SEABROOK UPDATED FSAR

APPENDIX 3D

PROCEDURE FOR CALCUILATING ELASTO-PLASTICALLY DESIGNED
PIPE WHIP RESTRAINT LOADS BY ENERGY BALANCE METHOD

The information contained in this appendix was not revised, but has been
extracted from the original FSAR and is provided for historical information.
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A simplified mathematical model as shown on the next page can be used for
elastic-plastic design of pipe whip restraints. An energy balance approach
has been used to formulate the calculations for determining the plastic

deformation in the restraints.

In applying the plastic deformation design for restraints, the regulatory
guides require that either one of the following upper bound design limits

for metallic ductile materials be mect.

(a) 507 of the minimum ultimate uniform strain (the strain at the maximum
stress of an engineering stress-strain curve based on actual macerial

tests for the restraint), or

(b) 50% oI the minimum percent elongation as specified in an applicable
ASME, ASTM, etc. Code, specification, or standard when demonstrated
to be less than 507 of the minimum ultimate uniform strain based on

representative test results.
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Simolified approach for designine elasto-plastic restraints

If the restraint is alloved to go into the plastic region, then the maximuxm

restraint deflection, d » will consist of an elastic portion and a plasric
=ax P

portion as shown below. (Figure 1.0)
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Figure 1.0 - Idealized Restrzin:
Deflection Charactzristics.
where, de = Restraint elastic detlection at yield stress
dpax = Maximum allowable restraint deflection
Rp = Maximum restraint resistance Rp = kedg
ke = Restraint elastic structural stiffness

1f 'F' denotes the applied forcing Function (i.e., a blow down load in
case of a pipe break) and 'h' denotes the gap between the piping and the

restraint, an energy balance relation for this case gives, (see Figure 2.0).
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Figure 2.0 Energv balance Analvsis Model

Rearranging, (Ro - F) dpax = % (2Fh + Rpde)

2Fh + REde - -
2 (Rp = F)

Therefore, dpax =

The above formulation can be further simplified in 2Fh is much larger than

dec'
Therefore, assuaming, Rpd, <<2Fh

Equation (1) gives, dp,.= (RE..F) --- (@
-

After determining d .., either by equation (1) or equation (2) above

(as applicable), the resulting strain in the member should be calculated and

should be checked against the criteria give in page 1.

dnay,

For uniaxial members, the strain € is taken to be equal to L

vhere L is the original length of the restraint member.
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In order to evaluate the response of an elastically designed pipe whip
restraint to a pipe break load by using the equivalent static analysis
approach, the dynamic load factor associated with the applicable forcing
function and the clearance (gap) between the pipe and the restraint has

to be determined.

A simplified mathem#tical model as shown on the next page, can be used to
determine the dynamic load factor. Since the pipe size effects are already
being reflected in the magnitude of the pipe break load, the pipe size
alone is not_éonsidered again as a godel parameter. The dynamic load factor

(DLF) thus determined is used to calculate the restraint load (R) as follows:

R = (£ PA) x DLF

- where: {1.26 for steam-saturated water
o=
2.0 for subcooled non-flashing water [Eéf. U.S. NRC

Standard Review Plan, 3.6.2 (III) (2) (¢) (43]

P = Operating Pressure

A = Pipe Break Area

A series of parametric curves for determining the restraint loads for

steam-saturated water or steam-water mixtures only are given in Pages

3 - 14,




A STMPLE MODEL FOR CCFUTING DYIIAMIC LOAD FACTOR

= F
dse T (¢9)

=2

F(h + d) = 1/2 kd? (2)
From (L)

F
.
F
k= — 3
dst @ |d
k -z 1
By substituting (3) into (2), we have ;
7070777

F(h +4d) = 1/2(;:-;) a2 @_____ @

a2 -2d,d-2d,  h=0

Or,

() -2 - o) -

d 2h | % 2hk |k
dse dse F

by = Applie& Load = (Pipe Rupture Load)

dst = Restraint defvlection for statically applied F
d = Maximum restraint deflection

h = Gap size

k = Restraint stiffness

DLF = Dynamic load factor
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APPENDIX 3F

VERIFICATION OF COMPUTER PROGRAMS USED FOR
STRUCTURAL ANALYSTIS AND DESIGN

The information contained in this appendix was not revised, but has been
extracted from the original FSAR and is provided for historical information.
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APPENDIX 3F

VERIFICATION OF
COMPUTER PROGRAMS USED FOR
STRUCTURAL ANALYSIS AND DESIGN

Computer programs used for structural analysis and design have been verified
according to the criteria described in the US NRC Standard Review Plan
3.8.1, Section II-4(e).

(a) The following computer programs are recognized in the public
domain, and have had sufficient history to justify their
applicability and validity without further demonstration:

Hardware Source
STARDYNE cDC cpc(l)
MARC-CDC cDC cpc(1l)
STRU-PAK CDC cpc(l)
System Professional cDC cpc(l)
ANSYS cpe cpc(1)
STRUDL UCCEL psp1(2)
UEMENU UCCEL vcceL(3)
(1) cpc - Control Data Corporation

P. 0. Box 0, HQWOSH
Minneapolis, Minnesota 55440

(2) pPpspI - Programs for Structural Design, Inc.
14 Story Street
Cambridge, Massachusetts 02138

(3) UCCEL - UCCEL Corporation
P. 0. Box 84028
Dallas, Texas 75284
(b) The following computer programs have been verified by solving test
problems with a similar and independently-written and recognized

program in the public domain:

SAGO58 (Response Spectra)

3F-1
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A summary of comparison results is shown in Table 3F-1.
AX2 (Axisymmetric Shell Program)

A verification manual comparing AX2 with results obtained from
either ANSYS or BOSOR4 (Lockhead Missile and Space Company - Palo
Alto, CA) can be obtained from Pittsburgh - Des Moines
Corporation, 3400 Grand Avenue, Neville Island, Pittsburgh,

PA 15225

(¢) The following computer programs have been verified by comparison
with analytical results published in technical literature:

SAGO001 (WILSON 1)
SAGO010 (WILSON 2, DYN)

Summaries of comparison results are shown in Tables 3F-2 and 3F-3,
respectively.

(d) The following computer programs have been verified by comparison
with hand calculations for test problems which are representative
of the type used in actual analyses:

SAG008 ( TAPAS)
SAGO17 ( FOUREXP)
SAG024 (MMIC)
SAG025 ( SECTION)
PM-910 (LESCAL)
*PM-906 ( STRAP)

A summary of comparison results is shown in Tables 3F-4 through
3F-8.

(e) The following computer programs are verified by inspection of the
graphical output data.

SAGO54 (Response Envelope)

A typical verification example is presented in Table 3F-9.

* Documentation of STRAP is available in the Final Safety Analysis Report
for the Carolina Power and Light Co., Brunswick 1 & 2, US NRC Docket
Nos. 50-324 and 50-325.

3F-2
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TABLE 3F-1

SAGO58 (RESPONSE SPECTRA)

546058 (1) is verified against STARDYNE, sub-routine DYNRE5. The input T/H is
of 22 second duration, with a time interval of 0.0l seconds and a maximum acceleration

of 1.0g.

Spectral Acceleration (g)
Frequency 0.57% Damping 27, Damping
(Hz) SAG0O58 DYNRES SAGO58 DYNRES
0.33 0.91 0.98 0.79 0.83
1.00 2.68 2.67 2.03 2.03
2.00 8.23 8.23 4.33 4.32
3.03 6.04 6.02 4.31 4.32
4.00 5.20 5.18 4.40 4.37
5.00 5.25 5.21 3.95 3.94
6.25 7.51 7.42 4.47 4 .38
7.14 5.33 5.25 3.94 3.90
8.33 4 .87 4.80 3.69 3.68
9.09 7.09 6.93 4.96 4.81
10.00 5.00 4.97 3.37 3.35
20.00 2.61 2.60 1.77 1.77
33.33 1.22 1.22 1.13 1.14

(1) SAGO58 is an in-house computer program run on the Control Data
Corporation CYBER-175 and is used as a pest-processor to the
STARDYNE program. v
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TABLE 3F-2

SAGO01 (WILSON 1)

The following is a comparison of the results from SAGOOl with results obtained
from published technical literature. SAGOOl runs on the Honeywell 66/60 system with

the GCOS operating system.

Sample Problem No. 1

Analysis of a thick-walled cylinder subjected to an internal pressure.

Reference - Gallagher, R. H., Finite Element Analysis, Figure 11.5,
pg. 317, Prentice-Hall, Inc., 1975.

Comparison of the theoretical solution with the WILSON 1 solution is
shown on Figure 3F-1 for the radial stress and the hoop stress.

Sample Problem No. 2

Analysis of a cylindrical shell, fixed at both ends and subjected to an
internal pressure.

Reference - Timoshenko, S.,‘Woinowsky— Krieger, S., Theory of Plates
and Shells, Second Edition, pg. 475, McGraw-Hill, 1959.

Comparison of the theoretical solution with the WILSON 1 solution is
shown on Figures 3F-2 and 3F-3 for the radial shear and meridional moment,

respectively.
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TABLE 3F-3

SAGO10 (WILSON 2, DYN)

The original version of SAG010, "Dynamic Stress Analysis of Axisymmetric
Structures Under Arbitrary Loading,'" written by Ghosh and Wilson was revised
by UE&C in September, 1975. The program is distributed in the public domain
by the Earthquake Engineering Research Center, University of California,
Berkeley, California. The program has been verified against a series of
problems whose results are pubiished in technical literature. Documentation
of this verification is contained in the report EERC 69-10 which can be
obtained from the Earthquake Engineering Research Center. SAG010 is run on
the Honeywell 66/60 System.
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TABLE 3F-4

SAG008 (TAPAS)

The following is a comparison of the results from SAGO08, which computes the
temperature distribution through plane and axisymmetric solids, with hand calculations.
The sample results are for the temperature distribution through the thickness of a
hemispherical concrete dome which is 42 inches thick and subject to 1200F inside and
(=)109F outside.

Hand Calculation

Element No. sac008 (1) (oF) (OF @ Mid Pt. of Elem.)
724 110.38 110.7143
848 88.89 89.048
972 65.33 65.833
1096 42.12 42.619
1220 19.26 19.405
1344 (-)1.04 (-)0.7143

SAGO08 runs on the Honeywell 66/60 system
References:

(1) Wilson, E. L., Nickell, R. E., "Application of the Finite Element,"
Journal of Nuclear Engineering and Design, 4, 1966.
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TABLE 3F-5

SAGO17 (FOUREXP)

The following is a verification of SAGO17 with hand calculations for an arbitrary
loading distribution which is an even function and can be expanded using a cosine
Fourier Series. The periodic -function is, f(0) = (-6 -m <06 <0

i 8 0<8c< ﬂ}

Comparison of Fourier Coefficients:

n SAG017(1) Hand Calculations(z)
0 1.5699 1.5708
1 -1.2739 -1.2732
2 -0.0019 0
3 -0.1421 -0.1415
4 -0.0019 0 5¢
5 .-0.0516 -0.0509
6 -0.0020 : 0
7 -0.0266 -0.0260
8 -0.0021 0
9 -0.0164 -0.0157
10 -0.0022 0
11 : -0.0112 =0.0105
12 -0.0023 0
13 -0.0082 -0.0075
14 =0.0025 0
15 -0.0063 =0.0057
16 -0.0028 0
17 -0.0051 -0.0044
18 -0.0031 0
19 - =0.0042 -0.0035
20 -0.0036 0

SAGO17 runs on the Honeywell 66/60 system.
References:

(1) The Fourier coefficients are computed for a digitized function by a
recursive technique described in Mathematical Methods for Digital
Computers, by Rolsten and Wilf, John Wiley and Sons, New York, 1960,
Chapter 24. The solution technique is from subroutine FORIT in the

. IBM Scientific Subroutine package. The program is rum on the
Honeywell 66/60 system.

(2) Wylie, C. R., Advanced Engineering Mathematics, 4th Ed., McGraw-Hill,
1975.
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TABLE 3F-6

SAG024 (MMIC)

The following is a comparison of the results of hand calculations with SAG024
for the weight of a typcial lumped mass point in a dynamic model of a shear building.

Hand

Parameter saG024 (1) Calculation
XcM (X-Coordinate of the Center of.Mass)'- ft. 26.19 26.19
YoM (Y-Coordinate of the Center of Mass) - ft. 0.08 0.08
Wr (Total Weight of Mass Point) - Kips 1444 1444
Imx (Rotary Weight Moment of Inertia about X-Axis) K-ft? 162,323 162,320
Imy (Rotary Weight Moment of Inmertia about Y-Axis) K-ft? 379,552 379,550
Iyqz (Rotary Weight Moment of Inertia about Z-Axis) K-ft? 470,152 470,150

SAG024 runs on the Honmeywell 66/60 system.
Reference:

(1) Bear, F. P. and Johnston, R. E., Jr., Vector Mechanics for Engineers:
Static and—Dynamics, McGraw-Hill, 1962, pps. 343-347.




SB1é&2
FSAR

TABLE 3F-7

SAG025 (SECTION)

The following is a comparison of the results of hand calculatioms with SAGO025
for a system of resisting structural elements between floors in a typcial shear building.

Xcgr (X-Coordinate of Center of Rigidity) - ft.
iCR (Y-Coordinate of Center of Rigidity) - ft.
Ap (Area) - ft

Spx (Shear Shape Factor about X-Axis)

Sgv (Shear Shape Factor about Y-Axis)

Ixx (Moment of Inertia about X-Axis) - ft.

Iyy (Moment of Imertia about Y-Axis) - ft.

J (Torsional Constant) - ft.

SAG025 rums on the Honeywell 66/60 system.

SAGO025 Hand Calculations
26.3 26.257

0.0 0.0

466.0 466.0

.456 0.456

.555 0.555

11,100 11,079
44,000 43,957
117,000 117,470




The following is a comparison of the results from the LESCAL computer program
LESCAL calculates the stresses and strains in rebars
and/or concrete in accordance with the criteria set forth in Subarticle CC-

3511.1 of ASME Section III, Division II.
with horizontal, vertical and/or diagonal rebars, subjected to axial force
and moment on a vertical and horizontal face and in-plane shear.

with hand calculations,

(s
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TABLE 3F-8

heet 1 of 2)

PM-910 (LESCAL)

Amendment 56
November 1985

When

inplane shear forces are included, a solution is obtained by solving

Duchon's equat:i.ons(1 .

Load Condition

D+ P, + Eg
Applied @c.g.0f

Concrete Section

D+1.25P,+1.25E,
Applied @c.g. of

Concrete Section

D + P, + Eg
Applied @ c.g.
of Rebar

Parameter

fp outside
fy outside
fseis. (3)
fseis. (4)
fp inside
f} inside

fn outside
fa
fseis. (3)
fseis. (4)
fn inside
fh inside

outside

fp outside
f,, outside
fseis. (3)
fseis. (4)
fy inside
frn inside

29.39
23.08
52.26

0.21
26.67
23.82

-2.22
-0.41
9.70
-12.34
38.37
1.98

37.70
25.08
57.41

5.37
12.74
19.01

LESCAL (Ksi)

The section 1s concrete reinforced

Hand
Calculations |

29
23

37

57

19

.46
.05
52.

0.
26.
23.

35
21
75
77

.99
.16
.47
.63
.34
.12

.70
25.
41
.37
12.
.01

07

73

56

56
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TABLE 3F-8
(Sheet 2 of 2)

Load Condition Parameter

D+1.25P,+1.25Ec  fp outside

Applied @ c.g. fh outside

of Rebar fseis. (3)
fseis. (4)
f, inside
fy, inside

LESCAL runs on the Honeywell 66/60 system.

Notes (3) and (4) indicate directions of seismic rebars.

References:

Amendment 56
November 1985

Hand

LESCAL (Ksi) Calculations
-2.01 -1.77
7.33 7.82
16.07 16.08
-10.76 -10.02
40.94 40.64
9.54 10.06

(1) Duchon, N. B., "Analysis of Reinforced Concrete Membrane Subject to
Tension and Shear,'" ACI Journal, September 1972, pp. 578-583.

56
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TABLE 3F-9

SAG054 (RESPONSE ENVELOPE)

SAGO54 is a post-processing program for STARDYNE which is used in seismic analysis
The program spreads the peaks of the amplified response spectra created by SAG058
(See Table 3F-1) by a predetermined amount and tabulates the ordinates and abscissas
of the resulting curve. Verification of this program is accomplished by visual
inspection of the graphical output to insure that the raw data has,in fact, been
enveloped. SAG054 runs on the CDC CYBER-175 svstem.
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FIGURE 3F-1
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