
i 
I 1 . ':.' .. •.' .:/ 

1 

. J ; - //./ 1/i . 
f !/ 

••••••••••••••••••••••••• 
Basic Engineering 
Data Collection 
and Analysis 

Stephen B. Vardeman 
Iowa State University 

J. Marcus Jobe 
Miami University 

DUXBURY 

THOMSON LEARNING 

---------------------
Australia • Canada • Mexico • Singapore • Spain• United Kingdom • United States 

OAGI0000760 00001 



Example 23 
(continued) 

consider what means and standard deviations are associated with the probability 
distributions of the sample average, S, of first the next 4 and then the next I 00 
excess service times. 

5 1, S2 •... , S100 are, to the extent that the service process is physically stable, 
reasonably modeled as independent. identically distributed, exponential random 
variables with mean a = 16.5. The exponential distribution with mean a = 16.5 
has variance equal to a 2 = (16.5)2

. So, using formulas (5.55) and (5.56), for the 
first 4 additional service times, 

ES=a = 16.5sec 

Jvor S ~ # ~ 8.25 sec 

Then, for the first 100 additional service times, 

Notice that going from a sample size of 4 to a sample size of 100 decreases the 

standard deviation of S by a factor of 5 ( = !lf. ). 

Relationships (5.55) and (5.56), which perfectly describe the random behavior 
of X under random sampling with replacement, are also approximate descriptions of 
the behavior of X under simple random sampling in enumerative contexts. (Recall 
Example 18 and the discussion about the approximate independence of observations 
resulting from simple random sampling of large populations.) 

5.5.4 •.lt' ~···;q .::.·~···<:•; ...• ! 

Proposition 1 gives exact values for the mean and variance of U = g(X, Y, ... , Z) 
only when g is linear. It doesn't seem to say anything about situations involving 
nonlinear functions like the one specified by the right-hand side of expression (5.52) 
in the solar collector example. But it is often possible to obtain useful approximations 
to the mean and variance of U by applying Proposition 1 to a first-order multivariate 
Taylor expansion of a not-too-nonlinear g. That is. if g is reasonably well-behaved. 
then for x, y, ... , z (respectively) close to EX, EY, ... , EZ, 

g(x, y, ... , z.);:::;: g(EX, EY ..... EZ) + ~~ · (x- EX)+~~· (y- EY)l 
3g . (5.57) 

+ · · · + -cdor(z- EZ) az I 
I 
' ~ 
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Proposition 2 
(The Propagation of Error 

Formulas) 

Example 24 
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where the partial derivatives are evaluated at (x, y, ... , z) =(EX, EY, ... , EZ). 
Now the right side of approximation (5.57) is linear in x, y, ... , z. Thus, if the vari
ances of X, Y, ... , Z are small enough so that with high probability, X, Y, ... , Z are 
such that approximation (5.57) is effective, one might think of plugging X, Y, ... , Z 
into expression (5.57) and applying Proposition L thus winding up with approxi
mations for the mean and variance of U = g(X, Y, ... , Z). 

I 
I 

If X, Y, ... , Z are independent random variables and g is well-behaved, for 
small enough variances Var X, VarY, ... , Var Z, the random variable U = 
g(X. Y, ... , Z) has approximate mean 

EU;::::; g(EX, EY, ... , EZ) (5.58) 

1 and approximate variance 

f:l : ~.,-u~(···ag); v~~: .. (·;~·)·--;~~-y-:.·.-: .. : .. (;~{~:; 11 (5.59) I 

: ax ay a._ i • 

I . . . .................... I 

L_ __________ ------------- ---- --- ___________________________ .. _________ _j 

Formulas (5.58) and (5.59) are often called the propagation of error or transmis
sion of variance fonnulas. They describe how variability or error is propagated or 
transmitted through an exact mathematical function. 

Comparison of Propositions 1 and 2 shows that when g is exactly linear, ex
pressions (5.58) and (5.59) reduce to expressions (5.53) and (5.54), respectively. 
(a 1 through a" are the partial derivatives of gin the case where g(x, y, ... , z) = 
a0 + a 1x + a2y + · · · + anz.) Proposition 2 is purposely vague about when the 
approximations (5.58) and (5.59) will be adequate for engineering purposes. Mathe
matically inclined readers will not have much trouble constructing examples where 
the approximations are quite poor. But often in engineering applications. expres
sions (5.58) and (5.59) are at least of the right order of magnitude and certainly 
better than not having any usable approximations. 

A Sirnple Electrical Circuit and the Propagation of Error 

Figure 5.35 is a schematic of an assembly of three resistors. If R 1, R2 , and R3 are 
the respective resistances of the three resistors making up the assembly, standard 
theory says that 

R =the assembly resistance 
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