAI)	Completed
Phase 2 - SER with Open Items	Completed
Phase 3 – Advisory Committee on Reactor Safeguards (ACRS) Review of SER with Open Items	July 2012
Phase 4 - Advanced SER with No Open Items	Schedule under review
Phase 5 - ACRS Review of Advanced SER with No Open Items	Schedule under review
Phase 6 – Final SER with No Open Items	Schedule under review
Rulemaking	Schedule under review

Review Strategy

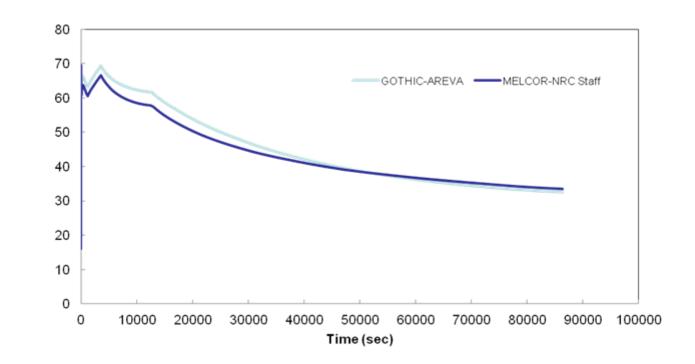
- Pre-application activities
- Frequent interaction with the applicant
 - Teleconferences
 - Audits
 - Public meetings
- Use of Electronic RAI System (eRAI)
- Phase discipline

Chapter 6 - Engineered Safety Features

SRP Section/Application Section		Number of OI	
6.1.1	Metallic Materials	0	
6.1.2	Organic Materials	2	
6.2.1	Containment Functional Design (with exception of 6.2.1.2)	12	
6.2.1.2	Subcompartment Analysis*	Not delivered in Phase 2	
6.2.2	Containment Heat Removal*	Not delivered in Phase 2	
6.2.3	Secondary Containment Functional Design	3	
6.2.4	Containment Isolation System	2	

*The safety evaluation for these Sections was not delivered in the Phase 2 SE for Chapter 6.

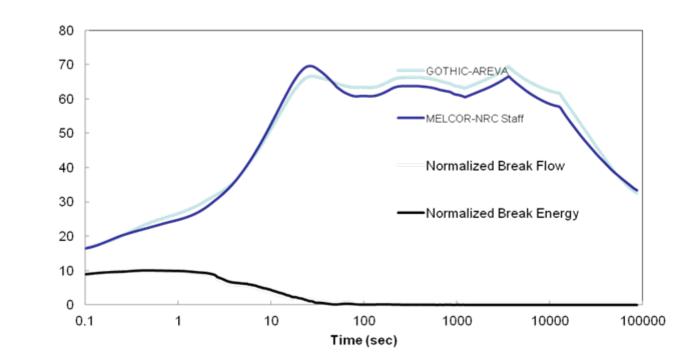
Chapter 6 - Engineered Safety Features (continued)



SRP Section/Application Section		Number of OI	
6.2.5	Combustible Gas Control in Containment	6	
6.2.6	Containment Leakage Testing	0	
6.2.7	Fracture Prevention of Containment Pressure Vessel	0	
6.3	Emergency Core Cooling System	2	
6.4	Habitability Systems	4	
6.5	Fission Product Removal and Control Systems	4	
6.6	Inservice Inspection of ASME Class 2 and 3 Components	0	
Totals		35	

Chapter 6 - Key Confirmatory Analysis Performed by the NRC staff

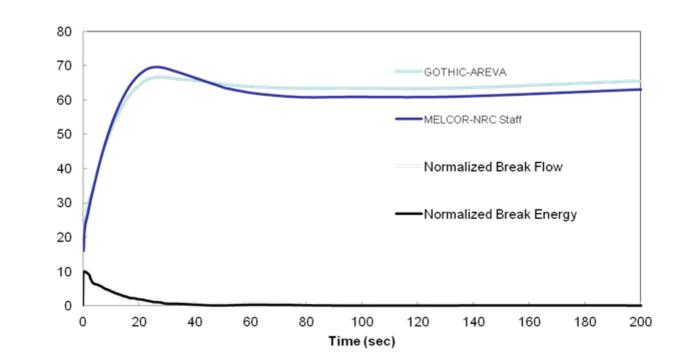
EPR CLPS LOCA IRWST Pressure


Pressure (psia)

8

Chapter 6 - Key Confirmatory Analysis Performed by the NRC staff (Continued)

EPR CLPS LOCA IRWST Pressure


Pressure (psia)

9

Chapter 6 - Key Confirmatory Analysis Performed by the NRC staff (Continued)

EPR CLPS LOCA IRWST Pressure

Pressure (psia)

10

SRP Section/DCA Section		No. of Open Items	
7.1	Introduction	19	
7.2	Reactor Trip System	0	
7.3	Engineered Safety Features Systems	3	
7.4	Systems Required for Safe Shutdown	1	
7.5	Information Systems Important to Safety	2	
7.6	Interlock Systems Important to Safety	0	
7.7	Control Systems Not Required for Safety	1	
7.8	Diverse Instrumentation and Control Systems	8	
7.9	Data Communication Systems	2	
Totals		36	

Chapter 11 – Radioactive Waste Management

SRP Section/Application Section		Number of Open Items
11.1	Source Terms	0
11.2	Liquid Waste Management System	8
11.3	Gaseous Waste Management System	4
11.4	Solid Waste Management Systems	6
11.5	Process and Effluent Radiological Monitoring and Sampling Systems	6
Totals	•	24

Chapter 11 - Key Confirmatory Analysis Performed by the NRC staff

- FSAR Section 11.2 Liquid Effluents
 - Annual average liquid effluent releases (curies per year)
 - Annual average liquid effluent concentrations (uCi/ml) and compliance with Part 20, App. B, Table 2, Column 2 limits
 - Annual average offsite doses (mrem per year) and compliance with limits of Part 20.1301 and 20.1302 and Part 50, App. I design objectives.
 - Assessment associated with the assumed failure of a tank containing radioactive materials and radiological impact on groundwater

Chapter 11 - Key Confirmatory Analysis Performed by the NRC staff (Continued)

- FSAR Section 11.3 Gaseous Effluents
 - Annual average gaseous effluent releases (curies per year)
 - Annual average gases effluent concentrations (uCi/ml) and compliance with Part 20, App. B, Table 2, Column 1 limits
 - Annual average offsite doses (mrem per year) and compliance with limits of Part 20.1301 and 20.1302 and Part 50, App. I design objectives
 - Assessment associated with the assumed failure of a power cycle offgas treatment system component containing radioactive materials and radiological impact at the EAB

Chapter 13 - Conduct of Operations

SRP Section/Application Section		Status Number of OI	
13.1	Organizational Structure of Applicant	0	
13.2	Training	0	
13.3	Emergency Planning	0	
13.4	Operational Program Implementation	0	
13.5	Plant Procedures	0	
13.6	Security	3	
13.7	Fitness for Duty	0	
Totals		3	

SRP Section/Application Section		Number of OI	
15.0.1 and 15.0.2	Radiological Consequence Analysis and Computer Codes Used in Transient and Accident Analysis	3	
15.0.3	Radiological Consequences of Design Basis Analysis	2	
15.1	Increase in Heat Removal by the Secondary System	0	
15.2	Decrease in Heat Removal by the Secondary System	0	
15.3	Decrease in Reactor Coolant System Flow Rate	0	
15.4	Reactivity and Power Distribution Anomalies	1	

Chapter 15 - Transient and Accident Analyses (continued)

SRP Section/Application Section		Number of OI	
15.5	Increase in Reactor Coolant Inventory	0	
15.6.1	Inadvertent Opening of a Pressurizer Safety Relief Valve	0	
15.6.3	Steam Generator Tube Failure (PWR)	0	
15.6.5*	Loss of Coolant Accidents Resulting from Spectrum of Postulated Piping Breaks Within the Reactor Coolant Pressure Boundary	10	
15.8	Anticipated Transients Without Scram	0	
Totals		16	

*The Phase 2 safety evaluation for Section 15.6.5 does not contain the GSI-191 evaluation of in-vessel downstream effects. This topic will be delivered in Phase 4 for the U.S. EPR design certification application.

Chapter 15 - Key Confirmatory Analysis Performed by the NRC staff

- As part of Chapter 15 review, staff performed confirmatory analyses to identify and resolve issues
- The analyses are divided into the following categories:
 - 1. LOCA Thermal Hydraulic Analysis
 - 2. Transient And Accident Analysis Neutronics analysis coupled with thermal hydraulic analysis
 - 3. Fuel Thermal Performance Analysis

Chapter 15 - Key Confirmatory Analysis Performed by the NRC staff (Continued)

- 1. LOCA Thermal Hydraulic Analysis
 - LBLOCA and SBLOCA were analyzed using TRACE, RELAP-5 and S-RELAP5
 - Staff's confirmatory analyses showed that there is margin to the 50.46 limits
- 2. Transient And Accident Analyses
 - Confirmed the applicability of the on-line low DNBR and High Linear Power Density protection system
 - For the rod ejection accident, compared the peak power value TRACE/PARCS was used to perform the analysis and SCALE code package was used to generate the cross-section library

3. Fuel Thermal Performance Analysis

FRAP-CON and RODEX-4 were used to quantify the initial stored energy calculation error. As the result of this effort, two generic Information Notices (IN 2009-23 and IN 2011-21) were issued

Chapter 16 – Technical Specifications

SRP Section/Application Section		Number of SER Open Items
16.4.1	General	0
16.4.2	Use and Application	0
16.4.3	Safety Limits	0
16.4.4	Limiting Condition for Operation and Surveillance Requirement Applicability	0
16.4.5	Reactivity Control System	0
16.4.6	Power Distribution Limits	0
16.4.7	Instrumentation	11
16.4.8	Reactor Coolant System	9
Continued on next page		

Chapter 16 – Technical Specifications (Continued)

SRP Section/Application Section		Number of SER Open Items
16.4.9	Emergency Core Cooling System (ECCS)	2
16.4.10	Containment Systems	1
16.4.11	Plant Systems	4
16.4.12	Electric Power Systems	2
16.4.13	Refueling Operations	0
16.4.14	Design Features	1
16.4.15	Administrative Controls	0
Totals		30

Chapter 18 – Human Factors Engineering

SRP Section/Application Section		Status Number of Ol
18.1	HFE Program Management	0
18.2	Operating Experience Review	0
18.3	Functional Requirements Analysis and Function Allocation	0
18.4	Task Analysis	0
18.5	Staffing and Qualifications	0
18.6	Human Reliability Analysis	0

Chapter 18 – Human Factors Engineering (Continued)

SRP Section/Application Section		Status Number of OI
18.7	Human-System Interface Design	0
18.8	Procedure Development	0
18.9	Training Program Development	0
18.10	Verification and Validation	0
18.11	Design Implementation	0
18.12	Human Performance Monitoring	0
Various Sections	Human Factors Engineering	0
Totals	-	0

United States Nuclear Regulatory Commission

Protecting People and the Environment

END

NEXT STEP

ACRS Full Committee Phase 3 Briefing on the Remaining Chapters: Chapters 3, 9, 14, and 19 May 10-12, 2012

Presentation to ACRS U.S. EPR[™] Design Certification Chapters 6, 7, 11, 13, 15, 16, 18

March 8, 2012 AREVA NP

Outline

Introduction

Overview of U.S. EPR Design

- EPR Development Objectives
- Major Design Features
- Main Safety Systems
- Protection From External Hazards
- Severe Accident Mitigation

Overview of U.S. EPR Design Certification Application

Chapters 6, 7, 11, 13, 15, 16, 18

EPR Development Objectives

- Evolutionary design based on existing PWR operating experience, construction experience and Research & Development
 - Improved economics
 - Reduce generation cost by at least 10%
 - Simplify operations and maintenance
 - 60-year design life

Improved Safety

- Increase design margins
- Increase redundancy and physical separation of safety trains
- Reduce core damage frequency
- Accommodate severe accidents and external hazards
- Reduce occupational exposure and low level waste

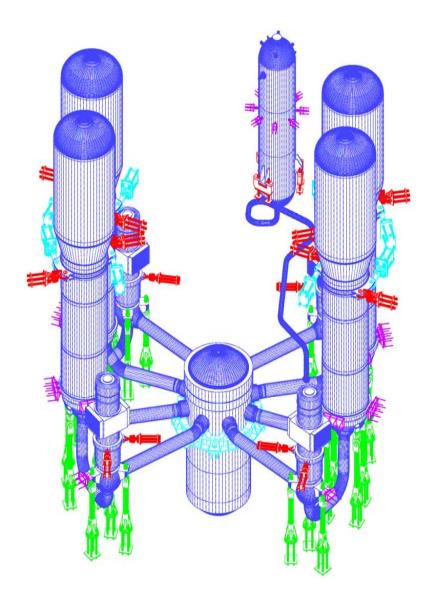
Major Design Features

4 AREVA

Nuclear Island

- Proven Four-Loop RCS Design
- Four-Train Safety Systems
- Double Containment
- In-Containment Refueling Water Storage
- Severe Accident Mitigation
- Separate Safety Buildings
- Advanced 'Cockpit' Control Room

Electrical


- Shed Power to House Load
- Four Emergency Diesel Generators
- Two Smaller, Diverse Station Blackout Diesel Generators

Site Characteristics

- Airplane Crash Protection (military and commercial)
- Explosion Pressure Wave

Reflects full benefit of operating experience and 21st century requirements

- Conventional 4-loop PWR design, proven by decades of design, licensing and operating experience
- NSSS component volumes increased compared to existing PWRs, increasing operator grace periods for many transients and accidents

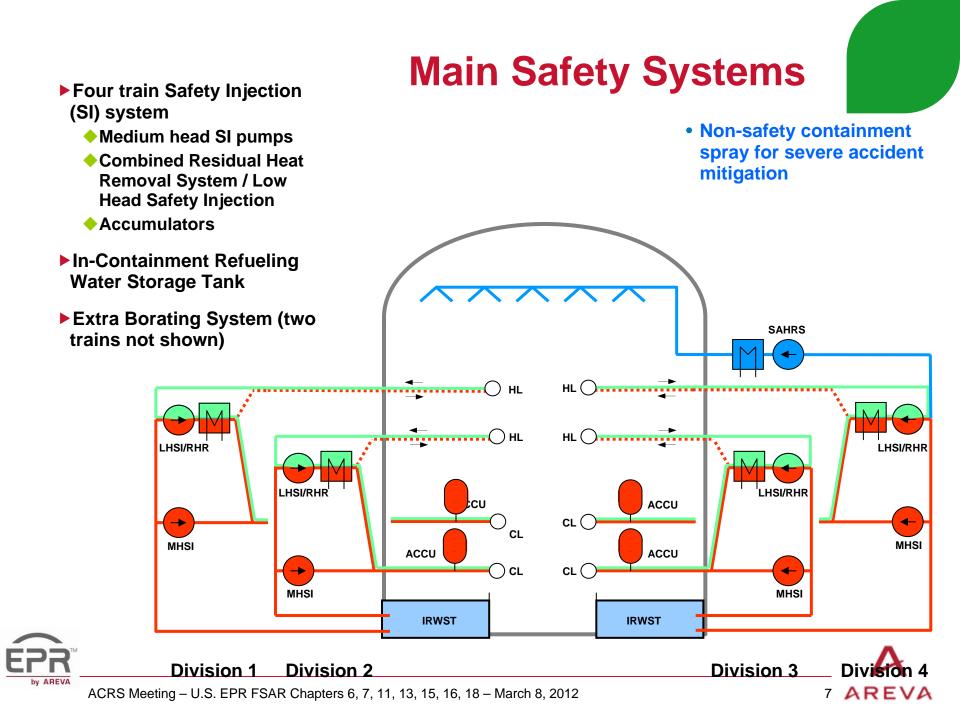
AREVA

5

A solid foundation of operating experience

ACRS Meeting – U.S. EPR FSAR Chapters 6, 7, 11, 13, 15, 16, 18 – March 8, 2012

The Four Train (N+2) Concept



Each safety train is independent and located within a physically separate building

6 AREVA

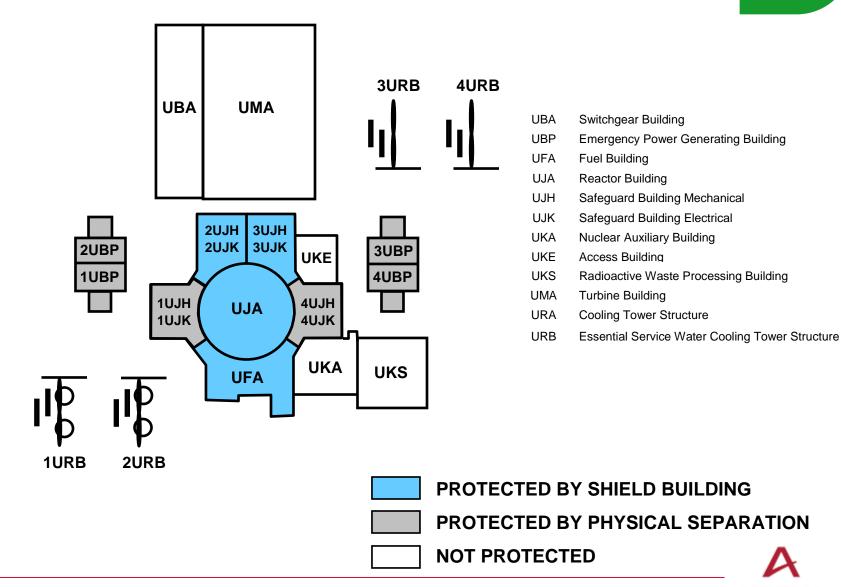
ACRS Meeting – U.S. EPR FSAR Chapters 6, 7, 11, 13, 15, 16, 18 – March 8, 2012

Main Safety Systems Secondary Side

- Safety-related main steam relief train
- Four separate Emergency Feed Water Systems (EFWS)
- Separate power supply for each
- 2/4 EFWS also powered by Station Black Out (SBO) diesels
- Interconnecting headers at EFWS pump suction & discharge

ACRS Meeting – U.S. EPR FSAR Chapters 6, 7, 11, 13, 15, 16, 18 – March 8, 2012

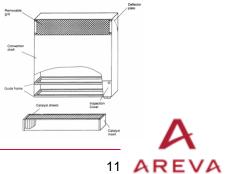
Protection From External Hazards Shielded Containment


- Inner wall post-tensioned concrete with steel liner
- Outer wall reinforced concrete
- Protection against airplane crash
- Protection against external explosions
- Annulus filtered to reduce radioisotope release

Protection From External Hazards

10

AREVA


ACRS Meeting – U.S. EPR FSAR Chapters 6, 7, 11, 13, 15, 16, 18 – March 8, 2012

by AREVA

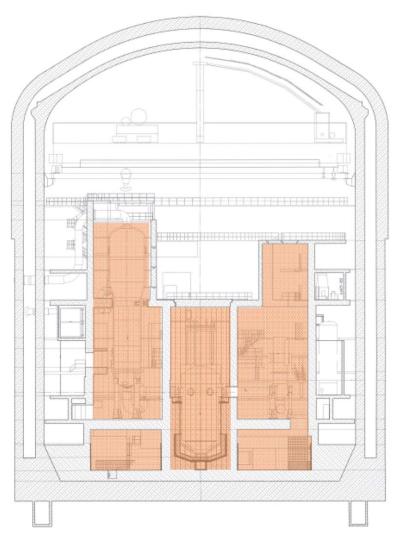
Severe Accident Mitigation

- Prevention of high-pressure melt using Primary Depressurization System
- Passive ex-vessel melt stabilization, conditioning and cooling
- Long-term melt cooling and containment protection using active cooling system
- Control of H₂ concentration using passive autocatalytic recombiners

U.S. EPR Design Certification Application

- U.S. EPR design reflects an evolutionary, active plant design
- U.S. EPR applies proven analytical methodologies
- FSAR consistent with key NRC guidance documents
 - Regulatory Guide 1.206, "Combined License Applications for Nuclear Power Plants (Light Water Reactor Edition)"
 - NUREG-0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants"
 - Exemptions and exceptions minimized
 - No RTNSS

Chapter 6: Engineered Safety Features


Topics

- Engineered Safety Features Materials 6.1
- Containment Systems 6.2
 - (excluding 6.2.2 Containment Heat Removal Systems later)
- Emergency Core Cooling System 6.3
 - (excluding GSI-191 later)
- Habitability Systems 6.4
- Fission Product Removal and Control Systems 6.5
- Inservice Inspection of Class 2 and 3 Components 6.6
- Extra Borating System 6.8

Containment Design Features

- Post-tensioned concrete containment with steel liner
- Reinforced concrete Shield Building wall
- Containment Free Volume = 2.8 Mft³
- Containment Inside Diameter = 153.5 ft.
- Containment Wall Thickness = 4.3 ft.
- Design pressure = 62 psig
- In-Containment Refueling Water Storage Tank (~500,000 gallons)
- Two-zone containment (equipment area and service area)
- CONVECT system of rupture and convection foils and dampers connect containment zones during high energy line breaks (HELBs)
- Passive hydrogen reduction system
- Filtered, vented annulus to prevent uncontrolled releases to environment

U.S. EPR does not rely on safety related fan coolers or containment sprays

ECCS Design Features

Four independent, front line Safety Injection Systems

- Accumulators
- Medium head safety injection
- Low head safety injection
- Automatic partial cooldown of steam generators (SGs) on safety injection system (SIS) actuation signal reduces primary pressure to below discharge head of the medium head safety injection (MHSI) pumps

In-Containment Refueling Water Storage Tank (IRWST)

- Single source of emergency core cooling system (ECCS) water
- Eliminates need to switch to a recirculation injection mode
- Sufficient static head to the suction of the SIS pumps (no piggyback operation)
- Sufficient inventory during shutdown to fill reactor cavity, internal storage pool, reactor building transfer pool and the reactor coolant system
- Sufficient inventory for flooding a core melt during a severe accident
- Manual alignment of low head safety injection (LHSI) to hot leg nozzles at 60 minutes to suppress core boiling

Chapter 7 Instrumentation and Controls

Topics included in U. S. EPR Chapter 7

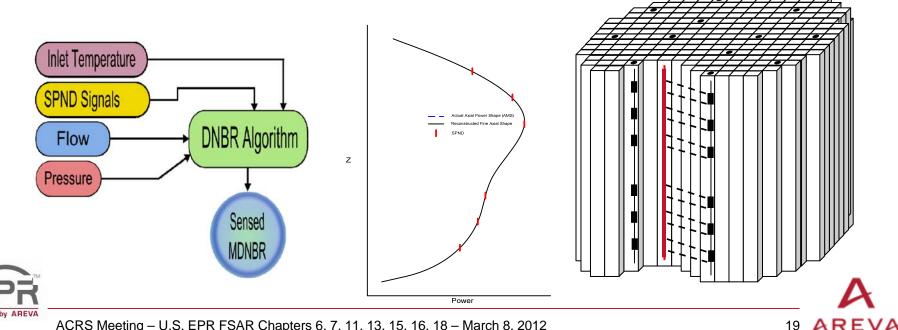
- U.S. EPR I&C Systems 7.1
- Reactor Trip System 7.2
- Engineered Safety Features Systems 7.3
- Systems Required for Safe Shutdown 7.4
- Information Systems Important to Safety 7.5
- Interlock Systems Important to Safety 7.6
- Control Systems Not Required for Safety 7.7
- Diverse I&C Systems 7.8
- Data Communication Systems 7.9

Chapter 7 Instrumentation and Controls

System	Basic Functions	Safety Classification	Number of Channels	Technology
Safety Information and Control System (SICS)	Backup HMI for accident mitigation, safe shutdown, and severe accident mitigation	S	4	Hardwired/TXS (QDS)
Protection System (PS)	Actuation of safety systems (reactor trip/ESF)	S	4	TXS (microprocessor PE)
Safety Automation System (SAS)	Control of safety systems	S	4	TXS (microprocessor PE)
Signal Conditioning and Distribution System (SCDS)	Signal conditioning and distribution of field input signals	S	4	TXS (Electronic and PLD based PE)
Priority Actuation and Control System (PACS)	Prioritizes commands from various systems, actuates and monitors actuators	S	4	TXS (100% Tested PLD based PE)
Diverse Actuation System (DAS)	Diverse actuation of safety systems (reactor trip/ESF)	NS-AQ	4	Not microprocessor PE
Process Information and Control System (PICS)	Primary HMI for all plant operations	NS-AQ	4	Industrial platform (microprocessor PE)
Reactor Control, Surveillance and Limitation (RCSL)	Control of reactivity	NS-AQ	4	TXS (microprocessor PE)
Process Automation System (PAS)	All other process control functions	NS	4 NI 2 TI	Industrial platform (microprocessor PE)

Chapter 7 Instrumentation and Controls

Safety Related DCS Design Features


- Digital I&C technology that includes continuous online self-testing and diagnostics that allow early detection of failures and improved human-machine interfaces (HMI)
- Robust I&C architecture that optimizes plant safety through defense-in-depth, diversity, redundancy, independence and priority setting
- High degree of automation that improves plant operation, reduces operator burden, and improves situational awareness during normal and accident conditions
- PACS Priority module utilizes programmable logic device (PLD) that is 100% combinatorially tested to protect against common cause failures of PACS
- DAS Diverse Actuation System utilizes non-microprocessor based platform to protect against software common cause failures of the Protection System
- Communication
 - PS and SAS connections are unidirectional and electrically isolated from non-safety systems
 - Interdivisional safety function processor interface
 - PS divisions are physically separated with interdivisional communication for actuation voting using optical communication medium
 - SAS divisions are physically separated with interdivisional communication when necessary to perform a safety function (e.g., CCW interlocks to RCP thermal barrier coolers). Connections are via optical communication medium.
 - Service Unit provides maintenance access to PS and SAS
 - Not continuously connected
 - Switch provided that physically restricts Service Unit to only allow connection to one division at a time

Chapter 7 Instrumentation and Controls

- U. S. EPR Unique Design Self-Powered Neutron Detector (SPND) Based **Reactor Trips:**
- Low DNBR trip and High Linear Power Density trip are only reactor trips that rely on SPNDs
- Same as standard reactor trips, except that all 72 SPND signals are needed in all four PS divisions to recreate complete flux distribution
- **Benefits of Design**
 - Provides more direct measurement of neutron flux (Clause 6.4 of IEEE 603)
 - Reduces uncertainties and assumptions with excore based trips

Chapter 11: Radioactive Waste Management

Topics

- Source Terms 11.1
- Liquid Waste Management System 11.2
- Gaseous Waste Management Systems 11.3
- Solid Waste Management Systems 11.4
- Process and Effluent Radiological Monitoring and Sampling Systems 11.5
- Highlights of US EPR Radioactive Waste Management design:
 - Design basis and realistic source terms defined using typical industry practice
 - Liquid waste processing systems consist of an evaporator/vapor compressor package, centrifuge and demineralizer to provide operational flexibility
 - Solid waste volume reduction provided with shredding device, solid waste drying, compaction and sorting box
 - Main steam radiation monitoring provided as primary indication of a steam generator tube rupture

Liquid, gas and solid waste effluent concentrations compliant with 10CFR20 Appendix B

20

ARE

Chapter 13: Conduct of Operations

Topics

- Organizational Structure of Applicant 13.1
- Training 13.2
- Emergency Planning 13.3
- Operational Program Implementation 13.4
- Plant Procedures 13.5
- Security 13.6
- Fitness for Duty 13.7

Highlights:

- Conduct of Operations is primarily responsibility of COL applicant
- Emergency Operating Procedures (EOPs) will be developed based on symptom-based accident management guidelines

Chapter 15: Transient and Accident Analyses

Topics

- Increase in Heat Removal by the Secondary System 15.1
- Decrease in Heat Removal by the Secondary System 15.2
- Decrease in Reactor Coolant System Flow Rate 15.3
- Reactivity and Power Distribution Anomalies 15.4
- Increase in Reactor Coolant Inventory 15.5
- Decrease in Reactor Coolant Inventory 15.6
- Radioactive Release from a Subsystem or Component 15.7
- Anticipated Transients Without Scram 15.8
- Spent Fuel Pool Criticality and Boron Dilution Analysis 15.10

Chapter 15: Transient and Accident Analyses

U.S. EPR design features are similar to previous PWR designs

Unique features important to transient and accident analyses

Front-line safety systems

- Four train systems (Safety Injection/Residual Heat Removal, Emergency Feedwater and Main Steam Relief Trains)
- Two train systems (Extra Borating System and Annulus Ventilation)
- In-Containment Refueling Water Storage Tank (IRWST)
 - Source of ECCS water
 - No switchover needed
- Operator action times for Chapter 15 events
 - 30 minutes for actions from inside of Main Control Room
 - 60 minutes for actions outside of Main Control Room
- Automatic partial cooldown of Steam Generators on SI signal for LOCA mitigation
- Safety-related alarm on high activity in steam line for SGTR mitigation
- Automatic trip of reactor coolant pumps on coincident SI actuation signal and low Delta-Pressure across the reactor coolant pumps for LOCA mitigation
- Low DNBR and High Linear Power Density reactor trip functions utilizing in-core measurements of local core power distributions with SPNDs
- Alternative Source Term used in radiological consequences analyses

Chapter 16: Technical Specifications

► Topics – US EPR Generic Technical Specifications (GTS) follow the format and content of the Improved Standard Technical Specifications

- 1.0 Use and Application
- 2.0 Safety Limits
- 3.0 LCOs
- 3.1 Reactivity Control
- 3.2 Power Distribution Limits
- 3.3 Instrumentation
- 3.4 Reactor Coolant System
- 3.5 Emergency Core Cooling Systems

- ♦ 3.6 Containment Systems
- 3.7 Plant Systems
- 3.8 Electrical Power Systems
- 3.9 Refueling Operations
- 4.0 Design Features
- 5.0 Administrative Controls
- Bases
- Since the U.S. EPR is an active, 4-loop PWR, Standard Technical Specifications (STS), NUREG 1431 Revision 3.1 was chosen as the primary model for the GTS (other Improved STS NUREGs and precedents were used as appropriate)
- "N+2" safety concept utilizing four (4) trains of safety systems:
 - One train is assumed to be lost due to postulated single failure
 - One train may be out of service for maintenance/surveillance
 - One train may be lost due to initiating event (e.g., ECCS injection line break)
 - One train is available to perform accident mitigating function

Chapter 16: Technical Specifications - continued

Differences reflect U.S. EPR specific design and supporting safety analysis

- Section 3.3, Instrumentation U.S. EPR's digital I&C System incorporates reactor trip and ESF functions credited in safety analysis thereby reducing the number of subsections
 - LCOs and Actions are component-based rather than function-based since single components may support several functions
 - Includes Diverse Actuation System (DAS)
- Section 3.4, Reactor Coolant System Revised to allow limited 3-loop operation (consistent with U.S. EPR safety analysis)
- Section 3.6, Containment Systems Did not include containment spray (not credited in U.S. EPR safety analysis)
 - Passive heat sinks (concrete walls and steel structures) inside containment are credited post-LOCA
 - Containment heat removal is performed by recirculation of reactor coolant from the IRWST, through the LHSI heat exchangers, to the RCS, and through the postulated break back to the containment and IRWST
 - Doses mitigated using Annulus Ventilation System

Section 3.8, Electrical Power Systems - utilizes four EDGs

- Alternate feeds can be established between Division 1 and 2 (one divisional pair) or Division 3 and 4 (another divisional pair)
- Alternate feeds provide power to required safety-related SSCs that do not have the required redundancy when the divisional EDG is out of service (e.g., annulus ventilation)

Chapter 18: Human Factors Engineering

Topics

- Human Factors Engineering Program Management 18.1
- Operating Experience Review 18.2
- Functional Requirements Analysis and Functional Allocation 18.3
- 🔶 Task Analysis 18.4
- Staffing and Qualifications 18.5
- Human Reliability Analysis 18.6
- Human System Interface Design 18.7
- Procedure Development 18.8
- Training Program Development 18.9
- Verification and Validation 18.10
- Design Implementation 18.11
- Human Performance Monitoring 18.12

Chapter 18: Human Factors Engineering

Human Factors Engineering (HFE) Highlights:

- HFE program is described in nine (9) implementation plans reviewed by the NRC staff
 - Program is implemented by COL applicant
 - Tier 1 Design Acceptance Criteria (DAC) are provided for HFE program
 - HFE program is consistent with NUREG 0711, Revision 2
- Scope of HFE Program MCR, RSS, TSC, and risk significant local control stations

Task Analysis considers:

- Select sample of representative and important tasks for operations, maintenance, test, inspection and surveillance
- Tasks that support critical safety functions (abnormal, emergency, transient low-power and shutdown conditions)
- Risk-significant human actions based on Chapter 19 PRA
- Unique tasks that support system designs not used in existing operating PWRs
- Human System Interface evaluations are performed on virtual and physical mockups in combination with part task simulation
- Integrated System Validation, as a part of Verification & Validation, is conducted on a Full Scope Simulator using EPR plant scenarios

Acronyms and Abbreviations

Acronym	Definition		
ACCU	Accumulator		
BTP	Branch Technical Position		
CFR	Code of Federal Regulations		
CL	Cold Leg		
COL	Combined License		
CCW	Component Cooling Water		
DAC	Design Acceptance Criteria		
DAS	Diverse Actuation System		
DCS	Distributed Control System		
DNBR	Departure from Nucleate Boiling Ratio		
ECCS	Emergency Core Cooling System		
EDG	Emergency Diesel Generator		
EFWS	Emergency Feedwater System		
EOP	Emergency Operating Procedure		
ESF	Engineered Safety Features		
FSAR	Final Safety Analysis Report		
FT	Feet		
GDC	General Design Criteria		
GL	Generic Letter		
GSI	Generic Safety Issue		
GTS	Generic Technical Specifications		
HELB	High Energy Line Break		
HFE	Human Factors Engineering		
HL	Hot Leg		
HMI	Human Machine Interface		

Acronyms and Abbreviations (Cont'd.)

Acronym	Definition		
I&C	Instrumentation and Controls		
IEEE	Institute of Electrical and Electronics Engineers		
IRWST	In-Containment Refueling Water Storage Tank		
LCO	Limiting Condition for Operation		
LOCA	Loss of Coolant Accident		
LHSI	Low Head Safety Injection		
MCR	Main Control Room		
MDNBR	Minimum Departure from Nucleate Boiling Ratio		
MHSI	Medium Head Safety Injection		
MSIV	Main Steam Isolation Valve		
MSRT	Main Steam Relief Train		
NI	Nuclear Island		
NRC	Nuclear Regulatory Commission		
NS	Non-Safety		
NS-AQ	Non-Safety, Supplemented Grade		
NSSS	Nuclear Steam Supply System		
PE	Programmable Electronics		
PLD	Programmable Logic Device		
PACS	Priority Actuation and Control System		
PRA	Probabilistic Risk Assessment		
PS	Protection System		
PSIG	Pounds Per Square Inch, Gage		
PWR	Pressurized Water Reactor		
QDS	Qualified Display System		
RAI	Request for Additional Information		

Acronyms and Abbreviations (Cont'd.)

Acronym	Definition		
RCP	Reactor Coolant Pump		
RCS	Reactor Coolant System		
RG	Regulatory Guide		
RHR	Residual Heat Removal		
RSS	Remote Shutdown Station		
RTNSS	Regulatory Treatment of Non-Safety Systems		
S	Safety		
SAHRS	Severe Accident Heat Removal System		
SAS	Safety Automation System		
SBO	Station Blackout		
SG	Steam Generator		
SGTR	Steam Generator Tube Rupture		
SI	Safety Injection		
SIS	Safety Injection System		
SPND	Self-Powered Neutron Detector		
SRP	Standard Review Plan		
SSC	Structures, Systems and Components		
STS	Standard Technical Specifications		
TI	Turbine Island		
TSC	Technical Support Center		
TXS	Teleperm XS		

Source Terms for Small Modular Reactors

ACRS Meeting

March 8, 2012

Overview of Industry Objectives

- Establish a sound technical basis for evaluation of radionuclide inventories in SMRs and their postulated release and transport mechanisms
- Focus on integral pressurized water reactors (iPWRs)
- Identify ST related design and operations attributes that are different than that of large LWRs
- Propose potential regulatory positions in light of existing regulatory requirements
- Identify areas for focused research
- Deliverable: NEI Position paper

Guiding Principles

- Rely on established or prior work to the extent feasible
- Focus on integrated pressurized water reactors (iPWRs)
 - Maintain consideration of potential development of other SMR technologies

 Identify iPWR attributes and commonalities in design or concerns related to source terms and, where practical, propose common regulatory positions

Overview of Approach

- Broad assessment of source term identification and assessment
 - Plant designs and operations
 - Accidents and beyond design basis events
- Review of regulatory requirements and guidance to identify:
 - Commonalities with current approaches for large LWRs
 - Differences with current approaches for large LWRs
- Evaluate potential regulatory applications
- Identify areas where research may be beneficial
 - Define specific research topics when appropriate

iPWR Commonalities

Design

- Extension of proven technologies
- Use of modified PWR fuel assemblies
- Increased use of passive features
- Multi-module considerations
- Operations
 - Control room
 - Surveillance and maintenance
 - Fuel handling and storage

Highlighted iPWR Attributes

	Generation mPower	NuScale Power	Westinghous e
Containment	Below Grade	Below Grade, Submerged	Below Grade, Submerged
Control Rod Drives	In Vessel	Outside Vessel	In Vessel
Reactor Coolant Pumps	Pumps inside RPV with external motors	No pumps	Seal-less pumps inside RPV with external motors
Integral Steam Generators	Once Through	Helical Coil	Once Through
Refueling Frequency (Relative Fuel EOL Burnup)	4 years	2 years	2 years

Technical Considerations

- Definition of SMR licensing basis eventsGeneral Areas
 - Magnitude of releases
 - Timing of releases
 - Credit for Passive Design
 - Credit for Other Design Features
- Source Term Treatment
 - Non-mechanistic
 - Mechanistic
 - Mixed or hybrid approach (some of each)

Technical Considerations

- Specific Technical Considerations
 - Fission/Activation Product Inventory
 - Release Fractions
 - Timing of Release [Key Discriminator for iPWRs]
 - Radionuclide Composition
 - Physical and Chemical Form
 - Release thermal energy
 - Fuel Damage Mechanisms
- Non-Safety Considerations
 - Minimize Consequences / Protect Investment
 - Operator Actions
 - Active Design Features

Scope of Regulatory Evaluation

Regulations

- Part 52 and Part 50 (as applicable)
- Accident analysis definitions and approaches

Regulatory Guides

- RG 1.206
- RG 1.183, Alternate Source Terms
- Standard Review Plan
- NUREG-0800
- NUREG-1555
- Interim Staff guidance

Applications of Source Term Modeling

Plant design

- Worker safety
- Component design and operational life

Normal operations

- Operational leakage
- Fuel handling/refueling
- Maintenance, ISI/IST
- Component/system repairs and replacements
- Radioactive waste generation and management
- Environmental analysis
- Decommissioning

Applications of Source Term Modeling (continued)

- Accident analysis
 - Design basis including control room dose
 - Beyond design basis including site boundary analysis
- Security (Design Basis Threat source term)
- Equipment qualification
- ► Emergency preparedness

Potential Research Areas

- Potential SMR research topics
 - Beyond design basis computer code development and verification
 - Passive removal mechanisms in small containment and RCS volumes
 - Atmospheric dispersion at close distances (<100 meters)
- Potentially applicable existing research
 EPRI studies of removal mechanisms for escape of radionuclides through cracks
 PNL χ/Q study

Industry Research Strategy

- Potential sponsor organizations
 - DOE
 - National laboratories
 - EPRI
 - Universities
- Identification of possible funding
- Retain focus on near-term technical and regulatory needs

Path Forward

Dialogue with NRC Identification of Involved Branches - Contact Personnel Development of Position Paper Pursue identification and scoping of research activities having potential benefit to SMR deployment

Extremely Low Probability of Rupture (xLPR) Project

David Rudland Senior Materials Engineer RES/DE/CIB

Advisory Committee on Reactor Safeguards March 8, 2012 Rockville, MD

Protecting People and the Environment

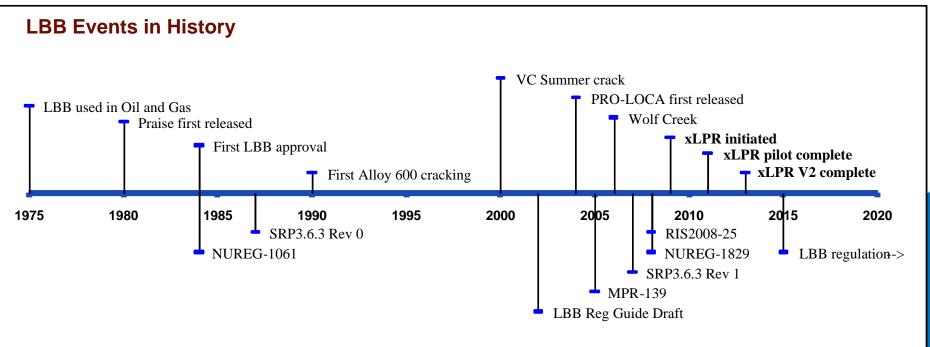
Welcome

- Purpose of meeting
 - To brief the ACRS on the Extremely Low Probability of Rupture (xLPR) program
- Objective
 - Achieve a common understanding of xLPR status, objectives, priority and planned path forward
 - ACRS review and advice on project
 - Letter from the ACRS Full Committee on the efficacy of the project with respect to the NRC safety goals
- Due to the complexity of this project, we seek ACRS (Subcommittee on Materials) review/advice at least once a year to ensure that we're on the right track.

Outline

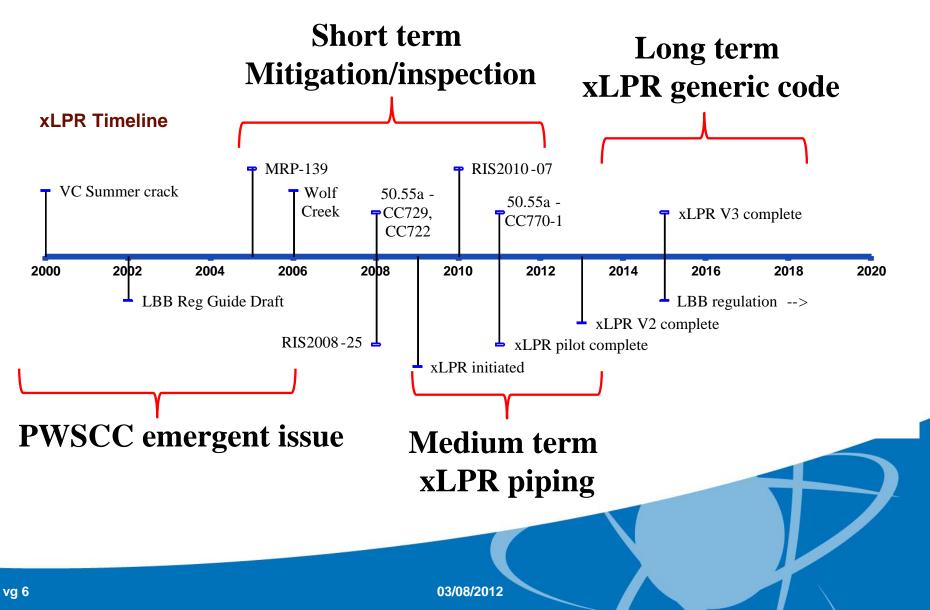
- Background and Regulatory Need
- xLPR project plan
- Version 1.0 technical details
- Pilot study goals and results
- Version 2.0 plans and path forward

GDC-4 and LBB



- 10CFR50 Appendix A GDC-4 allows local dynamic effects of pipe ruptures to be excluded from design basis if pipe ruptures have extremely low probability of occurrence
- Local dynamic effects include pipe whipping and discharging fluids. Effect is to eliminate need for whip restraints and jet impingement shields
- Conservative flaw tolerance analyses developed and incorporated in SRP3.6.3 to demonstrate <u>leak-beforebreak (LBB)</u> and satisfy GDC-4

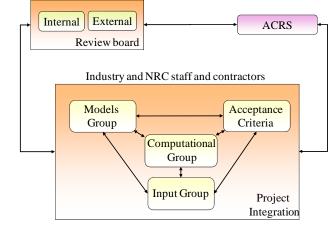
LBB Historical Review



- PWRs have LBB approvals for reactor coolant loop (RCL) piping
 - Some PWRs have LBB for RCL branch piping
- SRP 3.6.3 stipulates <u>no active degradation</u>. PWSCC is active in LBB approved lines
- Qualitative: mitigations and inspections <u>Short Term</u>
- Quantitative: probabilistic evaluation Long Term

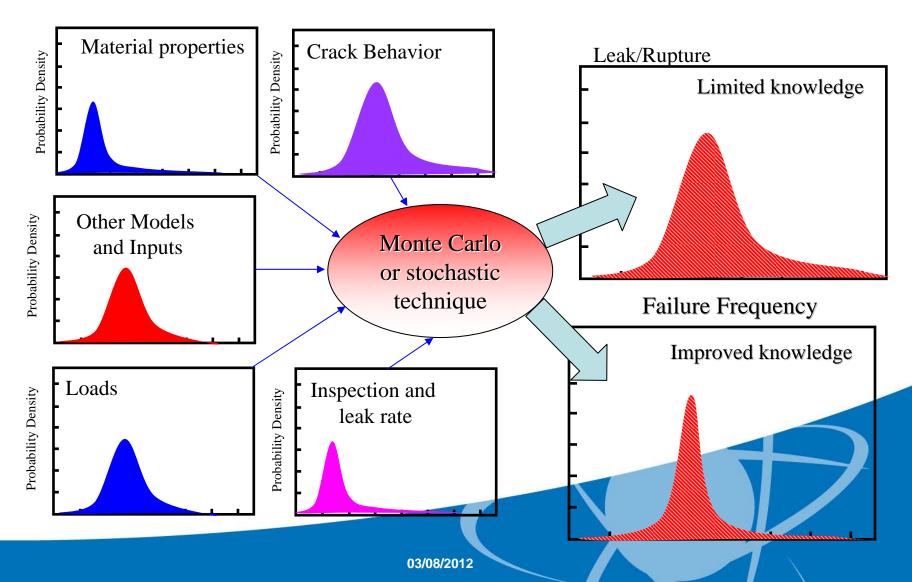
xLPR Timeline

Longer Term

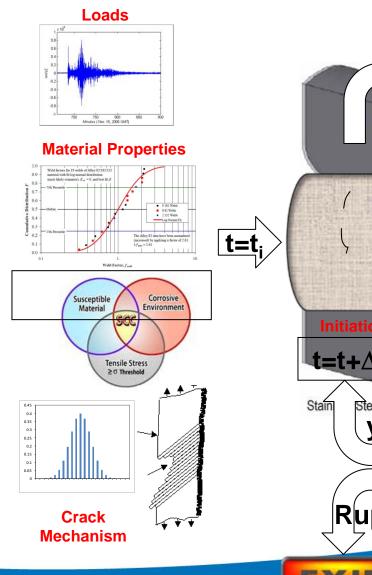

- Develop a *probabilistic* assessment tool that can be used to *directly* assess compliance with 10CFR50App-A GDC-4
- Tool will be
 - Comprehensive with respect to known challenges and loadings
 - Vetted with respect to scientific adequacy of models and inputs
 - **Flexible** to permit analysis of a variety of in service situations
 - Adaptable able to accommodate
 - evolving / improving knowledge
 - new damage mechanisms

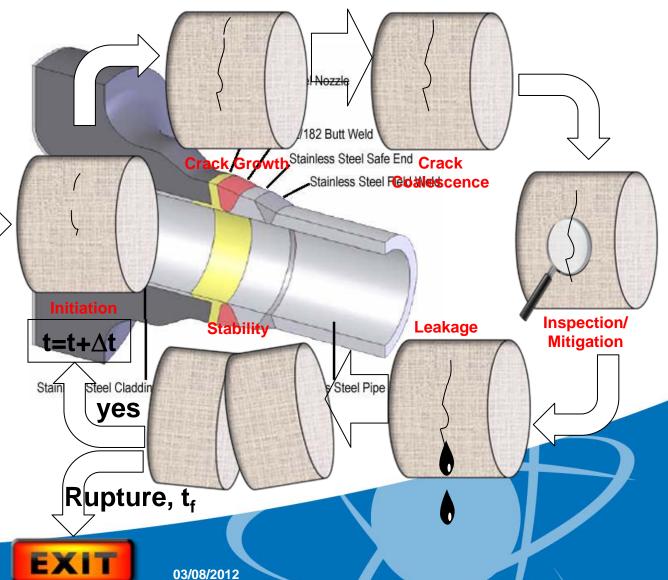
03/08/2012

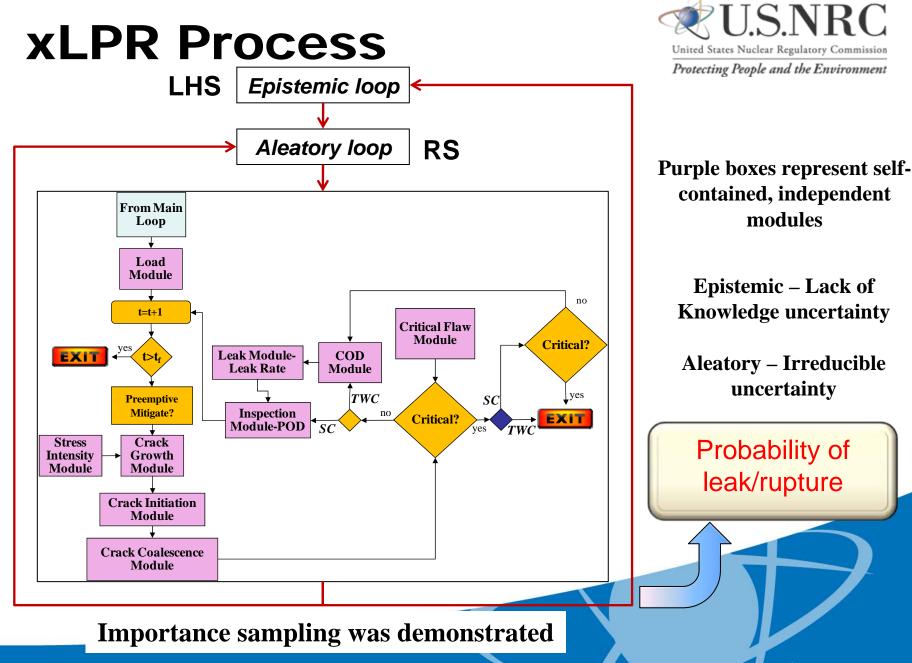
xLPR Development


- NRC goal to develop "modular" code for evaluating the risk of pressure boundary integrity failure
- Currently focusing on piping issues
 - LBB
 - May be applicable to other needs
- Working cooperatively with EPRI through MOU addendum

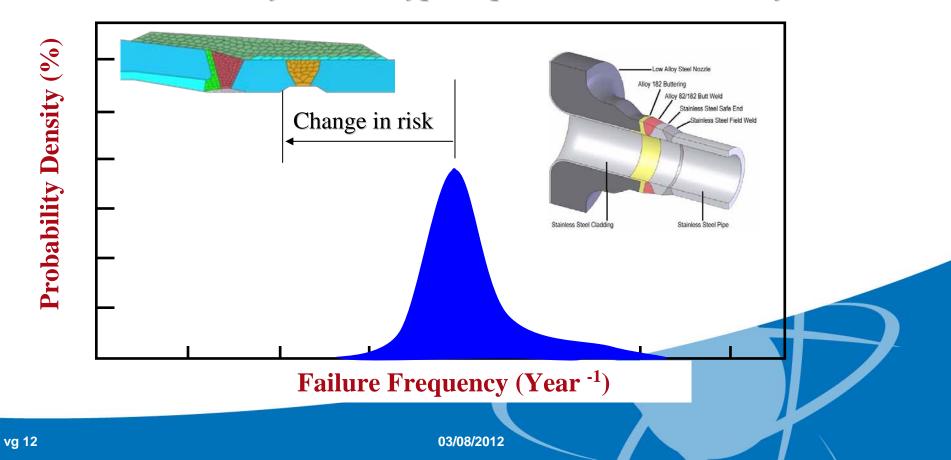
• Initial pilot study to assess effectiveness of approach







xLPR Technical Flow



03/08/2012

Conduct analyses with typical parameters Conduct analyses with typical parameters and overlay

Team Members

Protecting People and the Environment

Computational Group

David Rudland - U.S. NRC Bruce Bishop - Westinghouse Nathan Palm – Westinghouse Patrick Mattie - Sandia National Laboratories Cedric Sallaberry - Sandia National Laboratories Don Kalinich - Sandia National Laboratories Jon Helton - Sandia National Laboratories Hilda Klasky – Oak Ridge National Laboratory Paul Williams - Oak Ridge National Laboratory Robert Kurth - Emc² Scott Sanborn - Pacific Northwest National Laboratory David Harris - Structural Integrity Associates Dilip Dedhia – Structural Integrity Associates Anitha Gubbi - Structural Integrity Associates

Inputs Group

Eric Focht – U.S. NRC Mark Kirk - U.S. NRC Guy DeBoo - Exelon Paul Scott - Battelle Ashok Nana - AREVA NP Inc. John Broussard - Dominion Engineering Nathan Palm - Westinghouse Pat Heasler - Pacific Northwest National Laboratory Gery Wilkowski - Emc²

Acceptance Group

Mark Kirk - U.S. NRC Glenn White - Dominion Engineering Inc. Aladar Csontos - U.S. NRC Robert Hardies - U.S. NRC David Rudland - U.S. NRC Bruce Bishop - Westinghouse Robert Tregoning - U.S. NRC

Models Group

Marjorie Erickson - PEAI Gary Stevens - U.S. NRC Howard Rathbun - U.S. NRC David Rudland - U.S. NRC John Broussard – Dominion Engineering Glenn White – Dominion Engineering Do-Jun Shim – Emc² Gery Wilkowski – Emc² Bud Brust - Emc² Cliff Lange - Structural Integrity Associates Dave Harris – Structural Integrity Associates Steve Fyfitch - AREVA NP Inc. Ashok Nana – AREVA NP Inc. Rick Olson – Battelle Darrell Paul - Battelle Lee Fredette - Battelle Craig Harrington – EPRI Gabriel llevbare - EPRI Frank Ammirato – EPRI Patrick Heasler – Pacific Northwest National Laboratory Bruce Bishop - Westinghouse

Program Integration Board

Craig Harrington – EPRI Aladar Csontos - U.S. NRC Robert Hardies - U.S. NRC Denny Weakland - Ironwood Consulting David Rudland – U.S. NRC Bruce Bishop - Westinghouse Eric Focht – U.S. NRC

Guy DeBoo - Exelon Marjorie Erickson - PEAI Gary Stevens – U.S. NRC Howard Rathbun - U.S. NRC Mark Kirk – U.S. NRC Glenn White - Dominion Engineering Inc.

RESEARCH INSTITUTE

Structural Integrity Associates, Inc.

Battelle

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Dominion Engineering, Inc.

03/08/2012

AREVA

xLPR Pilot Study

- Pilot study objectives
 - Develop and assess xLPR management structure
 - Determine the appropriate probabilistic framework
 - Assess the feasibility of developing a modular-based probabilistic fracture mechanics computer code
- Focused on pressurizer surge nozzle DM weld with PWSCC
- Development of Version 1.0 code using comprehensive configuration management
- Developed detailed program plan (objective, schedule, deliverables, budget, communications) for Version 1.0 and Version 2.0 code

xLPR Version 1.0 Framework

Fully Open Source

GoldSim Commercial Code

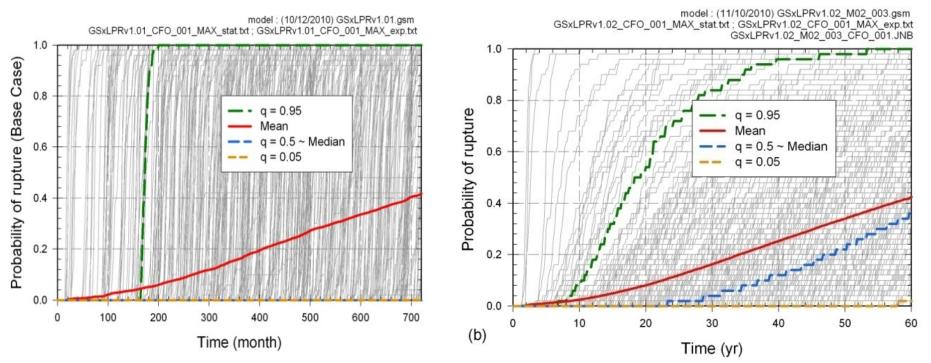
Two framework structures considered Same calculation modules used Both gave similar results

03/08/2012

Uncertainty

- Uncertainties were classified by models/inputs group
- More discussion needed, but satisfactory for pilot study

Epistemic (Lack of knowledge)	Aleatory (Irreducible)
• Loads	Crack size
• WRS	POD detection
• Crack growth (fweld)	Material properties
 Crack initiation parameters 	• Crack growth parameters (Q/R,c,P)
POD parameters	


- Currently uses LHS (epistemic) and MC (aleatory)
- Discrete probability distributions also available.
- Importance sampling was demonstrated

Base Case Results

Protecting People and the Environment

Crack Initiation categorized as epistemic by models group

Crack Initiation categorized as aleatory

Problem is driven by crack initiation!!

Grey lines represent individual epistemic realizations

xLPR Code Feasibility

Westinghouse-type pressurizer surge nozzle dissimilar metal weld 80 1.E+00 Probability Distribution Function 0 0 0 0 0 0 0 0 GSxLPRv1.01_M02_SafeEnd.gsm; No ISI, LD, or Mitigation 1.E-01 GSxLPRv1.02_M02_DPDis_SE_001.gsm; Mitigation (20 yr) Mean Probability of Rupture GSxLPRv1.02_M02_SE_002.gm; 1.E-02 GSxLPRv1.02_M02_SE_003.gsm 10yr ISI, 1gpmLD 10yrISI, 1gpmLD, 20yr mitigation 1.E-03 1.E-04 4.6E-08 6.7E-07 1.3E-06 1.9E-06 2.6E-06 3.2E-06 Mean Probability of Rupture 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 250 1.E-10 GSxLPRv1.02_M02_SE_003.gsm; GSxLPRv1.02_M02_CFO_IN10L_exp.txt; 200 bootstrap LHS Importance Safe End Mitig.xlsx 10 20 30 40 50 60 0 GSxLPRv1.01_M02.gsm; GSxLPR v1.01 M02 CFO 001 MAX exp.txt 150 ğ Time (years) 100 50 0 5.0E-09 8.0E-09 7.0E-14 2.0E-09 4.0E-09 9.9E-09 vg 18 03/08/2012 Mean probability of rupture

Pilot Study Results

- The project team demonstrated that <u>it is feasible</u> to develop a modular-based probabilistic fracture mechanics code within a cooperative agreement while properly accounting for the problem uncertainties
- Identified potential efficiency gains in the program management structure
- Selected commercial software as the computational framework

xLPR Version 2.0 Scope

- xLPR Version 1.0 was developed as part of a feasibility study and focuses on PWSCC in a Westinghouse-style pressurizer surge nozzle DM weld
- Version 2.0 is being expanded to handle welds within piping systems approved for LBB
- Capabilities of Version 2.0 will meet requirements for LBB lines, but <u>must stay</u> within available cost and schedule limitations
- The lessons learned from the pilot study provided many areas where improvement was needed

Version 2.0 Scope

- Pilot study demonstrated several shortcomings in Version 1.0 scope
- xLPR Groups have developed work plans that selected scope recommendations that fit within available resources and overall xLPR timeframe – Scope decided by majority vote of team leads and PIB
- Model inclusion in xLPR Version 2.0 does not guarantee regulatory approval. Process for obtaining approval of xLPR models is under discussion

Version 2.0 Scope Additions

- Framework
 - Microsoft Access dB for inputs
- Models
 - Environmental fatigue
 - Axial cracks
 - IGSCC
 - Surface crack-to-through wall crack transition
 - Manufacturing defects

Version 2.0 Scope Modifications

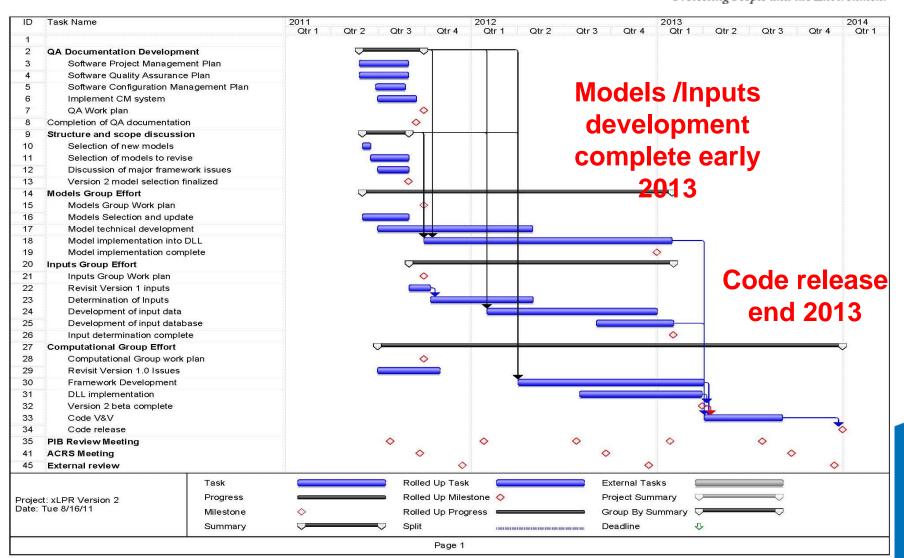
- Framework
 - Investigate advanced methodologies to improve sampling efficiency and solution accuracy
 - Revisit uncertainty propagation methodology
 - Modify code output structure
 - Update post processing
 - Modify GoldSim for additional user capability
- Models
 - Revisit PWSCC initiation Expert panel
 - Update Weld Residual Stress model more generic, better uncertainty
 - Weld repairs
 - Update K-solution to be consistent with updated WRS model

Version 2.0 Scope Modifications

- Models
 - Update mitigation to include FSWOL,OWOL, Inlay, surface treatment, and other chemistry
 - Update Inspection model sizing, POD, simplified model
 - Update crack stability Surface crack EPFM
 - Update leak rate model SQuIRT, bound leak rate calc
 - Update crack-opening displacement tension and bending blended solution.
- Inputs
 - Update load definition to include transients
 - Retrieve all relevant data for
 - One reactor coolant loop Westinghouse PWR
 - One reactor coolant loop Babcock & Wilcox (B&W) PWR

03/08/2012

Others may be considered


xLPR QA

- Version 1.0 was controlled by a Configuration Management plan but not associated with a detailed QA structure
- Conducted QA workshop with appropriate Regulatory/Industry QA experts
- Consensus agreement that the top level requirements in ASME NQA-1 are sufficient to meet xLPR program, NRC, Industry, and DOE requirements for software development
- QA audits will occur and be aligned with key milestones

Version 2.0 Schedule

03/08/2012

Benefits of xLPR

- Quantified solution to LBB issue
 - Regulation guide
 - Update to SRP3.6.3
- Fully QA'ed modular probabilistic fracture mechanics code for reactor pressure boundary integrity
 - LBB including evaluation of mitigation for DM welds
 - Research tool for prioritization
 - TBS 50.46a
 - Risk informed ISI
 - GSI 191
 - Easily adaptable to other applications
 - CRDM ejection probabilities
 - RPV

03/08/2012

Path Forward

- Version 2.0 Development underway
- Ongoing meetings
 - ACRS meeting March 2012 (yearly updates to subcommittee)
 - NRC and EPRI Management (as needed)
 - External reviews
 - Internal reviews
- Version 2.0 release End 2013
- Technical basis and Regulatory Guide for LBB 2015

Agenda

Introduction Mike Kiley

- **Discussion Topics from ACRS Full Committee** 0
- Loss of Off Site Power Overview...... Steve Hale
- Shared Systems Overview...... Steve Hale

Turkey Point	FPL appreciates the opportunity to discuss the EPU License Amendment Request for Turkey Point with the ACRS	Since the ACRS Subcommittee and Full Committee meetings, FPL and NRC Staff worked diligently to close the open items	FPL recognizes and appreciates the importance of the Staff's questions, particularly those on Thermal Conductivity Degradation (TCD)	 NRC Staff performed a detailed review of FPL's analysis including a multi-day audit where FPL provided Staff with its analyses 	 This audit and the others performed by NRC Staff have been invaluable to the result of a thorough and comprehensive review of the proposed EPU 	FPL's top priority is safety. We are proceeding with caution through the remaining steps of the EPU	FPL looks forward to answering any remaining questions	
	•	•	•			•	•	3

Agenda

Introduction Mike Kiley 0

Discussion Topics from Full Committee

- Loss of Off Site Power Overview...... Steve Hale
- Shared Systems Overview...... Steve Hale

Agenda

..... Mike Kiley Introduction

Discussion Topics from Full Committee

- Steve Hale Loss of Off Site Power Overview.....
 - Steve Hale Shared Systems Overview..... I

 - 1 required to satisfy heat removal requirements of both units - Capable of performing design function without AC power - 1 diesel driven standby feedwater pump - 2 diesel driven standby feedwater pump - 1 diesel driven standby feedwater pump - 2 diesel driven standby feedwater pump - 2 diesel driven standby feedwater pump - 4 EDGs, 2 for each unit; all start on SI signal from either unit - 2 diese can be cross tied from the Control Room - Edch EDG has sufficient capacity to maintain both units in a safe shutdown condition
--