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1 BUFFER AND BACKFILL WORKSHOP SUMMARY 

A one-day workshop on buffer and backfill was held on August 17, 2011, at the U.S. Nuclear 
Regulatory Commission (NRC) in Rockville, Maryland.  This workshop focused on discussions 
of processes and characteristics of potential buffer and backfill materials in the near field of 
geologic repositories to isolate high-level nuclear wastes (HLW) from the biosphere.  The 
function and type of materials used for seals were also discussed in the workshop.  Additionally, 
discussions included summaries of experiences gained in HLW and spent nuclear fuel (SNF) 
disposal programs outside of the United States.  The objective of the workshop was to provide a 
higher level understanding of the near-field barrier knowledge base that can help identify 
possible gaps for assessing the long-term performance of near-field barriers for isolating nuclear 
wastes.  The workshop helped identify gaps in understanding of the long-term performance of 
buffers and backfills, and is part of a broader effort to prepare NRC for developing an integrated 
regulatory framework to address potential changes in national high-level nuclear waste policy.  
The technical issues identified in this report will help NRC (i) further refine the issues as 
they pertain to any changes in national policy and (ii) develop detailed planning of future 
staff activities. 

The workshop was attended by NRC, the Center for Nuclear Waste Regulatory Analyses 
(CNWRA®), and Galson Sciences, Ltd.  Specific areas presented and discussed during the 
workshop were  

• Fundamental features of buffer, backfill, and seals 
• Properties of buffer  
• Buffer performance topics 
• Seals and backfills  
• International activities  
• Representation of buffer and backfill in performance assessment models  
• Summary of key uncertainties 

The following sections summarize the workshop discussions.  The order of the sections 
generally follows the agenda, which is provided in Appendix A.  Most sections also include a list 
of selected references used as information resources for the relevant topic.  In keeping with the 
objectives and guidelines of the workshops, direct citations of statements and conclusions in the 
text of this summary report are not provided.  In addition, four recent special volumes of journal 
articles covering the full range of topics for bentonite buffers are listed in Appendix B.   

2 FUNDAMENTAL FEATURES OF BUFFER, BACKFILL, AND SEALS 

The primary functions of a buffer are to provide physical, chemical, hydrologic, and biological 
isolation of wastes; minimize radionuclide release to the biosphere; and protect waste packages 
from host rock displacements (especially in crystalline rock).  The primary functions of a backfill 
are to isolate the engineered barrier system (EBS) hydrologically, keep buffer materials intact, 
and keep access tunnels/shafts mechanically stable.  The primary functions of seals are to 
isolate the EBS hydrologically, provide physical support for backfill materials and various access 
tunnels/shafts, retard the migration of radionuclides, allow separation of deposition 
tunnels/shafts from other access tunnels/shafts, discourage inadvertent human intrusion, and 
close exploratory drilling/boreholes.  
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In addition to discussions about buffer, backfill, and seal functions, there were discussions of 
potential design concepts for disposing SNF and HLW.  Designs discussed were vertical 
(Swedish and Finnish) and horizontal (French and Swiss) disposal tunnels/shafts.  The Belgian 
supercontainer (concrete buffer instead of bentonite buffer) and the prefabricated EBS modular 
design concepts also were discussed.  

Selected sources of information include: ANDRA (2005a); OECD/NEA (2003a); Posiva Oy 
(2006); and SKB (2010, 2011). 

3 PROPERTIES OF BUFFER 

The structure of aluminosilcate clay minerals was outlined because knowing their structure 
helps explain their properties.  The swelling of smectite clay minerals is affected by the net 
negative electrical charge caused by isomorphic substitution of the central cation in the 
tetrahedronal and octahedronal units, valence of counter cations, and ionic strength of pore 
water.  The high swelling pressure of bentonite, which contains a large fraction of the smectite 
clay mineral montmorillonite, will affect buffer pore sizes.  The low hydraulic conductivity of 
bentonite will help restrict water movement.  The high surface area and cation exchange 
capacity of montmorillonite ensure that bentonite can effectively retard the transport of 
cationic radionuclides.  In addition, cation exchange can potentially affect the swelling capacity 
of the bentonite. 

Clay minerals are typically in equilibrium with their environment.  When conditions change, there 
is the potential for their properties to change.  Important factors affecting the long-term 
performance of a bentonite buffer are decreased swelling, formation of fast flow paths, 
decreased sorption potential, and increased saturated hydrologic conductivity.  For long-term 
performance evaluation, assessment of potential changes to buffer material properties is 
needed for estimating buffer material performance under existing and future site conditions.   

Also discussed were pore water chemistry, potential redox conditions, and potential colloid 
formation in bentonite.  Furthermore, bentonite–sand mixtures were discussed, as well as 
proposed installation methods for buffers.  Additionally, constitutive models linking hydrologic 
and mechanical properties were discussed.  There was consensus that constitutive models are 
needed to link or couple hydrologic, thermal, chemical, and mechanical processes to predict the 
behavior of clayey material. 

Selected information sources include: Alonso, et al. (1990); Bradbury and Baeyens (2002); 
Dixon (1977); Fernández and Villar (2010); Grim (1968); Jussila (2007); Laine and Karttunen 
(2010); Lempinen (2011); Neretnieks, et al. (2009); Pabalan, et al. (1998); Rutqvist, et al. 
(2011); Sanchez, et al. (2011); Turner, et al. (1998); and Wersin, et al. (2003). 

4 BUFFER PERFORMANCE TOPICS 

Issues related to how the effectiveness of a bentonite buffer may be compromised were 
discussed, along with issues associated with the evolution of bentonite over time.   

The degree to which the various countries rely on a buffer to isolate SNF and HLW appears to 
depend on the host rock.  Typically, countries that propose to construct repositories in 
crystalline host rock place more emphasis on buffer performance than countries that propose to 
construct repositories in argillite.  In crystalline rock, potential transport in the far field may be 
significantly higher than transport in argillite.  Buffers in argillite repositories are generally for 
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mechanical stability rather than for limiting transport because the host rock offers many of the 
same beneficial transport features as the bentonite.   

Discussions on buffer performance revolved around processes in which a bentonite buffer may 
not perform as designed.  The first discussion provided an overview, context, and description of 
buffer evolution.  The second, third, and fourth discussions focused on limiting groundwater 
flow, evolution of the geochemical environment, and waste package/buffer interactions.  
Processes during the thermal period may create fast pathways where advective transport may 
dominate over the expected diffusive transport.  The pathways may be created by 
heterogeneities in the emplaced buffer (e.g., stacking of compacted bricks), stress field, 
saturation state, gas generation, and the geochemical processes of precipitation, dissolution, 
and mineral alteration.  The reversibility and timing of potential resealing of pathways are 
important uncertainties.  The thermal management of a potential repository was stressed as a 
major factor because above-boiling conditions significantly reduce clay swelling.  The evolution 
of a bentonite buffer is affected by the composition of the clay minerals in the bentonite 
(Na-montmorillonite versus Ca-montmorillonite), composition of water during wetting and 
subsequent periods, temperature, and the diffusion and flow rates through the bentonite.  Waste 
package/buffer interactions are affected by the geochemical environment adjacent to the waste 
packages as well as microbial activity.  Corrosion of steel waste packages may generate 
hydrogen gas that may affect buffer performance by creating mechanical disruptions that could 
facilitate later advective water flow.  The fifth discussion focused on interactions of a bentonite 
buffer with cement and steel.  Key safety and feasibility issues with a Portland cement buffer in 
the Belgian supercontainer design concept were also discussed.   

The extent and duration of fast paths prior to resealing by clay swelling, extent of changes in 
properties of bentonite, and long-term stability from possible erosion of buffer materials were 
listed as areas of uncertainty important to buffer performance.  There also was uncertainty with 
regard to effects of localized corrosion and stress corrosion cracking on waste packages 
because the majority of prior investigations have focused only on uniform corrosion.  

Selected information sources include: 

• Safety Functions, Buffer Evolution, and Performance Issues and Limiting 
Ground Water Flow includes: ANDRA (2005a); and SKB (2011); Posiva Oy (2006);  
OECD/NEA (2003a). 

• Evolution of Buffer Geochemical Environment includes:  Eberl (1978); Jo (2004); 
Karnland and Birgersson (2006); Laine and Karttunen (2010); Neretnieks, et al. (2009); 
Pusch and Karnland (1988); and Savage, et al. (2007).  

• Buffer-Waste Package Interactions includes: ANDRA (2005a,b,c); Hedin (2010);  
King, et al. (2001); Kursten, et al. (2004); Shoesmith (2009) ; Videla and Herrera (2005) ; 
Wersin, et al. (1994); Yang, et al. (2004). 

• Bentonite Buffer – Interactions with Cement and Steel includes: OECD/NEA (2003b); 
Towler, et al. (2009); Wacquier, et al. (2011); and Wickham (2008).  

5 SEALS AND BACKFILL 

The functions and type of materials used for seals and backfill were discussed.  In repository 
designs, materials for seals and backfills often include bentonite or bentonite-sand mixtures, but 
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can also include concrete, crushed rock, and compacted soil.  For the bentonite components, 
some of the same processes may occur in seals and backfill as occurs in buffers, though 
processes affected by temperature should be prominently reduced.   

Associated performance issues were addressed.  Seals and backfill can be used for several 
purposes.  The major functions of seals and backfill are to provide hydrologic and physical 
isolation from other tunnels/shafts, to provide mechanical stability of the tunnel/shaft, and to limit 
access to areas.  A major performance issue is flow bypassing the excavation damaged zone 
(EDZ) around the contact of the seal/backfill with the tunnel/shaft.  Another issue is forming tight 
compacted packs of material; there is generally limited space available to do this.  Using 
preformed bentonite blocks may leave openings between the blocks, resulting in preferred flow 
pathways with advective flow conditions. 

Selected information sources include: Dixon, et al. (2007); Martino, et al. (2007); and 
SKB (2010). 

6 INTERNATIONAL ACTIVITIES 

This discussion focused on international projects related to buffers, backfill, and seals and 
underground field tests.  The first portion focused on activities at underground facilities and 
international collaboration opportunities.  Important prior, ongoing, and proposed tests in 
Belgium, Switzerland, France, Sweden, Japan, Korea, Canada, Spain, China, and the Czech 
Republic were presented in tables.  Several active field and laboratory tests on buffers and 
seals were discussed, including proposed tasks for the international collaboration 
DECOVALEX-2015 (i.e., HE-e test at Mont Terri and SEALEX test at Tournemire).  The second 
portion of the discussion focused on the types of bentonite clay used in field tests and the tests 
indicating the extent (or lack thereof) of mineral alteration of the smectite clays in bentonite at 
temperature conditions above boiling.  Some countries’ repository designs are constrained to 
temperatures below the boiling point of water.  Some field thermal tests extend to temperatures 
above boiling, but are below approximately 135 °C [275 °F].  At temperatures above boiling, 
both desaturation of intergranular water and illitization (dehydration of smectite clays) more 
readily occur; both of these processes lead to reduced swelling of the clays.  The extent of 
illitization is dependent on time (kinetics) and temperature.  The primary uncertainties are the 
extent of and the reversibility of features caused by evaporation of water or mineral alteration. 

NRC involvement in the next phase of the DECOVALEX international collaborative project is 
thought to provide a good opportunity for furthering knowledge on bentonite buffer performance 
and leveraging international expertise and experience.  Another collaborative group focusing on 
clay is the Clay Club, which was established by the Nuclear Energy Agency (NEA) as a working 
group on argillaceous media.1  An important issue for bentonite buffer performance is the 
expected peak temperature and duration above boiling, because the U.S. program is currently 
not constrained to a thermal strategy that limits peak temperatures to below boiling.  Staff 
identified a possible gap in the extent of data supporting desaturation of buffer and alteration of 
smectite clay at temperatures above the boiling point of water.  Evaluating the results of the 
laboratory tests in Sweden is an avenue to resolving the gap.  Another avenue may be to 
perform laboratory tests on FEBEX-type bentonite at temperatures well above the boiling point 
of water.  

                                                 
1 http://www.oecd-nea.org/rwm/clayclub/ 
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Selected information sources include: Manepally, et al. (2011); Laine and Karttunen (2010); 
Pusch, et al. (2010); Lee, et al. (2010); and Gomez-Espina and Villar (2010). 

7 REPRESENTATION OF BUFFER AND BACKFILL IN PERFORMANCE 
ASSESSMENT MODELS 

Discussions focused on (i) how other countries address buffers in performance models; (ii) the 
NRC approach to performance assessment [Scoping of Options and Analyzing (SOAR)]; and 
(iii) important buffer-related processes to consider, whether by detailed modeling or 
abstractions, in a performance assessment.  The approaches by Sweden, Switzerland, and 
France were given more attention because these countries have conducted performance 
assessments.  Diffusive transport through buffer material was the primary mechanism these 
countries considered.  Typically, detailed process modeling was conducted to develop 
parameters that could be employed in more simplistic performance models of the near and far 
field.  Potential failure modes for the Swedish performance assessment were fluid flow by 
advection, frozen conditions, and clay transformation into a less swelling clay mineral.  The 
latter two failure modes were not considered in any numerical analyses, because they were 
thought to have a very low probability and could be bounded by other considerations.  In the 
Swedish performance assessment, the advection fluid flow scenario was modeled by 
assuming that the buffer did not offer any retardation of radionuclide migration away from a 
failed waste package.  The performance approaches of other countries can be summarized as 
(i) subsystem performance metrics and criteria supported by detailed process-level modeling, 
(ii) reference case total performance where the buffer performs as designed, and (ii) alternate or 
altered state scenario analysis where buffer performance is degraded due to identified 
conditions or processes. 

Recently, NRC developed SOAR model to provide insights into an efficient and effective 
regulatory program for SNF and HLW disposal.  The buffer submodel in SOAR that considers 
radioactive transport through a diffusive barrier (i.e., the buffer) was discussed in detail.  The 
nominal case considers diffusive transport; the degraded case considers advective transport.  
Disruptive events also are considered.  Results of the simulations are used to evaluate risk 
significance of issues and features.  In the future, SOAR may be revised to consider processes 
or events not currently modeled.   

Important considerations in any performance assessment model for the thermal period are 
thermal conductivity and hydrologic property alterations and associated mechanical effects.  
Other factors to consider are saturation of the buffer, gas entrapment, and microbial activity.  
Important considerations for the postclosure period are resaturation of the buffer after any 
thermal pulse (clay swelling and sealing of voids), long-term transformation of clay minerals and 
associated effects, attainment of anaerobic conditions, and microbial activity.  

Selected information sources include: SKB (2011); NAGRA (2002); and ANDRA (2005a,c). 

8 SUMMARY OF KEY UNCERTAINTIES 

Workshop attendees had opportunities to discuss, add, or expand on uncertainties that may 
help staff develop efficient resolution or understanding of key technical issues, or create more 
robust products that consider multiple viewpoints.  Key uncertainties are those that may be 
important to performance of a repository.  Some of the key uncertainties identified, both during 
the topical discussions and at a round-table discussion at the end of the workshop, are 
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• Extent and spatial variability of potential changes in bentonite clay properties due to 
geochemical and thermal conditions (important properties are swelling, fast flow path 
development, sorption potential, and saturated hydraulic conductivity) 

 
• Prioritization of performance issues associated with the spatially nonuniform bentonite 

buffer caused by emplacement method, saturation field, stress field, mineral alteration, 
precipitation/dissolution of minerals, ion exchange, and gas buildup 

 
• Development of constitutive models that link mechanical-geochemical-hydrological 

properties for incorporation in numerical codes for predicting radionuclide migration 
through porous media 
 

• Kinetics of smectite-to-illite-type transformations for temperatures above the boiling point 
of water 

 
• Effect of enhanced flow and transport through an EDZ 
 
• Effects on localized and stress corrosion cracking of waste packages caused by 

conditions at bentonite contact with waste package 
 

• Potential for and extent of erosion of bentonite buffers in fractured crystalline 
rock repositories 
 

• Estimating water flow through backfill openings 
 

• Continual updating of database of current information, such as new designs of 
international programs and performance assessments, results of laboratory and field 
tests, and their implications 
 

• Effects of gas generation from waste package corrosion on buffer material 
 

• Likelihood of microbial activity, especially at lower temperatures 
 
• Assessment of adequacy of abstractions used in performance assessment models, 

especially SOAR, for evaluating potential risks of complex processes 
 

• Range of bentonite properties, especially those that are readily incorporated into SOAR 
to reflect buffer evolution and processes (this may best be accomplished by 
development of a database of properties for common bentonite buffer material) 

Furthermore, involvement in international collaborative programs, such as DECOVALEX, and 
participation in other groups, such as the NEA Clay Club, are approaches to understand 
ongoing and future investigations and development activities to address knowledge gaps and 
uncertainties. 
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AGENDA FOR NRC/CNWRA BUFFER AND BACKFILL MEETING 
AUGUST 17, 2011 

 
Executive Blvd. Building; NRC Headquarters, Rockville, Maryland 

NRC:  Videoconference Room EBB–2–C19 
CNWRA:  Videoconference Room A237  

 
The purpose is to evaluate gaps in the understanding and areas of high uncertainty in the long-
term performance of barriers so that an integrated regulatory framework can quickly be 
developed to address any potential change in the national spent nuclear fuel and high-level 
nuclear waste programs. 

Visitors to NRC check in at guard desk at 8:30 am (ET) 

Time (ET) Topic 
9:00 am Introduction (R. Lenhard) 
9:10 am Fundamental Features of Buffer, Backfill, and Seals (C. Manepally) 
9:30 am Properties of Buffer Material (R. Lenhard) 
10:10 am Break 
10:20 am Buffer Performance Topics 

 Safety Functions, Buffer Evolution, and Performance Issues (R. Fedors) 
 Limiting Groundwater Flow Bentonite Buffer (R. Fedors) 
 Evolution of Buffer Geochemical Environment (R. Pabalan) 
 Bentonite Buffer – Interactions with Cement and Steel (D. Galson) 
 Buffer-Waste Package Interaction (K. Chiang) 

12:30 pm Lunch 
1:30 pm Seals and Backfill (G. Ofoegbu) 
1:50 pm International Activities (R. Fedors) 
2:10 pm Bentonite Clay in Underground Research Laboratory Tests (J. Bradbury) 
2:35 pm Break 
2:50 pm Representation of Buffer and Backfill in Performance Assessment (PA) Models 

(C. Markley) 
Representation of the Buffer in PA in other Countries (D. Galson) 

3:30 pm Summary of Key Uncertainties  
4:30 pm Adjourn 
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