Radiation Protection at Nuclear Pharmacies

US NRC & ORISE

Topic 1 – Radiation Protection
Course Instructors, Schedule & Facility Information

• Instructors
 – Roger Moroney, CHP – ORISE (roger@moroney.org)
 – Bryan Parker, NRC (Bryan.Parker@nrc.gov)
 – Lizette Roldan, NRC (Lizette.Roldan@nrc.gov)

• Schedule
 – Day 1: Health Physics Aspects of Nuclear Pharmacy
 – Day 2: Licensing & Inspection activities at a Nuclear Pharmacy
 – Day 3: Tour Nuclear Pharmacy (schedule & transportation to be announced)

• Facility
 – Emergencies
 – Restrooms
Outline & Objectives for Day 1

• Overview of Nuclear Pharmacy Products, Operations, & Radiation Protection Issues

 • Typical radionuclides, radiopharmaceuticals & their applications for both Single Photon Emission Computed Tomography (SPECT) & Positron Emission Tomography (PET)
 • Staffing at SPECT and PET pharmacies
 • Facility Design, Layout, Equipment, and Process Flow
 • Radiation Protection Issues for SPECT & PET
Outline & Objectives for Day 1

• Accelerators & PET Topics
 • Basic accelerator overview
 • Types, shielding, hazards (electrical & radiological)
 • Manufacturing vs. compounding
History of Medical Applications of Radionuclides

• See handout
What is Nuclear Medicine?

• In nuclear medicine procedures, radionuclides are combined with other chemical compounds or pharmaceuticals to form radiopharmaceuticals. These radiopharmaceuticals, once administered to the patient, can localize to specific organs or cellular receptors. This property of radiopharmaceuticals allows nuclear medicine the ability to image the extent of a disease-process in the body, based on the cellular function and physiology, rather than relying on physical changes in the tissue anatomy. In some diseases nuclear medicine studies can identify medical problems at an earlier stage than other diagnostic tests.
What is SPECT?

• Single Photon Emission Tomography
• Conventional imaging in nuclear medicine uses a gamma camera, also known as an Anger camera after its inventor, Hal Anger
• Planar images render a three-dimensional object in two dimensions
• SPECT uses a series of images taken at different angles around the patient, with the resulting images fed into a computer algorithm that reconstructs slices, giving images at different depths
What is SPECT?

• SPECT uses the same radiopharmaceuticals as conventional planar imaging

• Use of two or three cameras will decrease scan time, thereby increasing patient throughput

• Gated acquisition techniques, using signals from an EKG, are used with cardiac imaging to isolate different aspects of cardiac function
Planar and SPECT Images

- Posterior Planar View
- Slice reconstructed using Filtered Back Projection
- Slice reconstructed using Iterative Reconstruction
What is PET?

• Positron Emission Tomography
• Uses radiopharmaceuticals which emit positrons
• Coincident capture of the two annihilation photons (511 keV) gives spatial information when combined with multiple images taken at various angles around the patient and processed by computer algorithms
This energy is released in the form of two photons that are emitted in the opposite direction from the location of the annihilation event. Compared to SPECT, these photons are very strong and can travel a great distance before stopping.
What is PET?

- F-18 FDG whole-body PET acquisition, abnormal uptake in the region of the stomach. Normal uptake is seen in the brain, renal & bladder
What is Nuclear Pharmacy?

• The Practice of Nuclear Pharmacy is recognized as a specialty within Pharmacy Practice. The American Pharmaceutical Association defines it as follows:
 – The "Practice of Nuclear Pharmacy" means a patient-oriented service that embodies the scientific knowledge and professional judgment required to improve and promote health through the assurance of the safe and efficacious use of radiopharmaceuticals and other drugs.
Nuclear Pharmacy Networks & Independents

- “Traditional” or “SPECT” nuclear pharmacies
 - Part of a network or independent
 - Cardinal Health (formerly Syncor) ~150
 - Covidien (formerly Mallinckrodt and now Triad) ~37
 - Triad Isotopes ~26
 - Triad has acquired the Covidien network
 - GE Healthcare (formerly Amersham) ~30
 - IBA Molecular (acquired Eastern Isotopes) ~10
 - Pharmalogic ~10
 - UPPI (actually a buying group) ~70 members excluding Triad & Pharmalogic
- Other independents
- Hospital and University based nuclear pharmacies
 - May or may not distribute commercially
Nuclear Pharmacy Networks & Independents

- “PET” nuclear pharmacies
 - Part of a network or independent
 - PETNET Solutions (Siemens) ~50
 - Cardinal Health (formerly Syncor) ~32 locations with a cyclotron
 - Cardinal operates their cyclotron sites as manufacturing only and ships bulk FDG to a nearby nuclear pharmacy for dispensing & distribution under the practice of pharmacy
 - Triad Isotopes ~10 locations with cyclotrons
 - IBA Molecular (acquired former Eastern Isotopes + Pharmalogic’s PET sites) ~10
 - Independents ~20 (some belonging to UPPI also)
 - Hospital and University based
 - May or may not distribute commercially
 - Consortium requirements for PET
Nuclear Pharmacy Networks & Independents

• Operations

 • Large networks typically have a single program developed centrally and implemented at each location by site RSOs with a corporate RSO having global responsibilities

 • Cardinal holds a license similar to a Master Materials License that allows designation of ANP’s, and other limited functions based on a standardized Training & Experience requirement

• Services

 • Nuclear Pharmacies often provide not only unit doses of radiopharmaceuticals, but also assistance with many aspects of clinical practice for their customers

 • Licensing, reimbursement, radiation safety, back office support, etc.
Nuclear Pharmacy Networks & Independents

• Regulatory Landscape
 • NRC and Agreement States for possession & distribution of Radiochemicals/Radiopharmaceuticals
 • States administer programs associated with radiation-producing machines (accelerators)
 • State Boards of Pharmacy (BoP) regulate compounding and licensure of Nuclear Pharmacists & Pharmacies
 • Federal and/or State drug manufacturing requirements (FDA) i.e. current Good Manufacturing Practices (cGMP)
 • DOT for transport of hazardous materials
 • EPA or State equivalent for regulation of hazardous waste – usually classified as a conditionally exempt small quantity generator
 • Federal OSHA or State equivalent for worker safety
Suppliers of Radiopharmaceuticals

- Covidien (St Louis & Petten, Netherlands)
 - 99Mo/99mTc generators
 - 131I (diagnostic & therapeutic), 125I, 123I
 - 201Tl, 67Ga, 111In,
 - 32P, 51Cr, 57Co, 133Xe
 - Cold kits (Sestamibi, Octreoscan, MAG3)
 - Accessories (shields, Xe dispenser)
Suppliers of Radiopharmaceuticals

- Lantheus (Billerica, MA)
 - 99Mo/99mTc generators
 - 201Tl, 67Ga, 133Xe
 - Cold kits (Neurolite®, Cardiolite®)
- Draximage
 - 131I (diagnostic & therapeutic)
 - Cold kits (Sestamibi, MDP, MAA)
- EUSAPharma
 - ProstaScint® (111In product)
 - QUADRAMET® (153Sm product)
Suppliers of Radiopharmaceuticals

- GE Healthcare
 - 123I mIBG, 111In, 201Tl, 123I, 89Sr
 - Cold kits
- Bracco Diagnostics
 - 82Sr/82Rb generators, 51Cr
 - Cold kits
 - http://usa.braccoimaging.com/nuclear-medicine/nuclear-medicine.html
- GSK
 - Bexxar
- Spectrum Pharmaceuticals
 - Zevelin (111In & 90Y)
CardioGen-82®
(Rubidium Rb 82 Generator)

- Generator replaced every 28 days
- Rb-82 dose is provided within 10 minutes
- Generator must be utilized with the calibrated CardioGen-82® Infusion System
- Infusion System is automated for the infusion and patient dose
- Permits accurate dosing with minimal operator interface, thus decreasing radiation exposure
- Contains shielding vault for CardioGen-82® Generator and waste container
TYPICAL NUCLEAR PHARMACY RADIONUCLIDES
Typical Nuclear Pharmacy Radionuclides

- Diagnostic Products
 - Most common
 - 99Mo/99mTc, 131I, 123I, 201Tl, 67Ga, 111In, 133Xe
 - Less common
 - 51Cr, 57Co, 81Rb/81mKr, 125I

- Therapy Products
 - 131I, 153Sm, 90Y, 89Sr, 32P

- 131I – many nuclear pharmacies compound diagnostic and therapy products locally from bulk 131I acquired from a radiopharmaceutical supplier
DIAGNOSTIC RADIONUCLIDES
Overview of Typical Nuclides

- Diagnostic

Molybdenum-99/Technetium-99m (\(^{99}\text{Mo}/^{99m}\text{Tc}\))

- "Moly Generators" are the mainstay of Nuclear Pharmacies
 - Produced in the US by Covidien and Lantheus using "fission Mo"
 - Primary production reactors are located in Canada, Netherlands, Belgium, Australia, and South Africa
 - Controversy over the use of high enriched uranium (HEU) targets and/or fuel due to proliferation concerns
 - Use of LEU tends to create more waste volume
 - Covidien has lead, tungsten and depleted uranium shields
 - Lantheus uses lead shields

- Contains \(^{99}\text{Mo}\) on an ion exchange resin (alumina)
 - Sterile Saline solution is added to one side
 - Evacuated sterile vial on the other side
 - Vacuum pulls saline through column and \(^{99m}\text{Tc}\), as sodium pertechnetate, is eluted
Overview of Typical Nuclides – Diagnostic

^{99}Mo

- Reactor produced, HEU
- 66.7 hour $t_{1/2}$
- β^- decay ($E_{\text{max}} = 1.23 \text{ MeV}$)
- γ Tc x-rays
- γ 41 keV (2%)
- γ 181 keV (7%)
- γ 372 keV (1%)
- γ 740 keV (12%)
- γ 780 keV (4%)
- $\Gamma = 1.25 \text{ R/hr per Ci @ 30 cm}$
Overview of Typical Nuclides – Diagnostic

^{99m}Tc

- Decay product of ^{99}Mo
- Decays to ^{99}Tc (2.15E5 yrs)
- 6.04 hour $t_{1/2}$
- IT decay
- γ Tc x-rays
- γ 140 keV (90%)*
- HVL = 0.17 mm Pb
- $\Gamma = 0.78$ R/hr per mCi @ 1cm

*Primary photon for imaging
Overview of Typical Nuclides – Diagnostic

Gallium-67 (67Ga)

- 77.9 hour $t_{1/2}$
- EC decay (no betas)
- γ Zn x-rays
- γ 93 keV (40%)
- γ 184 keV (24%)
- γ 296 keV (22%)
- γ 388 keV (7%)
- HVL = 2.5 cm Pb
- $\Gamma = 0.8$ R/hr per mCi @ 1 cm
Overview of Typical Nuclides – Diagnostic

Indium-111 (^{111}In)

- 2.8 day $t_{1/2}$
- EC decay (no betas)
- γ Cd x-rays
- γ 173 keV (89%)*
- γ 247 keV (94%)
- HVL = 0.023 cm Pb
- $\Gamma = 3.21$ R/hr per mCi @ 1 cm
Overview of Typical Nuclides – Diagnostic

Iodine-123 (123I)
- 13.2 hours $t_{1/2}$
- EC decay (no betas)
- γ Te x-rays
- γ 159 keV (83%)*
- HVL = 0.05 mm Pb
- $\Gamma = 1.6$ R/hr per mCi @ 1 cm
Overview of Typical Nuclides – Diagnostic

Iodine-125 (125I)

- 60 day $t_{1/2}$
- EC decay (no betas)
- γ Te x-rays
- γ 35 keV (7%)
- HVL = 0.02 mm Pb
- $\Gamma = 1.5$ R/hr per mCi @ 1 cm
Overview of Typical Nuclides
– Diagnostic

Iodine-131 (131I)

- 8.02 day $t_{1/2}$
- β^- decay ($E_{\text{max}} = 806$ keV 0.6%)
- β^- decay ($E_{\text{max}} = 606$ keV, $E_{\text{avg}} = 190$ keV)
- γ Xe x-rays
- γ 80 keV (2.6%)
- γ 364 keV (82%)
- γ 637 keV (6.8%)
- γ 723 keV (1.6%)
- $\Gamma = 2.27$ R/hr per mCi @ 1 cm
- $\text{HVL} = 0.24$ cm Pb
Overview of Typical Nuclides – Diagnostic

Xenon-133 (^{133}Xe)
- 5.24 day $t_{1/2}$
- β^- decay ($E_{\max} = 346$ MeV, $E_{\text{avg}} = 190$ keV)
- γ Cs x-rays
- γ 81 keV (37%)
- $\Gamma = 0.51$ R/hr per mCi @ 1 cm
- HVL = 0.035 mm Pb
Overview of Typical Nuclides – Diagnostic

Thallium-201 (^{201}TI)

- 73.1 hour $t_{1/2}$
- EC decay (no betas)
- γ Hg x-rays
- γ 135 keV (2%)
- γ 167 keV (8%)
- HVL = 0.006 mm Pb
- $\Gamma = 4.7 \text{ R/hr per mCi @ 1 cm}$
Overview of Typical Nuclides – Diagnostic

Graph 1. Radionuclidic Contaminants

- % of total radioactivity
- Calibration date: -2, 0, +2, +4, +6 days
- Expiration date: +6

TI 202, TI 200
Overview of Other Nuclides – Diagnostic

Chromium-51 (^{51}Cr)

- 27.7 day $t_{1/2}$
- EC decay (no betas)
- γ V x-rays
- γ 320 keV (9%)*
- HVL = 0.17 mm Pb
- Γ = 0.18 R/hr per mCi @ 1 cm

*Primary photon for imaging
Overview of Other Nuclides – Diagnostic

Rubidium-82 (82Rb)

- 75 second $t_{1/2}$
- β^+ decay ($E_{\text{max}} = 3.15 \text{ MeV}$)
- γ Kr x-rays
- γ 511 keV (192%)*
- γ 777 keV (9%)
- HVL = 0.7 cm Pb
- $\Gamma = 6.1 \text{ R/hr per mCi}$
 @ 1 cm
- from Strontium-82 (82Sr) generator 25 day $t_{1/2}$

*Estimated dose contribution.
THERAPEUTIC RADIONUCLIDES
Overview of Typical Nuclides – Therapeutic

Phosphorus (32P)

- 14.3 day $t_{1/2}$
- β^- decay ($E_{\text{max}} = 1.71$ MeV, $E_{\text{avg}} = 690$ keV)
- No γ ($bremsstrahlung$)
- Range ~ 1 cm tissue, 30 feet in air
Overview of Typical Nuclides
– Therapeutic

Strontium-89 (89Sr)

- 52.7 day $t_{1/2}$
- β^- decay ($E_{\text{max}} = 1.46$ Mev)
- γ 91 keV (<1%)
- Range ~ 1 cm tissue
Overview of Typical Nuclides – Therapeutic

Yttrium-90 (90Y)

- 2.67 day $t_{1/2}$
- β^- decay ($E_{\text{max}} = 2.27$ MeV, $E_{\text{avg}} \sim 900$ keV)
- No γ (bremsstrahlung)
- Range ~ 1.5 cm tissue
Overview of Typical Nuclides – Therapeutic

Iodine-131 (131I)

- 8.02 day $t_{1/2}$
- β^- decay ($E_{\text{max}} = 806 \text{ keV } 0.6\%$)
- β^- decay ($E_{\text{max}} = 606 \text{ keV, } E_{\text{avg}} = 190 \text{ keV}$)
- γ Xe x-rays
- γ 80 keV (2.6\%)
- γ 364 keV (82\%)
- γ 637 keV (6.8\%)
- γ 723 keV (1.6\%)
- e- 46 and 330 keV
- $\Gamma = 2.27 \text{ R/hr per mCi } @ 1 \text{ cm}$
- HVL = 0.24 cm Pb
Overview of Typical Nuclides – Therapeutic

Samarium-153 (153Sm)

- 46.3 hour $t_{1/2}$
- β^- decay ($E_{\text{max}} = 635$ keV 32%)
- β^- decay ($E_{\text{max}} = 705$ keV 49%)
- β^- decay ($E_{\text{max}} = 808$ keV 18%)
- γ 70 keV (5.4%)
- γ 103 keV (30%)
- γ 388 keV (7%)
- $\Gamma = 0.9$ R/hr per Ci @ 1 cm
- HVL = 0.1 mm Pb
SPECT PHARMACY PRODUCTS
NUCLEAR PHARMACY
COLD KITS & APPLICATIONS
Overview of cold kits

• 99mTc, in its various chemical forms, accounts for 80% of all nuclear medicine procedures.

• There are over 25 different cold-kits with which various physiological processes can be imaged.

• Most common are cardiac, bone, neuro, and GI.
Cardiovascular applications

• Quantify myocardial perfusion
 • Identifies stenosis in coronary arteries during stress
 • ^{201}Tl was the preferred radionuclide
 • ^{99m}Tc sestamibi (Cardiolite) and tetrofosmin (Myoview)
 • Can use higher activity of ^{99m}Tc to gain improved image quality
 • Sometimes both TI and Tc will be used, one for the rest phase and the other for the stress phase
Cardiovascular applications
Cardiovascular applications

• Left ventricular ejection fraction (MUGA)
 • In vitro: Blood is withdrawn from pt and sent to the pharmacy, labeled with 10 – 20 mCi ^{99m}Tc, and returned. Best image
 • In vivo: inject chelating agent followed a few minutes later with ^{99m}Tc – poorer image
Pulmonary applications

• Ventilation/perfusion lung scans
 • Diagnosis of pulmonary embolisms
 • ^{99m}Tc macroaggregated albumin (MAA) 2 – 5 mCi
 • ^{99m}Tc DTPA aerosol (~1 mCi) or ^{133}Xe gas (5 – 20 mCi)
Pulmonary applications
Renal applications

- Renogram
 - Series of images as tracer is removed from the blood, enters the kidneys, and then to the bladder
 - Provides a measurement of renal function
 - 99mTc (MAG3) most common for renal (1 – 10 mCi)
 - 99mTc DTPA less common but cheaper (1 – 10 mCi)
 - 131I (OIH) rare, can lead to higher kidney dose if obstructed or impaired renal function
Renal applications

- ACE-inhibitor
 - Assess renovascular hypertension
 - Provides a measurement of renal function
 - 99mTc (MAG3) or (DTPA) (1 – 10 mCi)

- Renal transplant scintigraphy
 - Detects rejection post-transplant
 - 99mTc (MAG3) or (DTPA) (1 – 10 mCi)

- Cystography
 - Diagnosis reflux and/or infection
 - 99mTc (DTPA), pertechnetate, or sulfur colloid
Renal applications
Spleen & Hepatobiliary applications

• IDA scan
 – Evaluates biliary system
 – 99mTc (Choletec) or (Hepatolite) (1.5 – 5 mCi)
 • Visualization of bilirubin pathway
• Hemangioma scan
 – Uses pt’s red blood cells that are tagged with 99mTc (20 – 25 mCi)
 – differentiates between tumor and hemangioma masses in liver to guide biopsy
 – Correlation with a CT scan can assist
• Radiocolloid scans
 – Mostly replaced with CT, ultrasound or MRI
GI system applications

- GI bleeding
 - Localization of bleeding
 - 99mTc labeled RBC (20 – 30 mCi) or sulfur colloid (10 mCi)
- GI motility studies
 - 99mTc sulfur colloid (0.2 – 1 mCi) complexed to eggs as they are cooked
 - 111In or 99mTc DTPA is also used for liquids
GI system applications

• Schilling Test
 • Identifying B_{12} malabsorption
 • 57Co labeled B_{12} (0.5 μCi) capsule followed by non-radiolabeled B_{12}
 • Urine collected for 24 hours and the excretion fraction determined

• H Pylori Breath Test
 • 14C urea (1 μCi), which is exhaled as 14CO$_2$ if H Pylori is present (generally licensed)
GI system applications
Infection Imaging

• Soft tissue infection, inflammation etc
 – 111In (0.5 mCi) or 99mTc HMPAO (5 – 15 mCi) labeled leukocytes
 • Requires separation of the leukocytes from blood sample for labeling
 • Imaging performed 18 – 24 h later for In, 1 – 4 h later for Tc
 – 67Ga – citrate (4 – 6 mCi) acts as iron analogue
 • Binds to circulating transferrin which then localizes at infection sites
 • widely used for assessing infection in acquired immune deficiency pts
Infection Imaging

• Osteomyelitis
 • Three-phase bone scan
 • 99mTc MDP (20 – 25 mCi)
 • Images every 2 – 3 sec for 30 – 60 sec
 • Static blood pool image
 • 2-3 h static image
 • Leukoscan (monoclonal antibody)
 • Not available in the US, eliminates need to extract & label pt’s leukocytes
Infection Imaging
Neuro Imaging
Neuro Imaging

- Brain Perfusion SPECT Imaging
 - 99mTc Ceretec (HMPAO) distributes in the brain proportional to blood flow
 - 99mTc Neurolite is also used for brain perfusion with slight advantage in brain to background ratio
 - Administered adult dose is 15 to 30 mCi and requires ~15 min quiet time before and after injection plus a further 15 to 90 min delay prior to scanning
Neuro Imaging
Neuro Imaging

• Brain Death Imaging
 • 99mTc Ceretec (HMPAO) or Neurolite used to identify normal cerebral perfusion is present
 • Administered adult dose is 15 to 30 mCi
 • Other clinical criteria should be met prior to performing the procedure
Neuro Imaging

BRAIN DEATH

NORMAL

Tc-99m - HMPAO

PLANAR imaging (right lateral)
Neuro Imaging

• CSF Flow Scan
 • 111In DTPA
 • Administered adult dose is 250 – 500 μCi via lumbar puncture
 • Multiple images acquired up to 72 hours post-injection

• CSF Leak
 • Similar as above with cotton pledgets placed into nasal cavity or ears, and counted afterwards for activity
 • Corrected pledget to plasma count ratio > 1.5 indicates CSF leakage
Thyroid Imaging

- 123I scan to evaluate functional uptake, questionable nodules, goiter, and Graves disease. Also used to determine activity of 131I to be administered for therapy
 - 200 – 400 μCi capsule and imaged 4 to 24 hours later
- 131I Diagnostic uptake test for thyroid function (100 μCi)
Thyroid Imaging

Figure 13.9. Thyroid scintiphotosgraphs obtained with 131I (24 hr after oral administration) and 99mTc (1 hr after injection) and showing a “hot” nodule in the upper right lobe. Both images are similar in the distribution of radioactivity except that there is slightly more uptake of 131I in the left lobe.
Thyroid Therapy

- 131I Therapy is very successful >80% with a single dose
- Beta particle deposits energy within the thyroid
- Typical dose for Graves disease is 8 to 20 mCi
- Concerns with release of patients and exposure to family & friends
Skeletal Imaging

• The bone scan is the cornerstone of skeletal imaging and provides valuable physiological information beyond the information available on a standard x-ray image

• 99mTc diphosphonates (MDP) are used and once the unbound Tc clears in 2-3 hours a clear image of the entire skeletal system can be obtained

• Areas with higher blood flow or metabolic activity will be evident
Skeletal Imaging

- Two types of bone scan are common, both using 20 – 30 mCi
 - Standard
 - Three-phase
Skeletal Imaging
Therapy Products

• Metastron (89SrCl$_2$)
 — Relief of bone pain in patients with skeletal metastases

• Sodium Phosphate 32P
 — Treatment of polycythemia vera and chronic myelocytic leukemia

• Chromic Phosphate 32P
 — Intracavitary instillation peritoneal or pleural effusions

• Quadramet (153Sm)
 — Relief of bone pain in patients with osteoblastic metastases
Therapy Products

• Therapies for B-cell Non-Hodgkin’s Lymphoma
 • Zevalin
 • Two phase imaging and treatment
 • 1st phase is labeled with In-111 to insure uptake at desired sites
 • 2nd phase labeled with Y-90, 7 days later
 • QC is very important. Improper production could lead to DTPA which would take out a liver
 • Bexxar
 • Labeled with I-131 for both imaging and therapy dose
 • Imaging dose followed by higher therapy dose, 7 days later