Dynamical System Scaling Methodology

Dr. José N. Reyes, Jr.

Chief Technology Officer

February 29, 2012

U.S. Nuclear Regulatory Commission
Pre-Application Meeting
Rockville, MD

NUSCALE

Introduction

- As part of its pre-engagement activities with NRC, NuScale is seeking feedback on its scaling methodology topical report.
 - Dynamical System Scaling (DSS) Methodology, NP-TR-1010-867,
 Revision 1 was issued to NRC on February 2011.
- Independent review of DSS Method and supporting mathematics was performed by M.L. Corradini and M. Sracic, University of Wisconsin-Madison with support from faculty in dynamical systems analysis and dynamical system identification.

Presentation Objectives and Outline

Objective of this presentation is to provide an overview of the Dynamical System Scaling Methodology

- Part 1: [[]] ^{3(a)(b)}

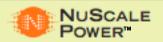
- Part 2: Dynamical System Scaling (DSS) Integral System
 Scaling
- Part 3: Application of the DSS Methodology to the Evaluation Model Development and Assessment Process (EMDAP) described in NRC Regulatory Guide 1.203.
- Part 4: Application to Single-Phase Natural Circulation

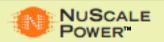
PART 1

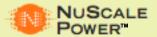
DRAFT

[[

Definitions


- System: A finite control volume containing a conserved quantity such as mass, momentum, or energy and acted upon by internal and external agents of change.
- Conserved Process: The sequential transition of the state of the system; the transition sequence governed by an integral system balance law constrained by the system's initial state and boundary conditions.

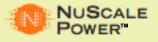



PART 2

Application of DSS to integral Systems

IST Facility Scaling Objectives

- To develop a properly scaled test facility, the following specific objectives must be met for each operational mode of interest.
 - The thermal hydraulic processes that should be modeled have been identified.
 - The similarity criteria that should be preserved between the test facility and the full-scale prototype have been obtained.
 - The priorities for preserving the similarity criteria have been established.
 - Specifications for the test facility design or modifications have been provided.
 - Biases due to scaling distortions have been quantified.
 - The critical attributes of the test facility that must be preserved to meet Quality Assurance requirements have been identified.



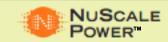
Proprietary Class 2

© 2012 NuScale Power, LLC

PART 3

DRAFT

Application of DSS to EMDAP



PART 4

DRAFT

Application of DSS to the NuScale IST -Single-Phase Natural Circulation

- DSS Methodology is being applied to the design of NuScale IST and SET facilities.
- As part of its pre-engagement activities with NRC, NuScale is seeking feedback on its scaling methodology topical report.
 - Dynamical System Scaling (DSS) Methodology, NP-TR-1010-867, Revision 1 was issued to NRC on February 2011.
- Provided an overview of the Dynamical System Scaling Methodology
 - Part 1: [[]]^{3(a) (b)}
 - Part 2: Dynamical System Scaling (DSS) Integral System Scaling
 - Part 3: Application of the DSS Methodology to the Evaluation Model
 Development and Assessment Process (EMDAP) described in NRC Regulatory
 Guide 1.203.
 - Part 4: Application to Single-Phase Natural Circulation

1100 NE Circle Blvd., Suite 350 Corvallis , OR 97330 541-207-3931

http://www.nuscalepower.com

