Attachment 9

# Redacted TVA calculation WCGACQ0766, Revision 1, " Required Response Spectra for Evaluation of Radiation Monitoring Equipment" (Letter Item 6)

# NPG CALCULATION COVERSHEET/CCRIS UPDATE

|                             |                          |                                |                         |                                           |                |                          |                 |                     |                                    | ÷                                      |                                        | Page                  | 1a                     |                                                                                           |
|-----------------------------|--------------------------|--------------------------------|-------------------------|-------------------------------------------|----------------|--------------------------|-----------------|---------------------|------------------------------------|----------------------------------------|----------------------------------------|-----------------------|------------------------|-------------------------------------------------------------------------------------------|
| REV 0 EDN                   | IS/RIMS N                | 0.                             |                         |                                           |                |                          | EDN             | NS TY               | PE:                                | EDMS ACCI                              | ESSION NO                              | (N/A for R            | EV. C                  |                                                                                           |
| 19311040                    | / UUZ                    |                                |                         |                                           |                |                          | calculat        | tions(1             | nuclear)                           | T 9                                    | 3120                                   | 113                   | . U                    | 0 2                                                                                       |
| Calc Title:<br>REQUIRE      | D RESPC                  | ONSE SP                        | ECTF                    | A FOR I                                   | EVAL           | UATIO                    | ON OF R         | ADL                 | ATION                              | MONITORIN                              | NG EQUIPN                              | <b>AENT</b>           |                        |                                                                                           |
| CALC ID                     | TYPE                     |                                | G                       | PLANT                                     | <u>BR</u> A    | NCH                      | _               |                     | NUMBER                             |                                        | CUR REV                                | NEW F                 | REV                    | :                                                                                         |
| CURREN                      |                          | NU                             | c                       | WBN                                       | с              | EB                       |                 | WC                  | GACQ07                             | 66                                     | 000                                    | 001                   |                        | REVISION<br>APPLICABILITY                                                                 |
| NEW                         | CN                       | NU                             | c                       |                                           |                |                          |                 |                     |                                    |                                        |                                        |                       |                        | Entire calc 🛛<br>Selected pages 🔲                                                         |
| ACTION                      | NEW<br>REVISIO           |                                | DEL<br>REN              | ete<br>IAMe                               |                | SUPER<br>DUPLIC          | SEDE            |                     | CCRIS<br>(Verifie<br>Require       | UPDATE ON<br>r Approval Sig<br>ed)     | LY 🔲<br>natures Not                    |                       | No<br>(Fo<br>bée<br>CC | CCRIS Changes []<br>r calc revision, CCRIS<br>on reviewed and no<br>RIS changes required) |
| <u>UNITS</u><br>000, 002    | <u>SY</u><br>090         | <u>STEMS</u><br>)              |                         |                                           |                |                          |                 | UNII<br>WBN<br>RE-0 | <u>DS</u><br>N-2-PNL-0<br>090-0112 | 090-M030, WE<br>, WBN-2-RE-0           | 3N-0-PNL-09<br>190-0130, WE            | 0-M12, W<br>3N-2-RE-0 | BN-2-<br>990-0         | -RE-090-0106, WBN-2-<br>131                                                               |
| DCN,EDC,I<br>N/A            | <u>N/A</u>               |                                | AP<br>WE                | PLICABLE                                  | DES            | IGN DC                   | CUMEN<br>6-5.10 | T <u>(S)</u> :      |                                    |                                        |                                        |                       |                        | CLASSIFICATION<br>E                                                                       |
| QUALIT<br>RELATE<br>Yes 🛛 N | Y <u>S</u><br>D?<br>Io 🗆 | AFETY R<br>(If yes, Q<br>Yes ⊠ | ELATI<br>R = ye<br>No [ | <u>=D?</u> <u> </u><br>s) <u>A</u><br>] Y |                | RIFIED<br>IPTION<br>No 🛛 |                 | SPEC<br>D/OR        | CIAL REQ<br>LIMITING<br>Yes 🗌      | UIREMENTS<br>CONDITION<br>No 🖾         | IS? DESIG                              |                       |                        | SAR/TS and/or ISFSI<br>SAR/CoC AFFECTED                                                   |
| PREPARE                     | R ID                     | PREF<br>NO<br>(423)            | ARER<br>365-7           | PHONE<br>769                              |                | PREPA                    | RING OF<br>CEI  | R <u>G (B</u><br>B  | RANCH)                             | VERIFICAT<br>METHOD<br>DESIGN R        | <u>FION</u><br>EVIEW                   | NEV                   | / MET                  | THOD OF ANALYSIS<br>⊠ No                                                                  |
| PREPAREF<br>Robert G. E     |                          | JRE                            | Kr                      | for .                                     |                | 1/6                      | DATE            | C<br>E              | HECKER<br>ric Campl                |                                        | ila                                    | Del                   | 1                      | DATE                                                                                      |
| VERIFIER S                  |                          |                                | n                       | leit                                      |                | 1/9                      |                 | A<br>T              |                                    |                                        | Bin                                    | Pentin                | rs                     | DATE<br>1-10-12                                                                           |
| STATEMEN                    | IT OF PRO                | BLEM/A                         | BSTR                    | ACT                                       |                |                          |                 |                     |                                    | ······································ |                                        |                       |                        |                                                                                           |
| REVISION                    | 001:                     |                                |                         |                                           |                |                          |                 | •                   |                                    |                                        |                                        |                       |                        |                                                                                           |
| THIS REVIS                  | SION DEVI<br>OF EVALL    | ELOPS A<br>IATING \            | DDITI<br>ENDC           | ONAL RE<br>OR SEISM                       | QUIRE<br>IC RE | ED RES<br>PORTS          | PONSE           | SPEC                | TRA FOR                            | R THE RADIA                            | TION MONIT                             | ORING E               | QUIP                   | MENT FOR THE                                                                              |
| NOTE: THIS                  | S REVISIO                | N ALSO                         | CHAN                    | GES THE                                   | CALC           | ULATI                    |                 | Ξ                   |                                    |                                        |                                        |                       |                        |                                                                                           |
|                             |                          |                                |                         |                                           |                |                          |                 |                     |                                    | LEGIBILI<br>FOR ISSU                   | ITY EVAL<br>IE ALL PA                  | UATED<br>GES IN       | AN<br>RE               | D ACCEPTED<br>V. 001                                                                      |
|                             |                          |                                |                         |                                           |                |                          |                 |                     |                                    | A                                      | <u>J</u>                               | n                     | 2                      | 1/6/12                                                                                    |
|                             |                          |                                |                         |                                           |                |                          |                 |                     |                                    | SIGNATU                                | RE                                     |                       |                        | DATE                                                                                      |
|                             |                          |                                |                         |                                           |                |                          |                 |                     |                                    |                                        |                                        |                       |                        | · · · ·                                                                                   |
|                             | OFICHE/E                 |                                | Ye                      |                                           | X              | FICH                     | E NUMBE         | ER(S)               |                                    | ······································ | ······································ |                       |                        |                                                                                           |
|                             | INTO ED                  | MS AND                         | RETU                    | RN CALC                                   | ULATI          | ION TO                   | CALCUL          | ATIO                | N                                  | ADDRE                                  | SS: EQB-1M                             | -WBN                  |                        |                                                                                           |
|                             | INTO ED                  | MS AND                         | RETU                    | RN CALC                                   | ULATI          | ON TO                    |                 |                     |                                    |                                        |                                        |                       |                        |                                                                                           |
| VA 40532 [10                | -2008]                   |                                |                         |                                           |                |                          | Page            | 1 of 2              | !                                  |                                        |                                        | •                     | 1                      | NEDP-2-1 [10-20-2008]                                                                     |

This Sheet Added By Revision 001

## NPG CALCULATION COVERSHEET/CCRIS UPDATE

|            |         |           |                    | •                 |                        |              |                                       | raye _2a   |        |
|------------|---------|-----------|--------------------|-------------------|------------------------|--------------|---------------------------------------|------------|--------|
| CALC ID    | TYPE    | ORG       | PLANT              | BRANCH            | NUMBE                  | R            | REV                                   |            |        |
|            | CN      | NUC       | WBN                | CEB               | WCGACQ                 | 0766         | 001                                   |            | ·<br>· |
|            |         |           | A                  | LTERNATE CAL      | CULATION IDEN          | TIFICATION   |                                       | - <b>-</b> | • .    |
|            |         |           | ·                  |                   |                        |              | · · · · · · · · · · · · · · · · · · · |            |        |
| ·          |         |           | · · · · · ·        |                   |                        |              |                                       | ·          |        |
| BLDG<br>03 | RO<br>N | IOM<br>/A | <u>ELEV</u><br>N/A | COORD/AZIM<br>N/A | <u>FIRM</u><br>BECHTEL | Print Report | Yes 🗌                                 |            |        |
| CATECORIE  |         |           |                    |                   | · · · ·                |              |                                       |            |        |

#### CATEGORIES: A09

## KEY NOUNS (A-add, D-delete)

| ACTION    | KEY NOUN           | <u>A/</u> | D | KEY NOUN | • |
|-----------|--------------------|-----------|---|----------|---|
| (A/D)     |                    | ľ         |   |          |   |
| A         | SKID               |           |   |          |   |
| A         | RADIATION MONITORS |           |   |          |   |
|           |                    |           |   |          |   |
| · · · · · |                    | •         |   |          |   |
|           |                    |           |   |          |   |

# <u>CROSS-REFERENCES</u> (A-add, C-change, D-delete)

| ACTION<br>(A/C/D)                | XREF<br>CODE                | XREF<br>TYPE  | XREF<br>PLANT    | XREF<br>BRANCH | XREF<br>NUMBER                                 | XREF<br>REV |
|----------------------------------|-----------------------------|---------------|------------------|----------------|------------------------------------------------|-------------|
| A                                | Р                           | CN            | WBN              | CEB            | WCGACQ0112                                     |             |
| · A                              | Р                           | VD            | WBN              | CEB            | 04031100                                       |             |
| A                                | Р                           | VD            | WBN              | CEB            | 04031500                                       |             |
| A                                | Р                           | VD            | WBN              | CEB            | 04031300                                       |             |
| Α                                | P                           | DN            | WBN              | EEB            | EDCR 52341                                     |             |
| Α                                | Р                           | TR            | WBN              | CEB            | 04038903-1SP                                   |             |
| A                                | P                           | TR            | WBN              | , CEB          | 04038903-2SP                                   |             |
| ` A                              | P                           | TR            | WBN              | CEB            | 04038903-4SP                                   |             |
| A                                | P                           | EP            | WBN              | EEB            | WBN-2-PNL-090-M030                             |             |
| A                                | P                           | EP            | WBN              | EEB            | WBN-2-PNL-090-M031                             |             |
| Α                                | P                           | EP            | WBN              | EEB            | WBN-0-PNL-090-M12                              |             |
| Α                                | P                           | EP            | WBN              | EEB            | WBN-2-RE-090-0106                              |             |
| Α                                | Р                           | EP            | WBN              | EEB            | WBN-2-RE-090-0112                              |             |
| A                                | P                           | EP            | WBN              | EEB            | WBN-2-RE-090-0130                              |             |
| A                                | Р                           | EP            | WBN              | EEB            | WBN-2-RE-090-0131                              |             |
|                                  |                             |               |                  |                |                                                |             |
|                                  |                             |               |                  |                |                                                |             |
| CCRIS ONLY L<br>Following are re | JPDATES:<br>equired only wh | en making key | word/cross refer | ence CCRIS up  | dates and page 1 of form NEDP-2-1 is not inclu | ded:        |
|                                  |                             |               |                  |                |                                                |             |
| F                                | PREPARER SI                 | GNATURE       |                  | DATE           | CHECKER SIGNATURE                              | DATE        |
| PREPARER PH                      | ONE NO.                     | • .           | F                | MS ACCESSIC    |                                                |             |
| TVA 40532 [10-2                  | 0081                        |               | Page 2 of 2      |                | NEDP-2-1 [10-20-2008]                          |             |

This Sheet Added By Revision 001

|                 | NPG CALCULATION RECORD OF RE                                                                                                                                                                                                                                | EVISION                                                                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| CALCULA         | TION IDENTIFIER: WCGACQ0766                                                                                                                                                                                                                                 |                                                                                                               |
| Title           | REQUIRED RESPONSE SPECTRA FOR EVALUATION OF RADIATI                                                                                                                                                                                                         | ION MONITORING EQUIPMENT                                                                                      |
| Revision<br>No. | DESCRIPTION OF REVISION                                                                                                                                                                                                                                     |                                                                                                               |
| 001             | THE PURPOSE OF THIS REVISION IS TO DEVELOP THE REQUIRE                                                                                                                                                                                                      | D RESPONSE SPECTRA FOR THE                                                                                    |
|                 | RADIATION MONITORING EQUIPMENT FOR THE PURPOSE OF EV                                                                                                                                                                                                        | ALUATING VENDOR SEISMIC REPORTS.                                                                              |
|                 | PAGES ADDED:                                                                                                                                                                                                                                                |                                                                                                               |
|                 | SHEETS: 1a, 2a, 3a, A1-A42 (Appendix A, 42 Sheets), Attachment B (8                                                                                                                                                                                         | 8 pages).                                                                                                     |
|                 | PAGES REVISED.                                                                                                                                                                                                                                              |                                                                                                               |
|                 | SHEETS: None                                                                                                                                                                                                                                                |                                                                                                               |
|                 | PAGES REPLACED:                                                                                                                                                                                                                                             |                                                                                                               |
|                 | SHEETS: 4, Attachment Table of Contents                                                                                                                                                                                                                     | • *                                                                                                           |
| ÷               | PAGES DELETED:                                                                                                                                                                                                                                              |                                                                                                               |
|                 | SHEETS: None                                                                                                                                                                                                                                                |                                                                                                               |
|                 |                                                                                                                                                                                                                                                             |                                                                                                               |
|                 | TOTAL NUMBER OF PAGES: 24+53 = <u>77</u>                                                                                                                                                                                                                    |                                                                                                               |
|                 | TOTAL NUMBER OF PAGES: 24+53 = <u>77</u><br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECI<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.  | IFICATIONS/ BASES AND TECHNICAL<br>16/17<br>16/17<br>S REVISION OF THE CALCULATION DOES                       |
| · .             | TOTAL NUMBER OF PAGES: 24+53 = <u>77</u><br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPEC<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /2<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.  | IFICATIONS/ BASES AND TECHNICAL<br>16/17<br>20/07/2014 - August 16/17<br>S REVISION OF THE CALCULATION DOES   |
|                 | TOTAL NUMBER OF PAGES: 24+53 = <u>77</u><br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECI<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.  | IFICATIONS/ BASES AND TECHNICAL<br>16/17<br>S REVISION OF THE CALCULATION DOES                                |
|                 | TOTAL NUMBER OF PAGES: 24+53 = <u>77</u><br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECT<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /2<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS. | FICATIONS/ BASES AND TECHNICAL<br>16/12<br>S REVISION OF THE CALCULATION DOES                                 |
|                 | TOTAL NUMBER OF PAGES: 24+53 = <u>77</u><br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECI<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.  | IFICATIONS/ BASES AND TECHNICAL<br><i>Sobit He Record of Particular</i><br>S REVISION OF THE CALCULATION DOES |
|                 | TOTAL NUMBER OF PAGES: 24+53 = 77<br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECI<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /2<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.        | IFICATIONS/ BASES AND TECHNICAL<br>Abert Brown A Marine 16/17<br>S REVISION OF THE CALCULATION DOES           |
|                 | TOTAL NUMBER OF PAGES: 24+53 = 77<br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECT<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /2<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.        | IFICATIONS/ BASES AND TECHNICAL 16/17                                                                         |
|                 | TOTAL NUMBER OF PAGES: 24+53 = 77<br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECI<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.         | IFICATIONS/ BASES AND TECHNICAL 16/17                                                                         |
|                 | TOTAL NUMBER OF PAGES: 24+53 = 77<br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECT<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.           | IFICATIONS/ BASES AND TECHNICAL<br>Cobert - Contract - 16/17<br>S REVISION OF THE CALCULATION DOES            |
|                 | TOTAL NUMBER OF PAGES: 24+53 = 77<br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECT<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /2<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.        | IFICATIONS/ BASES AND TECHNICAL 1/6/17                                                                        |
|                 | TOTAL NUMBER OF PAGES: 24+53 = 77<br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECI<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.         | IFICATIONS/ BASES AND TECHNICAL 1/6/17                                                                        |
|                 | TOTAL NUMBER OF PAGES: 24+53 = 77<br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECT<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /2<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.        | IFICATIONS/ BASES AND TECHNICAL 16/12                                                                         |
|                 | TOTAL NUMBER OF PAGES: 24+53 = 77<br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECI<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.           | IFICATIONS/ BASES AND TECHNICAL III/12<br>South Construction of the calculation does                          |
|                 | TOTAL NUMBER OF PAGES: 24+53 = 77<br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECT<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.           | IFICATIONS/ BASES AND TECHNICAL 16/12<br>Sobe HE Brown of THE CALCULATION DOES                                |
|                 | TOTAL NUMBER OF PAGES: 24+53 = 77<br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECT<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS.           | IFICATIONS/ BASES AND TECHNICAL 16/17                                                                         |
|                 | TOTAL NUMBER OF PAGES: 24+53 = <u>77</u><br>THE WBN SAR, WBN2 FSAR AMENDMENT 107, TECHNICAL SPECT<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY /2<br>FOR APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS<br>NOT AFFECT ANY OF THESE DOCUMENTS. | IFICATIONS/ BASES AND TECHNICAL III/12<br>South Construction DOES                                             |

This Sheet Added By Revision 001

## NPG CALCULATION COVERSHEET/CCRIS UPDATE

|                                                                            |                         | _                                                                        |                                         |                                                     |                                |                                           |                                                  |                                                            | •                                            | Page _                         | 1                                                                                              |
|----------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|--------------------------------|-------------------------------------------|--------------------------------------------------|------------------------------------------------------------|----------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------|
| <u>revoedn</u><br>T9                                                       | <u>15/R</u>             | <u>ims no.</u><br>1 1 0                                                  | 407                                     | 7002                                                |                                | EDM:<br>calculatio                        | S TYPE:<br>ons(nuclear)                          | EDMS ACCE<br>N/A                                           | SSION NO (I                                  | V/A for REV                    | <u>′. 0)</u>                                                                                   |
| Calc Title:<br>IN-CABIN                                                    | ET                      | REQUI                                                                    | RED RE                                  | SPONSE SPI                                          | ECTRA FO                       | R RM-100                                  | 0 RADIATI                                        | ON MONITO                                                  | RS IN MCR                                    | PANEL 2                        | -M-30                                                                                          |
| <u>ÇALC ID</u>                                                             |                         | <u>TYPE</u>                                                              | <u>ORG</u>                              | PLANT                                               | BRANCH                         |                                           | NUMBER                                           |                                                            | CUR REV                                      | NEW REV                        | <u>/</u>                                                                                       |
| CURREN                                                                     | r                       | CN                                                                       | NUC                                     |                                                     |                                |                                           |                                                  |                                                            |                                              |                                | REVISION<br>APPLICABILITY                                                                      |
| NEW                                                                        |                         | CN                                                                       | NUC                                     | WBN                                                 | CEB                            | <u> </u>                                  | WCGACQO                                          | 766                                                        | 000                                          | •                              | Entire calc  Selected pages                                                                    |
| ACTION                                                                     | NE<br>RE                | W<br>VISIÓN                                                              |                                         | delete (<br>Rename (                                | ] SUPER                        | RSEDE<br>CATE                             | CCRIS<br>(Verifie<br>Require                     | UPDATE ONL<br>r Approval Sigr<br>ed)                       | Y 🔲<br>natures Not                           |                                | lo CCRIS Changes<br>For calc revision, CCRIS<br>een reviewed and no<br>CCRIS changes required) |
| <u>UNITS</u><br>002                                                        |                         | <u>SYS1</u><br>090                                                       | EMS                                     |                                                     |                                |                                           | UNIDS<br>WBN-2-PNL-(<br>WBN-2-RM-0<br>WBN-2-RM-0 | 090-M30, WE<br>90-0272, WE<br>90-0273A, WE                 | 3N-2-RM-090-<br>3N-2-RM-090-<br>3N-2-RM-090- | 0271, W<br>0272A, W<br>0274, W | BN-2-RM-090-0271A<br>BN-2-RM-090-0273,<br>BN-2-RM-090-0274A                                    |
| DCN.EDC.I<br>N/A                                                           | <u>N/A</u>              |                                                                          |                                         | APPLICABLE<br>WB-DC-40-3                            | DESIGN DO                      | OCUMENT<br>S-5.10                         | <u>(S)</u> :                                     |                                                            |                                              |                                | CLASSIFICATION<br>E                                                                            |
| QUALIT<br>RELATE<br>Yes 🛛 🔊                                                | Ƴ<br>D?<br>Io □         | SAF<br>(if<br>  Y                                                        | ETY REL<br>yes, QR<br>es 🛛 🛛 N          | <u>ATED?</u> <u> </u><br>= yes) <u>A</u><br>No □ Yo |                                | AND                                       | PECIAL REC<br>/OR LIMITING<br>Yes 🗌              |                                                            | S? DESIG<br>ATTAC<br>Yes [                   | N OUTPUT<br>CHMENT?<br>] Nº ⊠  | SAR/TS and/or ISFSI<br>SAR/CoC AFFECTED                                                        |
| PREPAREI<br>EHALI                                                          | םו א                    |                                                                          | PREPAR<br>NO<br>(423) 36                | RER PHONE                                           | PREPA                          | ARING ORC<br>CEB                          | <u> (BRANCH)</u>                                 | VERIFICAT<br>METHOD<br>DESIGN RE                           | <u>ion</u><br>view                           | <u>NEW M</u><br>Yes            | IETHOD OF ANALYSIS                                                                             |
| ODEDADE                                                                    | RSIC                    | SNATUR                                                                   | E                                       |                                                     |                                | DATE                                      |                                                  | SIGNATURE                                                  | 119                                          | /                              | DATE                                                                                           |
| EYAD H. A                                                                  |                         | Æ                                                                        | 2                                       |                                                     | 04                             | 105/11                                    | FORTO                                            | Flown /                                                    |                                              | m                              | 4/3/11                                                                                         |
| EYAD H. A<br>VERIFIERS<br>Loberty                                          | LI<br>SIGN              | WTURE<br>WWN/                                                            | AL                                      | him                                                 | - 4/.                          | 05/11<br>DATE<br>5/11                     | APPROVA<br>BILL C. PE                            | L SIGNATURE                                                | a porta                                      | n<br>R                         | 9-/3///<br>DATE<br>4-5-11                                                                      |
| EYAD H. A.<br>VERIFIER S<br>Lobert 6<br>STATEMEN<br>THIS CALC<br>WBNP UNIT |                         | E PROB                                                                   | LEM/ABS                                 | STRACT<br>THE IN-CABI                               | - 4/.<br>NET REQUIR<br>2-M-30. | Cos / I)<br>DATE<br>Cos / II<br>RED RESPO | APPROVA<br>BILL C. PE                            | A FOR THE RN                                               | 4-1000 RADIA                                 | TION MON                       | 4-5-11                                                                                         |
| EYAD H. A<br>VERIFIER S<br>Lobert G<br>STATEMEN<br>THIS CALC<br>WBNP UNIT  |                         | E PROB                                                                   | LEM/ABS<br>EVELOPS<br>NTROL R           | STRACT<br>THE IN-CABI                               | - 4/.<br>NET REQUIN            | DATE                                      | APPROVA<br>BILL C. PE                            | A FOR THE RM                                               | 4-1000 RADIA                                 | TION MON                       | 4-5-11                                                                                         |
| EYAD H. A<br>VERIFIER S<br>Lobert &<br>STATEMEN<br>THIS CALC<br>WBNP UNIT  | LI<br>SIGN<br>TO<br>ULA | E PROB<br>TION DE<br>TION DE                                             | LEM/ABS<br>EVELOPS<br>NTROL R           | STRACT<br>THE IN-CABI                               | - 41.<br>NET REQUIE<br>2-M-30. | DATE                                      | APPROVA<br>BILL C. PE                            | A FOR THE RN                                               | 4-1000 RADIA                                 | TION MON                       | 9-/3/11       DATE       4-5-11                                                                |
| EYAD H. A<br>VERIFIER S<br>Loberty<br>STATEMEN<br>THIS CALC<br>WBNP UNIT   |                         | E PROB<br>TION DE                                                        | LEM/ABS<br>EVELOPS<br>NTROL R           | STRACT<br>THE IN-CABI                               | - 4/.<br>NET REQUIN            | COS / 1)<br>DATE                          | APPROVA<br>BILL C. PE                            | LEGIBILI<br>FOR ISSU                                       | A-1000 RADIA                                 | JATED A<br>GES IN R            | DATE<br>4-5-11<br>HITORS MOUNTED ON<br>ND ACCEPTED<br>EV. 0                                    |
| EYAD H. A<br>VERIFIER S<br>Loberty<br>STATEMEN<br>THIS CALC<br>WBNP UNIT   |                         | E PROB<br>TION DE<br>TAIN CO                                             | LEM/ABS<br>SVELOPS<br>NTROL R           | STRACT<br>THE IN-CABI                               | - 4/.<br>NET REQUIE            | Cos / II                                  | APPROVA<br>BILL C. PE                            | LEGIBILI<br>FOR THE RM<br>FOR ISSU<br>EYAD H.<br>SIGNATU   | A-1000 RADIA                                 | JATED A<br>GES IN R            | DATE<br>4-5-11<br>HTORS MOUNTED ON<br>ND ACCEPTED<br>EV. 0<br>$-\frac{04/a5/11}{DATE}$         |
| EYAD H. A<br>VERIFIER S<br>Lobert &<br>STATEMEN<br>THIS CALC<br>WBNP UNIT  |                         | E PROB<br>TION DE<br>TION DE<br>TAIN CO                                  | LEM/ABS<br>EVELOPS<br>NTROL R           | STRACT<br>THE IN-CABI<br>ROOM PANEL                 | - 4/.<br>NET REQUIN<br>2-M-30. | E NUMBE                                   | APPROVA<br>BILL C. PE                            | LEGIBILI<br>FOR THE RM<br>FOR ISSU<br>EYAD H.<br>SIGNATU   | A-1000 RADIA                                 | JATED A<br>GES IN R            | DATE<br>4-5-11<br>HITORS MOUNTED ON<br>ND ACCEPTED<br>EV. 0<br>                                |
| EYAD H. A<br>VERIFIER S<br>Lobert &<br>STATEMEN<br>THIS CALC<br>WBNP UNIT  |                         | E PROB<br>TION DE<br>TION DE<br>TION DE<br>TION DE<br>TION DE<br>TO EDMI | CHE<br>S AND DI<br>S AND DI<br>S AND DI | Yes No<br>ESTROY<br>ETURN CALC                      | PH<br>NET REQUIN<br>2-M-30.    | ED RESPO                                  | R(S)                                             | A FOR THE RM<br>LEGIBILI<br>FOR ISSU<br>EYAD H.<br>SIGNATU | A-1000 RADIA                                 | JATED A<br>GES IN R            | DATE<br>4-5-11<br>HITORS MOUNTED ON<br>ND ACCEPTED<br>EV. 0<br>$-\frac{04/25/11}{DATE}$        |

TVA 40532 [10-2008]

NEDP-2-1 [10-20-2008]

## NPG CALCULATION COVERSHEET/CCRIS UPDATE

|            |           |         |                                       |                                       |                                       |                                       |       | Page 2 |   |
|------------|-----------|---------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------|--------|---|
| CALC ID    | TYPE      | ORG     | PLANT                                 | BRANCH                                | NUMBE                                 | R                                     | REV   |        |   |
|            | CN        | NUC     | WBN                                   | CEB                                   | WCGACQ                                | 0766                                  | 000   |        |   |
|            |           |         | A                                     | LTERNATE CALC                         | CULATION IDEN                         | TIFICATION                            |       |        |   |
|            |           |         |                                       | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |       |        |   |
|            |           |         | · · · · · · · · · · · · · · · · · · · |                                       |                                       |                                       |       |        | 2 |
| BLDG<br>05 | <u>RO</u> | OM<br>R | <u>ELEV</u><br>755'                   | <u>COORD/AZIM</u><br>N/A              | <u>FIRM</u><br>BECHTEL                | Print Report                          | Yes 🗌 |        |   |
| CATEGORII  | ES: A09   |         |                                       |                                       | · ·                                   |                                       |       |        |   |

# KEY NOUNS (A-add, D-delete)

| ACTION | KEY NOUN        | <u>A/D</u> | KEY NOUN |
|--------|-----------------|------------|----------|
| (A/D)  |                 |            |          |
| A      | SEISMIC QUALIF  |            |          |
| A      | SEISMIC         |            |          |
| A      | RESPONSE SPECTR |            |          |
| Α      | PANEL           |            |          |
|        |                 |            |          |

# <u>CROSS-REFERENCES</u> (A-add, C-change, D-delete)

| ACTION<br>(A/C/D)                | XREF<br><u>CODE</u>         | XREF<br>TYPE   | XREF<br><u>PLANT</u> | XREF<br>BRANCH             | XREF<br><u>NUMBER</u>                      |          | XREF<br>REV |  |  |
|----------------------------------|-----------------------------|----------------|----------------------|----------------------------|--------------------------------------------|----------|-------------|--|--|
| A                                | Р                           | DN             | WBN                  | EEB                        | EDCR-2 52338                               |          |             |  |  |
| Α                                | P                           | CN             | WBN                  | CEB                        | WCGACQ0177                                 |          |             |  |  |
| А                                | Р                           | CN             | WBN                  | CEB                        | CEBCQS448                                  |          |             |  |  |
| A                                | · P                         | CN             | WBN                  | CEB                        | CEBCQS447                                  |          |             |  |  |
| Α                                | Р                           | DB             | WBN                  | CEB                        | CEB-SS-5.10                                |          |             |  |  |
| A                                | Р                           | CE             | WBN                  | CEB                        | CEB-80-27                                  | .:       |             |  |  |
| Α                                | Р                           | VD             | WBN                  | EEB                        | 04034100                                   |          |             |  |  |
|                                  |                             |                |                      |                            |                                            |          |             |  |  |
|                                  |                             |                |                      | •                          |                                            |          |             |  |  |
|                                  |                             | ·              |                      |                            |                                            |          |             |  |  |
|                                  |                             |                |                      |                            |                                            |          |             |  |  |
|                                  |                             |                |                      |                            |                                            |          |             |  |  |
|                                  |                             |                |                      |                            |                                            |          |             |  |  |
|                                  |                             |                |                      |                            |                                            |          |             |  |  |
|                                  |                             |                | · .                  |                            |                                            |          |             |  |  |
|                                  |                             |                |                      |                            |                                            |          |             |  |  |
|                                  |                             |                |                      |                            |                                            |          |             |  |  |
| CCRIS ONLY L<br>Following are re | JPDATES:<br>equired only wh | en making keyv | word/cross refere    | ence CCRIS upo             | dates and page 1 of form NEDP-2-1 is not i | ncluded: |             |  |  |
|                                  |                             |                |                      |                            |                                            | _        |             |  |  |
| F                                | PREPARER SI                 | GNATURE        |                      | DATE                       | CHECKER SIGNATURE                          | DAT      | E           |  |  |
| PREPARER PH                      | IONE NO.                    |                | ED                   | MS ACCESSIC                | NNO.                                       |          |             |  |  |
| TVA 40532 [10-2                  | 008]                        |                | Page 2 of 2          | of 2 NEDP-2-1 [10-20-2008] |                                            |          |             |  |  |

|                 |                                                                                                                                                                                                                                                                      | 3        | -                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|
|                 |                                                                                                                                                                                                                                                                      |          |                    |
| Title           | IN-CABINET REQUIRED RESPONSE SPECTRA FOR RM-1000 RADIATION MONITORS IN                                                                                                                                                                                               | MCR PAN  | EL 2-M-30          |
| Revision<br>No. | DESCRIPTION OF REVISION                                                                                                                                                                                                                                              |          |                    |
| 000             | ORIGINAL ISSUE                                                                                                                                                                                                                                                       |          |                    |
|                 | TOTAL NUMBER OF PAGES: <u>24</u>                                                                                                                                                                                                                                     |          |                    |
|                 | THE WBN SAR, WBN2 FSAR AMENDMENT 103, TECHNICAL SPECIFICATIONS/ BASES AND<br>REQUIREMENTS MANUAL/ BASES HAVE BEEN REVIEWED BY <b>EYAD H. ALISE</b><br>APPLICABILITY TO UNIT 2, DUAL UNIT OPERATION AND THIS REVISION OF THE CALCUL<br>AFFECT ANY OF THESE DOCUMENTS. | TECHNICA | L<br>FOI<br>ES NOT |
|                 |                                                                                                                                                                                                                                                                      |          |                    |
| ·               |                                                                                                                                                                                                                                                                      |          |                    |
|                 |                                                                                                                                                                                                                                                                      |          |                    |
|                 |                                                                                                                                                                                                                                                                      | ·        |                    |
|                 |                                                                                                                                                                                                                                                                      |          |                    |
|                 |                                                                                                                                                                                                                                                                      |          |                    |
|                 |                                                                                                                                                                                                                                                                      |          |                    |
|                 |                                                                                                                                                                                                                                                                      | . *      |                    |
|                 |                                                                                                                                                                                                                                                                      |          |                    |
|                 |                                                                                                                                                                                                                                                                      |          |                    |
|                 |                                                                                                                                                                                                                                                                      |          |                    |
|                 |                                                                                                                                                                                                                                                                      |          |                    |
| A 40709 [10     | -2008] Page 1 of 1                                                                                                                                                                                                                                                   | NEDP-2-2 | 10-20-200          |

|             |                                 |              | Page | 4    |
|-------------|---------------------------------|--------------|------|------|
|             | NPG CALCULATION TA              | ABLE OF CONT | ENTS |      |
| Calculation | dentifier: WCGACQ0766           | Revision:    | 001  |      |
|             | TABLE OF C                      | ONTENTS      | _    |      |
| SECTION     | TIT                             | LE           |      | PAGE |
| 1.0         | COVER SHEETS                    |              |      | 1    |
| 2.0         | <b>REVISION LOG</b>             |              |      | 3    |
| 3.0         | TABLE OF CONTENTS               |              |      | 4    |
| 4.0         | PURPOSE                         |              |      | 5    |
| 5.0         | APPLICABLE DESIGN BASIS         |              |      | 5    |
| 6.0         | APPLICABLE REFERENCES           | · ·          |      | 5    |
| 7.0         | ASSUMPTIONS                     |              |      | 6    |
| 8.0         | SPECIAL REQUIREMENTS AND LIMITI | NG CONDITION | S    | 6    |
| 9.0         | METHODOLOGY                     |              |      | 6    |
| 10.0        | JUSTIFICATION/ANALYSIS          |              |      | 7    |
| 11.0        | CONCLUSION                      |              |      | 18   |
| 11.1        | APPENDIX A                      |              |      | A1   |
| 12.0        | ATTACHMENTS (TOTAL No. OF PAGES | (14)         |      |      |

SUPERSEDED PAGES: (0 Pages)

TVA 40710 [10-2008]

Page 1 of 1

NEDP-2-3 [10-20-2008]

This Sheet Replaced By Revision 001

| Subjec                           | Calcula<br>ct: IN-CABINET REQUIRED RESP<br>RM-1000 RADIATION MONITO<br>ed: SEE COVER SHEET                                      | ation Sheet<br>onse spectra for<br>ors in mcr panel 2-m-30                                          | Project<br>Job No.<br>Calc. No.                        | WBN2CCP<br>25402          |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|
| Subjec                           | ct: <u>IN-CABINET REQUIRED RESP</u><br><u>RM-1000 RADIATION MONITC</u><br>ed: <u>SEE COVER SHEET</u>                            | ONSE SPECTRA FOR<br>IRS IN MCR PANEL 2-M-30                                                         | Job No.<br>Calc. No.                                   | 25402                     |
| Subjec                           | ct: <u>IN-CABINET REQUIRED RESP</u><br><u>RM-1000 RADIATION MONITO</u><br>ed: <u>SEE COVER SHEET</u>                            | <u>'ONSE SPECTRA FOR</u><br>IRS IN MCR PANEL 2-M-30                                                 | Calc. No.                                              | WCGACO0766                |
|                                  | RM-1000 RADIATION MONITO                                                                                                        | ORS IN MCR PANEL 2-M-30                                                                             | 1 1                                                    | wCGACQ0700                |
|                                  | ed: SEE COVER SHEET                                                                                                             |                                                                                                     | Sheet No.                                              | 5                         |
| Prepare                          |                                                                                                                                 | Date                                                                                                | Sheet Rev.                                             | 000                       |
| Checke                           | ed: SEE COVER SHEET                                                                                                             | Date                                                                                                | _                                                      |                           |
|                                  |                                                                                                                                 | ·                                                                                                   |                                                        | REFERENCE                 |
| 4.0 <u>P</u> U                   | URPOSE                                                                                                                          |                                                                                                     |                                                        |                           |
| This<br>Radia<br>These<br>Instru | calculation develops the in-ca<br>ation Monitors to be installed<br>e radiation monitors together<br>umentation Modules (NIM) b | binet required response spoin WBNP Unit 2 Main Conwith I/F Converters are instants in Panel 2-M-30. | ectra for the RM<br>ntrol Room Pan<br>talled in Nuclea | 1-1000<br>el 2-M-30.<br>r |
| 5.0 <u>AP</u>                    | PLICABLE DESIGN BAS                                                                                                             | <u>IS</u>                                                                                           | · · · ·                                                |                           |
| 1. W<br>El                       | B-DC-40-31.2 Rev. 12, "Seis<br>ectrical and Mechanical Equi                                                                     | mic/Structural Qualificatio                                                                         | on of Seismic Ca                                       | ategory I                 |
| 2. CI<br>De                      | EB-SS-5.10 Rev. 3, "Seismic<br>evices"                                                                                          | Qualification of Electrical,                                                                        | , Mechanical, an                                       | id I&C                    |
| 6.0 <u>AP</u>                    | PPLICABLE REFERENCE                                                                                                             | <u>s</u>                                                                                            |                                                        |                           |
| 1. EI                            | DCR-2 52338 Rev. A                                                                                                              |                                                                                                     |                                                        |                           |
| 2. W<br>(R                       | 7CGACQ0177 Rev. 7, "Seism<br>UMS# T93100515007).                                                                                | ic Evaluation of Panel 2-M                                                                          | 1-30 & 2-M-31"                                         |                           |
| 3. CI<br>Qu                      | EBCQS448 Rev. 0, "Definition<br>ualification" (RIMS# B41960                                                                     | on of Required Acceleration<br>425002)                                                              | n Input for Devi                                       | ce Seismic                |
| 4. Cl<br>De                      | EBCQS447 Rev. 2, "Standard<br>evices" (RIMS# B410709050                                                                         | l Equipment Seismic Quali<br>01)                                                                    | fication Method                                        | ls for                    |
| 5. Cl<br>Bi                      | EB-80-27 Rev. 5, "Dynamic l<br>uilding and Response Spectra                                                                     | Earthquake Analysis of the for Attached Equipment"                                                  | Auxiliary Contr                                        | rol                       |
| 6. G                             | eneral Atomics Dwg No. 040                                                                                                      | 34100 Rev. C                                                                                        | · ·                                                    |                           |
| 7. D                             | RA No. 52374-13 Rev. 0                                                                                                          |                                                                                                     |                                                        | See<br>Attachment         |
| 8. D                             | RA No. 52338-005 Rev. 0                                                                                                         | · . · ·                                                                                             |                                                        | for Copy of<br>Refs 66-6  |
| 9. D                             | RA No. 52338-038 Rev. 0                                                                                                         |                                                                                                     |                                                        | 1013. 0.0-0.              |

| TEL                                                                      |                                              |                                |                                | Project                      | WB                    | N2CCP        |
|--------------------------------------------------------------------------|----------------------------------------------|--------------------------------|--------------------------------|------------------------------|-----------------------|--------------|
| BECH                                                                     | Calcu                                        | lation Shee                    | t                              | Job No.                      | . 2                   | 5402         |
| Subject: IN-CABI                                                         | NET REOUIRED RES                             | PONSE SPECTR                   | A FOR                          | Calc. No.                    | WCG                   | ACQ0766      |
| <u>RM-1000</u>                                                           | RADIATION MONIT                              | ORS IN MCR PA                  | NEL 2-M-30                     | Sheet No.                    | · · ·                 | 6            |
| Prepared: SEE COVI                                                       | ER SHEET                                     | Date                           |                                | Sheet Rev.                   | (                     | )00          |
| Checked: SEE COVI                                                        | ER SHEET                                     | Date                           |                                |                              | <u></u>               |              |
|                                                                          |                                              |                                |                                |                              |                       | REFERENCES   |
| 5.0 APPLICAB                                                             | LE REFERENC                                  | ES (CONT'D)                    |                                |                              |                       |              |
| 10 Roark's For                                                           | nulas for Stress ar                          | d Strain 7 <sup>th</sup> Ed    |                                |                              |                       |              |
| TO, ROAR STON                                                            | nulas for Sucss at                           |                                | •                              |                              |                       | See          |
| 11. General Elec                                                         | tric Dwg No. 015                             | 3D2768-1 Rev                   | . 1                            |                              | 5 - 5 <sup>-</sup> 5  | Attachment A |
| 12. TVA Dwg N                                                            | o. 47W605-1 Rev                              | . 15                           |                                |                              |                       | Ref. 6.11    |
| .0 <u>ASSUMPT</u> I                                                      | DNS                                          |                                |                                |                              |                       |              |
| None                                                                     | •                                            |                                |                                |                              |                       |              |
| None                                                                     | •                                            |                                |                                |                              |                       |              |
| 3.0 <u>SPECIAL I</u>                                                     | REQUIREMENT                                  | <u>'S AND LIMI</u>             | TING COND                      | <b>ITIONS</b>                |                       | :<br>        |
| None                                                                     |                                              |                                |                                |                              |                       |              |
|                                                                          |                                              |                                |                                |                              |                       |              |
| 9.0 <u>METHOD</u>                                                        | <u>DLOGY</u>                                 |                                |                                |                              |                       |              |
| <b>0.0</b> <u>METHOD</u>                                                 | DLOGY                                        | -COS-448 area                  | used to develo                 | n the in-cabit               | net required          | Ref 63       |
| <b>0.0</b> <u>METHOD</u><br>The methods from response spectra            | DLOGY<br>om Calc No. CEB<br>a at the RM-1000 | -CQS-448 are<br>mounting locat | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| <b>.0 METHOD</b><br>The methods from response spectration 2-M-30.        | DLOGY<br>om Calc No. CEB<br>a at the RM-1000 | -CQS-448 are mounting locat    | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| <b>METHOD</b><br>The methods from response spectra<br>2-M-30.            | DLOGY<br>om Calc No. CEB<br>a at the RM-1000 | -CQS-448 are mounting locat    | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| .0 <u>METHOD</u><br>The methods from<br>response spectra<br>2-M-30.      | DLOGY<br>om Cale No. CEB<br>a at the RM-1000 | -CQS-448 are<br>mounting locat | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| .0 <u>METHOD</u><br>The methods from<br>response spectra<br>2-M-30.      | DLOGY<br>om Cale No. CEB<br>a at the RM-1000 | -CQS-448 are mounting locat    | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| .0 <u>METHOD</u><br>The methods from<br>response spectra<br>2-M-30.      | DLOGY<br>om Cale No. CEB<br>a at the RM-1000 | -CQS-448 are mounting locat    | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| .0 <u>METHOD</u><br>The methods from response spectra<br>2-M-30.         | DLOGY<br>om Cale No. CEB<br>a at the RM-1000 | -CQS-448 are<br>mounting locat | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| .0 <u>METHOD</u><br>The methods from response spectra<br>2-M-30.         | DLOGY<br>om Calc No. CEB<br>a at the RM-1000 | -CQS-448 are mounting locat    | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| <b>9.0</b> <u>METHOD</u><br>The methods from response spectra<br>2-M-30. | DLOGY<br>om Calc No. CEB<br>a at the RM-1000 | -CQS-448 are mounting locat    | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| <b>.0</b> <u>METHOD</u><br>The methods from response spectra<br>2-M-30.  | DLOGY<br>om Calc No. CEB<br>a at the RM-1000 | -CQS-448 are mounting locat    | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| <b>D.0</b> <u>METHOD</u><br>The methods from response spectra<br>2-M-30. | DLOGY<br>om Cale No. CEB<br>a at the RM-1000 | -CQS-448 are<br>mounting locat | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |
| <b>9.0</b> <u>METHOD</u><br>The methods from response spectra<br>2-M-30. | DLOGY<br>om Cale No. CEB<br>a at the RM-1000 | -CQS-448 are<br>mounting locat | used to develo<br>ions for WBN | p the in-cabin<br>Unit 2 MCR | net required<br>Panel | Ref. 6.3     |

|             | Calculation Sheet                                     |                   | Project    | WBN2CCP    |
|-------------|-------------------------------------------------------|-------------------|------------|------------|
| BEB         | Galculation                                           | Calculation Sheet |            | 25402      |
| Subject: IN | N-CABINET REQUIRED RESPONSE SI                        | PECTRA FOR        | Calc. No.  | WCGACQ0766 |
| <u>R</u>    | <b>RM-1000 RADIATION MONITORS IN MCR PANEL 2-M-30</b> |                   | Sheet No.  | 7          |
| Prepared: s | SEE COVER SHEET                                       | _ Date            | Sheet Rev. | 000        |
| Checked: s  | SEE COVER SHEET                                       | Date              |            |            |

REFERENCES

Ref. 6.2

## 10.0 JUSTIFICATION/ANALYSIS

From Sheet 34 of Appendix I of Calc No. WCG-ACQ-0177, the first and second mode frequencies of Panel 2-M-30 are 13.35 Hz and 15.33 Hz respectively. Since WCG-ACQ-0177 does not define the direction of these modes, these frequencies are conservatively considered to be in the two horizontal directions and the vertical direction. The methods in sections 4.1.3.2 and 4.1.3.3 of Ref. 6.2 are used to compute the worst case maximum acceleration in each direction at the device locations on the panel. The equations to compute the input accelerations at the device locations are as follows:

For the Horizontal direction:

$$Ap_{k,h} := \sqrt{(2.1 \text{ S} \cdot Ap_{k,1})^2 + (1.3 \text{ S} \cdot Ap_{k,2})^2 + (1.6 \text{ A}p_{k,3})^2 + A_{zpa,k}^2}$$

For the Vertical direction:

$$Ap_{k,v} := \sqrt{(1.6 Ap_{k,3})^2 + A_{zpa,k}^2}$$

where,

 $S := \frac{x}{L}$ 

 $Ap_{k,1}$  is the panel acceleration at the first mode frequency.

is the device position ratio. x is the height from the ground to the device and L is the total height of the panel.

 $Ap_{k,2}$  Is the panel acceleration at the second mode frequency.

 $Ap_{k,3}$  is the acceleration corresponding to the panel local frequency at the device location.

 $\mathbf{A}_{\textbf{zpa.k}}$  is the panel acceleration at cut-off frequency (33 Hz).

According to Section 4.1.3.3 of Ref. 6.2; since the mass and stiffness distribution is reasonably uniform along the height of the host panel (as shown in Ref. 6.11), a  $1^{st}$  mode participation factor of 1.6 and a  $2^{nd}$  mode participation factor of 1.0 can be used.

| Ca                                                                                                            | Iculation Sheet                                                            | Project                                         | WBI            | N2CCP         |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|----------------|---------------|
| U Ca                                                                                                          |                                                                            | Job No.                                         | Job No. 254    |               |
| Subject: <u>IN-CABINET REQUIREI</u>                                                                           | D RESPONSE SPECTRA FOR                                                     | Calc. No.                                       | WCGA           | ACQ0766       |
| RM-1000 RADIATION M                                                                                           | RM-1000 RADIATION MONITORS IN MCR PANEL 2-M-30 Sheet No.                   |                                                 |                | 8             |
| Prepared: SEE COVER SHEET                                                                                     | Date                                                                       | Sheet Rev.                                      | 0              | 00            |
| Checked: SEE COVER SHEET                                                                                      | Date                                                                       |                                                 | .*             |               |
|                                                                                                               |                                                                            |                                                 |                | REFERENCES    |
| 0.0 JUSTIFICATION/ANA                                                                                         | LYSIS (CONT'D)                                                             |                                                 | ; ]            | <u> </u>      |
| Determination of Local Freq                                                                                   | uency:                                                                     |                                                 |                | ·             |
| Weight of Front Plate:                                                                                        |                                                                            | •                                               |                |               |
| $W_{\text{plate}} := 0.283 \frac{\text{lb}}{\text{in}^3} \cdot [(11.75 \text{ in } 30)]$                      | $(1.1) - (8.7 \text{ in } 18.25 \text{ in}) = \frac{1}{4} \cdot \text{in}$ | W <sub>plate</sub> = 13.706lb                   |                | Ref. 6.6 & 6. |
| Weight of Radiation Monitoring                                                                                | NIM bin:                                                                   |                                                 |                |               |
| $W_{RM} := 35 \text{ lb}$ (each)                                                                              |                                                                            |                                                 |                | Ref. 6.6      |
| Consider the Front Plate of the total weight to be uniformly loa                                              | Panel to be simply supported on a ded over entire area:                    | II four sides and the                           |                |               |
| $q \coloneqq \frac{W_{\text{plate}} + W_{\text{RM}}}{11.75 \text{ in } 30 \text{ in}}$                        | $q = 0.138 \frac{lb}{in^2}$                                                |                                                 |                | · · ·         |
| The maximum local displacement<br>Table 11.4 on Page 502 of Ref                                               | ent of the Front Plate per Case No<br>6.10 is:                             | 1 of                                            |                |               |
| a := 30 in b := 11.75 in                                                                                      | $\frac{a}{b} = 2.553 \implies 3.0  \alpha :=$                              | = 0.1335                                        |                |               |
| $t_{\text{plate}} := \frac{1}{4} \cdot \text{in}$ $E_{\text{steel}} :=$                                       | 29000 ksi                                                                  | ·                                               |                |               |
|                                                                                                               | • · · · · ·                                                                |                                                 |                |               |
| $\mathbf{v} := \frac{\alpha \cdot \mathbf{q} \cdot \mathbf{b}^4}{\alpha \cdot \mathbf{q} \cdot \mathbf{b}^4}$ | $y = 7.76 \times 10^{-4}$ in                                               | · 、                                             |                |               |
| <sup>5</sup> max <sup>3</sup><br>Esteel <sup>t</sup> plate                                                    |                                                                            |                                                 |                |               |
| -<br>-                                                                                                        |                                                                            | . ·                                             |                | i.            |
| $f_{local} := \frac{1}{2 \cdot \pi} \sqrt{\frac{g}{y_{max}}}$                                                 | $f_{local} = 112.265Hz$                                                    |                                                 |                |               |
| As shown above, the frequen                                                                                   | ncy of the Front Plate where the                                           | e device is mounted (<br>will be no contributio | local<br>on to | ·<br>·        |

|                                | Calculation Sheet                | Project        | WBN2CCP    |
|--------------------------------|----------------------------------|----------------|------------|
| BLEE                           |                                  |                | 25402      |
| Subject: <u>IN-CABINET REC</u> | DUIRED RESPONSE SPECTRA FOR      | Calc. No.      | WCGACQ0766 |
| RM-1000 RADIAT                 | ION MONITORS IN MCR PANEL 2-M-30 | Sheet No.      | 9          |
| Prepared: SEE COVER SHEET      | Date                             | Sheet Rev.     | 000        |
| Checked: SEE COVER SHEET       | Date                             | , <sub>.</sub> | . *        |
|                                |                                  | · · · ·        | REFERENCES |

# 10.0 JUSTIFICATION/ANALYSIS (CONT'D)

Therefore, the equations for the input acceleration from Sheet 7 is reduced to:

 $Ap_{k,h} := \sqrt{(1.6 \text{ S} \cdot Ap_{k,1})^2 + (1.0 \text{ S} \cdot Ap_{k,2})^2 + A_{zpa,k}^2}$ 

(Horizontal)

 $Ap_{k,v} := A_{zpa,k}$  (Vertical)

Determination of the Device Position Ratio (S):

The device at the higher elevation on the panel is only considered since it has a greater input acceleration. Per Ref. 6.7-6.9, the device position ratio is as follows:

 $x := 28.375 \text{ in} + 2 \cdot (11.75 \text{ in})$  x = 51.875 in  $L := 98 \cdot \text{in}$  $S := \frac{x}{L}$  S = 0.529

The accelerations corresponding to the  $1^{st}$ ,  $2^{nd}$ , and cut-off frequencies are as follows:

According to Ref. 6.3; 3% damping ratio for SSE is used since the actual damping ratio is not obtainable.

For N-S (Front-to-Back) Direction SSE:

 $Ap_{k,1,NS} := 1.93 g$   $Ap_{k,2,NS} := 1.24 g$ 

 $A_{zpa.k.NS} = 0.84 g$ 

For E-W (Side-to-Side) Direction SSE:

 $Ap_{k,1,EW} = 2.34g$   $Ap_{k,2,EW} = 1.39g$ 

 $A_{zpa.k.EW} \approx 0.87 \text{ g}$ 

For Vertical Direction SSE:

 $A_{zpa.k.V} = 0.84 g$ 

| ALLEL A                                                                                              | Calculation Sheet                                                                                                               | Project                                                                    | WBN2CCP             |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------|
|                                                                                                      | Calculation Onect                                                                                                               | Job No.                                                                    | 25402               |
| Subject: <u>IN-CABINET RE</u>                                                                        | <b>QUIRED RESPONSE SPECTRA FO</b>                                                                                               | R Calc. No.                                                                | WCGACQ0766          |
| RM-1000 RADIA                                                                                        | TION MONITORS IN MCR PANEL                                                                                                      | 2-M-30 Sheet No.                                                           | 10                  |
| Prepared: _SEE COVER SHEE                                                                            | rDate                                                                                                                           | Sheet Rev.                                                                 | 000                 |
| Checked: SEE COVER SHEE                                                                              | г Date                                                                                                                          |                                                                            |                     |
| · · · · · · · · · · · · · · · · · · ·                                                                |                                                                                                                                 | · · · · ·                                                                  | REFERENCE           |
| 0.0 JUSTIFICATIO                                                                                     | N/ANALYSIS (CONT'D)                                                                                                             |                                                                            |                     |
| Using the methods pro<br>(RRS) for the RM-100<br>in Panel 2-M-30 is de<br><i>N-S (Front-to-Back)</i> | ovided in Section 4.2 of Ref. 6<br>00 Radiation Monitors and I/F<br>termined as follows:<br><b>Required Response Spectra</b> (S | .3, the Required Response<br>Converters in NIM bins in<br>SSE 5% Damping): | Spectra<br>astalled |
| $Ap_{k.NS} := \sqrt{(1.6 \text{ S} \cdot \text{A})}$                                                 | $(1.0 \text{ S} \text{ Ap}_{k.2.\text{NS}})^2 + (1.0 \text{ S} \text{ Ap}_{k.2.\text{NS}})^2 + \text{ A}_{k.2.\text{NS}}$       | $\frac{2}{2}$ Ap <sub>k,NS</sub> =                                         | 1.951g              |
| From Page 33 of Re                                                                                   | ef. 6.3, m := 2.3314 b                                                                                                          | := 0.45 g                                                                  |                     |
| $f_{NS_1} := 1 \cdot Hz$                                                                             | $A_{NS_1} := b$                                                                                                                 | $A_{NS_1} = 0.45g$                                                         |                     |
| $A_{NS_2} := 5 \cdot Ap_{k.NS}$                                                                      |                                                                                                                                 | $A_{NS_2} = 9.757g$                                                        |                     |
| $f_{NS_2} := \left(\frac{A_{NS_2}}{b}\right)^m.$                                                     | Hz $f_{NS_2} = 3.74$                                                                                                            | 2Hz                                                                        |                     |
| f <sub>NS3</sub> := 16 Hz                                                                            | $A_{NS_3} = A_{NS_2}$                                                                                                           | $A_{NS_3} = 9.757g$                                                        |                     |
| $f_{NS_4} := 33 \cdot Hz$                                                                            | $A_{NS_4} = 2 A_{pk,NS}$                                                                                                        | $A_{NS_4} = 3.903g$                                                        |                     |
| f <sub>NS5</sub> := 33 Hz                                                                            | $A_{NS_5} := Ap_{k.NS}$                                                                                                         | $A_{NS_5} = 1.951g$                                                        |                     |
| $f_{NS_6} := 100 \text{ Hz}$                                                                         | $A_{NS_6} := Ap_{k.NS}$                                                                                                         | $A_{NS_6} = 1.951g$                                                        |                     |
|                                                                                                      |                                                                                                                                 |                                                                            |                     |

| <b>FRIT</b>                 | Calculation Sheet                    | Project    | WBN2CCP    |
|-----------------------------|--------------------------------------|------------|------------|
|                             |                                      |            | 25402      |
| Subject: <u>IN-CABINET</u>  | REQUIRED RESPONSE SPECTRA FOR        | Calc. No.  | WCGACQ0766 |
| <u>RM-1000 RA</u>           | DIATION MONITORS IN MCR PANEL 2-M-30 | Sheet No.  | . 11       |
| Prepared: SEE COVER S       | HEET Date                            | Sheet Rev. | 000        |
| Checked: <u>SEE COVER S</u> | HEET Date                            |            | · · ·      |

REFERENCES 10.0 JUSTIFICATION/ANALYSIS (CONT'D) E-W (Side-to-Side) Required Response Spectra (SSE 5% Damping):  $Ap_{k.EW} = \sqrt{(1.6 \text{ S} \cdot Ap_{k.1.EW})^2 + (1.0 \text{ S} \cdot Ap_{k.2.EW})^2 + A_{zpa.k.EW}^2}$  $Ap_{k.EW} = 2.286g$ From Page 33 of Ref. 6.3, m := 2.3314  $b := 0.45 \, g$  $\mathbf{f}_{EW_1} \coloneqq 1 \cdot \mathbf{Hz}$  $A_{EW_1} := b_1$  $A_{EW_1} = 0.45g$  $A_{EW_2} := 5 \cdot A_{pk.EW}$  $A_{EW_2} = 11.43g$  $f_{EW_2} := \left(\frac{A_{EW_2}}{b}\right)^m \cdot Hz$  $f_{\rm EW_2} = 4.005 \rm Hz$  $f_{\dot{E}W_3} \coloneqq 16 \text{ Hz}$  $A_{EW_3} = 11.43g$  $A_{EW_3} := A_{EW_2}$  $f_{EW_4} := 33 \cdot Hz$  $A_{EW_4} := 2 \cdot A_{p_{k.EW}}$  $A_{EW_4} = 4.572g$  $f_{EW_5} := 33 \cdot Hz$  $A_{EW_5} := Ap_{k.EW}$  $A_{EW_5} = 2.286g$  $f_{EW_6} \coloneqq 100 \, \text{Hz}$  $\mathbf{A}_{\mathbf{EW}_{6}} \coloneqq \mathbf{Ap}_{\mathbf{k}.\mathbf{EW}}$  $A_{EW_6} = 2.286g$ 

|                       | Coloulati              | n Shoot                               | Project    | WBN2CCP    |
|-----------------------|------------------------|---------------------------------------|------------|------------|
| B                     | Calculation Sneet      |                                       | Job No.    | 25402      |
| Subject: <u>IN-CA</u> | BINET REQUIRED RESPONS | SE SPECTRA FOR                        | Calc. No.  | WCGACQ0766 |
| <u>RM-10</u>          | 00 RADIATION MONITORS  | IN MCR PANEL 2-M-30                   | Sheet No.  | 12         |
| Prepared: SEE Co      | OVER SHEET             | Date                                  | Sheet Rev. | 000        |
| Checked: SEE CO       | OVER SHEET             | Date                                  |            |            |
| I                     |                        | · · · · · · · · · · · · · · · · · · · |            |            |



|                           | Calculation            | Calculation Sheet       | Project    | WBN2CCP    |
|---------------------------|------------------------|-------------------------|------------|------------|
|                           | Calculation Sheet      |                         | Job No.    | 25402      |
| Subject: <u>IN-CABINI</u> | ET REQUIRED RESPONSE S | PECTRA FOR              | Calc. No.  | WCGACQ0766 |
| <u>RM-1000 R</u>          | ADIATION MONITORS IN M | <u>1CR PANEL 2-M-30</u> | Sheet No.  | 13         |
| Prepared: SEE COVER       | SHEET                  | _ Date                  | Sheet Rev. | 000        |
| Checked: SEE COVER        | SHEET                  | Date                    | _          |            |
|                           |                        |                         | · · · · ·  | REFERENCES |

# 10.0 JUSTIFICATION/ANALYSIS (CONT'D)

According to Section 4.1.1 of Ref. 6.4, the OBE Required Response Spectra (RRS) will be developed using 70% of SSE levels:

N-S (Front-to-Back) Required Response Spectra (OBE 5% Damping):

$$Ap_{k.NS} := 0.70 \sqrt{(1.6 \text{ S} \cdot Ap_{k.1.NS})^2 + (1.0 \text{ S} \cdot Ap_{k.2.NS})^2 + A_{zpa.k.NS}^2}$$

m := 2.3314

 $A_{NS_1} := b$ 

 $Ap_{k.NS} = 1.366g$ 

From Page 33 of Ref. 6.3,

 $f_{NS_1} := 1 \cdot Hz$ 

$$A_{NS_2} := 5 \cdot A_{pk.NS}$$

 $f_{NS_2} := \left(\frac{A_{NS_2}}{b}\right)^m \cdot Hz$ 

 $f_{NS_2} = 3.211 \text{Hz}$ 

b := 0.45 g

 $A_{NS_3} \coloneqq A_{NS_2}$  $f_{NS_3} := 16 \text{ Hz}$ 

 $f_{NS_4} := 33 \text{ Hz}$  $A_{NS_4} := 2 \cdot Ap_{k.NS}$ 

 $f_{NS_5} := 33 \cdot Hz$  $A_{NS_5} := Ap_{k.NS}$ 

 $f_{NS_6} \coloneqq 100 \text{ Hz}$  $A_{NS_6} := Ap_{k.NS}$ 

 $A_{NS_3} = 6.83g$ 

 $A_{NS_1} = 0.45g$ 

 $A_{NS_2} = 6.83g$ 

 $A_{NS_4} = 2.732g$ 

 $A_{NS_5} = 1.366g$ 

 $A_{NS_6} = 1.366g$ 

|                           | Calculation Sheet                                     |               | Project    | WBN2CCP    |
|---------------------------|-------------------------------------------------------|---------------|------------|------------|
| BED                       |                                                       |               | Job No.    | 25402      |
| Subject: <u>IN-CABINE</u> | T REQUIRED RESPONS                                    | E SPECTRA FOR | Calc: No.  | WCGACQ0766 |
| <u>RM-1000 R</u>          | <b>RM-1000 RADIATION MONITORS IN MCR PANEL 2-M-30</b> |               | Sheet No.  | 14         |
| Prepared: SEE COVER       | SHEET                                                 | Date          | Sheet Rev. | 000        |
| Checked: SEE COVER        | SHEET                                                 | Date          |            |            |

REFERENCES



|                           | Calculation Sheet                                     |                    | Project    | WBN2CCP    |
|---------------------------|-------------------------------------------------------|--------------------|------------|------------|
| BED                       | Calculation                                           | Job No.            |            | 25402      |
| Subject: <u>IN-CABINI</u> | T REQUIRED RESPONSE                                   | <u>SPECTRA FOR</u> | Calc. No.  | WCGACQ0766 |
| <u>RM-1000 R</u>          | <b>RM-1000 RADIATION MONITORS IN MCR PANEL 2-M-30</b> |                    | Sheet No.  | 15         |
| Prepared: SEE COVER       | SHEET                                                 | Date               | Sheet Rev. | 000        |
| Checked: SEE COVER        | SHEET                                                 | Date               | _          | •          |

REFERENCES

| 0.0 JUSTIFICATION/ANA                                                                                                            | LYSIS (CONT'D)                |                    |   | <br>  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|---|-------|
| Vertical Required Response                                                                                                       | Spectra (OBE 5% Dampin        | g):                | - |       |
| $Ap_{k,v} := 0.70 A_{zpa,k,v}$                                                                                                   | $Ap_{k,v} = 0.588g$           |                    |   | •     |
| From Page 33 of Ref                                                                                                              | . 6.3, m := 2.3314            | b := 0.45 g        |   | · · · |
| $\mathbf{f}_{\mathbf{V}_1} \coloneqq 1 \cdot \mathbf{H} \mathbf{z}$                                                              | $A_{V_1} := b$                | $A_{V_1} = 0.45g$  |   |       |
| $A_{V_2} := 5 \cdot Ap_{k,v}$                                                                                                    | · · ·                         | $A_{V_2} = 2.94g$  |   |       |
| · . <u>1</u>                                                                                                                     |                               |                    |   |       |
| $\mathbf{f}_{\mathbf{V}_2} := \left(\frac{\mathbf{A}_{\mathbf{V}_2}}{\mathbf{b}}\right)^{\mathbf{m}} \cdot \mathbf{H}\mathbf{z}$ | $f_{V_2} = 2.23$              | 7Hz                |   | · .   |
|                                                                                                                                  |                               |                    |   |       |
| $f_{V_3} \coloneqq 16 \text{ Hz}$                                                                                                | $A_{V_3} := A_{V_2}$          | $A_{V_3} = 2.94g$  |   | •     |
| f <sub>V4</sub> := 33·Hz                                                                                                         | $A_{V_4} := 2 \cdot Ap_{k.v}$ | $A_{V_4} = 1.176g$ |   |       |
| f <sub>V5</sub> := 33 Hz                                                                                                         | $A_{V_5} := Ap_{k,v}$         | $A_{V_5} = 0.588g$ |   |       |
| $f_{V_6} := 100 \text{ Hz}$                                                                                                      | $A_{V_6} := Ap_{k.v}$         | $A_{V_6} = 0.588g$ |   |       |
|                                                                                                                                  |                               |                    |   |       |
|                                                                                                                                  |                               |                    |   |       |
|                                                                                                                                  | ·                             |                    |   |       |

|                           | Calculation Sh                                        | oot            | Project    | WBN2CCP    |
|---------------------------|-------------------------------------------------------|----------------|------------|------------|
|                           | Calculation Sneet                                     |                | Job No.    | 25402      |
| Subject: <u>IN-CABINI</u> | ET REQUIRED RESPONSE SPEC                             | <u>TRA FOR</u> | Calc. No.  | WCGACQ0766 |
| <u>RM-1000 R</u>          | <b>RM-1000 RADIATION MONITORS IN MCR PANEL 2-M-30</b> |                | Sheet No.  | 16         |
| Prepared: SEE COVER       | SHEET D                                               | ate            | Sheet Rev. | 000        |
| Checked: SEE COVER        | SHEET D                                               | ate            | ·          |            |

REFERENCES



|                           | Coloulation Shoot              | Project                 | WBN2CCP    |
|---------------------------|--------------------------------|-------------------------|------------|
| BLAND                     | Calculation Sheet              | Job No.                 | 25402      |
| Subject: <u>IN-CABINE</u> | T REQUIRED RESPONSE SPECTRA FO | DR Calc. No.            | WCGACQ0766 |
| <u>RM-1000 RA</u>         | ADIATION MONITORS IN MCR PANEL | <u>2-M-30</u> Sheet No. | 17         |
| Prepared: SEE COVER       | SHEET Date                     | Sheet Rev.              | 000        |
| Checked: SEE COVER        | SHEET Date                     |                         |            |

REFERENCES



| Front-to-Back |       | Side-to-Side |       | Vertical |              |
|---------------|-------|--------------|-------|----------|--------------|
| f (Hz)        | a (g) | f (Hz)       | a (g) | f (Hz)   | a (g)        |
| 1.0           | 0.45  | 1.0          | 0.45  | 1.0      | 0.45         |
| 3.2           | 6.83  | 3.4          | 8.00  | 2.2      | 2.94         |
| 16.0          | 6.83  | 16.0         | 8.00  | 16.0     | <b>2.9</b> 4 |
| 33.0          | 2.73  | 33.0         | 3.20  | 33.0     | 1.18         |
| 33.0          | 1.37  | 33.0         | 1.60  | 33.0     | 0.59         |
| 100.0         | 1.37  | 100.0        | 1.60  | 100.0    | 0.59         |

|                           | Calculation S            | hoot            | Project    | WBN2CCP    |
|---------------------------|--------------------------|-----------------|------------|------------|
|                           | Calculation S            |                 | Job No.    | 25402      |
| Subject: <u>IN-CABINE</u> | ET REQUIRED RESPONSE SPI | ECTRA FOR       | Calc. No.  | WCGACQ0766 |
| <u>RM-1000 R</u>          | ADIATION MONITORS IN MC  | CR PANEL 2-M-30 | Sheet No.  | 18         |
| Prepared: SEE COVER       | SHEET                    | Date            | Sheet Rev. | .000       |
| Checked: SEE COVER        | SHEET                    | Date            | -          |            |
| L                         |                          |                 |            | REFERENCES |

# 11.0 <u>CONCLUSION</u>

The above curves are the in-cabinet required response spectra for the RM-1000's to be installed on WBN Unit 2 MCR Panel 2-M-30. These RRS curves can be used for comparison to vendor seismic test reports for qualification of the WBN Unit 2 safety related RM-1000 Radiation Monitors in Panel 2-M-30.

# 11.1 APPENDIX A

to Calculation WCG-ACQ-0766

Total pages

This Sheet Added By Revision 001

42

Page A1

Appendix A

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A2

#### 1.0 Purpose:

This calculation develops the required response spectra for the Safety Related Radiation Monitoring Equipment to be installed in WBNP Unit 2 Main Control Room Panels 2-M-30 (previous revision 0), 0-M-12 and skids WBN-2-RE-090-0106, WBN-2-RE-090-0112, WBN-2-RE-090-0130 and WBN-2-RE-090-0131.

#### 2.0 References:

1. EDCR-2 52338 Rev. A (Information only)

- 2. WCGACQ0177 Rev. 7, "Seismic Evaluation of Panel 2-M-30 & 2-M-31" (Information only).
- WCGACQ0112 Rev. 3, "Control Room Design Review (CRDR) Panel 0-M-12 Seismic Qualification" (RIMS# T95100727503)
- CEBCQS448 Rev. 0, "Definition of Required Acceleration Input for Device Seismic Qualification" (RIMS# B41960425002)
- 5. CEBCQS447 Rev. 2, "Standard Equipment Seismic Qualification Methods for Devices" (Information only)
- 6. CEB-80-27 Rev. 5, "Dynamic Earthquake Analysis of the Auxiliary Control Building and Response Spectra for Attached Equipment"
- 7. General Atomics Dwg No. 04031100 Rev. B
- 8. General Atomics Dwg No. 04031500 Rev. C
- 9. General Atomics Dwg No. 04031300 Rev. C
- 10. DCN 53037 (Information only)
- 11. 47W605-28 Rev.V (as-constructed drawing panel 0-M-12)
- 12. not used
- 13. TVA Dwg No. 47W605-1 Rev. 15
- 14. EDCR 52341 (Information only)
- 15. DRA 52341-036
- 16. DRA 52341-037
- 17. DRA 52341-080
- 18. DRA 52341-081
- 19. DRA 52341-082
- 20. DRA 52341-084 (Information only)
- 21. DRA 52341-085 (Information only)
- 22. DRA 52341-013 (Information only)
- 23. General Atomics Qualification Basis Report 04038903-1SP for 2-RE-90-130 & -131

24. General Atomics Qualification Basis Report 04038903-2SP for 2-RE-90-106

25. General Atomics Qualification Basis Report 04038903-4SP for 2-RE-90-112

26. Limited Scope Walk Down LSWD-536 panel 0-M-12 (see Attachment B)

#### 3.0 Design Criteria:

1. WB-DC-40-31.2 Rev. 12, "Seismic/Structural Qualification of Seismic Category I Electrical and Mechanical Equipment"

2. CEB-SS-5.10 Rev. 3, "Seismic Qualification of Electrical, Mechanical, and I&C Devices"

## 4.0 Assumptions:

There are no assumptions that require further verification.

| Revision                          | Revision                           | Revision              |
|-----------------------------------|------------------------------------|-----------------------|
| Originator:Date:<br>Checker:Date: | Originator:Date:<br>Checker: Date: | Originator:Date:Date: |

#### **Calculation Sheet**

Appendix A

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A3

#### 5.0 Special Requirements and Limiting Conditions:

There are no special requirements or limiting conditions.

## 6.0 Methodology:

The methods in sections 4.1.3.2 and 4.1.3.3 of Calc No. CEB-CQS-448 (Ref. 2.4) are used to develop the acceleration at device locations in the panels and on the skid mounted frames. Using these accelerations the required response spectra (RRS) for the device testing are computed using the methods in section 4.2 of Ref. 2.4.

Per section 4.1.3.2 of Ref. 2.4 the 3% damping SSE floor response spectra are used to determine the acceleration at device locations using the methods in section 4.1.3.2 of Ref. 2.4.

Since the mass and stiffness of the panels and skid frames are reasonably distributed uniformly per section 4.1.3.3 of Ref. 2.4, a 1st mode participation factor of 1.6 and a second mode participation factor of 1.0 can be used.

#### 7.0 Computations And Analysis:

#### In panel RRS for safety related NIM Bins in panel 0-M-12:

From WCG-ACQ-0112 page 38 (Ref. 2.3) the first and second mode panel frequency in the x direction are 1st mode 18.69 Hz and 2nd mode 21.27 Hz. The front plate local frequency x direction (perpendicular to the panel face plate) is 27.06 Hz. The z direction first mode frequency is 21.0 Hz and no second mode frequency is given. Since the z direction 1st mode frequency is greater than 1/2 of the cut off frequency (33 Hz) the 2nd mode frequency does not need to be considered (Ref. 2.4 section 4.1.3.3 sub item 2). From sheet 13 of Ref. 2.3 the panel x direction is front to back, the panel z direction is side to side and the panel y direction is vertical. From Ref. 2.13 for panel 0-M-12 front to back is north-south and side to side is east-west. The panel is rigid (no modes below 33Hz) in the vertical direction. Page 38 of Ref. 2.3 does not provide local panel frequency in the z and y directions since they are in the plane of the panel face plate and the face plate is rigid in these directions.

For these frequencies the SSE acceleration from the Auxiliary Control Building El 755.5 New Design/Modification ARS (Ref. 2.6) at 3% damping are as follows:

| Ap <sub>k.1.NS</sub> := | 1.05 · g                        | Ap <sub>k.2.NS</sub> := 1.05 g             | $Ap_{k.3.NS} := 0.91 g$                 | A <sub>zpa.k.NS</sub> := 0.84 · g (at 33 Hz)  |  |
|-------------------------|---------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------------|--|
| Ap <sub>k.1.EW</sub> := | = 1.01 · g                      | Ap <sub>k.2.EW</sub> := 0.00 · g           | A <sub>zpa.k.EW</sub> := 0.88 · g       | (at 33 Hz)                                    |  |
| A <sub>zpa.k.V</sub> := | 0.84 g (a                       | t 33 Hz)                                   | ·                                       |                                               |  |
| Ap <sub>k.1</sub>       | is the panel a                  | cceleration at the first mode              | frequency.                              |                                               |  |
| Ap <sub>k.2</sub>       | is the panel a                  | cceleration at the second mo               | ode frequency.                          | · · · · · · · · · · · · · · · · · · ·         |  |
| Ap <sub>k.3</sub>       | is the acceler<br>at the device | ation corresponding to the pa<br>location. | anel local frequency                    |                                               |  |
| A <sub>zpa.k</sub>      | is the panel a                  | cceleration at cut-off frequen             | icy (33 Hz).                            |                                               |  |
|                         |                                 |                                            |                                         | · · · · · · · · · · · · · · · · · · ·         |  |
| Originato<br>Checker    | Revision<br>or:Da               | ite: Orig                                  | Revision<br>inator:Date:<br>cker: Date: | Revision<br>Originator:Date:<br>Checker:Date: |  |

Checker:.....Date:.....

Checker: .....Date:.....

| Subject:                       | Calculation Sheet | Plant: WBN-2               |
|--------------------------------|-------------------|----------------------------|
| Required Response              |                   | Calculation ID: WCGACQ0766 |
| Spectra For Evaluation Of      | Appendix A        | This Sheet Added By Rev 1  |
| Radiation Monitoring Equipment |                   | Sheet No. A4               |

Determination of the Device Position Ratio (S):

For panel 0-M-12 the top of the highest safety related RM23A NIM Bin was determined to be 52" above the bottom of the panel per Limited scope Walkdown Package LSWD-536 (see Attachment B). From Ref. 2.3 sheet 13 the height of panel 0-M-12 is 98.5".

 $S := \frac{x}{L}$  is the device position ratio. x is the height from the ground to the device and L is the total height of the panel.

 $x := 52 \cdot in$  L := 98.5  $\cdot in$  (Attachment B and Ref. 2.3 sheet 13)

 $S := \frac{x}{L}$  S = 0.528

The in panel acceleration of the NIM Bin and RRS curves for the SSE are computed as follows:

N-S (Front-to-Back) Required Response Spectra (SSE 5% Damping):

$$Ap_{k.NS} := \sqrt{(1.6 \cdot S \cdot Ap_{k.1.NS})^2 + (1.0 \cdot S \cdot Ap_{k.2.NS})^2 + (1.6 \cdot Ap_{k.3.NS})^2 + A_{zpa.k.NS}^2}$$

 $Ap_{k,NS} = 1.98 \cdot g$ 

From Page 33 of Ref. 2.4, m := 2.3314  $b := 0.45 \cdot g$   $f_{NS_1} := 1 \cdot Hz$   $A_{NS_1} := b$   $A_{NS_1} = 0.45 \cdot g$  $A_{NS_2} := 5 \cdot Ap_{k.NS}$   $A_{NS_2} = 9.899 \cdot g$ 

$$f_{NS_2} := \left(\frac{A_{NS_2}}{b}\right)^m \cdot Hz$$
  $f_{NS_2} = 3.765 \cdot Hz$ 

 $A_{NS_6} := Ap_{k.NS}$ 

 $f_{NS_3} := 16 \cdot Hz$   $A_{NS_3} := A_{NS_2}$ 

 $f_{NS_4} := 33 \cdot Hz$   $A_{NS_4} := 2 \cdot Ap_{k,NS}$ 

 $f_{NS_5} := 33 \cdot Hz$   $A_{NS_5} := Ap_{k.NS}$ 

f<sub>NS<sub>6</sub></sub> ≔ 100 Hz

 $A_{NS_5} = 1.98 \cdot g$  $A_{NS_6} = 1.98 \cdot g$ 

 $A_{NS_3} = 9.899 \cdot g$ 

 $A_{NS_4} = 3.959 \cdot g$ 

| Revision         | Revision         | Revision         |
|------------------|------------------|------------------|
| Originator:Date: | Originator:Date: | Originator:Date: |
| Checker:Date:    | Checker:Date:    | Checker:Date:    |

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A5



| Subject:<br>Required Response                               | Calculation Shee                     | et                       | Plant: WBN-2<br>Calculation ID: WCGACQ0766 |  |
|-------------------------------------------------------------|--------------------------------------|--------------------------|--------------------------------------------|--|
| Spectra For Evaluation Of<br>Radiation Monitoring Equipment | Appendix A                           |                          | This Sheet Added By Rev 1<br>Sheet No. A6  |  |
| 1                                                           |                                      |                          |                                            |  |
| $f_{V_2} := \left(\frac{A_{V_2}}{b}\right)^{H} Hz$          | $f_{V_2} = 2.607 \cdot Hz$           |                          |                                            |  |
| f <sub>V3</sub> ≔ 16 · Hz                                   | A <sub>V3</sub> := A <sub>V2</sub>   | $A_{V_3} = 4.2 \cdot g$  |                                            |  |
| f <sub>V4</sub> := 33 ⋅ Hz                                  | $A_{V_4} := 2 \cdot Ap_{k.v}$        | A <sub>V4</sub> = 1.68 g | ·                                          |  |
| f <sub>V5</sub> ≔ 33 Hz                                     | $A_{V_5} \coloneqq Ap_{k.v}$         | $A_{V_5} = 0.84 \cdot g$ |                                            |  |
| f <sub>V6</sub> ≔ 100 · Hz                                  | A <sub>V6</sub> := Ap <sub>k.v</sub> | $A_{V_6} = 0.84 \cdot g$ |                                            |  |
|                                                             |                                      |                          | •                                          |  |

Revision ... Originator: .....Date:..... Checker:.....Date:..... Revision ... Originator:.....Date:..... Checker:....Date:..... Revision ... Originator: .....Date:..... Checker: .....Date:....



| Front-to-Back |       | Side-t | o-Side | Ver    | tical |
|---------------|-------|--------|--------|--------|-------|
| f (Hz)        | a (g) | f (Hz) | a (g)  | f (Hz) | a (g) |
| 1.0           | 0.45  | 1.0    | 0.45   | 1.0    | 0.45  |
| 3.8           | 9.90  | 3.1    | 6.13   | 2.6    | 4.20  |
| 16.0          | 9.90  | 16.0   | 6.13   | 16.0   | 4.20  |
| 33.0          | 3.96  | 33.0   | 2.45   | 33.0   | 1.68  |
| 33.0          | 1.98  | 33.0   | 1.23   | 33.0   | 0.84  |
| 100.0         | 1.98  | 100.0  | 1.23   | 100.0  | 0.84  |

Revision ... Originator: .....Date:..... Checker:.....Date:..... Revision ... Originator.....Date:..... Checker:.....Date:..... Revision ... Originator: .....Date:.... Checker: .....Date:....

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A8

According to Section 4.3.1 of Ref. 2.5, the OBE Required Response Spectra (RRS) will be developed using 70% of SSE levels: N-S (Front-to-Back) Required Response Spectra (OBE 5% Damping):  $Ap_{k,NS} := 0.70 \sqrt{\left(1.6 \cdot S \cdot Ap_{k,1,NS}\right)^2 + \left(1.0 \cdot S \cdot Ap_{k,2,NS}\right)^2 + \left(1.6 \cdot Ap_{k,3,NS}\right)^2 + A_{zpa,k,NS}^2}$  $Ap_{k.NS} = 1.386 \cdot g$ From Page 33 of Ref. 2.4, m := 2.3314 b := 0.45 ⋅ g  $A_{NS_1} = 0.45 \cdot g$ A<sub>NS₁</sub> ≔ b  $f_{NS_1} := 1 \cdot Hz$  $A_{NS_2} := 5 \cdot Ap_{k.NS}$  $A_{NS_2} = 6.929 \cdot g$  $f_{NS_2} := \left(\frac{A_{NS_2}}{b}\right)^{\frac{1}{m}} Hz$  $f_{NS_2} = 3.231 \cdot Hz$  $f_{NS_3} := 16 \cdot Hz$  $A_{NS_3} = 6.929 \cdot g$  $A_{NS_3} \coloneqq A_{NS_2}$ f<sub>NS<sub>4</sub></sub> := 33 · Hz  $A_{NS_4} = 2.772 \cdot g$  $A_{NS_4} := 2 \cdot Ap_{k.NS}$ f<sub>NS5</sub> ≔ 33 · Hz  $A_{NS_5} = 1.386 \cdot g$  $A_{NS_5} \coloneqq Ap_{k,NS}$ A<sub>NS<sub>6</sub></sub> := Ap<sub>k.NS</sub> A<sub>NS<sub>c</sub></sub> = 1.386 ⋅ g  $f_{NS_{e}} \coloneqq 100 \cdot Hz$ E-W (Side-to-Side) Required Response Spectra (OBE 5% Damping):  $Ap_{k.EW} := 0.70 \cdot \sqrt{(1.6 \cdot S \cdot Ap_{k.1.EW})^2 + (1.0 \cdot S \cdot Ap_{k.2.EW})^2 + A_{zpa.k.EW}^2}$  $Ap_{k,EW} = 0.858 \cdot g$ From Page 33 of Ref. 2.4, m := 2.3314 b := 0.45 · g  $A_{EW_1} = 0.45 \cdot g$  $f_{EW_1} \coloneqq 1 \cdot Hz$ A<sub>EW₁</sub> ≔ b Revision ... Revision ... Revision ... Originator: .....Date:..... Originator: .....Date:..... Originator:.....Date:..... Checker: .....Date:..... Checker:.....Date:..... Checker:......Date:.....

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A9

| •<br>•<br>• | A <sub>EW2</sub> := 5 Ap <sub>k.EW</sub>                 |                                        | $A_{EW_2} = 4.29 \cdot g$             |
|-------------|----------------------------------------------------------|----------------------------------------|---------------------------------------|
|             | $f_{EW_2} := \left(\frac{A_{EW_2}}{b}\right)^m \cdot Hz$ | f <sub>EW2</sub> = 2.63 ⋅ Hz           |                                       |
|             | f <sub>EW3</sub> ≔ 16 · Hz                               | $A_{EW_3} = A_{EW_2}$                  | A <sub>EW3</sub> = 4.29 · g           |
|             | f <sub>EW₄</sub> ≔ 33 Hz                                 | $A_{EW_4} \coloneqq 2 \cdot Ap_{k.EW}$ | A <sub>EW4</sub> = 1.716 ⋅ g          |
|             | f <sub>EW5</sub> ≔ 33 · Hz                               | A <sub>EW5</sub> := Ap <sub>k.EW</sub> | $A_{EW_5} = 0.858 \cdot g$            |
|             | f <sub>EW<sub>6</sub></sub> ≔ 100 Hz                     | A <sub>EW6</sub> := Ap <sub>k.EW</sub> | A <sub>EW<sub>6</sub></sub> = 0.858 g |
| Vert        | ical Required Response Spe                               | ectra (OBE 5% Damping):                |                                       |
|             | $Ap_{k.v} := 0.70 \cdot A_{zpa,k.V}$                     | $Ap_{k.v} = 0.588 \cdot g$             |                                       |
|             | From Page 33 of Ref. 2                                   | .4, m := 2.3314 b :=                   | 0.45 g                                |
|             | f <sub>V1</sub> ≔ 1 Hz                                   | A <sub>V1</sub> := b                   | $A_{V_1} = 0.45 \cdot g$              |
|             | $A_{V_2} := 5 \cdot Ap_{k.v}$                            |                                        | $A_{V_2} = 2.94 \cdot g$              |
|             | <u>1</u>                                                 |                                        |                                       |
|             | $f_{V_2} := \left(\frac{A_{V_2}}{b}\right)^m \cdot Hz$   | f <sub>V2</sub> = 2.237 ⋅ H            | <b> </b> 2                            |
|             | f <sub>V3</sub> := 16 ⋅ Hz                               | $A_{V_3} \coloneqq A_{V_2}$            | $A_{V_3} = 2.94 \cdot g$              |
|             | f <sub>V₄</sub> ≔ 33 · Hz                                | $A_{V_4} := 2 \cdot Ap_{k.v}$          | $A_{V_4} = 1.176 \cdot g$             |
|             | f <sub>V5</sub> := 33 ⋅ Hz                               | A <sub>V5</sub> := Ap <sub>k.v</sub>   | A <sub>V5</sub> = 0.588 g             |
|             | f <sub>V6</sub> ≔ 100 · Hz                               | $A_{V_6} := Ap_{k.v}$                  | $A_{V_6} = 0.588 \cdot g$             |
|             |                                                          |                                        |                                       |

| Revision         | Revision         | Revision         |  |
|------------------|------------------|------------------|--|
| Originator:Date: | Originator:Date: | Originator:Date: |  |
| Checker:Date:    | Checker:Date:    | Checker:Date:    |  |



Appendix A

## Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A10



| Front- | to-Back | Side-t            | o-Side | Ver    | tical |
|--------|---------|-------------------|--------|--------|-------|
| f (Hz) | a (g)   | f (Hz)            | a (g)  | f (Hz) | a (g) |
| 1.0    | 0.45    | 1.0               | 0.45   | 1.0    | 0.45  |
| 3.2    | 6.93    | 2.6               | 4.29   | 2.2    | 2.94  |
| 16.0   | 6.93    | 16.0              | 4.29   | 16.0   | 2.94  |
| 33.0   | 2.77    | 33.0 <sup>-</sup> | 1.72   | 33.0   | 1.18  |
| 33.0   | 1.39    | 33.0              | 0.86   | 33.0   | 0.59  |
| 100.0  | 1.39    | 100.0             | 0.86   | 100.0  | 0.59  |

Revision ... Originator: .....Date:..... Checker:....Date:..... Revision ... Originator:.....Date:..... Checker:.....Date:..... Revision ... Originator: .....Date:..... Checker: .....Date:.....

#### Calculation Sheet.

Appendix A

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A11

## Safety related system 090 skids:

The skids for 2-RE-090-0106 (Ref. 2.9 & 2.15), -0112 (Ref. 2.8 & 2.15), -0130 (Ref. 2.7 & 2.16) and -0131 (Ref. 2.7 & 2.16) consist of a rigid skid base fabricated from structural steel which is bolted to the building floor slabs. A welded steel frame is attached to each skid base to support various system 090 components for each skid. The heavier components (detectors, pumps and blowers) are attached directly to the rigid skid base and can be seismically qualified using the building ARS since the skid base is rigidly attached to the floor slabs. Based on this General Atomics (GA) was provided the building floor ARS curves for the seismic qualification of the skid mounted equipment.

The final GA qualification reports 04038903-1SP, 04038903-2SP and 04038903-4SP have shown that the welded frames attached to the skids have first and second mode fundamental frequencies less than 33 Hz. Therefore the frame frequencies determined by the GA reports are used to determine the RRS required for evaluation of the seismic qualification of components mounted to the skid frames.

For skids 2-RE-090-0106 and -0112, the in panel RRS will be computed at 34" above the base of the skid and at the top of the frame (59" above the base of the skid) since components are installed at or below these levels of the frames (Ref. 2.8 and 2.9).

For skids 2-RE-090-0130 and -131, the in panel RRS will only be computed at the top of the frame (68" above the base of the skid) since components are installed at or below this level of the frames (Ref. 2.7).

In panel RRS for safety related skid 106 and 112 (@ 34"):

From GA Report 04038903-2SP and -4SP section 3.3.1 a resonance search of the tested skid frame between 1 and 33 HZ found the 1st mode panel frequency in the front to back direction (east west for WBN2) to be 21 Hz and in the side to side direction (north south for WBN2) to be 18 Hz. From Ref. 2.18 for skid 106 and 112 front to back is east-west and side to side is north-south and the skids are attached to floor El. 737. There are no 2nd mode frequencies between 1 and 33 Hz and since the 1st mode frequencies are greater than 1/2 of the cut off frequency 2nd mode frequency need be considered (Ref. 2.4 section 4.1.3.3). The frame is rigid in the vertical direction. The frame is a tube steel structure and local panel frequency need not be considered since the seismic testing of components provided by GA 04038903-2SP and -4SP has accounted for the local effects (i.e. boxes housing the components).

For these frequencies the SSE acceleration from the Auxiliary Control Building El 736.5 New Design/Modification ARS (Ref. 2.6) at 3% damping are as follows:

| Ap <sub>k.1.NS</sub> ≔  | 0.85 g                                                                                 | $Ap_{k.2.NS} \coloneqq 0.00 \cdot g$  | $A_{zpa.k.NS} := 0.71 \cdot g$        | (at 33 Hz) |     |  |
|-------------------------|----------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|------------|-----|--|
| Ap <sub>k.1.EW</sub> := | 0.84 · g                                                                               | $Ap_{k.2.EW} \coloneqq 0.00 \cdot g$  | $A_{zpa.k.EW} \coloneqq 0.77 \cdot g$ | (at 33 Hz) |     |  |
|                         | · .                                                                                    |                                       | $A_{zpa.k.V} \coloneqq 0.59 \cdot g$  | (at 33 Hz) | •   |  |
| Ap <sub>k.1</sub>       | is the panel acceleration at the first mode frequency.                                 |                                       |                                       |            |     |  |
| Ap <sub>k.2</sub>       | is the panel acceleration at the second mode frequency.                                |                                       |                                       |            | • . |  |
| Ap <sub>k.3</sub>       | is the acceleration corresponding to the panel local frequency at the device location. |                                       |                                       |            |     |  |
| A <sub>zpa.k</sub>      | is the panel acc                                                                       | celeration at cut-off frequency (33 H | z).                                   |            |     |  |
|                         |                                                                                        |                                       | · · · · · · · · · · · · · · · · · · · |            |     |  |

| Revision                         | Revision                          | Revision              |
|----------------------------------|-----------------------------------|-----------------------|
| Originator:Date:<br>CheckerDate: | Originator:Date:<br>Checker:Date: | Originator:Date:Date: |

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A12

Determination of the Device Position Ratio (S) @ 34":  $S := \frac{x}{L}$  is the device position ratio. x is the height from the ground to the device and L is the total height of the panel. (Ref. 2.8 & 2.9) x := 34 · in L := 59 · in  $S := \frac{x}{1}$  S = 0.576The RRS curves for the SSE are computed as follows: N-S (Side-to-Side) Required Response Spectra (SSE 5% Damping):  $Ap_{k,NS} := \sqrt{(1.6 \cdot S \cdot Ap_{k,1,NS})^2 + (1.0 \cdot S \cdot Ap_{k,2,NS})^2 + A_{zpa,k,NS}^2}$  $Ap_{k,NS} = 1.058 \cdot g$ From Page 33 of Ref. 2.4, m := 2.3314 b := 0.45 · g  $A_{NS_1} = 0.45 \cdot g$  $f_{\mathsf{NS}_1} \coloneqq 1 \cdot \mathsf{Hz}$  $A_{NS_1} := b$  $A_{NS_2} = 5.288 \cdot g$  $A_{NS_2} := 5 \cdot Ap_{k.NS}$  $f_{NS_2} := \left(\frac{A_{NS_2}}{b}\right)^{m} \cdot Hz$ f<sub>NS₂</sub> = 2.877 · Hz  $f_{NS_3} := 16 \cdot Hz$  $A_{NS_3} = 5.288 \cdot g$  $A_{NS_3} := A_{NS_2}$  $f_{NS_4} := 33 \cdot Hz$  $A_{NS_4} := 2 \cdot Ap_{k.NS}$  $A_{NS_4} = 2.115 \cdot g$  $f_{NS_5} := 33 \cdot Hz$  $A_{NS_5} = 1.058 \cdot g$  $A_{NS_{5}} := Ap_{k.NS}$ A<sub>NS<sub>6</sub></sub> = 1.058 · g  $f_{NS_e} := 100 \cdot Hz$  $A_{NS_{c}} := Ap_{k.NS}$ Revision ... Revision ... Revision ... Originator: .....Date:..... Originator:.....Date:..... Originator: ......Date:..... Checker: .....Date:..... Checker:.....Date:..... Checker:.....Date:.....

Appendix A

Truncated N-S (Side-to-Side) Required Response Spectra (SSE 5% Damping) Ref. 2.4 section 4.2.2:

 $A_{TNS_1} := b$ 

Between 1 Hz and 90% of the first natural frequency of the skid frame the truncated RRS must not intersect the 5% building ARS. To prevent this, Ref. 2.4 section 4.2.2.2 d requires the truncated RRS to be adjusted to clear the first peak of the broadened floor spectra at 90% of the lower boundary of the broadened plateau of the first peak. Using digitized north-south SSE from the Auxiliary Control Building El 736.5 New Design/Modification ARS (Ref. 2.6) at 3% damping the first peak occurs at 5.13 Hz with an acceleration of 3.078 G. Adjusting the truncated RRS to clear the 5% ARS plateau at 90% of 5 HZ the second point of the truncated RRS is computed as follows:

 $f_{TNS_2} := .9 \cdot 5Hz$   $f_{TNS_2} = 4.5 \cdot Hz$   $A_{TNS_2} := \sqrt{\frac{3}{5}} \cdot 3.078 \cdot g$   $A_{TNS_2} = 2.384 \cdot g$ 

NOTE: Square root of 3/5 is used to convert digitized 3% damping ARS to 5% damping ARS. Refer to Ref.2.4 section 4.1.3.4 second paragraph which shows this method of converting a peak 5% damped floor spectra to a peak 3% damped floor spectra. In this case we are converting a 3% damped peak to a 5% damped peak.

The acceleration value for 90% of the first natural frequency of the skid frame is computed as follows:

 $f_{TNS_3} := .9 \cdot 18Hz$   $f_{TNS_3} = 16.2 \cdot Hz$   $A_{TNS_3} := 5.29 \cdot g$  (conservatively using RRS value for 16 Hz computed above)

The truncated RRS between 90% of the first natural frequency of the skid frame and the ZPA is the same as the non-truncated RRS as follows:

$$f_{TNS_4} := 33 \cdot Hz$$
 $A_{TNS_4} := 2 \cdot Ap_{k,NS}$ 
 $A_{TNS_4} = 2.115 \cdot g$ 
 $f_{TNS_5} := 33 \cdot Hz$ 
 $A_{TNS_5} := Ap_{k,NS}$ 
 $A_{TNS_5} = 1.058 \cdot g$ 
 $f_{TNS_6} := 100 \cdot Hz$ 
 $A_{TNS_6} := Ap_{k,NS}$ 
 $A_{TNS_6} = 1.058 \cdot g$ 

E-W (Front-to-Back) Required Response Spectra (SSE 5% Damping):

$$Ap_{k.EW} := \sqrt{\left(1.6 \cdot S \cdot Ap_{k.1.EW}\right)^2 + \left(1.0 \cdot S \cdot Ap_{k.2.EW}\right)^2 + A_{zpa.k.EW}^2}$$

 $Ap_{k.EW} = 1.092 \cdot g$ 

From Page 33 of Ref. 2.4, m := 2.3314 b := 0.45 · g

A<sub>EW1</sub> := b

 $f_{\mathsf{EW}_1} \coloneqq 1 \cdot \mathsf{Hz}$ 

 $A_{EW_2} := 5 \cdot Ap_{k.EW}$ 

 $A_{EW_2} = 5.461 \cdot g$ 

 $A_{EW_1} = 0.45 g$ 

| Revision         | Revision    |       | Revision    |       |
|------------------|-------------|-------|-------------|-------|
| Originator:Date: | Originator: | Date: | Originator: | Date: |
| Checker:Date:    | Checker:    | Date: |             | Date: |

# Subject: **Required Response Spectra For Evaluation Of**

**Radiation Monitoring Equipment** 

Appendix A

 $f_{EW_2} \coloneqq \left(\frac{A_{EW_2}}{b}\right)^{\overline{m}} \cdot Hz$  $f_{EW_2} = 2.917 \cdot Hz$ f<sub>EWa</sub> ≔ 16 · Hz  $A_{EW_3} := A_{EW_2}$  $A_{EW_3} = 5.461 \cdot g$ f<sub>EW4</sub> := 33 Hz  $A_{EW_{4}} := 2 \cdot Ap_{k.EW}$  $A_{EW_A} = 2.184 \cdot g$  $A_{EW_5} = 1.092 \cdot g$ f<sub>EW5</sub> ≔ 33 · Hz  $A_{EW_{5}} := Ap_{k.EW}$  $A_{EW_6} = 1.092 \cdot g$  $f_{EW_6} \coloneqq 100 \cdot Hz$  $A_{EW_6} := Ap_{k.EW}$ 

Truncated E-W (Front-to-Back) Required Response Spectra (SSE 5% Damping):

$$f_{TEW_1} := 1Hz$$
  $A_{TEW_1} := b$   $A_{TEW_1} := 0.45 \cdot g$ 

Between 1 Hz and 90% of the first natural frequency of the skid frame the truncated RRS must not intersect the 5% building ARS. To prevent this, Ref. 2.4 section 4.2.2.2.d requires the truncated RRS to be adjusted to clear the first peak of the broadened floor spectra at 90% of the lower boundary of the broadened plateau of the first peak. Using digitized east-west SSE from the Auxiliary Control Building El 736.5 New Design/Modification ARS (Ref. 2.6) at 3% damping the first peak occurs at 5.13 Hz with an acceleration of 5.2 G. Adjusting the truncated RRS to clear the 5% ARS plateau at 90% of 5 HZ the second point of the truncated RRS is computed as follows:

$$f_{TEW_2} := .9 \cdot 5Hz$$
  $f_{TEW_2} = 4.5 \cdot Hz$   $A_{TEW_2} := \sqrt{\frac{3}{5}} \cdot 5.2 \cdot g$   $A_{TEW_2} = 4.028 \cdot g$ 

NOTE: Square root of 3/5 is used to convert digitized 3% damping ARS to 5% damping ARS. Refer to Ref.2.4 section 4.1.3.4 second paragraph which shows this method of converting a peak 5% damped floor spectra to a peak 3% damped floor spectra. In this case we are converting a 3% damped peak to a 5% damped peak.

The acceleration value for 90% of the first natural frequency of the skid frame is computed as follows:

$$f_{TEW_3} := .9 \cdot 21Hz$$
  $f_{TEW_3} = 18.9 \cdot Hz$ 

Conservatively using linear Interpolation between the 16 Hz and 33 Hz values of the non-truncated RRS for 18.9 Hz (comparing slope of line on sheet A17 with that on sheet A18 shows this to be conservative):

$$A_{\text{TEW}_3} \coloneqq A_{\text{EW}_4} + \frac{f_{\text{EW}_4} - f_{\text{TEW}_3}}{f_{\text{EW}_4} - f_{\text{EW}_3}} \cdot \left(A_{\text{EW}_3} - A_{\text{EW}_4}\right)$$

 $A_{TEW_3} = 4.902 \cdot g$ 

| Revision                          | Revision                          | Revision              |  |
|-----------------------------------|-----------------------------------|-----------------------|--|
| Originator:Date:<br>Checker:Date: | Originator:Date:<br>Checker:Date: | Originator:Date:Date: |  |
The truncated RRS between 90% of the first natural frequency of the skid frame and the ZPA is the same as the non-truncated RRS as follows:  $A_{TEW_4} = 2.184 \cdot g$  $f_{TEW_A} = 33$  Hz  $\mathsf{A}_{\mathsf{TEW}_4} \coloneqq 2 \cdot \mathsf{Ap}_{\mathsf{k}.\mathsf{EW}}$  $A_{\text{TEW}_5} = 1.092 \cdot g$  $f_{TEW_6} := 33 \cdot Hz$  $A_{TEW_5} \coloneqq Ap_{k.EW}$  $A_{\text{TEW}_{6}} = 1.092 \cdot g$ f<sub>TEW<sub>6</sub></sub> := 100 · Hz A<sub>TEW6</sub> := Ap<sub>k.EW</sub> Vertical Required Response Spectra (SSE 5% Damping):  $Ap_{k,v} := A_{zpa,k,V}$  $Ap_{k,v} = 0.59 \cdot g$ From Page 33 of Ref. 2.4, m := 2.3314 b := 0.45 · g  $A_{V_1} = 0.45 \cdot g$  $f_{V_1} := 1 \cdot Hz$ A<sub>V₁</sub> ≔ b  $A_{V_2} = 2.95 \cdot g$  $A_{V_2} := 5 \cdot Ap_{k.v}$  $f_{V_2} := \left(\frac{A_{V_2}}{b}\right)^{m} \cdot Hz$  $f_{V_2} = 2.24 \cdot Hz$  $f_{V_3} := 16 \cdot Hz$  $A_{V_3} = 2.95 \cdot g$  $A_{V_3} \coloneqq A_{V_2}$  $A_{V_4} := 2 \cdot Ap_{k.v}$ f<sub>V₄</sub> := 33 · Hz A<sub>V₄</sub> = 1.18 · g A<sub>V5</sub> := Ap<sub>k.v</sub>  $A_{V_5} = 0.59 \cdot g$  $f_{V_{z}} := 33 \cdot Hz$ A<sub>V6</sub> := Ap<sub>k.v</sub>  $A_{V_6} = 0.59 \cdot g$  $f_{V_{e}} := 100 \cdot Hz$ Truncated Vertical Required Response Spectra (SSE 5% Damping):  $A_{TV_1} \coloneqq 0.45 \cdot g$  $f_{TV_1} \coloneqq 1Hz$ A<sub>TV₁</sub> ≔ b Revision ... Revision ... Revision ... Originator: .....Date:..... Originator:.....Date:..... Originator: .....Date:..... Checker: .....Date:.... Checker:.....Date:..... Checker:.....Date:.....

**Calculation Sheet** 

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A16

Since the skid frame is rigid in the vertical direction the first natural frequency is conservatively taken as 33 Hz. The acceleration value for 90% of the first natural frequency of the skid frame is computed as follows:

$$f_{TV_2} := .9 \cdot 33Hz$$
  $f_{TV_2} = 29.7 \cdot Hz$ 

Conservatively using linear Interpolation between the 16 Hz and 33 Hz values of the non-truncated RRS for 18.9 Hz (comparing slope of line on sheet A17 with that on sheet A18shows this to be conservative):

$$A_{TV_{2}} := A_{V_{4}} + \frac{f_{V_{4}} - f_{TV_{2}}}{f_{V_{4}} - f_{V_{3}}} \cdot \left(A_{V_{3}} - A_{V_{4}}\right)$$

 $A_{TV_2} = 1.524 \cdot g$ 

Hz

The truncated RRS between 90% of the first natural frequency of the skid frame and the ZPA is the same as the non-truncated RRS as follows:

| f <sub>TV3</sub> ≔ | = 33 |
|--------------------|------|
|--------------------|------|

 $f_{TV_4} := 33 \cdot Hz$ 

 $f_{TV_5} := 100 \cdot Hz$ 

A<sub>TV5</sub> := Ap<sub>k.v</sub>

 $A_{TV_4} := Ap_{k.v}$ 

 $\mathsf{A_{TV}}_3 \coloneqq 2 \cdot \mathsf{Ap}_{k.v}$ 

## $A_{TV_5} = 0.59 \cdot g$

 $A_{TV_{2}} = 1.18 \cdot g$ 

 $A_{TV_4} = 0.59 \cdot g$ 

| Revision         | Revision         |  |
|------------------|------------------|--|
| Originator:Date: | Originator:Date: |  |
| Checker:Date:    | Checker:Date:    |  |

Revision ... Originator: .....Date:..... Checker: ......Date:.....

**Calculation Sheet** 

Appendix A

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A17



| Side-t | o-Side | Front-1 | to-Back | Ver    | tical |
|--------|--------|---------|---------|--------|-------|
| f (Hz) | a (g)  | f (Hz)  | a (g)   | f (Hz) | a (g) |
| 1.0    | 0.45   | 1.0     | 0.45    | 1.0    | 0.45  |
| 2.9    | 5.29   | 2.9     | 5.46    | 2.2    | 2.95  |
| 16.0   | 5.29   | 16.0    | 5.46    | 16.0   | 2.95  |
| 33.0   | 2.12   | 33.0    | 2.18    | 33.0   | 1.18  |
| 33.0   | 1.06   | 33.0    | 1.09    | 33.0   | 0.59  |
| 100.0  | 1.06   | 100.0   | 1.09    | 100.0  | 0.59  |

Revision ... Originator: .....Date:..... Checker:.....Date:..... Revision ... Originator:.....Date:..... Checker:.....Date:..... Revision ... Originator: .....Date:.... Checker: .....Date:.....



| Side-t | o-Side | Front-1 | o-Back | Ver    | tical |
|--------|--------|---------|--------|--------|-------|
| f (Hz) | a (g)  | f (Hz)  | a (g)  | f (Hz) | a (g) |
| 1.0    | 0.45   | 1.0     | 0.45   | 1.0    | 0.45  |
| 4.5    | 2.38   | 4.5     | 4.03   | 29.7   | 1.52  |
| 16.2   | 5.29   | 18.9    | 4.9    | 33.0   | 1.18  |
| 33.0   | 2.12   | 33.0    | 2.18   | 33.0   | 0.59  |
| 33.0   | 1.06   | 33.0    | 1.09   | 100.0  | 0.59  |
| 100.0  | 1.06   | 100.0   | 1.09   |        |       |

Revision ... Originator: .....Date:..... Checker:....Date:.... Revision ... Originator:.....Date:..... Checker:.....Date:..... Revision ... Originator: .....Date:.... Checker: .....Date:....

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A19



| Subject:<br>Required Response<br>Spectra For Evaluation Of<br>Radiation Monitoring Equipment | Calcula<br>Appe                        | tion Sheet<br>endix A        | Plant: WBN-2<br>Calculation ID: WCGACQ0766<br>This Sheet Added By Rev 1<br>Sheet No. A20 |
|----------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|------------------------------------------------------------------------------------------|
| From Page 33 of Ref. 2.4,                                                                    | m := 2.3314                            | b := 0.45 · g                | · · · · · · · · · · · · · · · · · · ·                                                    |
| f <sub>EW1</sub> ≔ 1 ⋅ Hz                                                                    | A <sub>EW1</sub> := b                  | A <sub>EW1</sub> = 0.45 · g  | ,                                                                                        |
| A <sub>EW2</sub> ≔ 5 · Ap <sub>k.EW</sub>                                                    |                                        | A <sub>EW2</sub> = 3.822 ·   | 9                                                                                        |
| $f_{EW_2} := \left(\frac{A_{EW_2}}{b}\right)^m$ Hz                                           | f <sub>EW2</sub> =                     | = 2.503 · Hz                 |                                                                                          |
| f <sub>EW3</sub> ≔ 16 Hz                                                                     | A <sub>EW3</sub> := A <sub>EW2</sub>   | A <sub>EW3</sub> = 3.822 ·   | g                                                                                        |
| f <sub>EW4</sub> ≔ 33 · Hz                                                                   | $A_{EW}_4 \coloneqq 2 \cdot Ap_{k.EW}$ | A <sub>EW4</sub> = 1.529 ·   | 9                                                                                        |
| f <sub>EW5</sub> ≔ 33 · Hz                                                                   | $A_{EW}_5 \coloneqq Ap_{k.EW}$         | A <sub>EW5</sub> = 0.764 ·   | 9                                                                                        |
| f <sub>EW6</sub> ≔ 100 · Hz                                                                  | $A_{EW_6} := Ap_{k,EW}$                | A <sub>EW6</sub> = 0.764     | g                                                                                        |
| Vertical Required Response Spe                                                               | ectra (OBE 5% Dampi                    | ng):                         |                                                                                          |
| $Ap_{k.v} \coloneqq 0.70 \cdot A_{zpa.k.v}$                                                  | Ap <sub>k.v</sub> = 0.4                | 13 · g                       | · · · ·                                                                                  |
| From Page 33 of Ref. 6.                                                                      | 4, m := 2.3314                         | b := 0.45 · g                |                                                                                          |
| f <sub>V1</sub> ≔ 1 Hz                                                                       | $A_{V_1} \coloneqq b$                  | A <sub>V1</sub> = 0.45       | g                                                                                        |
| $A_{V_2} := 5 \cdot Ap_{k.v}$                                                                |                                        | $A_{V_2} = 2.065$            | g                                                                                        |
| $(\mathbf{A}, \mathbf{A})^{m}$                                                               |                                        |                              |                                                                                          |
| $f_{V_2} := \left(\frac{H_{V_2}}{b}\right) + Hz$                                             | f <sub>V2</sub>                        | = 1.922 · Hz                 |                                                                                          |
| f <sub>V3</sub> ≔ 16 · Hz                                                                    | $A_{V_3} \coloneqq A_{V_2}$            | A <sub>V3</sub> = 2.065      | g                                                                                        |
| f <sub>V4</sub> ≔ 33 · Hz                                                                    | $A_{V_4} := 2 \cdot Ap_{k.v}$          | A <sub>V4</sub> = 0.826      | ·g                                                                                       |
| f <sub>V5</sub> ≔ 33 · Hz                                                                    | $A_{V_5} := Ap_{k.v}$                  | A <sub>V5</sub> = 0.413      | ·g                                                                                       |
| f <sub>V6</sub> ≔ 100 · Hz                                                                   | A <sub>V6</sub> ≔ Ap <sub>k.v</sub>    | A <sub>V6</sub> = 0.413      | · g                                                                                      |
| Revision<br>Originator:Date:<br>Checker:Date:                                                | Revi<br>Originator:                    | sion<br>Date: Or<br>Date: Cl | Revision<br>riginator:Date:<br>pecker: Date:                                             |

Appendix A

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A21



Revision ... Originator: ......Date:..... Checker:.....Date:.... 33.0

100.0

0.74

0.74

Revision ... Originator:.....Date:..... Checker:....Date:.....

33.0

100.0

0.76

0.76

33.0

100.0

0.41

0.41

Revision ... Originator: .....Date:..... Checker: .....Date:.....

In panel RRS for safety related skid 106 and 112 (@ 59"):

$$S := \frac{x}{L}$$

The RRS curves for the SSE are computed as follows:

S = 1

N-S (Side-to-Side) Required Response Spectra (SSE 5% Damping):

$$Ap_{k.NS} := \sqrt{\left(1.6 \cdot S \cdot Ap_{k.1.NS}\right)^2 + \left(1.0 \cdot S \cdot Ap_{k.2.NS}\right)^2 + A_{zpa.k.NS}^2}$$

 $A_{NS_1} \coloneqq b$ 

 $Ap_{k.NS} = 1.534 \cdot g$ 

From Page 33 of Ref. 2.4, m := 2.3314

1

 $f_{NS_1} := 1 \cdot Hz$ 

A<sub>NS2</sub> := 5 Ap<sub>k.NS</sub>

$$A_{NS_2} = 7.671 \cdot g$$

 $A_{NS_4} = 3.068 \cdot g$ 

 $A_{NS_5} = 1.534 \cdot g$ 

 $A_{NS_6} = 1.534 \cdot g$ 

 $A_{NS_1} = 0.45 \cdot g$ 

 $b := 0.45 \cdot g$ 

$$f_{NS_2} \coloneqq \left(\frac{A_{NS_2}}{b}\right)^{\overline{M}} \cdot Hz$$
  $f_{NS_2} = 3.375 \cdot Hz$ 

 $f_{NS_3} := 16 \cdot Hz$   $A_{NS_3} := A_{NS_2}$   $A_{NS_3} = 7.671 \cdot g$ 

 $f_{NS_4} := 33 \cdot Hz$   $A_{NS_4} := 2 \cdot Ap_{k,NS}$ 

 $f_{NS_5} := 33 \cdot Hz$   $A_{NS_5} := Ap_{k.NS}$ 

$$NS_{e} := 100 \cdot Hz$$
  $A_{NS_{e}} := Ap_{k,NS}$ 

 Revision ...
 Revision ...
 Revision ...

 Originator: ......Date:.....
 Originator: .....Date:.....
 Originator: .....Date:.....

 Checker: ......Date: ......Date: ......Date: ......
 Checker: ......Date: ......Date: ......Date: ......

Truncated N-S (Side-to-Side) Required Response Spectra (SSE 5% Damping) Ref. 2.4 section 4.2.2:

A<sub>TNS</sub> := b

$$A_{TNS_1} := 0.45 \cdot g$$

Between 1 Hz and 90% of the first natural frequency of the skid frame the truncated RRS must not intersect the 5% building ARS. To prevent this, Ref. 2.4 section 4.2.2.2 d requires the truncated RRS to be adjusted to clear the first peak of the broadened floor spectra at 90% of the lower boundary of the broadened plateau of the first peak. Using digitized north-south SSE from the Auxiliary Control Building El 736.5 New Design/Modification ARS (Ref. 2.6) at 3% damping the first peak occurs at 5.13 Hz with an acceleration of 3.078 G. Adjusting the truncated RRS to clear the 5% ARS plateau at 90% of 5 HZ the second point of the truncated RRS is computed as follows:

$$f_{TNS_2} := .9 \cdot 5Hz$$
  $f_{TNS_2} = 4.5 \cdot Hz$   $A_{TNS_2} := \sqrt{\frac{3}{5} \cdot 3.078 \cdot g}$   $A_{TNS_2} = 2.384 \cdot g$ 

NOTE: Square root of 3/5 is used to convert digitized 3% damping ARS to 5% damping ARS. Refer to Ref.2.4 section 4.1.3.4 second paragraph which shows this method of converting a peak 5% damped floor spectra to a peak 3% damped floor spectra. In this case we are converting a 3% damped peak to a 5% damped peak.

The acceleration value for 90% of the first natural frequency of the skid frame is computed as follows:

 $f_{TNS_3} := .9 \cdot 18Hz$   $f_{TNS_3} = 16.2 \cdot Hz$   $A_{TNS_3} := 7.67 \cdot g$  (conservatively using RRS value for 16 Hz computed above)

The truncated RRS between 90% of the first natural frequency of the skid frame and the ZPA is the same as the non-truncated RRS as follows:

$$f_{TNS_4} := 33 \cdot Hz$$
  $A_{TNS_4} := 2 \cdot Ap_{k.NS}$   $A_{TNS_4} = 3.068 \cdot g$ 

f<sub>TNS<sub>5</sub></sub> ≔ 33 · Hz

 $A_{TNS_5} := Ap_{k.NS}$   $A_{TNS_5} = 1.534 \cdot g$ 

A<sub>TNS<sub>6</sub></sub> = 1.534 g

E-W (Front-to-Back) Required Response Spectra (SSE 5% Damping):

 $f_{TNS_6} := 100 \cdot Hz$   $A_{TNS_6} := Ap_{k.NS}$ 

$$Ap_{k.EW} := \sqrt{\left(1.6 \cdot S \cdot Ap_{k.1.EW}\right)^2 + \left(1.0 \cdot S \cdot Ap_{k.2.EW}\right)^2 + A_{zpa.k.EW}^2}$$

 $Ap_{k.EW} = 1.549 \cdot g$ 

| Revis       | sion  |
|-------------|-------|
| Originator: | Date: |
| Checker:    | Date: |

Revision ... Originator:.....Date:..... Checker:.....Date:.....

| R           | evision |
|-------------|---------|
| Originator: | Date:   |
| Checker:    | Date:   |

| Subject:<br>Required Response<br>Spectra For Evaluation Of<br>Radiation Monitoring Equipmer | Calc<br>A<br>nt                        | ulation Sheet<br>ppendix A              | Plant: WBN-2<br>Calculation ID: WCGACQ0766<br>This Sheet Added By Rev 1<br>Sheet No. A24 |
|---------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------|
| From Page 33 of Ref. 2.4,                                                                   | m := 2.3314                            | b := 0.45 · g                           |                                                                                          |
| f <sub>EW1</sub> ≔ 1 Hz                                                                     | A <sub>EW1</sub> := b                  | $A_{EW_1} = 0.45 \cdot g$               |                                                                                          |
| A <sub>EW2</sub> := 5 ⋅ Ap <sub>k.EW</sub>                                                  |                                        | A <sub>EW2</sub> = 7.745 ⋅ g            |                                                                                          |
| $f_{EW_2} := \left(\frac{A_{EW_2}}{b}\right)^{m} Hz$                                        | f <sub>EW2</sub> =                     | 3.389 Hz                                |                                                                                          |
| f <sub>EW3</sub> ≔ 16 Hz                                                                    | A <sub>EW3</sub> := A <sub>EW2</sub>   | $A_{EW_3} = 7.745 \cdot g$              |                                                                                          |
| f <sub>EW₄</sub> ≔ 33 · Hz                                                                  | $A_{EW_4} \coloneqq 2 \cdot Ap_{k.EW}$ | $A_{EW_4} = 3.098 \cdot g$              |                                                                                          |
| f <sub>EW5</sub> ≔ 33 · Hz                                                                  | A <sub>EW5</sub> ≔ Ap <sub>k.EW</sub>  | A <sub>EW5</sub> = 1.549 ⋅ g            |                                                                                          |
| f <sub>EW<sub>6</sub></sub> ≔ 100 · Hz                                                      | A <sub>EW6</sub> := Ap <sub>k.EW</sub> | A <sub>EW<sub>6</sub></sub> = 1.549 ⋅ g |                                                                                          |

Truncated E-W (Front-to-Back) Required Response Spectra (SSE 5% Damping):

 $f_{TEW_1} := 1Hz$   $A_{TEW_1} := b$   $A_{TEW_1} := 0.45 \cdot g$ 

Between 1 Hz and 90% of the first natural frequency of the skid frame the truncated RRS must not intersect the 5% building ARS. To prevent this, Ref. 2.4 section 4.2.2.2.d requires the truncated RRS to be adjusted to clear the first peak of the broadened floor spectra at 90% of the lower boundary of the broadened plateau of the first peak. Using digitized north-south SSE from the Auxiliary Control Building El 736.5 New Design/Modification ARS (Ref. 2.6) at 3% damping the first peak occurs at 5.13 Hz with an acceleration of 5.2 G. Adjusting the truncated RRS to clear the 5% ARS plateau at 90% of 5 HZ the second point of the truncated RRS is computed as follows:

$$f_{TEW_2} := .9 \cdot 5Hz$$
  $f_{TEW_2} = 4.5 \cdot Hz$   $A_{TEW_2} := \sqrt{\frac{3}{5}} \cdot 5.2 \cdot g$   $A_{TEW_2} = 4.028 \cdot g$ 

NOTE: Square root of 3/5 is used to convert digitized 3% damping ARS to 5% damping ARS. Refer to Ref.2.4 section 4.1.3.4 second paragraph which shows this method of converting a peak 5% damped floor spectra to a peak 3% damped floor spectra. In this case we are converting a 3% damped peak to a 5% damped peak.

| Revision         | Revision           | Revision         |
|------------------|--------------------|------------------|
| Originator:Date: | Originator:Date:   | Originator:Date: |
| Checker:Date:    | Checker:Date:Date: | Checker:Date:    |

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A25

The acceleration value for 90% of the first natural frequency of the skid frame is computed as follows:

$$f_{TEW_3} := .9 \cdot 21 Hz$$
  $f_{TEW_3} = 18.9 \cdot Hz$ 

Conservatively using linear Interpolation between the 16 Hz and 33 Hz values of the non-truncated RRS for 18.9 Hz (comparing slope of line on sheet A27 with that on sheet A28shows this to be conservative):

$$A_{\text{TEW}_3} \coloneqq A_{\text{EW}_4} + \frac{f_{\text{EW}_4} - f_{\text{TEW}_3}}{f_{\text{EW}_4} - f_{\text{EW}_3}} \cdot \left(A_{\text{EW}_3} - A_{\text{EW}_4}\right)$$

 $A_{\text{TEW}_3} = 6.952 \cdot g$ 

The truncated RRS between 90% of the first natural frequency of the skid frame and the ZPA is the same as the non-truncated RRS as follows:

| f <sub>TEW4</sub> := 33 Hz  | $A_{TEW_4} = 2 \cdot Ap_{k.EW}$        | $A_{\text{TEW}_4} = 3.098 \cdot g$ |
|-----------------------------|----------------------------------------|------------------------------------|
| f <sub>TEW5</sub> ≔ 33 · Hz | A <sub>TEW5</sub> ≔ Ap <sub>k.EW</sub> | $A_{\text{TEW}_5} = 1.549 \cdot g$ |

 $f_{TEW_6} := 100 \cdot Hz$   $A_{TEW_6} := Ap_{k.EW}$   $A_{TEW_6} = 1.549 \cdot g$ 

Vertical Required Response Spectra (SSE 5% Damping):

$$Ap_{k,v} := A_{zpa,k,v} \qquad Ap_{k,v} = 0.59 \cdot g$$

From Page 33 of Ref. 2.4, m := 2.3314 b := 0.45 g

| $f_{V_1} := 1 \cdot Hz$       | A <sub>V1</sub> := b | $A_{V_1} = 0.45 \cdot g$ |
|-------------------------------|----------------------|--------------------------|
| $A_{V_2} := 5 \cdot Ap_{k,v}$ |                      | $A_{V_2} = 2.95 \cdot g$ |
| <u>1</u>                      |                      |                          |
| $(A_{V_{\alpha}})^{\cdots}$   |                      | · · ·                    |

$$f_{V_2} := \left( \begin{array}{c} 2 \\ b \end{array} \right) + Hz \qquad f_{V_2} = 2.24 + Hz$$

$$f_{V_3} := 10 \cdot Hz$$
  $A_{V_3} := A_{V_2}$   
 $f_{V_4} := 33 \cdot Hz$   $A_{V_4} := 2 \cdot Ap_{k,v}$ 

 $\mathsf{A}_{\mathsf{V}_5} \coloneqq \mathsf{Ap}_{k.\mathsf{v}}$ 

 $A_{V_{e}} := Ap_{k.v}$ 

f<sub>V5</sub> := 33 ⋅ Hz

f<sub>Ve</sub> := 100 ⋅ Hz

Revision ...

Originator: .....Date:.....

Checker:.....Date:.....

 $A_{V_3} = 2.95 \cdot g$ 

 $A_{V_4} = 1.18 \cdot g$ 

 $A_{V_5} = 0.59 \cdot g$ 

Revision ... Originator: .....Date:..... Checker: ......Date:.....

**Calculation Sheet** 

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A26

Truncated Vertical Required Response Spectra (SSE 5% Damping):

 $A_{TV_1} \coloneqq b$ 

$$f_{TV_1} := 1Hz$$

$$A_{TV_1} := 0.45 \cdot g$$

Since the skid frame is rigid in the vertical direction the first natural frequency is conservatively taken as 33 Hz. The acceleration value for 90% of the first natural frequency of the skid frame is computed as follows:

$$f_{TV_2} := .9 \cdot 33Hz$$
  $f_{TV_2} = 29.7 \cdot Hz$ 

Conservatively using linear Interpolation between the 16 Hz and 33 Hz values of the non-truncated RRS for 18.9 Hz (comparing slope of line on sheet A27 with that on sheet A28shows this to be conservative):

$$A_{TV_{2}} := A_{V_{4}} + \frac{f_{V_{4}} - f_{TV_{2}}}{f_{V_{4}} - f_{V_{3}}} \cdot \left(A_{V_{3}} - A_{V_{4}}\right)$$

$$A_{TV_2} = 1.524 \cdot g$$

The truncated RRS between 90% of the first natural frequency of the skid frame and the ZPA is the same as the non-truncated RRS as follows:

$$f_{TV_3} := 33 \cdot Hz$$
 $A_{TV_3} := 2 \cdot Ap_{k.v}$  $A_{TV_3} = 1.18 \cdot g$  $f_{TV_4} := 33 \cdot Hz$  $A_{TV_4} := Ap_{k.v}$  $A_{TV_4} = 0.59 \cdot g$  $f_{TV_5} := 100 \cdot Hz$  $A_{TV_5} := Ap_{k.v}$  $A_{TV_5} = 0.59 \cdot g$ 

| Revision                          | Revision                          | Revision                   |
|-----------------------------------|-----------------------------------|----------------------------|
| Originator:Date:<br>Checker:Date: | Originator:Date:<br>Checker:Date: | Originator:Date:Date:Date: |

**Calculation Sheet** 

Appendix A

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A27



| •  |     |      |      |
|----|-----|------|------|
| Fr | equ | ency | (Hz) |

| Side-t | o-Side | Front- | to-Back | Ver    | tical |
|--------|--------|--------|---------|--------|-------|
| f (Hz) | a (g)  | f (Hz) | a (g)   | f (Hz) | a (g) |
| 1.0    | 0.45   | 1.0    | 0.45    | 1.0    | 0.45  |
| 3.4    | 7.67   | 3.4    | 7.75    | 2.2    | 2.95  |
| 16.0   | 7.67   | 16.0   | 7.75    | 16.0   | 2.95  |
| 33.0   | 3.07   | 33.0   | 3.10    | 33.0   | 1.18  |
| 33.0   | 1.53   | 33.0   | 1.55    | 33.0   | 0.59  |
| 100.0  | 1.53   | 100.0  | 1.55    | 100.0  | 0.59  |

Revision ... Originator: .....Date:..... Checker:.....Date:..... Revision ... Originator:.....Date:..... Checker:.....Date:..... Revision ... Originator: .....Date:..... Checker: .....Date:.....

Appendix A

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A28



| Side-to-Side |       | Front-to-Back |       | Vertical |       |
|--------------|-------|---------------|-------|----------|-------|
| f (Hz)       | a (g) | f (Hz)        | a (g) | f (Hz)   | a (g) |
| 1.0          | 0.45  | 1.0           | 0.45  | 1.0      | 0.45  |
| 4.5          | 2.38  | 4.5           | 4.03  | 29.7     | 1.52  |
| 16.2         | 7.67  | 18.9          | 6.95  | 33.0     | 1.18  |
| 33.0         | 3.07  | 33.0          | 3.10  | 33.0     | 0.59  |
| 33.0         | 1.53  | 33.0          | 1.55  | 100.0    | 0.59  |
| 100.0        | 1.53  | 100.0         | 1.55  |          |       |

Revision ... Originator: ......Date:..... Checker:.....Date:..... Revision ... Originator:.....Date:..... Checker:.....Date:..... Revision ... Originator: .....Date:.... Checker: .....Date:....

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A29



Appendix A

From Page 33 of Ref. 2.4, m := 2.3314 b := 0.45 · g  $f_{EW_1} := 1 \cdot Hz$  $A_{EW_1} = 0.45 \cdot g$  $A_{EW_1} := b$  $A_{EW_2} := 5 \cdot Ap_{k.EW}$  $A_{EW_2} = 5.421 \cdot g$  $f_{EW_2} := \left(\frac{A_{EW_2}}{b}\right)^m \cdot Hz$  $f_{EW_2} = 2.908 \cdot Hz$  $f_{EW_3} := 16 \cdot Hz$  $A_{EW_3} = 5.421 \cdot g$  $A_{EW_2} \coloneqq A_{EW_2}$ f<sub>EW₄</sub> ≔ 33 · Hz  $A_{EW_{A}} := 2 \cdot Ap_{k.EW}$  $A_{EW_A} = 2.169 \cdot g$  $A_{EW_5} = 1.084 \cdot g$ f<sub>EW5</sub> := 33 · Hz  $A_{EW_g} := Ap_{k.EW}$ f<sub>EW6</sub> := 100 ⋅ Hz  $A_{EW_{c}} := Ap_{k.EW}$  $A_{EW_6} = 1.084 \cdot g$ Vertical Required Response Spectra (OBE 5% Damping):  $Ap_{k.v} := 0.70 \cdot A_{zpa.k.V}$  $Ap_{k,v} = 0.413 \cdot g$ From Page 33 of Ref. 2.4, m := 2.3314  $b := 0.45 \cdot g$  $A_{V_1} \coloneqq b$  $f_{V_1} \coloneqq 1 \cdot Hz$  $A_{V_1} = 0.45 \cdot g$  $A_{V_2} := 5 \cdot Ap_{k.v}$  $A_{V_2} = 2.065 \cdot g$  $f_{V_2} := \left( \begin{array}{c} A_{V_2} \\ \hline b \end{array} \right)^m \cdot Hz$  $f_{V_2} = 1.922 \cdot Hz$  $f_{V_3} \coloneqq 16 \cdot Hz$   $A_{V_3} \coloneqq A_{V_2}$  $A_{V_3} = 2.065 \cdot g$  $A_{V_4} = 0.826 \cdot g$  $A_{V_4} := 2 \cdot Ap_{k,v}$ f<sub>V₄</sub> := 33 · Hz  $A_{V_5} := Ap_{k,v}$ f<sub>V5</sub> := 33 ⋅ Hz  $A_{V_{E}} = 0.413 \cdot g$  $A_{V_6} = 0.413 \cdot g$  $f_{V_{e}} := 100 \cdot Hz$  $A_{V_6} := Ap_{k.v}$ 

| Revision         | Revision         | Revision         |  |
|------------------|------------------|------------------|--|
| Originator:Date: | Originator:Date: | Originator:Date: |  |
| Checker:Date:    | Checker:Date:    | Checker:Date:    |  |



| Side-t | Side-to-Side |        | Front-to-Back |        | tical |
|--------|--------------|--------|---------------|--------|-------|
| f (Hz) | a (g)        | f (Hz) | a (g)         | f (Hz) | a (g) |
| 1.0    | 0.45         | 1.0    | 0.45          | 1.0    | 0.45  |
| 2.9    | 5.37         | 2.9    | 5.42          | 1.9    | 2.07  |
| 16.0   | 5.37         | 16.0   | 5.42          | 16.0   | 2.07  |
| 33.0   | 2.15         | 33.0   | 2.17          | 33.0   | 0.83  |
| 33.0   | 1.07         | 33.0   | 1.08          | 33.0   | 0.41  |
| 100.0  | 1.07         | 100.0  | 1.08          | 100.0  | 0.41  |

Revision ... Originator: .....Date:..... Checker:.....Date:..... Revision ... Originator:.....Date:..... Checker:.....Date:..... Revision ... Originator: .....Date:..... Checker: .....Date:.....

|                                |                   | •                          |
|--------------------------------|-------------------|----------------------------|
| Subject:                       | Calculation Sheet | Plant: WBN-2               |
| Required Response              |                   | Calculation ID: WCGACQ0766 |
| Spectra For Evaluation Of      | Appendix A        | This Sheet Added By Rey 1  |
| Radiation Monitoring Equipment |                   | Sheet No. A32              |

In panel RRS for safety related skid 130 and 131;

From GA Report 04038903-1SP section 3.3.1 Table 3-6 the 1st mode frame frequency is 27.9 Hz in the side to side direction (north south skid 130 and east west skid 131). The 2nd mode frame frequency is 35.4 Hz. in the front to back direction (north south skid 131 and east west skid 130). See Ref. 2.17 and 2.19 for skid orientation and elvation. Since the 1st mode frequencies are greater than 1/2 of the cut off frequency no 2nd mode frequency need be considered. The frame was rigid in the vertical direction. The frame is a tube steel structure and local panel frequency need not be considered since the seismic testing of components provided by GA 04038903-1SP has accounted for the local effects (i.e. boxes housing the components).

For these frequencies the SSE acceleration from the Auxiliary Control Building El 711.5 New Design/Modification ARS (Ref. 2.6) at 3% damping are as follows:

| $Ap_{k.1.NS} \coloneqq 0.44 \cdot g$ | $Ap_{k,2,NS} \coloneqq 0.00 \cdot g$ | $A_{zpa.k.NS} := 0.43 \cdot g$   |
|--------------------------------------|--------------------------------------|----------------------------------|
| $Ap_{k.1.EW} \coloneqq 0.49 \cdot g$ | $Ap_{k.2.EW} \coloneqq 0.00 \cdot g$ | A <sub>zpa.k.EW</sub> ≔ 0.49 · g |
|                                      |                                      | $A_{zpa,k,V} := 0.25 \cdot g$    |

 $Ap_{k,1}$  is the panel acceleration at the first mode frequency.

Ap<sub>k,2</sub> is the panel acceleration at the second mode frequency.

Ap<sub>k.3</sub> is the acceleration corresponding to the panel local frequency. at the device location.

Azoa.k is the

is the panel acceleration at cut-off frequency (33 Hz).

Determination of the Device Position Ratio (S):

The device location at the top of the panel is only considered since it has a greater input acceleration.

 $S := \frac{x}{L}$  is the device position ratio. x is the height from the ground to the device and L is the total height of the panel.

 $x := 68 \cdot in$  L := 68  $\cdot in$  (Ref. 2.7)

=1

$$S := \frac{x}{L}$$
 S

The RRS curves for the SSE are computed as follows:

N-S Required Response Spectra (SSE 5% Damping):

$$Ap_{k.NS} := \sqrt{\left(1.6 \cdot S \cdot Ap_{k.1.NS}\right)^2 + \left(1.0 \cdot S \cdot Ap_{k.2.NS}\right)^2 + A_{zpa.k.NS}^2}$$

 $Ap_{k,NS} = 0.825 \cdot g$ 

| Revision         | Revision         | Revision         |
|------------------|------------------|------------------|
| Originator:Date: | Originator:Date: | Originator:Date: |
| Checker:Date:    | Checker:Date:    | Checker:Date:    |

| Subject:<br>Required Response<br>Spectra For Evaluation Of<br>Radiation Monitoring Equipment |                                                      | Ca                                                | Appendix A                             | Plant: WBN-2<br>Calculation ID: WCGACQ0766<br>This Sheet Added By Rev 1<br>Sheet No. A33 |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|--|
|                                                                                              | From Page 33 of Ref. 2.4,                            | m := 2.3314                                       | b:= 0.45 · g                           |                                                                                          |  |
|                                                                                              | f <sub>NS1</sub> ≔ 1 · Hz                            | A <sub>NS1</sub> ≔ b                              | $A_{NS_1} = 0.45 \cdot g$              |                                                                                          |  |
|                                                                                              | A <sub>NS2</sub> := 5 · Ap <sub>k.NS</sub>           |                                                   | A <sub>NS2</sub> = 4.125 g             |                                                                                          |  |
|                                                                                              | $f_{NS_2} := \left(\frac{A_{NS_2}}{b}\right)^{m} Hz$ | f <sub>NS2</sub> =                                | 2.586 Hz                               |                                                                                          |  |
|                                                                                              | f <sub>NS3</sub> := 16 ⋅ Hz                          | A <sub>NS3</sub> := A <sub>NS2</sub>              | $A_{NS_3} = 4.125 \cdot g$             |                                                                                          |  |
|                                                                                              | f <sub>NS₄</sub> ≔ 33 · Hz                           | $A_{NS_4} \coloneqq 2 \cdot Ap_{k.NS}$            | A <sub>NS<sub>4</sub></sub> = 1.65 ⋅ g |                                                                                          |  |
|                                                                                              | f <sub>NS5</sub> := 33 Hz                            | $A_{NS_5} := Ap_{k.NS}$                           | A <sub>NS5</sub> = 0.825 ⋅ g           |                                                                                          |  |
|                                                                                              | f <sub>NS<sub>6</sub></sub> := 100 Hz                | A <sub>NS<sub>6</sub></sub> := Ap <sub>k.NS</sub> | $A_{NS_6} = 0.825 \cdot g$             |                                                                                          |  |

Truncated N-S Required Response Spectra (SSE 5% Damping):

$$f_{TNS_1} := 1Hz$$

A<sub>TNS1</sub> ≔ b

4.05 · Hz

 $A_{TNS_1} := 0.45 \cdot g$ 

Between 1 Hz and 90% of the first natural frequency of the skid frame the truncated RRS must not intersect the 5% building ARS. To prevent this, Ref. 2.4 section 4.2.2.2.d requires the truncated RRS to be adjusted to clear the first peak of the broadened floor spectra at 90% of the lower boundary of the broadened plateau of the first peak. Using digitized north-south SSE from the Auxiliary Control Building El 711.5 New Design/Modification ARS (Ref. 2.6) at 3% damping the first peak occurs above 4.5 Hz with an acceleration of 1.663 G. Adjusting the truncated RRS to clear the 5% ARS plateau at 90% of 4.5 HZ the second point of the truncated RRS is computed as follows:

 $f_{TNS_2} := .9 \cdot 4.5Hz$ 

$$A_{TNS_2} := \sqrt{\frac{3}{5} \cdot 1.633 \cdot g}$$
  $A_{TNS_2} = 1.265 \cdot g$ 

NOTE: Square root of 3/5 is used to convert digitized 3% damping ARS to 5% damping ARS. Refer to Ref.2.4 section 4.1.3.4 second paragraph which shows this method of converting a peak 5% damped floor spectra to a peak 3% damped floor spectra. In this case we are converting a 3% damped peak to a 5% damped peak.

The acceleration value for 90% of the first natural frequency of the skid frame is computed as follows:

$$f_{TNS_3} := .9 \cdot 27.9 Hz$$
  $f_{TNS_3} = 25.11 \cdot Hz$ 

| Revision         | Revision         | Revision              |
|------------------|------------------|-----------------------|
| Originator:Date: | Originator:Date: | Originator:Date:Date: |
| Checker:Date:    | Checker:Date:    | Checker:Date:Date:    |

#### **Calculation Sheet**

Appendix A

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A34

Conservatively using linear Interpolation between the 16 Hz and 33 Hz values of the non-truncated RRS for 18.9 Hz (comparing slope of line on sheet A38 with that on sheet A39shows this to be conservative):

$$A_{TNS_3} := A_{NS_4} + \frac{f_{NS_4} - f_{TNS_3}}{f_{NS_4} - f_{NS_3}} \cdot \left(A_{NS_3} - A_{NS_4}\right)$$

$$A_{TNS_3} = 2.798 \cdot g$$

The truncated RRS between 90% of the first natural frequency of the skid frame and the ZPA is the same as the non-truncated RRS as follows:

$$f_{TNS_{4}} := 33 \cdot Hz \qquad A_{TNS_{4}} := 2 \cdot Ap_{k.NS} \qquad A_{TNS_{4}} = 1.65 \cdot g$$

$$f_{TNS_{5}} := 33 \cdot Hz \qquad A_{TNS_{5}} := Ap_{k.NS} \qquad A_{TNS_{5}} = 0.825 \cdot g$$

$$f_{TNS_{6}} := 100 \cdot Hz \qquad A_{TNS_{6}} := Ap_{k.NS} \qquad A_{TNS_{6}} = 0.825 \cdot g$$

E-W Required Response Spectra (SSE 5% Damping):

 $Ap_{k,EW} := \sqrt{(1.6 \cdot S \cdot Ap_{k,1,EW})^2 + (1.0 \cdot S \cdot Ap_{k,2,EW})^2 + A_{zpa,k,EW}^2}$  $Ap_{k,EW} = 0.925 \cdot g$ From Page 33 of Ref. 2.4, m := 2.3314 b := 0.45 · g A<sub>EW1</sub> := b  $A_{EW_1} = 0.45 \cdot g$  $f_{EW_1} := 1 \cdot Hz$  $A_{EW_2} = 4.623 \cdot g$  $A_{EW_2} := 5 \cdot Ap_{k.EW}$  $f_{EW_2} := \left(\frac{A_{EW_2}}{b}\right)^{m} Hz$  $f_{EW_2} = 2.716 \cdot Hz$  $A_{EW_3} = 4.623 \cdot g$  $f_{EW_3} \coloneqq 16 \cdot Hz$   $A_{EW_3} \coloneqq A_{EW_2}$ A<sub>EW₄</sub> = 1.849 ⋅ g f<sub>EW₄</sub> := 33 · Hz  $A_{EW_4} := 2 \cdot Ap_{k.EW}$ f<sub>EWc</sub> ≔ 33 · Hz  $A_{EW_s} := Ap_{k,EW}$  $A_{EW_5} = 0.925 \cdot g$ f<sub>EW6</sub> := 100 ⋅ Hz  $A_{EW_6} = 0.925 \cdot g$  $A_{EW_{e}} := Ap_{k.EW}$ 

| Revision         | Revisi      | on    | Revision         |
|------------------|-------------|-------|------------------|
| Originator:Date: | Originator: | Date: | Originator:Date: |
| Checker:Date:    | Checker:    | Date: | Cilecker         |

Truncated E-W Required Response Spectra (SSE 5% Damping):

$$f_{TEW_4} := 1Hz$$
  $A_{TEW_4} := b$ 

Between 1 Hz and 90% of the first natural frequency of the skid frame the truncated RRS must not intersect the 5% building ARS. To prevent this, Ref. 2.4 section 4.2.2.2.d requires the truncated RRS to be adjusted to clear the first peak of the broadened floor spectra at 90% of the lower boundary of the broadened plateau of the first peak. Using digitized east-west SSE from the Auxiliary Control Building El 711.5 New Design/Modification ARS (Ref. 2.6) at 3% damping the first peak occurs at 5.0 Hz with an acceleration of 2.56 G. Adjusting the truncated RRS to clear the 5% ARS plateau at 90% of 5 HZ the second point of the truncated RRS is computed as follows:

 $A_{TEW_4} := 0.45 \cdot g$ 

 $f_{TEW_2} := .9 \cdot 5Hz$   $f_{TEW_2} = 4.5 \cdot Hz$   $A_{TEW_2} := \sqrt{\frac{3}{5}} \cdot 2.56 \cdot g$   $A_{TEW_2} = 1.983 \cdot g$ 

NOTE: Square root of 3/5 is used to convert digitized 3% damping ARS to 5% damping ARS. Refer to Ref.2.4 section 4.1.3.4 second paragraph which shows this method of converting a peak 5% damped floor spectra to a peak 3% damped floor spectra. In this case we are converting a 3% damped peak to a 5% damped peak.

The acceleration value for 90% of the first natural frequency of the skid frame is computed as follows:

$$f_{TEW_3} := .9 \cdot 27.9 Hz$$
  $f_{TEW_3} = 25.11 \cdot Hz$ 

Conservatively using linear Interpolation between the 16 Hz and 33 Hz values of the non-truncated RRS for 18.9 Hz (comparing slope of line on sheet A38 with that on sheet A39shows this to be conservative):

$$A_{TEW_3} := A_{EW_4} + \frac{f_{EW_4} - f_{TEW_3}}{f_{EW_4} - f_{EW_3}} \cdot (A_{EW_3} - A_{EW_4})$$

$$A_{\text{TEW}_2} = 3.136 \cdot g$$

The truncated RRS between 90% of the first natural frequency of the skid frame and the ZPA is the same as the non-truncated RRS as follows:

| f <sub>TEW4</sub> := 33 · Hz            | $A_{\text{TEW}_4} := 2 \cdot Ap_{k.EW}$ | $A_{\text{TEW}_4} = 1.849 \cdot g$ |
|-----------------------------------------|-----------------------------------------|------------------------------------|
| f <sub>TEW5</sub> ≔ 33 · Hz             | A <sub>TEW5</sub> := Ap <sub>k.EW</sub> | $A_{\text{TEW}_5} = 0.925 \cdot g$ |
| f <sub>TEW<sub>6</sub></sub> ≔ 100 · Hz | A <sub>TEW6</sub> := Ap <sub>k.EW</sub> | $A_{\text{TEW}_6} = 0.925 \cdot g$ |

|                                   | Bevision                          | Revision                   |
|-----------------------------------|-----------------------------------|----------------------------|
| Originator:Date:<br>Checker:Date: | Originator:Date:<br>Checker:Date: | Originator:Date:Date:Date: |

Vertical Required Response Spectra (SSE 5% Damping):  $Ap_{k,v} := A_{zpa,k,v}$  $Ap_{k,v} = 0.25 \cdot g$ From Page 33 of Ref. 2.4, m := 2.3314 b := 0.45 · g A<sub>V1</sub> := b  $f_{V_1} \coloneqq 1 \cdot Hz$  $A_{V_1} = 0.45 \cdot g$  $A_{V_2} := 5 \cdot Ap_{k.v}$  $A_{V_2} = 1.25 \cdot g$  $f_{V_2} := \left(\frac{A_{V_2}}{b}\right)^{m} \cdot Hz$ f<sub>V₂</sub> = 1.55 · Hz f<sub>V3</sub> := 16 ⋅ Hz  $A_{V_3} \coloneqq A_{V_2}$ A<sub>V3</sub> = 1.25 ⋅ g  $f_{V_4} \coloneqq 33 \cdot Hz \qquad \qquad A_{V_4} \coloneqq 2 \cdot Ap_{k.v}$  $A_{V_A} = 0.5 \cdot g$  $A_{V_5} := Ap_{k.v}$ f<sub>Ve</sub> := 33 ⋅ Hz  $A_{V_5} = 0.25 \cdot g$  $A_{V_6} := Ap_{k.v}$  $f_{V_e} := 100 \cdot Hz$  $A_{V_6} = 0.25 \cdot g$ 

Truncated Vertical Required Response Spectra (SSE 5% Damping):

$$f_{TV_1} := 1Hz$$
  $A_{TV_1} := b$   $A_{TV_1} := 0.45 g$ 

Since the skid frame is rigid in the vertical direction the first natural frequency is conservatively taken as 33 Hz. The acceleration value for 90% of the first natural frequency of the skid frame is computed as follows:

$$f_{TV_2} := .9 \cdot 33Hz$$
  $f_{TV_2} = 29.7 \cdot Hz$ 

Conservatively using linear Interpolation between the 16 Hz and 33 Hz values of the non-truncated RRS for 18.9 Hz (comparing slope of line on sheet A38 with that on sheet A39shows this to be conservative):

$$A_{TV_{2}} := A_{V_{4}} + \frac{f_{V_{4}} - f_{TV_{2}}}{f_{V_{4}} - f_{V_{3}}} \cdot \left(A_{V_{3}} - A_{V_{4}}\right)$$

$$A_{TV_{a}} = 0.646 \cdot g$$

| Revision         | Revision         | Revision         |
|------------------|------------------|------------------|
| Originator:Date: | Originator:Date: | Originator:Date: |
| Checker:Date:    | Checker:Date:    | Checker:Date:    |

# Subject:Calculation SheetPlant: WBN-2Required ResponseCalculation ID: WCGACQ0766Spectra For Evaluation OfAppendix AThis Sheet Added By Rev 1Radiation Monitoring EquipmentSheet No. A37

The truncated RRS between 90% of the first natural frequency of the skid frame and the ZPA is the same as the non-truncated RRS as follows:

 $f_{TV_3} := 33 \cdot Hz$ 

 $f_{TV_A} \coloneqq 33 \cdot Hz$ 

A<sub>TV4</sub> := Ap<sub>k.v</sub>

 $A_{TV_{3}} \coloneqq 2 \cdot Ap_{k,v}$ 

 $A_{TV_4} = 0.25 \cdot g$ 

 $A_{TV_3} = 0.5 \cdot g$ 

 $f_{TV_5} := 100 \cdot Hz$ 

 $A_{TV_5} := Ap_{k.v}$ 

## $A_{TV_5} = 0.25 \cdot g$

Revision ... Originator: ......Date:..... Checker:.....Date:.....

Revision ... Originator:.....Date:..... Checker:.....Date:..... Revision ... Originator: .....Date:..... Checker: .....Date:....



| North  | -South | East-West |       | Ver    | tical |
|--------|--------|-----------|-------|--------|-------|
| f (Hz) | a (g)  | f (Hz)    | a (g) | f (Hz) | a (g) |
| 1.0    | 0.45   | 1.0       | 0.45  | 1.0    | 0.45  |
| 2.6    | 4.13   | 2.7       | 4.62  | 1.6    | 1.25  |
| 16.0   | 4.13   | 16.0      | 4.62  | 16.0   | 1.25  |
| 33.0   | 1.65   | 33.0      | 1.85  | 33.0   | 0.50  |
| 33.0   | 0.83   | 33.0      | 0.93  | 33.0   | 0.25  |
| 100.0  | 0.83   | 100.0     | 0.93  | 100.0  | 0.25  |

For Skid 2-RE-90-130, North-South is side to side and East-West is front to back. For Skid 2-RE-90-131, North-South is front to back and East-west is side to side.

| Revisi      | on    |
|-------------|-------|
| Originator: | Date: |
| Checker:    | Date: |

Revision ... Originator.....Date:..... Checker.....Date:..... Revision ... Originator: .....Date:..... Checker: ......Date:.....

**Calculation Sheet** 

Appendix A

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A39



| North  | South | East-West |       | uth East-West Vertical |       | tical |
|--------|-------|-----------|-------|------------------------|-------|-------|
| f (Hz) | a (g) | f (Hz)    | a (g) | f (Hz)                 | a (g) |       |
| 1.0    | 0.45  | 1.0       | 0.45  | 1.0                    | 0.45  |       |
| 4.1    | 1.27  | 4.5       | 1.98  | 29.7                   | 0.65  |       |
| 25.1   | 2.80  | 25.1      | 3.14  | 33.0                   | 0.50  |       |
| 33.0   | 1.65  | 33.0      | 1.85  | 33.0                   | 0.25  |       |
| 33.0   | 0.83  | 33.0      | 0.93  | 100.0                  | 0.25  |       |
| 100.0  | 0.83  | 100.0     | 0.93  |                        |       |       |

For Skid 2-RE-90-130, North-South is side to side and East-West is front to back. For Skid 2-RE-90-131, North-South is front to back and East-west is side to side.

| Revisio     | on    |
|-------------|-------|
| Originator: | Date: |
| Checker:    | Date: |

Revision ... Originator:.....Date:..... Checker:.....Date:.....

| Revi        | sion  |
|-------------|-------|
| Originator: | Date: |
| Checker:    | Date: |

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A40



| Subject:                                                                                 | Calculat                               | ion Sheet   |                                        | Plant: WBN-2                               |
|------------------------------------------------------------------------------------------|----------------------------------------|-------------|----------------------------------------|--------------------------------------------|
| Required Response<br>Spectra For Evaluation Of<br>Radiation Monitoring Equipment         | Арре                                   | ndix A      |                                        | This Sheet Added By Rev 1<br>Sheet No. A41 |
| From Page 33 of Ref. 2.4,                                                                | m := 2.3314                            | b := 0.45   | · g                                    |                                            |
| f <sub>EW1</sub> ≔ 1 Hz                                                                  | A <sub>EW1</sub> := b                  |             | $A_{EW_1} = 0.45 \cdot g$              |                                            |
| $A_{EW_2} \coloneqq 5 \cdot Ap_{k.EW}$                                                   |                                        |             | A <sub>EW2</sub> = 3.236 ⋅ g           |                                            |
| $\frac{1}{m}$                                                                            |                                        |             |                                        |                                            |
| $f_{EW_2} := \left(\frac{A_{EW_2}}{b}\right) + Hz$                                       | f <sub>EW2</sub> =                     | 2.331 · Hz  |                                        |                                            |
| f <sub>EW3</sub> ≔ 16 · Hz                                                               | $A_{EW}_3 \coloneqq A_{EW}_2$          |             | A <sub>EW3</sub> = 3.236 ⋅ g           |                                            |
| f <sub>EW₄</sub> ≔ 33 · Hz                                                               | $A_{EW_4} \coloneqq 2 \cdot Ap_{k.EW}$ |             | $A_{EW_4} = 1.294 \cdot g$             |                                            |
| f <sub>EW5</sub> ≔ 33 · Hz                                                               | $A_{EW_5} := Ap_{k.EW}$                |             | $A_{EW_5} = 0.647 \cdot g$             |                                            |
| f <sub>EW<sub>6</sub></sub> ≔ 100 · Hz                                                   | A <sub>EW6</sub> := Ap <sub>k.EW</sub> |             | $A_{EW_6} = 0.647 \cdot g$             |                                            |
| Vertical Required Response Sp                                                            | ectra (OBE 5% Dampir                   | ng):        |                                        |                                            |
| $Ap_{\mathbf{k}.\mathbf{v}} \coloneqq 0.70 \cdot A_{\mathbf{zpa}.\mathbf{k}.\mathbf{V}}$ | Ap <sub>k.v</sub> = 0.1                | 75 · g      |                                        |                                            |
| From Page 33 of Ref. 2                                                                   | 4, m := 2.3314                         | b := 0      | .45 · g                                |                                            |
| f <sub>V1</sub> := 1 ⋅ Hz                                                                | A <sub>V1</sub> := b                   | <i>.</i>    | $A_{V_1} = 0.45 \cdot g$               |                                            |
| $A_{V_2} = 5 \cdot Ap_{k.v}$                                                             | ·<br>•                                 | , ·         | $A_{V_2} = 0.875 \cdot g$              | ) <sup>* •</sup> •                         |
| $\frac{1}{m}$                                                                            |                                        |             |                                        |                                            |
| $f_{V_2} := \left(\frac{A_{V_2}}{b}\right)^{H_2} \cdot H_2$                              | f <sub>V2</sub>                        | = 1.33 · Hz |                                        |                                            |
| f <sub>V3</sub> ≔ 16 · Hz                                                                | $A_{V_3} \coloneqq A_{V_2}$            |             | A <sub>V3</sub> = 0.875 ⋅ g            |                                            |
| f <sub>V₄</sub> ≔ 33 · Hz                                                                | $A_{V_4} := 2 \cdot Ap_{k.v}$          |             | $A_{V_4} = 0.35 \cdot g$               |                                            |
| f <sub>V5</sub> ≔ 33 · Hz                                                                | A <sub>V5</sub> := Ap <sub>k.v</sub>   |             | A <sub>V5</sub> = 0.175 ⋅ g            | l.                                         |
| f <sub>V6</sub> := 100 ⋅ Hz                                                              | $A_{V_6} := Ap_{k.v}$                  |             | A <sub>V<sub>6</sub></sub> = 0.175 ⋅ g |                                            |
|                                                                                          | · · · · · · · · · · · · · · · · · · ·  |             |                                        | ·                                          |

Appendix A

Plant: WBN-2 Calculation ID: WCGACQ0766 This Sheet Added By Rev 1 Sheet No. A42



| North  | -South           | East-West |       | Ver    | tical |
|--------|------------------|-----------|-------|--------|-------|
| f (Hz) | a (g)            | f (Hz)    | a (g) | f (Hz) | a (g) |
| 1.0    | 0.45             | 1.0       | 0.45  | 1.0    | 0.45  |
| 2.2    | 2.8 <del>9</del> | 2.3       | 3.24  | 1.3    | 0.88  |
| 16.0   | 2.89             | 16.0      | 3.24  | 16.0   | 0.88  |
| 33.0   | 1.16             | 33.0      | 1.29  | 33.0   | 0.35  |
| 33.0   | 0.58             | 33.0      | 0.65  | 33.0   | 0.18  |
| 100.0  | 0.58             | 100.0     | 0.65  | 100.0  | 0.18  |

#### 8.0 Conclusion:

The above curves are the required response spectra for the safety related radiation monitoring equipment to be installed on WBN Unit 2 MCR Panels 2-M-30 (provided with Rev. 0 of this calc.), 0-M-12 and skids for WBN-2-RE-090-0106, WBN-2-RE-090-0112, WBN-2-RE-090-0130 and WBN-2-RE-090-0131. These RRS curves can be used for comparison to vendor seismic test reports for qualification of the WBN Unit 2 safety related Radiation Monitoring equipment.

| Revision         | Revision         | Revision         |
|------------------|------------------|------------------|
| Originator:Date: | Originator:Date: | Originator:Date: |
| Checker:Date:    | Checker:Date:    | Checker:Date:    |

| <b>A</b> E                            | Coloulation Shoot                  | Project    | WBN2CCP                    |
|---------------------------------------|------------------------------------|------------|----------------------------|
| BUD                                   | Calculation Sheet                  | Job No.    | 25402                      |
| Subject: <u>REQUIRED F</u>            | RESPONSE SPECTRA FOR EVALUATION OF | Calc. No.  | WCGACQ0766                 |
| <b>RADIATION MONITORING EQUIPMENT</b> |                                    | Sheet No.  | 1 of 1                     |
| Prepared: SEE COVER SI                | IEET Date                          | Sheet Rev. | This Sheet Replaced By 001 |
| Checked: <u>SEE COVER SI</u>          | IEET Date                          |            |                            |

#### REFERENCES

| 12.0 <u>ATTACHM</u> | ENTS                         |                         | · · · |
|---------------------|------------------------------|-------------------------|-------|
|                     | ATTACHMENT TABLE OF          | CONTENTS                |       |
|                     | · · ·                        | No. of Pages            |       |
| Attachment Tal      | ble of Contents              | 1                       |       |
| Attachment A:       | Copy of Refs. 6.6-6.9 & 6.11 | 5                       |       |
| Attachment B:       | Copy of LSWD-536             | 8                       | :     |
|                     |                              |                         |       |
|                     |                              |                         |       |
|                     |                              |                         |       |
| · · ·               |                              |                         |       |
|                     |                              |                         |       |
|                     |                              |                         |       |
|                     |                              |                         |       |
|                     |                              |                         |       |
|                     | TOTAL No. OF ATT             | ACHMENT PAGES <u>14</u> |       |
|                     |                              |                         |       |

| BECHT                               | E                                                       | DRAWING REVISION<br>AUTHORIZATION<br>(DRA) |                                                                                                                                                                                                                                                                                                                                    |                 |                 | EDCR NUMBER 52338-A<br>PAGE (40<br>DRA NUMBER 52338-005<br>PAGE 1 OF 1 |                                                                                             |  |
|-------------------------------------|---------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| JOB NO.                             | DWG TYPE                                                | DRAWING NUM                                | BER                                                                                                                                                                                                                                                                                                                                | REV. NO.        | DWG T<br>(NEW [ | TITLE & CATEGORY<br>DWGS ONLY)                                         |                                                                                             |  |
| OTHER DOCU                          | JMENTS AFFEC                                            | TED BY THIS                                | CHANGE                                                                                                                                                                                                                                                                                                                             |                 | Att             | tachment NoA                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |
| SEE EDCR                            | INDEX                                                   |                                            |                                                                                                                                                                                                                                                                                                                                    |                 | Cal             | alculation No. <u>L/CG ACQ 0164</u>                                    | <u></u>                                                                                     |  |
|                                     |                                                         |                                            | 3     132     134       3     132     134       4     90     2     84       -273     2     84       1     90     -273       -273     1     2       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1 |                 |                 | REVISE                                                                 |                                                                                             |  |
|                                     | NO<br>DR                                                | TE TO D<br>A 52374                         | 2-R0-90<br>                                                                                                                                                                                                                                                                                                                        |                 |                 | CORPORATE )<br>DR DRA                                                  |                                                                                             |  |
| REV PRI<br>0 D/<br>28402-30P-6046-0 | EPARED BY<br>Origh V. Style<br>WZO W. SETE<br>00040-008 | DATE<br>4-14-10                            | CHECKED BY / DA<br>Joe Temples<br>bet. Temples                                                                                                                                                                                                                                                                                     | te<br>9 4/14/10 | CHAN            | NGE REFERENCE<br>R 52338-A                                             |                                                                                             |  |



### General Atomics Electronic Systems Drawing

## 04034100, Revision C, Outline High Range Area Monitor System



\_\_\_\_\_.



LSWD-536 Watts Bar Unit 2 Construction Completion Project Walkdown Procedure for **GENERAL WALKDOWN REQUIREMENTS** WDP-GEN-1 Appendix E PAGE 1 OF 8 LIMITED SCOPE WALKDOWNS LIMITED SCOPE WALKDOWN PACKAGE COVER SHEET Attachment E2 Page 1 of 1 PACKAGE NUMBER LSWD - 536 This Sheet Added By Rev. 001 REVISION 0 TITLE Verify dimensions of Panel 0-M-12 for CALC WCGACQ-0766. Attachment No. SCOPING DOCUMENT (IF APPLICABLE) N/A 1/12 Sheet / -<del>0</del>f-Calculation No. WCGACO 0766 PREPARED BY ingothy R Belk 12/22/1 **APPROVALS/ REVIEW** Robert G Brown RESPONSIBLE **ORGANIZATION SUPERVISOR Bill C Perkins** LEGIBILITY EVALUATED AND ALL PAGES Date: 12/22 Initia 12/22/2011 WALKDOWN TEAM LEA (Verifier)

Watts Bar Unit 2

WDP-GEN-1

Rev 14

Page 44 of 44

LSWD-536

PAGEZOF8

#### Watts Bar Unit 2 Construction Completion Project Walkdown Procedure for GENERAL WALKDOWN REQUIREMENTS WDP-GEN-1 Appendix E LIMITED SCOPE WALKDOWNS

#### LIMITED SCOPE WALKDOWN REQUEST AND DATA COLLECTING FORM Attachment E1 PAGE 1 OF 2

INITIATING DOCUMENT WCGACQ-0766 LOCATION (Unit, Building, Elevation, Room, Column Lines) UNIT 0, CONTROL BLDG, EL.-755', CONTROL ROOM, 6'Nof P & 12' W of C6. This Sheet Added By Rev. \_\_\_\_\_\_ SCOPE Engineering Walkdown for actual dimension to top of 2-RM-90-106 -NIM BIN on Front Face of Panel 0-M-12 in Main Control Room for CIVIL Calculation WCGACQ-0766 Attachment No. Sheet 2 -OF-116/12 Calculation No. WCFACQ 0766 DATA TOLERANCE REQUIREMENTS Current Design Criteria BECHTEL CIVIL ESQ 12/22/11 DATE Robert & Brown K REQUESTING ORGANIZATION

Watts Bar Unit 2

WDP-GEN-1

Rev 14
Watts Bar Unit 2 Construction Completion Project Walkdown Procedure for **GENERAL WALKDOWN REQUIREMENTS** WDP-GEN-1 Appendix E PAGE 3 OF 8 LIMITED SCOPE WALKDOWNS

# LIMITED SCOPE WALKDOWN REQUEST AND DATA COLLECTING FORM Attachment E1 PAGE 2 OF 2

PERFORMING ORGANIZATION BECHTEL CIVIL DESIGN **RESULTS See attached DATA Sheets** This Sheet Added By Rev. 001 Attachment No. 6/12 Sheet 3 Of Calculation No. WCGAC& 0766 TINCH K BELK WALKDOWN TEAM MEMBER 2011 SIGN 12/22/11 Javier Burgoa WALKDOWN TEAM LEADER SIG URE (Verifier)

LSWD-536

## Watts Bar Unit 2 Construction Completion Project Walkdown Procedure for **GENERAL WALKDOWN REQUIREMENTS** WDP-GEN-1 Appendix C

#### Walkdown Package

#### Attachment C7

Page 4 of 8 WP No. LSWD- 536 Rev. 0 **Unit 1/Unit 0 Operations Review** Circle item number(s) below that apply and obtain appropriate signatures. A. Walkdown Package requires Critical Evolutions review. 1. Unit 1/Unit 0 component with risk of Unit 1 reactor/turbine trip/ OR ESF ACTUATION. 2. Unit 1/Unit 0 component with risk of Unit 1 runback. This Sheet Added By Rev. \_ 001 3. Other B. Walkdown requires coordination with Unit 1 and 2 Operations Department. Attachment No. Sheet 4 -OF (1)U2 equipment energized for U1 operation. Calculation No. WCGACR 0 766 2. Personnel required in Unit 1/Unit 0 area other than normal egress. 3. Close proximity to electrical boards, panels, or components that could cause a Unit 1 Alarm condition or perturbation. 4. Unit 1/Unit 0 component in train/channel room outside normal work week. 5. Other UZ AUO Support C. Walk down requires Unit 2 Operations Department review only \_ 1. Unit 2 de-energized mechanical equipment in Unit 2 space 2. Unit 2 de-energized electrical equipment in Unit 2 space with no nearby Unit 1/Unit 0 electrical equipment. 3. Other W/ 12 W15 12-22-11 Unit 2 Operations Review Date 12/22 Unit 1 Operations Coordination **Critical Evolutions Review** 

WDP-GEN-1

LSWD-536

LSWD-536

### WDP-GEN-1 Appendix C Attachment C2 Walkdown Package Record of Revision

Page 5 of 8

## SCOPE OR TITLE OF WALKDOWN PACKAGE

### DESCRIPTION: VERIFY DIMENSIONS ON PANEL 0-M-12

Rev\_

| Revision | Date                                  | Description of Revision |
|----------|---------------------------------------|-------------------------|
| No.      |                                       |                         |
| • • 0    | 12/22/11                              | INITIAL ISSUE           |
|          | T                                     |                         |
|          |                                       |                         |
|          |                                       |                         |
|          | 1                                     |                         |
|          |                                       |                         |
|          |                                       |                         |
| ·        | <u>i</u>                              |                         |
|          |                                       |                         |
|          | · · · · · · · · · · · · · · · · · · · |                         |
| ·        | 1.                                    |                         |
|          | 1                                     |                         |
|          | 1                                     |                         |
|          | ÷                                     |                         |
|          |                                       |                         |
|          |                                       |                         |
|          |                                       |                         |
|          |                                       |                         |
|          |                                       |                         |
|          |                                       |                         |
|          | ÷                                     |                         |
|          | ·                                     |                         |
| ·        |                                       |                         |
|          |                                       |                         |

This Sheet Added By Rev. \_ 001

Attachment No. RGB1161 12 \_Of Calculation No. WCFACQ 0766

Watts Bar Unit 2

WDP-GEN-1

Rev 14





LSWP-536 PAGE 80+8 TOP OF Z-RM-90-106 NIM BIN 0 0 О 162 TH 306 BLAK BLANK BLANK 84-90-205/ 0 Ó -307 182 2-10-120, BLANK HLANK M-30-206/ BLANK BL AND 0 0 226 264 102 203 0000 2-84-60-119 EDCR 55801 BLANK SLANK SZ SZ 0000 CONSTRUCTION NOTE: (DO H A. CANTION: This Sheet Added By UNIT 1 COMPONENTS AR TERMINALS TO BE WORK MAY BE ADJACENT TO O TERMINALS. IMPLEMENT FOR WORKING INSIDE A ELECTRICALLY ENERGIZ Rev. 001 Attachment No. Sheet 8 -05-RG-B 116112 Calculation No. WCFACQ 0766 DAVIDW. SLIFE FLOOR BOTTOM OF PANEL N/A CONTRACT NO: OCA INVERSIONISTICAL art acca (60) <u>N/A</u> FI FOTOTOA FRONT FACE OF PANEL O-M-12

WDTM Burgoa

WOTL STREEL 12/22/2011