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Example 23 
(continued) 

consider what means and standard deviations are associated with the probability 
distributions of the sample average, S, of first the next 4 and then the next I 00 
excess service times. 

5 1, S2 •... , S100 are, to the extent that the service process is physically stable, 
reasonably modeled as independent. identically distributed, exponential random 
variables with mean a = 16.5. The exponential distribution with mean a = 16.5 
has variance equal to a 2 = (16.5)2

. So, using formulas (5.55) and (5.56), for the 
first 4 additional service times, 

ES=a = 16.5sec 

Jvor S ~ # ~ 8.25 sec 

Then, for the first 100 additional service times, 

Notice that going from a sample size of 4 to a sample size of 100 decreases the 

standard deviation of S by a factor of 5 ( = !lf. ). 

Relationships (5.55) and (5.56), which perfectly describe the random behavior 
of X under random sampling with replacement, are also approximate descriptions of 
the behavior of X under simple random sampling in enumerative contexts. (Recall 
Example 18 and the discussion about the approximate independence of observations 
resulting from simple random sampling of large populations.) 

5.5.4 •.lt' ~···;q .::.·~···<:•; ...• ! 

Proposition 1 gives exact values for the mean and variance of U = g(X, Y, ... , Z) 
only when g is linear. It doesn't seem to say anything about situations involving 
nonlinear functions like the one specified by the right-hand side of expression (5.52) 
in the solar collector example. But it is often possible to obtain useful approximations 
to the mean and variance of U by applying Proposition 1 to a first-order multivariate 
Taylor expansion of a not-too-nonlinear g. That is. if g is reasonably well-behaved. 
then for x, y, ... , z (respectively) close to EX, EY, ... , EZ, 

g(x, y, ... , z.);:::;: g(EX, EY ..... EZ) + ~~ · (x- EX)+~~· (y- EY)l 
3g . (5.57) 

+ · · · + -cdor(z- EZ) az I 
I 
' ~ 
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Proposition 2 
(The Propagation of Error 

Formulas) 

Example 24 
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where the partial derivatives are evaluated at (x, y, ... , z) =(EX, EY, ... , EZ). 
Now the right side of approximation (5.57) is linear in x, y, ... , z. Thus, if the vari­
ances of X, Y, ... , Z are small enough so that with high probability, X, Y, ... , Z are 
such that approximation (5.57) is effective, one might think of plugging X, Y, ... , Z 
into expression (5.57) and applying Proposition L thus winding up with approxi­
mations for the mean and variance of U = g(X, Y, ... , Z). 

I 
I 

If X, Y, ... , Z are independent random variables and g is well-behaved, for 
small enough variances Var X, VarY, ... , Var Z, the random variable U = 
g(X. Y, ... , Z) has approximate mean 

EU;::::; g(EX, EY, ... , EZ) (5.58) 

1 and approximate variance 

f:l : ~.,-u~(···ag); v~~: .. (·;~·)·--;~~-y-:.·.-: .. : .. (;~{~:; 11 (5.59) I 

: ax ay a._ i • 

I . . . .................... I 

L_ __________ ------------- ---- --- ___________________________ .. _________ _j 

Formulas (5.58) and (5.59) are often called the propagation of error or transmis­
sion of variance fonnulas. They describe how variability or error is propagated or 
transmitted through an exact mathematical function. 

Comparison of Propositions 1 and 2 shows that when g is exactly linear, ex­
pressions (5.58) and (5.59) reduce to expressions (5.53) and (5.54), respectively. 
(a 1 through a" are the partial derivatives of gin the case where g(x, y, ... , z) = 
a0 + a 1x + a2y + · · · + anz.) Proposition 2 is purposely vague about when the 
approximations (5.58) and (5.59) will be adequate for engineering purposes. Mathe­
matically inclined readers will not have much trouble constructing examples where 
the approximations are quite poor. But often in engineering applications. expres­
sions (5.58) and (5.59) are at least of the right order of magnitude and certainly 
better than not having any usable approximations. 

A Sirnple Electrical Circuit and the Propagation of Error 

Figure 5.35 is a schematic of an assembly of three resistors. If R 1, R2 , and R3 are 
the respective resistances of the three resistors making up the assembly, standard 
theory says that 

R =the assembly resistance 
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