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1.0 EXECUTIVE SUMMARY

The Savannah River Site disposes of low-activity radioactive waste within subsurface-engineered
facilities. One of the tools used to establish the capacity of a given site to safely store radioactive waste
(i.e., that a site does not exceed its Waste Acceptance Criteria) is the Performance Assessment (PA). The
objective of this document is to provide the geochemical values for the PA calculations. This work is
being conducted as part of the on-going maintenance program that permits the PA to periodically update
existing calculations when new data becomes available.

Because application of values without full understanding of their original purpose may lead to misuse,
this document also provides the geochemical conceptual model, the approach used for selecting the
values, the justification for selecting data, and the assumptions made to assure that the conceptual and
numerical geochemical models are reasonably conservative (i.e., reflect conditions that will tend to
predict the maximum risk to the hypothetical recipient). This document provides >1030 input parameters
for geochemical parameters describing transport processes for 64 elements (>130 radioisotopes)
potentially occurring within nine subsurface disposal or tank closure areas (Slit Trenches, Engineered
Trenches, Low Activity Waste (LAW) Vault, Intermediate Level (ILV) Vaults, TRU-Pad-1, Naval
Reactor Component Disposal Areas, Components-in-Grout Trenches, Saltstone Facility, and Closed
Liquid Waste Tanks).

This work builds upon earlier PA geochemical data compilations (McDowell-Boyer et al. 2000;
Kaplan 2007). The primary changes compared to the most recent geochemical data package (Kaplan
2007) are:

e The inclusion of information about Kd distributions (normal, log-normal), means, and 95
percentile ranges based on recent field measurements (Grogan et al. 2008; Grogan et al. 2010;
Kaplan et al. 2008b) to address needs for stochastic modeling. Related, it no longer provides the
“reasonably conservative” parameter, which was based on professional judgment. This latter
parameter was replaced with the statistically defined lower 95-percentile limit.

e The addition of a section that provides Kd values of special waste forms. These waste forms,
which include exchange resins and activated carbon, are highly specialized waste streams and
possess unique sorption properties that are difficult to estimate from the literature. They were
measured in the laboratory using site-specific materials and appropriate leaching solutions.

e The inclusion of a new Environment, or geochemical zone, called the Cementitious Leachate
Impacted Sediment, to account for the influence that the leachate from cementitious materials
have on sorption properties in underlying vadose zone sediments. Cementitious porewater is
highly basic (pH >12) and has a high ionic strength (10 molar) for much of the lifespan of
cement, and as such it can influence the sorption of many radionuclides. Previously we had
accounted for the impact of the cementitious aqueous phase in estimating radionuclide sorption
(Kd and solubility values) within, but not beneath the cementitious materials.

e Assumption related to the implementation of the cellulose degradation product (CDP) correction
factors (factors that account for enhanced mobility due to the complexation of radionuclides by
organics, thereby reducing the tendency for the radionuclides to sorb to the sediment) were
altered from “conservative” in the last data package (Kaplan 2007) to “best estimate” in this data
page. Overall, the “best estimate” CDP-impacted Kd values are higher than “conservative”
values; this is generally favorable for the groundwater pathway. Additionally, a surface
complexation and component additivity model dealing with CDP, pH and europium was recently
published (Kaplan et al. 2010) and the approach, not the details, is described as an example of a
more robust approach for dealing with this complex geochemical system.
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e There were several new sorption studies also conducted and these results were incorporated into
the report, resulting in changes in recommended Kd and solubility values. These reports include:
o lodine, Np, Pu, and Tc sorption studies on SRS cementitious materials under oxidizing and

reducing conditions, which established much higher Np and Pu Kd values (Lilley et al.
2009),

o Np sorption studies on SRS sediments under oxidizing and reducing conditions and in the
presence of natural organic matter, which measured SRS clayey sediment Np(V) Kd values
for the first time and demonstrated that the SRS sediments have little tendency to reduce
Np(V) to the less mobile species Np(IV) (Miller et al. 2009)

o Am, Cd, Ce, Co, Cs, Hg, I, Np, Pu, Pa, Sn, Sr, Tc, U, and Y sorption studies with both
oxidizing and reducing cementitious materials, which provided a large number of site-
specific Kd values (Kaplan and Coates 2007; Kaplan et al. 2008b),

o Tc sediment sorption and Kd distribution studies, which greatly increased the number of SRS
Tc Kd values and clearly demonstrated that Tc sorbed to SRS sediments and data also
provided a distribution for stochastic modeling (Kaplan et al. 2008b),

The changes that have the greatest potential implication to performance assessments and special
analyses are tabulated below. Two common risk drivers, I and Tc, both have significantly increased
sediment Kd values. But in cement-leachate impacted vadose zone sediments, such as beneath a cement
vault, the Kd values decrease, such that, Kdcemenieacr for 1is 0.0 and 0.1 mL/g for sandy and clayey
sediments, respectively, and for Tc it is 0.1 and 0.2 mL/g for sandy and clayey sediments, respectively.
The solubilities of Np and Pu in SRS cementitious materials were measured to be very low, i.e., the Kd
values were very high.

Rad Geochemical Sand Clay Oxidizing Cement Kd Reducing Cement Kd fCememLeach("

Data Kd Kd

Source 1 Stage, 2" Stage 31 1% Stage 2™ Stage 3" Cement-

Young Middle Stage Young Middle Stage leachate
Old Old impact
factor

I Kaplan 2007 0 0.6 8 20 0 8 20 0

This document 0.3 0.9 8 15 4 5 9 4 0.1
Np Kaplan 2007 0.6 35 2000 2000 200 2000 2000 200

This document 3 9 10,0009 10,0009 5000  10,000®  10,000® 5000 1.5
Ra Kaplan 2007 5 17 100 100 70 100 100 70

This document 5 17 100 100 70 0.5 3 20 3.0
Pu Kaplan 2007 270 5900 5000 5000 500 5000 5000 500

This document 290 5970 10,000 10,000 2000  10,000®  10,000® 2000 2.0
Sr Kaplan 2007 5 17 1 1 0.8 1 1 0.8

This document 5 17 15 15 5 15 15 5 3.0
Tc Kaplan 2007 0.1 0.2 0 0 0 5000 5000 5000

This document 0.6 1.8 0.8 0.8 0.5 5000 5000 1000 0.1
U Kaplan 2007 200 300 1000 1000 70 5000 5000 5000

This document 200 300 250 250 70 2500 2500 2500 3.0

@ Np sorption best represented by a solubility value of le-13 M under reducing conditions and le-12 under oxidizing conditions.
® Sorption best represented by an apparent solubility value of 1e-12 M under oxidizing and reducing conditions.

© Cement-leachate impact factors, fremenieach are used in the vadose zone beneath cementitious structures, such as cement vaults or
cement-filled tanks, to adjust Kd values to account for the influence of cementitious leachate on radionuclide sorption to sediments.
KdcementLeach = Kd X feemenreacn-  Guidance is provided in this document on when and how deep in the vadose zone to apply the
Cement-leachate impacted Kd value, which is new to the SRS PA with this document.

As part of the PA maintenance plan, future program needs were identified, including developing a
reactive transport code for certain aspects of the PA, continued research in colloid-facilitated transport,
measuring ranges and distributions of cementitious materials, and measuring radionuclide sorption in the
presence of cementitious leachate.
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2.0 OBJECTIVE AND SCOPE

The objectives of this document are to explain the following as they relate to performance
assessment’s (PAs) conducted at the Savannah River Site (SRS):

1.

the geochemical conceptual model,

2. the approach used to select values for the numerical parameters of these conceptual

3.
4.

5.

models,

the assumptions made to assure that the conceptual and numerical models are reasonable,
the recommended geochemical input values for the PA and justification for their
selection, and

identification of critical data needs.

The scope of this document follows.

1.

To provide geochemical input values for PA modeling of the:

Slit Trenches,

Engineered Trenches,

Low Activity Waste (LAW) Vault,
Intermediate Level (ILV)Vault,
TRU-Pad-1,

Naval Reactor Component Disposal Areas,
Components-in-Grout Trenches,

Saltstone Disposal Facility, and

Closed Liquid Waste Tanks.

To provide geochemical input values for PA modeling of the radioactive and the stable
isotopes of the following 64 elements: Ac, Ag, Al, Am, Ar, As, At, Ba, Bi, Bk, C, Ca,
Cd, Ce, Cf, Cl, Cr, Cm, Co, Cs, Cu, Eu, F, Fe, Fr, Gd, °H, Hg, I, K, Kr, Lu, Mn, Mo, N
(as NOs and NO;) Na, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Pt, Ra, Rb, Re, Rn, Sb, Se, Sm,
Sn, Sr, Tc, Te, Th, T, U, Y, Zn, and Zr.

The duration of interest varies between calculations but is commonly 1000 years, 10,000
years, or until the maximum dose is obtained. Thus, if geochemical conditions are
expected to change with time, such as redox conditions, appropriate adjustments to the
geochemical conceptual and numerical models must also be made.
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3.0 PHILOSOPHY AND ASSUMPTIONS

The basic philosophy of the geochemistry applied to the PA was to utilize mechanistic
studies under controlled experimental conditions to provide the paradigms for the conceptual
models and empirical studies to provide input values to help

quantify these conceptual models. Radionuclide The t}’laSiQ Phﬂosocli’};}’ underpinnif}lg the
partitioning between the aqueous and solid phases was geochemistry modeling was to utilize

. . e e . mechanistic studies to provide
descrlbeq using the dlstr}butlpn.coefﬁ01§nt, Kd value, and conceptual models and empirical
the solubility concentration limit. A series of look-up tables | studies to provide input values for these

were prepared containing these parameters that vary with conceptual models.

the type of porous media (e.g., sandy sediment, clayey
sediment, cementitious material), the presence of strong complexing ligands in the groundwater
(e.g., cellulose degradation products), and in the case of cementitious materials, the age of the
solid and the presence or absence of slag (a strong reducing agent).

Section 3.1 contains a description of the differences between the theoretical and empirical
distribution coefficients and their relation to the retardation factor, a parameter in reactive
transport models that describes geochemical interactions. Section 3.1 is followed by a
description of solubility constraints and how they differ from distribution coefficients (Section
3.2). Importantly, it was decided not to employ more mechanistic surface complexation models,
which are discussed in Section 3.3. While the PA has employed such models to describe limited
data sets (Serkiz and Kaplan 2006), their application to the large heterogeneous systems
described in the various PAs would not be appropriate at this time due to the large amount of
input data required.

3.1 Theoretical Distribution Coefficients, Empirical Distribution Coefficients,
and their Relation to Retardation Factors

Coupled reactive-transport modeling seeks to integrate groundwater flow with transport of
contaminants by fluid-sediment interactions to create a model capable of predicting spatial and
temporal distribution of contaminants. The typical approach is to establish parameters
describing fluid-sediment interactions based on the literature, or preferably based on site-specific
measurements. The fluid-sediment interactions may consist of adsorption-desorption, ion
exchange, and precipitation-dissolution reactions. Some models consider these reactions
separately. However, the most common approach is to incorporate all of these reactions into one
Kd value. The Kd value is the simplest construct describing contaminant sorption' to sediments.
It is the ratio of the contaminant concentration sorbed to the solid phase divided by the
contaminant concentration in the liquid surrounding the solid phase (Equation 1):

! Sorption in this text is defined to include all processes that remove solutes from the aqueous phase, including,
adsorption, absorption, partitioning into the organic matter, complexation, precipitation, and co-precipitation. These
terms are described in detail by Sposito (1989).
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Kd — gsolid , (1)

liquid

where Cyyiq (mol g'l) and Cjiguia (mol mL'l) are the concentration in the solid and liquid phases,
respectively. It is important to note that sorption, as expressed by Kd values, is normalized by
mass, and not volume, as transport modelers use, or surface area, as surface chemist use. First
and foremost, it is assumed that steady state is achieved and that kinetic is not an issue. Sorption
kinetics is typically not an issue for groundwater flow rates that generally do not exceed cm per
day, thereby providing long aqueous/solid phase contact times.

Contaminant transport modelers commonly use Kd values to account for chemical
interactions between the contaminant and the porous media. The Kd value is used to define the
retardation factor, (R unitless) which is the ratio of the average linear velocity of water
(0w, m s™) divided by the average linear velocity of the contaminant (v, m s™). For water
saturated systems, the Kd value is related to the R, by the bulk density (pp, g cm™) and the
porosity (1, cm® cm™) as follows (Valocchi 1984, Bower 1991):

R, === [1 G J @)
p= )

c

The bulk density and porosity terms in Equation 2 convert the mass-normalized Kd value into a
volume-normalized value. Note that for partially saturated sediments, such as in the vadose
zone, the porosity term, 1, is replaced by the volumetric water content of the vadose zone
sediments.

The theoretical distribution coefficient is a thermodynamic construct. It is the ratio of the
concentration of a species reversibly adsorbed/exchanged to surface sites divided by the
concentration of the species in the surrounding solution. Using uranyl as an example, the
definition of a species-specific Kd as a thermodynamic construct (Kdnermo) 1S:

X=U0;"

Kd =
thermo U022+

3)

where X=UO,*" is the activity of the uranyl species reversibly adsorbed to a specific surface site
X, and UO,*" is the activity of dissolved “free” uranyl species at equilibrium with the surface site
X. Among the many assumptions underpinning Kdy.,mo 1s that adsorption is instantaneous, fully
reversible (i.e., the rate of adsorption is equal to the rate of desorption), linear (i.e., the
proportional adsorption of a contaminant is not influenced by the aqueous contaminant
concentration) and the presence of adsorbed species does not influence subsequent adsorption of
other dissolved species. Thus, a single distribution coefficient is used to represent both sorption
and desorption of each contaminant species for a specific adsorbent (solid phase with one type of
surface site) and for a specific macro solution chemical composition.
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However, in order to apply the Kd construct to contaminant transport and performance
assessment calculations, the definition of the construct is relaxed. The definition needs to be
relaxed for several reasons. In natural systems, a multitude of different types of sorption sites
and aqueous species exists. For example, Sposito (1989; pg. 69) calculated that a typical soil
solution can easily contain 100 to 200 different soluble complexes.

Also, it is very difficult to measure the thermodynamic activity of individual chemical
species on the adsorbents’ surfaces. Furthermore, the measurement of thermodynamic activities
of dissolved species is rarely performed and, as mentioned in discussion of Equation 3, for
adsorbates on solids, no techniques exist for the measurement of their thermodynamic activity.
The parameters that can be readily measured are the total contaminant concentration or
radionuclide activity (not to be confused with thermodynamic activity) as opposed to the
concentration/radioactivity of each individual species. Thus, the Kdsem, construct, as defined in
Equation 3, requires differentiating and quantifying each type of surface site and each solution
species. Additionally, spatial variability of the surface sites and groundwater chemistry in
natural systems cannot practicably be characterized to the degree necessary for the full
implementation of species’ specific sorption models, such as the triple layer surface
complexation model (see reviews by Kent et al. 1988 and Jenne 1998).

The empirical definition of the Kd value becomes the ratio of the concentration of the
complete suite of species, the sum of the total concentration of all species that include the
contaminant of interest, sorbed by an assemblage of surface sites, divided by the sum of the total
concentration of all species in solution. Again, using uranyl as an example, the definition of the
thermodynamic Kd construct would be for a simple system that contained three U(VI) species
[UO,*", UO,(OH)", and UO,(OH),"]:

D Adsorbed U Species  X=UO?" + X=UO, (OH)" + X=UO, (OH)}

Kdtherm - - 2 0
> Dissolved U Species Uo;* + U0, (OH)" + U0, (OH))

4

where X= is an average sorbent site (more than one sorbent site-type is expected in nature). The
numerator and denominator in Equation 4 are summed over contaminant species sorbed as well
as sorbent sites. The “empirical” Kd equation would be:

total U(VI)on solid
total U(VI)in solution

Kd Q)

empirical ~—

In an attempt to distinguish Kdermo from Kdmpirica, researchers, especially in Europe, referred to
the latter term as Rd (e.g., Bradbury and Sarott 1995). This is rarely used any longer, and
Kd,ppiricar 18 referred to simply as Kd, as is done in this text.

An important limitation of the Kdepiricar 15 that it in theory describes a very limited set of
conditions. It describes sorption for a specific contaminant, specific soil solution (e.g., pH,
dissolved organic matter, Eh, etc.) and soil solid phase properties (e.g., cation exchange capacity,
clay content, soil organic matter, etc.). Again, this definition is relaxed when it is used in
contaminant transport calculations.
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Among the reasons for selecting the “empirical” Kd construct for the PA, as exemplified by
Equation 5, are

1) the bulk of the existing sorption literature on radionuclide sorption, especially at SRS
can be classified as “empirical” Kd values,

2) under the expected low concentrations of the contaminants in the far field, sorption
can be considered to be independent of contaminant concentration and, therefore, Kd
is a constant for a given contaminant/geological material/water composition
combination under identical (geo)chemical conditions,

3) Kd can be used directly in all PA transport codes, and

4) perhaps most importantly, there is presently no thermodynamically-based conceptual
model or numerical code that is robust enough to predict accurately the degree of
radionuclide adsorption by natural sediments (see below).

By using site-specific materials, namely sediments or cementitious materials and
groundwater from disposal areas, it is possible to gather directly relevant data and not to rely on
extrapolation from other sediment and aqueous systems reported in the literature. The problem
with the rigorous thermodynamic species approach is that there

is presently no numerical or conceptual model developed thatis | wechanistic models, although

sufficiently robust to predict accurately the degree of impractical for PA purposes,
radionuclide adsorption by natural sediment (Sposito 1984, provide the necessary paradigms
Westall 1994, Westall 1986, Wang et al. 1997, Davis et al. upon which “empirical” Kd

values must be based.

1998). However, mechanistic models provide the necessary

paradigms upon which technically defensible “empirical” Kd values must be based. For most of
the data used in the PA geochemical data package, sorption experiments have been conducted
with site-specific sediment and site-specific groundwater, which also resembles natural vadose-
zone porewaters.

Another aspect of the Kd construct that is typically relaxed when used in contaminant
transport calculations is the chemical process that it describes. As pointed out earlier, Equation 3
implies an adsorption or exchange reaction that is

reversible. The laboratory Kd measured with complex Identifying the processes that govern
natural sediments and perhaps complex natural radionuclide chemical behavior is
groundwater solutes, often reflect not only adsorption and the single most important task

necessary for estimating Kd values.
Once the dominant geochemical
process is identified for a specific

exchange reactions, but also absorption, specific or
somewhat irreversible adsorption, surface complexation,

and varying degrees of (co)precipitation reactions. set of environmental conditions, the
Identifying the processes that govern radionuclide chemical | range of reasonable values for the
behavior is the single most important task necessary for “empirical” Kd parameter can be

narrowed.

estimating Kd values for a PA. Once the dominant
geochemical process is identified for a specific geological
and chemical environment, the range of relevant “empirical” Kd values can be narrowed.
Radionuclide geochemical processes have been ascertained primarily through experiments in
which a key parameter is systematically varied, e.g., suspension pH or radionuclide
concentration. The trends displayed during these experiments provide key information regarding
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radionuclide behavior and also shed light on which processes may be controlling the
radionuclide interaction between the solid and liquid.

The importance of first identifying the dominant geochemical process affecting radionuclide
concentrations in the mobile aqueous phase can be illustrated through an experiment conducted
by Kaplan et al. (1998a). In this experiment, as the pH of a sediment-groundwater slurries was
increased from pH 8 to 10, U(VI)-Kd values gradually increased from 1.3 to 3.5 mL/g. Above
pH 10.5 the amount of U(VI) removed from the aqueous phase increased by >500 fold. The
initial increase in Kd between pH 8 and 10 was attributed to increased cation exchange capacity
of the sediment. That is, the number of pH-dependent adsorption sites in the natural sediment,
which attract cations, increased as the pH increased. The latter more dramatic increase was
attributed to (co)precipitation of U(VI) with carbonate solid phases. These conclusions were
supported by independent solubility calculations. What we learn from this particular study is
much more than simply the magnitude of the Kd value that should be used as an input parameter
to a PA; we gain a plausible explanation of the processes governing U(VI) removal from
solution. As this example illustrates, changes in the dominant chemical processes may account
for an appreciable amount of variability in derived Kd values under different geochemical
conditions.

3.2 Solubility Constraints

In addition to the Kd construct, the solubility product, kg, (mol/L or M,) (both
thermodynamically and empirically based) are used to describe radionuclide geochemical
behavior in a disposal site. A kg, is used for conditions where the concentrations of the
radionuclides are believed to exceed the solubility of an assumed solubility-controlling mineral
phase. The selection of controlling solid phases for SRS PA activities was based on laboratory
experiments, calculations, and the literature. Once the solid phase was selected, the upper limit
of radionuclide concentration was calculated with the appropriate background electrolyte
composition. If the background electrolyte composition remained essentially constant, then the
solubility product was assumed to also be nearly constant. This has led some transport modelers
to refer to solubility products as constants but in reality the solubility product kg, varies with
solution chemistry.

When radionuclide concentrations exceed the solubility limit for some mineral, precipitation
can be expected and subsequent radionuclide aqueous concentrations and behavior is controlled
by solubility. At concentrations below the solubility product (Point A in Figure 1), the
radionuclide concentration will be controlled by the “empirical” Kd construct.
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olubility Control

Mgolid

Figure 1. Effect of aqueous metal (M,q) and solid metal (Ms1iq) concentrations on distribution
coefficients (Kd) and solubility product. Point "A" identifies the solubility concentration limit.

When the solubility-controlling solid could not be identified but empirical solubility tests
indicated that some unidentified phase was controlling solution concentration, then an empirical
solubility relationship was used. An example of this is presented in Figure 2. Figure 2 presents
data from Kaplan et al. (2006b) showing the desorption of Pu from a lysimeter which had been in
contact with the Pu for 24 years. The Pu was originally placed in the lysimeter as dissolved
Pu'"Y(NO3), dried on a filter. In this batch test, portions of the lysimeter sediment were put in
suspensions of varying pH and permitted to equilibrate.
The total equilibrated Pu solution concentrations were When the controlling solid could not
compared to data from Rai et al. (2001), showing PuO;(m) | beidentified but empirical solubility
solubility (more specifically, this phase oxidizing to Pu(V) | tests indicate that some phase was
and then solubilizing). The study by Rai et al. (2001) was tc}? ntrolling solution concentration,

. . . en an empirical solubility relation
conducted in the absence of sediment, simply an aqueous was constructed.
phase and the Pu solid phase. The main point to take from
Figure 2 is that the two data sets behave very similarly with respect to pH, except that they are
offset by a constant amount. Based on this and other data presented in the paper, Kaplan et al.
(2006b) suggested that porewater Pu concentrations in SRS sediments are largely controlled by
solubility. In this example, the solubility controlling phase is not known, and adsorption along
with solubility is likely controlling the total aqueous Pu concentrations. Thus, an apparent or
empirical solubility term may be appropriate to describe such data.
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Figure 2. Comparison of sediment desorption data (this study) from a lysimeter containing SRS
sediment and Pu (referred to as “This Study”’) and a Pu(V)/PuO,(am) 0.4 M NaClOy4 system (no
sediment present, 0.0018-um filtrates; Rai et al. (2001) (taken from Kaplan et al. 2006b)). Y-
axis represents Pu concentrations in porewater solutions.

Finally, in some cases, the empirical solubility concentration limit data may be simplified as
a constant concentration limit. This is especially true for the PA because little site/waste
form/engineered barrier solubility work has been performed that identifies the solubility-
controlling solids. It is also true that for short-lived radionuclides, the regulatory limits are
usually far lower than the solubility limits. For example, the solubility limit for Ra-228 (t;, = 5.7
yr) as RaSOy is several orders of magnitude greater than any regulatory limit. For these short-
lived constituents solubility limits rarely come into play.

33 Overview of Mechanistic Complexation Models

Mechanistic models explicitly accommodate the dependency of Kd values, or other sorption
values, on contaminant concentration, competing ion concentrations, pH-dependent surface charge
on the adsorbent, and solute species distribution. Incorporating mechanistic, or semi-mechanistic,
concepts into models is attempted because the models become more robust and, perhaps more
importantly, from the standpoint of the PA, scientifically defensible. There are several mechanistic
models that can describe solute adsorption; some are accurate only under limited environmental
conditions (Sposito 1984). For instance, the Stern model is a better model for describing adsorption
of inner-sphere complexes, whereas the Gouy-Chapman model is a better model for describing
outer-sphere or diffuse-swarm adsorption (Sposito 1984, Westall 1986). The complexity of
installing these models into existing transport codes that are favored for complete disposal system
performance assessment and the diversity of SRS waste leachate/sediment/contaminant
combinations of interest would require a data collection effort more intense and costly than is likely
to be available. A brief description of the state of the science is presented below. References to
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excellent review articles have been included in the discussion to provide the interested reader with
additional information.

Experimental data on interactions at the mineral-electrolyte interface can be represented
mathematically through two different approaches: 1) empirical models and 2) mechanistic models.
An empirical model can be defined as a mathematical description of the experimental data without
any particular theoretical basis. For example, the Kd, Freundlich isotherm, Langmuir isotherm,
Langmuir Two-Surface Isotherm, and Competitive Langmuir are considered empirical models by
this definition (Sposito 1984). Mechanistic models refer to models based on thermodynamic
concepts such as reactions described by mass action laws and material balance equations. Four of
the most commonly used mechanistic models include the Helmholtz, Gouy-Chapman, Stern, and
Triple Layer models (Sposito 1984). The empirical models are often mathematically simpler than
mechanistic models and are suitable for characterizing sets of experimental data with a few
adjustable parameters, or for interpolating between data points. On the other hand, mechanistic
models contribute to an understanding of the chemistry at the interface and are often used for
describing data from complex multi-component systems for which the mathematical formulation
(i.e., functional relations) for an empirical model might not be obvious. Mechanistic models can
also be used for interpolation and characterization of data sets in terms of a few adjustable
parameters. However, mechanistic models are often mathematically more complicated than
empirical relationships. Adjustable parameters are required for both mechanistic and empirical
models, but not for the Kd model.

Several mechanistic models have been proposed; however, their application to complex
natural sediments is not resolved (Westall and Hohl 1980, Sposito 1984, Westall 1986, Davis and
Kent 1990, Sposito 1989, Schindler and Sposito 1991). Any complete mechanistic description of
chemical reactions at the mineral-electrolyte interface must include a description of the electrical
double layer. While this fact has been recognized for years, a satisfactory description of the
double layer at the mineral-electrolyte interface still does not exist.

Part of the difficulty of characterizing this interface stems from the fact that natural mineral
surfaces are very irregular and non-homogeneous. They consist of many different micro-crystalline
structures that exhibit quite different chemical properties when exposed to solutions. Thus,
examination of the surface by virtually any experimental method yields only averaged characteristics
of the surface and the interface. Parson (1982) discussed the surface chemistry of single crystals of
pure metals and showed that the potential of zero charge of different crystal faces of the same pure
metal can differ by over 400 mV. For an oxide surface, this difference was calculated by Westall
(1986) to be energetically equivalent to a variation in the zero-point-of-charge of more than six pH
units. This example indicated that an observable microscopic property of a polycrystalline surface
might be the result of a combination of widely different microscopic properties and characterization
of these surfaces will remain somewhat operational in nature.

Another fundamental problem encountered in characterizing reactions at the mineral-electrolyte
interface is the coupling between electrostatic and chemical interactions, which makes it difficult to
distinguish between their effects. Westall and Hohl (1980) have shown that many models for
reactions at the mineral-electrolyte interface are indeterminate in this regard.
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Mechanistic or surface-complexation models were originally designed to describe well-
defined systems of little or no heterogeneity, a far cry from natural sediments. One method of
addressing heterogeneous systems is an empirical approach that Davis et al. (1998) and Davis et
al. (2004) refer to as the generalized composite approach. In this approach experimental data on
site soils are fitted to various stoichiometric sorption reactions and model formulations based on
reaction scheme simplicity and goodness-of-fit (Herbelin and Westall, 1999). This avoids the
necessity of detailed mineralogical characterization required in the more general approach that
Davis et al. (1998) and Davis et al. (2004) call the “component additivity”” approach. It is also
important to note that the authors of this approach do not assign specific binding sites (e.g., Fe-
oxide “B” sites or planar kaolinite sites) to the solid phases.

Data collection to support the generalized composite approach requires experimental
determination of surface complexation under all
mineralogical and chemical conditions expected within a o .

. . . ] additivity approach and generalized
plume. The resulting data permits calculating semi- surface complexation model provided
empirical geochemical sorption parameters that can then be | a much more robust description than
used to describe contaminant sorption for a wide range of the Kd construct (Kaplan et al. 2009).
environmental conditions at the study site. Less site-
specific data is required to support the component additivity approach and this approach can
simulate changing conditions more realistically than the generalized composite approach. For
example, if a phase is predicted to precipitate (or disappear) in the future it cannot be accounted
for in the generalized composite approach, whereas this can be incorporated into the component
additivity approach. The inclusion of these geochemical models into the PA is an eventual goal
and studies are presently underway to accomplish this goal (Serkiz and Kaplan 2006). One
recent successful application of this modeling approach has been with Eu (an analogue for
trivalent radionuclides), natural organic matter (an analogue for cellulosic degradation products),
and SRS sediment (Kaplan et al. 2010). The value this brings, albeit is still quite limited in
scope, is that a wide range of environmental conditions, in this case, soil type, pH, and natural
organic matter concentrations, can be modeled, a far more robust description than a Eu Kd
construct.

A recent application of the component

3.4 Unique Conditions Resulting in Enhanced Contaminant Transport of
Radionuclides

3.4.1 Cellulose Degradation Products

Cellulosic materials (e.g., wood, paper, and cardboard products) readily degrade in the
environment to form cellulose degradation products (CDP) in both the solid and dissolved (i.e.,
dissolved organic carbon; DOC) phases. Natural organic matter can greatly influence the
speciation and mobility of nonradioactive elements (Perdue and Gjessing 1990, Thurman 1985,
Stumm and Morgan 1981) and radioactive elements (Choppin 1989, Allard et al. 1989, Fairhurst
et al. 1995; and Ledin et al. 1994). Co-disposal of radionuclides with cellulosic materials is,
therefore, expected to influence nuclide fate and transport in the subsurface (Serne et al. 1993).
The disposal and degradation of wood products in the E-Area Slit Trenches and the Engineered
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Trenches are a source of organic matter that is expected to influence radionuclide fate and
transport.

A modest amount of research has been conducted to evaluate the effect of CDP on
radionuclide sorption to SRS sediments (Serkiz and Myers 1996, Serkiz et al. 1998, Serkiz et al.
1999, Kaplan and Serkiz 2004, Serkiz and Kaplan 2006, and Kaplan and Serkiz 2006). Initial
studies were strictly calculations describing radionuclide sorption in the presence of CDP using
available literature and limited SRS site-specific data (Serkiz and Myers 1996). This initial
modeling used published stability constants for reactions between low molecular-weight acids
(i.e., citric acid and EDTA) and radionuclides to approximate behavior of CDP. Laboratory
studies with U(VI) and Eu(IIl) were conducted and their results were introduced into numerical
models (Serkiz et al. 1998, Serkiz et al. 1999). These elements, along with Cs data, were then
used as analogues to generate recommended Kd values for use with a wide range of elements
(Serkiz 2000).

Most recently, Kaplan and Serkiz (2004) conducted a full-factorial study evaluating the
influence of varying concentrations of organic C (using fulvic acid as a surrogate for CDP), and
pH on the sorption of monovalent cations (K™ and Cs"), divalent cations (Ni*" and St*"), trivalent
cations (Ce’” and Eu®") and tetravalent cations (Th*" and Zr*"). Analogues were matched to ~30
radionuclides based on similarities in periodicity and chemical properties and a look-up table of
CDP-impacted Kd values were created as a function of soil type (sandy and clayey), pH and
organic carbon content. This data was later modeled using a first-principles approach to provide
a mechanistic geochemical understanding of the processes controlling the radionuclide-sediment-
CDP system (Serkiz and Kaplan 2006a). An interesting aspect of this data was that it showed
that at low to moderate CDP concentrations, the sorption of several radionuclides actually
increased due to the sorption of the organic matter to the sediment, which increased the
sediment’s sorption capacity for the radionuclides. Furthermore, this effect existed only at low
pH levels (pH <7), where some organic C sorbed to the sediment and did not remain in the
aqueous phase. At higher pH values, the dissolved C remained in solution and acted as a ligand
to complex the radionuclide, preventing it from sorbing to the sediment. This trend was true for
some but not all radionuclides. CDP constituents are subject to further biodegradation as they
migrate in a plume. In some cases, the enhanced migration may be a transitory effect. For
example, 1) the CDP may undergo microbial degradation or 2) even though the common cations
(Na, Ca, and Mg) form less strong complexes with the low molecular weight organic acids and
fulvic acid with time and distance, they will out-compete the stronger but less concentrated
radionuclide to form complexes with the CDP.

Kaplan and Serkiz (2006b) conducted sediment sorption tests with perrhenate (ReOy, as an
analogue for pertechnetate, TcOy'), selenate (Se04%), and iodide (I') and CDP. Iodide did not
sorb to the sediments. Perrhenate sorbed at very low concentrations and was inversely related to
pH and was not influenced by fulvic acid concentration additions. Selenate sorbed very strongly
to the sediment; the Kd values were >1040 mL/g for the sandy and clayey sediments at most pH
and fulvic acid concentrations.
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3.4.2 Colloid-Facilitated Transport of Contaminants

Introduction: Contaminant transport is traditionally modeled in a two-phase system: a
mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an
increasing awareness of a third phase, a mobile solid phase, or colloidal phase. Mobile colloids
consist of organic and/or inorganic submicron-particles that move with groundwater flow. When
radionuclides are associated with colloids, the net effect is that radionuclides can move faster
through the system than would be predicted without including colloids. This mode of
contaminant transport has recently come to the forefront because of the discovery of Pu on
colloids 1.3 km from their source at the Nevada Test Site (Kersting et al. 1999). Reviews of
colloid-facilitated transport of contaminants have been presented by McCarthy and Degueldre
(1993), McCarthy and Zachara (1989), and most recently by Kretzschmar and Schafer (2006).

Mobile colloid formation is commonly described as a three-step process: genesis,
stabilization, and transport. Colloid genesis describes how the submicron particles are formed in
groundwater. Stabilization describes how the colloids are brought into suspension, which is a
function of the colloid and groundwater composition and water flow forces. Transport describes
how the suspended colloids move through the porous media or are retained by physical forces
(such as diffusion, straining, or gravitational settling) or physicochemical attraction to the matrix.

Regarding the first step, colloid genesis, there is little doubt that radionuclide-bearing
colloids will be generated at the E-Area and Z-Area disposal sites. Ramsay (1988) presented
strong evidence for the existence of colloid particles in glass and cement leachate and provided
an in-depth review of the various types of colloids that can/may exist (e.g., glass fragments,
precipitation products, geological materials, secondary phases formed from glass leachate).
However, it is not clear whether environmental conditions at the SRS are conducive for colloid
stabilization and subsequent transport.

Field studies of colloid facilitated transport of Pu have been studied on the SRS by two
groups, the University of Georgia/SRNL (Kaplan et al. 1994)* and Woods Hole Oceanographic
Institution (Dai et al. 2002). Together their results indicate little or perhaps no colloidal transport
of Pu occurs. Kaplan ef al. (1994) measured Pu
associated with a filterable fraction in groundwater Pu transport is enhanced by colloids
recovered in F-Area, near the E-Area burial grounds and | @t the SRS. However, the Pu

. . . . concentration is extremely low,
the Saltstone disposal facility. This filterable fraction 25000 time below the drinking water

was pr(?sumed to be a colloidal fraction bgsed on standard. We study Pu in this system
specialized low flow collection and filtering techniques. because it provides a good tracer from
Very little Pu was found in association with colloids, a well defined source from a very
0.003 pCi/L #****Pu. To put this concentration in well characterized svstem (F-Area).

perspective, the Maximum Contaminant Level (MCL) for BI20py s 15 pCi/L (Federal Register,
Vol. 65, No. 236, December 2, 2000); thus the amount found associated with colloids was 5000
time less than the MCL. Even though these are small amounts, the point of studying Pu at this
site is that 1) Pu can be detected, 2) it has a known source (more on this below), and 3) the study

2 Kaplan et al. (1994) also detected Th, U, Am, Cm and Ra on colloids, and the fraction of radionuclides associated
with colloids increased as: Pu> Th > U > Am = Cm > Ra.
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site is a very well characterized with >200 wells and >20 years of groundwater monitoring
history.

The percentage of Pu retained by filters, increased as the pH of the plume increased, which
was also coincidental with distance from the point source. Inversely, the percentage of Pu that
passed through the smallest membrane, 500 molecular weight cutoff (MWCO; ~0.5 nm)
decreased with distance from the point source. The ratio between the Pu concentration of
colloids in well water and liquid in the source zone did not change in a systematic manner with
distance (or pH) in the field (Kaplan et al. 1994).

Dai et al. (2002) also conducted a colloid study in F-Area and concluded that colloids were
not involved in Pu transport. The difference between these two results, Kaplan et al. (1994)
reporting little colloidal Pu and Dai et al. (2002) reporting no colloidal Pu, may be attributed to
the latter sampling some eight years later in a somewhat more basic pH plume and to significant
differences in sampling and analytical techniques. Dai et al. (2002) used more sensitive
analytical methods but larger molecular weight cut-off membranes (permitted larger particles to
pass through (1000 MWCO (~1 nm)) to separate colloidal from the dissolved fractions than
those used by Kaplan et al. (1994; 500 MWCO, (~0.7nm)).

Woods Hole Oceanographic Institution and the SRNL returned to F-Area in 2004 to
characterize changes in Pu oxidation states and Pu association with colloids in groundwater
samples collected six years earlier (Buesseler et al. 2009). They reported small concentrations of
Pu associated with colloids. The percentage of Pu associated with colloids, 1 to 23%, was less
than that reported by Kaplan et al. (1994), 28 to 100%, but was more than that reported by Dai et
al. (2002), 0 to 10%. They concluded that Pu moved primarily in the dissolved state (and in the
higher Pu oxidation states). They reported that colloidal Pu increased systematically with
decreases in redox conditions. They observed greater dynamic shifts in Pu speciation, colloid
association, and transport in groundwater on both seasonal and decadal time scales and over
short field spatial scales than commonly believed.

Colloid Model: Modeling colloid facilitated transport of radionuclides in the SRS
subsurface environment is greatly hindered by the paucity of data on the subject. Measurements
presented by Kaplan et al. (1994), Dai et al. (2002), and Buesseler et al. (2009) were conducted
in the F-Area Seepage Basin plume, which is very acidic, pH 3 to 5.5 (background). As such it
does not reflect conditions expected in any of the PA scenarios. In fact, if anything, plumes of
interest to SRS PAs will likely have a background or alkaline pH due to the common use of
cementitious engineered barriers (Section 5.0). Given this important caveat, the Pu
concentration carried by colloids, based on F-Area results, were thousands of times below the
MCL (15 pCi/L), even though an estimated 7,000,000,000 pCi of ******Pu was disposed in the
seepage basins. At higher pH systems than that of F-Area, it is likely that colloids would play a
greater role in transporting contaminants. It is difficult to determine to what extent more mobile
colloids would exist in the various plumes of interest to the PA. If the number of colloids
increases by a couple orders of magnitude above that detected in F-Area, it is likely that the
groundwater concentration of strongly sorbing contaminants, like Pu, Ac, Am, Cm, Eu, or Th,
would increase due to the rise of their association with colloids. It is not clear that this increase
would necessarily result in exceeding MCL limits.
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Kaplan (2006b) conducted a series of colloid dispersion experiments using SRS sediments as
a function of ionic strength (the amount of salts in solution), pH, and soil type. pH values had a
significant effect on the dispersion of five SRS sediments. At background sediment pH values
(pH 4.2 to 5.9), there was minimal tendency for clays to disperse. As the pH was increased,
there was generally a critical pH above which dispersion occurred sharply. This critical pH was
between 5.7 and 6.2. These findings have implications to the Low-Level waste disposal systems
where cementitious materials are present. Cementitious materials will likely elevated pH
conditions above ambient levels. However, cementitious materials also create leachates that
have chemical properties that resist colloid dispersion, namely they have higher ionic strengths
and greater divalent cation concentrations than typical Savannah River Site groundwaters.
(Divalent cations tend to flocculate suspensions, whereas monovalent cations tend to be more
dispersing.) Future studies are planned to address the specific impact of cementitious leachate
on colloid dispersion properties. Perhaps more importantly, there is need for the development of
a site-specific conceptual model that would take into consideration potential mobile colloid
generation induced by pH changes propagated by ionic strength and pH changes induced by
cementitious leachate. Although a great deal was learned from the F-area plume (pH 3 to 4.5), it
is imperative to transfer that knowledge to an elevated pH scenario (pH 5 to 9).

4.0 CONCEPTUAL GEOCHEMICAL MODEL

To facilitate modeling the wide range of chemical conditions needed for performance
assessment and composite analyses on the SRS, 12 Environments were established. These
conceptualized Environments account for important geochemical parameters influencing
radionuclide sorption within a particular setting. As such, the Environments provide general
descriptions of important aqueous and mineralogical environmental parameters influencing
radionuclide interaction with the solid phase. Following is a list of each Environment and a
reference to the section in which they are described in more

detail: Environments are conceptualized
subsurface settings with defined
1. Clayey Sediment (described in more detail in aqueous, mineralogical, and solid
Section 4.1.1) phase properties that influence
2. Sandy Sediment (Section 4.1.2), radionuclide sorption.

3. Cellulose-degradation Produce (CDP) Impacted
Clayey Sediment (Section 4.1.3),

4. CDP-Impacted Sandy Sediment (Section 4.1.4),

Young Cementitious Solids (Section 4.2.1),

9}
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Moderately-aged Cementitious Solids (Section 4.2.2),

Aged Cementitious Solids (Section 4.2.3),

Cementitious-Leachate Impacted Sandy Sediment (Section 4.2.4),

9. Cementitious-Leachate Impacted Clayey Sediment (Section 4.2.5),

10. Cementitious-Leachate and CDP Impacted Sediments (Section 4.2.6 ),
11. Young Reducing Cementitious Solids (Section 4.3.1),

12. Moderately-aged Reducing Cementitious Solids (Section 4.3.2),

13. Aged Reducing Cementitious Solids (Section 4.3.3),

14. General Waste Forms (Section 4.4), and

15. Special Waste Forms (Section 4.5).

o=

For each Environment, 62 Kd values and/or apparent solubility values for are provided. For each
element and Environment a “best,” “minimum,” and “maximum” estimate of the Kd values
and/or apparent solubility concentration limits are provided. * The “best” estimates are presented
to provide guidance on what the most likely Kd values and apparent solubility concentration
limits are for a given condition. These values are based primarily on some central value of the
literature, SRS site-specific experimental data, or on expert judgment.

Ideally, all input data would be derived from experiments conducted under the appropriate
Environment. For example, much of the Clayey Sediment and Sandy Sediment Kd data was, in
fact, derived from sorption experiments conducted with site-specific sediments. Where site
specific data was not available, chemical analogues were used. For example, no site-specific
sorption data is available for Fr (francium) and Rb (rubidium), however, a great deal of SRS
sediment sorption data is available for Cs. Cesium behaves chemically very similarly to Fr and
Rb, all three elements are in Group 1A in the periodic chart, have a +1 valence, form weak
complexes, and exist in groundwater primarily as an uncomplexed monovalent free ion. For that
reason, Fr and Rb Kd values were approximated, using the measured Cs Kd values. Where site
specific data and reasonable analogues were not available, literature values were used. Careful
selection of these literature values was required to make sure that the experimental conditions
used to generate the Kd values were appropriate for SRS conditions. Professional opinion and
geochemistry experience were used where non-site-specific data were available and where
possible experimental evidence was provided to support technical judgment. “Literature Kd
values” are viewed as having a lower pedigree than those Kd values derived from site specific
conditions.

In summary, a ranking of the priority for selecting Kd values and apparent solubility
concentration limits follow:

* In the previous versions of this document (Kaplan 2007), a “reasonably conservative” value was provided. This
term was replaced with the “minimum” value, which has a different definition. The “reasonably conservative” term
represent lower-bounding values that take into consideration the range of physical, chemical, and mineralogical
conditions that often lead to enhanced radionuclide migration. The “reasonably conservative” value was ideally
based on the lower limit of multiple Kd value measurements or the upper limit of solubility measurements. In the
absence of sufficient data, the “reasonably conservative” value was based on an assumed range of values, using the
“Best” value as the central point in the range. For large values (Kd or solubility concentration limits > 1000 mL/g),
a range of an order of magnitude was used and for small Kd values or solubility concentration limits, a range of two
fold was used.
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1. Site-specific measured data,
2. literature experimental data, and
3. technical judgment.

The “minimum” and “maximum” estimates were based on experimental work conducted by
Grogan et al. (2008)° and Kaplan et al. (2009). In these data, Kd distributions and the 95%
confidence levels were estimated in 27 E-Area subsurface sediments for monovalent, divalent,
trivalent and tetravalent radionuclide cations and TcO,4. The “minimum” and the “maximum”
were set to the estimates of the lower and upper boundaries of the 95% confidence limits,
respectively (discussed in Section 4.6).

The low level radioactive waste has several different forms and as a result there are several
different types of facilities to dispose of this waste. They include paper, plastics, wood, cloth,
spent ion exchange resins, metal, concrete debris, and glass.
The degree to which the various radionuclides sorb to each Unless waste-form specific data
material is largely unknown. Therefore, the simplifying is available, the extent that a
assumption was made that unless waste-form specific data radionuclide sorbs to the waste

. . . form will be set equal to the
was measpred (discussed in Section 4.5), the extent that a extent that the radionuclide sorbs
radionuclide sorbs to the waste form was assumed to be to the solid phase (sediment or
similar to the extent that the radionuclide sorbs to the solid cement) immediately in contact
phase immediately in contact with the waste. Radionuclide | with the waste.

leaching from waste materials is discussed in Section 4.4.

4.1 Sediments

The subsurface environment beneath and near the waste units in E- and Z-Areas are assumed
to consist of two primary geological strata. This simplification of the subsurface is taken from
Phifer et al. (2006) and was based on particle-size distribution data and observations of several
borehole specimens made in the E-Area subsurface environment. Phifer et al. (2006) describe
the upper strata as extending about 7 m below the surface and having a finer texture than the
lower strata, which may extend some 27 m below ground surface. The upper layer has been
referred to as the Upper Vadose Zone, whereas the lower zone includes both the Lower Vadose
Zone and the Aquifer Zone. The water table in E- and Z-Area is approximately 15 to 25 m
below the ground surface. Additional information regarding the surface aquifer, the groundwater
monitoring well program, and groundwater communication between the unconfined and
confined aquifers may be found in McDowell-Boyer et al. (2000). An example of the texture of
an E-Area borehole, delineating the Upper and Lower Vadose Zone and the Aquifer Zone is
presented in Figure 3.

There were unique sorption values for a Clayey Sediment and a Sandy Sediment
Environments, meant to represent the Upper Vadose Zone and Lower Vadose/Aquifer Zones,
respectively. As mentioned above, site-specific data were used whenever possible. However,

> A manuscript using some of the data generated in Grogan et al (2008) is presently in review: Grogan, K, R. A.
Fjeld, D. I. Kaplan, T. DeVol, and J. D. Coates. 2010. Distributions of Radionuclide Sorption Coefficients (K ) in
Subsurface Sediments and Their Implications to Transport. Journal of Environmental Radioactivity. (In Review).
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where site-specific data were lacking, literature-derived data were used. Also important to note
is that the data provided in the data look-up table in Section 5.0 is broken down for each of the
12 Environments. The extent that environmental conditions deviate from their “ideal”
descriptions in this section, compromise the applicability of the selected data values. For
example, the Kd values provided for a Sandy Sediment Environment or a Clay Sediment
Environment would not be especially applicable for a wetland because the “ideal” description is
for a subsurface sediment with a much lower organic matter content than for a typical wetland.

4.1.1 Clayey Sediment Environment

The Clayey Sediment Environment was conceptualized as a subsurface sediment containing
a clay and silt content 25 to 45 wt-%, the mineralogy composed primarily of kaolinite, hydroxyl-
interlayered vermiculite, quartz, gibbsite, goethite, and hematite (most notable about its
mineralogy is that it contains very low concentrations of 2:1 clays, such as smectites and
vermiculites); organic matter concentration is low (<0.01 wt-%); pH is 5.5; and the sediment is
covered with Fe-oxides, giving it a reddish color.
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Depth Core % Fines
(m) Description (SiO, mud)

|

Upper
Vadose Zone

Lower
VVadose Zone

A 4 Water table

Aquifer

} Tan Clay Confining Zone
(TCCZ)

Figure 3. Example of an actual borehole profile in E-Area demonstrating the tendency for
sediments with a more clayey texture to exist in the Upper Vadose Zone, whereas sediments with

a sandier texture exist in the Lower Vadose and Aquifer Zones (Well BGO-3A, Grogan et al.
2008; Grogan et al. 2010).
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4.1.2 Sandy Sediment Environment

The Sandy Sediment Environment was conceptualized to have identical properties as the
Clayey Sediment except the clay and silt content was <25 wt-%. Most of the sorption
experiments from which data was considered for the look-up tables came from sandy sediments
with clay and silt concentrations appreciably <25 wt-%, closer to 8 to 12%. The pH is 5.5, there
1s low organic matter concentrations, and the sediment tends to have a yellowish color derived
from Fe-oxide coatings (most noticeably, goethite).

4.1.3 Cellulose-Degradation-Product (CDP) Impacted Clayey Sediment,
Environment

The CDP-Impacted Clayey Sediment Environment contains relatively high concentrations of
CDP relative to background conditions of the Clayey Sediment Environment (Section 4.1.1).
CDP will influence the tendency of radionuclides to sorb to sediments, and therefore to move
away from the buried waste. Several laboratory studies and surface complexation models have
been conducted to evaluate this phenomenon (Serkiz et al. 1998, Serkiz et al. 1999, Kaplan and
Serkiz 2004, Serkiz and Kaplan 2006; Kaplan et al. 2010). From these studies, the amount of
sediment clay content, pH, organic C content, contact time, and order of addition were evaluated.
CDP-Correction Factors, fcpp,pr.c, were estimated from this work that varied as a function of pH
and organic carbon content:

_ KdCDP,pH,C:x (6)

fCDP,pH,C = Kd
pH,C=0

As is the case with all Kd values, fcppn.c values are also very sediment specific. The
numerator, Kdy,y c=,, 1s a measure of the radionuclide Kd value with a sediment at a given pH and
organic carbon content dissolved in the solution. The denominator, Kd,y c-g is a measure of the
radionuclide Kd value with the same sediment and the same pH, but without any cellulose
degradation products present in the solution. The CDP-correction factor was used to calculate a
CDP-corrected Kd value, Kdcpp:

Kd pp = fepp x Kd . (7

For the purposes of this document, the Kd values used to calculate Kdcpp were calculated by
multiplying the Kd values in Table 13 by the fcpppu c values presented in Table 21 (the later
were taken from Table 14 in Serkiz and Kaplan (2006) and Table 7 in Kaplan and Serkiz
(20006)).

Overall, it is important to realize that CDP generally increased Kd values at low CDP
concentrations, and it was not until much greater concentrations that Kd values decreased.

The experimental work included monovalent (Cs"), divalent (Ni*", and Sr2+), trivalent (Ce’"

and Eu’") and tetravalent (Zr*" and Th*") cations and anions (iodide, perrhenate, and selenate) at
three pH and 5 organic C concentrations (Kaplan et and Serkiz 2004; Kaplan and Serkiz 2006).
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A detailed description of the application of surface complexation speciation modeling of Eu
sorption to SRS sediments in the presence of CDP as a function of pH is presented by Kaplan et
al. 2010. The sorption results for these specific species were then applied as analogues to
provide estimates of how other radionuclides with similar

chemical properties may behave. The laboratory results Overall, it is important to realize that
were consistent with expected results based on CDP generally increased Kd values at
considerations of the relative strengths of ligand bonds low CDP concentrations, and it was not

until much greater concentrations that

between radionuclides and organic matter, versus organic
Kd values decreased.

matter-sediment surface bonds, versus radionuclide-
sediment surface bonds. An example of the data showing
Eu sorption to clayey and sandy SRS sediment is provided in Figure 5. Additional data of other
radionuclides is presented in Section 9.0: Appendix A: Additional Information Regarding
Cellulose -Degradation-Product Correction Factors For Kd Values. In some cases an increase in
dissolved organic C concentrations resulted in a systematic decrease in Kd values. In other
cases, the presence of dissolved cellulosic materials resulted in an increase in Kd values at low
organic C concentrations (<95 mg C/L) and a decrease in Kd values at highest organic C
concentration (222 mg C/L; except for Cs). This occurred because the organic carbon
partitioned onto the sediment surfaces and increased the sorption capacity of the sediment (which
has a relatively very poor sorption capacity, a cation exchange capacity of SRS sediment is
commonly between 1 and 3 meq/100 g).

The Kdcpp will be employed as long as cellulosic degradation materials emanate from the
waste. For each waste source containing CDP (see Table 3 for a list of disposal units that
contain CDP), the total amount of CDP (in units of mass of organic carbon) will need to be
estimated. The conceptual model underlying the reactive transport models will release carbon
into the groundwater from the CDP at a constant
concentration (rate) of 5 mg/L C until all the carbon in the It was previously assumed that CDP
CDP is exhausted. This value is based on an average of 5.2 | would leach from the source terms
mg/L TOC estimated from 158 field total organic carbon at a constant rate of 95 mg/L. This
(TOC) measurements taken in groundwater samples rate was selected to produce the

. general lowest set of Kd values.
collected from near or beneath the Low-Level Waste Burial | 1y .7 ot estimate is now believed to
Grounds between October 1982 and June 1985 (Ryan 1983 | be 5 mg/L C CDP based on data
and reviewed in MclIntrye and Wilhite 1987). Because collected from an adjoining site on
there are few, if any, TOC measurements from beneath the | the SRS. This results is CDP
E-Area Slit Trenches, this is an ideal analogue site because | impact factors that do not lower the
. ) . .. . Kd values greatly.
it received CDP waste in a similar capacity and purpose as
E-Area and it is located in an adjoining field site, as close
as 70 m from some of the Slit Trenches (Figure 4). The 5 mg/L value represents the average
concentration expected in the entire source term. As such, the average groundwater TOC value
measured under the Low-Level Waste Burial Grounds provides an ideal analogue site in terms of
similarity of type of waste, sediment moisture content (the primary control on microbial activity
that regulates CDP degradation rate), type of sediment, and waste handling practices.
Conceptually, the TOC concentrations are expected to be extremely high, several hundred mg/L
within centimeters of the aging cellulosic source, such as paper, but the concentrations are
expected to quickly dilute as it gets further away from this source, such as in the middle of
disposed concrete rubble piles. The 158 TOC samples provided a volume averaging that was
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collected close to the buried waste at the LLW Burial Sites offer excellent insight as to TOC
concentrations close to the source.

Short-term laboratory leach experiments with various solids containing the precursors to
CDPs can create a wide range of organic C concentration in solution depending on the solid to
liquid ratio, types of solids used, and age of suspension (Serkiz et al. 1998, Serne et al. 1993).
To provide some context, a 20 mg/L organic C solution has a slight yellow color to it. A 95
mg/L organic C solution is highly colored and produces a translucent yellowish-orange solution.

All fcpp values will be taken from experimental data generated at 20 mg/L (no 5 mg/L C
experimental data is available) (Kaplan and Serkiz 2004, Table 14; Kaplan and Serkiz, Table 7).
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Figure 4. Examples of waste disposed in the Low Level Waste Burial Ground. Note the
disposal of cellulose degradation products similar to present waste disposal in E-Area Slit
Trenches presented in Figure 9.
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Eu Sorption to the Clayey Sediment
as a Function of pH and SR-NOM Concentrations
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Figure 5. Eu Kd values as a function of pH and SR-NOM concentrations in clayey (top) and
sandy (bottom) sediments (all Kd values >20,000 mL/g are greater-than values).

Kaplan and Serkiz (2006) conducted CDP-corrected Kd measurements with TcO4
(pertechnetate), SeO4” (selenate), and I (iodide). Using fulvic acid as an analogue for CDP, and
perrhenate (ReQOy") as an analogue for TcOy4, they concluded that CDP-Kd I values for I and Tc
will not differ from non-CDP-impacted Kd values. Selenate sorbed very strongly to the sediment;
the Kd value was >1040 mL/g for the sand and clay sediments at most pH and fulvic acid
concentrations. In the sandy sediment, but generally not in the clayey sediment, as the fulvic
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acid concentrations increased, the selenate Kd values decreased. These are the first SeO4>
sorption tests using SRS sediments; therefore they provide site specific values for both CDP and
regular conditions.

As mentioned briefly above, more sophisticated modeling of the influence of CDP on Eu
sorption to SRS sediments has been developed using surface complexation modeling, component
additivity model, and thermodynamic calculations (Kaplan et al. 2010). This model is more
dynamic and robust than the simple Kd approach presented here, being applicable to a wide
range of dissolved organic carbon contents (CDP), 0 to 200 mg/L C, and pH levels 4 to 7.
However, it its modeling intensive and we do not have enough input parameters for all 55
radionuclides of interest for the PA.

4.1.4 CDP-Impacted Sandy Sediment Environment

The CDP-Impacted Sandy Sediment Environment contains relatively high dissolved organic
matter relative to the Sandy Sediment Environment (Section 4.1.2). Kd values are calculated the
same way as those used in the CDP-Impacted Clayey Sediment Environment except instead of
using Kd values for a Clayey Sediment Environment, values for a Sandy Sediment Environment
are used (Section 4.1.3).

4.2 Cementitious Materials

The conceptual model used to describe radionuclide geochemistry in cementitious
environments was taken from Bradbury and Sarott (1995). They described three types of
physicochemical environments, or stages, that all cements
and cementitious materials progress through as they age Cementitious materials are
(Figure 6). As such, these three stages represent the assumed to progress through
progression that all types of cementitious materials would three stages as they age. Each

. . stage has unique physical,
undergo as they age. The duration of each stage is controlled mir%eraloglilzl;?uan% zhemical

by how much pore water (and to some extent the water properties, resulting in unique Kd
chemical composition) passes through the cement, thereby and/or solubility concentration
promoting cement degradation; as can be seen by the limits for each stage.

exchange cycles, or pore volumes, the X-axis of Figure 6.

The advantage of using Figure 6 and the concept of exchange cycles is that it is generic in nature.
Once flow models have been established for a specific facility, the exchange cycles for that
facility can be quantified. Facilities with more concrete will have larger exchange cycles than
those with less concrete.

Development of this conceptual model was based on laboratory studies as well as on natural
analogue and ancient cement/concrete characterization studies. One of the key aqueous
parameters used to identify when one stage ended and the next one started was pH (Figure 6).
The pH changes are the result of mineralogical transformations that occur as the cement ages.
The cement solids present in each stage are assumed to have unique sorption properties and for
this reason, unique Kd values and solubility concentration limits were assigned to the cement
solids in each stage. A brief description of each of the three stages is described below in
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Sections 4.2.1 through 4.2.3, while a more detailed discussion is presented in Bradbury and
Sarott (1995) and Krupka and Serne (1998). Unique Kd values and solubility concentration
limits for oxidizing and reducing cementitious materials is provided (Section 5.0). Reducing
cements are used to enhance the immobilization of certain redox-sensitive radionuclides, such as
Tc, U, and Np, and are created by adding blast-furnace slag to the cement mixture. Because no
SRS site-specific sorption data were identified for cementitious materials, the values included in
the look-up tables came entirely from the literature (Table 17 through Table 20).

PH Lo s »le >
Region I ' Region II ' Region I
1281 o i
e . i
124 | - - o e *%s e =
= ' —
120 | 0
116 .
112 F .
[« Experimental data i
108 |- — Modeled }Atkmon et al (1988)
104 E
100 — L L
i 10 102 10° 10

Total volume of water per unit mass of anhydrous cement (itre kg'")

Figure 6. Conceptual model used by Bradbury and Sarott (1995) describing the influence of
exchange cycles (X-axis) on pH and the designated Stages (or regions) (Atkinson et al. 1988).

4.2.1 Young Cementitious Solids (1** Stage) Environment

The Young Cementitious Solids Environment of the 1** Stage occurs immediately after the
cement hardens and infiltrating water passes through it. The cement porewater is characterized
as having a high pH (>12), high ionic strength, and high concentrations of potassium and
sodium. The high concentrations of these monovalent cations result from the dissolution of
alkali impurities in the clinker phases. Hydration continues during the 1* Stage with the
formation of calcium-silicate-hydrate gels (a common shorthand for this gel is C-S-H, which is a
Ca0-Si0;-H,0 amorphous material that hardens and constitutes “cement”) and Portlandite
[Ca(OH),]. The composition of the cement pore fluid is at equilibrium with Portlandite during
this time.

Based on the modeling estimates provided by Berner (1992), the 1% Stage may last between 1
and 100 exchange cycles. An exchange cycle, or cycle, is a unitless parameter that represents the
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cement pore volume, i.e., the length of time it takes for a pore volume to pass through a
cementitious system. This in turn can be quickly converted into units of time once the water
travel rate through a specific cementitious facility is established. Unfortunately, assuming a low
exchange cycle value for this stage may be conservative for some elements, such as Pb, while not
conservative for other elements that tend to form precipitates at high pH values (i.e., have high
Kd values and low solubility concentration limits). Therefore, it was assumed that the 1** Stage
lasts 50 exchange cycles for SRS relevant scenarios.’

For a calculation related to Pb leaching from a Components-in-Grout Trenches, Kaplan and
Myers (2001) assumed the 1% Stage was 70 exchange cycles (not 50 exchange cycles as
recommended here). Because this is the stage in which the lead solubility was at its highest,
producing the highest dissolved lead concentrations’, a conservative assumption would be to
assume the stage lasts 100 cycles. However, because diffusion is an important chemical process
influencing the leachate chemistry, the low ionic strength and low inorganic carbon
concentration of SRS groundwater will likely limit the concrete/cement aging process occurring
during this stage, thereby lengthening the duration of this stage. Carbonate reacts with Ca from
the calcium-silicate-hydrate gel (CHS) to promote degradation. Another reason for selecting 70
cycles for the duration of the 1 Stage was for convenience. The PA for the E-Area LLW
Facility assumed the concrete infiltration rate was 4 cm/yr for the first 1050-years; 70 cycles
corresgonds to 1050 years (assuming 60-cm thick concrete/cycle, 4-cm/yr) (Kaplan and Myers
2001).

4.2.2 Moderately-aged Cementitious Solids (vae Stage) Environment

During this stage, the soluble salts of the alkali metals are all dissolved and washed out of the
cement solids. The pH of the cement pore water is controlled at a value of ~12 by the solubility
of portlandite. The calcium-silicate-hydrate gel and portlandite are the major solid phases
present. The 2™ Stage may last for a long time, and its duration depends on how much water
percolates through the system and the mass of cement
present in the concrete structure. The total dissolved

Concrete in the 2™ Stage binds most
radionuclides relatively strongly, and

CleClun’l IS 20 mM, the pH IS Strongly buffered at pH ’\‘12, the porewater buffered at pH ~12. Tt
and the silica concentration is very low, <0.03 mM/L. The is anticipated to last 500 exchange
flux of water must dissolve all the slightly soluble cycles (pore volumes).

portlandite before the leachate chemistry changes.

Berner (1992) determined that the 2™ Stage lasts between 100 and 1000 cycles. According
the Bradbury and Sarott (1995) and adopted here, most radionuclides have higher Kd values and
solubility concentration limits in the 2™ Stage than in the 3" Stage. Therefore, a lower 2™ Stage

8 This value of 50 exchange cycles or pore volumes is a recommended value if a project-specific value is not
calculated using a reactive transport model. For example, for calculations associationed with the SRS Liquid Waste
Tanks Closure PA, a reactive transport model was using based a site specific data to estimate transitions between
Stages 1, 2 and 3 (Denham 2009)

7 Based on thermodynamic calculations presented in Kaplan and Myers (2001), as the pH increases from 12.2 to
12.8, the solubility of Pb(OH)xso1iq) sharply increases and the concentration of Pb(OH)ﬁ"(aq) increases. At pH 12.8,
all of the Pb solid was total dissolved.

¥ 70 exchange cycles x 60-cm cement/exchange cycle x V4 yr/cm = 1050 years
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lifespan is conservative. The 2™ Stage Kd values and solubility concentrations limits are
generally higher lower than those in the 1% Stage, except in the case where cation exchange is the
predominant sorption mechanism, in which case the Kd in the 1* Stage will be lower due to high
salt concentrations in the porewater. Taking into consideration the slow dissolving attribute of
the low-carbonate SRS groundwater when in contact with cementitious solids, an exchange cycle
of 500 cycles was assumed.

4.2.3 Aged Cementitious Solids (3" Stage) Environment

In the 3" Stage, the portlandite has been fully dissolved/reacted and the solubility or
reactions of calcium-silicate-hydrate gel with the infiltrating water controls the pH of the cement
porewater/leachate (Figure 6). The calcium-silicate-hydrate gel starts to dissolve incongruently’
with a continual decrease in pH until it reaches the pH of the background sediment, pH 5.5. At

the end of this evolution, the 3™ Stage can be conceptualized

. .ge . oge : rd :
as leaving only silica (SiO,) as the solubility control for the Concrete in the 3™ Stage binds
radionuclides the least, and the

pore Wate?r pH.' The ionic strength of thg cement leachate porewater buffered by the CSH gel at
during this period is r.elatlvely loyv and its pH drops to ~‘10 pH10 to 5.5, SRS background pH. Tt
and lower over long times. Solution calcium concentrations is anticipated to last 7000 exchange

decrease to 1- to 5-mM and silica concentrations increases to cycles (pore volumes).

2-to 6-mM. At very high cycle numbers, other sparingly
soluble solids, such as brucite [Mg(OH),], may buffer the solution pH and dissolved cation
concentrations.

Berner (1992) suggested that the duration of the 3™ Stage is between 1000 and 10,000 cycles.
Because SRS groundwater is low in carbonate concentrations, a longer duration for this stage
would be appropriate; a “lifetime” of 7000 cycles was selected for the SRS PA calculations. A
discussion of estimating the longevity of concrete in the subsurface, with an example of how
environmental conditions at SRS are favorable because of low dissolved carbonate
concentrations, is presented in Appendix B: Cement Lifespan.

4.2.4 Cementitious Leachate Impacted Clayey Sediment Environment

Cement porewater contains moderate levels of dissolved solids, resulting in the chemistry of
the water altering once it passes through it. Demonstrating this point under SRS conditions, Dr.
Miles Denham (SRNL, personal communications) conducted thermodynamic simulations
passing SRS groundwater through concrete as it degraded through three successive idealized
phases: Stage I when Portlandite is the dominant phase controlling solid phase dissolution; Stage
IT when calcium-silicate-hydroxide (CSH) gel is the dominant phase; and Stage III, when calcite
is the dominant phase (Table 1). The most important point to take away from this table is that
the pH and ionic strength (i.e., the porewater’s salt content) during the two early stages of
cement aging, Stages I and II, are very different from the background SRS Groundwater. The
leachates have a much higher pH and ionic strength. Such background solutions increase

? Incongruent dissolution is dissolution to give dissolved material in different proportions from those in the original
solid.

42



SRNL-STI-2009-00473

sorption via promoting precipitation, e.g., UO,>" (Kaplan et al. 1998), and in other cases
decreasing sorption via competing for sorption sites (Kaplan et al. 1998; Cantrell et al. 2007).
For example, using Hanford sediment Kaplan et al. (1998) showed that Se had Kd values of 6
mL/g under natural groundwater conditions (pH 8.1). When the ionic strength was increased the
Kd values decreased (Kd =4.11 at 1 M NaClO,) or when the pH was increased the Kd values
decreased (Kd = 0.04 at pH 11.9), suggesting that anionic competition, likely hydroxide or
carbonate, and/or anion exchange capacity was involved in the desorption process. Neither I nor
TcOy4 sorbed occurred in the Hanford sediment under natural conditions or when the pH was

increased to pH 12.

Table 1. Calculated Leachate Chemical Compositions During the Three Stages of Cement
Degradation. For Comparison, the Chemical Composition of an SRS Groundwater.

Cementitious Cementitious Cementitious SRS
Leachate — Stage | Leachate — Stage | Leachate — Stage | Groundwater @
1@ I (b) I ©

pH 12.37 11.14 9.56 5.79
Eh (V) 0.49 0.56 0.66 0.33
Ionic Strength 4.6e-2 8.2e-3 7.0e-4 3.0e-4
A’ (mol/L) 2.19e-5 1.05e-7 1.323e-5 3.33e-5
Ca” (mol/L) 1.83e-2 2.92¢-3 1.43e-4 1.01e-5
CI" (mol/L) 2.64e-4 2.65¢e-4 2.65e-4 7.65e-5
Fe’ (mol/L) 6.87¢-10 3.63e-11 1.70e-12 9.93e-7
HCO3™ (mol/L) 4.59¢-6 6.90e-6 1.81e-4
Mg”" (mol/L) 1.04e-8 2.16e-5 4.99e-5 2.92e-5
Na " (mol/L) 1.33e-4 1.33e-4 1.33e-4 1.20e-4
SO4* (mol/L) 5.16e-5 2.08e-6 2.08e-6 6.41e-5
Si0, (mol/L) 1.29¢-3 2.95¢-3 ~0 1.69e-4

@ Stage I solid phase (Portlandite dominant) was modeled consisting of 50-g hematite, 176-g
ettringite, 669-g Ca-silica-hydride phase, 13-g hydrotalcite, 171-g C4AH13 phase, 138-g

Portlandite, and 1-g calcite; 110 pore volumes.
®) Stage II solid phase (CSH dominant) was modeled consisting of 51-g hematite, 366-g CSH,
17-g hydrotalcite, and 6-g calcite; 1143 pore volumes.
© Stage 111 solid phase (Calcite dominant) was modeled consisting of 52-g hematite, 19-g
hydrotalcite and 7-g calcite; 2380 pore volumes.
@ Uncontaminated groundwater on the SRS, Well No P19D.
) Calculations by Dr. Miles Denham (SRNL).

The influence of cementitious-leachates on uranyl sorption to Hanford sediment was found to
gradually increase from 1.07 to 2.22 mL/g as the pH increased from 8.3 to 9.3 (Kaplan et al.
1998). AtpH >10.3, precipitation occurred and the Kd value increased suddenly to >400 mL/g;
the precipitation did not occur unless the sediment was present, suggesting the mechanism was
heterogeneous (as opposed to homogeneous) precipitation. Thus, in the cementitious leachate
impacted environment at the Hanford Site, they use in their PAs much higher Kd values, 100

43




SRNL-STI-2009-00473

mL/g, than under ambient, 0.2 mL/g (Cantrell et al., 2007; Cementitious Leachate Sediment
Value: Waste Chemistry/Source Category 6: IDF Cementitious Waste High Impact, Table 3.2,
Page 3.10. Ambient value: Waste Chemistry/Source Category 4: Low Organic/Sow Salt/Near
Neutral, Table 3.2, Page 3.9).

In Appendix C: Influence of Cementitious Leachate on Sediment Buffering Capacity,
calculations are presented that demonstrate that the hydroxides emanating from the pH 11/ionic
strength 10 cementitious leachate during Stages I and II of concrete degradation will likely
overwhelm the buffering capacity of SRS subsurface sediments. This high ionic strength plume
will be dominated by hydroxides and Ca”" (Table 1). In this calculation, a 1-m high cementitious
slab would be expected to alter the buffering capacity all the way down to the water table during
the early stages of concrete aging (Stage I). The altered chemistry would remain during the first
two stages of the PA. Once this high pH front reached the aquifer it would be rapidly diluted and
likely have negligible influence on subsequent radionuclide sorption.

Cementitious Leachate-Impacted Clayey Sediment Cementitious Leachate-Impacted
Environment is defined as a Clayey Sediment Clayey Sediment Environment is
Environment between a cementitious waste form and the defined as a Clayey Sediment

: . : : : Environment between a cementitious
aquifer. This Environment will have a nominal pH of o

L . waste form and the aquifer: pH of 11
10.5 and an elevated 21J(r)r'11c strength >10.mM dominated and elevated ionic strength 10 mM.
by hydroxide and Ca” ions. At this writing there have
been no suitable site-specific studies conduced for Kd values for these conditions. Early
guidance will rely on measured differences between cementitious-leachate impacted and non-
impacted Kd values for the Hanford PAs (Cantrell et al. 2007). Cementitious Leachate Impact
Factors, fcementzeach, Will be created from the Hanford data based on Eq. 8:

Kd

_ CementLeach (8)

f CementLeach ~— K d

where Kdcemenizeacn and Kd are the Kd values measured under cementitious-leachate and natural
groundwater conditions, respectively. To calculate SRS Kdcemenizeach Values to use in SRS PAs,
Eq. 8 is reorganized:

KdCemem‘Leach :fCementLeach x Kd (9)

Clearly, the use of Eq. 8 and 9 are far from ideal, but they are intended to provide provisional
guidance until laboratory measurements can be made using site-specific materials.
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Table 2. Cementitious Leachate Impact Factors (Eq. 8) Generated from Data from the
"Geochemistry Data Package for the Vadose Zone in the Single-Shell Tank Waste Management
Areas at the Hanford Site" (Cantrell et al. 2007).

Radio- | Hanford | Hanford IDF | Cementitious | Suggested | Comments
nuclide | Ground | Cementitious Leachate ScementLeach
water® Waste® Impact (Unitless)
Best Kd | Intermediate Factor,
ImpaCt Sand fCementLeach(C)
— Best Kd (Unitless)

H 0 0 NA 1

Tc 0 0 NA 0.1 High pH will greatly reduce anion exchange
capacity. Furthermore, high ionic strength will
promote desorption of ion that are weakly
sorbed. Unlike Hanford sediment, SRS
sediments tend to sorb anions, such as TcOy".

Cl 0 0 NA 0.1 Similar chemistry as Tc.

I 0.2 0.2 1 0.1 Using Hanford sediment, Kaplan et al. (1998)
showed that I Kd decreased from 0.22 mL/g at
pH 8.1 t0 0.01 mL/g at pH 9.9.

U 0.8 1 1.25 5 The Hanford recommended value (3™ column)
suggests the authors believe that sorption and
not precipitation occurs under these conditions.
Kaplan et al. (1998) reported uranyl
precipitation under mildly cementitious
environments, at pH >10.3. pH will be >10.3 in
this plume and therefore much larger Kd values
are recommended here.

Se 5 7 1.4 1.4

Np 10 15 1.5 1.5

C 0 5 NA 5

Sr 2.2 14 6.4 3 Cantrell et al. (2007) did not comment on why
the Sr Kd increased. Co-precipitation as Sr, Ca-
carbonate is not expected, but perhaps some
have occurred in microenvironments. A prior it
was anticipated that Sr exchange would occur
resulting in lower Kd values.

Cs 2000 2000 1 1

Pu 600 150 0.25 2 In cementitious environments, pH 7 solubility of
Pu is 10°. Above the pH of 9, the solubility of
Pu drops to 10™'° M (Ewart et al. 1992).

Eu 200 300 1.5 1.5

@ Page 3.9, Table 3.2 Cantrell et al. 2007.
® Table 3.10, Table 3.2 Cantrell et al. 2007. Selected “Intermediate Impact” and not “High Impact” because the former
is more conservative with respect to the groundwater scenario (lower Kd values, and over the course of multiple ages
(Stage I, Stage II, and Stage III). It was through that “intermediate impact” would be more representative than “high
impact” over the entire age of the facility. IDF = Intergraded Disposal Facility

©) Equation 8.
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4.2.5 Cementitious Leachate Impacted Sandy Sediment Environment

The Cementitious Leachate Impacted Sandy Sediment Environment is similar to the
Cementitious Leachate Impacted Clayey Sediment Environment discussed above (Section 4.2.4)
except it is for the lower Sandy Sediment Environment that exists between cementitious waste
forms and the aquifer. Kd values for this Environment are created in the same manner as above,
namely, through the use of Equations 8 and 9, and through the use of Table 2. Again, this is to
provide early guidance until appropriate measurements can be made, as described in Section 7.0
Future Research and Data Needs.

4.2.6 Cementitious Leachate Impacted and CDP-Impacted Sediment
Environments

Many Environments within and beneath waste units that use concrete as an engineered
barrier contain cellulosic materials, such as the Low Activity Waste Vault (Table 3). As such,
the mobility of radionuclides will be influenced by both the cementitious chemistry and the
cellulose degradation products (CDP) chemistry. There has been little research conducted
evaluating radionuclide sorption to sediments in the presence of CDP (or natural organic matter)
in a cementitious aqueous system. CDP sorbs to sediments at low pHs (<pH~7). Below this pH,
the elevated CDP sorption to the sediment surface
promotes radionuclide sorption to the sediment surfaces, In this Environment, mivalent,
increasing Kd values (Kaplan et al. 2010). As the pH tetravalent, and other radionuclides that
increases above 7, CDP sorption decreases and tend to be sparingly soluble under

il di lide Kd val v d cementitious environments have Kd
consequently, radionuclide values gencrally decrease. values that are impacted by cement

Between pH 10 and 12.5, it is not clear what happens to leachate impact factor. Kd values for
radionuclide Kd values in this ternary system. all other elements are impacted by the
Presumably those radionuclides whose aqueous CDP impact factor in this Environment.

concentrations are strongly controlled by solubility, (e.g.,
trivalent, Pu, Np, and U; Table 19 and Table 20) their concentration will be primarily controlled
by solubility and not by the presence or absence of CDP. Conversely, those radionuclides that
form strong complexes to CDP, but do not have solubility constraints, that is, almost all other
radionuclides, their concentrations in Environments impacted by cementitious leachate and CDP
may be thought of being primarily controlled by CDP. Given this logic, the following rules were
made for assigning Kd values in Cementitious Leachate Impacted and CDP-Impacted Sediment
Environments:

o  Kdcemenizeacn (Solubility <10 M; Table 19 and Table 20) or Solubility Values: Ac, Al,
Am, Bk, Bi, Ce, Cf, Cm, Eu, Fe, Gd, Lu, Sm, Y, Ag, Co, Cd, Cu, Hg, Ni, Pb, Pd, Po, Pt,
Sn, Zn, Np, Pa, Pu, Pu(Ill/1V), Th, Zr, U (for reducing cement: Tc, Re and Cr)

e Kdcpp (Solubility >10° M; Table 19 and Table 20): “H, Ar, As, At, Cl, Cr, Cs, F, Fr, I,
K, Kr, Mn, Mo, N, Na, Nb, Pu(V/VI), Rb, Re, Rn, Sb, Se, Tc(VII), Te, Tl, C, Ra, Ba, Ca,
and Sr.
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Apparent solubility concentration or Kd value, whichever maintains the lower aqueous
concentration, will be used for the first category. Therefore, the Kd or solubility values will be
taken from either Kdcpp or Kdcemenieacn data sets. It is recommended in Section 7.0 “Future
Research and Data Needs” that research be conducted to address this important data need. These
Kd values are summarized in Table 13 and Table 23.

Table 3. Description of Whether Cellulose Degradation Products (CDP) is Present and if
Reducing and Oxidizing Cementitious Materials were used During the Construction of the
Disposal Unit/Facility.

Disposal Unit C])P(a) Constructed with Constructed with
Reducing Oxidizing Cementitious
Cementitious Materials
Materials™
Slit Trenches Yes No No
Engineered Trenches Yes No No
Low-Activity-Waste Vault Yes Yes Yes
Components-in-Grout Trench Yes No Yes
Intermediate Level Vault Yes Yes Yes
Naval Reactor Component Yes No No
Disposal Areas
TRU-Waste Pad Yes No Yes
Saltstone Facility No Yes Yes
@ Cellulose degradation products are released from wood, cardboard, and paper products. The amount of
cellulosic materials contained in each of these disposal facilities is expected to vary greatly. Consequently the
duration that CDP-correct Kd values will be used prior to using simple Kd values will also vary greatly between
facilities.
® Reducing cementitious materials contain slag to create the reducing environment for immobilizing redox-
sensitive radionuclides, such as Tc¢ and Pu.

4.3 Reducing Cementitious Materials

Some cementitious materials have blast-furnace slag included in their formulations to
promote the reductive precipitation of the radionuclide

with sulfide, thus reducing the tendency of the For purposes of the Saltstone PA, a
radionuclides to leach from the solid waste form. “shrinking core model” is assumed with
Experimentation has shown that leaching of Cr and Tc the outer layer growing becoming

was effectively reduced to a level that enabled all oxidized and growing in size towards
the core. Additional calculations need

projected salt solution compositions to be processed to be conducted fo determine the

into a non-hazardous solid waste (MMES 1992). Long- | duration of the reducing environment of
term lysimeter studies have shown that the addition of the Intermediate Level Vault.

slag into the Saltstone formulation essentially stopped
*Tc leaching, but did not reduce nitrate leaching (MMES 1992). In addition to the blast-furnace
slag creating a low redox status (i.e., low reduction potential, which has been measured with an
Eh meter), it also tends to raise the concentration of sulfides in the porewater. The net effect is
that numerous metals precipitate out of solution as a result of reductive precipitation (the result
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of lower the Eh) and/or due to the complexation with sulfides (a strong precipitating moiety. Tc,
is an example of a radionuclide that undergoes both reduction from Tc(VII) to Tc(IV) and forms
insoluble precipitates with sulfides to form Tc,S7 (Lukens et al. 2005). Other radionuclides
immobilized in the presences of blast-furnace slag include U and Np.

In the past, the interaction of oxidation of the reducing saltstone and release of Tc was based
on laboratory measurements and two-dimensional reactive transport calculations (Kaplan and
Hang 2003). It was calculated that ~16% of the saltstone reduction capacity would be
consumed after 213,000 years (Figure 7). For purposes of comparison, two additional
calculations, based on entirely different assumptions, were discussed. The first calculation
conducted by Lukens et al. (2005), based on spectroscopy considerations (sans diffusion or
aqueous transport considerations), yielded nearly identical results as above. The second
calculation conducted as a first approximation and using unrealistically high groundwater flow
rates, concluded that the Z-Area saltstone waste form will maintain a reducing environment for
more than 10,000 years (Kaplan and Hang 2003). Obtaining similar conclusions by three
extremely different types of calculations and sets of assumptions provides additional credence to
the conclusion that the Z-Area saltstone will maintain a reducing environment in excess of
10,000 years.

In the past it was assumed for the Saltstone PA, that reducing cementitious materials
maintained much of their reducing environments for the entire PA scenario, 10,000 years. In the
future, as the oxidation front moves through the reducing grout the Tc(I'V) will be instantly
oxidized to Tc(VII), resulting in the solubility concentration limits and (Kd value) changing in a
manner that will release Tc into the aqueous phase with the oxidizing front. In the case of Tc,
the aqueous Tc concentration will be initially controlled within the reducing Saltstone by
solubility to 10"° M (170 pCi/L; note that the Maximum Contaminant Level (MCL) is 900
pCi/L). But once the oxidizing front reaches the Saltstone, that particular node will have a Kd of
0 mL/g. (Additionally, the influence of cracking as a function of time will be integrated into the
transport of oxygenated water.)

A related report deals with estimating the duration of the reduction capacity within a high-
level waste tank (Kaplan et al. 2005). This report does not contain any new experimental data
but demonstrates the application of the reduction data to a set of very different environmental
conditions.
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Figure 7. Consumption of slag reduction potential by diffusing dissolved oxygen in infiltrating
water into the Saltstone Facility (Kaplan and Hang 2003). Results from Lukens et al. (2005) is
also presented (value corrected for diffusion from four sides).

Kaplan et al. (2008b) conducted some additional reduction capacity measurements. They
measured the reduction capacity of Vault 2 concrete (a simulant of the vault walls within which
the Saltstone will be poured),'® DDA simulated Saltstone, blast furnace slag (which is used as an
ingredient in the previous two samples), and a 50-yr-old SRS concrete. The Saltstone that
contained 23 wt-% slag had the same reduction capacity as the pure slag. The Vault 2 concrete,
which contains only 10 wt-% slag, had about 25% the reduction capacity of 100% slag. The
cause for the greater than expected reduction capacity in the Saltstone and Vault 2 concrete is not
known, but may be attributed to these materials having semi-conductor properties, permitting
them to transfer electrons to the water/solid interface to create a reducing environment.
Alternatively, the slag may have greater surface areas when it is hydrated and combined with
cementitious materials, thereby creating greater opportunity for electrons to move to and from
the slag. So when Kaplan et al. (2005) tested it in the pure form (neat), it may not have hydrated
to the extent that it would have in a pH 12 system and in the process, it had a much lower surface
area and ability to transfer electrons to the surface. Other explanations are offered by Kaplan et
al. (2008b). Clearly, additional work is required to understand not only the capacity, but the
electrical process by which the system is maintained in a reducing condition. A finite reduction
capacity was measured in the SRS sediment and in regular Portland cement, albeit much less, 20
times less than that measured in the Saltstone.

' The Saltstone vault walls contain (Ibs/yd®) 201 cement, 268 slag, 45 silica fume, 156 fly ash 911 sand 1850
aggregate and 31 gal/yd® water.
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4.3.1 Young Reducing Cementitious Solids (1% Stage) Environment

This Environment is conceptually identically to that of the Young Cementitious Solids (1%
Stage) Environment (Section 4.2.1) except that it contains reducing slag. The reducing slag, as
discussed above creates a reducing environment that promotes the reduction of several
radionuclides, including Pu and Tc. It has its own Kd and solubility values in look up tables.

4.3.2 Moderately-aged Reducing Cementitious Solids (2" Stage) Environment

This Environment is conceptually identically to that of the Moderately-aged Cementitious
Solids (2nd Stage) Environment (Section 4.2.2) except it contains reducing slag. It has its own
Kd and solubility values in look up tables.

4.3.3 Aged Reducing Cementitious Solids 3" Stage) Environment

This Environment is conceptually identically to that of the Moderately-aged Cementitious
Solids (3™ Stage) Environment (Section 4.2.3) except it contains reducing slag. It has its own Kd
and solubility values in look up tables.

4.4 Radionuclide Leaching from Waste Materials

There are a large number of different types of solid phases that are disposed within the
various E-Area facilities, especially, in the trenches. They include paper, plastics, wood, cloth,
spent ion exchange resins, metal, concrete debris, and glass.
The degree to which the various radionuclides sorb to each Unless waste-form specific data
material is largely unknown. Therefore, the following is available, the extent that a
simplifying assumption was made. Unless waste-form radionuclide sorbs to the waste

. . . . fi ill be set 1 to th:
specific data is available (Section 4.5), the extent that a e())(l';crll’lxilat fhzeraii(ilgiuc?i deesorbs

rgdipnuclide sorbs to the waste form is assumed to be . to the solid phase (sediment or
similar to the extent that the radionuclide sorbs to the solid cement) immediately in contact
phase immediately in contact with the waste. For example, with the waste.

the leaching rate of Th associated with paper disposed in the

Slit Trench Facility will be calculated using the Th Kd value reported in the Clayey Sediment
look-up table. The Clayey Sediment is the solid phase in contact with the waste. The leaching
rate of Th associated with paper disposed in the cementitious Low Activity Waste (LAW) Vaults
will be calculated using the Th Kd value reported in the Cementitious Leachate Impacted Clayey
Sediment Environment look-up table.
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4.5 Radionuclide Leaching from Special Waste Forms

There are some, not many, waste-specific Kd values and solubility concentration limits,
especially for anions sorbing to anionic resins (e.g., Kaplan and Serkiz 2000). The extent that
radionuclides desorb from waste can be estimated through the use of Kd values and solubility
concentration values. The use of these parameters to estimate desorption, is simply the reverse
of adsorption. One of the assumption of the Kd construct is that it is fully reversible, meaning
that adsorption occurs at the same rate as desorption. The list of special waste forms (Table 15)
is certainly not a complete list but rather of list of waste that desorption Kd values were
measured, most commonly because the PA needed to quantify the strong sorbing capacity of the
waste form.

When special waste forms are located in an area where cellulose degradation products (CDP)
are present, CDP-correction factors should be used along with the appropriate Kd values (Table
15; see sections 4.1.3 and 4.1.4).

4.6 Geochemical Parameters’ Ranges and Distributions

Associated with the “best” Kd and apparent solubility values are parameters that address the
expected variability associated with these parameters. The range and distribution of Am, Cd, Cs,
Ce, Co, Hg, Sr, Sn, Tc, and Y Kd values were measured in 27 sediment (triplicate measurements
resulting in 81 Kd measurements per element; 810 Kd measurements in total) collected from the
subsurface vadose and aquifer zones of E-Area. The statistical ranges and distributions of these
Kd values were reported in Grogan et al. (2008) and Kaplan et al. (2008). Implication of the
distributions and a depiction of the results of these normal and log-normal distributions are
presented in Grogan et al. (2010) and the Kd data sets fitted to log-normal distributions are
presented in Appendix D.

The conclusions of this study can be summarized as follows:

The 95-percentile range and type of distributions assigned to radionuclide Kd values should
be assigned based on the following general rules. These general rules were derived from the
measurements described in Grogan et al (2008), some geochemical/geological consideration, and
parsimony.

e The results indicated that the distributions of Kd values were most closely log-normally
distributed for the entire 27-sample taken from a well borehole from E-Area.

e The 95% confidence level for the mean Kd was twice the mean in the Aquifer Zone (16.5
to 30.3m depth — Sandy Sediment Environment), equal to the mean for the Upper Vadose
Zone (3.3 to 9.8 m depth — Clayey Sediment Environment), and half the mean for the
Lower Vadose Zone (9.8 to 16.5 m depth — Sandy Sediment Environment).

e The distribution of Kd values was log normal in the Upper Vadose Zone and Aquifer
Zone, and normal in the Lower Vadose Zone.

Based on these findings, the Kd distributions and ranges were estimated for each of the
various Environments. No data are presently available regarding the ranges and distribution of
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Kd values in cementitious environments or for solubility values, so they were assumed to be
similar to the Kd values measured in the sediments. Future research is intended to actually
measure these ranges and distributions in site specific cementitious materials.

All distributions were assumed to be log-normal based on Grogan et al. (2008) and Kaplan et
al. (2009).

For the Sandy Sediment Environments (and the Cementitious Leachate Impacted), which is
the dominant type of Environment in the Aquifer and Lower Vadose Zones, it was assumed that
the 95% confidence level for the mean Kd was 1.5 times the mean, which is a combination of the
recommended multiplying factors for the Aquifer Zone and the Lower Vadose Zone. This would
result in a calculation for the minimum (“Min”’) and maximum (“Max’’) values of the ranges as
follows:

“Min” = Kd - (1.5%0.5*Kd) = 0.25*Kd (Eq. 10)
“Max” = Kd + (1.5%0.5*Kd) = 1.75*Kd (Eq. 11)

For the Clayey Sediment Environments (and the Cementitious Leachate Impacted), which is the
dominant type of Environment in the Upper Vadose Zone, it was assumed that the 95%
confidence level for the mean Kd value was 1.0 times the mean, which corresponds to the value
recommended by Grogan et al. (2008) for the Upper Vadose Zone. This would result in a
calculation for the minimum (“Min”’) and maximum (“Max’’) values of the ranges as follows:

“Min” = Kd — (1.0%0.5*Kd) = 0.5 * Kd (Eq. 12)
“Max” = Kd + (1.0%0.5*Kd) = 1.5*Kd (Eq. 13)

For cementitious Environments, the range was assumed to be the same as for sediments.

Equations 1 and 2 for the Sandy Sediment Environments were used to calculate the range for
cementitious Environments (i.e., a 95% confidence level of 1.5 times the mean).
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5.0 WASTE FACILITIES DESCRIPTIONS: ASSIGNMENT OF
GEOCHEMICAL ENVIRONMENTS AND TYPES OF CONSTANTS TO
USE IN SIMULATIONS

The purpose of this section is to describe the key features of the waste units and facilities and
to assign geochemical Environments. More specifically, this section describes the geochemical
conceptual model of how to model waste facilities by assigning Environments to various
materials around the various facilities. For each facility, there is a schematic, followed by a table
containing the conceptual geochemical materials (e.g., concrete, reducing concrete, sandy
sediment) of the facility and the associated parameters used to describe the radionuclide as it
interacts with these features. At the end of this section, are the various look-up tables containing
the Kd values and solubility concentration limits. The schematic and description of the
geochemical materials for each disposal facility are:

Slit and Engineered Trenches (Figure 8, Figure 10 and Table 4),

Low Activity Waste (LAW) Vault (Figure 11, Figure 12 and Table 5),
Components-in-Grout Trenches (Figure 13, Figure 14 and Table 6),
Intermediate Level (ILV)Vault (Figure 15, Figure 16 and Table 7),

Naval Reactor Component Disposal Areas (Figure 17, Figure 18 and Table 8),
TRU-Pad-1 (Figure 19, and Table 9),

Saltstone Disposal Facility (Figure 20, Figure 21 and Table 10), and
Radioactive Waste Tank (Figure 22, Figure 23 and Table 11).
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5.1 Slit and Engineered Trenches

Slit Trench Engineered Trench

Clayey Sediment

A

Sandy Sediment L

Figure 8. Schematic representation of the geochemical conceptual model of a Slit and
Engineered Trench Units. Not shown is a multilayered-closure cap that will be added above
these units during Post-Institutional Control.
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Figure 9. E-Area Slit Trench Facility showing a range of waste materials. Also note the red
clayey sediment, characteristic of the upper sediment strata.
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Figure 10. Engineered Trench: (top) aerial view and (bottom) close up of metal containers
holding low level waste (WSRC 2008).
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Table 4. Slit Trenches: Conceptual Geochemical Model of Features and Parameters (See Figure
8).

Solid Phases Aqueous Phase Geochemical Parameter

Waste Zone®™ SRS ground water: pH 5.5, ionic Initially use Clayey Sediment Kdcpp
strength 10* ', except for trace until all the CDP® has leached from
levels of radionuclide the Waste Zone. Then use Clayey
concentrations and CDPs (Table 1) Sediment Kd. Will assume waste
has characteristics of Clayey
Sediment, the nearest solid phase to
the Waste Zone. No cementitious
materials are included as engineered
barriers.

Clayey Sediment: Upper Vadose As above. Initially use Clayey Sediment Kdcpp
Zone until all the CDP®™ has leached from
the Waste Zone. Then use Clayey
Sediment Kd.

Sandy Sediment: Lower Vadose As above. Initially use Sandy Sediment Kdcpp
Zone until all the CDP™ has leached from
the Waste Zone. Then use Sandy
Sediment Kd.

Sandy Sediment: Aquifer Zone As above Same as immediately above.

@ Slit Trenches are approximately 6-m x 6-m x 200-m and receive a wide range of materials that contain, for
example, very low concentrations of radioactivity, including from environmental restoration and building
decommissioning. The Engineered Trenches are about 218-m long by 50-m wide and 7-m depth and received
similar types of waste materials as the Slit Trenches. All waste from the Engineered Trenches is placed in metal
boxes (e.g., B-25 boxes) that are stacked on top of each other.

® Kdepp = Kd for cellulose degradation products.

" Tonic strength of a solution is a measure of the amount of ionic species in solutions and is proportional to the salt
content. Its influence on radionuclide sorption is complex and non-linear. In simple cation exchange systems, as
described by Kd values, an increase in ionic strength results in greater desorption, and this general rule holds true in
most natural environments. Above a critical concentration, and depending on the ions in solution, precipitation may
occur.
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5.2 Low-Activity Waste (LAW) Vaults

LAW Vaults

Upon aging, the
facility will
collapse leaving
waste in an
iron-rich
cementitious
environment.

Figure 11. Schematic representation of the geochemical conceptual model of the Low-Activity
Waste Vault. Not shown is a multilayered-closure cap that will be added above the vault during
Post-Institutional Control.
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Figure 12. Low Activity Waste (LAW) Vault: (top) exterior view and (bottom) interior view
(WSRC 2008).
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Table 5. LAW Vault: Conceptual Geochemical Model of Features and Parameters (See Figure
11).

Solid Phases Aqueous Phase Geochemical Parameter
Waste Zone ®: Aged metal boxes Concrete leachate enters metal boxes | Use cementitious leachate impacted
(B-25 boxes) containing waste. or into collapsed rusted iron rubble. | clayey sediment Kd Kdcemenireach-
Over time the boxes rust and release | This is a cementitious leachate Clayey sediments on the SRS are
radionuclides. Eventually concrete impacted aqueous phase (elevated typically red in color as a result of
vault structure and B-25 boxes pH and ionic strength; Table 1). containing Fe-oxide coatings. These
collaps§ .leaving Waste in an Fe-rich Fe-oxides coatings will provide a
cementitious environment. conservative (less abundant)
approximation of pure Fe-oxides. ®
Concrete: concrete roof, walls, and Cementitious Impacted Leachate: Use reducing cement Kd or
floor. Three general types of concrete apparent solubility concentrations
leachate chemistries controlled by for the three cement ages.

different aged solid phases: elevated
pH and ionic strength (Table 1;

Figure 6).
Crushed stone: used beneath LAW | Cementitious (as above). See footnote (c).
Vault facility.(c)
Clayey Sediment: Upper Vadose Cementitious (as above). Use cementitious leachate impacted
Zone clayey Kd values; KdcemeniLeach
Sandy Sediment: Lower Vadose Cementitious (as above). Use cementitious leachate impacted
Zone sandy Kd values; Kdcemenzeacn fOr
sandy sediment.
Sandy Sediment: Aquifer Zone Cementitious leachate pore water Initially use Sandy Sediment Kdcpp
gets diluted with typical SRS until all the CDP'® has leached from

groundwater and the aqueous phase | the Waste Zone. Then use Sandy
takes on the properties of the latter: Sediment Kd.

pH 5.8 and ionic strength 107,
except for trace levels of
radionuclide concentrations and
CDPs (Table 1)

@ This waste contains greater radioactivity than the waste disposed in the Slit Trenches. Some cellulosic materials
will be disposed in the vaults. Waste is placed in large metal boxes (B-25 and B-12 boxes) which are stacked and
stored in large concrete vaults. The vault consists of concrete roof, walls, and floor, which are generally about 1-ft
thick.

® As noted in Section 4.2.6, in the presence of cementitious leachate and the influence of CDP on radionuclide
sorption will not be accounted for.

© A 1.1-m layer of crushed stone exists immediately beneath the concrete floor of the LAW Vault. It has not been
included in previous PA modeling efforts, because it was believed that this layer would become “silted in” within a
relatively short period of time. For this same reason, it is not included in the conceptual geochemical model of this
disposal site and will be modeled as behaving like the Clayey Sediment: Upper Vadose Zone.

@ Kdcpp = Kd for cellulose degradation products.
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5.3 Components-in-Grout Trenches

Components-in-Grout
Trenches

Clayey Sedime

A

Sandy Sedime

Figure 13. Schematic representation of the geochemical conceptual model of a Components-in-
Grout Trenches. Not shown is a multilayered-closure cap that will be added above the vault
during Post-Institutional Control.
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Figure 14. Sequence of steps in the disposing of waste as Components in Grout (CIG; WSRC
2008).
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Table 6. Components-in-Grout Trenches: Conceptual Geochemical Model of Features and

Parameters (Figure 13).

Solid Phases

Aqueous Phase

Geochemical Parameter

Waste Zone @

Cementitious Impacted Leachate:
Three general types of concrete
leachate chemistries controlled by
different aged solid phases: elevated
pH and ionic strength (Table 1;
Figure 6).

Oxidizing concrete Kd or
Oxidizing concrete solubility
concentration limits

Concrete: 0.3-m-thick
concrete/grout walls & floor of
trench, concrete/grout poured over
waste to encapsulate waste.

Cementitious (as above)

Oxidizing concrete Kd or
Oxidizing concrete solubility
concentration limits

Clayey Sediment: Upper Vadose
Zone

Cementitious (as above).

Use cementitious leachate impacted
clayey Kd values; Kdconenieach

Sandy Sediment: Lower Vadose
Zone

Cementitious (as above).

Use cementitious leachate impacted
sandy Kd values; Kdcementicach for
sandy sediment.

Sandy Sediment: Aquifer Zone

Cementitious leachate pore water
gets diluted with typical SRS
groundwater and the aqueous phase
takes on the properties of the latter:
pH 5.8, ionic strength 10, trace
levels of radionuclide
concentrations and CDPs.

Initially use Sandy Sediment Kdcpp
until all the CDPY has leached from
the Waste Zone. Then use Sandy
Sediment Kd.

@ This waste is too bulky and too large to place in the Low-Activity Waste Vault or the Intermediate Level Vault
and contains more radioactivity than the waste that is placed in Slit Trenches. A trench is excavated to act as a
form, a 1-ft grout floor is poured, and the waste is placed in the floor, ~1-ft of grout is poured over the waste, and
then sediment backfill is added to fill the trench. A reinforced concrete slab is installed over new Components-in-
Grout trench for support of the final closure cap. It is expected that negligible cellulosic material is included in this

waste.

® Kdepp = Kd for cellulose degradation products.
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5.4 Intermediate-Level Vault

$ Intermediate-Level Vault

Clayey Sedime

A

Sandy Sediment

Figure 15. Schematic representation of the geochemical conceptual model of the Intermediate-
Level Vault Facility. Not shown is a multilayered-closure cap that will be added above the vault
during Post-Institutional Control.
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Figure 16. Intermediate-Level Vaults: (top left) aerial photo graph with roof off of one cell; (top
right) waste components cemented within a partially filled cell; (bottom) cross-sectional diagram
of unit (WSRC 2008).
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Table 7. Intermediate-Level Vault: Conceptual Geochemical Model of Features and Parameters

(Figure 15).®

Solid Phases

Aqueous Phase

Geochemical Parameter

Waste Zone @

The closure plan does not presently
specify the type of material to use
between the buried casks (Phifer et
al. 2009). Depends on whether a
cementitious or sediment material is
used. Most likely candidate
materials are CLSM and
sediment/sand, the former is a
slightly cementitious material.

Reducing concrete Kd & reducing
concrete solubility concentration
limits ©

Reducing concrete: Slag added to
concrete used in floor and walls.
Roof truss steel structure will be
replaced with reducing concrete.

Reducing Cementitious
Environment: (as immediately
above)

Reducing concrete Kd & reducing
concrete solubility concentration
limits

Clayey Sediment: Upper Vadose
Zone

Cementitious or sediment (please
see above).

Use cementitious leachate impacted
clayey Kd values; Kdcomentteach-

Sandy Sediment: Lower Vadose
Zone

Cementitious (as above).

Use cementitious leachate impacted
sandy Kd values; Kdcemenieach for
sandy sediment.

Sandy Sediment: Aquifer Zone

Cementitious leachate pore water
gets diluted with typical SRS
groundwater and the aqueous phase
takes on the properties of the latter:
pH 5.8, ionic strength 107, trace
levels of radionuclide concentrations
and CDPs.

Initially use Sandy Sediment Kdcpp
until all the CDP'¥ has leached from
the Waste Zone. Then use Sandy
Sediment Kd.

@ This waste contains more radioactivity than Slit- and Engineered-Trench waste and LAW Vaults. It is placed in
the vault in layers and is grouted in place. The facility includes Intermediate-Level Non-Tritium Vault and the
Intermediate-Level Tritium Vault. The latter is used for disposal and storage of tritium-bearing waste packed in 10-
gallon drums, spent tritium extraction crucibles, and tritium job control waste. Other forms of waste not listed are
also present. Void space between casks may be appropriately filled with 1) Controlled Low-Strength Material
(CLSM) or flowable fill or 2) sand or sediment.
® Some oxidizing concrete may have been used to anchor B-25 metal waste containers as reducing concrete or
CLSM was added to cover waste within vault, but a majority of the cementitious material contains slag.

©) Reducing cementitious materials are those that contain slag and change the pore water chemistry sufficiently to
require unique geochemical parameters (see Section 4.3).
@ Kdepp = Kd for cellulose degradation products.
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5.5 Naval Reactor Component Disposal Areas

Naval Reactor Component Disposal Area $ :

Clayey Sec

Sandy ¢

Figure 17. Schematic representation of the geochemical conceptual model of the Naval Reactor
Component Disposal Areas. Not shown is a multilayered-closure cap that will be added above
the pads during Post-Institutional Control. See Table 8 for facility description and Figure 18 for
photographs of the facility.
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Figure 18. (Top) Photo showing partially covered naval reactor components of various sizes.
Earth and a clay cap will be mounded over naval reactor waste prior to final disposal. There are
two such facilities, the “old” (two top photos) and “new” (bottom photo) facilities. (Bottom)
Naval reactor component before it is placed in the disposal area (WSRC 2008).
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Table 8. Naval Reactor Component Disposal Areas: Conceptual Geochemical Model Features

and Parameters (See Figure 17).

Solid Phases

Aqueous Phase

Geochemical Parameter ©

Waste Zone: Activated metal waste.
It is assumed that the metal waste
will rust to form Fe-oxides and that
the radionuclides will sorb to these
Fe-oxides. ©

SRS ground water: pH 5.5,
ionic strength 10™ ', except
for trace levels of
radionuclide concentrations
and CDPs (Table 1)

Initially use Clayey Sediment Kd.

Clayey Sediment: Upper Vadose As above. Use Clayey Sediment Kd.
Zone

Sandy Sediment: Lower Vadose As above. Use Sandy Sediment Kd.
Zone

Sandy Sediment: Aquifer Zone As above Same as immediately above.

@ This waste contains large pieces of activated metal naval reactor components encased in heavily shielded
shipping containers. There are two Naval Reactor Component Disposal Areas. The casks are placed on an earthen
pad and will be covered with a minimum of 4.1 m of backfill and a moisture barrier (clay, gravel, and geotextile
fabric layers). There are negligible amounts of cellulosic materials included amongst this waste.

® To pack in the naval reactor casks in the subsurface, an unspecified suitable solid has been mandated. The solid
could be sand, backfill sediment, or cementitious material (Phifer et al. 2009). If the latter is used, than cementitious
impacted Kd values should be used throughout each Environment.

2 Jonic strength of a solution is a measure of the amount of ionic species in solutions and is proportional to the salt
content. Its influence on radionuclide sorption is complex and non-linear. In simple cation exchange systems, as
described by Kd values, an increase in ionic strength results in greater desorption, and this general rule holds true in
most natural environments. Above a critical concentration, and depending on the ions in solution, precipitation may

occur.
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5.6 TRU Pad Disposal Unit

TRU PAD-1 $$

Six 55-gallon
drums
containing
waste in a 8-ft
diameter
concrete culvert,
or a concrete

Figure 19. Schematic representation of the geochemical conceptual model of the TRU PAD-1.
Not shown is a multilayered-closure cap that will be added above the pads during Post-
Institutional Control. See Table 9 for facility description.
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Table 9. TRU PAD-1: Conceptual Geochemical Model of Features and Parameters (See Figure

19).
Solid Phases Aqueous Phase Geochemical Parameter
Waste Zone © Oxidizing Concrete: Three types of | Oxidizing Concrete Kd or

concrete leachate chemistries
controlled by different aged solid
phases: young concrete leachate pH
~12, then pH 10.5, final pH 5.5
(Figure 6); higher in ionic strength
than SRS groundwater

Oxidizing Concrete solubility
concentration limits. Kdcpp are

necessary because job waste is
included in waste zone.

Concrete: 1-ft-thick concrete/grout
walls & floor of trench,
concrete/grout poured over waste to
encapsulate waste.

Oxidizing Concrete (as immediately
above)

Oxidizing Concrete Kd or
Oxidizing Concrete solubility
concentration limits

Clayey Sediment: Upper Vadose
Zone

Cementitious (as above).

Use cementitious leachate impacted
clayey Kd values; KdcepeniLeach

Sandy Sediment: Lower Vadose
Zone

Cementitious (as above).

Use cementitious leachate impacted

sandy Kd values; Kdcemenizeacn fOr
sandy sediment.

Sandy Sediment: Aquifer Zone

Cementitious leachate pore water
gets diluted with typical SRS
groundwater and the aqueous phase
takes on the properties of the latter:
pH 5.8, ionic strength 10, trace
levels of radionuclide
concentrations and CDPs.

Initially use Sandy Sediment Kdcpp
until all the CDP™ has leached from
the Waste Zone. Then use Sandy
Sediment Kd.

@ This waste form includes six 55-gallon drums that are placed in an 8-ft-diameter concrete culvert or concrete
box. The drums will be arranged with one drum in the middle and the remaining five surrounding it. Concrete will
be poured between the drums to hold them in the culvert or concrete box. Approximately 2 ft of concrete will be
poured between the outside of the drums and the inside of the culvert/box. The waste-containing concrete
culverts/boxes will be placed on a concrete pad and will be covered with a minimum of 4.1 m of backfill and a
moisture barrier (clay, gravel, and geotextile fabric layers).
® Some protective clothing and a small amount of cellulosic material is included in this waste, thus CDP-Kd
values need to be applied for the appropriate length of time, as discussed in section 3.4.1 (Kdcpp = Kd for cellulose

degradation products).
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5.7 Saltstone Disposal Facility

A

Sandy Sedi

Clayey Sedime
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$ Saltstone Facility S
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ment

Figure 20. Schematic representation of the geochemical conceptual model of the Saltstone
Facility. Not shown is a multilayered-closure cap that will be added above the Saltstone Facility
during Post-Institutional Control. See Table 10 for facility description.
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Figure 21. (Top) Saltstone disposal facility (SDF) Vault 1 and 4 (photograph taken December 1,

2002). Metal roofs shown over Vault 1 Cells D and E have been removed from the vault.
(Bottom) Cross sectional diagram of Vault 1 (WSRC 2008).
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Table 10. Saltstone Facility: Conceptual Geochemical Model of Features and Parameters (See

Figure 20 and Figure 21).

Solid Phases

Aqueous Phase

Geochemical Parameter

Waste Zone @

Reducing Cementitious': Three
types of concrete leachate
chemistries controlled by different
aged solid phases: young concrete
leachate pH ~12, then pH 10.5, final
pH 5.5 (Figure 6); generally higher
in ionic strength than SRS
groundwater. Leachate will contain
sulfides released from slag (Angus
and Glasser 1985).

Reducing Concrete Kd or
Reducing Concrete solubility
concentration limits®

Reducing Concrete'®: 1-ft-thick
concrete/grout walls and 2-ft thick
floor of vault.

Reducing Concrete (as immediately
above)

Reducing Concrete Kd or
Reducing Concrete solubility
concentration limits"™

Clayey Sediment: Upper Vadose
Zone

Cementitious (as above).

Use cementitious leachate impacted
clayey Kd values; KdcemenLeach-

Sandy Sediment: Lower Vadose
Zone

Cementitious (as above).

Use cementitious leachate impacted
sandy Kd values; Kdcemenzeacn for
sandy sediment.

Sandy Sediment: Aquifer Zone

Cementitious leachate pore water
gets diluted with typical SRS
groundwater and the aqueous phase
takes on the properties of the latter:
pH 5.8, ionic strength 10, trace
levels of radionuclide
concentrations and CDPs.

Initially use Sandy Sediment Kdcpp
until all the CDP has leached from
the Waste Zone. Then use Sandy
Sediment Kd.

@ The Saltstone contains blast-furnace slag (a strong reducing agent). The dimensions of the vaults vary; some
are rectangular, while others are cylindrical.
® Kaplan and Hang (2003) estimated that reducing conditions in the Saltstone facility will exist for an extremely
long time. They calculated that after 10,000 years, <3% of the total reduction capacity of the Saltstone waste had
been oxidized. Therefore, to assume that reducing condition exist during the entire duration of the PA simulation
is acceptable (See Section 4.3). Additional research needs to be conducted in this area and is proposed in Section

7.0.

(©) Reducing cementitious materials are those that contain slag and change the pore water chemistry sufficiently to
require unique geochemical parameters (see Section 4.3).
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5.8 Radioactive Waste Tanks

Liquid Waste Tank

Clayey Sedimen

A

Sandy Sediment

Intruder Barmier

Reducing Grout

S tank Concreie base mmak

[NOT TO 5CALE]

Figure 22. Schematic representation of the geochemical conceptual model of the Radioactive
Waste Tank Closure Concept. See Table 11 for facility description (Bottom figure taken from
Buice et al. 2005).
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Tunk 19

Figure 23. Examples of Radioactive Waste Tank construction. Top Left: 17-cm concrete
basemat pads; Top Right: Carbon steel liners; Bottom Left: Tank concrete walls (note relative
scale of tanks compared to men on scaffolding (photos from Buice et al. 2005).
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Table 11. Closed Radioactive Waste Tanks: Conceptual Geochemical Model of Features and
Parameters (See Figure 22 and Figure 23).

Solid Phases Aqueous Phase Geochemical Parameter

Waste Zone ) Reducing Cementitious Leachate®™: | Reducing Concrete Kd or
The rad waste consists typically of a | Reducing Concrete solubility
thin layer (averaging 1.2 to 2 cm concentration limits® ©

thick) existing on bottom of tank,
ranging from ~0.3 cm for most of
the bottom to ~4.5 cm along the
edges. It is covered with reducing
grout. Three types of concrete
leachate chemistries controlled by
different aged solid phases: young
concrete leachate pH ~12, then pH
10.5, final pH 5.5; generally higher
in ionic strength than SRS
groundwater. Leachate will contain
sulfides released from slag (Angus
and Glasser 1985).

Basemat Concrete: 18-cm-thick Reducing Cementitious Leachate: Reducing Concrete Kd or
concrete basemat thick floor. we model as if the aqueous phase is | Reducing Concrete solubility
a reducing leachate because concentration limits®

essentially all the water will
originate from the closed tank above

Clayey Sediment: Upper Vadose Oxidized Cementitious Leachate: Use cementitious leachate impacted
Zone Oxidized cementitious leachate with | clayey Kd values; Kdcemenizeach
three types of water chemistries, as
described above.

Sandy Sediment: Lower Vadose Oxidized Cementitious Leachate: Use cementitious leachate impacted

Zone sandy Kd values; Kdcementeacn for
sandy sediment.

Sandy Sediment: Aquifer Zone Cementitious leachate pore water Use Sandy Sediment Kd.

gets diluted with typical SRS
groundwater and the aqueous phase
takes on the properties of the latter:
pH 5.8, ionic strength 10, trace
levels of radionuclide
concentrations.

@ Release of contaminants from the Contamination Zone is described by Denham (2009). In this model,
radionuclides are solubility controlled.

® Reducing cementitious materials are those that contain slag and change the pore water chemistry sufficiently to
require unique geochemical parameters (see Section 4.3).

) This table is not applicable for all tanks. The intruder barrier would not have to be treated differently than the
grout.
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6.0 DATA TABLES

A number of data tables are presented in the section based on the conceptual models
presented in Section 4.0. The first three are look-up tables that assembled to make it easy to find
values quickly. The remaining tables provide supporting information.

Table 13. Look-up Table of Various Sediment Kd Values: Best Kd Values, Kd (CDP)
Values, Cement Leachate with CDP Kd Values, Cement Leachate Impact Factors, and
Cellulose Degradation Product Correction Factor.

Table 14. Look-up Table of Concrete Kd Values and Apparent Solubility Values Under
Oxidizing and Reducing Conditions.

Table 15. Special Waste Form Kd Values (mL/g) Under Ambient and Cementitious
Leachate Environments.

Table 16. Distribution Coefficients (Kd values, mL/g): Sandy Sediment Layer (<25 wt-
% silt + clay) and Clay Sediment Layer (25 to 45 wt-% silt + clay)

Table 17. Distribution Coefficients (Kd values, mL/g): Oxidizing Cementitious Solids
Table 18. Distribution Coefficients (Kd values, mL/g): Reducing Cementitious Solids
Table 19. Apparent Solubility Concentration Limits (mol/L) for Oxidizing Cementitious
Solids

Table 20. Apparent Solubility Concentration Limits (mol/L) for Reducing Cementitious
Solids

For the look-up tables, a “best” value and a “minimum” and “maximum” value are provided.
The “minimum” and “maximum” values, as discussed in Section 4.6, represent the limits of the
95% range of expected Kd values. These estimates are based on generalized rules that are site
specific and vary with sediment type, clay or sand (rules defining ranges of cement sorption
values are identical to those for sand).
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Table 12. Radionuclides of Interest and Their Assumed Oxidation States or Speciation Under
Varying Environments.

Chemical Sandy Sediment, Clayey Oxidizing Reducing
Grouping(b) Sediment, Cementitious Cement Cement
Leachate Impacted
Sandy/Clayey Sediment, CDP
Impacted Sandy/Clayey
Sediment

tritium (T) HTO HTO, OH HTO, OH
Inorganic C CO;>, HCOy COs>, HCOy CO5>, HCOy
Ag, Tl Monovalent soft +1 +1 +1

metal
Al Trivalent metal +3 +3 +3
As, Sb Divalent Oxyanion X0, +5 +3
Co, Cd, Ni, Pt Divalent Transition +2 +2 +2
Cr CrO,~ +6 +3
Cu +2 +1
Fe Fe" +3 +2
Mn +4 +2
Mo +6 +4
N NO;/NO, +5/+3 -3
Se, Te VIB Elements X0,”, XO,>© X0,”, XO5* XO5™
Kr, Rn, Ar Noble Gas 0 0 0
Sr, Ra, Ba, Ca Alkali-earth metals +2 +2 +2
Zr, Th Group VI Elements +4 +4 +4
Nb Nb(OH)¢ Nb(OH), Nb(OH), @
Tc, Re X0, X0, X0, X
Sn +4 +4 +4
CLF, 1, At VIIB, Halides -1 -1 -1
Cs, Fr, K, Na, Alkali metal +1 +1 +1
Rb
Ac, Am, Bk, Bi, | Trivalent Actinides & +3 +3 +3
Ce,Cf Cm, Eu, Rare Earth Elements
Gd, Lu, Sm, Y
Hg, Pb, Po, Soft, divalent cation +2 +2 +2
U Uo,” Uuo,” u*
Np, Pa X0, © X0y X
Pu Pu"'0,”", Pu¥0,", colloid Pu"'0,”, Pu*,

Pu'0,", colloid colloid

@ Nb likely exists as Nb(IIT) under reducing conditions, but little sorption data is available for this species (Baes and
Mesmer 1976).

® These groupings of radionuclides will be used in the following Kd and solubility limit value tables in the absence
of experimental data. These groupings are based on basic chemical considerations including periodicity and basic
aqueous chemical properties.

©) X = generic metal
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Table 21. Cellulose Degradation Product Correction Factors (fcpp).

SRNL-STI-2009-00473

Correction
Factor (fcpr) Ref.®
Element (unitless) Species/Analog Comments ©

Ac 0.55 Ce(IIl) & Eu(I1Il) trivalent actinide 1
Ag is a soft monovalent, and the analog is a 1

Ag 1 Ni(II) hard divalent; hence not a good analog.
Al 0.55 Ce(I1I) & Eu(III) Hard trivalent 1
Am 0.55 Ce(I1I) & Eu(III) trivalent actinide 1
Ar 1 I(-1) 2
As 1 Se0,” 2
At 1 I(-1) 1
Ba 1 Sr(1D) 1
Bi 0.55 Ce(III) & Eu(II) trivalent actinide 1
Bk 0.55 Ce(III) & Eu(II) trivalent actinide 1
C 1 None 1
Ca 1 Sr(II) divalent cation 1
Cd 1 Ni(Il) 1
Ce 0.55 Ce(I1I) trivalent actinide 1
Cf 0.55 Ce(1I) & Eu(IIl) 1
Cl 1 1(-I) 2
Cm 0.55 Ce(lIl) & Eu(Ill) 1
Co 1 Ni(ID) 1
Cr 1 Se0,” 2
Cs 1 Cs(D) 1
Cu 1 NidII) 1
Eu 0.55 Eu(III) trivalent lanthanide 1
F 1 I(-I) 2
Fe 0.55 Eu(III) trivalent 1
Fr 1 Cs(D) 1
Gd 1 Ce(III) & Eu(IID) trivalent lanthanide 1
H 1 N/A 1
Hg 1 Ni(1I) @ 1
1 1 I(-1) 2
K 1 Cs(II) monovalent cation 1
Kr 1 N/A 1
Lu 0.55 Ce(I1I) & Eu(IID) trivalent lanthanide 1
Mn 1 Se04” 2
Mo 1 Se0,” 2
N 1 1(-I) 2
Na 1 Cs(I) 1
Nb 1 Se0,” 2
Ni 1 NidII) 1
Np 1 Cs(I) 1
Pa 1 Cs(D) 1
Pb 1 Ni(II) @ 1
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Correction
Factor (fcpr) Ref.®
Element (unitless) Species/Analog Comments ©

Pd 1 Ni(II) @ 1
Po 1 Ni(II) 1
Pt 1 Ni(II) @ 1
Pu 1 Th(IV) 1
Ra 1 Sr(IT) 1
Rb 1 Cs(D) 1
Re 1 TcOy4 2
Rn 1 N/A 1
Sb 1 Se0,” Selenate is a poor analog 2
Se 1 Se0,” 2
Sm 0.55 Ce(I1I) & Eu(III) trivalent lanthanide 1
Sn 1 Ni(II) @ 1
Sr 1 Sr(IT) 1
Tc 1 TcOy4 2
Te 1 Se0,” Assumed dominate phase TeO,> 2
Th 1 Th(IV) 1
Tl 1 Cs(I) © 1
U 1 Sr(IT) 1
Y 0.55 Ce(III) & Eu(Ill) trivalent cation 1
Zn 1 Ni(II) 1
Zr 1 Zr 1

@ Comments provide basis for selection of analog for elements not listed in Kaplan (2007a) or Kaplan and

Serkiz (2006) based on professional judgment

® 1 = Correction factor for element or analog given in Table 15 of Kaplan (2007a)

2 = Correction factor for element or analog given in Table 7 of Kaplan and Serkiz (2006)
©) Monovalent cation except under strongly reducing conditions, where it becomes trivalent.
@ No experimental data available for soft divalent cations; used Ni, a relatively hard divalent cation, as analog.
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Table 22. Cementitious Leachate Impact Factors, fcementreacn (EQ. 6).

f CementLeach
Element (Unitless) Analog Comments
Ac 1.5 Eu trivalent
Because Sris not a good analog (Sr is a hard base and Ag is much softer),
Ag 3.2 Sr assumed half the impact factor
Al 1.5 Eu trivalent
Am 1.5 Eu trivalent
Ar 1 None Inert
As 1.4 Se Oxyanion
At 0.1 1 monovalent anion
Ba 3 Sr hard divalent cation
Bi 1.5 Eu trivalent
Bk 1.5 Eu trivalent
C 5 C
Ca 3 Sr hard divalent cation
Cd 3 Sr hard divalent cation
Ce 1.5 Eu trivalent
Cf 1.5 Eu trivalent
Cl 0.1 Cl monovalent anion
Cm 1.5 Eu trivalent
Because Sr is not a good analog (Sr is a hard base and Co is much softer),
Co 3.2 Sr assumed half the impact factor
Cr 1.4 Se Oxyanion
Cs 1 Cs hard monovalent cation
Because Sr is not a good analog (Sr is a hard base and Cu is much softer),
Cu 3.2 Sr assumed half the impact factor
Eu 1.5 Eu trivalent
F 0.1 Cl monovalent anion
Fe 1.5 Eu trivalent
Fr 1 Cs hard monovalent cation
Gd 1.5 Eu trivalent
H 1 H
Because Sr is not a good analog (Sr is a hard base and Hg is much softer),
Hg 3.2 Sr assumed half the impact factor
1 0.1 I monovalent anion
K 1 Cs hard monovalent cation
Kr 1 None | Inert
Lu 1.5 Eu trivalent
Mo 1.4 Se Oxyanion
Mn 1.4 Se Oxyanion
N 0.1 1 monovalent anion
Na 1 Cs hard monovalent cation
Nb 1.4 Se Oxyanion
Because Sr is not a good analog (Sr is a hard base and Ni is much softer),
Ni 3.2 Sr assumed half the impact factor
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f CementLeach
Element (Unitless) Analog Comments @
Np 1.5 Np Assume NpO,’
Pa 1.5 Np Assume PaO,
Because Sr is not a good analog (Sr is a hard base and Pb is much softer),
Pb 3.2 Sr assumed half the impact factor
Because Sr is not a good analog (Sr is a hard base and Pd is much softer),
Pd 3.2 Sr assumed half the impact factor
Po 2 Pu Tetravalent, Pu is only a marginal analog
Pt 3.2 Pu Ni analog
Pu 2 Pu Pu is Solubility controlled at pH >9
Ra 3 Sr hard divalent cation
Rb Cs hard monovalent cation
Re 0.1 Tc monovalent anion, ReO4
Rn 1 None | Inert
Sb 1.4 Se Oxyanion
Se 1.4 Se Assumed dominate phase SeO,”
Sm 1.5 Eu trivalent
Sn is actually a soft divalent metal, whereas Sr is a hard metal therefore,
Sn 3 Sr not a good analog match
Sr 3 Sr hard divalent cation
Te 0.1 Tc
Te 1.4 Se Assumed dominate phase TeO,"
Th Pu Pu is not a good analog, will assume
Tl Cs Cs is a hard monovalent cation; Tl is appreciably softer, not a good analog
U 3 Sr hard divalent cation
Y 1.5 Eu trivalent
Zn 3 Sr hard divalent cation
Zr 2 Pu Tetravalent, Pu is only a marginal analog

@ All data in this table in based on experimentation conducted with offsite material (Cantrell et al. 2007).
Cementitious Leachate Impact Factors are discussed in more detail in Section 4.1.4, in particular Table 2.
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Table 23. Kd Values for Environments Impacted by CDP and Cementitious Leachate,
KdCDPfCemLeach-

Correction Factor
f(CDP) or
f(ChemLech) for
Best cement

Correction Factor
f(CDP) or f(ChemLech) Best Cement

Best Cement

leachate with CDP  for Best cement leachate Leachate with Leachate with
Rad Sand Kd with CDP Clay Kd CDP Sand Kd CDP Clay Kd
(unitless) (unitless) (mL/g) (mL/g)
Ac 1.5 15 1650 12750
Ag 32 32 192 480
Al 1.5 1.5 1950 1950
Am 15 15 1650 12750
Ar 1 1 0 0
As 1 1 140 280
At 1 1 0.0 0.1
Ba 1 1 15 51
Bi 1.5 1.5 1650 12750
Bk 1.5 1.5 1650 12750
C 1 1 50 2000
Ca 1 1 15 51
Cd 3 3 45 90
Ce 15 1.5 1650 12750
Cf 1.5 1.5 1650 12750
Cl 1 1 0 0
Cm 1.5 1.5 1650 12750
Co 32 32 128 320
Cr 1 1 6 14
Cs 1 1 10 50
Cu 32 32 160 224
Eu 15 1.5 1650 12750
F 1 1 0 0
Fe 1.5 1.5 300 600
Fr 1 1 10 50
Gd 1.5 1.5 1650 12750
H 1 1 0 0
Hg 32 32 2560 3200
1 1 1 0.0 0.1
K 1 1 5 25
Kr 1 1 0 0
Lu 1.5 1.5 1650 12750
Mn 1 1 21 280
Mo 1 1 1400 1400
N 1 1 0 0
Na 1 1 5 25
Nb 0.2 1 0 0
Ni 32 32 22 96
Np 1.5 1.5 5 14
Pa 1.5 1.5 5 14
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Correction Factor

f(CDP) or
f(ChemLech) for Correction Factor
Best cement f(CDP) or f(ChemLech) Best Cement Best Cement
leachate with CDP  for Best cement leachate Leachate with Leachate with
Rad Sand Kd with CDP Clay Kd CDP Sand Kd CDP Clay Kd
Pb 32 32 6400 16000
Pd 32 32 22 96
Po 2 2 4000 10000
Pt 32 32 22 96
Pu(combo) 2 2 580 11900
Pu(II/IV) 2 2 600 12000
Pu(V/VI) 1 1 32 10000
Ra 1 1 15 51
Rb 1 1 10 50
Re 1 1 0.1 0.2
Rn 1 1 0 0
Sb 1 1 3500 3500
Se 1 1 1400 1400
Sm 1.5 1.5 1650 12750
Sn 3 3 6000 15000
Sr 1 1 15 51
Tc 1 1 0.1 0.2
Te 1 1 1400 1400
Th 2 2 1800 4000
Tl 1 1 10 50
U 3 3 600 900
Y 1.5 15 1650 12750
Zn 3 3 45 90
Zr 2 2 1800 4000
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7.0 FUTURE RESEARCH AND DATA NEEDS

In the process of collecting these input data for the PA modeling effort, several data

needs were identified. The identification of data needs is part of the PA maintenance program
which provides a vehicle to update PA calculations when new or improved data become
available or when new information is learned that requires additional modeling scenarios to be
conducted. The following is a list of the key areas that require additional research to gather new
and improved data.

1.

Reactive Transport Modeling: Although Kd and solubility concentration limits values are
convenient for use in transport models, they are not robust parameters in that they
represent rather limited ranges of geochemical conditions (Sections 3.1 and 3.3). For this
reason, it is necessary to rely on site-specific and condition-specific experiments to
provide insight into how the radionuclides interact with the solid phase. It is the express
goal of the geochemistry research group within the PA to move towards a truly reactive
transport model where important ancillary aqueous solutes, such as pH or dissolved
organic carbon concentrations, can be modeled along with the radionuclide
concentrations. Changes in the concentrations of these ancillary parameters are known to
greatly influence the mobility of many radionuclides. The present PA attempts to
estimate their impact by creating “Environments” of a class of aqueous chemistry, but a
more elegant approach would be one in which the chemistry of the ancillary parameter
was accounted for directly in the transport code. A good example of this type of
geochemical modeling was recently completed for Eu (an analog for trivalent
radionuclides) sorption to SRS sediments in the presence of varying pH and cellulose
degradation products (more specifically, fulvic acid) (Kaplan et al. 2010). It is also the
interest of the PA to incorporate more process-driven (mechanistic) approaches to
describe the geochemistry in the PA. Important advances have been made towards this
end with regards to Pu geochemistry and how it has been incorporated into performance
assessment and special analysis calculations (Kaplan et al. 2001, 2004, 2006a, 2006b;
2008c; Fjeld et al. 2004; Powell et al. 2005, 2006). For example, Pu(V) reduction was
found to occur under SRS vadose zone conditions. Similarly, '*C-carbonate sorption is
better described using a kinetic model over months to years, rather than an instantaneous
equilibrium Kd model. Additional work needs to be conducted to incorporate reactive
transport modeling into the PA, including in cementitious environments.

Range and Distribution of Sorption Parameters for Cementitious Materials: Range and
distributions of radionuclide Kd and solubility values with cementitious materials is
needed. This needs to be measured using a wide range of cementitious materials,
preferably prepared under field conditions where natural variability in mixing conditions
will be sampled (Section 4.6).

C-14 Chemistry in Cementitious and Natural SRS Subsurface Environments: There is
little information about inorganic C chemistry under natural SRS subsurface conditions.
Given the importance of C-14 to risk calculations, additional attention should be directed
at understanding how C-14 interacts with sediments at varying pH levels and in the

111



SRNL-STI-2009-00473

presence of natural organic matter. The latter is especially important for composite
analyses or where cellulose degradation products may be present.

. Colloids: The PA is presently modeling colloid facilitated transport of Pu and its
approach is entirely empirical and based on two SRS field studies (Section 3.4.2). The
conceptual and numerical models need to be improved based upon field and laboratory
studies designed to develop a numerical model. Also, the role of strong pH gradients
(such as at cement/soil interfaces) and cellulose degradation products (which is likely to
be acidic and at the same time some dispersive properties) on colloid generation needs to
be evaluated.

. Kd Values for Cementitious Leachate Impacted Sediment Environments: Measure Kd

values for key radionuclides under conditions simulating cementitious leachate sediment
environments (Sections 4.2.4 and 4.2.5).

. Kd Values for Cementitious Leachate Impacted and CDP-Impacted Sediment

Environments: Measure Kd values for key radionuclides under conditions simulating
both CDP- and cementitious leachate-impacted sediment environments (Section 4.2.6).
Technetium Interaction with Reducing Grout: The geochemistry describing the
interaction of Tc with reducing grout/saltstone is extremely important to the PA. It is
described here as a solubility controlled process, however, other reactions may also be
important. Additional work needs to be conducted to more completely describe this
system of reactions, including the reduction and oxidation kinetics of Tc(IV) and Tc(VII)
conversions, and the influence of dissolved oxygen (in groundwater) on sulfide and
sulfate conversions. Additional measurements of solubility concentration limits values
are also required to determine variability associated between Saltstone batches. Tests
must also be developed to determine good experimental protocols for determining the
reduction capacity of a reducing cement/saltstone.

Degradation Rate of Cellulosic Materials: No site-specific work has been done to
describe the degradation rate of cellulosic materials that is co-disposed with the
radiological waste (Sections 3.4.1). Because soil microbes play an important role in
cellulose degradation, it is especially necessary to conduct these studies under site-
specific conditions.
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9.0 APPENDIX A: ADDITIONAL INFORMATION REGARDING CELLULOSE -
DEGRADATION-PRODUCT CORRECTION FACTORS FOR Kd VALUES
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9.1 Selected Data Sets from Kaplan and Serkiz (2004) “Influence of Dissolved Organic
Carbon and pH on Contaminant Sorption to Sediment”

Kaplan, D. I. and S. M. Serkiz. 2004. Influence of Dissolved Organic Carbon and pH on
Contaminant Sorption to Sediment. WSRC-RP-2004-00593, Rev. 0, Westinghouse Savannah River
Company, Aiken, SC. (www.osti.gov/servlets/purl/835584-N20mx9/native/)

Final pH vs. Targeted SR-NOM Concentration
of No-Sediment Control Samples
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Figure 24. Final pH vs. targeted SR-NOM concentration of no-sediment control samples (2
observations for each mean and standard deviation).
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Cs Sorption to the Clayey Sediment
as a Function of pH and SR-NOM Concentrations

250 - _ —6— pH3.
—v— pHS.
—H— pHe.
200 +
ob _
= 150
g
o
M 100 -
. @@—@—M
O u
0 50 100 150 200 250 300
Targeted SR-NOM (mg/L C)
Cs Sorption to the Sandy Sediment
as a Function of pH and SR-NOM Concentrations
40
- —6— pH 3.9
—~— pHS5.3
—H=— pH 6.7
30 - gy
=0
)
E 20 -
=]
M
o @6—6/ _
0 T T _I_ T T T T
0 50 100 150 200 250 300
Targeted SR-NOM (mg/L C)

Figure 25. Cs Kd values as a function of pH and SR-NOM concentrations in clayey (top) and sandy
(bottom) sediments.
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Ni Sorption to the Clayey Sediment
as a Function of pH and SR-NOM Concentrations
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Figure 26. Ni Kd values as a function of pH and SR-NOM concentrations in clayey (top) and sandy
(bottom) sediments.
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Sr Sorption to the Clayey Sediment
as a Function of pH and SR-NOM Concentrations
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Figure 27. Sr Kd values as a function of pH and SR-NOM concentrations in clayey (top) and sandy
(bottom) sediments.

131



cel

"JO1I0 [eONA[EUR 0) PAINGLIYE 9q UBD SIN[BA Py dAIRION ®

4! 9 Sl 681 yee 60 AdPIS

9°sy 86 €0 €06 L0y L0 3ay

01 €'TC LS 10c I'l ¢C 8Y1 ¥'801 L6 V8L 6'1 L0 00¢

[ 'y 001 S8 70 4! 87l LCL 611 §'LT o vl- 001

(47 9°LS 6'1 L0l S0 9°0- 0°0¢ €501 el €8¢ 00 ¢1- 0¢

e 709 6’1 S¢S 00 8°0- 8'¢€C L’L9 I'1e 9y ¥0 I'r- 01

L1 697 | % €0 01~ 9'6¢ VL6 00 991 v'0 ©20 0

‘AOPIS ‘BAY ‘AOPIS BAY "AIPIS BAY ‘AOPIS ‘SAY ‘AOPIS BAY ‘AOPIS SN

Lond ¢sHd 6'¢ Hd Lond ¢ Hd 6'¢Hd (O 1/3uw)
JuowIpas Apueg JuowIpas Koke[) INON

-4S 1981e],

"(8/Tw) saneA py IS ST dqeL

t€LY00-600C-ILS"INYUS



SRNL-STI-2009-00473

Ce Sorption to the Sandy Sediment
as a Function of pH and SR-NOM Concentrations
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Ce Sorption to the Sandy Sediment
as a Function of pH and SR-NOM Concentrations
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Figure 28. Ce Kd values as a function of pH and SR-NOM concentrations in clayey (top) and sandy
(bottom) sediments (all Kd values >25,000 mL/g are greater-than values).
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Eu Sorption to the Clayey Sediment
as a Function of pH and SR-NOM Concentrations
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Figure 29. Eu Kd values as a function of pH and SR-NOM concentrations in clayey (top) and sandy
(bottom) sediments (all Kd values >20,000 mL/g are greater-than values).
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Zr Sorption to the Clayey Sediment
as a Function of pH and SR-NOM Concentrations
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Figure 30. Zr Kd values as a function of pH and SR-NOM concentrations in clayey (top) and sandy

(bottom) sediments.
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Th Sorption to the Clayey Sediment
as a Function of pH and SR-NOM Concentrations
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Figure 31. Th Kd values as a function of pH and SR-NOM concentrations in clayey (top) and sandy
(bottom) sediments.
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Table 31. Cellulose-degradation-products Correction Factors, fcpp, for Kd Values.

Radionuclides 10 20 95 222
mg/L C mg/L C mg/L C mg/L C

Ac 2.9 0.77 0.049 0.015
Am 2.9 0.77 0.049 0.015
Cf 2.9 0.77 0.049 0.015
Cm 2.9 0.77 0.049 0.015
Cs 1.14 1.14 1.66 1.49
Eu 2.65 0.55 0.04 0.01
Ni 1.13 1.82 1.41 0.88
Np 1.14 1.14 1.66 1.49
pa® 1.14 1.14 1.66 1.49
Pb 1.13 1.82 1.41 0.88
Pd 1.13 1.82 1.41 0.88
Po 1.13 1.82 1.41 0.88
Pu 1.89 2.92 0.51 0.12
Ra 1.22 238 1.89 0.44
Rb 1.14 1.14 1.66 1.49
Sn 1.13 1.82 1.41 0.88
Sr 1.22 238 1.89 0.44
Th 1.89 2.92 0.51 0.12
U 1.22 238 1.89 0.44
Zr 5.17 6.07 0.08 0.02

Fcpp = defined in Equation 3 in this document; this table is taken from Serkiz and Kaplan (2006).
@ In Serkiz and Kaplan (2006), they assumed that Pa had an oxidation state of +4 (Pa™), for this PA, it was
assumed Pa had an oxidation state of +5 (PaO,"). The values reported in this table are appropriate for Pa(V).
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10.0 APPENDIX B: CEMENT LIFESPAN
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This discussion is based largely from results presented in Berner (1992). The total lifetime of
the cement is somewhat arbitrarily defined by Berner (1992) as the cycle number where calcium-
silicate-hydrate gel has dissolved completely. This is an arbitrary definition because this gel
dissolves to form other solid phases, such as brucite [Mg(OH),], calcite (CaCOs), and gypsum
(CaS0y) and silica (SiO;). However, the physical and chemical properties of the cement change
appreciably after the calcium-silicate-hydrate gel has dissolved. Berner (1992) reported that
between 5,000 and 10,000 exchange cycles were required to degrade completely the calcium-
silicate-hydrate gel.

Perhaps the single most important porewater constituent influencing the “lifetime” of a
cement is the concentration of carbonate in the groundwater (Berner 1992, Reardon 1992). For
example, calculations conducted by Berner (1992) showed that a cement interacting with a high-
carbonate (4.6 mM) infiltrating groundwater had a “lifetime” of 4480 cycles, whereas the same
cement interacting with a low-carbonate (0 mM) infiltrating groundwater had a “lifetime” of
7450 cycles. The sediment pore water at SRS has a total inorganic carbon concentrations of
about 0.2-mM (Strom and Kaback 1992). The reason SRS pore water is low in carbonate is that
our surface soils contain little or no carbonate, the result of our soils being highly weathered and
acidic.

The reason that groundwater carbonate concentrations are important is because the carbonate
combines with the calcium released from the calcium-silicate-hydrate gel and forms calcite
(CaCO3). The calcite acts as a sink, “sucking” calcium from the calcium-silicate-hydrate gel,
thereby promoting the gel’s dissolution. Berner (1992) reported that nearly 83% of the total
calcium-inventory could be reprecipitated during the 31 Stage as calcite in the cement mixture
(discussed below). This transformation to calcite approximately halved the calculated “lifetime”
of the calcium-silicate-hydrate gel, compared to gel degradation in pure water, where no calcite
was formed.

As an example, if we were to assume that the waste was held within 60-cm of the grout (as is

the case for waste disposed as Components-in-Grout), the

entire lifespan of the cement waste through a 50 cycle 1* For examtl)’lef zz'ﬁsté‘i;k 13}’? of
Stage (Section 4.2.1), 500 cycle 2™ Stage (Section 4.2.2), 22;2333 tgrfl:V:; 250 ;r;alyst Setage 750
and a 7000 cycle for.the 3rd. Stage (Section 4.2.3) would be yr 2™ Stage, and a 10,500 yr 3 St;ge,
12,000 years, assuming an infiltration rate of 4-cm/yr for the | for a total life span of 12,000 yr.

first 750 years before the solid has started to physically
degrade, and then 40-cm/yr thereafter."

1 1% Cycle: 50 cycles x 60-cm cement/cycle x 0.25 yr/cm = 750 yr

2" Cycle : 500 cycles x 60-cm cement/cycle x 0.025 yr/cm = 750 yr

3rd Cycle : 7500 cycles x 60-cm cement/cycle x 0.025 yr/cm = 10500 yr.
These infiltration rates of 4- and 40-cm/yr were taken from the E-Area LLW PA (McDowell-Boyer et al. 2000). For
the first 1050 yrs, the concrete is assumed to be physically intact. The greater infiltration rate was assumed to
account for the concrete crumbing into particles that were about the same size as the surrounding sediment.
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11.0 APPENDIX C: INFLUENCE OF CEMENTITIOUS LEACHATE ON
SEDIMENT BUFFERING CAPACITY
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Influence of Cementitious Leachate on Sediment Buffering Capacity
Input:

porosity of concrete = 0.18

porosity of clayey sediment = 0.5

pH of effluent is 12.8

bulk density of sediment = 1.4 g/cm’

pH of effluent is 12.8 and there are 50 pore volumes in this stage.

pH + pOH = 14
12.8 +pOH = 14
pOH=1.2

[OH]=10"%=0.063 mol/L = 63 mmol/L = meq/L

50 pore volumes x 0.18 m*/P.V. =9 m’ pore water
Total # meq(.) from concrete:

(9 m’ porewater) x (63 meq.y/L) (1000L/ 1m’) = 5.7¢5 meq(_)/m3 concrete [1]

Then using the titration data for the clayey sediment in Figure 32 and extrapolating to pH 12.8
with a linear line (using SigmaPlot to draw a line from pH 5.5 to 12.8), we get the slope:

149 pH/meq+/g sediment = 0.149 pH/ meq+ kg sediment [2]

which states that for every meq of positive charge per kg of sediment neutralized by OH’, we can
expect the pH to go up by 0.149 pH units.

How many equivalents can 1 m® sediment buffer?

1 m® sediment contains 1400 kg sediment

Sediment buffering capacity is 0.0073 meq/g = 7.3 meq/kg buffering capacity, based on Figure
32 and the following pointed extrapolated from the figure (pH 4.53 & 0 meq/g) and (pH 12.5 &
0.058 meq/g)".

1-m’ sediment can buffer: 1400 kg sed. x 7.3 meq/kg = 10,222 meq OH in leachate [3]

1-m’ concrete creates 0.18 m® water at pH 12.8 during Stage I. Total volume = 9 m’ porewater.

5.7e5 meq eluted from concrete during Stage 1
10,220 meq OH - /m’

=55.8m’ [4]

1(0.058-0)/(12.5-4.5) = 0.058/8 = 0.0073 meq/g
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Thus, a 1 m® block of concrete sitting on the top of a clayey sediment would release
enough OH" after 50 pore volumes to neutralize the buffering capacity of the sediment down to a
depth of 55.8 m, i.e., it would neutralize 55.8 m’ of sediment.

Caveat: This calculation does not include a water balance. It is simply an equivalence
(OH/H,0") balance. In fact, because the porosity of cement is less than that of sediment, it is
physically impossible for 50 pore volumes to neutralize 55.8 m® of sediment (porosity of
concrete = 0.18 and the porosity of clayey sediment = 0.5, the void space in the sediment is
almost 2.8 times greater than that of the concrete). This is not especially important because
eventually, water would move the hydroxides down to the empty pore volumes. For this
calculation, mass balance and not time is of interest.

Conclusion: Hydroxides from cementitious materials would likely overwhelm the
buffering capacity of the SRS subsurface sediments, resulting in an increase in the aqueous phase
ionic strength, dominated by hydroxides and Ca®". In this calculation, a 1 m high cementitious
slab altered the buffering capacity all the way down to the water table during the early stages of
concrete aging (Stage I). Once this high pH front reached the aquifer it would likely be rapidly
diluted, and would have negligible influence on radionuclide sorption.

12

—@— C(layey Sediment
10 4 | —O— Sandy Sediment

2 T T T T T
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

Acid (Negative Values) or Base Added (meq/g sediment)

Figure 32. Titration of two sediments collected from the SRS subsurface environment (4-g soil:
25 mL aqueous; constant ionic strength = 0.01 M, 0.02 M NacCl, distilled water, and 0.005 M
NaCl).
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12.0 APPENDIX D: ADDITIONAL INFORMATION REGARDING RANGE
AND DISTRIBUTION OF Kd VALUES IN SRS SUBSURFACE
SEDIMENTS
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12.1 Selected Data Sets from Grogan et al. (2008) “Distribution of Sorption
Coefficients (Kd Values) in the SRS Subsurface Environment”
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Figure 33. Log-normal fit of Kd values for a)'”Cd, b)"*’Cs, ¢)’’Co, d)*Co, ¢)*’Sr, and H)**Y
(Grogan et al. 2009).

This data largely shows, with the exception perhaps of Y, that the 81 Kd values (27 sediments x 3

replicates) followed a log-normal distribution. The Y data statistically did not adhere to either a
normal or log normal distribution.
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12.2 Distribution of Tc Kd Values in an SRS Borehole

Kaplan, D. 1., K. P. Grogan, R. A. Fjeld, J. C. Seaman. 2008b. Distribution of Technetium
Sorption Coefficients (Kd Values) in the SRS Subsurface Environment. WSRC-STI-2008-
00698, Rev. 1. Washington Savannah River Company, Aiken, SC 29808.

Upper Vadose Zone ?
220 -

-40 - ® By
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-100
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Figure 34. Average Tc Kd (mL/g) vs. depth below ground surface (0 ft) in Upper Vadose,
Lower Vadose and Aquifer Zone.

This Tc Kd data is statistically described below in Figure 35.
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Figure 35. Normal quantile plot, outlier box plot, and distribution functions for Tc Kds for the
entire core, Upper Vadose Zone, Lower Vadose Zone, and Aquifer (Kaplan et al. 2008b).
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Figure 35 (Continuation). Normal Quantile Plot, Outlier Box Plot, and Distribution
Functions for Tc Kd Values for the Entire Core, Upper Vadose Zone, Lower Vadose Zone,
and Aquifer.
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Table 33. Distribution Test Results and 95-Percentile Ranges for Tc Kd Values

Data Set Kurtosis ‘ Skewness ‘ Shapiro-Wilk Value | Visual(b) | 95-percentile
W- Conclu-
statistic p-value sion Lower Upper
Entire -0.01 435 0.73 <.0001 Not Normal 2.4 4.6
Normal
Upper Vadose | 0.19 349 0.77 0.015 Not 1 Normal 1.1 72
Zone Normal
Lower -1.20 0.79 Not Log-
Vadose Zone 0.83 0.040 Normal Normal 2.4 4.6
. -2.15 4.92 Not Log-
Aquifer Zone 0.52 <.0001 Normal Normal 0.5 5.1

@) The p-values are the probability that we can reject the null hypothesis stating that the data are from the normal
distribution. Small p values indicate we must reject the null hypothesis. For example, a p-value of 0.015 indicates
that the null hypothesis can be rejected at the 99.5% confidence level.

® visual tests were conducted by simply looking at distributions presented in Figure 35.

Distributions of Tc Kd Values

The distribution functions of the entire Tc Kd data set, as well as subsets of the Upper
Vadose, Lower Vadose and Aquifer Zones are presented in Figure 35. The data presented in
Figure 34 were used to generate these distribution functions. To help understand the large
amount of data presented in Figure 35, a more detailed discussion will be presented of the entire
dataset (top plot in Figure 35) to provide an example of interpretation. On the left of each plot
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included in Figure 35 is the distribution function, where the y-axis is the Kd value and the
(unlabelled) x-axis is the number of observations. Drawn over the figures are fits to the normal
distribution in red and log-normal distribution in green. In the case of the entire dataset, neither
fitted line is a good fit; they both under estimate the number of observations in the central Kd
grouping and the extreme Kd groupings. To the right of the distribution function, is a plot
describing key statistical moments: the middle of the diamond identifies the mean and the
horizontal lines identify the 25 and 75 percentiles. The dots outside the diamonds, identify Tc
Kd values that are outliers, i.e., >5 standard deviations from the mean. For the entire dataset,
three outliers are identified, 11.2 mL/g (11 ft depth), -2.6 mL/g (25 ft depth), and -2.9 mL/g (80
ft depth) (Figure 34). The normal quantile plot is presented on the right. There are 26 dots on
this plot representing each Tc Kd value. The red straight line identifies where the data would lie
if they were normally distributed and the red arching lines identify the 95% confidence limits
from this red line. Comparing the position of the dots to the red line, it can be seen that the dots
do not form a straight line: instead they appear to form two lines, suggesting two separate
populations. The zone that these Kd values (dots) originate from can be extrapolated from the
three other normal quantile lots for the Upper Vadose Zone, Lower Vadose Zone and Aquifer
Zone. For example, several of the data points forming the horizontal cluster of points (i.e., those
points between 0.25 and 0.90 percentiles), appear to originate in the Upper Vadose and the
Aquifer Zones, whereas the data between the 0.25 to 0.05 percentiles (the data forming the
slopping cluster of points) originate from the Lower Vadose and Aquifer Zones. Finally, the
normal quantile plot for the entire data set shows the disproportional importance that the three
extreme points have on fitting the dataset distribution. Dropping these three points results in a
better fit to a log-normal distribution, but we believe the Kd values are real and hold important
information about the true Tc Kd value distribution. As such, these values should be included in
the statistical description.

The Upper Vadose Zone included eight Kd values and had a range of values that were almost
identical to the range for the entire data set; Upper Vadose Zone — 13.8 mL/g, and for the entire
dataset — 14.1 mL/g (Figure 35). The normal and log-normal fits to the distribution functions
were poor. The reason for this can be readily seen in the normal quantile plot (plots furthest to
the right in Figure 35) which shows the two extreme values and the remaining six values forming
a line almost perpendicular to the red line identifying a normal distribution. Of the three
subsurface zones, the Lower Vadose Zone showed the closest conformity to a normal or log-
normal distribution, the former being slightly better than the latter. It also had the lowest range
of values, from 0.7 to 5.2 mL/g. Finally, the normal and log-normal distributions could not be
fitted to the Aquifer Zone Kd values. The normal quantile plot shows poor agreement between
the ideal distribution and the actual measured Kd values in this zone.

A statistical test, the Shapiro-Wilk test, was conducted to test the null hypothesis that the data
is from the Normal distribution (Table 33). The low probability values shown in Table 33 means
that the null hypothesis should be rejected, meaning the distribution in not normal. The Tc Kd
values were log-transformed (dropping the two negative values, for which there are no
logarithmic values, from consideration) to test whether the dataset was log-normally distributed.
Again, the Shapiro-Wilk statistic for these log transformed distributions indicated that they were
not from the log transformed distribution (data not presented). It appears that the use of between
8 to 26 Kd values does not provide enough power for this statistical test. However, it should be
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noted that the Shapiro-Wilk test is sensitive to even small deviations from normality, thus
limiting the value of this statistic test for this application (Mendenhall and Sincich, 2003).

The skewness and kurtosis (Table 33) are two terms that are used to describe a population’s
distribution. A positive kurtosis indicates a distribution curve with a longer tail than a normal
distribution, whereas a negative kurtosis indicated a distribution curve that is flatter than normal.
A kurtosis absolute value of >£3, i.e., >|3|, is considered significant. The kurtosis of the entire
data set and the Upper Vadose Zone data set were 4.55 and 3.49 (Table 33), indicating that these
two data set have longer tails than a normal distribution. The Lower Vadose Zone and Aquifer
Zone had kurtosis values within the range of +£3. A skewness value >|3|, is considered significant
and indicates that the data is not symmetrical. Furthermore, a negative skewness indicates tailing
of the curve to the left, whereas a positive skewness indicates tailing of the curve to the right.
The skewness values for all the data sets were small, the largest (absolute) skewness value was
for the Aquifer Zone, -2.15, that had a tail towards the negative values (Table 33).

Given the limited number of values, between 8 and 26, and the highly sensitive nature of the
statistical approach (Shapiro-Wilk test), it was decided to evaluate distributions based on visual
inspection (Figure 35). This was done by visually inspecting the Kd distribution curves and then
evaluate whether the data best fitted a log normal or normal distribution; particular attention was
directed at the normal quantile plots in Figure 35. The entire dataset and the Upper Vadose Zone
Kd values appeared to best fit normal distributions, whereas the Lower Vadose Zone and Aquifer
Zone appeared to best fit log-normal distributions.

Also included in Table 33 is the 95 percentile range of each of the data sets. Most notable
about this data is that it does not include a Kd value of 0 mL/g (or negative Kd values). Perhaps
not apparent is why the entire dataset had a lower 95 percentile range than the Upper Vadose and
Aquifer Zones. This occurred because the entire dataset tended to have more data centered on
the mean and had more degrees of freedom than these two subsets of the data. The 95 percentile
ranges for each dataset were (units of mL/g): — 2.2 for the entire dataset, 6.1 for the Upper
Vadose Zone, 2.2 for the Lower Vadose Zone and 4.6 for the Aquifer Zone. The 95 percentile
ranges for Tc Kd values can be expressed in terms of multiples of the mean (2.5 mL/g): Upper
Vadose Zone — 3x mean, Lower Vadose Zone — 1x mean, and Aquifer Zone — 2x mean. Grogan
et al. (2008) estimated that the range for Am3+, Ca2+, Cs', Ce3+, C02+, Hg2+, Sr2+, Sn2+, and Y3+,
were: Upper Vadose Zone 1x mean, Lower Vadose Zone 0.5x mean, and Aquifer Zone — 2x
mean. It is unexpected that Grogan et al (2008) values for metals are similar to those for the
anion TcOy, with the exception of the Upper Vadose Zone. Processes that control sorption of
metals and anions are quite different and for this reason their range of Kd values were expected
to differ.
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13.0 APPENDIX E: SPECTROSCOPIC EVIDENCE OF THE REDUCTION OF
Te(VIID) TO Te(dV) BY CEMENTITIOUS MATERIAL CONTAINING SRS
SLAG
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Spectroscopic Evidence of the Reduction of Tc(VII) to Tc(IV) by Cementitious Material
Containing SRS Slag

TcV"04™ gets reduced to Tc**, which like other tetravalent cations sorbs strongly to surfaces.
Lukens et al. (2005) conducted fundamental studies using SRS slag and grout mixtures. In their
study, they added Tc(VII) to a reducing grout and using X-ray Absorption Spectroscopy,
specifically, XANES, they observed the slow transformation of Tc(VII) to Tc""0,-H,0 to
Tc"'S,. This process was monitored in the grout over a course of 45 months. The solubility of
the Tc'V O, is low but that of Tc'V'S, is extremely low, 10*° molar in alkaline systems (2.4e-8
pCi/L *Tc; ref = (2), Table D.3-3). The high Kd values selected for these conditions are to
reflect the low solubility of Tc under these conditions.

Using identical analytical techniques, Bajt et al. (1993) demonstrated that an SRS slag-
containing cementitious waste form contained reduced Cr(III), whereas the same cementitious
material with out the slag contained the chrome in the higher hexavalent oxidation state, Cr(VI).

Bajt, S., S. B. Clark, S. R. Sutton, M. L. Rivers, and J. V. Smith. 1993. Synchrontron X-ray
Microprobe Determination of Chromate Content Using X-ray Absorption Near-Edge
Structure. Canal. Chem. 65: 1800-1804.

Lukens, W. W., J. J. Bucher, D. K. Shuh, and N. M. Edelstein. 2005. Evolution of Technetium
Speciation in Reducing Grout. Environ. Sci. Technol. 39:8064-8070.
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Environ, Sci. Technol, 2006, 35, B0&4-8070

Evolution of Technetium Speciation
in Reducing Grout

WAYNE W. LUKENS," TEROME |I.
DAVID K. SHUH, AND

NORMAN M, EDELSTEIN

Actinide Chemistry Growup, Chemical Sclenoes Dieision,
Larerence Berkeley National Laboratory,

Berkeley, Califormia 4720

BUCHER,

Cementitious waste forms {CWFs) are an important
component of the strategy to stabilize nuclear waste
resulting from plutonium production by the U. 5. Department
of Energy. Technetium {*Tc| is an abundant fission
product of particular concern in CWFs because of the
high solubility and mobility of TelVIIl, pertechnatate (TcO, "},
the stable form of technetium in serobic environments
CWFs can more effectively stabilize *'Te if they contain
additives that chemically reduce mobile TeOs™ to immobile
TellV} species. The “Te leach rate of reducing CWFs
that contain TellV) is much lower than that for CWFs that
contain TeQ,~. Previous X-ray absorption fine structure
studies showed that TcllV} species were oxidized to TeOy™
in reducing grout samples prepared on a laboratory
scale. Whether the oxidizer was atmospheric 0, or NO.
in the waste simulant was not determined. In actual CWFs,
rapid axidation of Te{lVl by NO;~ would be of concern,
whereas oxidation by atmospheric O, would be of less concern
due to the slow diffusion and reaction of 0, with the
reducing CWF. To address this uncertainty, two series of
reducing grouts were prepared using ToO,~ containing waste
simulants with and without NO:~. In the first series of
samples, referred to as “permeable samples”, the ToO,
was completely reduced using Na;S, and the samples were
sealed in cuvettes made of polystyrene, which has a
relatively large O diffusion coefficient In these samples,
all of the technetium was initially present as a Te{lV] sulfide
compound, ToS., which was characterized by extended
X-ray absorption fine structure {EXAFS] spectroscopy. The
EXAFS data is consistent with a structure consisting of
triangular clusters of TellV) centers linked together through
a combination of disulfide and sulfide bndges as in

MoS;. From the EXAFS model, the stoichiometry of TeS,
is TesSm, which is presumably the compound generally
referred to as "Tc,5;". The Tes, initially present in the
permeable samples was steadily oxidized over 4 years, In
the second series of samples, called “impermeabis
samples”, the TeOy™ was not inibally completely reduced,
and the grout samples were sealed in cuvettes made of poly-
[methyl methacrylate), which has a small 0, diffusion
coefficient. In the impermeable samples, the remaining
Te0Qy continued to be reduced, presumably by biastfurnace
slag in the grout, as the samples aged When the
impermeable samples were openad and exposed to
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atmosphere, the lowar-valent technetium species were
rapidly oxidized to TeDy™

Introduction

Remediation of the U. 5. Department of Energy (DOED sites
used for plutonium production is one of the most expensive
and complex remediation projects in the U. 5, An Important
component of this effort is the use of grout-based cemen-
ttious waste forms (CWFs) at the Savannah River Site to
solidify and stabilize the low-activity waste stream and to
stabilize the waste residues in high-level anks (1-4). The
effectiveness of these measures to prevent the migration of
radionuclides is deseribed by performance assessments that
depend on the leach rates of the mdionuclides (1, 3, 5, 6).
*Te is one of the mdionuclides of greatest concemn for
leaching from CWFs because of the high mobility and lack
ofsarmption of Te(VID, pertechnetate (TeCl, ), the stable form
of technetium under asrobic conditions (6.7).

For soluble contaminants such as TeOy™ or NCw -, leach
rates from CWFs can be modeled using an effective diffusion
coefficient, Da= Dy /N, where D is the diffusion coefficient
of the comaminant in water and Ni,, & the MacMullin number,
a charmcterstic of a porous salid that is identical for solutes
such as gases or anjons that are highly soluble and not
adsorbed by the matrix (8. The MacMullin number is
generally defined as the tortuosity of the pare system divided
by the porosity of the matrix. Since porosity and tortuosin
are pot avallable for most CWFs, the MacMullin number will
be employed as an empirical parameter derived from Dpge, -
in these systoms. This definition for the effective diffusion
coefficient assumes that that the CWF behaves similarly 1o
soll media and the distribution coefficient between the solute
and the solid phase s negligible, which is true for TeQy",
NO;, and Oy but not for TellV) as discussed below. Among
CWFs similar to the one described here, the MacMullin
numbers, derived from Do, are 11 800 (9), 3100 (5, 3100
(&), 2200 (3, 510 (3, and 300 (A, Deaic, and Dayren,-) ame
similar because their molar diffusion coefficients are almost
identcal, 1.53 = 10°% and 1.48 = 107F em* 877, respectively
Lrey, 11,

Te leachability can be greatly decreased by reducing
saluble Tely™ m Te(IV) species by the addition af blast fumace
slag (BFS) orotherreductants to the grout. The D=, values
of reducing grouts are mueh smaller than those in ordinary
CWFs because TellV) has low solubility and ks readily
adsarbed by the grout matri (7, 12). Reducing conditions
are used in actual CWFs to create more effective waste forms
. 12).

A previous research study showed that although TeOy
was reduced to TellV) in reducing grouts: the degree of
reduction varied with experimental conditons {(13). Often,
T~ was inidally reduced o Te(IV) but later oxddized. Two
species, NOy~ and Oy, are present (n large quantites in or
around CWFs and are potentially capable of oxidizing Tel V)
o TeOy ™, (The relevant reduction potentials are listed in Table
1.) Whether NOy~ or O is responsible for oxidizing Te(IV)
has a profound effect on the behavior of technetiom in CWFs,
IF NOy~ s chiefly respansible for the oxidation, then TellV)
would be oxidized throughout the entdre CWF, Increasing
the leachability of *Te throughout the entire volume of the
waste, In thisscenario, the mteofoxidation of Te(1V) 10 Tel)y™
depends only on the reaction rate and the concentration of
the reactants,

Oxidation by O is more complicated: Diffusion of O
Into the CWF forms an oxidized surface region with a greater
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TABLE 1. Reduction Potentials at pH 14 for Selected
Electrochemically Active Species in Reducing Grout (17, 14}

reaction potantial (V)
S04 + 207 + 2HY — 50 + HLO -0.93
53047 + 40~ + BH* — 25 + 3HO -0.77
5047 + da + BH® —= 5 + 3H:0 -0.66
2503 + do~ + BHT — 5;04 4 3H0 -0 58
S 4 20- —8&F -0.51
TeQy~ + 30~ + 4H* — TeOyp2H0 -0.38
NO;™ + 20~ + 2H* —NO;~ + H0 0.0
Oz + 4o~ 4 4H" — 2H;O 0.40

technetivm leachability, similar 1o thatof NOy ™ (15), However,
the leachability of Te in the bulk of the CWF remains
unchanged. As shown by Smith and Walton, the thickness
of the oxidized region depends an the mte of O diffusion
and the reduetive capaclty of the CWF ( 15). Through the use
of wpical parmmeters for reducing CWFs, the thickness of
the oxidized region is small compared to the dimensions of
the CWF contemplated for use at the Savannal River at times
comparable to the half-life of *Te, so oxidation by O Is of
less concern than exidation by NO,~.

Therefore, the primary issue mised by the rapid oxidation
of Te(IV) observed in the previous study was the possibilioy
that NOy— rather than O was responsible, In this paper, the
evolution of ¥Tc speciation in a serles of grout samples in
containers with very different O; permeabilities and prepared
with and without NOy~ was followed over 4 vears using X-ray
absorption fine structure (XAFS) to determine whether NO; -
or [ was responsible for oxidizing Te(IV) species in these
grout samples,

Experimental Section

Procedures. Caution; *T¢ iz a f-emitter (Ena = 294 LeV, 11
= 2 « IF years). All operations were carrled out In a
radicchemical laboratory equipped for handling this isotope.
Te, as NH®Tc)y, was obiained from Oak Ridge National
Laboratory and was purified as previously described (16).
Where available, the standard deviation of measured and
caleulated values are Included in parentheses following the
value and are in the same units as the last digit.

All operations were carried out inair. Water was delonized,
passed through an activated carbon cantridge 1o remove
onganic material, and then distilled. All other chemicals were
used as received except for Na;5:0;, which was dehydrated
at 120°C for 12 h prior to use. The grout samples ane similar
1o those previously used forthe sudyofchromm redueton
in reducing grout samples (17) and are similar 1o the CWF
used to immobilize low-activity waste at the Savannah River
Site, in that the waste simulant s similar in composition 1o
the Savannah River high-level tank supernate, the dry grout

companents are those used at the Savannah River, and the
cement-to-water ratio s similar, The dry grout components
consisted of 46% tvpe F fly ash, 46% BFS, and &% Portland
cement (17, Two series of grout samples were prepared and
are assumed 1o have a density of 1.7 gem™ [6). The cuveties
used to contain the samples were standard semi-microcu-
vettes with interior dimensions of 1.0 « 0.4 « 4.5 cm!. To
obtain XAFSspectm, theamountof Te in the waste surrogates
Is approximately 300 times greater than that in actual waste,
The increased Te concentration has little effect on the grout
chemistry, because Te is a minor component of the grout.

Attempled Reduction of Pertechnetate by Alkaline
Thiosulfate. TeOy~ (0.01 mmol, 0.10 mL, 0.106 M NaTeOy)
was added to Na:5:0: (0.14 mmol, 1 mL, 0.14 M Nas$:0 in
1.8 M NaOH). No reaction occurred upon mixing. After 14
days, the solution remained colorless.

Preparation of Permeable Grout Samples. Samples were
prepared using waste simulants (17 with and withour NOy™
and MNO;~ as shown in Table 2. To the waste simulant was
added TeD, (0,02 mmal, 0.1 mL, 0.2 M NaTeOy), which was
then reduced with Na:5 (.29 mmal, 0.1 mL, 29 M) in 1 M
LIOH, forming a very dark solution with a black precipitate,
The dry grout components were added, forminga slurry that
was placed in a polystyrene (PS) cuvette, which was capped
and closed with vinyl tape. These samples will be referred
1o as “permeable samples” since O has a large diffusion
coefficient of 2.3 « 1077 em® &7} in PS (18 19, The final
composition of the waste solutlon after addition of the Telly
and NasS solutions is listed in Table 2.

Preparation of Impermeable Grout Samples, The second
serles of samples was prepared analogously to the first, but
the waste simulant was greatly simplified to distinguish the
effect of MOy~ upon Te speciation. To the waste simulant
were added TeQ, (0,012 mmal, 0,30 mL, 0.039 M NaTeOy)
and 0,065 ml of same Na:5 solution as above, which had
oxidized due to the diffusion of O: through the palypropylens
(PP} botile containing the solution. (PP has alarge O, diffusion
coefficient, 1.6 » 1077 em®s ™ (200.) The dry grout components
were added, forming a slurry tharwas placed ina poly(methyl
methacrvate) (PMMA) cuvette that was sealed with epoxy.
These samples will be referred to as “impermeable samples”
singe O has a diffusion coefficient of 2.3 « 107 cm* s~} in
PMMA (21). The final composition of the waste solution after
addition of the Telly™ and oxidized Na:$ solutions is given
in Table 2, Samples A and C were opened after 26 months
and placed in loosely capped jars that were fullv opened
weekly. Sample B remained sealed.

The oxidized Na:5 solution was analveed for 55, 8047,
and 5:0,% by lodometrle ttaton (22) 6 years afier the
oxidized solution was used, and it was found to contain 1,44
M 5:0:7, 0,03 M 50:7, and no 5. When it was used, it must
have contained more 50y, because 505 reduces Te(ly 10

TABLE 2. Composition of Cement Samples

Te  solution dry grout mixmure
sample  {mg)  (mL} final solution composition {a}
Permeable Samplas
1 2 18 181 M MaNO;, 0.923 M NaOH, 048 M NaNO,, 014 M NaAlOHL, 0.14 M NayCD,, 3
0.12 M Na;50,, 0.02 M NaCl, 0.02 M NazCz0y, 0.007 M Na;PO,
0.19 M NagS, 0.066 M LIOH
2 2 18 assample 1, but no NaNOy, NaNO; 3
3 2 0.95 as sampla 1, but 0.04 M MasPD, 1.5
I 2 085  assample 2, but 0.04 M Na;POy 15
Imparmeable Samples
A 1.2 .68 1.8 M NaOH, 1.8 M NaCl, 0,12 M Nax5:0s, 0,001 M NagS0s, 0.7 M LIOH* 1.0
B 1.2 065 1.8 M NaOH, 1.8 M NaNOCg, 0.12 M Naz5:03, 0.001 M NazS0;, 0.1 M LIOH* 1.0
c 1.2 068 1.8 M NaDH, 1.8 M NaNOg 0.12 M NazS:0. 0.001 M Naz50;, 0.1 M LioH* 1.0

* Thir concentrations of Na 80, and Na;5:0, arm inferred Trom the speciation of technatinm.
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TeD»2H,0 (23 and 5,0, does not react with TeOy™ under
these conditions (see above), The composithon was estimated
o be 0.1 M NaSCh and 14 M 500" from the inital Te
speciation In the samples based on the assumption that 50,5
reacted quantitativelywith TeOy ™, asshown ineq 1, Reduction
of et~ 1o TeS, is assumed to result from reaction with BFS
as previowsly observed (13, The PP bottle (6.9 ¢cm high, 33
em diameter, 0.1 cm thick) containing the Na:% solution
allowed the diffusion of 0.1 mmal O; day™!, Given the initial
amount af Na:S (26 mmol), oxidation to Naz5:0, would have
oocurred in 1 wear, assuming thar O: diffusion was rate-
limiting. Since the Impermeable samples were prepared 15
months after the Na:5 solution was prepared, it ks unlikely
that the solution still contained Nags.

2NaTc0, + 3Na.,S0, + 5H.0 — 2Tc0,-2H,0 +
3Na,80, + 2NaOH (1)

Determination of the Reductive Capadty of BFS. The
reductive capacity af the BFS was determined using two
techmigues. In the first (24), the BFS (0.5 gl was sharried in
5-10 mL af HA to which was added 250 ml of 0059 M
(NHLCe{S0)-2H:0 in 2 M H:504. After 1 b, the solution
was titrated with freshly prepared 0,050 M (NH):PelS0, )0+
BH:O in 0,75 M H;:50,. The end point was determined using
0,25 mLof0.025 M Fe(ll) tris-(1,10-phenanthroline complex
{25, 26). The redue tive capacity of the BFSsample was 0.82(1)
mequiv gt as determined from the difference in the valome
of Fefll) solution needed 1o toate 25.0 ml of the Ce(lV)
golution alone and with the BEFS,

Tha reductive capacity of BFS was also estimated from its
§ content, 0.57(1) wi %, determined using ASTM Cl44
section 15.2 (27). The reductive capacity of the 5° depends
on which species s formed upon oxidation. 1155 s oxbdbed
1o 50,7, then the reductive capacity is 1.42(2) mequiv g,
and if 5~ is oodlized 10 50, then the reductive capacity
15 0,7161) mequiv g™, Because the final oxidation stateof the
sulfur species formed during oxidation by CeiIV) or Oy is
unknown and because ASTM Cl4d4 Is susceptible o loss of
H:5, the reductive capacity of 0.82(1) mequiv g~ was used
as the reductive potential of BFS.

Determination of the reductive capacity of BFS using Cr-
V1) as the oxidizer has also been reported and gives much
smaller values, which presumably reflect the reductive
capacity of Fe(ll) rather than 5 in the BES (6, 28,

XAFS Spectroscopy. XAFS spectma were acquired in
fluarescence mode at the Stnford Synchrotron Radiation
Laboratory (SSRL) at beamlines 4-1 and 11-2, Samples were
oriented at 45 relative 1o both the photon beam and the
fluorescence detector, and the photon beam probed the
“side” (nonoptical face) of the cuvette rather than the *“front™
or optical face. Extended X-ray absorption fine stnacture
(EXAFS) data analysis was performed by standard procedures
{24 using the programs ifeffit{ 39) and Athena/Artemis (31);
thearetical EXAFS phases and amplimudes wene ealeulaed
using FEFFT {32) as previously described (16); demails are
given in the Supporting Information.

Results

Initial Technetium Speciation, A prerequisite for investgat-
ing the behavior of Te in grout {s identifying which species
are present. While Te(l, obviously will be present under
oxidizing conditions (33), the species presentunder reducing
conditions are less obvious. The hydrous TellV) oxide, TeD.-
2H:0, results from the reduction of TelDy™ in the absence of
other ligands bath in solutlon and in grour samples (13, 23).
In addition, 5%, either Cas in BFS or added as Naz5, reduces
TeDy™ o a lower-valent technetium sulfide species thought
1o be similar to TeS; (030, Interestingly, the reaction of 5
with TeCy™ In alkaline solution produces Te:S: (34), the Te
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FIGURE 1. Te K-edge EXAFS spactra (leh panel) and their Fourier
Translorms {right panel) of the technetium species initially present
in grout samples prepared by reducing the TeQ,~ with excess sodium
sulfide. Data are shown as dots, and lits are shown as lines. (Fit
range: 2 < k< 133 A1 = B = 45 A} Sample numbers are
indicated naxt o the traces.

%
MA™)

specles generally though 1o be present in reducing CWFs
(15, 34). While these results seem contradictory, the incon-
sistency Is due to the Te(VIT) oxidation state implied by the
stolchiometry Te 5. I Te:S: i= acwallya lower-valent disul fide
complex, then no contradicton exsts, Although Te:S: is
genenally assumed to contain Te(V1I), this assumption has
never been examined (11},

To identify the species present in reducing grouts, the Te
K-edge ENAFS spectra of the permeable samples were
examined 1 week after they were prepared and are shown
in Figure 1, The parameters derived by fitting the spectra are
listed in Table 3. Only these samples contained a single Te
specles, referred 1o as TeS,. All other samples, including these
samples examined 1 vear later, contained multiple species.

The praposed structure of TeS: can be described by
considering the first two and last three coordination shells
separately. The first two coomdination shells consist of
approximately seven S nelghbors ar 237 A and two Te
nefghbors at 2.77 A, similar to Mea(u®=-5H 520", shown in
Figure 2, in which each Mo center has seven 5 and twa Mo
nefghbors at 244 and 2.72 A, respectively (355 The Mog{u’-
Sil-5:)4 core of this complex, without the apical 5, forms
the bullding block of the propesed MoS; stacmure {36), which
has an EXAFS spectmim similar to thatof TeS, (37). In MoSs,
ach Mo center has approximately six S neighbors ar 244 A
and two Mo nelghbars at 275 A. These similaritles strongly
suggest that the TeS, structure contains the same triangular
core, Teal(p'-5){u-5:11%, as shown in Figure 3. More impor-
tantly, the 2.77 A Te-Te distance is typical of triangular
complexes composed of seven-coondinate metal centers:
analogous triangular complexes with six-coordinate metal
centers have substantallyshoner meml- metal distances (38,

The last three coordination shells give rise 1o the small
feamres at higher & in the Fourier tmnsform, The uncertainty
in the assignments of these last shells is greater than thar for
the first two shells except for the § atoms at 4.5 A, which
must be present in the Tegle®-5)(5;):5% care. In addition o
the 5 neighbaors, each Te has an additional Te neighbor a1
gither 3.8 A (~/; of the Tc centers) or 4.3 A (~/, of the Te
centers), The different Te - Te distances suggest that different
ligands bridge the Te centers. Because the presence of seven
first shell S neighbors requires that two 5 atoms bridge
adjacent triangular clusters, possible identities of the bridging
ligands are either two bridging 5 (or H57) ligands or an
edge-bound 5.
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TABLE 3. Initial Tc Coorfination Environment in the Permeable Samples®

scattering sampla
atom 1* F 3 i all data®
5 e 7-316} 1.6(6) 7.0(5) 7.418) 742}
RiA® 2.378(5} 2.376(6) 2.381(5) 2.38045} 2.378(2)
ot (A2 00117 0.0118(2) 0.0113(7) 0.012108) 0.0117(3)
Tec N 1.8(4} 1.8(6) 1.514) 1.714} 1.8{2}
A A 277104} 277115 2.779{5) 277615} 277402}
a* (A 0.007(1 0.00711) 0.0074{1) 000741} 0.0071(5)
Te N 03w 0.4e 0.3 0.3 o.4e
A A 38014 3.83(3) 3.83(3) 3.86(3) 2847}
ot (AR 0.007e 0.005% 00047 00049 0.0059
Te e 072} 0.8(2) 0.7(2) 0.7(11 0841}
A A 4.3013) 4.28(2) 42802} 4303} 4.3011)
of (A 0.008(2} 0.005(2) 0.004(7) 0.004{2) 000801}
s e 111 Gl8) 618} G5} 5{2]
A A 4.48(3) 4. 473} & 48(3} 4.49(3) 44701
o? (A2Y 0.02(1) 0.02{1} 0,011} 0.0101) 0.012(4)
AE 0407} 0.808) 0.6(71 0.5(8} 0.73)
R 0078 0098 0,082 0.085 0.102

" The numbar in pareniheses & the standand deviation of the parameter obtained by Titkng the EXAFS data. In comparison 1o crystallographic
data, N differs by up o 25%, and in / by 05%. © The beet model for the EXAFS spectrom of samgde 1 did not include the Te shalls at 382 and
4.31 A, but this model is included for comparison with the other samples. © AR dots wers fit simaltisneously sing o single et of pammeters. @ 3
b iher number of nelghboring aoms. * /i the distance Trom ihe scattering atom 1o tha iechpetiem center. "o & the Debye-Waller parameter,
the amount of disordar in the ditance o the nekghboning atoms. ¥ Parsmeter dotarmdnad feom the corresponding paramseter in the following shall,

" AE, was idantical for all shefls; 5.7 waz 0.8 In all cases, ' B factor =({ Eiyddata) — pifabE U pddata)F 1=

Moypud-5)5:)>

The Te-Te distance of two Tc centers symmetrically
bridged by an edge-bound S would be ~4.3 A, In a 5+
bridged Cu complex (35), the Cu~Cu distance is 4.03 A, bt
the Te—S$bonds in TeS, are 0.1 Alonger than the Cu—5 bonds.
Maoreover, the 5-5 distance of the % bridge, determined
from the Te—Te and Te—§ distances, is 2.0 A, typical of a
bridging S;*~ (35, 39. Therefore, the 4.3 A Te—~Te distance
is assigned to two Te centers svmmetrically bridged by 55,

The 3.8 A Te-Te distance could result from either two $i-
or H5™ bridges. If the Te and 5 atoms are coplanar, then the
Te—5-Tc angle is 109°, Although few families of complexes
exist in which the geometries of these ligands can be
compared directly, a M—5—M angle of 109* is more typical
of 8~ than of HS™, which generally has M- {SH)—M angles
of ~100° (46-42), Therefore, the 3.8 A Te—Tc distance is
assigned @ two To centers symmetrically bridged by two
S Owverall, the EXAFS data is consistent with a TeS, structure
composed of triangular Teylp®-Sig-501 clusters linked by
either 5 or two 5 ligands as shown in Figure 3.

Although the assignments of the last two T scatering
shells in the EXAFS spectmum of TeS, are less cermain than the
assignments of the other three shells, the resulting model
provides the best fit to the data. In addition, the resulting
bonddistances can be interpreted in achemically meaningful

Tl:y.[l-l“*SH 5245, core

Te3Sa(Sa)g ("TeSy™)

FIGUREZ Structures of Mos(u®-SHSzk® ", the Teslu®-SHS:hS; core that forms the building block of TcS,, and a portion of proposed structure
of TeS, Matal atoms are illustrated by solid circles; sullur atoms are depicted by open circles.

best describes the EXAFS spectrum of TeS: is the one given
in Table 3 and shown in Figure 3. Overall, the proposed
structure of TeS, is similar to that propesed for MoS: by
Weber et al., with the main difference that the Te centers in
Tes, are seven-coordinate while the Mo centers in MoS; are
six-coordinate (36).

The proposed structure of TeS: has a stokchlometry of
TeyS:A5:04 or TesS;s, which is almost Identical to the stoi-
chiometry of Tc%: 2 determined for “Tez5:" (34). Since the
conditions used 1o prepare grout samples are analogous o
those used to prepare Te:S;, it seems likely that Tes, and
Tex5; are the same compound. (In other words, Te:S; is
actually Tea50.) However, from the proposad structure, TS,
iz a Te(IV) compound, which is consistent with its Te K-edge
absorption energy, 6.5 eV below that of TeQy™ (16). Conse-
quenty, the species initally present in reducing-agent-
containing grouts, TeS,, appears to be identlcal 1o Tei5; as
previously suggested (15, 34), but the technetium centers in
Tes, are most likely Te(IV), in agreement with the previous
XAFS study (13).

Evolution of Technetium Speciation Determined by
XANES Spectroscopy. The Te speciation was determined by
least-squares ftting of the XANES spectm using the XANES

and reasonable manner. For these reasons, the model that

spectra of TeOyw-2H:0, TeQy™, and TcS, as components (43,
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FIGURE 3. Evolufion of the Tc K-odge XANES spectra of sample § 25 a funclien of age (left panell, The age of cement {in months] is given
next to the correxponding spectrum. Deconvelution of the XANES spectrum of a 45 month old sample including the XANES spectra of the
standards (right panel). Date are shown as dots, end the least-squirex fit is shown as o line.
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FIGURE &. Evalution of the fraction of Te present as Tely™ as a function of age in the permeable samples (upper fell panal} and in the
imparmeable samples fupper right panall. The arrow indicates whan samples A and C were opanad at 26 months. Evolution of Te speciation
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comtainod NO;~ but remained sealed. The error bars in the plet of the Te spociation in the parmeable sample roflect the variation in

speciation among the samples.

The results for the evelution of T'c speciation in the permeabke
and impermeable samples are addressed saparately.

Permeable Samples. The Te speciation was initially
identical in all samples since they contained only TS As
the samples aged, their XAMES spectma evolved as shown in
Figure 3. The mole fraction of Te(l~ in thesa samples is
shown in Figure 4. The scatner of the data shown in Figure
4 is mueh greater than the standard deviation of the speciation
measurement as discussed below. While this large degres of
scalter produces a large uncertainty in the cate of oxidation
of Te(1V], Figure 4 shows that N0y~ doas not play the major
role in axidizing Te(lV) because the degree of oxidation of
all samples is approximately equivalent despite the fact that
samples 2 and 4 do not contain MOy, However, the large
degresa of scatter precludes the conclusion thar NO,— plays
no role in the oxidation of Te(IV).

Imgrermealde Samples, Unlike the permeable samples,
~20% of the Tely ™ in the impermeable samples was not

HO0H s ENVIRONMENTEL SCIENCE & TECHNOLOGY /VOL. 3%, NO. 20, 2005

reduced to Te(IV) at the beginning of the experiment because
the MNa:5 solution had oxidized o Na:5,0,, which does not
react with TeQy~ under these conditions. In addition, the
observations that the alkaline NagS solution oxidized almost
uantitatively to 5,00~ and that the 50,7 was not further
oxidized 1o SO0 strongly suggest that 505 does not
contribute o the reductive potential of these samples.
Although 80+ is not thermodynamically stable with respect
to oxidation ta 5047, it oxidizes very slowly under alkaline
conditions (44).

As the samples aped, the amount of TeQy™ decreased, as
shown in Figure 4, presumably from its reaction with the
BFS in the grout (13). The large increase in the amount of
Tely - observed in samples A and C at 26 months is due o
exposure of these samples to armosphere sample B remained
sealed. Assuming that the fraction of TeOy ™ in these samples
5 the same at 26 months as at 18 months, the fraction of

Telly™ present in samples A and © increased by 34% and
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16%, espectively, during the 4 months thar they were exposied
to air. In contmast to the permeable samples, litde scatter
exists in the fraction of TeOy until samples A and C werne
exposed to air. As in the permeable samples, the presence
of N~ has no observable effect on the speciation.

Discussion

The data from both series of samples show that Tes%, in
grout ks unstable towards axidation, Sinee the presence of
N}~ had no significant effect on the mte of Te oxidation in
these samples, O: ks the likely oxidizer, In addition, oxidation
by 0 mther than by NOy~ can explain the scatter observed
in the permeable samples,

The scatter in the data in Figure 4 is believed to result
from a spatial variation In the amount of O diffusing into
the samples, which produces different degrees of Te oxidation
in different areas of the samples. Since the regions probed
by the X-ray beam were chosen arbitrarily, such spatial
inhomogeneity of the Te speciation would produce the scatier
shown in Figure 4. Although the O: diffusion into the samples
was ariginally thought to result from air leaking through the
caps of the PS ouvettes, XANES spectra obtained at intervals
from the 1op of the samgples to the bottom show that this is
not the case; instead, Te speciation varies somewhat along
the length of the cuverte (Figure 52), The source of the
variation in the mte of O diffision s believed 1o be the
ridged walls of the cuvette through which the XAFS spectma
were obtained because Oy would diffuse more quickly through
the thinner areas between the ridges.

The premise that O fs the acmal oxidizer & strongly
supported by the results from the impermeable samples
shown [n Figure 4. Althowgh Te speciation evalved and the
areas probed by XANES were arbitrarily chosen, little scatter
exists in the Te speciation of the impermeable samples,
Because (3 cannot readily diffuse through PMMA, Te
speciation should not vary with position, as observed,
However, the most dramatie evidenee for O, oxidation is the
increase in the amount of Tell™ in these samples upon
exposure o atmosphere.

The oxidation of the impermeable samples after removal
from the cuventes should occur atall of surfaces of the sample,
Consequently, the XAFS experiment examines a layer of
axidized grout on a sample consisting mainly of reduced
grout, based on the reasonable assumption that reducing
grout oxidizes by the shrinking core mechanism (15), The
thickness of the oxidized region can be determined from the
fraction of oxidized Tc observed in fluorescence. The
relationship berween the luorescence, L, rom asurface layver
of thickness d to the wotal fuorescence, I, is given by eq 2,
whaere g and ue are the X-ray absorption coeffictents of the
sample ar the [ncident and fluorescent photon energes, 5.2
and 7.5 cm ™! respectively, and ¢ and & are the angles of the
ineident and fluarescont photons with respect to the sample,
45" in both cases. Equation 2 is obtained from the fluores-
cence vield from a surface laver derived previously In the
context of EXAFS flunrescence self-absorption (45— 47), The
40% increase in the Te()y ™ content of samples A and Cupon
air exposure corresponds o the formation of the oxidized
layer, which = 0.28 mm thick according 1o eq 2 (L e = 0.4).

RESITIE
J'_.m_lnﬂp“ slnﬁrlisinﬂ‘ld )

The thickness of the oxldized layer determined by XAFS
can be compared to the thickness of the oxidized region
determined from the shrinking core model of Smith and
Walton (15). The difference between the model employed
here and the Smith and Walton model is thathers the effective
diffusion coefficient of O:, Dapny, is determined from the

SRNL-STI-2009-00473

MacMullin pumber and the diffusion coefficient of Ok in
Hix: Dpey = Do N The mite of growth of the oxidized
laverof thickness d is given byeq 3where ris time (in seconds),
e, s the concentrtion of O; in H20 (2.7 « 107" mol em ™),
Dy 8 the diffusion coefficient of Os in H:O (20 « 107* em?®
&), and C.4 I8 the concentration of reducing equivalents in
the sample (3.3 = 107 mol em~* for a CWF with a density
of 1.7 gem ™ compaosed of 27% BFS with a measured reducing
capacity of 0.82 mequiv g~ plus 0,013 mequiv due 1o 50,5
In the oxidized Na:$ solution; all other grout components
are assumed 1o have a negligible reducing capacity). Through
the use of eq 3, the growth ofa 0.028-cm-thick oxidized layer
in 120 days corresponds 1o a Ny, of 1500, which is within the
mnge reported for similar CWFs albeit at the low end.
Therefore, the thickness of the oxidized layer determined
from the XANES experiment s consistentwith the thickness
of the oxidized laver anticipated from the shrinking core
maodel. All of these results indicare that the oxidation of Te-
(IV) species in these grout samples is due o O; and thar
ML~ has no observable effect on the speciation of Te in
these samples. While these results do not show that NO,~— is
unreactive toward Te(lV) in reducing grouts, this reaction
oceurs too slowly to be observed in this snady.
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14.0 APPENDIX F: TOTAL ORGANIC CARBON CONCENTRATIONS IN
THE OLD LOW LEVEL WASTE BURIAL GROUNDS

166



SRNL-STI-2009-00473

Table 34. Total organic carbon concentrations is well near and beneath the Low Level Waste
Burial Ground. (Data from MclIntrye and Wilhite 1987; DPST-87-762). Data used to
established concentration to use in CDP concentrations in E-Area applications.

Oct Mar Jun Sept Jun
Well ID 1982 1984 1984 1984 1985  From Figure 4 DPST-83-209
(mg/L)
A-1 3.7 0.5@ 0.5
A-3 32 0.5 0.5
A-5 0.5 0.5
A-7 0.5 0.5
A-9 0.5 0.5
A-11 0 0.5 0.5
A-19 0 0.5 0.5
A-21 0 0.5 0.5
A-23 5.6 1.6 1.2
A-32 52 0.5 2
A-34 0.4 0.5 0.5
A-36 4 5.6 0.5 0.5
C-1 0 1
C-3 0 1.8 3 38.8 Potentially impacted by decon. station (p. 7)™
C-5 0 0.5 2.6 253 11.2
C-7 0 3.8 3.8 114
C-9 6 0.5 1.3 22
C-11 11 0.5 0.5
C-13 0 0.5 0.5
C-15 0 5.6 0.5 0.5 Potentially impacted by solvent plume
C-17 20.9 0.5 0.5 Potentially impacted by solvent plume
C-19 0 1 22
C-21 18 2.8 0.5 0.5
C-23 0 6.5 1.4 0.5
C-30 12.1 0.5 0.5
C-32 0 3.7 39
C-34 8 1.3 1.6
C-36 3 0.5 0.5
E-1 10.1 2.4 1.9
E-3 11.9 2.4 0.5 14 8.1
E-5 39 3.5 0.5 0.5
E-7 5 2.5 0.5 0.5
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Oct Mar Jun Sept Jun
WellID 1982 1984 1984 1984 1985  From Figure 4 DPST-83-209

E-9 10 34 2.7

G-7 45 61.4 65.6 30.3

G-23 0 0.5 0.5

G-28 0 1.5 0.5 1

G-30 4 1.8 0.5 0.5

G-32 0 1.7 18 11.2 14.3
G-34 0 0.5 0.5

G-36 4 0.5 0.5

AVE 5.0 2.9 29 3.2 12.0 Grand Average = 5.2

@ All values in table entered in as “0.5” are actually <0.1 values.

® Data in gray were not used to generate averages. They are data that may have been impacted by either the solvent plume (i.e., the well is
located near or in the solvent plume) or its near the decontamination station. The averages were generated to provide an estimate of the total
organic carbon generated from the cellulosic material disposed in the trenches.
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Figure 36. Map of wells used to collect total organic carbon data at LLW Burial Ground.

Outline shows plumes from 1971 solvent spill and plume generated near decontamination
station.
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