# **PMVictoriaESPPEm Resource**

| From:        | Terry, Tomeka                                                                                                                                               |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sent:        | Friday, December 02, 2011 9:53 AM                                                                                                                           |
| То:          | Herrington.Jim@epamail.epa.gov                                                                                                                              |
| Cc:          | Kitto.Alison@epamail.epa.gov; Parrish.Sharon@epamail.epa.gov;                                                                                               |
|              | Lawrence.Rob@epamail.epa.gov; Smith.Rhonda@epamail.epa.gov; VictoriaESP Resource;<br>Williamson, Alicia; Cushing, Jack; Hudson, Jayson M SWG; Hsia, Anthony |
| Subject:     | RE: Victoria Site Audit                                                                                                                                     |
| Attachments: | Victoria County Station.docx; site map.pdf; Corps PJD.pdf                                                                                                   |

Jim

Alicia Williamson, Jack Cushing, and I'll arrive around 1:30pm at EPA office on Monday, December 5, 2011. I have attached additional information about the Victoria early site permit (ESP) environmental review. The Victoria ESP environmental report (ER) application is located on NRC website <u>http://www.nrc.gov/reactors/new-</u><u>reactors/esp/victoria.html</u>. Also, GIS coordinates are located in Chapter 2 of the ER. I'm looking forward to meeting with you on Monday.

Thanks! Tomeka

From: Herrington.Jim@epamail.epa.gov [mailto:Herrington.Jim@epamail.epa.gov]
Sent: Wednesday, November 30, 2011 12:34 PM
To: Terry, Tomeka
Cc: Kitto.Alison@epamail.epa.gov; Parrish.Sharon@epamail.epa.gov; Lawrence.Rob@epamail.epa.gov; Smith.Rhonda@epamail.epa.gov
Subject: RE: Victoria Site Audit

Hi Tomeka,

Great. I will plan on traveling to Dallas Monday morning and meeting with you on Monday afternoon, December 5. You will need to check in on the 7th floor for a visitors pass. Please ask the receptionist to call Sharon Parrish (my supervisor) at (214) 665-7275 for an escort.

In the meantime, for everyone's benefit, could you send a brief description and location of the proposed nuclear facility near Victoria, Texas? A planview map of the site and GIS coordinates would be helpful so that I can map the area prior to our meeting.

I appreciate it and see you on Monday.

Thanks, Jim Herrington Wetlands Section EPA, Region 6 (254) 774-6042 (O) (254) 774-6001 (F)

 From:
 "Terry, Tomeka" <Tomeka.Terry@nrc.gov>

 To:
 Jim Herrington/R6/USEPA/US@EPA

 Date:
 11/29/2011 06:22 PM

 Subject:
 RE: Victoria Site Audit

Jim,

I will check to see if I can arrive little early on Monday, so I can meet you at the Dallas office on Monday afternoon. I will let you know something tomorrow.

Thanks! Tomeka

From: Herrington.Jim@epamail.epa.gov [mailto:Herrington.Jim@epamail.epa.gov]
Sent: Wednesday, November 23, 2011 11:19 PM
To: Terry, Tomeka
Subject: Re: Victoria Site Audit

Hi Tomeka,

I will call you about this event next week.

Thanks, Jim Herrington Wetlands Section EPA, Region 6 (254) 774-6042 (O) (254) 774-6001 (F)

From: "Terry, Tomeka" <Tomeka.Terry@nrc.gov> To: "Larisa\_Ford@fws.gov" <Larisa\_Ford@fws.gov>, Mark Fisher <MFISHER@tceq.state.tx.us>, Cathy Gilmore/R6/USEPA/US@EPA, "amy.turner@tpwd.state.tx.us" <amy.turner@tpwd.state.tx.us>, "amy.hanna@tpwd.state.tx.us" <amy.hanna@tpwd.state.tx.us>, "kathy.boydston@tpwd.state.tx.us" <kathy.boydston@tpwd.state.tx.us>, "ruben.cortez@dshs.state.tx.us" <ruben.cortez@dshs.state.tx.us>, "kathy.boydston@tpwd.state.tx.us" <kathy.boydston@tpwd.state.tx.us>, "ruben.cortez@dshs.state.tx.us" <ruben.cortez@dshs.state.tx.us>, Jim Herrington/R6/USEPA/US@EPA, "rusty.swafford@noaa.gov" <rusty.swafford@noaa.gov>, Michael Jansky/R6/USEPA/US@EPA Cc: "Williamson, Alicia" <Alicia.Williamson@nrc.gov>, "Avci, Halil I." <avci@anl.gov>, "Wescott, Konstance L." <wescott@anl.gov>, VictoriaESP Resource <VictoriaESP.Resource@nrc.gov>, "Hudson, Jayson M SWG" <Jayson.M.Hudson@usace.army.mil> Date: 11/23/2011 10:47 AM Subject: Victoria Site Audit

Hello!

My name is Tomeka Terry, Environmental Project Manager for the Victoria County Station Early Site Permit (ESP) application, at the NRC for the environmental review. NRC will conduct a site audit for the environmental review of the Victoria ESP application in Victoria, Texas the week of January 9-13, 2012 and would like to invite interested agencies to attend the audit.

The audit will consist of a site tour, some presentations by the applicant, on selected topics, and review of documents made available by the applicant. Although the purpose of the audit is to allow the NRC staff to gather additional information for its review, we recognize that there is great value in having other agencies involved because (1) it allows the NRC staff additional time to work with the agencies and (2) it gives the agencies a good opportunity to see the site and interface with both the NRC and the applicant.

Finally, we do need to manage the number of people who attend the site audit. In general we'd like to limit attendance from each agency to one staff member unless special circumstances dictate that more are needed. If you feel that is the

case, please contact me to discuss having additional staff attend the audit. In any case, please let us know who will attend the site audit no later than December 19, 2011. If you have any questions, please contact me at (301) 415-1488 or <u>Tomeka.Terry@nrc.gov</u>.

## Background

The NRC is reviewing an application from Exelon Nuclear Texas Holdings, LLC (Exelon) for an early site permit at the Victoria County Station in Victoria, Texas. The application was submitted on March 25, 2010. The Army Corps of Engineers- Galveston District (Corps) is a cooperating agency with the NRC on the environmental review. As part of their reviews, the NRC and the Corps are working together to develop an environmental impact statement (EIS) for the proposed action. Public scoping meetings on the Victoria ESP application were held on December 2, 2010, as part of the scoping process.

Tomeka L. Terry Environmental Project Manager Environmental Projects Branch 2 Division of Site & Environmental Reviews Office of New Reactors telephone 301-415-1488 E-mail tomeka.terry@nrc.gov Hearing Identifier:Victoria\_ESP\_PublicEmail Number:408

Mail Envelope Properties (0A64B42AAA8FD4418CE1EB5240A6FED15D5A1F13A5)

| Subject:       | RE: Victoria Site Audit |
|----------------|-------------------------|
| Sent Date:     | 12/2/2011 9:53:28 AM    |
| Received Date: | 12/2/2011 9:53:37 AM    |
| From:          | Terry, Tomeka           |

### Created By: Tomeka.Terry@nrc.gov

### **Recipients:**

"Kitto.Alison@epamail.epa.gov" <Kitto.Alison@epamail.epa.gov> Tracking Status: None "Parrish.Sharon@epamail.epa.gov" <Parrish.Sharon@epamail.epa.gov> Tracking Status: None "Lawrence.Rob@epamail.epa.gov" <Lawrence.Rob@epamail.epa.gov> Tracking Status: None "Smith.Rhonda@epamail.epa.gov" <Smith.Rhonda@epamail.epa.gov> Tracking Status: None "VictoriaESP Resource" <VictoriaESP.Resource@nrc.gov> Tracking Status: None "Williamson, Alicia" < Alicia.Williamson@nrc.gov> Tracking Status: None "Cushing, Jack" <Jack.Cushing@nrc.gov> Tracking Status: None "Hudson, Jayson M SWG" <Jayson.M.Hudson@usace.army.mil> Tracking Status: None "Hsia, Anthony" <Anthony.Hsia@nrc.gov> Tracking Status: None "Herrington.Jim@epamail.epa.gov" <Herrington.Jim@epamail.epa.gov> Tracking Status: None

### Post Office: HQCLSTR02.nrc.gov

| Files<br>MESSAGE<br>Victoria County Station.docx<br>site map.pdf<br>Corps PJD.pdf                                            | <b>Size</b><br>5505<br>297777<br>2982981 | 17915 | Date & Time<br>12/2/2011 9:53:37 AM |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|-------------------------------------|
| Options<br>Priority:<br>Return Notification:<br>Reply Requested:<br>Sensitivity:<br>Expiration Date:<br>Recipients Received: | Standard<br>No<br>No<br>Normal           |       |                                     |

# Victoria County Station Early Site Permit Environmental Review

# **Project Description**

Exelon Nuclear Texas Holdings, LLC (Exelon) submitted an application for an early site permit (ESP) at the Victoria County Station (VCS) site on March 25, 2010. The NRC staff accepted the application for docketing on June 7, 2010. The VCS is a greenfield site located on approximately 11,532 undeveloped acres (classified as rangeland, forestland, or wetland), approximately 13.3 miles south of Victoria, Texas. Linn Lake is located along a portion of the site's eastern boundary, while further east, the Guadalupe River angles toward the site (approximately 3 miles east of the northern tip of the site, but less than 0.25 miles east of the southeastern corner of the site). Exelon estimates that 7,129 acres of this site will be disturbed during the preparation and construction phase of the project, of which a total about 6,345 acres will be permanently dedicated to the reactors and their supporting facilities including a 5,785-acre cooling water basin.

The ESP application was prepared using the plant parameter envelope (PPE) approach, which uses the surrogate bounding reactor conditions derived from a combination of available technical information supplied by the reactor vendors. Exelon has indicated they will not submit an application for a combined license anytime soon. Within the ESP application, Exelon is using five possible reactor technologies; ABWR, AP1000, ESBWR, APWR, and mPower. This is the first ESP application submitted using the mPower design. This may require an increased level of effort to appropriately consider it. Exelon estimates that the selected reactor or reactors will be capable of generating a combined core thermal power level of up to 9000 MWt (3400 MWe).

By letter dated November 19, 2010, the U.S. Army Corps of Engineers (Corps), Galveston District became a cooperating agency with the NRC in preparing the EIS for the VCS ESP application. Exelon has not submitted a permit application to the Corps, and does not plan to submit it until the combined license application phase.

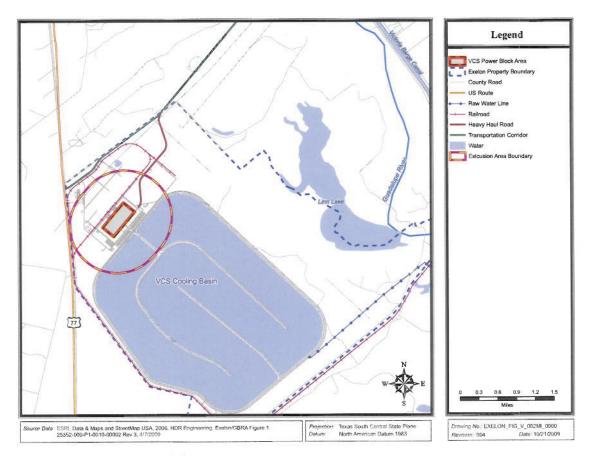



Figure 2.1-1 Victoria County Station Site and Proposed Plant Footprint

Victoria County Station ESP Application Part 3 — Environmental Report

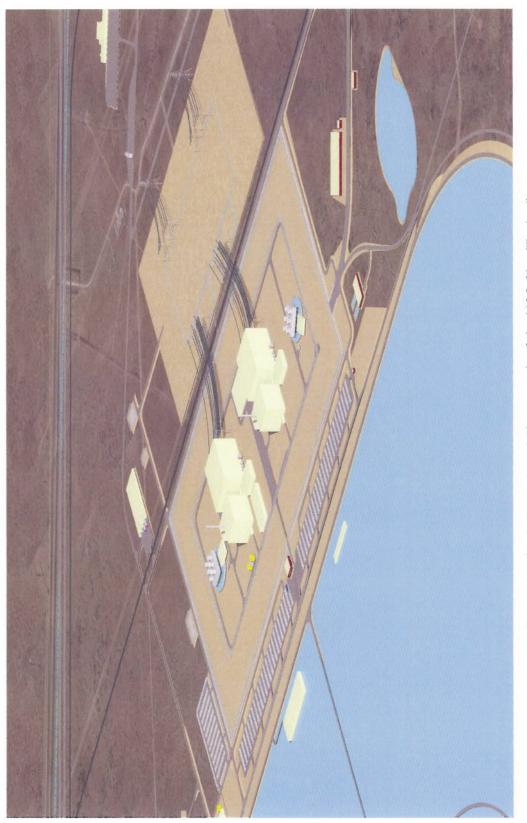



Figure 2.1-4 Oblique Aerial Photograph of the VCS Site (Typical)



#### DEPARTMENT OF THE ARMY GALVESTON DISTRICT, CORPS OF ENGINEERS CORPUS CHRISTI REGULATORY FIELD OFFICE 5151 FLYNN PARKWAY, SUITE 306 CORPUS CHRISTI TX 78411-4318

July 28, 2011

REPLY TO ATTENTION OF: Corpus Christi Regulatory Field Office

SUBJECT: Jurisdictional Determination SWG-2008-00694

Exelon Generation Company, LLC Attn: Mr. Joshua Trembley 200 Exelon Way, KSA1-E Kennett Square, PA 19348

Dear Mr. Trembley:

This is in reference to a September 9, 2010 letter, by which Exelon Generation Company, LLC submitted a wetland delineation report and requested a preliminary jurisdiction determination (PJD) pursuant to Section 404 of the Clean Water Act for an approximate 11,000 acre nuclear power plant project area. The project area and subject wetlands and waters are located approximately 13 miles south of Victoria, on the east side of State Highway 77, Victoria County, Texas, as shown on the attached 16 sheets.

We have counter executed the PJD form that was attached to our letter, dated May 13, 2011, and subsequently provided in your letter dated June 2, 2011. Accordingly, please find attached your copy of the final executed PJD form. The wetlands and waters contained in this PJD are subject to regulation under Section 404 of the Clean Water Act. As such, a Department of the Army permit is required prior to the discharge of dredged or fill material into these subject wetlands and waters. Please note that this PJD pertains to those wetland areas that could be disturbed, and does not include all jurisdictional wetlands and waters which are in the project area but outside the "Limit of Disturbance" as shown on the attached Figure 1, titled "Conservative Limit of Disturbance – VCS Preliminary Jurisdictional Determination (PJD) Request". Jurisdictional wetlands also occur outside the Limit of Disturbance area and are not included in this PJD, except for wetland Wp1, which may be used to support future mitigation planning activities.

Corps determinations are conducted to identify the limits of the Corps Clean Water Act jurisdiction for the particular sites. This determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985, as amended. If you or your tenant are USDA program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service prior to starting work. Although PJD's are not appealable, the enclosed combined Notification of Administrative Appeal Options and Process and Request for Appeal form contains procedural information for PJD's. Please reference determination number SWG-2008-00694 in future correspondence pertaining to this subject.

If you have any questions concerning this determination, please contact John Wong at the letterhead address or by telephone at 361-814-5847. To assist us in improving our service to you, please complete the survey found at <u>http://per2.nwp.usace.army.mil/survey.html</u>.

Sincerely,

Lloyd Mullins Supervisor Corpus Christi Regulatory Field Office

Enclosures

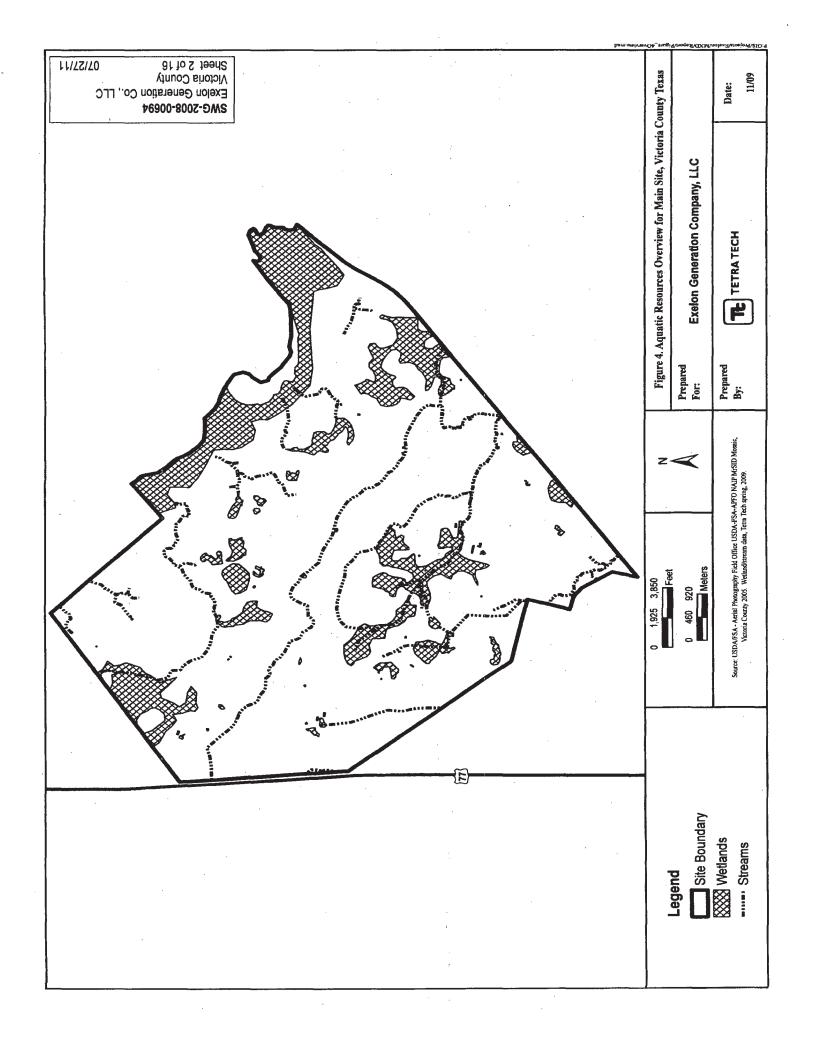
Copy Furnished:

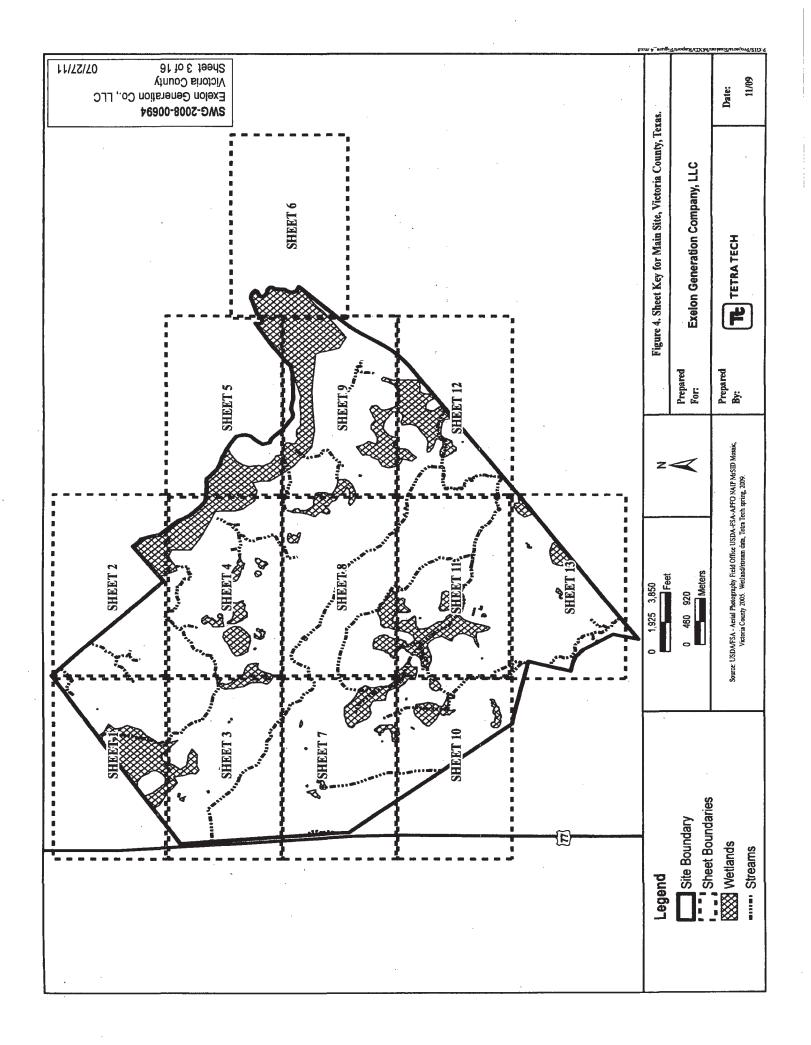
Mr. Jayson Hudson, CESWG-PE-RB

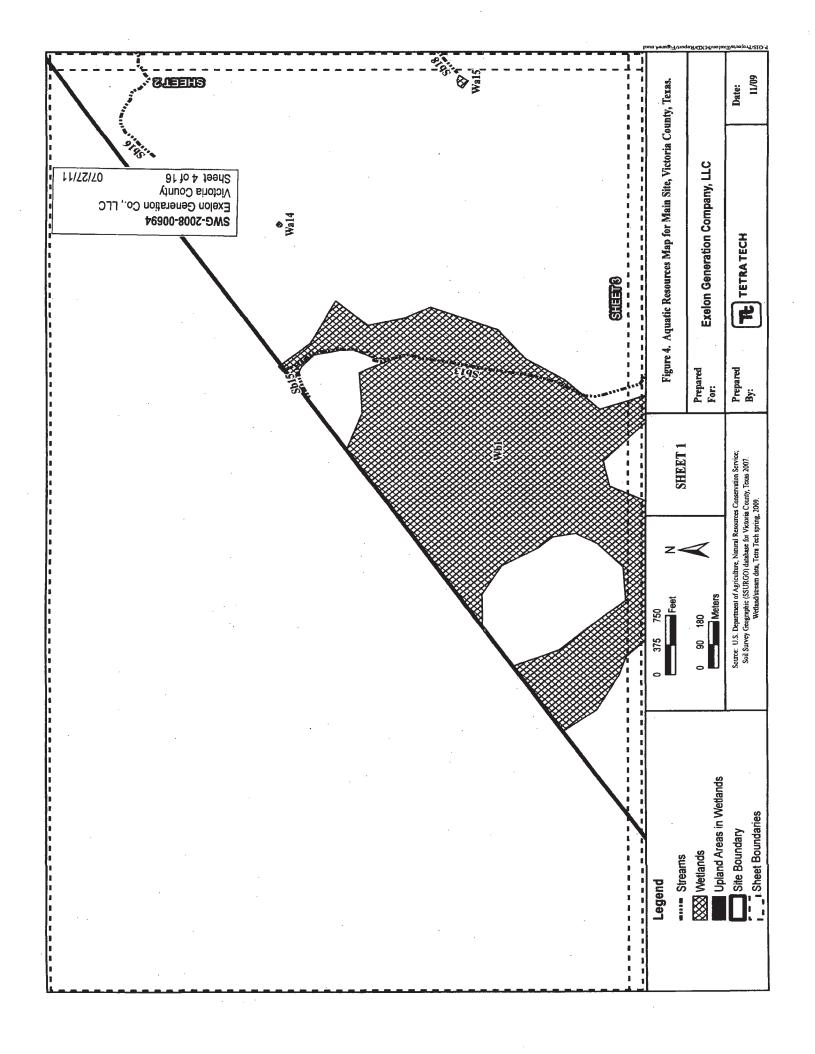
**REV. 1** 

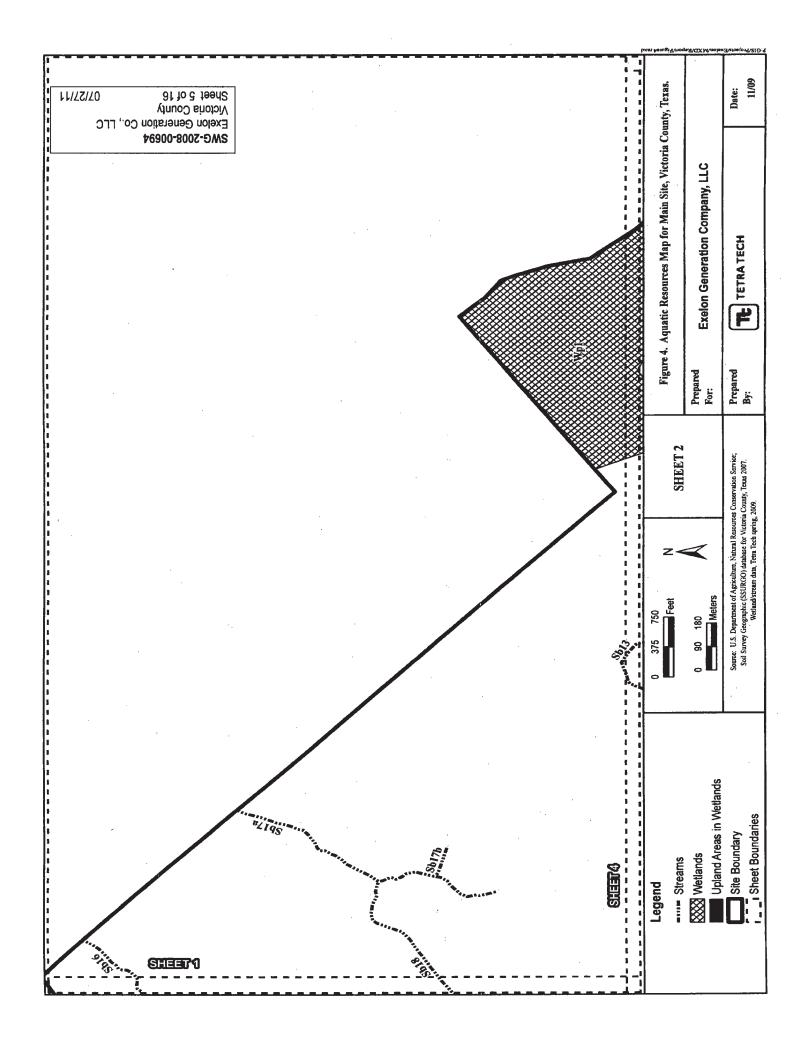
Notes:

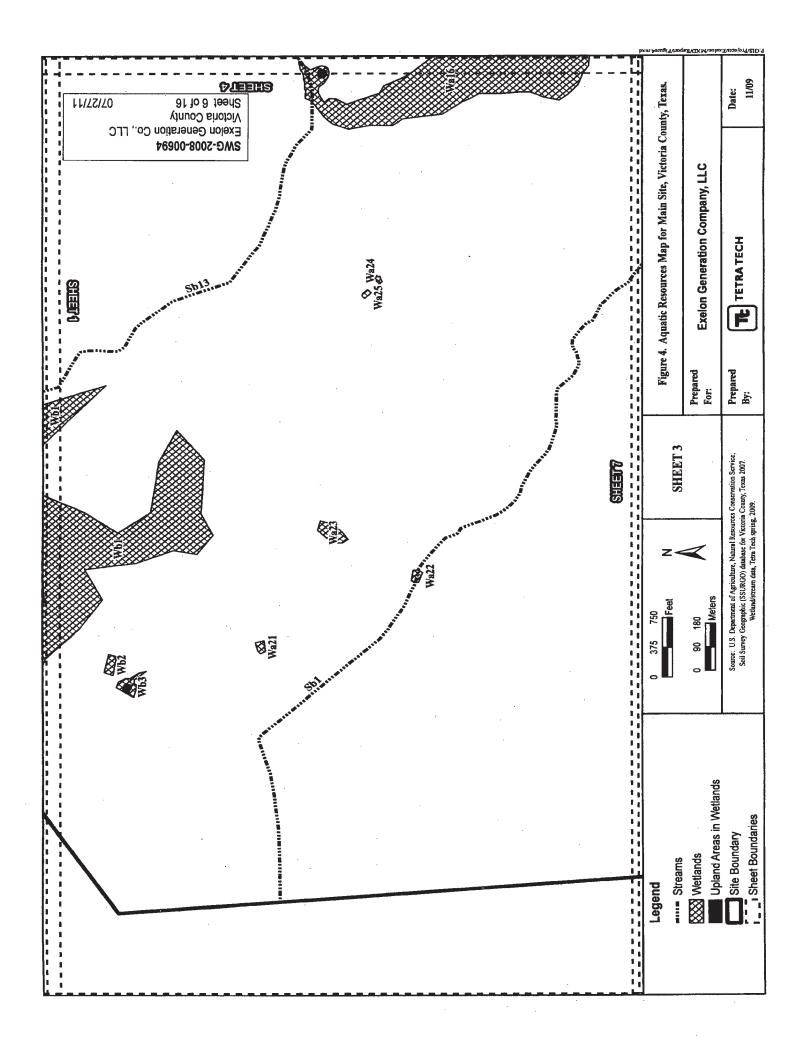
# Figure 1. Conservative Limit of Disturbance -VCS Preliminary Jurisdictional Determination (PJD) Request

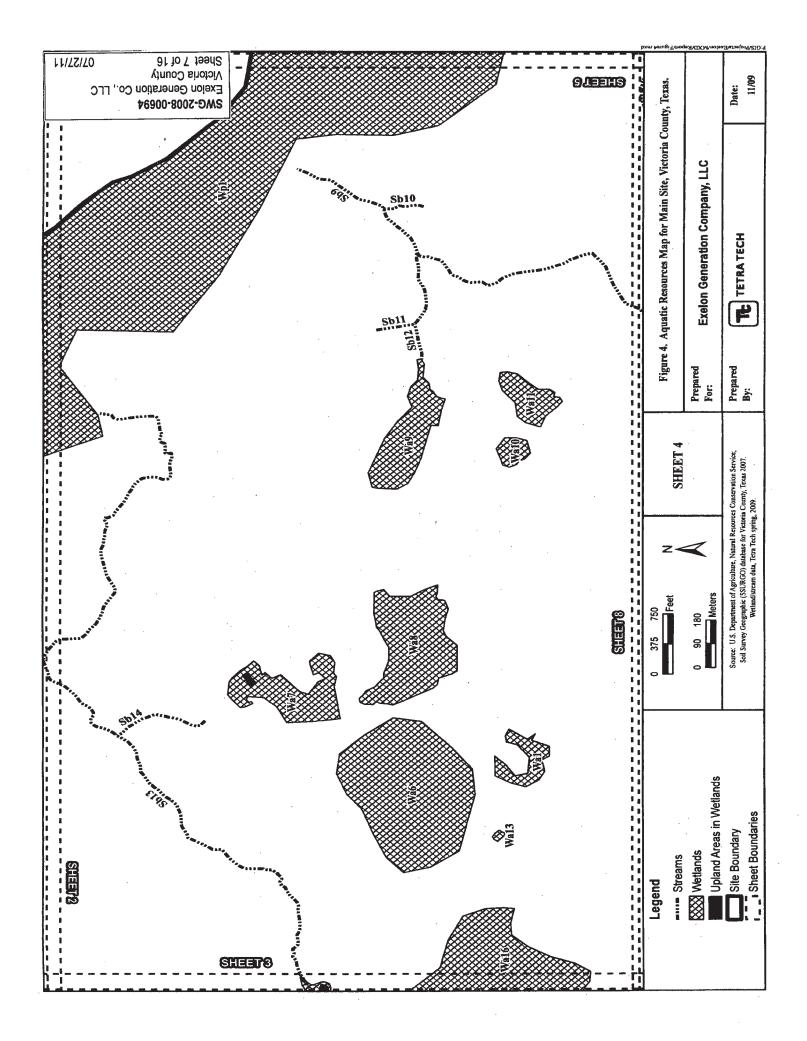


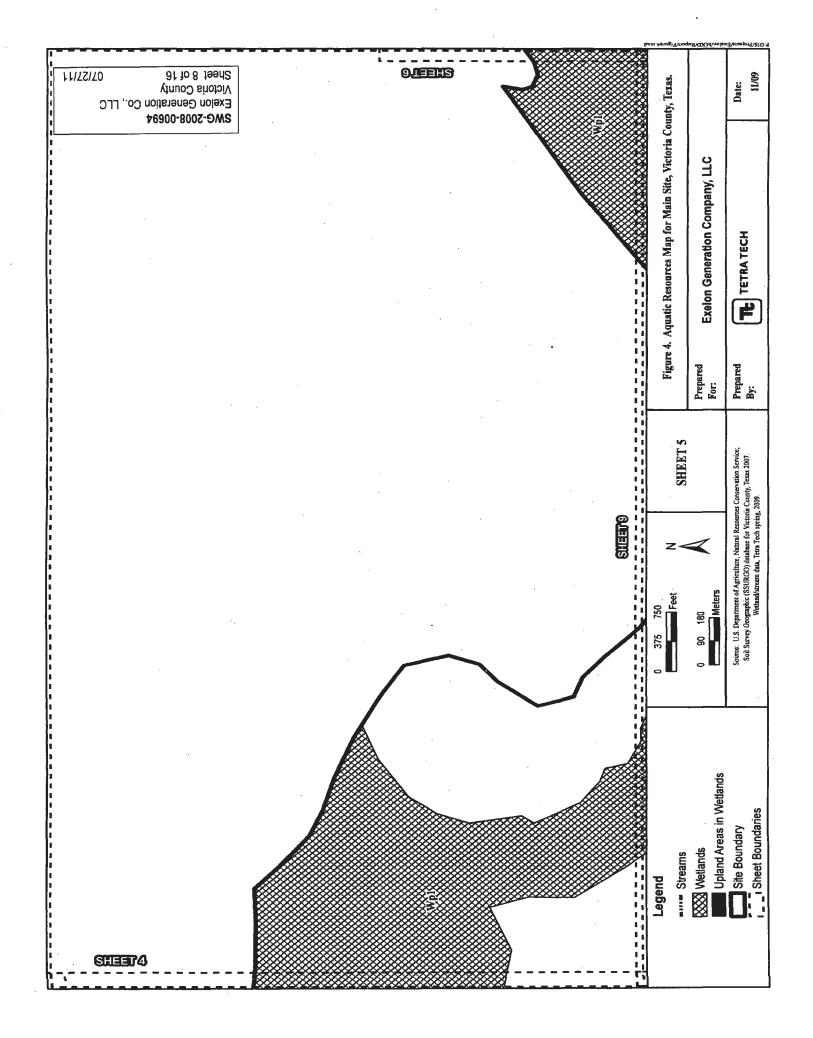


1. The "Conservative Limit of Disturbance" presented herein is provided for the sole purpose of delineating those wetlands that are included in the VCS PJD request. See VCS Early Site Permit (ESP) Application Environmental Report (ER) Figure 4.1-1 for the anticipated VCS Construction Area of Disturbance.


2. Although wetland Wp1 is located beyond the Conservative Limit of Disturbance, Exelon is requesting a preliminary determination of the jurisdictional status to support future mitigation planning activities.

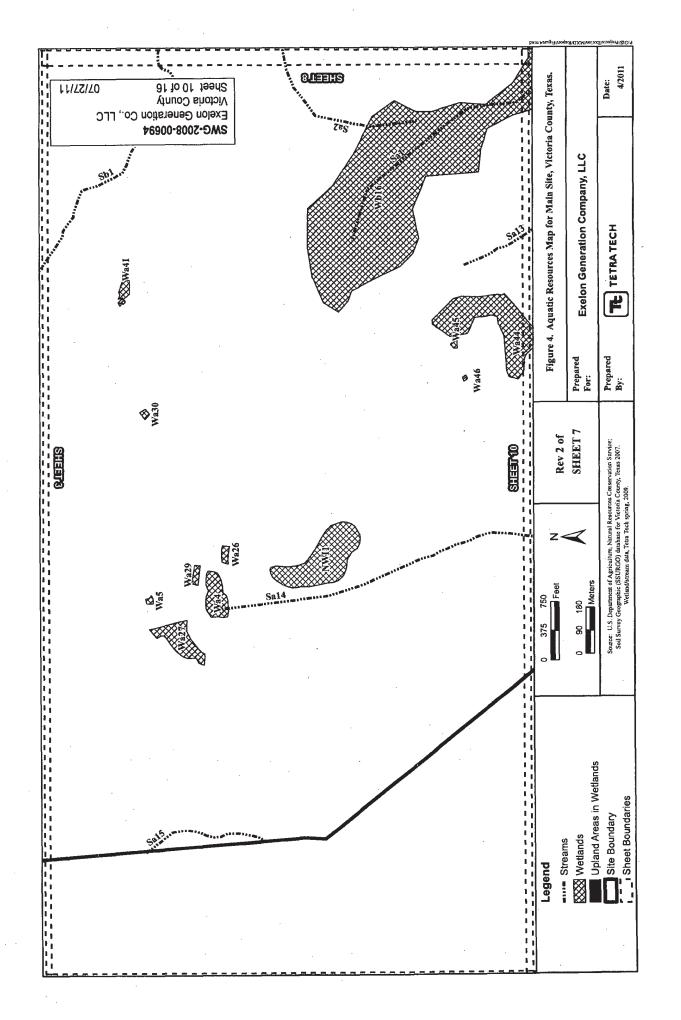

3. This figure is adapted from VCS ESP Application ER Figure 2.3.1-11 "Existing Streams and Wetlands".

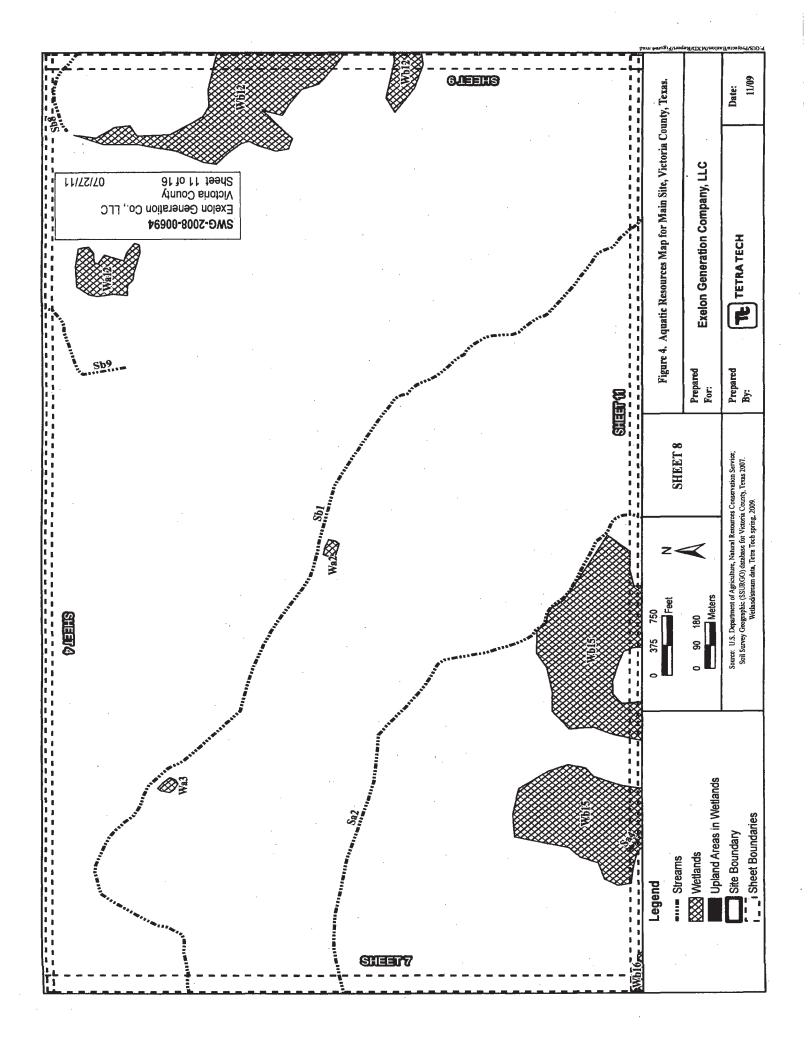

4. Figure 1 was revised to Rev. 1 on 7/8/11 by Joshua Trembley of Exelon, replacing Figure 1 in Exelon's June 2, 2011 letter to the USACE.

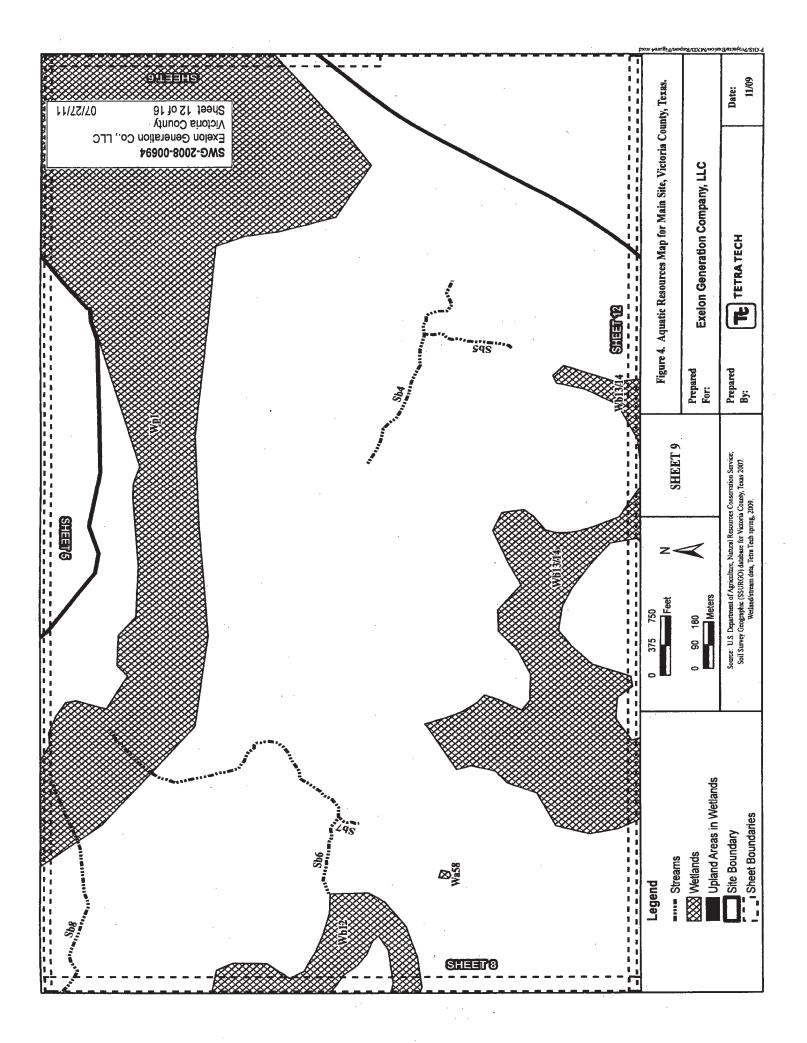


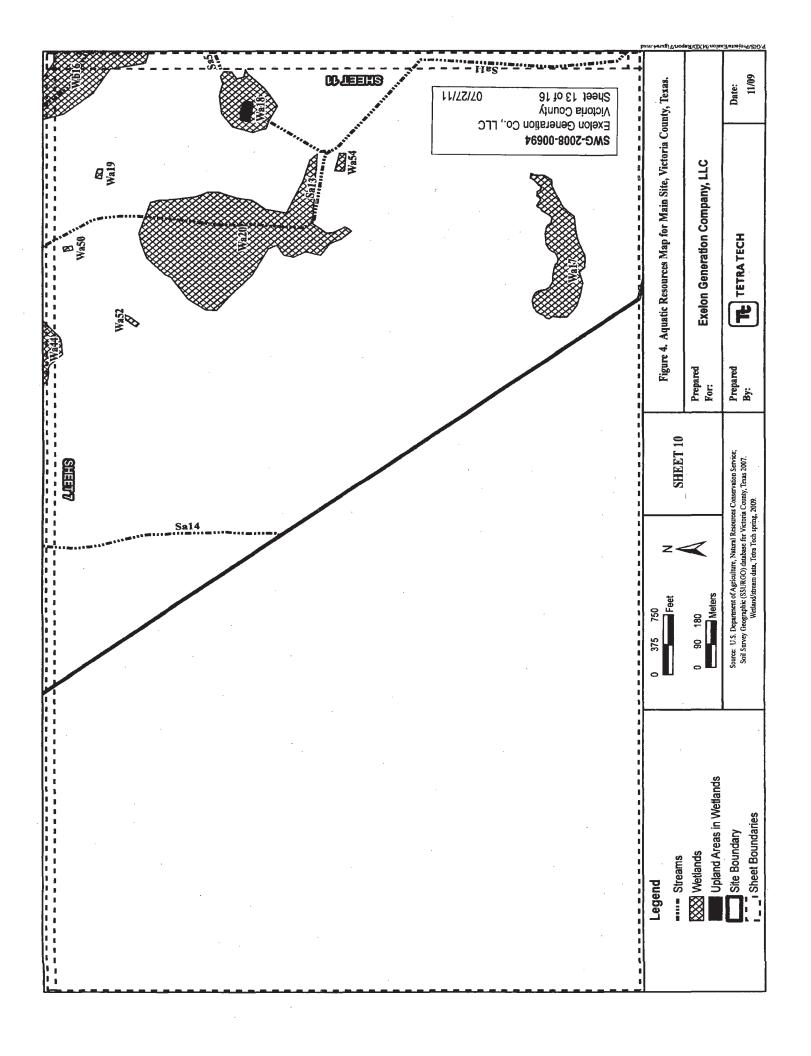



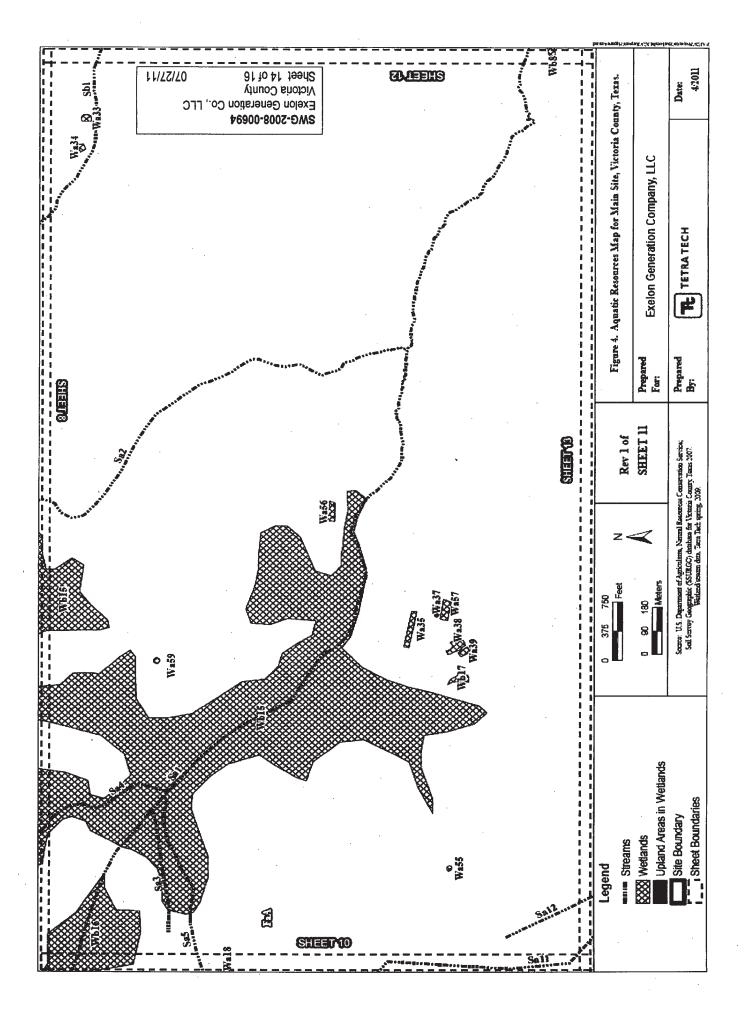


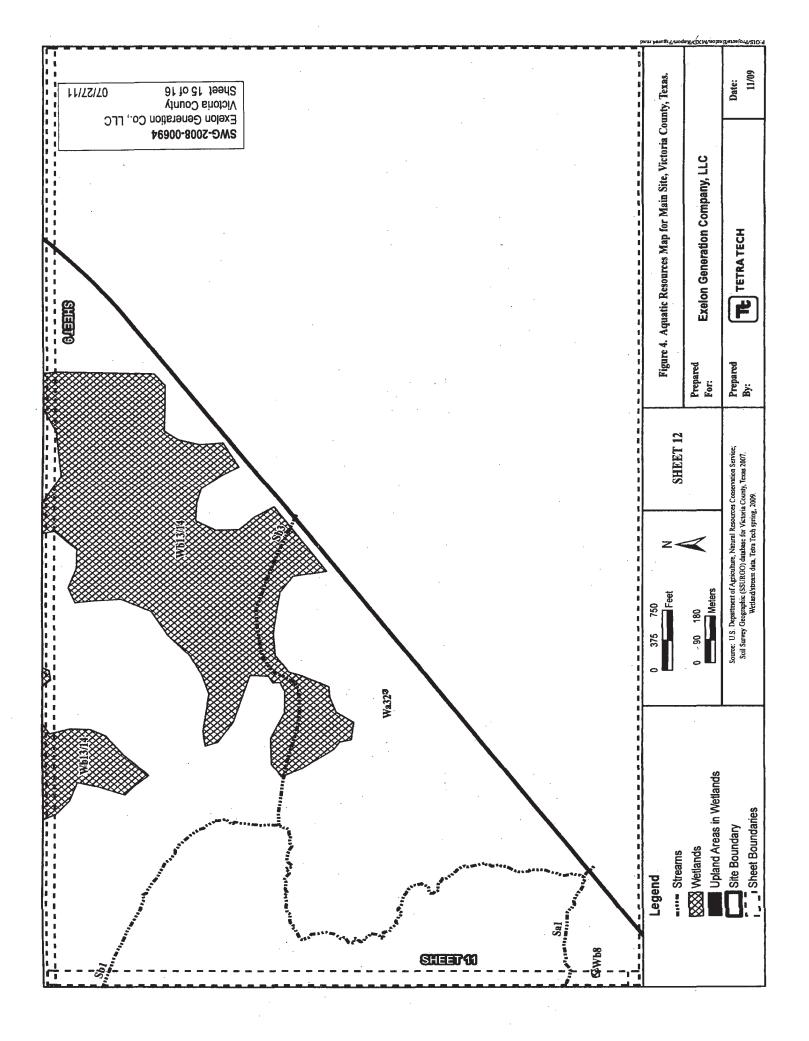



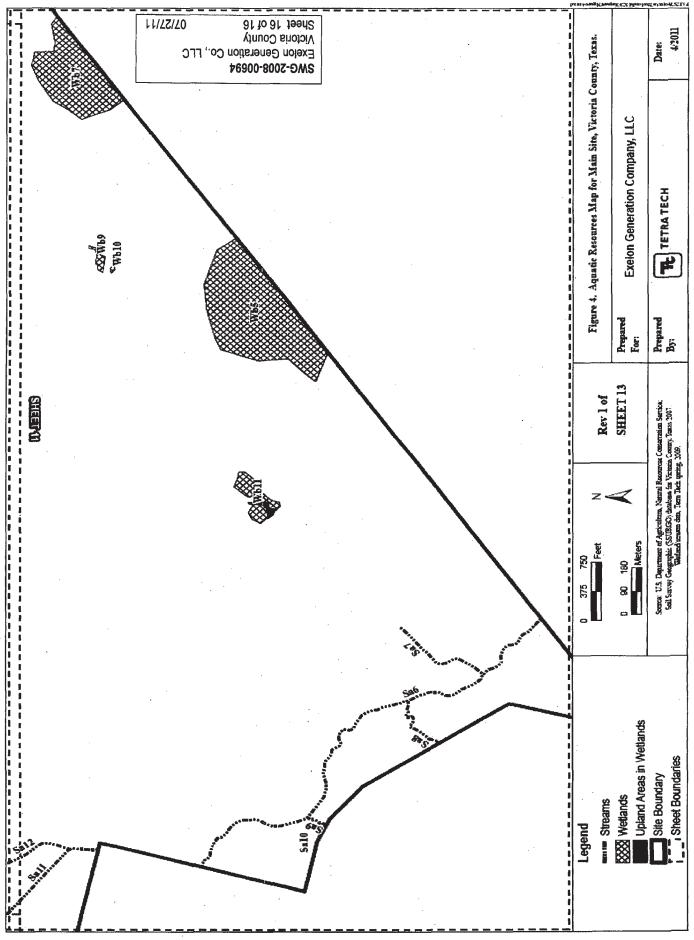





|                                                                                                                   |             | bun tempi 1/10                                                         | 1                                    |                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>5WG-2008-00694</b><br>Exelon Generation Co., LLC<br>Victoria County<br>Sheet 9 of 16 07/27/11<br>Sheet 9 of 16 |             | ounty, Texas.                                                          |                                      | Date:<br>11/09                                                                                                                                                                                                |
|                                                                                                                   |             | Figure 4. Aquatic Resources Map for Main Sife, Victoria County, Texas. | ompany, LLC                          |                                                                                                                                                                                                               |
|                                                                                                                   |             | ic Resources Map for                                                   | Exelon Generation Company, LLC       | TL TETRATECH                                                                                                                                                                                                  |
| · .                                                                                                               |             | Figure 4. Aquati                                                       | Prepared<br>For: Ex                  | Prepared<br>By:                                                                                                                                                                                               |
|                                                                                                                   |             | SHEET 6                                                                | 1                                    |                                                                                                                                                                                                               |
|                                                                                                                   |             | set ~                                                                  |                                      | Source. U.S. Department of Agriculture, Network Resources Conservation Service;<br>Soil Survey Geographic (SSURGO) database for Victoria County, Tecas 2007.<br>Wetlandsstream data, Tetra Tech spring, 2009. |
|                                                                                                                   |             | 0 375 750                                                              | 0 90 180                             | Source: U.S. Departme<br>Soil Survey Geograph<br>Weti                                                                                                                                                         |
|                                                                                                                   |             |                                                                        | <u>g</u>                             |                                                                                                                                                                                                               |
|                                                                                                                   |             |                                                                        | Wetlands<br>Upland Areas in Wetlands | Site Boundary<br>Sheet Boundaries                                                                                                                                                                             |
| SHEETG                                                                                                            | 5<br>SIESKO | Legend                                                                 | Wetlands                             | She ste                                                                                                                                                                                                       |
|                                                                                                                   | ·····       | ÷                                                                      |                                      |                                                                                                                                                                                                               |














· .

### ATTACHMENT

### PRELIMINARY JURISDICTIONAL DETERMINATION FORM

### **BACKGROUND INFORMATION**

# A. REPORT COMPLETION DATE FOR PRELIMINARY JURISDICTIONAL DETERMINATION (JD): SWG-2008-00694

B. NAME AND ADDRESS OF PERSON REQUESTING PRELIMINARY JD: Exelon Generation Company, LLC.; 300 Exelon Way, Kennett Square, Pennsylvania 19348

C. DISTRICT OFFICE, FILE NAME, AND NUMBER: Galveston, Exelon Victoria County Station Site, SWG-2008-00694

D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION: 13 miles south of Victoria, east side of State Highway 77, Victoria County, TX (USE THE ATTACHED TABLE TO DOCUMENT MULTIPLE WATERBODIES AT DIFFERENT SITES)

State:TX County/parish/borough: Victoria City: Victoria Center coordinates of site (lat/long in degree decimal format): Lat. 28.7963° N, Long. -96.9715° E.

Universal Transverse Mercator: 14 Name of nearest waterbody: Guadalupe River and Linn Lake

Identify (estimate) amount of waters in the review area:

Non-wetland waters: 147,059 linear feet: width (ft) and/or acres.

Cowardin Class: Riverine Stream Flow: Wetlands: 1849.34 acres. Cowardin Class: Emergent

Name of any water bodies on the site that have been identified as Section 10 waters:

Tidal:

Non-Tidal:

# E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: January to May 2011

 $\boxtimes$  Field Determination. Date(s): 8/26/08 & 4/7/09

1. The Corps of Engineers believes that there may be jurisdictional waters of the United States on the subject site, and the permit applicant or other affected party

who requested this preliminary JD is hereby advised of his or her option to request and obtain an approved jurisdictional determination (JD) for that site. Nevertheless, the permit applicant or other person who requested this preliminary JD has declined to exercise the option to obtain an approved JD in this instance and at this time.

2. In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "pre-construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an approved JD for the activity, the permit applicant is hereby made aware of the following: (1) the permit applicant has elected to seek a permit authorization based on a preliminary JD, which does not make an official determination of jurisdictional waters; (2) that the applicant has the option to request an approved JD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an approved JD could possibly result in less compensatory mitigation being required or different special conditions; (3) that the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) that the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) that undertaking any activity in reliance upon the subject permit authorization without requesting an approved JD constitutes the applicant's acceptance of the use of the preliminary JD, but that either form of JD will be processed as soon as is practicable; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a preliminary JD constitutes agreement that all wetlands and other water bodies on the site affected in any way by that activity are jurisdictional waters of the United States, and precludes any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an approved JD or a preliminary JD, that JD will be processed as soon as is practicable. Further, an approved JD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331, and that in any administrative appeal, jurisdictional issues can be raised (see 33 C.F.R. 331.5(a)(2)). If, during that administrative appeal, it becomes necessary to make an official determination whether CWA jurisdiction exists over a site, or to provide an official delineation of jurisdictional waters on the site, the Corps will provide an approved JD to accomplish that result, as soon as is practicable. This preliminary JD finds that there "may be" waters of the United States on the subject project site, and identifies all aquatic features on the site that could be affected by the proposed activity, based on the following information:

### SUPPORTING DATA. Data reviewed for preliminary JD (check all that apply

- checked items should be included in case file and, where checked and requested, appropriately reference sources below):

Maps, plans, plots or plat submitted by or on behalf of the

applicant/consultant: Tetra Tech Inc.; dated January 2010.

Data sheets prepared/submitted by or on behalf of the applicant/consultant.

Office concurs with data sheets/delineation report.

Office does not concur with data sheets/delineation report.

Data sheets prepared by the Corps:

Corps navigable waters' study:

U.S. Geological Survey Hydrologic Atlas:

USGS NHD data.

USGS 8 and 12 digit HUC maps.

U.S. Geological Survey map(s). Cite scale & quad name:1:24000; Bloomington, Blomington SW, Raisin, McFaddin.

USDA Natural Resources Conservation Service Soil Survey. Citation:Soil Survey Geographic (SSURGO) for Victoria County, 2007.

National wetlands inventory map(s). Cite name:NWI webbase wetland mapper: http://137.227.242.85/wetland/wetland.html.

State/Local wetland inventory map(s):

**FEMA/FIRM** maps:480637 0175B; 9/18/87.

100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)

Photographs: Aerial (Name & Date):USDA 2005, NAIP 2004 & 2010, GoogleEarth (1/14/95, 1/27/96, 10/22/05, 10/31/08, 1/31/09), Bing (USGS 2010).

or 🗌 Other (Name & Date):

Previous determination(s). File no. and date of response letter:

Other information (please specify):Aerial Survey and Topographic Map of Exelon Victoria County Station Site by P2 Energy Solutions; dated 4/22/09; 428 sheets; 1 foot contours; site inspection dated 8/26/08 & 4/7/09.

IMPORTANT NOTE: The information recorded on this form has not necessarily been verified by the Corps and should not be relied upon for later jurisdictional determinations.

my 7/27/12

Signature and date of Regulatory Project Manager

Mauly Ckray 6/2/11 Signature and date of

person requesting preliminary JD

PRELIMINARY JURISDICTIONAL DETERMINATION for SWG-2008-00694 (Exelon Generation Co., LLC/Victoria Co. Site) 5/13/2011

| PEMIA         3.72         2.86128           PEMIA         2.58         2.86035           PEMIA         10.61         2.86035           PEMIA         10.64         2.86035           PEMIA         10.64         2.86035           PEMIA         10.64         2.86035           PEMIA         10.64         2.86167           PEMIA         10.65         2.86167           PEMIA         10.69         2.86167           PEMIA         10.65         2.86167           PEMIA         10.85         2.86167           PEMIA         10.86         2.86167           PEMIA         10.69         2.86166           PEMIA         1.06         2.86166           PEMIA         0.09         2.86166           PEMIA         0.01         2.86166           PEMIA         0.01         2.86166           PEMIA         1.01         2.86175           PEMIA         0.036         2.86166           PEMIA         0.01         2.86166           PEMIA         0.055         2.86166           PEMIA         0.01         2.86166           PEMIA         2.86629 <t< th=""><th>Waters Name</th><th>Cowardin Code</th><th>Area (acres) Linear (ft)</th><th>Linear (ft)</th><th>Latitude(dd nad83)</th><th>Longitude dd nad83)</th><th>JD Class</th></t<>                                                                                        | Waters Name | Cowardin Code | Area (acres) Linear (ft) | Linear (ft) | Latitude(dd nad83) | Longitude dd nad83) | JD Class |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--------------------------|-------------|--------------------|---------------------|----------|
| PEM1A         2.58         28.6035           PEM1C         0.14         28.6035           PEM1F         10.64         28.6035           PEM1A         10.64         28.603           PEM1A         10.64         28.6157           PEM1A         10.63         28.6157           PEM1A         10.64         28.6126           PEM1A         1.932         28.6126           PEM1A         1.88         28.6126           PEM1A         4.69         28.6126           PEM1A         4.69         28.6126           PEM1A         6.04         28.603           PEM1A         6.04         28.613           PEM1A         6.04         28.615           PEM1A         6.03         28.615           PEM1A         0.05         28.615           PEM1A         0.36         28.615           PEM1A         0.36         28.615           PEM1A         0.38         28.615                                                                                                                                                                                                                                                                                      | Wa1         | PEM1A         | 3.72                     |             | 28.6128            | -97.0072            | Sec. 404 |
| PEMIC         014         28.6057           PEMIA         10.64         28.617           PEMIA         18.95         28.6157           PEMIA         18.95         28.6154           PEMIA         6.39         28.619           PEMIA         10.68         28.619           PEMIA         10.68         28.613           PEMIA         10.68         28.614           PEMIA         10.68         28.603           PEMIA         10.68         28.604           PEMIA         0.09         28.6054           PEMIA         101         28.6054           PEMIA         0.38         28.6054           PEMIA         0.36         28.6054           PEMIA         0.09         28.6054           PEMIA         0.38         28.6054           PEMIA         0.38         28.6054           PEMIA         0.36         28.6054           PEMIA         0.38         28.6054                                                                                                                                                                                                                                                                            | Wa4         | PEM1A         | 2.58                     |             | 28.6035            | -97.0351            | Sec. 404 |
| PEMIF         38.51         28.617           PEMIA         10.64         28.6268           PEMIA         19.95         28.6167           PEMIA         18.95         28.6157           PEMIA         18.95         28.6157           PEMIA         18.8         28.6157           PEMIA         18.8         28.6157           PEMIA         18.8         28.6157           PEMIA         4.69         28.619           PEMIA         6.04         28.619           PEMIA         6.03         28.619           PEMIA         6.04         28.619           PEMIA         6.03         28.619           PEMIA         0.05         28.619           PEMIA         0.016         28.616           PEMIA         0.03         28.616           PEMIA         0.36         28.616           PEMIA         0.36         28.616           PEMIA         0.37         28.616           PEMIA         0.38         28.6054           PEMIA         0.38         28.6054           PEMIA         0.36         28.616           PEMIA         0.36         28.5616                                                                                                                                                                                                                                                                                      | Wa5         | PEM1C         | 0.14                     |             | 28.6057            | -97.0348            | Sec. 404 |
| PEMIA         10.64         10.64         28.6167           PEMIA         18.95         28.6167         28.6167           PEMIA         18.95         28.6167         28.6167           PEMIA         18.95         28.6157         28.6157           PEMIA         1.092         28.6153         28.6153           PEMIA         6.04         2.8.613         28.613           PEMIC         41.88         2.8.613         28.613           PEMIA         6.04         2.8.664         28.614           PEMIA         6.04         2.8.664         28.6154           PEMIA         6.04         2.8.614         28.6166           PEMIA         0.05         2.8.6175         28.6166           PEMIA         0.01         2.8.6166         28.6166           PEMIA         0.05         2.8.6166         28.6175           PEMIA         0.01         2.8.6166         28.6166           PEMIA         0.36         2.8.6166         28.6166           PEMIA         0.36         2.8.6166         28.6166           PEMIA         0.36         2.8.6166         28.6166           PEMIA         0.36         2.8.6164         28.616                                                                                                                                                                                                        | Wa6         | PEM1F         | 38.51                    |             | 28.6177            | -97.0085            | Sec. 404 |
| PEMIA         18.95         28.6167           PEMIA         10.92         28.6157           PEMIA         10.92         28.6157           PEMIA         10.92         28.6157           PEMIA         6.04         28.6157           PEMIA         6.04         28.6153           PEMIA         6.04         28.6154           PEMIA         6.04         28.6154           PEMIA         10.68         28.5784           PEMIA         0.639         28.6154           PEMIA         1.01         28.5887           PEMIA         0.03         28.6166           PEMIA         1.01         28.6174           PEMIA         1.01         28.6164           PEMIA         0.03         28.6166           PEMIA         0.03         28.6054           PEMIA         0.17         28.6054           PEMIA         0.36         28.6054           PEMIA         0.31         28.6054           PEMIA         0.36         28.6054           PEMIA         0.36         28.6054           PEMIA         0.36         28.6054           PEMIA         0.314         28.6054                                                                                                                                                                                                                                                                        | Wa7         | PEM1A         | 10.64                    |             | 28.6208            | -97.0054            | Sec. 404 |
| PEM1A         10.92         28.6157         28.6157           PEM1A         1.88         2.8.6157         2.8.6153           PEM1A         1.88         2.8.6123         2.8.6133           PEM1A         6.46         2.8.613         2.8.613           PEM1A         6.41.88         2.8.6164         2.8.6164           PEM1A         10.68         2.8.6164         2.8.6164           PEM1A         6.39         0.27         2.8.6164         2.8.6165           PEM1A         0.01         0.27         2.8.6165         2.8.6165         2.8.6165           PUSCx         0.027         2.8.6166         2.8.6166         2.8.6165         2.8.6165           PEM1A         0.03         2.8.6166         2.8.6166         2.8.6166         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.6165         2.8.                                                                                           | Wa8         | PEM1A         | 18.95                    |             | 28.6167            | 900.79-             | Sec. 404 |
| PEMIA         1.88         2.8.6126         2           PEMIA         4.69         2.8.6123         2           PEMIA         6.04         2.8.613         2           PEMIC         41.88         2.8.619         2           PEMIA         6.04         2.8.6164         2           PEMIA         6.39         2.8.619         2           PEMIA         0.068         2.8.6175         2           PEMIA         6.39         2.8.6154         1           PEMIA         0.03         2.8.6166         1           PEMIA         0.03         2.8.6164         1           PUBFX         0.05         2.8.51616         1           PUSCX         0.03         2.8.61641                                                                                                                                                                                                                                                           | Wa9         | PEM1A         | 10.92                    |             | 28.6157            | -96.9971            | Sec. 404 |
| PEM1A         4.69         2.8.6123         2           PEM1A         6.04         5.8.608         28.613         2           PEM1C         41.88         2.8.613         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                | Wa10        | PEM1A         | 1.88                     |             | 28.6126            | -96.9974            | Sec. 404 |
| PEM1A         6.04         28.608         28.608         28.608         28.608         28.6119         28.6119         28.6119         28.6119         28.6119         28.6115         28.5734         28.5774         28.6175         28.5682         28.5877         28.5682         28.5682         28.5682         28.5682         28.5682         28.5682         28.5682         28.5682         28.5682         28.5682         28.5682         28.5615         28.5615         28.5615         28.5615         28.5615         28.5616         28.5616         28.5616         28.5613         28.5613         28.5613         28.5613         28.5613         28.5613         28.5613         28.5613         28.5613         28.5613         28.5616         28.5616         28.5616         28.5613         28.5613         28.5616         28.5616         28.5616         28.5616         28.5613         28.5613         28.5613         28.5613         28.5613         28.5616         28.5613         28.5613         28.5613         28.5616         28.5616         28.5616         28.5616         28.5613         28.5616         28.5616         28.5616         28.5616         28.5616         28.5616         28.5616         28.5616         28.5616         28.5616         28.5616         28.5616         28.5613 | Wa11        | PEM1A         | 4.69                     |             | 28.6123            | -96.9967            | Sec. 404 |
| PEMIC         41.88         28.6119         2           PEMIA         10.68         28.5784         28.5784           PEMIA         6.39         28.5784         28.5784           PEMIA         6.39         28.5784         28.5784           PEMIA         36.71         28.582         28.5784           PUSCx         0.27         28.6154         28.6154           PUSCx         0.36         28.6154         28.6154           PUSCx         0.31         28.6166         28.6166           PEMIA         0.38         3.14         28.6166         28.6166           PEMIA         0.36         28.6164         28.6166         28.6166           PEMIA         0.36         28.6904         28.6166         28.6166           PEMIA         0.36         28.6166         28.6166         28.6166           PEMIA         0.36         28.6904         28.6166         28.6166           PEMIA         0.36         28.6164         28.6166         28.6166           PEMIA         0.36         28.6164         28.6166         28.6166           PEMIA         0.16         28.6166         28.6166         28.6166           PEMIA<                                                                                                                                                                                                | Wa12        | PEM1A         | 6.04                     |             | 28.608             | -96.9918            | Sec. 404 |
| PEM1A         10.68         28.574         2           PEM1A         6.39         28.587         2           PEM1A         36.71         28.582         2           PEM1A         36.71         28.6154         2           PUSCx         0.27         28.6154         2           PEM1A         1.01         28.6155         2           PEM1A         0.09         28.6156         2           PEM1A         0.09         28.6156         2           PEM1A         0.09         28.6156         2           PEM1A         0.05         28.6166         2           PEM1A         0.05         28.6166         2           PEM1A         0.05         28.5831         2           PUBFx         0.05         28.5813         2           PUSCx         0.05         28.5836         2           PUSCx         0.17         28.5913         2           PUSCx         0.16         28.5946         2           PUSCx         0.16         28.5946         2           PUSCx         0.16         28.5946         2           PUSCx         0.16         28.5936         2                                                                                                                                                                                                                                                                     | Wa16        | PEM1C         | 41.88                    |             | 28.6119            | -97.0167            | Sec. 404 |
| PEM1A         6.39         6.39         28.5877         2           PEM1A         36.71         36.71         28.582         2           PUSCx         0.27         2.8.582         2         2           PEM1A         1.01         28.6154         2         2           PEM1A         1.01         28.6166         2         2         2           PEM1A         0.09         2.8.6166         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <td< th=""><th>Wa17</th><th>PEM1A</th><th>10.68</th><th></th><th>28.5784</th><th>-97.024</th><th>Sec. 404</th></td<>                                                                                                                         | Wa17        | PEM1A         | 10.68                    |             | 28.5784            | -97.024             | Sec. 404 |
| PEM1A         36.71         28.5882           PUSCx         0.27         28.6154           PUSCx         0.27         28.6154           PUSCx         0.27         28.6156           PEM1A         1.01         28.6166           PEM1A         0.09         28.6166           PEM1A         0.38         28.6054           PEM1A         0.38         28.6054           PEM1A         0.36         28.5631           PUSCx         0.05         28.5691           PUSCx         0.03         28.5797           PUSCx         0.16         28.5996           PEM1A         11.63         28.5996           PEM1A         0.37         28.5996           PEM1A         0.37         28.5996           PEM1A         0.37         28.5996           PEM1A         0.35         28.5996     <                                                                                                                                                                                                                                                                       | Wa18        | PEM1A         | 6.39                     |             | 28.5877            | -97.0236            | Sec. 404 |
| PUSCx         0.27         28.6154           PEM1A         1.01         28.6155           PEM1A         1.01         28.6156           PEM1A         0.09         28.6166           PEM1A         0.38         28.6054           PEM1A         0.36         28.6054           PEM1A         0.05         28.503           PEM1A         0.05         28.591           PUSCx         0.17         28.5798           PUSCx         0.17         28.5798           PEM1A         11.63         28.5916           PEM1A         0.17         28.5916           PEM1A         0.16         28.5916           PEM1A         0.16         28.5916           PEM1A         0.16         28.5916           PEM1A         0.16         28.5916           PEM1A         0.176         28.5916 <td>Wa20</td> <td>PEM1A</td> <td>36.71</td> <td></td> <td>28.5882</td> <td>-97.0221</td> <td>Sec. 404</td>                                                                                                                                                                    | Wa20        | PEM1A         | 36.71                    |             | 28.5882            | -97.0221            | Sec. 404 |
| PEM1A         1.01         28.6175         28.6175           PEM1A         0.09         28.6166         28.6166           PEM1A         0.38         28.6054         28.6054           PEM1A         3.14         28.6054         28.6054           PEM1A         3.14         28.6054         28.6054           PEM1Cx         0.36         28.6041         28.6054           PUBFx         0.36         28.5606         28.6041           PUBFx         0.05         28.5813         28.5916           PUSCx         0.03         28.5806         28.5797           PUSCx         0.03         28.5797         28.5797           PUSCx         0.17         28.5796         28.5797           PUSCx         0.17         28.5797         28.5797           PEM1A         11.63         28.5946         28.5946           PEM1A         0.13         28.5936         28.5946           PEM1A         0.16         28.5946         28.5946           PEM1A         0.16         28.5946         28.5946           PEM1A         0.16         28.5946         28.5946           PEM1A         0.16         28.5936         28.5936                                                                                                                                                                                                              | Wa22        | PUSCX         | 0.27                     |             | 28.6154            | -97.0338            | Sec. 404 |
| PEM1A         0.09         28.6166         2           PEM1A         0.38         28.6029         2           PEM1A         0.36         28.6029         2           PEM1A         0.36         28.6054         2           PEM1A         0.36         28.6054         2           PUBFx         0.36         28.6051         2           PUBFx         0.05         28.5831         2           PUBFx         0.05         28.5831         2           PUBFx         0.05         28.5831         2           PUSCx         0.03         28.5831         2           PUSCx         0.17         28.5798         2           PEM1A         11.63         28.5946         2           PEM1A         0.17         28.5946         2           PEM1A         0.13         28.5936         2           PEM1A         0.37         28.5946         2           PEM1A         0.37         28.5836         2           PEM1A         0.16         28.5836         2           PEM1A         0.16         28.5836         2           PEM1A         0.26         28.5833         2                                                                                                                                                                                                                                                                    | Wa23        | PEM1A         | 1.01                     |             | 28.6175            | -97.0321            | Sec. 404 |
| PEM1A     0.38     0.38     28.6029     2       PEM1A     3.14     28.6054     2       PEM1Cx     0.36     28.6054     2       PEM1Cx     0.36     28.6054     2       PUBFx     0.36     28.6054     2       PUBFx     0.05     28.6054     2       PUBFx     0.05     28.6054     2       PUBFx     0.03     28.5831     2       PUSCx     0.44     28.5798     2       PUSCx     0.17     28.5798     2       PEM1Fx     0.17     28.5946     2       PEM1Cx     0.13     28.5946     2       PEM1Cx     0.16     28.5946     2       PEM1Cx     0.16     28.5946     2       PEM1Cx     0.16     28.5946     2       PEM1A     11.63     28.5936     2       PEM1A     0.37     28.5836     2       PEM1A     0.36     28.5836     2       PEM1A     0.35     2     28.5836                                                                                                                                                                                                                                                                                                                                                                                                    | Wa24        | PEM1A         | 0.09                     |             | 28.6166            | -97.0231            | Sec. 404 |
| PEM1A     3.14     28.6054       PEM1Cx     0.36     28.6051       PUBFx     0.36     28.6041       PUBFx     0.36     28.6041       PUBFx     0.55     28.5831       PUSCx     0.05     28.5813       PUSCx     0.03     28.5797       PUSCx     0.17     28.5796       PUSCx     0.17     28.5796       PUSCx     0.17     28.5796       PUSCx     0.17     28.5797       PUSCx     0.17     28.5966       PUSCx     0.17     28.5966       PEM1A     11.63     28.5966       PEM1A     0.16     28.5961       PEM1A     0.16     28.5961       PEM1A     0.37     28.5936       PEM1A     0.36     28.5839       PEM1A     0.36     28.5839       PEM1A     0.35     28.5839       PEM1A     0.42     28.5839       PEM1A     0.42     28.5892       PEM1A     2.016     28.5892       PEM1A     2.016     28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wa26        | PEM1A         | 0.38                     | •           | 28.6029            | -97.0333            | Sec. 404 |
| PEMICx     0.36     28.6041       PUBFx     0.05     28.6041       PUBFx     0.05     28.5831       PEMIAx     0.55     28.5813       PUSCx     0.03     28.5813       PUSCx     0.04     28.5813       PUSCx     0.17     28.5813       PUSCx     0.17     28.5813       PUSCx     0.17     28.5966       PEMIAx     0.17     28.5797       PEMIAx     0.17     28.5946       PEMICx     0.17     28.5946       PEMICx     0.13     28.5946       PEMICx     0.16     28.5946       PEMICx     0.16     28.5946       PEMICx     0.16     28.5951       PEMICx     0.06     28.5946       PEMICx     0.06     28.5936       PEMICx     0.06     28.5839       PEMIAx     0.35     28.5839       PEMIAx     0.36     28.5839       PEMIAx     0.42     28.5892       PEMIA     0.08     28.5892       PEMIA     0.08     28.5892       PEMIA     0.08     28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wa27        | PEM1A         | 3.14                     |             | 28.6054            | -97.0361            | Sec. 404 |
| PUBFx     0.05     28.5831       PEM1Ax     0.55     28.5813       PEM1Ax     0.55     28.5813       PUSCx     0.03     28.5813       PUSCx     0.04     28.5797       PUSCx     0.17     28.5797       PUSCx     0.17     28.5797       PEM1Ex     0.17     28.5797       PEM1Ax     0.17     28.5797       PEM1A     11.63     28.5946       PEM1Cx     0.13     28.5946       PEM1Cx     0.13     28.5946       PEM1Cx     0.13     28.5946       PEM1Cx     0.16     28.5936       PEM1Ax     0.06     28.5836       PEM1Ax     0.37     28.5839       PEM1Ax     0.36     28.5839       PEM1Ax     0.35     28.5839       PEM1Ax     0.42     28.5892       PEM1Ax     0.08     28.5892       PEM1Ax     0.08     28.5892       PEM1Ax     0.16     28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wa29        | PEM1Cx        | 0.36                     |             | 28.6041            | -97.0342            | Sec. 404 |
| PEM1Ax     0.55     28.5813       PUSCx     0.03     28.5806       PUSCx     0.44     28.5796       PUSCx     0.44     28.5796       PUSCx     0.17     28.5797       PEM1A     11.63     28.5797       PEM1A     0.17     28.5796       PEM1A     0.17     28.5946       PEM1A     0.16     28.5946       PEM1Cx     0.13     28.5946       PEM1Cx     0.13     28.5946       PEM1Cx     0.13     28.5946       PEM1Cx     0.13     28.5936       PEM1A     0.37     28.5836       PEM1A     0.37     28.5836       PEM1A     0.36     28.5833       PEM1Ax     0.37     28.5833       PEM1Ax     0.36     28.5892       PEM1Ax     0.08     28.5892       PEM1Ax     0.08     28.5892       PEM1Ax     0.08     28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wa32        | PUBFX         | 0.05                     |             | 28.5831            | -96.974             | Sec. 404 |
| PUSCx     0.03     28.5806       PUSCx     0.44     28.5798       PUSCx     0.45     28.5798       PEM1Fx     0.17     28.5797       PEM1A     11.63     28.5797       PEM1Cx     0.13     28.5946       PEM1Cx     0.13     28.5836       PEM1A     0.37     28.5836       PEM1A     0.37     28.5836       PEM1A     0.37     28.5836       PEM1A     0.36     28.5836       PEM1A     0.06     28.5836       PEM1Ax     0.35     28.5839       PEM1Ax     0.36     28.5839       PEM1Ax     0.36     28.5839       PEM1Ax     0.42     28.5892       PEM1Ax     0.08     28.5892       PEM1Ax     0.08     28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wa35        | PEM1Ax        | 0.55                     |             | 28.5813            | -97.0035            | Sec. 404 |
| PUSCx     0.44     28.5798       PEM1Fx     0.17     28.5797       PEM1A     11.63     28.5946       PEM1Cx     0.13     28.5946       PEM1Cx     0.13     28.5946       PEM1Cx     0.13     28.5946       PEM1Cx     0.13     28.5946       PEM1Cx     0.06     28.5946       PEM1Cx     0.06     28.5936       PEM1A     0.37     28.5836       PEM1A     0.37     28.5836       PEM1A     0.36     28.5836       PEM1Ax     0.36     28.5803       PEM1Ax     0.36     28.5803       PEM1Ax     0.36     28.5803       PEM1Ax     0.36     28.5802       PEM1Ax     0.06     28.5802       PEM1Ax     0.08     28.5892       PEM1Ax     0.08     28.5892       PEM1Ax     0.08     28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wa37        | PUSCX         | 0.03                     |             | 28.5806            | -97.0035            | Sec. 404 |
| PEM1Fx     0.17     28.5797       PEM1A     11.63     28.5946       PEM1A     11.63     28.5946       PEM1Cx     0.13     28.5951       PEM1Cx     0.06     28.5946       PEM1Cx     0.06     28.5946       PEM1Cx     0.06     28.5936       PEM1A     0.37     28.5836       PEM1A     0.37     28.5803       PEM1A     0.35     28.5803       PEM1Ax     0.42     28.5803       PEM1Ax     0.42     28.5803       PEM1Ax     0.42     28.5802       PEM1Ax     0.08     28.5802       PEM1Ax     0.08     28.5802       PEM1Ax     0.08     28.5802       PEM1Ax     0.08     28.5802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wa38        | PUSCX         | 0.44                     |             | 28.5798            | -97.0047            | Sec. 404 |
| PEM1A     11.63     28.5946       PEM1Cx     0.13     28.5951       PEM1Cx     0.13     28.5951       PEM1Cx     0.06     28.5946       PEM1A     0.37     28.5836       PEM1A     0.37     28.5836       PEM1A     0.37     28.5833       PEM1Ax     0.06     28.5833       PEM1Ax     0.35     28.5833       PEM1Ax     0.36     28.5833       PEM1Ax     0.42     28.5833       PEM1Ax     0.42     28.5892       PEM1Ax     0.08     28.5892       PEM1A     0.08     28.5892       PEM1A     0.08     28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wa39        | PEM1Fx        | 0.17                     |             | 28.5797            | -97.0048            | Sec. 404 |
| PEMICx     0.13     28.5951       PEMICx     0.06     28.5946       PEMICx     0.06     28.5836       PEMIC     0.05     28.5836       PEMIC     0.06     28.5833       PEMIAx     0.35     28.5833       PEMIAx     0.35     28.5833       PEMIAx     0.35     28.5833       PEMIAx     0.42     28.5833       PEMIAx     0.42     28.5833       PEMIAx     0.08     28.5892       PEMIA     20.16     28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wa44        | PEM1A         | 11.63                    |             | 28.5946            | -97.0244            | Sec. 404 |
| PEMICx     0.06     28.5946       PEMIA     0.37     28.5836       PEMIA     0.37     28.5836       PEMIAx     0.06     28.5803       PEMIAx     0.35     28.5839       PEMIAx     0.35     28.5839       PEMIAx     0.42     28.5839       PEMIAx     0.42     28.5892       PEMIA     0.08     28.5892       PEMIA     0.08     28.5892       PEMIA     0.06     28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wa45        | PEM1Cx        | 0.13                     |             | 28.5951            | -97.0258            | Sec. 404 |
| PEM1A         0.37         28.5836           PEM1C         0.06         28.5803           PEM1Ax         0.35         28.5803           PEM1Ax         0.35         28.5803           PEM1Ax         0.35         28.5803           PEM1Ax         0.35         28.5803           PEM1Ax         0.42         28.5802           PUSCx         0.08         28.5892           PEM1A         20.16         28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wa46        | PEM1Cx        | 0.06                     |             | 28.5946            | -97.027             | Sec. 404 |
| PEM1C         0.06         28.5803           PEM1Ax         0.35         28.5839           PEM1Ax         0.42         28.5839           PUSCx         0.08         28.5892           PUSCx         0.08         28.5892           PEM1A         20.16         28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wa54        | PEM1A         | 0.37                     |             | 28.5836            | -97.0189            | Sec. 404 |
| PEM1Ax         0.35         28.5839           PEM1Ax         0.42         28.5802           PUSCx         0.08         28.5892           PUSCx         0.08         28.5892           PEM1A         20.16         28.5892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wa55        | PEM1C         | 0.06                     |             | 28.5803            | -97.0124            | Sec. 404 |
| PEM1Ax         0.42         28.5802           PUSCx         0.08         28.5892           PUSCx         0.08         28.5892           PEM1A         207.16         28.6305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wa56        | PEM1Ax        | 0.35                     |             | 28.5839            | -96.9995            | Sec. 404 |
| PUSCx 0.08 28.5892 -<br>PEM1A 207.16 28.6305 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wa57        | PEM1AX        | 0.42                     |             | 28.5802            | -97.0031            | Sec. 404 |
| PEM1A 207.16 28.6305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wa59        | PUSCX         | 0.08                     |             | 28.5892            | -97.0052            | Sec. 404 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wb1         | PEM1A         | 207.16                   |             | 28.6305            | -97.0286            | Sec. 404 |

.

PRELIMINARY JURISDICTIONAL DETERMINATION for SWG-2008-00694 (Exclon Generation Co., LLC/Victoria Co. Site) 5/13/2011

| ZOAA                       | PUSCX  | 0.44   |        | 28.6241            | -97.0363  | 28C. 4U4 |
|----------------------------|--------|--------|--------|--------------------|-----------|----------|
| Wb3                        | PEM1C  | 0.72   |        | 28.6236            | -97.0374  | Sec. 404 |
| Wb5                        | PEM1A  | 25.67  |        | 28.5682            | -96.9946  | Sec. 404 |
| Wb7                        | PEM1A  | 12.97  |        | 28.5735            | -96.9861  | Sec. 404 |
| Wb8                        | PUBFx  | 0.15   |        | 28.5771            | -96.9837  | Sec. 404 |
| Wb9                        | PUBFx  | 0.43   |        | 28.5737            | -96.9922  | Sec. 404 |
| Wb10                       | PEM1A  | 0.07   |        | 28.5734            | -96.9925  | Sec. 404 |
| Wb11                       | PEM1C  | 2.69   |        | 28.5685            | -97.0012  | Sec. 404 |
| Wb12                       | PEM1A  | 50.01  |        | 28.6039            | -96.9838  | Sec. 404 |
| Wb13 / Wb14                | PEM1A  | 245.42 |        | 28.5949            | -96.9762  | Sec. 404 |
| Wb15                       | PEM1Ad | 222.21 |        | 28.589             | -97.0102  | Sec. 404 |
| Wb16                       | PEM1A  | 88.92  |        | 28.5902            | -97.0144  | Sec. 404 |
| Wp1                        | L1UBH  | 769.75 |        | 28.6178            | -96.9805  | Sec. 404 |
| L INNI 1                   | PEM1A  | 9.41   |        | 28.5995            | -97.0334  | Sec. 404 |
| 1 1 1 1 × Wb 17            | PEM1A  | VE.0   |        | 28.5799            | - 97.0058 | 54404    |
| 1/2/11 Streem Set // Immed | 0110   |        | 17 600 | <b>10 E000</b>     | 27 047    | 5 404    |
|                            | RAUB   |        | 13,724 | 20.0300            | -06 0046  | Sec. 404 |
|                            |        |        | 10,101 | 70 5000            | 07.0402   | 000 101  |
| Stream Sol (Innemed)       | Dei IR |        | 1,033  | 20.0000<br>28 5008 | 27 0103   |          |
| Stream Sa5 (Unnamed)       | ReuB   |        | 2 083  | 28.5877            | -97.016   | Sec 404  |
| Stream Sa6 (Kuy Creek)     | R2UB   |        | 5.408  | 28.5602            | -97.0052  | Sec. 404 |
| Stream Sa7 (Unnamed)       | Reub   |        | 1,163  | 28.5462            | -97.0055  | Sec. 404 |
| Stream Sa8 (Unnamed)       | R4UB   |        | 775    | 28.5633            | -97.0092  | Sec. 404 |
| Stream Sa9 (Unnamed)       | R4UB   |        | 238    | 28.5664            | -97.0128  | Sec. 404 |
| Stream Sa10 (Unnamed)      | R4UB   |        | 183    | 28.5672            | -97.0122  | Sec. 404 |
| Stream Sa11 (Unnamed)      | R4UB   |        | 5,636  | 28.5781            | -97.0159  | Sec. 404 |
| Stream Sa12 (Unnamed)      | RGUB   |        | 1,641  | 28.5784            | -97.0148  | Sec. 404 |
| Stream Sa13 (Unnamed)      | RGUB   |        | 4,485  | 28.59              | -97.0211  | Sec. 404 |
| Stream Sa14 (Unnamed)      | RGUB   |        | 6,484  | 28.6007            | -97.0347  | Sec. 404 |
| Stream Sa15 (Unnamed)      | Reub   |        | 1,627  | 28.6057            | -97.0435  | Sec. 404 |
| Stream Sb1 (Dry Kuy Creek) | R4UB   |        | 33,506 | 28.6196            | -97.0386  | Sec. 404 |
| Stream Sb3 (Unnamed)       | R4UB   |        | 3,729  | 28.5857            | -96.9682  | Sec. 404 |
| Stream Sb4 (Unnamed)       | RGUB   |        | 2,419  | 28.5987            | -96.9624  | Sec. 404 |
| Stream Sb5 (Unnamed)       | REUB   |        | 950    | 28.5961            | -96.9618  | Sec. 404 |
| Stream Sb6 (Unnamed)       | RGUB   |        | 4,200  | 28.6024            | -96.9757  | Sec. 404 |
| Stream Sh7 (Unnamed)       | RELIB  |        | 225    | 28 RUNA            | _06 0787  | Con 101  |

\*\* ALLEPTING BY JOHN WOUG, LERFO 6/15/11

W617 \* ADDGO BY JOSHA TRENBLEY, EXEL GANGATZON 10. 6/4/11

PRELIMINARY JURISDICTIONAL DETERMINATION for SWG-2008-00694 (Exelon Generation Co., LLC/Victoria Co. Site) 5/13/2011

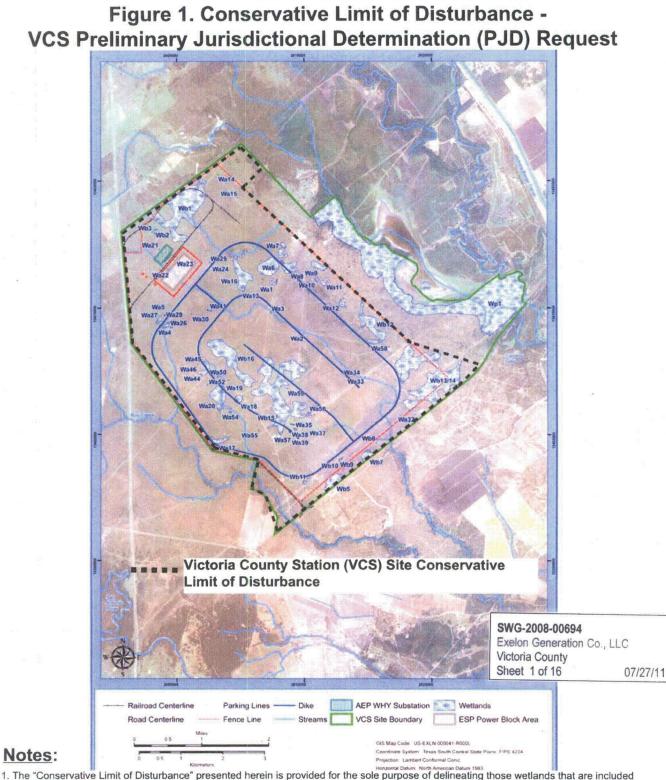
| D     RAUB $5.747$ $28.6079$ 0     RAUB $4.28$ $5.747$ $28.6155$ 0     ROUB $3.92$ $28.6153$ 0     RAUB $1,254$ $28.6153$ 0     RAUB $1,254$ $28.6153$ 0     RAUB $1,254$ $28.6153$ 0     RAUB $1,020$ $28.6349$ 0     RAUB $1,020$ $28.6394$ 0     RAUB $3.054$ $28.6394$ 0     ROUB $3.054$ $28.6394$ 0     ROUB $2,142$ $28.6394$ 0     ROUB $3.054$ $28.6394$ 0     ROUB $2,142$ $28.6394$ 0     ROUB $1,671$ $28.6394$ 0     ROUB $3.054$ $28.6394$ 0     ROUB $2,142$ $28.6394$ 0     ROUB $1,671$ $28.6394$ 0     ROUB $3.054$ $28.6394$ 0     ROUB $1,671$ $28.6394$ 0     ROUB $1,671$ $28.6394$ 0     ROUB $1,674$ $8.6394$ 0     ROUB $1,674$ $28.6394$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stream Sb8 (Unnamed)  | R6UB         |         | 3,205   | 28.6088     | -96.9842 | Sec. 404 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|---------|---------|-------------|----------|----------|
| R6UB         428         28.6163         -96.999           R4UB         1,254         28.6155         -96.9953           R4UB         1,254         28.6155         -96.9953           R4UB         1,020         28.632         -97.0072           R4UB         1,020         28.6336         -97.0072           R6UB         1,020         28.6336         -97.0173           R6UB         389         28.6394         -97.0174           R6UB         3.054         28.6394         -97.0174           R6UB         3.054         28.6394         -97.0173           R6UB         3.054         28.6394         -97.0173           R6UB         3.054         28.6394         -97.0162           R6UB         3.054         28.6394         -97.0162           R6UB         3.054         28.6394         -97.0162           R6UB         1.671         28.6308         -97.0162           R6UB         8424.65         1.671         28.6308         -97.0162           M4         8424.65         1.671         28.6308         -97.0162           M4         8424.65         1.671         28.6308         -97.0162           M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stream Sb9 (Unnamed)  | R4UB         |         | 5,747   | 28.6079     | -96.9947 | Sec. 404 |
| RAUB     1,254     28.6155     -96.9653       REUB     397     23.6152     -96.9653       REUB     10,209     28.6152     -96.9653       REUB     10,209     28.6333     -97.0722       REUB     2.142     28.6349     -97.0723       REUB     2.142     28.6394     -97.0124       REUB     2.142     28.6312     -97.0124       REUB     2.142     28.6312     -97.0113       REUB     3.054     28.6312     -97.0113       REUB     2.142     28.6308     -97.0124       REUB     3.054     28.6308     -97.0162       REUB     REUB     3.054     28.6308     -97.0162       REUB     1.671     28.6308     -97.0162       RM <td< td=""><td>Stream Sb10 (Unnamed)</td><td>Reub</td><td></td><td>428</td><td>28.6163</td><td>-96.989</td><td>Sec. 404</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stream Sb10 (Unnamed) | Reub         |         | 428     | 28.6163     | -96.989  | Sec. 404 |
| Reub     397     28.6152     -96.9963       Raub     18.299     28.632     -97.0072       Raub     3.02     28.632     -97.0124       Reub     3.02     28.639     -97.0133       Reub     2.142     28.639     -97.0133       Reub     2.142     28.6396     -97.0133       Reub     2.142     28.6396     -97.0133       Reub     3.054     28.6312     -97.0162       Reub     3.43     28.6312     -97.0162       Reub     3.43     28.6312     -97.0162       Reub     3.43     28.6306     -97.0162       Reub     1.671     2.8.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stream Sb11 (Unnamed) | R4UB         |         | 1,254   | 28.6155     | -96.9953 | Sec. 404 |
| RAUB     18,299     28,632     -97,0259       ReUB     1,020     28,6336     -97,0124       ReUB     3,054     28,6394     -97,0134       ReUB     3,054     28,6394     -97,0134       ReUB     3,054     28,6394     -97,0134       ReUB     3,054     28,6394     -97,0134       ReUB     3,054     28,6396     -97,0134       ReUB     3,054     28,6396     -97,0124       ReUB     3,054     28,6396     -97,0162       ROUB     3,054     28,6396     -97,0162       ROUB     447,069     1,671     28,6306     -97,0162       M     6/Alli     28,44,656     -97,0162       M     6/Alli     28,44,656     -97,0162       M     6/Alli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stream Sb12 (Unnamed) | RGUB         |         | 397     | 28.6152     | -96.9953 | Sec. 404 |
| ReUB         1,020         28,6336         -97,0072           REUB         389         28,6334         -97,0123           REUB         2,142         28,6334         -97,0124           REUB         3,054         28,6334         -97,0124           REUB         3,054         28,6336         -97,0162           REUB         3,054         28,6336         -97,0162           REUB         3,054         28,6336         -97,0162           REUB         3,054         28,6336         -97,0162           REUB         1,671         28,6336         -97,0162           REUB         REUB         1,671         28,63308         -97,0162           REUB         REUB         1,671         28,63308         -97,0162           REUB         REUB         1,671         28,63308         -97,0162           REUB         REUB         1,47,065         1,47,065         -97,0162           REUB         REUB         1,47,065         -147,065         -97,0162           REUB         RUB         1,47,065         -147,065         -97,0162           REUB         RUB         1,47,065         -16,016         -97,0162           RUB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stream Sb13 (Unnamed) | R4UB         |         | 18,299  | 28.632      | -97.0259 | Sec. 404 |
| ReUB         389         28.6346 $-87.0272$ ReUB         2.142         28.6394 $-97.0124$ ReUB         3.054         28.6394 $-97.0124$ ReUB         3.054         28.6394 $-97.0124$ ReUB         3.054         28.6395 $-97.0124$ ReUB         3.054         28.6312 $-97.0162$ ReUB         3.054         28.6308 $-97.0162$ ReUB         1.671         28.6308 $-97.0162$ ReUB         ReUB         1.47.069         28.6308 $-97.0162$ ReV         Law         1.47.069         1.47.069         1.47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stream Sb14 (Unnamed) | Reub         |         | 1,020   | 28.6238     | -97.0072 | Sec. 404 |
| Reue $2,142$ $28.6394$ $97.0189$ Reue $3,054$ $28.6397$ $97.0124$ Reue $3,054$ $28.6397$ $97.0124$ Reue $343$ $28.6312$ $97.0162$ Reue $1,671$ $28.6308$ $97.0162$ Reue $47,069$ $147,069$ $97.0162$ No $147,069$ $147,069$ $97.0162$ No $141,069$ $141,069$ $141,069$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stream Sb15 (Unnamed) | Reub         |         | 389     | 28.6349     | -97.0272 | Sec. 404 |
| ReUB         3.054         28.6297         -97.0124           ReUB         343         28.6312         -97.0162           amed)         ReUB         1,671         28.6308         -97.0162           MAX         43.059         147,059         -97.0162         -97.0162           MAX $41/1$ 28.6308         -97.0162         -97.0162           MAX $41/1$ 28.63.63         -97.0162         -97.0162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stream Sb16 (Unnamed) | Reub         |         | 2,142   | 28.6394     | -97.0189 | Sec. 404 |
| ReUB     343     28.6312     97.0113       iamed)     ReUB     1,671     28.6308     -97.0162       K     48.63     147,069     -97.0162     -97.0162       M $\sqrt{16}$ 84.76     68     -97.0162       M $\sqrt{16}$ 147,069     -97.0162       M $\sqrt{11}$ 84.76     -97.0162       M $\sqrt{16}$ 147,069     -97.0162       M $\sqrt{11}$ 184.76     -97.0163       M $\sqrt{11}$ 19.96     -97.0163       M $\sqrt{11}$ <td>Sb17a (Unnamed)</td> <td>Reub</td> <td>i</td> <td>3,054</td> <td>28.6297</td> <td>-97.0124</td> <td>Sec. 404</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sb17a (Unnamed)       | Reub         | i       | 3,054   | 28.6297     | -97.0124 | Sec. 404 |
| ReUB $1.671$ $28.6308$ $-97.0162$ * $-1840.34$ $147,069$ $-97.0162$ * $-1840.34$ $147,069$ $-97.0162$ * $-1840.34$ $147,069$ $-97.0162$ * $-1840.34$ $147,069$ $-97.0162$ * $-1840.4$ $-1870.6$ $-97.0162$ * $-1840.6$ $-1840.6$ $-97.0162$ * $-1840.6$ $-1840.6$ $-97.0162$ * $-1840.6$ $-1840.6$ $-97.0162$ * $-1840.6$ $-1840.6$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-97.0162$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-1840.6$ $-97.0162$ * $-1840.6$ * $-1840.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sb17b (Unnamed)       | Reub         |         | 343     | 28.6312     | -97.0113 | Sec. 404 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stream Sb18 (Unnamed) | RGUB         |         | 1,671   | 28.6308     | -97.0162 | Sec. 404 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
| - 147,0<br>- 1849.4 - 147,0<br>- 1849.6 - 147,0<br>- 1849.6 - 147,0<br>- 1 |                       | *            |         |         | -           |          |          |
| 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOTAL                 |              | 4849.34 | 147,059 |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              | 1849.68 |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | - Used       |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | VIII 6/12/ " |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         |         |             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |         | Ą       | cerptad By: |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | KEURED       | 121     | * *     | Todd Ways   |          |          |

.

EXELAN BENGRATZON Co. T JOTHUR I CEMPLEY

6/9/11

CLRFD 4/15/11


|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n sin sin sin sin sin sin sin sin sin si                                                                                    |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Apr    | licant: Exelon Generation Company, LLC File Number: SWG-2008-00694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date: 28 July 2011                                                                                                          |
|        | ched is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | See Section below                                                                                                           |
|        | INITIAL PROFFERED PERMIT (Standard Permit or Letter of permission)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Α                                                                                                                           |
|        | PROFFERED PERMIT (Standard Permit or Letter of permission)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                                                                                                                           |
|        | PERMIT DENIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                                                                                                                           |
|        | APPROVED JURISDICTIONAL DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                           |
| Х      | PRELIMINARY JURISDICTIONAL DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                                                                                                                           |
|        | TION 1. The following identifies your rights and options regarding an administrative sion. Additional information may be found at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |
| 1      | ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the dis<br>authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is<br>signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entire<br>to appeal the permit, including its terms and conditions, and approved jurisdictional determinations asso                                                                                                                                                                                                                                                                                                                                                    | authorized. Your<br>ty, and waive all rights                                                                                |
| 1      | DBJECT: If you object to the permit (Standard or LOP) because of certain terms and conditions therein<br>he permit be modified accordingly. You must complete Section II of this form and return the form to th<br>Your objections must be received by the district engineer within 60 days of the date of this notice, or you<br>to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your ob<br>nodify the permit to address all of your concerns, (b) modify the permit to address some of your objection<br>he permit having determined that the permit should be issued as previously written. After evaluating you<br>district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below | e district engineer.<br>u will forfeit your right<br>jections and may: (a)<br>ons, or (c) not modify<br>our objections, the |
| B: 1   | PROFFERED PERMIT: You may accept or appeal the permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |
| 8      | ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the dist<br>authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is<br>signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entire<br>o appeal the permit, including its terms and conditions, and approved jurisdictional determinations asso                                                                                                                                                                                                                                                                                                                                                    | authorized. Your<br>ty, and waive all rights                                                                                |
| ı<br>f | APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and nay appeal the declined permit under the Corps of Engineers Administrative Appeal Process by comple form and sending the form to the division engineer. This form must be received by the division engineer late of this notice.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ting Section II of this                                                                                                     |
| by co  | <b>PERMIT DENIAL:</b> You may appeal the denial of a permit under the Corps of Engineers Administ mpleting Section II of this form and sending the form to the division engineer. This form must be receiver within 60 days of the date of this notice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rative Appeal Process<br>ved by the division                                                                                |
|        | APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the ide new information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | approved JD or                                                                                                              |
|        | ACCEPT: You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps w of this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD in its entirety.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |
| 1      | APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of En<br>Appeal Process by completing Section II of this form and sending the form to the division engineer. This<br>by the division engineer within 60 days of the date of this notice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |
|        | RELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |
|        | rding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may oved JD (which may be appealed), by contacting the Corps district for further instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |

SECTION DESCRIPTION APPEALS CONTENTIONS TO AN INTERTOPOLE PERSONS

REASONS FOR APPEAL OR OBJECTIONS: (Describe your reasons for appealing the decision or your objections to an initial proffered permit in clear concise statements. You may attach additional information to this form to clarify where your reasons or objections are addressed in the administrative record.)

| -                                                                                                                                                                                                                                                                             |                                                                         |                                                               |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|
| ADDITIONAL INFORMATION: The appeal is limited to a review<br>record of the appeal conference or meeting, and any supplemental<br>clarify the administrative record. Neither the appellant nor the Con<br>you may provide additional information to clarify the location of in | information that the review office<br>rps may add new information or a  | r has determined is needed to nalyses to the record. However, |  |  |  |  |
| POINT OF CONTACT POR OUBSTIONS OR INFORMATION 32                                                                                                                                                                                                                              |                                                                         |                                                               |  |  |  |  |
| If you have questions regarding this decision and/or the appeal                                                                                                                                                                                                               | If you only have questions regard                                       | ding the appeal process you may                               |  |  |  |  |
| process you may contact:                                                                                                                                                                                                                                                      | s you may contact: also contact:                                        |                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                               | Mr. Elliott Carman<br>Administrative Appeals Review Officer (CESWD-PDO) |                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                               |                                                                         | icer (CESWD-PDO)                                              |  |  |  |  |
|                                                                                                                                                                                                                                                                               | U.S. Army Corps of Engineers                                            |                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                               | 1100 Commerce Street, Suite 831                                         |                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                               | Dallas, Texas 75242                                                     |                                                               |  |  |  |  |
| DIGUT OF ENTERNY We share half and the factor                                                                                                                                                                                                                                 | 469-487-7061 (phone)                                                    |                                                               |  |  |  |  |
| RIGHT OF ENTRY: Your signature below grants the right of entry to Corps of Engineers personnel, and any government                                                                                                                                                            |                                                                         |                                                               |  |  |  |  |
| consultants, to conduct investigations of the project site during the course of the appeal process. You will be provided a 15 day                                                                                                                                             |                                                                         |                                                               |  |  |  |  |
| notice of any site investigation, and will have the opportunity to participate in all site investigations.                                                                                                                                                                    |                                                                         |                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                               | Date:                                                                   | Telephone number:                                             |  |  |  |  |
|                                                                                                                                                                                                                                                                               |                                                                         | · ·                                                           |  |  |  |  |
| Signature of appellant or agent.                                                                                                                                                                                                                                              |                                                                         |                                                               |  |  |  |  |

**REV. 1** 



in the VCS PJD request. See VCS Early Site Permit (ESP) Application Environmental Report (ER) Figure 4.1-1 for the anticipated VCS Construction Area of Disturbance.

2. Although wetland Wp1 is located beyond the Conservative Limit of Disturbance, Exelon is requesting a preliminary determination of the jurisdictional status to support future mitigation planning activities.

3. This figure is adapted from VCS ESP Application ER Figure 2.3.1-11 "Existing Streams and Wetlands".

4. Figure 1 was revised to Rev. 1 on 7/8/11 by Joshua Trembley of Exelon, replacing Figure 1 in Exelon's June 2, 2011 letter to the USACE.