generation

mPover

B&W mPower Core and Fuel Design Update Meeting (Redacted)

February 16, 2012

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved. This presentation is the property of Babcock & Wilcox Nuclear Energy, Inc. Any copying, use, or disclosure of this information without the written permission of Babcock & Wilcox Nuclear Energy, Inc. is strictly prohibited. This material is protected under trade secret and unfair competition laws and the expression of the information contained therein is protected under federal copyright laws.

Meeting Topics

- Introduction
- Overview of Fuel Design Changes
- Mechanical Design Technical Report Feedback
- Core Thermal Hydraulics Update
- Core Design Update
- Benchmarking Status and Plans
- Core Startup and Operation Overview
- Conclusion

B&W mPower Core Thermal Hydraulics Update

Core Thermal-Hydraulic Subchannel Analysis

VIPRE-01 mod 2.4f95 is used to model the core thermalhydraulics

▶ [

] [CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

4

Cycle Plot - MDNBR

L

DNBR Distribution

Ł

[CCI per Affidavit 4(a)-(d)]

]

[

Cycle Plot – Peak Centerline Fuel Temperature

Axial Plot- Centerline Fuel Temperature

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

] 8

[CCI per Affidavit 4(a)-(d)]

Fuel Temperature Distribution

Critical Heat Flux Testing Status

- Testing is being conducted at Stern Laboratories in Hamilton, Ontario, Canada
- Two test series have been completed
 [
- Three additional tests are planned in 2012
 (Tentative plan)

CHF Test Bundle

Unit cell test bundle before insertion into the flow channel

[

Example of Test Results

[

Critical Heat Flux Correlation Development

[

B&W mPower Lattice Neutronic Design

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

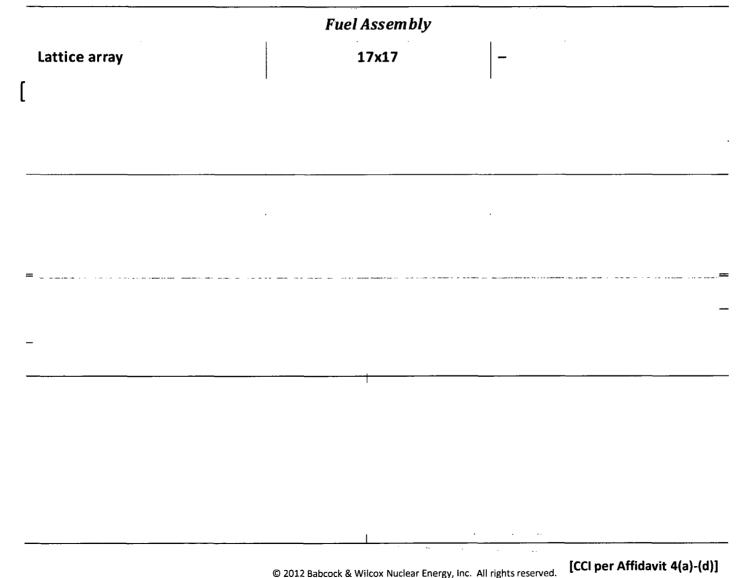
14

- Methodology and Computer Codes
- Assembly Lattice Layout
- Lattice Neutronic Design Parameters
- Lattice Analysis Results
- Conclusions

. .

Methodology and Codes

Code	Code information	
INTERPIN-4 Version Number:	Pin temperature calculation • Provides data for average fuel pin temperatures as a function of burnup and linear heat generation rate for	
v4.01	the Studsvik CMS codes CASMO-5 and SIMULATE-3	
	• INTERPIN-4 output feeds directly into CASMO-5 and SIMULATE-3 inputs	
CASMO-5	Lattice layout and characterization	
Version Number:	• Two dimensional lattice physics (transport) code using the ENDF/B-VII.0 based 586 group cross section library	
V2.00.00	• Neutron energies cover the range from 0 to 20 MeV	
CMS-LINK	Cross-section processing	
Version Number:	• Processes CASMO-5 Card Image files into a binary formatted nuclear data library for use by SIMULATE-3	
v1.26.03	• Includes 2-group macroscopic x-sections, discontinuity factors, fission product data, detector data, pin power reconstruction, kinetics, isotopics, etc.	
SIMULATE-3	Reactor core loading and cycle projection simulation	
Version Number:	Advanced three-dimensional, two-group nodal code for reactor core simulation and analysis	
v6.09.23	• The code is based on a neutronics model which employs fourth-order polynomial representations of the	
	intranodal flux distributions in both the fast and thermal groups	
	• One of the key features of SIMULATE-3 is the pin power reconstruction capability	


 Fuel assembly conceptually similar to [a conventional 17x17 square lattice PWR, with the exception that is shorter

[CCI per Affidavit 4(a)-(d)]

[CCI per Affidavit 4(a)-(d)]

17

mPower Assembly Layout Summary

18

Lattice Layout Example

[

[CCI per Affidavit 4(a)-(d)]

mPower Lattice Neutronic Design Parameters

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

20

[CCI per Affidavit 4(a)-(d)]

Lattice Neutronic Design Parameters

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

21

- ----

[

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

....

[CCI per Affidavit 4(a)-(d)]

]23

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[CCI per Affidavit 4(a)-(d)]

]_24

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

--- --

.

] 25

- The B&W mPower lattice is based on the industry standard 17x17 fuel assembly
- CASMO-5 has been used to create and analyze lattice cross sections for the construction of fuel assemblies in SIMULATE-3 for the mPower core loading and cycle management design
- Lattice burns provide a window into the behavior of assemblies constructed from the various CASMO-5 cross section sets

B&W mPower Core Loading and Management

- Core Design Parameters
- Core Loading
- Control Rod Patterns and Cycle Management
- SIMULATE-3 Summary Results
- Conclusions

Core Design parameters

Core Data		
Total number of assemblies		
Estimated core loading		
Rated thermal power level		
Rated thermal power density		
Rated core flow		
Bypass flow		
Reference dome pressure		
Reference reactor mid-plane pressure		
Reference inlet temperature		
Reference outlet temperature		
Subcooling (outlet)	[CCI per Affidavit 4(a)-(d)]	
[
] [CCI pe	er Affidavit 4(a)-(d)]	
· · · · · · · · · · · · · · · · · · ·		

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

. .

...

generation *mPower* Core Design Parameters

Energ	y Parameters
Cycle length	48 months
Cycle capacity factor	
Cycle energy (estimated)	
EOC Power Level	
Cycle hot target k-effective	
Cycle cold target k-effective	[CCI per Affidavit 4(a)-(d)]
Margi	n Parameters
Minimum cold shutdown margin	[
Maximum nodal peaking	[CCI per Affidavit 4(a)-(d)]
Contro	ol Parameters
Exposure between sequence exchanges	
Control rod utilization	
Parked control rod positions preferred][CCI per Affidavit 4(a)-(d)]

Simulate-3 Fuel Assembly and Control Rod Assembly Definition

Fuel Assemblies

] [CCI per Affidavit 4(a)-(d)]

Control Rod Assemblies

[CCI per Affidavit 4(a)-(d)]

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

32

[CCI per Affidavit 4(a)-(d)]

Control Rod Sequence Definition

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

]

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

]

[CCI per Affidavit 4(a)-(d)] 40

[CCI per Affidavit 4(a)-(d)] 41

٦

[CCI per Affidavit 4(a)-(d)]

EOC Radial Exposure Distribution

[CCI per Affidavit 4(a)-(d)] 44

] [CCI per Affidavit 4(a)-(d)]

 SIMULATE-3 supports the design and analysis of the steady state operation of the B&W mPower Reactor reference design.

[CCI per Affidavit 4(a)-(d)]

• Optimization studies are continuing.

MCNPX Benchmark Lattice Physics Analyses

- Introduction
- Lattice Studies
- Reflector Analyses
- Conclusions

Lattice Studies – MCNPX vs. CASMO-5

[CCI per Affidavit 4(a)-(d)]

Lattice Benchmark Cold BOC k_{∞} Results

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

50

]

Lattice Benchmark Hot BOC k_{∞} Results

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

51

MCNPX Radial Reflector Benchmark Results

I

[CCI per Affidavit 4(a)-(d)]

Radial Reflector Thermal Flux Profile

[CCI per Affidavit 4(a)-(d)]

1

Radial Reflector Total Flux Profile

[CCI per Affidavit 4(a)-(d)]

Radial Reflector Thermal Current Profile

ſ

[CCI per Affidavit 4(a)-(d)]

MCNPX Lattice Physics Benchmark Conclusions

-

[CCI per Affidavit 4(a)-(d)]

MCNPX Model of the B&W mPower Reactor Reference Core Design

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

]

[

] [CCI per Affidavit 4(a)-(d)]

Core Model Description

generation *mPower*

Cross Section of mPower Reactor Model at Core Mid-Plane

L

generation *mPower*

Core Model Description: Former, Basket, Vessel Wall, Air

[CCI per Affidavit 4(a)-(d)]

[CCI per Affidavit 4(a)-(d)]

٦

L

- · · · · · · ·

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

64

٦

ſ

[CCI per Affidavit 4(a)-(d)]

.

]

Reactor Core Startup and Operation

Presentation Topics

- Approach To Critical
- Reactor Heatup
- Power Ascension
- Cycle Operation

- Approach To Critical Strategy
- Approach To Critical Neutron Flux Monitoring
- Approach To Critical Startup Neutron Sources
- Approach To Critical CRA Sequences
- Approach To Critical Simulated Approach To Critical

Approach To Critical - Strategy

[

[CCI per Affidavit 4(a)-(d)]

- Approach To Critical Strategy
- Approach To Critical Neutron Flux Monitoring
- Approach To Critical Startup Neutron Sources
- Approach To Critical CRA Sequences
- Approach To Critical Simulated Approach ToCritical

Approach To Critical – Neutron Flux Monitoring

ſ

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[CCI per Affidavit 4(a)-(d)]

71

1

Approach To Critical – Neutron Flux Monitoring

[

[CCI per Affidavit 4(a)-(d)]

1

- Approach To Critical Strategy
- Approach To Critical Neutron Flux Monitoring
- Approach To Critical Startup Neutron Sources
- Approach To Critical CRA Sequences
- Approach To Critical Simulated Approach To Critical

Approach To Critical – Startup Neutron Sources

ſ

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

,

ſ

Approach To Critical – Startup Neutron Sources

Approach To Critical – Startup Neutron Sources

[

Approach To Critical – Startup Neutron Sources

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

77

- Approach To Critical Strategy
- Approach To Critical Neutron Flux Monitoring
- Approach To Critical Startup Neutron Sources
- Approach To Critical CRA Sequences
- Approach To Critical Simulated Approach To Critical

Approach To Critical – CRA Sequences

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved. [CCI per Affidavit 4(a)-(d)]

] ₇₉

- Approach To Critical Strategy
- Approach To Critical Neutron Flux Monitoring
- Approach To Critical Startup Neutron Sources
- Approach To Critical CRA Sequences
- Approach To Critical Simulated Approach To Critical

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[CCI per Affidavit 4(a)-(d)]

81

[

[CCI per Affidavit 4(a)-(d)]

[

[CCI per Affidavit 4(a)-(d)]

[

[CCI per Affidavit 4(a)-(d)]

[

[CCI per Affidavit 4(a)-(d)]

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

l

[CCI per Affidavit 4(a)-(d)]

[CCI per Affidavit 4(a)-(d)]

[

[CCI per Affidavit 4(a)-(d)]

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

90

[

[CCI per Affidavit 4(a)-(d)]

ſ

[CCI per Affidavit 4(a)-(d)]

[

[CCI per Affidavit 4(a)-(d)]

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved. [CCI per Affidavit 4(a)-(d)]

₉₆]

Presentation Topics

- Approach To Critical
- Reactor Heatup
- Power Ascension
- Cycle Operation

- Reactor Heatup Strategy
- Reactor Heatup Flux/Power Monitoring
- Reactor Heatup Reactivity Insertion/Feedback
- Reactor Heatup Simulated Reactor Heatup

Reactor Heatup - Strategy

[

] [CCI per Affidavit 4(a)-(d)]

- Reactor Heatup Strategy
- Reactor Heatup Flux/Power Monitoring
- Reactor Heatup Reactivity Insertion/Feedback
- Reactor Heatup Simulated Reactor Heatup

Reactor Heatup – Power/Flux Monitoring

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

101

Reactor Heatup – Power/Flux Monitoring

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[CCI per Affidavit 4(a)-(d)] 102

- Reactor Heatup Strategy
- Reactor Heatup Flux/Power Monitoring
- Reactor Heatup Reactivity Insertion/Feedback
- Reactor Heatup Simulated Reactor Heatup

Reactor Heatup – Reactivity Insertion/Feedback

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

104

Reactor Heatup – Reactivity Insertion/Feedback

[>

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

105

Reactor Heatup – Reactivity Insertion/Feedback

[>

[CCI per Affidavit 4(a)-(d)] © 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

- Reactor Heatup Strategy
- Reactor Heatup Flux/Power Monitoring
- Reactor Heatup Reactivity Insertion/Feedback
- Reactor Heatup Simulated Reactor Heatup

Reactor Core Heatup – Simulated Reactor Heatup

[

[

[CCI per Affidavit 4(a)-(d)]

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

l

[CCI per Affidavit 4(a)-(d)]

L

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

113

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

114

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

[CCI per Affidavit 4(a)-(d)]

[

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

Presentation Topics

- Approach To Critical
- Reactor Heatup
- Power Ascension
- Cycle Operation

- Power Ascension Strategy
- Power Ascension In-Core Power/Flux Monitoring
- Power Ascension Ex-Core Power/Flux Monitoring
- Power Ascension Simulated Power Ascension

Power Ascension - Strategy

ſ

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

- Power Ascension Strategy
- Power Ascension In-Core Power/Flux Monitoring
- Power Ascension Ex-Core Power/Flux Monitoring
- Power Ascension Simulated Power Ascension

Power Ascension – In-Core Flux/Power Monitoring

l

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

Power Ascension – In-Core Flux/Power Monitoring

In-Core Detector Axial Locations

[

]

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

- Power Ascension Strategy
- Power Ascension In-Core Power/Flux Monitoring
- Power Ascension Ex-Core Power/Flux Monitoring
- Power Ascension Simulated Power Ascension

Power Ascension – Ex-Core Flux/Power Monitoring

[

Power Ascension – Ex-Core Flux/Power Monitoring

[

[CCI per Affidavit 4(a)-(d)]

- Power Ascension Strategy
- Power Ascension In-Core Power/Flux Monitoring
- Power Ascension Ex-Core Power/Flux Monitoring
- Power Ascension Simulated Power Ascension

[

[CCI per Affidavit 4(a)-(d)] © 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

ſ

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

ĺ

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

140

L

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

l

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

]

~

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

[

.

[CCI per Affidavit 4(a)-(d)]

[

Power Ascension – Simulated Power Ascension

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

ſ

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

148

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

ĺ

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[CCI per Affidavit 4(a)-(d)]

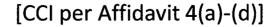
© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

153

L

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.


L

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

ſ

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

[

[CCI per Affidavit 4(a)-(d)]

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

Power Ascension - Strategy

[

159

Presentation Topics

- Approach To Critical
- Reactor Heatup
- Power Ascension
- Cycle Operation

- Cycle Operation Strategy
- Cycle Operation Simulated Sequence Exchange

Cycle Operation - Strategy

[CCI per Affidavit 4(a)-(d)]

•

© 2012 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

- Cycle Operation Strategy
- Cycle Operation Simulated Sequence Exchange

l

[CCI per Affidavit 4(a)-(d)]

[

[CCI per Affidavit 4(a)-(d)]

[

166

[

[

[

[

[CCI per Affidavit 4(a)-(d)]

Core Outlet Temperature Variations During Sequence Exchange

I

ς.