

Ltr re our 3-7-72 ltr regaraing Basic Data for a Source Term Calculation \& Liquid Effluent Analyzis trans the following:

ENCLOSURES:
Monticello Huclear Generating Plant Answers to Questions Forwarded with 3-7-72 Letter from Roges S. Boyd
(45 cys encl rec'd)
REMARKS:
1 - Local FDR - Minnegpolis, Mna.
16- EolRing for AcRS
5 - ORILL - Sent 4-10-72

Mr Roger S Boyd
Assistant Director
for Boiling Water Reactors
Division of Reactor Licensing
Atomic Energy Commission
Washington, DC 20545
Dear Mr Boyd:

MONTICELLO NUCLEAR GENERATING PLANT E-5979
NEPA Review - Gaseous and Liquid Effluent Analysis ∞
Your letter of March 7 requested certain basic data required for a source term calculation for a gaseous and liquid effluent analysis n being performed for the Monticello plant as a part of the NEPA review. We discussed this information with your representatives and personnel from the Oak Ridge National Laboratory during a visit here on March 28 and 29.

To confirm the information conveyed at the recent meeting, we are enclosing 45 copies of a tabulation listing the data together with the source reference. As you requested, the data is submitted for (1) the facility as presently designed, and (2) any projected design changes.

Yours very truly,

EC Ward, Director
Engineering Vice Presidential Staff

1905

Regulatory
 File By.
 Roconet w/ ms sat 4-5-77
 Letter from Roger S. Boyd

MONTICELLO NUCLEAR GENERATING PLANT
Answer to Questions Forwarded with 3/7/72

1. Operating power (Nwt) at which impact is to be analyzed.
*(1) 1970 Mw
(p. 1-1.1, FSAR)
*(2) same as (1)
(no projected design changes)

2. Weight of U loaded (first loading and equilibrium cycle).
(1) first loading 206,074 lbs.
(1) equilibrium cycle 204,074 lbs.
(2) same as (1) (no projected design changes)
3. Isotopic ratio in fresh fuel (first loading and equilibrium cycle).
(1) first loading $2.25 \mathrm{wt} \$.$% (p. 1-6.6, FSAR)$
(1) equilibrium cycle 2.55 wt . \%
(2) same as (1)
(no projected design changes)
4. Expected offgas rate after 30 minutes delay.
(1) $25,000 \mu \mathrm{Ci} / \mathrm{sec} \quad(\mathrm{p}$. II-21 Monticello Environmental Report)
(2) $1,300 \mu \mathrm{Ci} / \mathrm{sec}$ (Based on answers to DRL Questions of
(for projected 50 hour hold-up system, based on $25,000 \mu \mathrm{Ci} / \mathrm{sec}$ at 30 min).

June 3, 1971 in report dated October, 1971 and submitted as Request for Change No. 2, Docket No. 50-263)
5. Escape rate coefficients used (or reference).
(1) $700 \mu \mathrm{Ci} / \mathrm{sec}$ for I^{131} to the primary coolant based on offgas rate of $100,000 \mu \mathrm{Ci} / \mathrm{sec}$ after 30 minute holdup.
(2) same as (1)
6. Mass of primary coolant in system (lb.).
(1) a. in reactor:

340,700 lbs water 10,600 lbs steam
b. in recirculating system: 46,697 lbs water
c. in condensate return system:

755,000 lbs water
d. total: $1,142,397 \mathrm{lbs}$ water
(2) same as (1)
*(1) The facility as designed.
*(2) The facility with indicated projected design changes or revised operational procedures.
7. Steam conditions at turbine.
(1) temperature $540^{\circ} \mathrm{F}$ (Fig. 1-3-3B, FSAR) pressure 965 psia
flow rate $6,770,092 \mathrm{lb} / \mathrm{hr}$
(2) same as (1) (no projected design changes)
8. Normal recirculation flow rate (1b/hr).
(1) $57.6 \times 10^{6} \mathrm{lb} / \mathrm{hr}$ total core flow (Fig. 1-3-2B, FSAR)
(2) same as (1) (no projected design changes)
9. Normal clean-up system flow rate (lb/hr).
(1) $80,000 \mathrm{lb} / \mathrm{hr}$ total of two loops (Fig. $1-3-2 \mathrm{~B}$, FSAR)
(2) same as (1)

What type of resins are used?
(1) Not available
(2) Solka floc BW 100 \& Powdex combined precoat/demineralizer

What decontamination factors are expected for each principal nuclide?
(1) Not available
(2) Preliminary measurements at Monticello based on a limited sample run have shown the following;

	D.F.
particulate (gross crud activity)	$\frac{76-99}{}$
gross filtrate activity	43
gross (I ${ }^{131}$)	$149-483$
Cation Cu^{64}	$11-41$
Anion Cu^{64}	$27-32$
I^{131}	

10. What is the expected performance of the expanded gaseous radwaste system from the main condenser air ejector?
(1) nonexistent in design basis system
(2) design basis for the modified offgas system is to provide 50 hour holdup (minimum) to offgases from the main condenser air ejector. Estimated gaseous release rates will be reduced to $0.012 \mathrm{Ci} / \mathrm{sec}$ based on air ejector discharge rate of $0.27 \mathrm{Ci} / \mathrm{sec}$ at 30 min . delay with a condenser inleakage rate of 28 scfm .
(p. 8 Gaseous Radwaste System Modification Report, Revision C, October 13, 1971)

Give the design air in-leakage.
(1) 28 scfm maximum
(p. 5 Answers to DRL Questions of June 3, 1971 on Monticello off-gas modification)
(2) The design maximum air in-leakage is 28 scfm , however the present system experience is about 7 scfm . The expected long term average value is about 20 scfm . The anticipated number of shutdowns per year is 6 with 3 of these expected to be of long enough duration to necessitate complete breaking of the condenser vacuum. For restarting from no vacuum conditions it is expected that the vacuum pump will operate for an average of 2 hours and a maximum of 4 hours.

Is the condenser ejector one stage or two stage?
(1) The condenser ejectors are two one-half capacity two stage steam jet air ejector units with inter- and after-condensers. (p. 11-3.1, FSAR)
(2) same as (1)
(no projected design change)
Where is it discharged?
(1) to the air ejector subsystem which consists of a 30 minute holdup line, high efficiency filters, dilution fans and the plant main stack. The inter-condenser condensate returns to the condenser and the after-condenser condensate goes into the liquid rad waste system.
(p. 9-3.2, FSAR)
(2) to the recombiner subsystem of the modified offgas system via an eductor nozzle on the air-ejector after-condenser.
(p. 9 Gaseous Radwaste System

Modification Report, Revision C)
How many condenser shells?
(1) The main condenser consists of two shells operated as a single pass dual-pressure, dearerating type with divided water boxes.
(p. 11-3.1, FSAR)
(2) same as (1)
(no projected design changes)
11. What is the expected leak rate of primary coolant to the dry well? (lb/hr)
(1) Estimated background drainage to equipment drain sump from dry well is $1250 \mathrm{lb} / \mathrm{hr}$ liquid.
(p. 4-3.10, FSAR)
(2) same as (1)
(no projected design changes)

How frequently is the dry well purged?
(1) \& (2) It is expected that it will be required to completely purge this system about 2 times per year. In addition it will be necessary to partially purge the system about 3 times every 2 weeks with approximately 100,000 cubic feet of nitrogen to control oxygen build-up and it will be necessary to bleed the system pressure down from about 15 psia to atmospheric pressure about 1 time per week. The entire system volume is approximately 240,000 cubic feet.

What treatment is given to this purge?
(1) The purge gas goes through the standby gas treatment system which consists of a demister, a particulate filter, a charcoal filter and a second particulate filter.
(Fig. 5-3-1, FSAR)
(2) same as (1)
(no projected design changes).
12. What is the expected leak rate of primary coolant to the reactor building?
(1) Design basis is zero, however $250 \mathrm{lb} / \mathrm{hr}$ assumed for radiation dose calculation in Answers to DRL Questions on Gaseous Radwaste System Modification Report, Revision C.
(p. 33 Answers to DRL Questions on Gaseous Radwaste System Modification Report, Revision C, October 1971)
(2) Experience to date at Monticello with a several month period of zero liquid rad waste release is that the plant make up water rate is about 350 to 500 gallons per day. This water is being lost from the plant through a combination of evaporative losses, additive to the solid waste solidification system and possible steam leaks in the turbine building. About 50 percent of the loss is assumed to go up the stack with the air ejector off gas. Based on this indirect analysis it is expected that evaporative losses to the reactor building will be about $56 \mathrm{lbs} / \mathrm{hour}$. All liquid leaks are reclaimed through the various drain sumps.

What is the ventilation air flow through the reactor building? (CFM)
(1) $0.9-1.8 \times 10^{5} \mathrm{cfm}(1$ to 3 fans)
(2) same as (1)

Where is it discharged?
(1) to the reactor building roof vent.
(p. 9-3.5, FSAR)
(2) same as (1)

Is the air filtered or otherwise treated before discharge?
(1) not filtered, but monitored to alarm such that dose will not exceed 5% of $500 \mathrm{mRem} / \mathrm{yr}$ at off-site location and set to isolate reactor building vent and automatically direct all flow through the standby gas treatment system based on not exceeding $2 \mathrm{mRem} /$ hour off-site.
(p. 9-3.5, FSAR)
(2) same as (1)
13. What is the expected leak rate of steam to the turbine building? (CFM)
(1) design basis is zero, operator corrective action would be taken if the leak rate were $\geq 10,000 \mathrm{lb} / \mathrm{hr}$.
(p. 9-3.6, FSAR)
(2) The expected steam leak rate is $10 \mathrm{lb} / \mathrm{hr}$ based on the indirect water balance analysis presented in the above answer to Question 12.

What is the ventilation air' flow through the turbine building? (ÇFM)
(1) Upper turbine building flow is variable;
$100,000 \mathrm{cfm}$ in summer
0 cfm in winter (Fig. 10-3-1, FSAR)
Lower turbine building;
$64,000 \mathrm{cfm}$
(2) Same as (1) except experience dictates an annual average for the upper turbine level of $59,000 \mathrm{cfm}$.

Where is it discharged?
(1) Lower turbine building vents to the reactor building and upper turbine building vents to the turbine building roof vent.
(2) same as (1)
14. Describe the treatment of the exhaust stream from the turbine seal glands.
a. What is the origin of the steam used in the gland seals? (i.e., is it primary steam, condensate, or demineralized water from a separate source, etc?)
(1) primary steam (p. 9-3.3, FSAR)
(2) same as (1) (no projected design changes)
b. How is the effluent stream from the gland seals treated and disposed of?
(1) 1.75 minute hold-up, mixed with air ejector offgases and dilution air at the base of the stack.
(p. 9-3.3, FSAR)
(2) same as (1)
(no projected design changes)
15. Provide average gallons/day and $\mu \mathrm{Ci} / \mathrm{cc}$ for the following categories of liquid waste. Use currently observed data in the industry where different from the SAR or Environmental Report (indicate which is used).
a. High-level wastes (for example, "clean" or low conductivity waste and equipment drains);
(1) Flow: 21,000 gal/day (low river flow) $14,000 \mathrm{gal} / \mathrm{day}$ (normal river flow)

Activity: $<3 \times 10^{-3} \mu \mathrm{Ci} / \mathrm{cc}$ (design value in waste collector tank) $2 \times 10^{-5} \mu \mathrm{Ci} / \mathrm{cc}$ (effluent from waste collector demineralizer at low river flow)
$3 \times 10^{-5} \mu \mathrm{Ci} / \mathrm{cc}$ (effluent from waste collector demineralizer at normal river flow)
(Figs. 9-2-1, 9-2-2, FSAR)
(2) Flow: 20,000 gal/day (categories a, b, c and d combined) Activity: $10^{-4} \mu \mathrm{Ci} / \mathrm{cc}$ (in waste collector tank operated on continuous recycle through filter)
(Under present operating procedures wastes in categories a, b, c and d are combined and not treated separately).
1.(1) Number and Capacity of collector tanks; (p. 9-2.7. FSAR)

No.	Name	Capacity (gals.)
1	Waste Surge Tank	35,000
2	Waste Sample Tanks	10,000 each
1	Condensate Backwash	
	Receiving Tank	8,500
1	Waste Collector Tank	10,000
2	Condensate Phase	
	Separator Tanks	12,000 each
2	Clean-Up Phase	
	Separator Tanks	3,000 each.
2	Condensate Storage Tanks	220,000 each
1	Waste Sludge Tank	7,500.

(2) same as (1) plus the following (p. 9-2.7, FSAR)

No.	Name	Capacity (gals.)
	Floor Drain Collector Tank	10,000
1	Floor Drain Sample Tank	10,000

2. Fraction of water to be recycled or factors controlling decision.
(1) Recycle 100% to condensate storage tanks after treatment.
(p. 9-2.1, FSAR)
(2) same as (1)
3. Treatment steps--include number, capacity and process D.F. for each principal nuclide for each step.
(1) Process through waste collector filter and deep bed demineralizer to waste sample tank, measure and transfer to condensate storage tank if activity $<10^{-3} \mu \mathrm{Ci} / \mathrm{cc}$. If activity $>10^{-3} \mu \mathrm{Ci} / \mathrm{cc}$ recycle through filters.
(p. 9-2.1, FSAR)

The design basis decontamination factors were extracted from Fig. 9-2.2 by calculating the ratio of the inlet stream activity to the effluent stream activity for all filters. The resulting decontamination factors are presented below;

Waste collector filter	6.7	total activity
Waste demineralizer	100	total activity
Floor drain filter	5.7	total activity
Laundry drain filter	1	total activity

(2) Preliminary measurements have been performed at the Monticello plant based on a very limited sample run. Decontamination factors for the waste collector filter using solka floc with resin overlay were measured at the plant as follows:

		D.F.
particulate	Co^{60}	698
	Co^{58}	1062
	Cu^{64}	32
Cation	Cu^{64}	0
Anion	I^{133}	82
	Mo^{99}	3.6

Decontamination factors for the deep bed demineralizer were measured at the plant as follows: (This test was made with very clean water to begin with as the waste collector tank is operated on continuous recycle)

particulate	Co^{60}	$\frac{\text { D.F. }}{20}$	(essentially no activity
	Co^{58}	1.3	to measure)
	Cu^{64}	13.5	
Cation	Cu^{64}	2.1	
Anion	I^{133}	1.2	

Capacity of each step:
Waste collector filter - 110 gpm
Deep bed demineralizer - 110 gpm
Floor drain filter - 50 gpm Laundry drain filter - 25 gpm

Modified operating procedure is such that all category a, b, c and d wastes are currently processed through the waste collector filter and deep bed demineralizer to the waste sample tanks. If measured activity is $<10^{-3} \mu \mathrm{Ci} / \mathrm{cc}$, they are passed to the condensate storage tanks for system recycle. If measured activity in the waste sample tanks is $>10^{-3} \mu \mathrm{Ci} / \mathrm{cc}$ the liquid is recycled back through the waste collector filter and deep bed demineralizer.
4. Decay time from primary loop to discharge.
(1) minimum 24 hours.
(2) 100% recycle, if release occurs it will be from tank of lowest activity prior to refueling and average decay time is conseryatively estimated to be 6 months such that concentration in discharge canal will not exceed $10^{-7} \mu \mathrm{Ci} / \mathrm{cc}$.
5. How is waste concentrate handled? (filter cake, demineralizer resin, evaporator bottoms)
(1) Drummed, sealed and shipped to an approved AEC burial site. (p. 9-4.1, FSAR)
(2) Solidified by mixing with cement, drummed in 55 gallon drums and shipped to AEC approved off site disposal area.

Give total volume or weight and curies per day or year.
(1) normal river flow (Fig. 9-2-2, FSAR)

Item

1. clean-up system sludge
2. condensate system sludge
3. waste collector, floor drain and fuel pool sludges
4. waste demineralizer spent resins

Flow (55 gal drums/year)	Activity Normal	(Ci/year)
26.2	2410.	2620.

107. 107. 139.
1. 359.
1.
2. 4.2601.
(1) low river flow (Fig. 9-2-1, FSAR)

(p. 9-2.7, FSAR)
(2) combined with category a, see previous answer
3. Fraction of water to be recycled or factors controlling decision.
(1) variable recycle. See next item.
(2) (Same answer as 15.a.2.)
4. Treatment steps--include numbers, capacity and process D.F. for each principal nuclide.
(1) Normal river flow: process through the floor drain filter to the floor drain sample tank, measure activity and release such that concentration in discharge canal will not exceed $10^{-7} \mu \mathrm{Ci} / \mathrm{cc}$.
(Fig. 9-2-1, FSAR)
Low river flow: the filtrate from the floor drain filter is routed to the waste collector tank.
(Fig. 9-2-2, FSAR)
Decontamination factors and capacity - see answer to 15.a.3.(1).
(2) Same answer as 15.a.3.(2)
5. Decay time from primary loop to discharge.
(1) same answer as 15.a.4.(1)
(2) same answer as 15.a.4.(2)
6. How is waste concentrate handled? (filter cake, demineralizer resin, evaporator bottoms)
(1) Same answer as 15.a.5.(1)
(2) Same answer as 15.a.5.(2)

Give total volume or weight and curies per day or year.
(1) same answer as 15.a.5.(1)
(2) same answer as 15.a.5.(2)
c. Chemical wastes
(1) Flow: 500 gal/day

Activity: $8 \times 10^{-3} \mu \mathrm{Ci} / \mathrm{cc}$
(Fig. 9-2-2, FSAR)
(Table 9-2.2., FSAR)
(2) Flow: $300 \mathrm{gal} /$ day

Activity: $10^{-5} \mu \mathrm{Ci} / \mathrm{cc}$

1. Number and capacity of collector tanks. (Fig. 9-2-1, FSAR)
(1) \& (2) 1 Chemical Waste tank @ 4,000 gals.
2. Fraction of water to be recycled or factors controlling decision.
(1) Same answer as 15.a.1.(1)
(2) 100% solidification or recycle, no release.
3. Treatment steps--include number capacity and process D.F. for each principal nuclide.
(1) same answer as 15.a.3.(1)

Decontamination factors: not available

Capacity - 25 gpm.
(2) complete solidification by using as moisture additive to cement for solid waste disposal or recycle.
4. Decay time from primary loop to discharge.
(1) same answer as 15.a.4.(1)
(2) same answer as 15.a.4.(2)
5. How is waste concentrate handled? (filter cake, demineralizer resin, evaporator bottoms).
(1) drummed and shipped to AEC approved offsite disposal area.
(2) same as (1)

Give total volume or weight and curies per day or year.
(1) same answer as 15.a.5.(1)
(2) same answer as 15.a.5.(2)
d. Laundry, decontamination, and wash-down wastes.

1. Number and capacity of collector tanks.
(1) \& (2) Laundry Drain Tanks @ 1000 gals.
(p. 9-2.7, FSAR)
2. Fraction of water t'o be recycled or factors controlling decision.
(1) 0\% recycle
(Figs. 9-2-1, 9-2-2, FSAR)
(2) same answer as 15.a.2.(2) (these wastes are combined with those of category a, b and c and are not treated separately)
3. Treatment steps--include number, capacity, and process D.F. for principal nuclide for each step.
(1) process through laundry drain filter monitor and release such that activity in discharge canal will not exceed $10^{-7} \mu \mathrm{Ci} / \mathrm{cc}$.
(Figs. 9-2-1, 9-2-2, FSAR)
(2) same answer as 15.a.3.(2)
4. Decay time from primary loop to discharge.
(1) same answer as 15.a.4.(1)
(2) same answer as 15.a.4.(2)
5. How is waste concentrate handled? (filter cake, demineralizer resin, evaporator (bottoms).
(1) same answer as 15.a.5.(1)
(2) same answer as 15.a.5.(2)

Give total volume or weight and curies per day or year.
(1) same answer as 15.a.5.(1)
(2) same answer as 15.a.5.(2)
16. For the condensate demineralizers provide the flow rate $1 b / h r$, type of resin used, expected backwash and regeneration frequency, and expected D,F, for each principal nuclide.
(1)
a. flow rate $6,770,000 \mathrm{lb} / \mathrm{hr}$
(Fig. 1-3-3B, FSAR)
b. type of resin used: Powdex
c. expected backwash and regeneration frequency: backwash every 10 to 20 days, no regeneration
d. expected D.F. for each principal nuclide.
not available
(2) same as (1)
17. Dilution flow rate for liquid effluents, normal gpm and total gallons per year.
(1) a. normal open cycle \& helper $280,000 \mathrm{gpm}$ closed cycle $\quad 16,000 \mathrm{gpm}$
(p. 9-2.3, FSAR)
(p. 9-2.4, FSAR)
b. 1.5×10^{11} per year based on 100% normal cycle or helper tower operation
(2) a. same as (1)
b. 1.3×10^{11} gallons per year based on 85% of normal cycle operation.

Additional Information

X Values
a. stack release
$4.37 \times 10^{-8} \mathrm{sec} / \mathrm{m}^{3}$
b. ground level release $2.6 \times 10^{-6} \mathrm{sec} / \mathrm{m}^{3}$
(Off-gas Modification Report October 1971 Page 24 ff)

