Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Subcommittee on Fermi 3: Open Session
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Friday, October 21, 2011

Work Order No.: NRC-1219

Pages 1-197

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	SUBCOMMITTEE ON FERMI 3
6	+ + + +
7	OPEN SESSION
8	+ + + + +
9	FRIDAY
10	OCTOBER 21, 2011
11	+ + + + +
12	ROCKVILLE, MARYLAND
13	+ + + +
14	The Subcommittee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2B1, 11545 Rockville Pike, at 8:30 a.m., Michael
17	Corradini, Chairman, presiding.
18	SUBCOMMITTEE MEMBERS PRESENT:
19	MICHAEL CORRADINI, Chairman
20	SAID ABDEL-KHALIK
21	J. SAM ARMIJO
22	CHARLES H. BROWN, JR.
23	GORDON R. SKILLMAN
24	JOHN W. STETKAR
25	
l	I

		2
1	CONSULTANTS TO THE SUBCOMMITTEE PRESENT:	
2	THOMAS S. KRESS	
3	GRAHAM B. WALLIS	
4		
5	NRC STAFF PRESENT:	
6	CHRISTOPHER BROWN, Designated	Federal
7	Official	
8	ADRIAN MUNIZ	
9	JERRY HALE	
10	TIM STEINGASS	
11	JOEL JENKINS	
12	CRAIG HARBUCK	
13	RAJ ANAND	
14	SYED HAIDER	
15	GREG MAKAR	
16	JOHN MCKIRGAN	
17	STEVEN DOWNEY	
18	TODD HILSMEIER	
19	GEORGE LIPSCOMB	
20	MARK CARUSO	
21	JIM XU	
22		
23		
24		
25		
ļ		

1ALSO PRESENT:2PETER SMITH3STEVE THOMAS4DAVE HARWOOD5RYAN PRATT6GARY MILLER7ALAN BEARD8MICHAEL BRANDON9WALTER SCHUMTISCH10NICK LATZY11			3
3STEVE THOMAS4DAVE HARWOOD5RYAN PRATT6GARY MILLER7ALAN BEARD8MICHAEL BRANDON9WALTER SCHUMTISCH10NICK LATZY111121131141151161171181191201212232241	1	ALSO PRESENT:	
4DAVE HARWOOD5RYAN PRATT6GARY MILLER7ALAN BEARD8MICHAEL BRANDON9WALTER SCHUMTISCH10NICK LATZY111121131141151161171181191201211221231241	2	PETER SMITH	
5RYAN PRATT6GARY MILLER7ALAN BEARD8MICHAEL BRANDON9WALTER SCHUMTISCH10NICK LATZY111121131141151161171181191201211221231241	3	STEVE THOMAS	
6GARY MILLER7ALAN BEARD8MICHAEL BRANDON9WALTER SCHUMTISCH10NICK LATZY11	4	DAVE HARWOOD	
7ALAN BEARD8MICHAEL BRANDON9WALTER SCHUMTISCH10NICK LATZY11	5	RYAN PRATT	
8MICHAEL BRANDON9WALTER SCHUMTISCH10NICK LATZY11	6	GARY MILLER	
9 WALTER SCHUMTISCH 10 NICK LATZY 11	7	ALAN BEARD	
10 NICK LATZY 11 12 13 14 15 16 17 18 19 20 21 22 23 24	8	MICHAEL BRANDON	
11 12 13 14 15 16 17 18 19 20 21 22 23 24	9	WALTER SCHUMTISCH	
12 13 14 15 16 17 18 19 20 21 22 23 24	10	NICK LATZY	
13 14 15 16 17 18 19 20 21 22 23 24	11		
14 15 16 17 18 19 20 21 22 23 24	12		
15 16 17 18 19 20 21 22 23 24	13		
16 17 18 19 20 21 22 23 24	14		
17 18 19 20 21 22 23 24	15		
18 19 20 21 22 23 24	16		
19 20 21 22 23 24	17		
20 21 22 23 24	18		
21 22 23 24	19		
22 23 24	20		
23 24	21		
24	22		
	23		
25	24		
	25		

	4
1	T-A-B-L-E O-F C-O-N-T-E-N-T-S
2	
3	Opening Remarks and Objectives 5
4	Staff Opening Remarks 8
5	Discussion of ACRS Questions 9
6	Chapter 5, Detroit Edison Company
7	Chapter 5, NRO
8	Chapter 16, Detroit Edison
9	Chapter 16, NRO
10	Chapter 6, Detroit Edison
11	Chapter 6, NRO
12	Chapter 17, Detroit Edison
13	Chapter 17, NRO
14	Chapter 18, Detroit Edison
15	Chapter 19, NRO
16	Discussion among Subcommittee members 185
17	
18	
19	
20	
21	
22	
23	
24	
25	

	5
1	PROCEEDINGS
2	8:28 a.m.
3	CHAIR CORRADINI: The meeting will come to
4	order.
5	This is a meeting of the Advisory
6	Committee on Reactor Safeguards and it's Subcommittee
7	on Fermi Unit 3, the Reference COLA.
8	My name is Mike Corradini, I'm Chair of
9	the Subcommittee. The Subcommittee members in
10	attendance are Dr. Said Abdel-Khalik, Dr. Sam Armijo,
11	Mr. John Stetkar, Mr. Dick Skillman, Mr. Charlie Brown
12	and our consultants Dr. Tom Kress and Graham Wallis.
13	The purpose of this meeting is to discuss
14	SERs for Chapters 5 the Reactor Coolant System,
15	Chapter 6 the Engineered Safety Features, Chapter 16
16	Technical Specs, Chapter 17 Quality Assurance and
17	Chapter 19 the PRA and the Loss of Large Areas
18	Associated with the Fermi 3 COLA.
19	The Subcommittee will hear presentations
20	by and hold discussions with representatives of the
21	NRC staff and the Applicant, the Detroit Edison
22	Company, regarding these matters.
23	The Subcommittee will gather information,
24	analyze relevant issues and facts and formulate
25	proposed positions and actions as appropriate for
	I

(202) 234-4433

	6
1	deliberation by the full Committee.
2	Christopher Brown is our Designated
3	Federal Official for this meeting.
4	The rules for participation in today's
5	meeting have been announced as part of the notice of
6	this meeting previously published in the Federal
7	Register on October 11, 2011. And as noted in the
8	Federal Register notice, a portion of this meeting
9	will be closed to discuss security-related
10	information. At the time Mr. Brown will check the
11	room to ensure that only designated NRC and DTE
12	personnel are present.
13	A transcript of the meeting is being kept
14	and will be made available as stated in the Federal
15	Register notice.
16	It's requested that speakers first
17	identify themselves and speak with sufficient clarity
18	and volume so that they can be readily heard.
19	Also, be silence all iPhones, iPads, other
20	things and other personal devices so no jigging or
21	wiggling or dangling occurs.
22	We have not received any requests from
23	members of the public to make oral statements or
24	written comments at this time. And there is a bridge
25	line setup for Detroit Edison personnel to call in if
I	I

(202) 234-4433

	7
1	the DTE folks in the room want to get advice or
2	information from their colleagues.
3	We have the bridge line setup, is that
4	correct, Chris?
5	DESIGNATED FEDERAL OFFICIAL BROWN: That
6	is correct.
7	CHAIR CORRADINI: So the only thing I
8	wanted to mention in terms of reminding everybody that
9	just due to scheduling and how things have evolved,
10	we're going to have a series of meetings. We've had
11	the first one in late May, I think it was May 25th,
12	where we covered a series of four chapters primarily
13	were incorporated by reference chapters. A large
14	portion of the day is going to be similarly that.
15	We're going to start off with Detroit Edison telling
16	us about some issues or questions that we had raised,
17	and they're going to inform us more about certain
18	things from the May meeting.
19	We're going to have another meeting on
20	November 30th, again with a number of chapters, it'll
21	have a number of things incorporated by reference. And
22	then we're planning a meeting sometime in early 2012
23	which will pick up the chapters where there's a number
24	of deviations from the standard DCD or specific
25	additions because of the site. And that has yet to be
I	I

(202) 234-4433

	8
1	precisely scheduled, but we'll get back to everybody
2	about that and those details.
3	So, I'd like to now proceed and call on
4	Mark. Are you going to be our kickoff or is Adrian
5	going to do it? So I'll call on Adrian Muniz as the
6	Lead Project Manager for Fermi 3 to start us off.
7	Adrian?
8	MR. MUNIZ: Good morning.
9	My name is Adrian Muniz, NRC Lead Project
10	Manager for the Fermi COLA.
11	And I would like to thank the Committee
12	for the opportunity for the staff to discuss their
13	findings as documented in the Safety Evaluation Report
14	with no open items.
15	As Dr. Corradini mentioned, there were
16	several questions raised by the ACRS Members on the
17	May 26th ACRS meeting and Detroit Edison has prepared
18	a presentation to address those questions.
19	Just a point of clarification on Chapter
20	11 which is going to be presented on November 30th,
21	that chapter contains a departure, that's being
22	characterized as a departure not requiring prior
23	approval. And that's the sole departure as of right
24	now that is contained in the COLA.
25	So with that, I would like to turn it over
ļ	

(202) 234-4433

	9
1	to Detroit Edison for their presentation.
2	CHAIR CORRADINI: So their first
3	presentation will be given by Detroit Edison basically
4	answering questions that we've raised from our May
5	meeting. And, Peter, are you going to kick us off?
6	MR. SMITH: Yes, I am.
7	CHAIR CORRADINI: Okay. I was looking for
8	you there. I'm sorry.
9	MR. SMITH: I moved.
10	CHAIR CORRADINI: Yes. I knew you were
11	there a second ago. All right. Go ahead. I'm sorry.
12	MR. SMITH: I saw you move.
13	CHAIR CORRADINI: Yes, we tend to shift
14	around so you can't find us easily.
15	MR. SMITH: Anyway, my name is Peter Smith
16	from Detroit Edison and I've been the COLA Lead since
17	the inception of our project.
18	Last time I went through an extensive set
19	of introductions of people. We have the same cast as
20	we had previously, plus one other that I'll add here.
21	That's Stan Stasek who is our Director of Quality
22	Management from a previous meeting.
23	Anyways, so the first thing I wanted to do
24	was I wanted to go through what we distilled down to
25	two items from our Chapter 8 review from the May
ļ	I

(202) 234-4433

	10
1	meeting. And the first question relates to whether or
2	not the switchyard breakers have one or two closing
3	coils. And the second question related to the
4	description of the overall off-site transmission
5	system an d it related to the fact that Fermi 2 and
6	Fermi 3 share the same transmission corridor for a
7	period and I was not able to adequately describe it,
8	so I've brought some pictures this time that I think
9	will help.
10	So, next slide, please.
11	So the first thing is related to the
12	switchyard breaker closing coils. The breakers have
13	single closing coils. We have yet to find someone who
14	manufacturers breaks with more then one, and I'm
15	convinced them we will.
16	MEMBER STETKAR: Good luck.
17	MR. SMITH: Yes. So anyways, but what we
18	did take away from the meeting was the need to be able
19	to optimally restore off-site power following a loss
20	of off-site power event. And so we went off and we
21	investigated what our practices were in Detroit Edison
22	and we actually owned the transmission system and what
23	ITC has subsequently continued to do, and also through
24	our engineering firm B&V and others that they support.
25	And what we have found in our system and in ITC's is
ļ	I

(202) 234-4433

	11
1	that in the switchyard they use a single battery for
2	restoration of all the breakers, which is not an
3	optimal scheme, and so I was going to talk about that.
4	So, we have a breaker and a half
5	configuration of our switchyard. So in our particular
6	configuration you could reach success by closing a
7	single breaker if you have the right off-site line
8	MEMBER STETKAR: Right. Excellent.
9	MR. SMITH: incoming line and the right
10	alternate preferred power source or normal preferred
11	power source aligned to that breaker. And then the
12	numbers of breakers you have to close go up from
13	there.
14	MEMBER STETKAR: Depending on yes.
15	MR. SMITH: So we are committed to IEEE
16	765 which in general talks about preferred power
17	supply reliability. And we also recognize that the
18	switchyard configuration, and often when we're
19	configuring two batteries because we will have two
20	batteries
21	MEMBER STETKAR: Yes. The good news is
22	you have two batteries out there.
23	MR. SMITH: Yes.
24	MEMBER STETKAR: So in principle you just
25	need to figure out
I	I

	12
1	MR. SMITH: We just need to figure what
2	the right
3	MEMBER STETKAR:and thinking about at
4	which battery supplies which set of breakers so you
5	have, you know a reasonable chance of getting one line
6	back if you do have a battery dead.
7	MR. SMITH: So what we're doing to address
8	this is right now in our relationship with ITC we have
9	an interconnect agreement that has a stop point in it
10	and we have to give a go ahead when we actually decide
11	to build a plant, and that will kickoff the detailed
12	design. And at that time when we get into that
13	contract we're going to put in these requirements
14	relative to performing an evaluation to optimally
15	configure our switchyard.
16	MEMBER STETKAR: Good.
17	MR. SMITH: And utilizing the two
18	batteries for restoration.
19	MEMBER STETKAR: Good.
20	MR. SMITH: And we've got that tracked in
21	our commitment management system associated with a
22	milestone for kicking off that interaction with ITC.
23	MEMBER STETKAR: Thank you.
24	MR. SMITH: Next slide.
25	So the second question related again to
ļ	I

(202) 234-4433

	13
1	the description of the Fermi 2 and Fermi 3
2	transmission corridor. And then there was also a
3	related question regarding a physical separation
4	between circuits from Fermi 2 and Fermi 3 since the
5	circuits are strung on the same towers.
6	So next slide, please.
7	So just as a recap from our last meeting,
8	the Fermi 2 transmission system; Fermi 2 is supplied
9	by 345 kV and 120 kV from the ITC transmission system.
10	There's two 345 kV circuits that are on
11	separate towers and three 120 kV circuit that service
12	the plant that provides a second course of off-site
13	power. When leaving the plant these circuit are all
14	in a common right of way and they're spaced
15	sufficiently such that the collapse of either of the
16	345 kV towers would not interrupt the other 345 line,
17	and that's a statement out of the Firma Unit 2 FSAR.
18	In Fermi 3 we have three 345 kV lines
19	leaving our site. They're in a common right of way and
20	share that common right of way with the Fermi 2
21	transmission system for a portion. Ultimately, Firma
22	2's 345 kV goes through a Brownstown Station, and I'll
23	point that out when we get to the next slide and Firma
24	3 goes to the Milan Station. And again we have
25	sufficient spacing such that any one 345 kV tower or
I	

(202) 234-4433

	14
1	pole failure, and I'll explain that in a minute, can
2	at most disrupt and cause the loss of that line or the
3	adjacent circuit, but not all three.
4	MEMBER STETKAR: Not all three?
5	MR. SMITH: Not all three, correct.
6	MEMBER STETKAR: You can get the two?
7	MR. SMITH: Yes, you can get two.
8	So, next slide.
9	So, I'm going to see if I can drive the
10	mouse here so I can point this out.
11	So, this is just the overall diagram.
12	Fermi 3 is located where the mouse pointer is. And
13	the transmission corridor leaves the site and proceeds
14	down this red and green, and this break point here
15	where the green turns over the Fermi 2 345 kV circuit,
16	that's approximately Interstate 75. And the Fermi 2
17	lines then proceed up by I-75 corridor up to the
18	Brownstone Station which is located to the north and
19	east.
20	The Fermi 3 corridor continues out a
21	developed corridor up to the Sumter area and then
22	proceeds west toward Milan. Now as the developed
23	corridor ends here and there's about 11 miles at the
24	end that are undeveloped at this point in time,
25	although we planned 40 years ago to support the
ļ	I

(202) 234-4433

	15
1	original Fermi 3 that we had a construction permit
2	for.
3	Next slide.
4	CHAIR CORRADINI: Just so I understand, so
5	the solid red ends with a dashed red and it ends there
6	because there's a substation or ends there because
7	there's been just simply no development to this date?
8	MR. SMITH: No, there's not a substation
9	there, but I believe the route to those lines
10	continues in a different path. So we only showed the
11	only path to that point.
12	CHAIR CORRADINI: Okay. Thank you.
13	MEMBER STETKAR: Peter, I was just trying
14	to find my notes.
15	The co-located red/green path
16	MR. SMITH: Yes?
17	MEMBER STETKAR: what's that distance?
18	It's a few miles.
19	MR. SMITH: It's about 3½ miles.
20	MEMBER STETKAR: Three and a half miles?
21	MR. SMITH: I think.
22	MEMBER STETKAR: I couldn't find it in my
23	notes, but I thought it was something like that.
24	MR. THOMAS: If you look at the scale on
25	the bottom of the figure
I	

16 MEMBER STETKAR: Oh. That would be too 1 2 easy. MR. THOMAS: -- it's about 3½ miles. 3 4 MR. SMITH: I need better glasses to see 5 the scale at the bottom. 6 MEMBER STETKAR: I'm too used to asking 7 simple questions, so --8 CONSULTANT WALLIS: So an airplane could take out all the lines? 9 MR. SMITH: Yes, conceivably. 10 CONSULTANT WALLIS: So that sort of common 11 failure would take out everything? 12 MR. SMITH: 13 Yes. 14 So here's the configuration of the corridor --15 CHAIR CORRADINI: So Graham asked that 16 17 question, can we go back? MR. SMITH: Certainly. 18 19 CHAIR CORRADINI: So where's the Detroit Airport? I was trying to understand this because 20 whenever I fly to Detroit I look for Fermi. 21 Oh. So, the Detroit Metro 22 MR. SMITH: Airport is about -- I want to say --23 24 CHAIR CORRADINI: It's to the northwest, I know, but I'm trying to figure out where it is in 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	17
1	relationship to this.
2	MR. SMITH: It's about 20 miles.
3	CHAIR CORRADINI: Okay.
4	MEMBER STETKAR: We haven't talked about
5	aircraft crashes. Twenty miles is one thing. Where
6	the air traffic control corridor is and are you on
7	either a take off whatever?
8	CHAIR CORRADINI: They don't fly over at
9	all.
10	MEMBER STETKAR: Okay.
11	CHAIR CORRADINI: After five wonderful
12	years coming to and from Washington for this joyful
13	experience, I've never seen it get close to it.
14	MEMBER STETKAR: I mean, they tend to
15	route them around.
16	CHAIR CORRADINI: There's Fermi and then
17	there's also a fossil plant up north and a small
18	airfield to the east of that. And essentially all the
19	aircraft routing from Detroit DTW avoids all three of
20	those empirically.
21	MEMBER STETKAR: Okay.
22	MR. SMITH: And we'll talk about that in
23	Chapter 2. We've updated that analysis for Fermi 3.
24	So, here's the configuration of the
25	corridor. So on the outside are the two 345 kV towers

(202) 234-4433

	18
1	that are currently existing. The outside arms have
2	one circuit of 345 kV on this tower for Fermi 2. The
3	other has one circuit of 345 kV for Fermi 2.
4	These arms are currently not strung. They
5	were originally planned, as I said, for the original
6	Fermi 3.
7	And then in the center of the corridor are
8	three circuits on wooden H towers for the 120 kV to
9	supply Fermi 3. And the distances are all on the
10	bottom.
11	MEMBER STETKAR: Those are wooden?
12	MR. SMITH: The center ones are wooden,
13	yes. We'll show you in the next figure, though,
14	that's slowly being changed.
15	CHAIR CORRADINI: And the center ones are
16	for local distribution? I don't think I appreciate
17	the difference. I'm sorry.
18	MR. SMITH: Okay.
19	CHAIR CORRADINI: The purpose of those?
20	MR. SMITH: So the 120 kV Fermi 2 has
21	two off-site sources. One is the 345 kV system, the
22	second off-site storage system, the 120 kV system
23	which actually predates Fermi 2. It was associated
24	with the original Fermi 1 plant.
25	MEMBER STETKAR: Ahh.
Į	I

(202) 234-4433

19 1 MR. SMITH: And then we have a series of speakers that were installed on the site in the early 2 '60s. 3 4 MEMBER STETKAR: Right. You had said that 5 early on. I forgot. Okay. And then the third MR. SMITH: 6 7 circuit for Fermi 3 will be on a pole tower that will be installed somewhere in the center of the 120 kV 8 corridor. 9 MEMBER STETKAR: Details. 10 Go on. Thanks. CONSULTANT WALLIS: It's a long way to the 11 other towers, it's in the middle. 12 It is. When you --13 MR. SMITH: 14 CONSULTANT WALLIS: So the likelihood of it taking out the other towers is pretty small? 15 16 MR. SMITH: So, the next --17 CHAIR CORRADINI: The answer is yes. CONSULTANT WALLIS: But it says here, it 18 19 says "could at most disrupt one adjacent line." Okay. 20 So on the next slide, I have MR. SMITH: a couple of photographs. And so that really gives you 21 kind of the real perspective of it. 22 this slide is 23 So, next on an 24 uncharacteristically sunny day --CHAIR CORRADINI: This is the way Michigan 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	always is, isn't it?
2	MR. SMITH: If you wait long enough it is.
3	CHAIR CORRADINI: This was taken on July
4	3rd, 1063.
5	MR. SMITH: So you can see the
6	configuration as was described in the drawing
7	previously. And so the pole towers on the outside
8	that have the 345 kV circuits, the unhung on the pole
9	towers and then you can see the wooden Hs for the 120
10	kV system.
11	And then you'll notice this pole that's
12	right close to us, that's a recently replaced H tower.
13	So ITC has been going through a program where they've
14	had to replace the H wooden towers they've gone to
15	metal pole towers.
16	CONSULTANT WALLIS: Out of curiosity, do
17	you have any de-icing on these, or does the power line
18	de-ice itself?
19	MEMBER STETKAR: Ice gets heavy enough it
20	falls off.
21	CONSULTANT WALLIS: Just curious.
22	MR. HARWOOD: No, there's no de-ice.
23	CHAIR CORRADINI: If you say anything, you
24	have to come up to a microphone. Identify yourself
25	and speak with sufficient clarity. Sorry. It's
I	

(202) 234-4433

	21
1	transcript problems.
2	MR. HARWOOD: That's okay. Dave Harwood,
3	Project Manager for Firma 3.
4	There is no de-icing.
5	CONSULTANT WALLIS: So another cause of
6	common failure would be a major ice storm? Could be?
7	MR. SMITH: Could be.
8	Next slide.
9	And so this then is the opposite way of
10	looking into the sun on the sunny day toward the Fermi
11	plant, and you can see the little towers in the
12	background, but it's basically the same configuration.
13	CONSULTANT WALLIS: But a breeze, too with
14	plumes like that?
15	MR. SMITH: I'm sorry?
16	CONSULTANT WALLIS: There's quite a breeze
17	with the plumes are horizontal like that.
18	MR. SMITH: Yes.
19	MEMBER ARMIJO: Just to follow-up on
20	Professor Wallis' question, have you ever had failures
21	of transmission lines due to heavy icing into the
22	Fermi plants?
23	MR. SMITH: I don't know of an instance of
24	icing. But we have had lines disrupted by tornado. We
25	had a tornado
Į	I

(202) 234-4433

	22
1	MEMBER STETKAR: June 6th.
2	MEMBER ARMIJO: Thank you.
3	MR. SMITH: And then the final portion of
4	the question related to the configuration of the off-
5	site power was related to how far apart the conductors
6	are between the Fermi 2 and Fermi 3 sites. It depends
7	on which arm. They're 30 feet, the minimum of 45
8	between conductor to conductor.
9	CONSULTANT KRESS: All these common cause
10	things, you account for those in your historical
11	frequencies and loss of off-site power
12	MR. SMITH: Yes. Correct.
13	CONSULTANT KRESS: in your PRA?
14	MR. SMITH: Yes.
15	MEMBER STETKAR: We'll talk about that
16	when we get to Chapter 19 today.
17	MR. SMITH: Yes.
18	CONSULTANT KRESS: Okay. Okay.
19	MEMBER STETKAR: That's why I knew about
20	June 6th.
21	MR. SMITH: All right. Any other
22	questions?
23	CHAIR CORRADINI: No. Keep on going,
24	you're doing fine.
25	MR. SMITH: That was the last slide on
I	

	23
1	this. So, this concludes the follow-ups that we did
2	from the last meeting.
3	CHAIR CORRADINI: Okay. Okay. Any
4	questions about the Subcommittee members?
5	MEMBER STETKAR: No. I think that answers
6	the basic information. The takeaway is that a tower
7	failure can take out not including much about how
8	you're actually going to reconfigure the 120 and 345
9	down the center. But at most you can take out two of
10	the 345 Unit 3, one of the 345 Unit 2 and some 120
11	MEMBER BROWN: One or two of them.
12	MEMBER STETKAR: Unit 2.
13	MEMBER BROWN: A shared right of way.
14	MEMBER STETKAR: I mean a couple. So, you
15	could you know a tower failure, you still have at
16	least one circuit for each unit and probably a 120 for
17	Unit 2 also.
18	MEMBER BROWN: And an aircraft could take
19	all of them out if it came
20	CHAIR CORRADINI: There's a number of
21	common causes.
22	MEMBER STETKAR: I mean, there are a
23	number of things that whenever you have a shared
24	right of way like this, you know that's
25	CHAIR CORRADINI: Other questions? Okay.
l	I

(202) 234-4433

	24
1	Thank you.
2	MR. SMITH: Thank you.
3	CHAIR CORRADINI: So we can proceed I
4	think with today's discussion of Chapter 5 I assume is
5	what you guys are going to start with?
6	MR. SMITH: Yes. So I'm going to turn
7	this over to Ryan Pratt, who is an engineer who works
8	in my organization and he's going to go through
9	Chapter 5.
10	CHAIR CORRADINI: Okay. Thank you.
11	MR. PRATT: Good morning. As Peter said,
12	my name is Ryan Pratt. I'm a licensing engineer for
13	Detroit Edison. Today I'll be discussing Chapter 5,
14	Reactor Coolant System and Connected Systems.
15	As we've done with our previous
16	presentations on the secure side here, we list the
17	chapters where we added additional information to the
18	COLA. And this chapter information was added to three
19	sections:
20	Section 5.2 Integrity of Reactor Coolant
21	Pressure Boundary;
22	Section 5.3 Reactor Vessel; and
23	Section 5.4 Component and Subsystem
24	Design.
25	And also of note, all of the COL items in
ļ	I

(202) 234-4433

	25
1	this chapter are standard items, and all the standard
2	items were included in the previous ESBWR R-COLA.
3	Next slide.
4	Starting with Section 5.2 Integrity of
5	Reactor Coolant Pressure Boundary, the first standard
6	supplemental item identifies ASME codes that are
7	applicable to preservice and inservice inspection and
8	testing programs. And the FSAR identifies these same
9	code additions as those that are identified in the
10	DCD.
11	The next COL item identifies that all
12	Class 1 austenitic or dissimilar metal welds are
13	included in the referenced certified design.
14	And the third COL item provides
15	descriptions of the preservice and inservice
16	inspection and testing programs and implementation
17	milestones. The PSI program is to be completed prior
18	to plant startup and the ISI program is to be
19	implemented prior to commercial service.
20	We also state that the ISI program
21	incorporates the latest addition and addenda of ASME
22	codes approved in 10 CFR 50.55(a) 12 months prior to
23	fuel load.
24	Next slide.
25	Continuing with Section 5.2, we describe
	I

(202) 234-4433

	26
1	the processes that we've preserved: Accessibility to
2	piping systems to enable nondestructive examination of
3	Class 1 welds. But accessibility to these systems is
4	incorporated into the plant design and the licensee's
5	responsibility is to ensure that that accessibility is
6	maintained.
7	And finally, the last final standard COL
8	item in Section 5.2 describes the procedures that will
9	be used for leak detection monitoring.
10	Section 5.3 Reactor Vessel. This section
11	also incorporates the DCD by reference with additional
12	standard information.
13	We describe our commitment to develop the
14	pressure-temperature curves in accordance with the
15	PTLR, Pressure Temperature Limit Report and our
16	commitment is to update the pressure-temperature
17	curves prior to fuel load to reflect the plant's
18	specific material properties, if required.
19	CONSULTANT KRESS: You have samples inside
20	your vessel to measure the neutron fluence?
21	MR. PRATT: Yes, that's right. We have in
22	accordance with the Reactor Vessel Material
23	Surveillance Program we have four sets of samples.
24	CONSULTANT KRESS: How many samples does
25	that include?
	I

(202) 234-4433

(202) 234-4433

	27
1	MR. PRATT: There's four different sets,
2	four different
3	CONSULTANT KRESS: You take them out and
4	look at them about every two years or so?
5	MR. PRATT: The first set is after six
6	full-power years.
7	CONSULTANT KRESS: Six years?
8	MR. PRATT: And then 20 full-power years,
9	and then the third set comes out prior to the 60 full-
10	power years. And the last set is based upon the three
11	previous sets.
12	CONSULTANT KRESS: And based on those you
13	may adjust your pressure-temperature limits?
14	MR. PRATT: Right.
15	CONSULTANT KRESS: Okay.
16	MR. PRATT: And as I said, the next
17	standard COL item describes the Reactor Vessel
18	Material Surveillance Program.
19	And lastly, we state that the plant
20	operating procedures will be developed to implement
21	the pressure-temperature curves.
22	Next slide.
23	Section 5.4 Component and Subsystem
24	Design. Section 5.4 contains one standard
25	supplemental item which describes the operating
ļ	I

(202) 234-4433

	28
1	procedures by which water hammer will be precluded.
2	And these procedures will be developed to be similar
3	to current BWR procedures.
4	CONSULTANT WALLIS: Does the DCD address
5	water hammer?
6	MR. PRATT: It does.
7	CONSULTANT WALLIS: It does?
8	MR. PRATT: And water hammer preclusion is
9	incorporated into the design.
10	CONSULTANT WALLIS: I just wondered who
11	has the expertise to know what to do to preclude water
12	hammer? Is it you or GEH?
13	CHAIR CORRADINI: You're talking operating
14	procedures, I assume.
15	CONSULTANT WALLIS: I just wondered who
16	knows how to write those procedures. Do you have your
17	own piping that's different from the DCD?
18	MR. SMITH: No.
19	MR. PRATT: No, but the principles and
20	concepts will be similar to BWR procedures. Some of
21	the details may be different.
22	CONSULTANT WALLIS: So it's a standard
23	thing? It's not something that's different about your
24	plant?
25	MR. PRATT: Right.

(202) 234-4433

	29
1	CONSULTANT WALLIS: That's what I'm trying
2	to get at.
3	MR. SMITH: Correct. So the COL item is
4	really the DCD addresses design.
5	CONSULTANT WALLIS: Yes.
6	MR. SMITH: And the development of
7	procedures to preclude has made a COL item that we
8	CONSULTANT WALLIS: You had different
9	piping and some reason?
10	MR. SMITH: No, no. So we would have a
11	discussion
12	CHAIR CORRADINI: But there will be
13	difference with piping of isolation condensers, for
14	example.
15	MR. SMITH: Yes.
16	CHAIR CORRADINI: And that's somewhere
17	that you might worry about it.
18	Can I rephrase Graham's question a
19	different way? So you'll potentially have to consult
20	back with GEH in terms of the piping
21	MR. SMITH: Analysis
22	CHAIR CORRADINI: runs are different.
23	MR. SMITH: Yes.
24	CHAIR CORRADINI: Okay. To essentially
25	inform your procedure?
I	

	30
1	CONSULTANT WALLIS: Well details matter,
2	and sometimes the slope of a pipe matters; all kinds
3	of little things matter when you're dealing with water
4	hammers.
5	MR. SMITH: We've had considerable
6	industry experience, so
7	CONSULTANT WALLIS: Yes, I know. I was
8	involved in some of that. Some of it is really
9	interesting.
10	MR. PRATT: The last item addressed in
11	Chapter 5 is Reactor Coolant System Vents and the
12	human factors analysis of the control room displays
13	for the RCS vents is included in DCD Chapter 18.
14	And the operating procedures will be
15	developed prior to fuel load to govern those vents.
16	CONSULTANT WALLIS: Which means opening
17	them occasionally when you have to? When the gases
18	build up in some sort of a place where, unfortunately,
19	you collect them and then you let them out; that's
20	what the procedures are? There's no automatic
21	venting, it has to be done by the operator?
22	CHAIR CORRADINI: You know, I think when
23	we reviewed I don't think that was the case. I don't
24	think that was the case.
25	CONSULTANT WALLIS: I'm trying to
ļ	I

(202) 234-4433

Í	31
1	remember. Right.
2	MEMBER STETKAR: The reactor vessels never
3	have
4	CONSULTANT WALLIS: But there's a sensor.
5	There is a sensor. There has to be a sensor in there.
6	CHAIR CORRADINI: Can we get some
7	information from GEH?
8	MR. SMITH: Gary Miller.
9	MR. MILLER: This is Gary Miller, GE
10	Hitachi.
11	Could you repeat the question, please?
12	CONSULTANT WALLIS: Well, it says
13	"operating procedures," and I was trying to figure out
14	would the operator get some kind of a signal which
15	says something about the level of the noncondensibles
16	in the pipe or something? What is it that the
17	operator gets in this procedure?
18	MR. MILLER: This is in relation to the
19	isolation condenser system?
20	CONSULTANT WALLIS: Well, whatever. It
21	just says "vents." There are several vents, aren't
22	there?
23	CHAIR CORRADINI: I was going to say, a
24	number.
25	CONSULTANT WALLIS: Yes.
1	

	32
1	MR. BEARD: Alan Beard, GE Hitachi.
2	The answer is for the reactor pressure
3	vessel itself we're continuously venting the top head.
4	CONSULTANT WALLIS: Continuously?
5	MR. BEARD: Yes. We have a differential
6	pressure that's established between the vessel and
7	then just downstream of the immediate flow element,
8	you know the venturi that we have. It's about a 45
9	pound differential pressure there so we continuously
10	have that driving that.
11	And then on the isolation condensers we're
12	continuously venting those as well using that same
13	differential pressure to make sure that we don't
14	accumulate noncondensible gases in either of those
15	places.
16	CONSULTANT WALLIS: There are also vents
17	in emergency cooling, aren't there?
18	CHAIR CORRADINI: I think Graham is
19	thinking general, he's not thinking I think you've
20	answered it for isolation of the vessel, but I guess
21	you're thinking like the GDCS; is that what you're
22	thinking?
23	CONSULTANT WALLIS: Well, for the main
24	system it's done all the time.
25	CHAIR CORRADINI: Yes.
I	I

(202) 234-4433

	33
1	CONSULTANT WALLIS: So the operator
2	doesn't have to do anything.
3	CHAIR CORRADINI: Right.
4	CONSULTANT WALLIS: But there are things
5	like ECC systems, which are not used a lot
6	CHAIR CORRADINI: Well, in this case then
7	I think you're thinking the GDCS, for example.
8	CONSULTANT WALLIS: Yes, something like
9	that.
10	CHAIR CORRADINI: Okay.
11	CONSULTANT WALLIS: Yes. Absolutely.
12	CHAIR CORRADINI: So in those cases is it
13	a set of procedures that's going to be developed so
14	that you would go on a periodic basis to make sure?
15	I don't think there are sensors. As I remember the
16	DCD there are not sensors.
17	CONSULTANT WALLIS: There are no sensors.
18	So how do you know when to vent?
19	MR. BEARD: Well, the systems are
20	continuously filled and kept solid. There wouldn't be
21	the ability to accumulate noncondensible gases there.
22	CONSULTANT WALLIS: Ah.
23	CHAIR CORRADINI: I was hoping you'd
24	answer that differently.
25	CONSULTANT WALLIS: So there's no
I	

	34
1	procedure for that either? I'm just wondering what
2	these procedures are that he's talking about.
3	CHAIR CORRADINI: I think where Professor
4	Wallis is going is that given that you've determined
5	once you fill the system it's solid, you're going to
6	have to go on some sort of periodic basis to verify,
7	reverify that things are solid up to some sort of
8	sampling point. And go ahead. Am I on the right
9	page?
10	CONSULTANT WALLIS: That's right. Yes,
11	I'm trying to figure out what these procedures are
12	based on and all I've heard here is that either you
13	don't need to do it or it's done all the time. That
14	doesn't sound like an operating procedure.
15	MR. SMITH: So having not developed these
16	procedures yet but going back to our existing plant
17	experience and the examples that you've addressed such
18	as an example in operating plants today, technical
19	specifications require periodic venting as part the
20	use of surveillance
21	CONSULTANT WALLIS: Do require periodic
22	venting?
23	MR. SMITH: Yes. So you would have
24	operating procedures
25	CONSULTANT WALLIS: Even though you think
I	1

(202) 234-4433

	35
1	it's solid, you still have a
2	MR. SMITH: Right, to verify that the
3	lines are solid. I don't but we can look
4	MR. BEARD: This is Alan Beard again.
5	I'd like to point out that we did make
6	design commitments on the pitch of those GDCS lines
7	such that from the isolation point they pitch
8	positively up in both directions.
9	CONSULTANT WALLIS: Yes, I remember that.
10	MR. BEARD: So they come down to a low
11	point, and then we have positive pitch going back to
12	the GDCS pool and positive pitch going back to the
13	reactor pressure vessel.
14	CONSULTANT WALLIS: That's all very good.
15	There is still some procedure to check, right?
16	MR. SMITH: Correct. So any procedure
17	would have the controls and the procedure for opening
18	and the storing and
19	MR. PRATT: That concludes my
20	presentation. Any further questions?
21	CHAIR CORRADINI: Any member of the
22	Committee? Okay.
23	So I want to ask now will staff come up?
24	MR. SMITH: Yes.
25	CHAIR CORRADINI: Okay.
	I

	36
1	(Whereupon, at 8:59 a.m. off the record
2	until 9:00 a.m.)
3	CHAIR CORRADINI: So who is going to start
4	us off? Jerry, are you going to start us off?
5	MR. HALE: Well, good morning. Jerry
6	Hale, Project Manager in Fermi Application.
7	We're here to present the SER for Chapter
8	5 with no open items of the reactor coolant system and
9	connected systems.
10	Section 5.1 was a summary description, it
11	was IBR.
12	Section 5.2 Integrity of Reactor Coolant
13	Pressure Boundary included Sections 5.2.1, 5.2.2,
14	5.2.3 and 5.2.5. These are all IBR sections.
15	I'd like to move now into the sections of
16	plant-specific starting with Section 5.2.4 Preservice
17	and Inservice Inspection and Testing. Tim Steingass
18	will present on that. He was the technical reviewer
19	of that section.
20	MR. STEINGASS: Good morning, Mr.
21	Chairman and ACRS members.
22	It says here my name is Tim Steingrass,
23	but that's not correct. It's Steingass as in gasoline,
24	okay?
25	I'm the lead technical reviewer for all
I	

(202) 234-4433

	37
1	the ISI and PSI programs for Section 5.2.4 and 6.6.
2	So I'll have the pleasure of coming up in sitting for
3	you again for Section 6.6.
4	Let's see, next slide please.
5	I took a look at the COL and information
6	and supplemental items. COL item 5.2-1-A involved PSI
7	and ISI programs for the reactor coolant and pressure
8	boundary.
9	COL item 5.2-3-A involved accessibility.
10	We asked the Applicant for additional information to
11	assure that accessibility with all the valves and
12	components would be maintained throughout the course
13	of construction. And the Applicant provided
14	additional information to satisfy us that that would
15	be maintained so that the regulations involving
16	accessibility to perform PSI and ISI examinations that
17	are required by ASME code can be conducted throughout
18	the course of construction and during operation.
19	Supplemental item 5.2-1 involved system
20	leakage and hydrostatic pressure testing. The COL
21	Applicant provided the additional information that we
22	required to meet the Standard Review Plan on that, and
23	we had no further issues with that.
24	Post combined license activities involving
25	PSI and ISI, there were commitments made by the
ļ	I

(202) 234-4433

	38
1	Applicant that assured us that a series of schedule
2	information would be provided to the NRC so that we
3	could perform inspections throughout the construction
4	such that if any issues were identified real time,
5	they would be identified immediately and corrected
6	throughout the course of construction rather than
7	waiting until just before fuel load and then finding
8	that there's a major issue to have to be dealt with.
9	So, basically I came to the conclusion
10	that the Applicant has adequately addressed the COL
11	and supplemental information regarding Fermi 3 COL
12	FSAR, and I had no issues.
13	Are there any additional questions?
14	MEMBER STETKAR: Tim, I had one, one that
15	I kind of stumbled over and maybe it's just because I
16	don't understand. There's a statement in it's a
17	COL item 5.2-3-A, I guess. It says "During
18	construction phase of the project anomalies in
19	construction issues are addressed using the change-
20	control procedures. Procedures that require changes
21	to approved design documents including field changes
22	and modifications are subject to the same review and
23	approval process as the original design."
24	How does the staff get involved in that?
25	What I'm concerned about is fuel changes that subtly
I	I

(202) 234-4433

(202) 234-4433

	39
1	affect things back from the DCD that you need to go
2	reverify. I mean, the folks who did the original
3	certified design thought about an awful lot of things,
4	and we have some experience from construction projects
5	where people make field changes that seemed like a
6	good idea to address the specific problem that they're
7	facing during actual construction, but that may indeed
8	affect other issues that they weren't thinking about
9	necessarily: Pipe stresses, you know hanger locations
10	or, you know supports. How does that process really
11	work and that statement about "will receive the same
12	review and approval as the original design" is what
13	caught my attention.
14	Well, I mean it's nice if they've got the
15	hook in there saying they're going to look at it, you
16	know
17	MR. STEINGASS: Yes.
18	MEMBER STETKAR: that they're going to
19	pay attention to field changes. And I didn't ask
20	Detroit Edison. You know, I wanted to ask you guys
21	because the word "review" is in there.
22	MR. STEINGASS: Sure. Well, there's a
23	variety of controls that are in place. One, of
24	course, is the regulations that involved exemptions
25	and things of that nature.
I	I

(202) 234-4433

	40
1	MEMBER STETKAR: Yes.
2	MR. STEINGASS: Okay. So we're got the
3	regulations behind us to make certain that if these
4	folks are going to change anything, they have to
5	request an exemption; anything that has to do with the
6	design so to speak.
7	MEMBER STETKAR: Yes.
8	MR. STEINGASS: Okay? So, you've got the
9	exemption process. But one of the things that I've
10	been involved in is writing or assisting the
11	construction inspection program people with some of
12	the guidance that they're going to need while they're
13	doing the inspections during construction.
14	What I did was I put tags that go from
15	some of the important things that I'm really concerned
16	about, such as accessibility.
17	MEMBER STETKAR: Yes.
18	MR. STEINGASS: The ability to be able to
19	get at dissimilar metal welds and be able to perform
20	ultrasonics on them. And all those tags are actually
21	written into the construction inspectors' guidance.
22	So
23	CHAIR CORRADINI: So what you're saying is
24	you use your judgment to inform the inspectors in some
25	manner so they look for things that you have, shall I
I	I

(202) 234-4433

	41
1	say, issues that you always are looking at if you were
2	there?
3	MR. STEINGASS: And my judgment is based
4	on the lessons learned from
5	CHAIR CORRADINI: Right. Right. Yes.
6	MR. STEINGASS: from all the issues
7	that we've had to deal with over the years.
8	MEMBER STETKAR: Okay.
9	MEMBER ABDEL-KHALIK: How detailed is the
10	SRP guidance on accessibility?
11	MR. STEINGASS: I'm sorry, I didn't hear
12	you.
13	MEMBER ABDEL-KHALIK: How detailed is the
14	SRP guidance on accessibility?
15	MR. STEINGASS: Well, to be honest with
16	you, the SRP talks about the ASME code for
17	accessibility. And the ASME code for accessibility,
18	frankly, is inadequate. It talks about the ability to
19	get into areas by erecting scaffolding and things of
20	that nature, and lighting. But when we're talking
21	about accessibility what's more important is as the
22	regulation say, that the plant needs to be designed
23	and construction such that accessibility to enable the
24	performance of preservice and inservice inspections is
25	maintained. So, I guess that's why I'm here.
l	

(202) 234-4433

	42
1	MEMBER ABDEL-KHALIK: Well, I'm trying to
2	get to the underlying question is: What's involved in
3	your review of Section 5.2-3-A?
4	MR. STEINGASS: Okay. And since you
5	brought up the words "accessibility," I want to make
6	sure that they can actually do the preservice and
7	inservice inspections that are required by the ASME
8	code. My major concern, as I've said before, is the
9	dissimilar metal welds, austenitic welds; welds that
10	are susceptible to ICSCC.
11	With my background as an NDE Level 3 in
12	ultrasonics I know that there are certain distances
13	that need to be maintained such both physical and in
14	the design and selection of materials so that the
15	ultrasonic examination can be performed.
16	There's also guidance in the regulations
17	under the modifications sections that tell us and that
18	tell the applicants that they have to be able to prove
19	that they can actually perform an ultrasonic
20	examination by demonstrating that they can do a UT
21	from one side and find a similar type of defect.
22	So, what's involved is, frankly, knowledge
23	of the regulations, experience and the fact that we do
24	need to update the SRP to be more definitive on
25	accessibility.
	I

(202) 234-4433

43 1 CONSULTANT KRESS: Do you review all the 2 piping drawings and --3 MR. STEINGASS: Well you see, that's why 4 I asked for the Applicant to give us added assurance 5 that they would maintain accessibility and also there are in some of the DCDs, and I can't remember everyone 6 7 of them because I've looked at all of them, there are 8 keys in there that say you're going to meet this 9 regulation, or we intend, or we make a commitment to 10 meet this regulations and that that regulation is in the modification section that says, as I said before, 11 12 you have to prove that you can find a defect, a similar defect from one side. You have to actually 13 14 demonstrate the adequacy of it. And if you don't, 15 then you have to look at it from two sides. And if 16 you're going to look at it from two sides, then you 17 have to design for access on two sides. I don't remember because MEMBER STETKAR: 18 19 I get lost with all of the different designs we look 20 at. MR. STEINGASS: So do I. So do I. 21 But is the final piping 22 MEMBER STETKAR: design covered on DAC for this plant? 23 I'll ask Detroit. 24 MR. STEINGASS: Well, first of all, I 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	don't think I answered your question. I don't have
2	any design.
3	MEMBER STETKAR: That's the reason I
4	brought up the DAC issue is
5	MR. STEINGASS: I don't have any. So what
6	I look for are commitments to meet certain
7	requirements and regulations, and that's the best I
8	can do.
9	MEMBER STETKAR: I mean, that's a bit of
10	the problem at this stage because at the COL stage you
11	don't have a detailed design
12	CONSULTANT KRESS: Well, then the DAC will
13	take care of looking at that is what I was thinking.
14	MEMBER STETKAR: The DAC and the
15	inspection process; that's why the construction
16	inspection process you know, why you had to rely on
17	construction inspection to address these design
18	issues.
19	MR. STEINGASS: That's exactly why we're
20	so adamant about a milestone schedule that comes
21	within six months of getting the license so that we
22	can schedule the inspections and do the inspections
23	real time as the drawings and the systems are being
24	put together and constructed and welded and
25	nondestructive examinations are performed.
I	I

(202) 234-4433

	45
1	MEMBER ABDEL-KHALIK: So the review of
2	item 5.2-3-A is essentially a review of the
3	commitments made as to maintain accessibility?
4	MR. STEINGASS: Yes, sir. Yes, sir. Yes.
5	I asked for additional wordage from these folks to
6	assure me that extra effort would be put into the
7	design and during the construction such that
8	accessibility to perform the NDE would be there.
9	MEMBER STETKAR: And what's what the
10	second half of the paragraph I quoted from says:
11	"Control of accessibility for inspectability and
12	testing during licensee design activities affecting
13	Class 1 components is provided via procedures for
14	design control and plant modification." So I think
15	that that's the assurance that Tim was looking for, at
16	least at the COL, saying that they would have
17	procedures which I guess in this process is about all
18	the staff can do.
19	MR. STEINGASS: At this point, yes sir.
20	CHAIR CORRADINI: Any other questions?
21	MEMBER ARMIJO: I have a question. You
22	mentioned IGSCC as one of the reasons why you want
23	accessibility of the welds so you can inspect them.
24	This system, I believe, in the DCD does not have a
25	built-in hydrogen water chemistry system as part of
	1

(202) 234-4433

	46
1	the cert by design. Now, I don't recall whether
2	Detroit Edison intends to have such a system, so that
3	would be outside of the DCD. So this may not be the
4	right chapter, but when will we review what you folks
5	are going to do about that issue?
6	CHAIR CORRADINI: You're talking back to
7	DTE?
8	MEMBER ARMIJO: Right. Detroit Edison,
9	yes.
10	MR. SMITH: So this is Peter Smith. And
11	I'll give you my recollection and then I'm going to do
12	a lookup for you.
13	MEMBER ARMIJO: Okay.
14	MR. SMITH: I believe what the Design
15	Center Working Group agreed upon was that we were
16	going to implement noble chem as part and parcel of
17	the standard COL and that hydrogen water chemistry, I
18	believe our experience was is that everyone has added
19	it under a changed process, such as 50.59. And that's
20	what we would intend to do.
21	Now we also are participating in the EPRI
22	New Plant Chemistry Guidelines Working Group. And
23	that is a recommendation within the current state of
24	that.
25	MEMBER ARMIJO: So in the case for Detroit

(202) 234-4433

47 1 Edison for this plant would you make those changes in the course of building the plant? Is that going to be 2 3 part of the R-COLA or would you build the plant and 4 then do a 50.59 change afterwards? 5 MR. SMITH: It would a post-license change, not necessarily after the plant is built. 6 7 Because in the --8 CHAIR CORRADINI: It's during the 9 construction I think. 10 MR. SMITH: Right. So the other thing I wanted to point out here too, is that the change 11 control process for new plants once the COL is issued 12 is different than it was during plants that were built 13 14 with construction permits and subsequent operating 15 So field changes are significantly more licenses. 16 controlled to the same degree as what are done to 17 changes done by licensees of operating plants. And there is industry quidance being developed by NEI with 18 19 the staff on change control process. CHAIR CORRADINI: I think you have help. 20 Okay. 21 MR. SMITH: Thank you. My name is Steve Thomas. 22 MR. THOMAS: Ι work for Black & Veatch. And we do have a hydrogen 23 24 water chemistry system that is described in Chapter 9. And we'll get to that. I think that's scheduled for 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	the November 30th meeting. But we do have a hydrogen
2	water chemistry system.
3	MEMBER ARMIJO: Okay. That is part of it,
4	but it's not in the DCD.
5	MR. THOMAS: It's an option in the DCD
6	that we're implementing.
7	MEMBER ARMIJO: It is an option?
8	MR. THOMAS: Yes.
9	MEMBER STETKAR: Oh, yes. They have an
10	option.
11	CHAIR CORRADINI: But they've chosen to
12	exercise that option.
13	MR. THOMAS: Correct.
14	MEMBER ARMIJO: Okay. Thank you. I'll
15	just wait until we get to Chapter 9 then.
16	CHAIR CORRADINI: Anything else for Tim?
17	MR. STEINGASS: Thank you.
18	MR. HALE: Joel Jenkins will present the
19	technical review starting with Section 5.3-1 Reactor
20	Vessel Materials.
21	MR. JENKINS: Yes. My name is Joel
22	Jenkins. I'm a Materials Engineer on the staff with
23	the Office of New Reactors. And I reviewed Section
24	5.3.
25	Starting with Section 5.3.1 Reactor Vessel
I	I

(202) 234-4433

	49
1	Materials. Fermi incorporates by reference ESBWR DCD
2	Section 5.3.1 with the following departures and
3	supplements that are listed on this slide:
4	Section 5.3.6 of the DCD describes the
5	reactor vessel surveillance program, sometimes
6	abbreviated as RVSP, but in the ESBWR DCD this is a
7	short and a very generic description of the program.
8	Certain specifics such as specimen preparation, lead
9	factors and quantity of specimens are not provided in
10	great detail, or at all, in the ESBWR DCD.
11	So the first bullet, COL item 5.3-2-A
12	provides this level of detail for the RVSP. And it's
13	provided as a supplement to the generic requirements
14	of the ESBWR DCD.
15	The second bulleted item, COL 16.01-1-A
16	5.6.4-A, which is actually a COL item from the tech
17	specs, is mentioned in subsection 5.3.1.5 which
18	discusses compliance with the fracture toughness
19	requirements of 10 CFR Appendix G. Now this COL item
20	deals with the topic of pressure-temperature limits,
21	and I will discuss this topic in the next slide.
22	A post combined license activity
23	associated with the first COL item states that if
24	fracture toughness test results indicate that change
25	in the technical specs is required, the expected date
ļ	

(202) 234-4433

	50
1	for the submittal of the revised technical specs will
2	be provided with the Summary Technical Report. And
3	the Summary Technical Report is that report which is
4	required to be submitted after capsules are pulled.
5	The Applicant also identified the
6	following license condition: The complete reactor
7	vessel surveillance program will be developed prior to
8	fuel load.
9	In conclusion: The Applicant has
10	adequately addressed COL and Supplemental Information
11	regarding the Fermi 3 COL FSAR.
12	And that concludes my presentation on this
13	slide.
14	CHAIR CORRADINI: Questions?
15	MR. JENKINS: Okay. Section 5.3.2 deals
16	with Pressure-Temperature Limits. Fermi incorporates
17	by reference ESBWR DCD Section 5.2 which provides
18	representative pressure-temperature limit curves. Now
19	the first bullet to item on this slide, COL item 16.0-
20	1-A 5.6.4-1 which I mentioned in the previous slide,
21	says that the pressure-temperature limit curves are
22	developed in accordance with the Pressure-Temperature
23	Limits Report, and this report is sometimes termed the
24	PTLR. And this is a technical report which is
25	submitted by the Applicant. This report has been
I	1

(202) 234-4433

1 submitted and reviewed. The staff has reviewed the 2 PTLR and finds it conforms to the technical criteria 3 Generic Letter 96-93 and is compatible with the 4 technical specs. But, it should be noted that PTLR 5 provides generic not plant-specific heat up and 6 cooldown pressure-temperature curves based on bounding 7 material properties and projected fluence. To address the submittal of plant-specific 8 9 pressure-temperature limits, the COL Applicant has provided the following commitment, and this commitment 10 stated on the slide that prior to fuel load, the 11 pressure-temperature limit curves will be updated to 12 plant-specific material 13 reflect properties, if 14 required. 15 In conclusion, Applicant the has adequately addressed COL and Supplemental Information 16 17 regarding Fermi 3 COL FSAR. MEMBER SKILLMAN: I'm Dick Skillman. I'd 18 19 like to ask a question, please, Joel. 20 MR. JENKINS: Yes. Sure. Please explain that 21 MEMBER SKILLMAN: little phrase "if required." What does that mean? 22 What would be the basis for requiring the curves to be 23 24 updated, please? This is pretty important. This is what sets the whole map for heat up and cooldown in 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

51

	52
1	the control room.
2	MR. JENKINS: Right.
3	MEMBER SKILLMAN: So what is it that would
4	be a change to which one would respond if required,
5	please?
6	MR. JENKINS: I'm not really sure if I
7	know the best way to answer that.
8	MEMBER BROWN: Well, you just said that
9	all you got was a generic.
10	MR. JENKINS: Well, it's
11	MEMBER BROWN: So it's not right now
12	MR. JENKINS: We don't know that a plant-
13	specific
14	MEMBER ARMIJO: Well, the material
15	properties are the vessel properties and there's
16	generic information on what those properties should
17	be.
18	MR. JENKINS: Right.
19	MEMBER ARMIJO: And when this the vessel
20	for this particular plant is built and the properties
21	measured if they're within that boundary
22	MR. JENKINS: Well, if they're within the
23	bounds, then there's no adjustment.
24	MEMBER ARMIJO: But if you had something
25	unusual about that material that
I	1

53 1 CHAIR CORRADINI: You mean something out 2 of spec? 3 MEMBER ARMIJO: Well, just didn't have the 4 fracture toughness you expected --5 CHAIR CORRADINI: From the testing? MEMBER ARMIJO: Yes. 6 Then you'd have to 7 do something, or that's the way I interpret this 8 commitment. 9 MEMBER SKILLMAN: Well, I do too. I wanted 10 to hear that from NRO. MEMBER ARMIJO: Yes. 11 MEMBER SKILLMAN: That's what I was hoping 12 to hear. 13 MEMBER BROWN: Who makes the decision, 14 15 though, that it's within the bounds? I mean, does 16 Detroit Edison? Are they supposed to submit something 17 that says hey, these are the material properties and we consider these within the boundaries of the generic 18 19 PTLR --MR. JENKINS: That's their -- no, that's 20 their commitment. They would need to submit that, but 21 we would review that and we would determine. 22 MR. HALE: I'll help you out on this one. 23 24 It is the Applicant's responsibility to determine and 25 to clearly state what the material properties are of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 the actual material that's being used for At that point they would need to make 2 construction. 3 a decision is it within the bounding analysis that's 4 in the generic PTLR. If it is, you know, then they're 5 within that analysis. If it's not for some material, 6 then they're going to have to recalculate the curves 7 and they're going to have to notify us based on this 8 commitment of what those changes are. 9 MEMBER BROWN: Their conclusion it's 10 within the boundaries, boundaries of the generic curve, do they have to submit those to the NRC for 11 confirmation? 12 13 MR. JENKINS: Yes. 14 MEMBER BROWN: So you all can see those? 15 In other words, they just don't make the decision and 16 you all not in the loop? In other words, they have to 17 tell you, yes, we consider these okay. Here's the values and this is the limits that we have to deal 18 19 with and therefore we consider them okay; do you 20 approve? MR. HALE: I think that's the expectation 21 is that --22 Do you have to formally 23 MEMBER BROWN: 24 respond in an agreement or do you just get the piece of paper and if not answer comes out --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

54

	55
1	CHAIR CORRADINI: From a process
2	standpoint, I guess I personally don't as long as
3	you guys know and are comfortable with it.
4	MEMBER BROWN: Well, I don't know about
5	that, Mike. I mean, the P-T curves are the most
6	important set of curves you operate with.
7	MR. HALE: Well, remember
8	MEMBER BROWN: Sending it into a black
9	hole just seems kind of meaningless.
10	MR. HALE: Remember we reviewed and
11	accepted a generic PTLR. And if they're going to
12	either acknowledge that the values that are in that
13	report are correct actual material or they're going to
14	acknowledge that the values outside those bounds and
15	need to be updated, then I think the assumption is
16	that they report it and we acknowledge that either:
17	(a) there is no change it's within the bounds or (b)
18	we acknowledge that, yes, they're outside the bounds,
19	we've looked at it, we've reviewed it and we verified
20	the fact that the calculations are appropriate and
21	acceptable.
22	MEMBER BROWN: The key word is
23	"acknowledge," and that's what I was looking for. Do
24	you formally acknowledge that you got them and you
25	agree with the conclusion or not. And you said you
I	I

(202) 234-4433

	56
1	do, so I'm taking you at your word.
2	MR. HALE: We would need to review what
3	they submit to ensure that
4	MEMBER BROWN: And answer.
5	MR. HALE: it does in fact meet the
6	requirements, regardless of whether it's within the
7	bounds of the original generic report or outside the
8	bounds.
9	MEMBER BROWN: Okay. So you acknowledge
10	back to them either way?
11	MR. MUNIZ: This is Adrian Muniz.
12	We'll take that as an action item and
13	we'll get back to you as to the right process that we
14	use, whether the letter contains saying they're
15	bounded or not bounded. But we'll respond to that
16	question.
17	MEMBER BROWN: Okay. Thank you. Thank
18	you.
19	MR. MUNIZ: Sure.
20	CHAIR CORRADINI: Okay. Go ahead, or are
21	you done?
22	MR. JENKINS: I can't remember if I
23	mentioned the staff conclusion.
24	CHAIR CORRADINI: I thought you did, but
25	go ahead and repeat it.
I	I

	57
1	MR. JENKINS: I'll repeat it again and one
2	final request for questions before we move on to the
3	next group.
4	In conclusion, the Applicant has
5	adequately addressed COL and Supplemental Information
6	regarding Fermi 3 COL FSAR.
7	Any other questions?
8	Okay. I have one more slide. Section
9	5.3.3 Reactor Vessel Integrity. Fermi incorporates by
10	reference ESBWR DCD Section 5.3.3. Included in this
11	section of the DCD is a discussion of operating
12	conditions. And in the discussion of operating
13	conditions is a requirement that procedural controls
14	are implemented to hold thermal stress within
15	acceptable ranges and to meet pressure-temperature
16	limits. In this context SUP item 5.3-1 states that
17	development of plant procedures is addressed in
18	Section 13.5 and these procedures requires compliance
19	with the technical specifications. This ensures that
20	the pressure-temperature limits identified in Section
21	5.3.2 are not exceeded during normal operating
22	conditions and anticipated plant transients.
23	In conclusion, the Applicant has
24	adequately addressed COL and Supplemental Information
25	regarding Fermi 3 COL FSAR.
Į	1

(202) 234-4433

	58
1	That concludes my presentation.
2	CHAIR CORRADINI: Questions from the
3	Committee?
4	Okay. Let's move on. So we're on to
5	Chapter 16.
6	Just for everybody, for the Committee,
7	because of just staff flowing in and out we're going
8	to do Chapter 6 after 16 and do 17 after lunch, all
9	right?
10	Do DTE is back up.
11	CHAIR CORRADINI: You can g.
12	MR. SMITH: Okay. So Michael Brandon, my
13	Licensing Manager is going to do the Chapter 16
14	presentation.
15	MR. BRANDON: Okay. Thanks, Peter.
16	As Peter said, my name is Michael Brandon.
17	I'm the Licensing Manager on the project. I've been
18	with the project for about seven months. And I
19	appreciate the opportunity to come here today and talk
20	about Chapter 16, which is the Fermi 3 tech specs.
21	As I'm sure you guys know, the Fermi 3
22	tech specs were developed based on the generic tech
23	specs that were established in the ESBWR DCD. Those
24	generic tech specs were modeled primarily after NUREG-
25	1434, which is the BWR/6 Tech Spec Rev. 3, which is
I	I

(202) 234-4433

	59
1	the current standard with modifications made to
2	address the design differences between the BWR/6 and
3	the ESBWR.
4	The generic tech specs did include a
5	number of standard COL items and a few site-specific
6	items, and those items were addressed in accordance
7	with the Interim Staff Guidance 8.
8	The next slide.
9	Just as an overview, there were 52 total
10	COL items that address 23 topics. Of these 23, there
11	were basically three that we consider site-specific.
12	And the next couple of slides I will present will
13	cover those 23 different topics.
14	Next slide.
15	Really, this slide and the next slide I
16	just have a bulleted list of the 23 different topics
17	that were standard COL items. The Fermi 3 plan was
18	pretty straightforward. None of the approaches we
19	took were controversial or particularly noteworthy.
20	In my slides I just provided the list of the 23
21	between this slide and the next slide. I don't really
22	provide a detailed breakdown of each of these items,
23	so we'll be address any questions you might have. I
24	will address the three specific items in some detail
25	towards the end of the presentation.
ļ	

(202) 234-4433

	60
1	On this particular slide there are two
2	site-specific. One is the hazardous chemicals and one
3	is the plant location.
4	The next slide.
5	This is just the balance of the 23 items.
6	On this page the one point specific is the multi-unit
7	reporting item. And like I said, I'll be talking
8	about those three site-specific items in the following
9	slide.
10	Next slide.
11	These are the three site-specific items
12	that we addressed as part of our application. The
13	first one deals with hazardous chemicals. We did do a
14	site-specific evaluation for hazardous chemicals.
15	That evaluation determined that there were no toxic
16	chemical hazards that would require us to have any
17	type of safety-related instrumentation to monitor for
18	those toxic hazards. Nick is going to talk in some
19	detail about that evaluation in his presentation on
20	Chapter 6 which will be later on today.
21	So from a tech spec perspective, the
22	implication of that is we don't have any type of
23	safety-related instrument in the tech spec in the
24	instruction section that addresses toxic chemical
25	hazard.
I	I

(202) 234-4433

	61
1	CHAIR CORRADINI: And where will this be
2	discussed? And you said it and I didn't
3	MR. BRANDON: Oh, Chapter 6 which Nick
4	will be talking about that.
5	CHAIR CORRADINI: Okay. Fine. Okay.
6	Because I guess then just as a preview what I'm trying
7	to understand is the logic is to at what boundary
8	at what distance what do you stop worrying about in
9	terms of distance away in terms of activities near the
10	plant? But we'll wait for 6.
11	MR. BRANDON: Okay. That's fine.
12	It is worth probably noting that for the
13	confirmed boundary and protection to the operators,
14	the Rev 3 of 1434, which is the basis for our tech
15	specs, did not incorporate TSTF-448 which is a TSTF
16	that was written in response to Generic Letter 2003-01
17	that talked about basically maintaining a confirmed
18	boundary consistent with this licensing basis. The
19	Firma 3 tech specs have incorporated TSTF-448. There
20	is a program in Chapter 5 of the tech spec that was
21	the standard program for ensuring the confirmed
22	boundary maintains its integrity, requires the tracer
23	gas test and so it will ensure that confirm in its
24	design is maintained consistent with the licensing
25	basis.
Į	I

(202) 234-4433

	62
1	The last two items are the plant's
2	location. The plant is located in Frenchtown Township
3	in Monroe County, Michigan.
4	And the third plant-specific item deals
5	with a couple of different requirements for annual or
6	radiological requirements. And basically the option
7	there is we can make a single report for two units and
8	we opted to pursue that particular option.
9	MEMBER ABDEL-KHALIK: Are there any tech
10	spec limits on vacuum breaker leaks?
11	MR. BRANDON: Yes.
12	MEMBER ABDEL-KHALIK: And where are these?
13	MR. BRANDON: They're in Chapter let's
14	see. This is between the special pull on the
15	MEMBER ABDEL-KHALIK: Yes.
16	MR. BRANDON: Chapter 6. They are
17	generic.
18	MEMBER ABDEL-KHALIK: So what are you
19	doing to ensure compliance with those tech spec when
20	it's
21	MR. BRANDON: It's Spec 3616. And there
22	are some items requirements that drive periodic
23	monitoring on those.
24	MR. SMITH: Is your question from the
25	standpoint of maintenance?
I	I

	63
1	MEMBER ABDEL-KHALIK: Well, my question is
2	really adequacy of those surveillance requirements.
3	CHAIR CORRADINI: So you catch it if it's
4	leaking more than the spec, I think is what
5	MR. BRANDON: That's correct. There's
6	surveillance for functional testing them, there's
7	surveillance for verifying the leak rate, which is
8	basically an integrated leak rate test.
9	CONSULTANT WALLIS: Well, by a device yet
10	to be designed and proven?
11	CHAIR CORRADINI: That's a comment. Keep
12	on going.
13	MR. BRANDON: It's no different than a
14	well, it is similar to the BWR/6 design.
15	CONSULTANT WALLIS: Well, this is an issue
16	that's still in the air, isn't it?
17	CHAIR CORRADINI: They have a commitment
18	from the DCD and construction in terms of a set of
19	testing that they're going to do relative to what I
20	think, if I remember back to the fun of last year, the
21	temperature sensors and all the associated logic,
22	right, Graham? Is that right
23	CONSULTANT WALLIS: So you're dependent on
24	GEH for this really?
25	MR. BRANDON: Yes.
ļ	I

(202) 234-4433

	64
1	MEMBER STETKAR: Actually, I'm looking at
2	3616 and I don't immediately find a surveillance
3	requirement if you find a leakage.
4	MR. BRANDON: There is a surveillance
5	MEMBER STETKAR: I see an opening
6	fracture.
7	MR. BRANDON: Right.
8	MEMBER STETKAR: I see the fact that they
9	are closed, which I guess might imply no leakage
10	depending on what you define as closed. "Verify each
11	vacuum breaker is closed." I can look at lights,
12	but
13	MR. SCHUMITSCH: I think it's 3.6.1.1.3.
14	MEMBER STETKAR: 6.1.1 I'm sorry.
15	MR. SCHUMITSCH: 3.6
16	CHAIR CORRADINI: Identify yourself,
17	please.
18	MR. SCHUMITSCH: This is Skip Schumitsch
19	from GE Hitachi.
20	3.6.1.1.3 I believe is what you're looking
21	for.
22	MEMBER STETKAR: And, indeed, you're
23	correct.
24	MR. BRANDON: That's the CIV.
25	MEMBER STETKAR: Vacuum breaker leakage is
I	

	65
1	less then or equal to 15 percent of design basis over
2	square root of K.
3	MR. BRANDON: Whatever that means.
4	MEMBER STETKAR: Yes.
5	MR. BRANDON: We know what that means.
6	CONSULTANT WALLIS: How do you measure a
7	hole size? A vacuum break, it's a rather weird and
8	that K is the measure of the hole size at the leak.
9	So that's a strange thing to measure. You've really
10	got to measure something and then it has to be
11	converted, I suppose. Because it depends on the
12	pressures and all kinds of things.
13	Anyway, this is a thing we're going to do
14	at another time.
15	CHAIR CORRADINI: I don't want to
16	misrepresent. They have a commitment to the staff to
17	clear this up relative to testing so that this then
18	locks into a numerical value based on their testing.
19	So, go ahead and finish.
20	MEMBER ABDEL-KHALIK: So the surveillance
21	are yet to be determined, the surveillance techniques,
22	methodologies?
23	MR. BRANDON: The details.
24	MEMBER ABDEL-KHALIK: The criteria?
25	MR. BRANDON: I can't tell you. I did look
I	I

(202) 234-4433

	66
1	at Grand Gulf a number of years ago in the BWR/6
2	design. And the way they did the tests there was an
3	integrated leak rate test where they would pressurize
4	the
5	CHAIR CORRADINI: They put, like, a hood
6	over it and do a pressurization test?
7	MR. BRANDON: Right. Basically you
8	wouldn't necessarily know which valve may be leaking,
9	but you would have an acceptance criteria or an
10	integrated acceptance criteria if you had some leakage
11	where you failed that thing and you'd have to go
12	through and do individual repairs for individual
13	valves.
14	CHAIR CORRADINI: And this is during
15	refueling?
16	MR. BRANDON: Yes, sir. That's a 24-month
17	surveillance.
18	CHAIR CORRADINI: Okay. That at least
19	helps. But details to be determined is what I think
20	we're still hearing, right?
21	MR. BRANDON: Right. That will be a
22	surveillance or a surveillance procedure that will
23	drive the performance of this test.
24	That was all that I had.
25	CHAIR CORRADINI: Are we done then?
	1

(202) 234-4433

	67
1	MR. BRANDON: We're done, yes.
2	CHAIR CORRADINI: Okay. Questions by any
3	members?
4	All right. Let's move on to the staff.
5	MR. HALE: Okay. This will be a
6	presentation of Chapter 16 SER with no open items
7	technical specifications. And Craig Harbuck will
8	present the staff's review of the plant-specific
9	portions including COLA Part 4.
10	MR. HARBUCK: And I'm Craig Harbuck in the
11	Technical Specifications Branch of NRO.
12	And the presentation is going to
13	essentially follow the structure of the Safety
14	Evaluation. And some of the material will be
15	repetitive of what you've already heard. And I'll
16	just start right in on it.
17	The DCD Chapter 16 for ESBWR is unique in
18	terms of how it handles the technical specification
19	COL items. They provide a table in the introductory
20	part of the Chapter to define what those items are and
21	to provide instructions on how to complete them for an
22	applicant. In other design centers you may or may not
23	have specific enumeration of the items and there may
24	or may not be a reviewer's note within the body of the
25	tech specs or basis that tells you what to do. So
I	I

(202) 234-4433

	68
1	this is a good approach for the ESBWR.
2	Well, before I move to the next slide, I
3	just want to point out that the site-specific
4	information to complete the tech specs were supported
5	by these other review grantees listed on the second
6	bullet.
7	Okay. Next slide.
8	Most items were resolved by just providing
9	the information that was the correct site-specific
10	information. And this was done in a variety of ways.
11	There were a number of items that were
12	essentially bracketed options that would if the
13	Applicant had an analysis to support adopting that
14	option, they could do it. Fermi has not adopted any
15	of those so there's those that we call operational
16	flexibility not adopted.
17	Then there's a number of items where the
18	information didn't apply in this instance. And the
19	one on hazard chemicals, that affects the tech specs
20	primarily in some language in an actual requirement
21	for the control room boundary and in the program for
22	maintaining the control room boundary it covers the
23	governance of testing, that sort of thing.
24	They don't have any unprotected outdoor
25	liquid rad-waste tanks. And since they didn't adopt
	I

(202) 234-4433

	69
1	any of the second sub-bullet items related to taking
2	an MCPR penalty, there were no additional LCOCs under
3	the COLR administrative control. Had no exceptions
4	from their containment leak rate test program,
5	exceptions to RG 1.163.
6	And Firma is going to be a stand-alone
7	ESBWR unit so they're not going to share staff with
8	the other unit. And so there was no need to use part
9	of the notes relating to the staffing issue in the
10	administrative control specification.
11	Okay. For a good part of the review of
12	the design cert GEH had been pursuing using a valve-
13	regulated lead-acid battery. But I think around Rev
14	6 they switched back to the more familiar standard
15	vented acid battery and they provided then a large
16	number of bracketed items related to those parameters
17	were put into the DCD and they have satisfied and
18	completed on those.
19	And the other ones you've heard about from
20	the other presentations.
21	MEMBER ABDEL-KHALIK: I just have a
22	question about the previous slide. Why are the
23	provisions for hazardous chemicals not applicable for
24	this site?
25	MR. HARBUCK: I would have to defer to the
I	I

(202) 234-4433

Í	70
1	analysis in the FSAR that addressed that. There was
2	an open item, I'll mention that later about this
3	well not an open item, but an RAI that staff asked.
4	And basically the conclusion was that there was no
5	need to provide any automatic capability to isolate
6	the control room based on toxic gas.
7	CHAIR CORRADINI: Is that because of what
8	I mean, this kind of follows up. That's on-site
9	and as well as off-site possibilities?
10	MR. HARBUCK: I'm not familiar with the
11	details.
12	CHAIR CORRADINI: But maybe we can turn
13	to
14	MR. THOMAS: Once again, my name is Steve
15	Thomas.
16	And, yes, that includes both on-site and
17	off-site within a five mile radius consistent with RG
18	1.78.
19	MEMBER ABDEL-KHALIK: So how far is I-75?
20	MR. THOMAS: I-75 is within that five mile
21	radius. So we looked at potential transportation
22	accidents on I-75.
23	MEMBER ABDEL-KHALIK: And based on that
24	you just concluded that these were not
25	MR. THOMAS: Based on that we did not need

(202) 234-4433

	71
1	it, no. Correct. We did not need the toxic gas
2	monitoring.
3	CONSULTANT KRESS: What is the status of
4	Fermi 1 on-site? Does it still have sodium in it?
5	MR. THOMAS: No.
6	CONSULTANT KRESS: It's being removed off-
7	site? Okay.
8	MEMBER STETKAR: Those analyses documented
9	in Chapter 2 of the FSAR?
10	MR. THOMAS: Correct. Chapter 2 contains
11	the list of all the chemicals that were considered
12	both on-site and off-site and the transportation
13	events.
14	MEMBER ARMIJO: You did address nitrogen
15	and C/O_2 as asphyxiants
16	MR. THOMAS: Right.
17	MEMBER ARMIJO: in your analysis and
18	concluded that wouldn't affect the control room?
19	MR. THOMAS: Correct. We concluded that
20	the control room would still be habitable, or that the
21	carbon dioxide issue, that the carbon dioxide
22	concentration would be below the limits. And for the
23	nitrogen that it would not reduce the because
24	nitrogen, that was not a toxic gas it's an asphyxiant.
25	So you're concerned about reducing the oxygen level.
I	I

(202) 234-4433

	72
1	And it would not reduce the oxygen level sufficiently
2	to be a hazard to the operators.
3	MEMBER ARMIJO: Okay.
4	MEMBER ABDEL-KHALIK: Roughly when do we
5	expect to review Chapter 2?
6	CHAIR CORRADINI: Let's ask that of
7	Adrian.
8	MR. HALE: Yes, I'll leave that to Adrian
9	to answer that.
10	CHAIR CORRADINI: Is that a fair question
11	for you at this point?
12	MR. MUNIZ: We've issued the schedule
13	alert to affirm the approximate time when the full
14	Chapter 2 will be around August time frame of next
15	year. But we may we're available to possibly come
16	meet with ACRS and there's the other parts not related
17	to the SSI in Chapter 2 before then.
18	CHAIR CORRADINI: For the Committee, it
19	was a decision by staff they wanted to complete
20	Chapter 2. There was some issues relative to soils
21	and testing that has delayed this. So, we can take
22	that offline. But I think that was the reason.
23	Originally it was going to be like January time frame,
24	but just because of what's there versus the standard
25	reference it's been pushed back.
l	I

(202) 234-4433

	73
1	MEMBER ABDEL-KHALIK: I'm asking,
2	obviously, because discussion about hazardous
3	chemicals.
4	CHAIR CORRADINI: Okay. We have great
5	memories. We'll remember all of this when we'll see
6	you again.
7	MEMBER SKILLMAN: This is Dick Skillman.
8	I'd like to ask a question, please.
9	This question of hazardous chemicals has
10	come up several times here in the last 45 minutes.
11	And what I believe I heard is that there will not be
12	a safety-grade device or alarm in the control room to
13	warn the operators that there is a hazardous chemical
14	release or that there is something that is hazardous
15	penetrating the control room boundary. I believe
16	that's what I heard.
17	Taking the safety issue aside, is DTE
18	going to have something in that control room that
19	tells the operators heads up there's something in the
20	air that you should be aware of? Just from a
21	practical perspective, as I see this, this is maybe a
22	\$7 billion plant. You've got 25/30 people involved in
23	operations. You have a lot of people involved in
24	security. You got a lot of people involved in the
25	admin. So it's 2:00 in the morning, 4:00 in the
I	I

(202) 234-4433

	74
1	morning and something happens I-75 and while it's all
2	been analyzed and DTE is comfy, isn't there something
3	that tells the operators heads up team there's
4	something going on that you should be aware of,
5	safety-grade or not safety-grade?
6	MR. SMITH: So I don't have an answer for
7	you right at the moment.
8	MEMBER SKILLMAN: Okay. Thank you. I
9	just raise the issue because I've spent a lot of time
10	in control rooms and a lot of time in hazardous
11	chemical areas. It just seems that for a .25 cent
12	trinket there could be a way to preserve life and to
13	land the plant safely.
14	Thank you.
15	CHAIR CORRADINI: Don't take that as a
16	thought process to come back to. We'll see them
17	again.
18	MEMBER SKILLMAN: Thank you. Thank you.
19	MR. HARBUCK: Okay. We'll go to the next
20	slide.
21	There were a number of items which were
22	addressed using the bounding value or information
23	approach. The one that has the most information on
24	this slide is the P-T limits. As we heard before from
25	Chapter 5 presentation the methodology that's been

(202) 234-4433

ĺ	75
1	approved that was submitted by Firma was based on, I
2	guess, whatever the limits are on material properties
3	that would be judged to be the bounding case, they
4	expect that the material that they'll actually put
5	into the plant will have better properties then that,
6	I presume, so that the bounding curves are adequate
7	for operation. They may end up being conservative.
8	And if that is shown to be the case and if they wanted
9	to modify their report, that would be at their
10	discretion. But they wouldn't have to in order to
11	operate the plant. Therefore, we can conclude that
12	they provided useable bounding information relative to
13	the PTLR.
14	As just a matter of convention, all the
15	COL items related to the PTLR and the DCD, all of
16	those COL items were just judged to be part of this
17	bounding as just as a way of not trying to split it
18	up. Just made it easier for discussion.
19	Are there any questions about the PTLR
20	resolution? Okay.
21	CONSULTANT KRESS: I have maybe one.
22	MR. HARBUCK: Okay.
23	CONSULTANT KRESS: There's concern about
24	the copper/nickel content of material. How do you
25	know what it is when you get it and get ready to put

(202) 234-4433

	76
1	it in the vessel and put your welds in the right
2	place? Do you have some way to actually measure that
3	content or do you get it as a spec from the place that
4	provides you the materials? Just how do you know what
5	your material is?
6	MR. SMITH: Do you guys want to speak to
7	that at all or
8	CHAIR CORRADINI: So repeat your question,
9	Tom. I'm sorry.
10	CONSULTANT KRESS: You know, for these
11	pressurized pressure-temperature limits you're
12	concerned about the copper/nickel content. And, you
13	know you go and get this material, it's showed up and
14	you're going to put it in the vessel and weld it
15	together. I just wondered how you knew what it was.
16	CHAIR CORRADINI: You mean the pedigree of
17	what arrives on site?
18	CONSULTANT KRESS: Yes, the pedigree of
19	what the material is. How do you go about knowing or
20	how does NRC know what it has in it, how do they
21	inspect it? Just the whole question of how do you
22	assure that you got the right materials?
23	MR. HALE: We can take that item.
24	MR. SMITH: Yes, let's take that item.
25	MEMBER ARMIJO: You've addressed that in
I	I

(202) 234-4433

	77
1	the DCD. This vessel doesn't have axial welds.
2	CONSULTANT KRESS: Right.
3	MEMBER ARMIJO: That's one of the things.
4	And
5	CONSULTANT KRESS: That would help.
6	MEMBER ARMIJO: That helps in the modern
7	steel making steel making practice and low you know
8	the issue of carbon contamination of the welds. I
9	mean, copper that's all been addressed and it's in
10	the
11	CONSULTANT KRESS: It's addressed in the
12	DCD.
13	MEMBER ARMIJO: At least I recall it
14	being
15	CHAIR CORRADINI: So you're thinking about
16	you're talking from a QA standpoint of what arise
17	on site that they can verify what
18	CONSULTANT KRESS: That was my question,
19	yes.
20	CHAIR CORRADINI: that it's within the
21	scope of
22	CONSULTANT KRESS: But basically it's
23	addressed in the DCD.
24	MEMBER ARMIJO: Yes, on the vessel
25	acceptance would be the place where you'd make that
I	1

```
(202) 234-4433
```

	78
1	decision. If you found a problem at that point
2	MEMBER STETKAR: You've got to accept the
3	vessel.
4	CONSULTANT KRESS: You've got a big
5	problem.
6	MEMBER ARMIJO: But you know the risk is
7	pretty low that that's going to happen. But, you
8	know, these aren't the old vessel making techniques
9	that they're using.
10	CONSULTANT KRESS: That's the ones out of
11	Toledo?
12	MEMBER ARMIJO: Yes.
13	MEMBER ABDEL-KHALIK: The staff will
14	follow-up.
15	CHAIR CORRADINI: All right.
16	MR. HARBUCK: There was a COL item on the
17	ones that attached to your battery charger. And the
18	test duration is eight hours and that is judged to be
19	sufficient to meet the manufacturer's requirement that
20	having enough time to reach a steady state temperature
21	and condition and maintain that for two hours. That
22	all being acceptable, of course. And I think we have
23	any we got some documentation from the vendor that
24	supports that.
25	And then the last is the control rod scram
	I

(202) 234-4433

	79
1	accumulator and minimum pressure limit. There's a
2	couple of places where that value is used. And what
3	Fermi's done is they took the value from the ABWR and
4	provided a discussion, the basis of the tech specs
5	that explains why that number is acceptable and
6	bounding to what they anticipate the number would be
7	once the system is installed and after testing,
8	determined what the appropriate pressure, minimum
9	pressure would need to be. However, I should point out
10	that normally the pressure in those accumulators are
11	maintained above that number. The tech spec is just a
12	minimum. And so that's do we have anything to add
13	to that?
14	All right. And for all the items on this
15	slide they were handled with bounding information.
16	The Reactor Systems Branch and the Electrical
17	Engineering Branch were totally involved and concur in
18	that conclusion. They were acceptable.
19	MEMBER STETKAR: Craig?
20	MR. HARBUCK: Yes.
21	MEMBER STETKAR: And this may be for
22	Detroit. I'm not a boiling water reactor guy, so I'm
23	not quite sure how things are done there. But do you
24	do scram-time tests for BWRs?
25	MR. SMITH: Yes.
ļ	1

	80
1	MEMBER STETKAR: Do you do those at
2	minimum pressure in the scram accumulators? I mean,
3	that's one way of making sure that the minimum
4	pressure doesn't
5	MR. HARBUCK: I don't know the answer to
6	your question. That's an operational thing. I just
7	don't know.
8	MEMBER STETKAR: Okay. Thanks.
9	MR. HARBUCK: I don't what the basis
10	MEMBER STETKAR: Yes. I should have the
11	arguments about well, you know, we took it from the
12	ABWR and these rods are lighter
13	MR. HARBUCK: Yes, but your question is a
14	little bit is just asking how do you during the
15	testing that may be discussed in the basis in the
16	specification that discusses
17	MEMBER STETKAR: Well, I didn't look at
18	that. But it's just one of these things of assurance
19	for the actual as-built/as-operated plant. If you can
20	meet the scram-time tests with that pressure in there,
21	one would pressure that that's some sort of
22	verification that that limit is okay.
23	MR. HARBUCK: And should they determine
24	that a minimum pressure or a lower value is
25	acceptable, it's up to them to propose an amendment to

(202) 234-4433

get that --

1

2

3

4

5

6

7

MEMBER STETKAR: Right. Right. I'm just more concerned about is that value -- you know, if it actually gets down to that value are you still okay since it's sort of -- I don't want to use the term "inferred" because it's stronger then that, but it's a derived value, I quess.

8 MR. HARBUCK: Okay. The last slide had to 9 do with the Option 3. Now this ISG-08 was developed 10 during the design cert reviews and COL reviews for South Texas and the ESBWR. And so that the items in 11 the tech specs that potentially needed to be resolved 12 using Option 3 were resolved within the context of the 13 14 design cert. So Fermi did not need to use the Option 15 3, however I just have listed what those items that were fixed are and have to do with the status of the 16 17 two programs that are incorporated by reference in the DCD. And those were the Setpoint Control Program and 18 19 then the Post-Accident Monitoring Instrumentation 20 Program.

It turns out when we wrote RG 1.98 Rev 4, we wrote it in such a way that you have to have the plant up and operating and already have taken the procedures anyways for operating in order to -- for abnormal procedures, emergency procedures in order to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

81

1 determine what your Type A, B and C variable are as 2 defined in this new version. So in lieu of doing that 3 we said, well the RG itself which references an 4 industry document provides the methodology for 5 determining what those things are. So as long as the 6 actual requirements appropriate, we don't need to 7 include a list of instruments in the tech spec. We 8 can maintain them in accordance with this 9 administrative program. So that's how we handled the 10 post-accident monitoring on Fermi. And then on the ESBWR 11 And then the Setpoint Control Program, 12 there is a COL item related to that, but it's handled 13 14 using Option 1 because it's just a reference to the 15 approved methodology. And so that's listed there 16 under the second bullet. 17 Okay. Last slide. Just briefly to mention there were not very many RAIs on Chapter 16, but these 18 19 were the main ones. I believe some of these were But essentially I think the 20 mentioned, some were not. key one is the one that's labeled #2. There was a 21 question about whether 30 amps is an indication of 22 full charge on float current was an appropriate value 23 24 since it was greater than what we've normally seen. 25 And so there was a response that demonstrated that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

82

	83
1	this value was an appropriate one. And do you have
2	anything to elaborate on that?
3	MR. SMITH: No, other than it was based on
4	vendor-supplied data.
5	MR. HARBUCK: Right. And Branch staff
6	looked at that, and actually it was their question.
7	Okay.
8	CHAIR CORRADINI: Can I ask about the
9	fourth bullet?
10	MR. HARBUCK: Yes. Sure.
11	CHAIR CORRADINI: So is this more control
12	room related or is this just I'm trying to
13	understand. Is this just inventory on site? What is
14	the 2.2.3-5 again? I don't remember from the
15	MR. HARBUCK: I think this was a question
16	for more information concerning the Applicant's
17	conclusion about the need for
18	CHAIR CORRADINI: Okay. So it's back to
19	MR. HARBUCK: Yes, it's the same issue
20	before. Right.
21	CHAIR CORRADINI: that Dick had brought
22	up.
23	MR. HARBUCK: And it came up in the write-
24	up for this Chapter because there are some bracketed
25	items related to hazardous chemical protection.
	I

(202) 234-4433

	84
1	And let's see
2	CHAIR CORRADINI: So, to put it a
3	different way, it may not rise to a safety issue but
4	it may rise to good practice?
5	MR. HARBUCK: Right. I mean, there
6	certainly would need to be some means of responding to
7	any kind of an airborne
8	CHAIR CORRADINI: That's fine. I just
9	wanted to make sure the two were linked. That's what
10	I was trying to
11	MR. HARBUCK: Yes. And again, it's the
12	FSAR Section 6.4.5 has the evaluation description for
13	this issue.
14	There's one confirmatory item, just to
15	make sure we get in the next revision to the
16	application, just to make sure that the correct
17	revisions for these two typical reports are included.
18	The one for the setpoint methodology is correct. I
19	think the one for the P-T limits there was an update
20	right at the time of the latest revision, so that
21	still needs to be updated.
22	Okay. So conclusions and findings. We
23	find that the generic tech specs and bases have been
24	added, properly incorporated by reference. That the
25	COL items have been resolved in a described manner and
Į	1

(202) 234-4433

	85
1	they're acceptable. And therefore, this Chapter of
2	the Fermi FSAR the tech specs and bases, plant-
3	specific tech specs and bases are acceptable and
4	complete for use in the operation of the unit.
5	And we also conclude it meets all of the
6	regulations that are applicable to the tech specs.
7	Questions?
8	CHAIR CORRADINI: Other questions from the
9	Committee? Charlie, John, any questions?
10	MEMBER STETKAR: No.
11	CHAIR CORRADINI: You guys are all right?
12	Okay. Thank you.
13	Why don't we take our break now and we'll
14	come back to Chapter 6. Is that correct, Adrian?
15	MR. MUNIZ: Yes.
16	CHAIR CORRADINI: Okay. Good. So we'll
17	take a short break until 10:30 a.m.
18	(Whereupon, at 10:11 a.m. off the record
19	until 10:27 a.m.)
20	CHAIR CORRADINI: Okay. Why don't we get
21	started and talk about Chapter 6.
22	MR. SMITH: Nick Latzy my Licensing
23	Supervisor is going to go through the Chapter 6
24	presentation.
25	MR. LATZY: Thank you, Peter. My name is
	I

(202) 234-4433

	86
1	Nick Latzy. I'm the Engineering Supervisor for the
2	Fermi 3 project and today I'm going to be presenting
3	the Chapter 6 engineering and safety features.
4	On the first slide we'll se the sectional
5	breakdown of the Chapter. 6.4 and 6.6 contain
6	standard and site-specific COL information. Sections
7	6.1 and 6.2, 6.3 and 6.5 were all incorporated by
8	reference.
9	Next slide, please.
10	Section 6.4 on the Control Room
11	Habitability, the first COL item the procedures and
12	training for the control room habitability they
13	address the applicable aspects of NRC Generic Letter
14	2003-01 and are consistent are with the intent of
15	Generic Issue 83.
16	The implementation milestones for the
17	training and procedures. Training programs are to be
18	implemented 18 months prior to fuel load and
19	procedures are developed six months prior to fuel
20	load.
21	For the next item, the Supplemental
22	Information site-specific we evaluated the impact of
23	a postulated design bases accident on Fermi 2 on the
24	Fermi 3 control room. We performed that evaluation by
25	using conservatively calculated atmospheric dispersion
l	I

(202) 234-4433

factors at the Fermi 3 main control room intakes. We performed a review of the Fermi 2 LOCA as described in the Fermi 2 FSAR. And based on this evaluation and review the resulting control room operator dose is bounded by the Fermi 3 DBA.

The final bullet on that page for the COL 6 7 we performed a toxic qas analysis, as previously 8 stated, to confirm that the external release of 9 hazardous chemicals do not impact the control room 10 habitability. An off-site evaluation of potentially hazardous off-site chemicals performed 11 was in accordance with RG 1.178, and that would be at a 12 distance of 8 kilometers or five miles from the Fermi 13 14 3 site. And this evaluation determined that there 15 were no significant impact to the Fermi 3 control room 16 from a postulated release of hazardous chemicals stored or used off-site. 17

on-site evaluation of potentially 18 An 19 hazardous chemicals was also performed with accordance with RG 1.178. That habit analysis for nitrogen and 20 carbon dioxide shows a max concentration within the 21 22 control would pose hazard for controlling no 23 habitability.

24Therefore, as previously stated and25discussed here, no Seismic Category 1 safety-related

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	toxic gas monitoring instrumentation was required.
2	MEMBER STETKAR: Nick, before you go to
3	the next slide, there's a statement in the FSAR that
4	says "calculations performed to evaluate the
5	habitability of the control room for accidental
6	releases of hydrogen or oxygen in the hydrogen water
7	chemistry system indicate control room personnel are
8	not subject to hazard or breathing air with
9	insufficient oxygen inside the control room due to a
10	release of hydrogen." That tells me that you've
11	determined that I can live in whatever environment is
12	created if I have a release of hydrogen from the
13	hydrogen water chemistry system. Did you look at
14	flammable or detonable concentrations of hydrogen in
15	either the control room or any of the surrounding
16	areas around the control room envelope that contain
17	all of the digital I&C equipment both safety-related
18	and nonsafety-related stuff?
19	MR. LATZY: Steve?
20	MR. THOMAS: This is Steve Thomas Black &
21	Veatch.
22	And as described in Section 6.4 we're
23	looking at, the explosion or the detonation or the
24	explosion at the storage facilities, and those are
25	located sufficiently far away so that it's not going
I	I

(202) 234-4433

	89
1	to impact
2	MEMBER STETKAR: I understand that. I'm
3	talking about a leak from the stuff that's inside the
4	plant getting up to the control room.
5	MR. THOMAS: We did not I'll have to
6	get back to you on that one.
7	MEMBER STETKAR: And it's not your fire
8	hazards analysis
9	MR. THOMAS: Right.
10	MEMBER STETKAR: because fire hazardous
11	analysis is generic for the DCD and it doesn't include
12	that whole system.
13	CHAIR CORRADINI: What sort of inventory
14	do you have within the plant?
15	MEMBER STETKAR: It's a hydrogen water
16	chemistry system, so it's a constant feed.
17	MEMBER ABDEL-KHALIK: That's probably a
18	lot more hydrogen for the generator coolers.
19	MEMBER STETKAR: Yes, but that's up in the
20	control room
21	MEMBER ARMIJO: It depends what you put it
22	in where it's stored.
23	MR. SMITH: Alan or Gary, can you speak to
24	the hydrogen question?
25	CHAIR CORRADINI: You can get back to us
I	I

	90
1	if you want, but I do think that it would be good that
2	we get a clarification on this.
3	MEMBER ARMIJO: When you do that, just
4	kind of give us an idea of where the system is, how
5	much hydrogen
6	MEMBER STETKAR: I mean, I'm assuming
7	because the way the system is carefully worded that
8	it, indeed, the hydrogen can get from the system to
9	the control room because
10	MEMBER ARMIJO: Not supposed to, but
11	MEMBER STETKAR: Well, but it didn't say
12	it's in other cases they've sort of dismissed it
13	saying it can't get there basically. This one it says
14	you can't get a concentration that's enough to
15	essentially kill somebody because of respiratory
16	problems.
17	CONSULTANT WALLIS: But if it's enough to
18	displace the oxygen, it's probably enough for a bang.
19	MEMBER STETKAR: Huh?
20	CONSULTANT WALLIS: It seems to me that if
21	it's enough to diminish the oxygen so you can't
22	breath
23	MEMBER STETKAR: No. They conclude you
24	can't get that amount, but at some smaller
25	concentration it could get warm in there
	I

(202) 234-4433

91 1 CONSULTANT WALLIS: Yes, at some smaller concentration --2 3 MEMBER STETKAR: -- for a short period of 4 time. CONSULTANT WALLIS: You might have an 5 ignition source in the control room. 6 7 MEMBER STETKAR: And, you know there are 8 sources of sparks and things. MEMBER ARMIJO: Right, even before it got 9 10 there. MEMBER STETKAR: And the key is that it's 11 not analyzed in their fire hazardous analysis because 12 it's an optional system that's installed plant-13 14 specific. So the fire hazardous analysis, at least 15 the quick check I did, you know --MEMBER ARMIJO: Isn't what it should have 16 17 been. Well, we'll follow up. 18 MR. SMITH: 19 MEMBER STETKAR: Okay. Thanks. 20 Next slide, please. MR. LATZY: In Section 6.6 Preservice and Inservice 21 and Testing of Class 2 and Class 22 Inspection 3 Components and Piping, the first COL item there's a 23 24 description of the PSI/ISI program description for Class 3 and 3 components as provided in the DCD 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	Section 6.6. And the implementation milestones for
2	the PSI program are to be completed prior to initial
3	plant startup. And the ISI program is to be
4	implemented prior to commercial service.
5	The ISI program incorporates the latest
6	addition and addenda of the ASME code and 10 CFR
7	50.55(a) 12 months prior to fuel load.
8	Additionally, the flow accelerated
9	corrosion program description in provided in FSAR 6.7.
10	Can you go back to those? Thank you.
11	The FAC program is based on the EPRI
12	Guidelines of NSAC-202L recommendations for an
13	effective flow accelerated corrosion program.
14	The second bullet for the standard COL
15	item, the accessibility for non-destructive
16	examination of Class 2 and 3 austenitic and dissimilar
17	welds. As previously discussed this will be
18	maintained through procedures for design control and
19	plant modifications. These procedures will include
20	provisions to assure accessibility for inspections and
21	testing and ultrasonic techniques will be the
22	preferred NDE method for all PSI and ISI volumetric
23	examinations.
24	Is there any questions before moving on?
25	CHAIR CORRADINI: Other questions?
ļ	I

(202) 234-4433

	93
1	MR. LATZY: Next slide, please.
2	And the last slide on Class 2 and 3
3	components and piping the COL item was on system
4	leakage and hydrostatic pressure tests. These will
5	meet all requirements of ASME code for Class 2 and
6	Class 3 components including the limitations of 10 CFR
7	50.55(a).
8	And that concludes my presentation for
9	Chapter 6.
10	CHAIR CORRADINI: Any other questions from
11	the Committee? Okay.
12	MR. LATZY: Thank you very much.
13	CHAIR CORRADINI: Staff will join us up
14	front.
15	MR. ANAND: Good morning. My name is Raj
16	Anand. I'm one of the project managers working on the
17	Fermi 2 COL application. I thank Detroit Edison for
18	making their presentation on Chapter VI. The Staff
19	agrees with Detroit Edison's presentation.
20	I had planned to discuss with you Chapter
21	VI engineere safety features of the Fermi 3 COL
22	application. This SER has no open items. Section
23	6.1, Section 6.2, Section 6.3 and 6.5 are IBR
24	sections, which incorporate by reference with no
25	departure or supplement of the ESBWR DCD, Rev. 9.

(202) 234-4433

	94
1	Rulemaking for ESBWR DCD is in progress.
2	The topics of interest are Section 6.4, the control
3	room habitability, and Section 6.6, pre-service and
4	in-service instruction and testing of Class II and
5	Class III components and piping.
6	With this, I turn it over to Syed to go to
7	the next slide of control room habitability, Section
8	6.4.
9	MR. HAIDER: Thanks, Raj. Good morning,
10	my name is Syed Haider. I am a technical reviewer in
11	the containment and ventilation branch. I will
12	present the safety findings for Section 6.4 on control
13	room habitability systems, as documented by the staff
14	in the Fermi 3 FSAR.
15	The Fermi 3 FSAR incorporates Section 6.4
16	of the referenced ESBWR DCD, with the exception of two
17	COL items that I will present. A Section 6.4 related
18	supplemental item will be covered by David Brown from
19	the Siting and Accident Consequences Branch. Next
20	slide, please?
21	The standard COL item 6.4-1-A directs the
22	applicant to address the procedures and training on
23	control room habitability area. As required by the
24	DCD, the applicant has stated in the FSAR that the
25	operators are provided with training and procedures
ļ	

(202) 234-4433

	95
1	for control room habitability that address the
2	applicable aspects of NRC Generic Letter 2003-01 and
3	are consistent with the intent of Generic Issue 83.
4	Training and procedures are developed and
5	implementd in accordance with Sections 13.2 and 13.5.
6	As discussed in FSAR Sections 13.4 and 13.5, the
7	applicant has identified both COL activities to track
8	three implementation milestones for operator training
9	and procedures for control room habitability.
10	These milestones include the development
11	of non-licensed plant staff training programs, reactor
12	operator training programs, and operator procedures.
13	The applicant has made commitments to achieve these
14	milestones at least six to eighteen months prior to
15	the scheduled fuel loading.
16	The staff concludes that the information
17	provided by the applicant for the standard COL item
18	6.4-1-A is acceptable.
19	MEMBER ABDEL-KHALIK: Now, in reviewing
20	this part of Chapter 6, did you as a reviewer know
21	that the applicant has opted to select the hydrogen
22	water chemistry option?
23	MR. HAIDER: Yes, I was. I was aware of
24	that. And in the Containment and Ventilation Branch,
25	we did not review the flammability aspects of hydrogen
ļ	I

(202) 234-4433

	96
1	for the control room habitability. Because our focus
2	was on inside the control room, while Chapter II
3	reviewers reviewed the dispersion and modeling, and
4	the phenomena that occurred outside the control room.
5	And inside the control room, the concentration never
6	went to the flammability never went high enough to
7	invoke toxicity or asphyxiation, that we were
8	concerned about.
9	MEMBER ABDEL-KHALIK: But not detonation?
10	MR. HAIDER: Not detonation.
11	MEMBER ARMIJO: What kind of levels of
12	hydrogen would be considered toxic if they got in
13	there? How much percent, or parts per million or
14	what's the toxic concentration that would concern you?
15	MR. HAIDER: I know that the general
16	asphyxiation limit for any gas is somewhere between
17	16,000 ppm percent or 16,000 depending on the
18	source that you draw this information from. But I
19	know
20	CHAIR CORRADINI: What's the value again?
21	I'm sorry.
22	MR. HAIDER: 60,000 ppm to 76,000 ppm
23	depending on
24	CHAIR CORRADINI: So 60,000-ish? So
25	almost any sort of gas?
	1

(202) 234-4433

	97
1	MR. HAIDER: Yes, any gas. This is
2	asphyxiation. Because if you look at the OSHA
3	definition of asphyxiation, the standards define that
4	if the oxygen concentration in a space drops from
5	20.95 percent to 19.5 percent, then it's an oxygen
6	deficient environment. And that translates into
7	roughly seven percent of any gas.
8	CHAIR CORRADINI: So that's about six
9	percent by weight?
10	CONSULTANT WALLIS: Yes.
11	MR. HAIDER: By volume. By volume.
12	CONSULTANT WALLIS: Very strange.
13	CHAIR CORRADINI: By volume or by
14	MR. HAIDER: Yes, by volume.
15	CHAIR CORRADINI: Oh, by volume? You said
16	I'm sorry. When you said ppm, I was guessing weight
17	ppm. It's not.
18	MR. HAIDER: No, no. No, ppms in this
19	context are really defined to the best of my knowledge
20	on volumetric basis.
21	CHAIR CORRADINI: Okay. So that's very
22	close to a flammability limit. Not that it matters
23	for what we're talking about, but I just wanted to
24	make sure I understood. So 60,000 in terms of by
25	volume.
I	

(202) 234-4433

	98
1	MR. HAIDER: 60,000 in terms of volume.
2	That was the figure that was quoted by North Anna.
3	But if you look at what the Applicant's test quoted,
4	it's about 87.7 milligram per meter cubed. It
5	translates into about 76,000 ppm. I mean, I'm not
6	really
7	CHAIR CORRADINI: I understand that.
8	MR. HAIDER: But that's the range.
9	CHAIR CORRADINI: So that's the limit and
10	then
11	MR. HAIDER: Asphyxiation.
12	CHAIR CORRADINI: Excuse me. Okay.
13	Right. So then just to follow on Professor Abdel-
14	Khalik's question, so then were there calculations
15	done to show that they're well within that limit?
16	What I'm trying to understand is that's the limit so
17	what was the value that you compared to?
18	MR. HAIDER: You mean for hydrogen?
19	CHAIR CORRADINI: Yes.
20	MR. HAIDER: That what we screened out at
21	the Chapter 2 stage. We ran the analysis only for
22	nitrogen and carbon dioxide that whose concentration
23	exceeded the control room intake. So, in other
24	words
25	CHAIR CORRADINI: So, I don't understand

(202) 234-4433

	99
1	when you say that was screened out. Can you kind of
2	explain a bit more about that?
3	MR. HAIDER: Yes.
4	MR. BROWN: David Brown. I'm with the
5	Siting and Accident Consequences Branches.
6	One of the responsibilities of my branch
7	to do that screening in Chapter 2.
8	CHAIR CORRADINI: Okay. Okay.
9	MR. BROWN: Our reviewer for Chapter 2 is
10	not here today.
11	CHAIR CORRADINI: Okay. So we can come
12	and return back to that?
13	MR. BROWN: Yes.
14	CHAIR CORRADINI: But can you at least
15	give us sort of a preview so we're clear what's
16	MR. BROWN: The process is we would look
17	at hazards within five miles including on-site
18	hazards. I don't know precisely whether this system
19	was considered, I'd have to refer to the reviewer, to
20	see if the immediately dangerous to life and health
21	values are exceeded at the intake. If they are, then
22	we refer that to the Containment and Ventilation
23	Systems Branch, they could further analyze that.
24	CHAIR CORRADINI: Okay. So this is what
25	you mean by screened out? You guys did some sort of
I	I

(202) 234-4433

	100
1	analysis on both on-site and off-site
2	MR. BROWN: Yes.
3	CHAIR CORRADINI: and this fell within
4	the bounds that they didn't have to pass it on?
5	MR. BROWN: Right. It may have, I'd have
6	to refer to the
7	CHAIR CORRADINI: I get the main part now.
8	We'll remember that part.
9	MEMBER BROWN: Can I just make sure I
10	understand on what you just said?
11	CHAIR CORRADINI: Sure.
12	MEMBER BROWN: The hydrogen storage
13	facility is listed in the FSAR as to being 750 feet
14	away from the main control room. So you evaluate that
15	to screen that whether he needs to look at it, is that
16	correct?
17	MR. BROWN: Right.
18	MEMBER BROWN: I mean, you release the
19	entire thing and the wind blows it all up the intake.
20	MR. BROWN: Right.
21	MEMBER BROWN: Then you determine whether
22	the concentration is suitable for the Ventilation
23	Branch to have to evaluate that?
24	MR. BROWN: Right. We would look at the
25	explosion
I	I

```
(202) 234-4433
```

	101
1	MEMBER BROWN: Yes, the explosion and/or
2	MR. BROWN:flammable gas type hazards
3	and asphyxiation or toxicity hazard all from the same
4	chemical, assuming the chemical posed all three
5	hazards we would look at all of those.
6	CHAIR CORRADINI: So let me actually
7	follow-up because Charlie asked the question that I
8	was thinking, which is the details of how the hydrogen
9	water chemistry thing is going to be physically placed
10	and designed for this plant is to be determined or has
11	been set? I assume it's more to be determined,
12	turning back to DTE?
13	MR. SMITH: I believe it's to be
14	determined.
15	CHAIR CORRADINI: Okay.
16	MEMBER BROWN: Well, the FSAR says "in
17	excess of 750 feet from the control room" both
18	hydrogen and oxygen storage facilities.
19	MEMBER STETKAR: That is the bulk storage
20	tank?
21	CHAIR CORRADINI: That's the bulk storage.
22	MEMBER BROWN: Yes, the bulk storage tank.
23	CHAIR CORRADINI: But I think what John's
24	point is that's not necessarily where the hydrogen
25	water chemistry would be taken from necessarily. It
Į	I

(202) 234-4433

	102
1	depends on the
2	MEMBER BROWN: I understand that part.
3	CHAIR CORRADINI: Okay.
4	MEMBER BROWN: I mean, I was just looking
5	at from the total release of all the stuff in the tank
6	for some reason. That's two football fields away.
7	Not a big, big distance.
8	CHAIR CORRADINI: Okay. I think we
9	understand now. We'll remember it.
10	MEMBER BROWN: Okay. For Chapter 2.
11	MEMBER STETKAR: Yes, they've looked at
12	the big storage tank. They've not looked at the
13	piping and releases within the pipe welds.
14	CHAIR CORRADINI: Right. Right. And
15	that's where John's question came from, right? Okay.
16	Keep on going.
17	MR. HAIDER: The second COL item 6.4.020A
18	directs the Applicant to identify and analyze
19	potential on-site and off-site toxic gas sources
20	within five miles of the plant to confirm that any
21	extended release of hazardous chemicals would not
22	impact the control room habitability.
23	The Applicant provide the site-specific
24	toxic gas information and evaluation to meet the
25	requirements of GDC 19 and the TMI Action Plan. The
Į	I

(202) 234-4433

	103
1	Applicant used the RG 1.78 screening and analysis
2	criteria on various hazardous chemical sources that
3	will look at it on the off-site industrial facilities
4	and transportation routes, and on the Fermi 2 and
5	Fermi 3 sites.
6	Going through an RAI round with the staff
7	the Applicant identified a Fermi 2 cryogenic nitrogen
8	tank and a Fermi 3 carbon dioxide tank as potentially
9	hazardous. The Applicant's evaluation showed that the
10	concentrations of nitrogen or carbon dioxide outside
11	the control room at the control room habitability area
12	intake would exceed their asphyxiation or toxicity
13	limit allowed in RG 1.78. However, their
14	concentrations inside the control room will be
15	significantly lower than their allowable safety
16	limits.
17	The staff
18	CONSULTANT KRESS: What is that?
19	MR. HAIDER: I'll explain that.
20	The staff reviewed the list of all
21	hazardous chemicals and their detailed evaluations
22	provided in the FSAR Section 2.2.3 and the related RAI
23	response and found the Applicant's conclusions to be

acceptable even though the Applicant used the HABIT code to conduct the toxic gas analysis. The staff ran

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

the confirmatory analyses using both HABIT and ALOHA codes and also considered the heavy gas effects. 2 All the HABIT and ALOHA ones were made with the extremely conservative assumption that nitrogen and carbon dioxide are instantaneously released as a vapor cloud due to tank rupture.

The staff found that the safety margins 7 8 inside the control room habitability area were 9 nitrogen enormous for both and carbon dioxide 10 concentrations for all distances.

Investigator: "The maximum concentrations 11 of nitrogen and carbon dioxide predicted by both HABIT 12 and ALOHA codes inside the control room were much 13 14 lower than their asphyxiation or toxicity limits. 15 This finding is primarily due to the short residence time for when the chemical cloud would be at its peak 16 concentration at the control room intake. 17 Therefore, the nitrogen and carbon dioxide release does not pose 18 19 any threat to the control room operators."

The staff concludes that the information 20 provided by the Applicant 21 in the COL item is acceptable and there are no significant control room 22 habitability impacts due to potential sources within 23 24 five miles of the plant. As a result, no Seismic 25 Category 1 safety-related toxic gas monitoring

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

5

6

	105
1	instrumentation is required.
2	CONSULTANT KRESS: How do you determine
3	the residence time? Is it the wind speed?
4	MR. HAIDER: Actually we ran a sensitivity
5	analysis that changed wind speed changed the
6	temperature from minus 19 to 32 degrees celsius.
7	CONSULTANT KRESS: So you did a
8	sensitivity analysis?
9	MR. HAIDER: Yes. And also
10	CONSULTANT KRESS: It's the worst end of
11	it?
12	MR. HAIDER: Exactly. And we also
13	considered a range of and everywhere the
14	concentration was somewhere from 100 but if you
15	look at the toxicity limit of carbon dioxide it is
16	40,000 ppm and the typical asphyxiation limit, which
17	is about 60,000 ppms to 75,000 ppms, everything by
18	order of magnitude smaller. So carbon dioxide and
19	nitrogen they are not threats.
20	So this finished my slide.
21	CONSULTANT KRESS: Under the second
22	bullet, the second sub-bullet it should say something
23	like for a short period of time. I mean, we would see
24	it long enough to make any difference.
25	MR. HAIDER: Yes, but technically it did
I	

(202) 234-4433

106 exceed and it did raise the red flag that the Section 1 2 review was supposed to come into to us. 2 3 CONSULTANT KRESS: Okay. 4 MR. BROWN: That is true. CONSULTANT KRESS: You kind of lose that 5 6 when you read it. 7 MR. HAIDER: So that finishes my 8 presentation. CHAIR CORRADINI: Any questions? 9 Any 10 questions of Mr. Haider before we pass it on? No, I don't. 11 MR. HAIDER: CHAIR CORRADINI: Questions? 12 Okay. I'm David Brown. 13 MR. BROWN: I'm a 14 License Reviewer in the Siting and Accident 15 Consequences Branch. I'll talk briefly about the 16 consideration of radiological habitability in the Unit 17 3 control room, which has mainly two parts, first of which is to ensure that the site metrology was bounded 18 19 by the metrology that was assumed for the DCD. And it And so the control room does use that as reported 20 is. in the DCD are bounded for this site. 21 The Applicant also provided Supplemental 22 Information about the potential for a design bases 23 24 accidents at Unit 2 and its potential effects on The staff evaluated that 25 habitability at Unit 3.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

107 1 concluding the chi over qs, the atmospheric diversions that were calculated from Unit 2 to Unit 3. 2 Aqree 3 with the Applicant's conclusion that the design basis 4 accidents at Unit 2 are essentially bounded by those 5 at Unit 3. So the habitability criteria in GDC 19 continue to be met. 6 7 That's what I have on the radiological 8 aspects of 6.4. And that concludes our presentation 9 on 6.4 unless you have any questions. 10 CONSULTANT KRESS: What design basis source term did you use? 11 MR. BROWN: Source terms that were 12 considered for the Supplemental Information were the 13 14 LOCA and at Unit 2. 15 However, it's been CONSULTANT KRESS: 16 thought the release over a longer period of time in 17 the second? MR. BROWN: Right. This is essentially a 18 19 dose that can be incurred over 30 days. Thirty days? CONSULTANT KRESS: 20 CHAIR CORRADINI: 21 That's the integrated time, but it's essentially a LOCA source term? 22 MR. BROWN: It's a LOCA source term. 23 24 CONSULTANT KRESS: Yes. CHAIR CORRADINI: Other questions? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	108
1	MR. BROWN: Thank you.
2	MR. ANAND: I would request him to come
3	over.
4	CHAIR CORRADINI: Okay. I was trying to
5	understand. So somebody's going to have to change
6	out.
7	MR. BROWN: Well, I'll change out.
8	CHAIR CORRADINI: All right. Got it.
9	You look familiar.
10	MR. STEINGASS: Good morning, gentlemen,
11	again.
12	I'm going to talk about Section 6.6 of the
13	Fermi 3 COL FSAR. This section incorporates by
14	reference Section 6.6 of the ESBWR DCD Tier 2,
15	Revision 9 and provides additional information on the
16	following COL item.
17	I just want you to understand that this is
18	just a continuation of Section 5.2.4. Section 6.6
19	covers Class 2 and 3 components under the ASME
20	Section 11. And 5.2.4 was Class 1. So this is a
21	continuation of the PSI/ISI program.
22	Next slide, please.
23	Similarly yes, sir?
24	CHAIR CORRADINI: No. I was just going to
25	say watch out for the microphone.
I	

```
(202) 234-4433
```

	109
1	MR. STEINGASS: To continue, COL 5.2-1-A
2	is a continuation of the COL information item that was
3	involved with the Class 1 components. So additional
4	information was provided by the COL Applicant for the
5	Class 2 and 3 components involving the ASME code and
6	the limitations under 10 CFR 50.55(a).
7	I've concluded that the additional
8	information agrees with the limitations for pressure
9	testing of Class 1, 2 and 3 components within 10 CFR
10	50.55(a), and therefore is acceptable.
11	Next slide.
12	Augmented Inservice Inspection.
13	Additional information was provided in Section 6.6.2,
14	provided a more detailed description of the PSI and
15	the ISI programs under Section 5.2.4.
16	Milestones for the program are added under
17	Section 13.4. That milestones involves a license
18	condition that states something to the effect that
19	these folks will provide to us within six months after
20	receiving their license, a detailed schedule that
21	indicates how the plant is going to be built for Class
22	1, 2 and 3 systems so that we can schedule our
23	inspections.
24	Let's see. And that's consistent with all
25	the other COL applicants that it's a license condition
I	I

(202) 234-4433

	110
1	to provide us a detailed schedule so that we can look
2	at all these systems as they're being built real time.
3	Finally, in Section 6.6.7.1 the Applicant
4	addresses the flow accelerated corrosion program.
5	Typically that's done in another area of the FSAR, but
6	since it's an augmented ISI program we've moved it
7	under Section 6.6. I did not evaluate the flow
8	accelerated corrosion program, but if you have any
9	questions about the flow accelerated corrosion
10	program, Dr. Greg Makar is here to address any of
11	those questions.
12	Next slide, please.
13	So, the commitment was made that under the
14	conclusion section of Section 6.6 that the ISI and the
15	PSI programs would be implemented or in fact
16	generated, so to speak, prior to plant startup. And
17	the staff concludes that the PSI and the ISI and the
18	flow accelerated programs, or more accurately stated
19	their program description meet the SRP guidance
20	provided at Section 6.6 of NUREG-0800 and is therefore
21	acceptable.
22	MEMBER SKILLMAN: Tim, my name is Dick
23	Skillman. I would like to ask a question.
24	MR. STEINGASS: Yes, sir.
25	MEMBER SKILLMAN: You communicated that
	I

(202) 234-4433

	111
1	you did not review the FAC program description.
2	MR. STEINGASS: That's correct.
3	MEMBER SKILLMAN: Did I believe you?
4	Again, if I did, another gentleman did.
5	MR. STEINGASS: Yes.
6	MEMBER SKILLMAN: Is that an accurate
7	characterization?
8	MR. STEINGASS: Yes. There's the man.
9	MEMBER SKILLMAN: Thank you. I just
10	wanted to ensure
11	CHAIR CORRADINI: Did you have a question
12	to the gentleman?
13	MEMBER SKILLMAN: No, I don't. I wanted
14	to make sure that it had been reviewed.
15	MR. STEINGASS: No. I reviewed Sections
16	6.6. And, Greg, which section is the flow accelerated
17	corrosion program under?
18	CHAIR CORRADINI: You got to come to a
19	microphone, please.
20	MR. MAKAR: I'm Greg Makar from the Office
21	of New Reactors Component Integrity Performance and
22	Testing Branch.
23	There's staff guidance and acceptance
24	criteria in both 10.3.6 and 6.6 of the SRP. And in
25	some cases we review the FAC program under 10.3.6.
I	

(202) 234-4433

	112
1	And as Tim said, it's appropriate in this case to do
2	it under 6.6. It wasn't a COL item as augmented
3	inspection program for this DCD and was described in
4	this COL application in that section.
5	MEMBER SKILLMAN: Thank you.
6	CHAIR CORRADINI: Thank you.
7	MR. STEINGASS: Yes, sir.
8	Where are we at here? Thank you.
9	Similarly, with the Section 5.2.4 that it
10	was a continuation for Class 2 and Class 3 to ask
11	these folks to provide discussion about preserving
12	accessibility for the welds to meet the ASME code
13	requirements and the e-coverage requirements. So
14	therefore it makes sense that Section 6.6 apps that
15	they do the same for the Class 2 and 3 stuff.
16	The additional information discusses the
17	use of radiography to obtain the examination coverage
18	and basically it expounds on the fact that ultrasonic
19	examination is the approved method. But if coverage
20	cannot be obtained by ultrasonic examination, then
21	radiography will be used. The point being that the
22	staff wanted to make sure that the regulations are met
23	and that a 100 percent of the coverage is obtained as
24	required by the code because for this new fleet of
25	plants we are not going to accept relief requests from
ļ	

(202) 234-4433

	113
1	the code requirements due to design and accessibility.
2	Is the one for everybody, Raj? Okay.
3	So we concluded or I concluded that the
4	additional information met the SRP guidance provided
5	in Section 6.6 of NUREG-0800 and is therefore
6	acceptable. Okay.
7	So, I'm going to conclude for all
8	respectfully Section 6.6. just so that we don't have
9	too many of the staff members getting out of their
10	chairs and running up here. Conclusion: The staff's
11	finding related to information provided by reference
12	is in NUREG-1966.
13	We reviewed the COL information items and
14	the additional information provided by the Applicant
15	in Chapter 6 of the COL FSAR and found those items to
16	be acceptable.
17	And finally, there are no open items
18	involved with our review of Chapter 6.
19	Are there any additional questions?
20	MEMBER SKILLMAN: Yes, I do. Dick
21	Skillman again.
22	MR. STEINGASS: Yes, sir.
23	MEMBER SKILLMAN: So, you've made a very
24	strong comment that for this new fleet there will be
25	no relief requests granted?
ļ	I

(202) 234-4433

	114
1	MR. STEINGASS: No, sir. For the initial
2	ISI interval. Okay?
3	MEMBER SKILLMAN: So can you tell us,
4	please, where is that codified on record, where is
5	that promulgated to the applicants, please?
6	MR. STEINGASS: The regulations state that
7	the plant will be designed and provided with access to
8	enable the performance of the ISI examinations. And
9	then the regulations also state something to the
10	effect that you're going to design the plant to the
11	latest addition and addenda of the code in effect
12	endorsed 12 months prior to fuel load. So if the
13	regulations say you're going to design to enable the
14	performance of an inservice inspection, why on earth
15	would I or anyone grant relief from the examinations?
16	You can't.
17	Now, for the second ten year interval
18	because the design's locked in, say for instance in
19	the next ten year interval the regulations change or
20	the ASME code requirements change and for a
21	complainant that's developed some kind of a new
22	failure mechanism but it's not designed to perform a
23	specific type of NDE that needs to be applied to that
24	component, well the regulations exclude for second,
25	third, fourth interval, or whatever, the designing for
I	I

(202) 234-4433

	115
1	access because it's locked in.
2	I mean, for the first interval it's locked
3	it. You know ahead of time. You know what the
4	requirements are. You know what you got to design that
5	plant to in order to enable the performance of the
6	examinations. But ten years down the road don't know
7	and the regulations recognize that requirements may
8	change.
9	MEMBER SKILLMAN: Okay. If I can respond.
10	What I heard you say is is
11	MR. STEINGASS: So well, let me finish.
12	I forgot to follow through.
13	So for the first ten year interval we
14	won't grant any relief period from a code requirement.
15	But later on for the second, third and forth we may.
16	They would be within their rights to ask for that,
17	granting relief.
18	MEMBER SKILLMAN: Is the regulation clear
19	that no waivers will be granted? That's a very strong
20	statement. I understand what it means from a practical
21	perspective if we've already poured the concrete and
22	the target is at eight feet in either direction from
23	a boundary, I find cutting out concrete may be is what
24	you're communicating.
25	MR. STEINGASS: I hear what you're saying.
ļ	I

(202) 234-4433

	116
1	I hear what you're saying.
2	MEMBER SKILLMAN: I think this carries
3	over to the previous discussion an hour ago when we
4	were asking about accessibility during the
5	construction process. And so it brings up a whole
6	agenda of
7	MR. STEINGASS: Sure.
8	MEMBER SKILLMAN: ensuring that those
9	welds by golly are available for inspection.
10	MR. STEINGASS: To answer your question,
11	looking at the broad spectrum of the design centers,
12	some of the design centers say there will be no
13	requests for relief. And I like to see that.
14	Some of the design centers know that my
15	strong statements aren't supported by the regulation
16	and they have said we will make every effort to design
17	the plant to enable the performance of ISI, but there
18	may be unforeseen circumstances where we may request
19	rlief, and I've had to accept that.
20	What we have done is at public meetings
21	and conferences senior management has made the strong
22	statements that we will be hard-pressed to entertain
23	granting of relief, but we all understand that there
24	may be limited instances where one may ask for it.
25	But part of that request for relief would have to show
	I

(202) 234-4433

	117
1	us that they've made every effort to try and design
2	the limitation due to materials or type of NDE, or
3	construction and they don't want us for that.
4	So, the answer is it's not supported by a
5	regulation that we will not grant relief, but we've
6	made a pretty strong case throughout the industry and
7	in all the DCDs that you better design it to enable
8	the performance of ISI to meet the regulations. And
9	frankly, they can request exemption from any
10	regulation. You know, that's in there too.
11	MEMBER SKILLMAN: Thank you.
12	MR. STEINGASS: Yes, sir.
13	CHAIR CORRADINI: Other questions from the
14	Committee?
15	MEMBER ABDEL-KHALIK: Will the Applicant
16	promise to follow-up with Chapter 6 regarding the
17	possible from a control room habitability standpoint
18	detonation of hydrogen? Will the staff make the same
19	follow-up.
20	MR. McKIRGAN: This is John McKirgan,
21	Ventilation Branch.
22	Yes, the staff will follow-up on that as
23	well.
24	MEMBER ABDEL-KHALIK: Thank you.
25	CHAIR CORRADINI: Other questions?
I	1

(202) 234-4433

	118
1	Okay. At this point I'll thank the
2	Chapter 6 group and turn to Adrian. We're a bit ahead
3	of schedule. Given just who is coming, who is going,
4	is this lunchtime or is this start Chapter 17?
5	MR. MUNIZ: No. I think we want to delay
6	17 for after lunch. However, the staff would like to
7	address your previous questions, if possible.
8	CHAIR CORRADINI: Good. Okay. Good. All
9	right. So whoever needs to get up front, please do.
10	MR. ANAND: Thank you very much.
11	CHAIR CORRADINI: Thank you very much,
12	Raj. Thank you. You'll hang out, right?
13	MR. ANAND: Yes.
14	CHAIR CORRADINI: As their lone
15	representative?
16	Okay. Jerry?
17	MR. HALE: Okay. I think Joel has some
18	further information.
19	CHAIR CORRADINI: We're talking about the
20	materials spec question?
21	MR. HALE: Yes, Section 5.3.2. We're
22	going to try to pull the slide up if possible.
23	CHAIR CORRADINI: Okay. Just for a few
24	minutes ahead of schedule if we can clear this one up
25	or other ones, this is a good time to do it.
I	

(202) 234-4433

	119
1	MR. JENKINS: Yes. I believe Member
2	Skillman had a question on the post combined license
3	activities. But before I start, I'd like to recognize
4	a colleague out in the audience who worked with me on
5	this section, Pressure-Temperature Limits. Mr. Steven
6	Downey heavily involved in the review. I would like
7	to answer Mr. Skillman's question, but Steve feel free
8	to jump at anytime if you would like.
9	CHAIR CORRADINI: He can come up, too. We
10	have a seat.
11	MR. JENKINS: I'll leave that up to him.
12	Let me read the post-combined license
13	activity again. "Prior to fuel load the pressure-
14	temperature limit curves will be updated to reflect
15	plant-specific material properties if required." And
16	the question hinged on what does the "if required"
17	mean.
18	Well, I want to start off with the way
19	that the pressure-temperature limit curves are
20	calculated. They're calculated from using a certain
21	methodology and based on material spec chemistries.
22	Now we know that the reactor vessel is
23	going to be constructed from ASME SA508 forgings and
24	ASME SA533 plates. And those specs have certain
25	limiting chemistries. And these limiting chemistries
	I

(202) 234-4433

1 are used along with the methodology to derive limiting 2 pressure-temperature curves. But at this time we 3 don't know what the actual chemistry from the procured 4 material is going to be.

5 So, for instance, the spec may give a maximum of one percent nickel. But when they purchase 6 7 the material, it might be .5 percent nickel. So when 8 the Applicant purchases the material if they plug the 9 actual chemistries into the methodology that's been 10 approved, they're going to get different curves. And so that's -- and it says "if required." On the off 11 chance that the material chemistries match exactly the 12 limiting spec chemistries, then your results are going 13 14 to be the same and you don't need to recalculate. But 15 the probabilities of that happening are very low.

16 And when the Applicant does the 17 recalculation they will let us know through a letter and they will update the PTLR. As long as they don't 18 19 change their methodology we're not required to If they change their methodology, 20 reapprove the PTLR. we're required to reapprove the Pressure-Temperature 21 22 Limits Report.

CHAIR CORRADINI: Does that help you?
MEMBER SKILLMAN: Maybe. I understand you
to say if they change their methodology, then you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	review it. What if they find the material properties
2	are scandalously different?
3	MR. JENKINS: Scandalously different from
4	the spec?
5	MEMBER SKILLMAN: Yes.
6	CHAIR CORRADINI: I sure hope they don't
7	accept the vessel for installation.
8	MR. JENKINS: I would hope they're not
9	using out of spec material.
10	MEMBER SKILLMAN: I would hope so, too,
11	and that's why I asked about the "if required" hook
12	that's in that statement.
13	MR. JENKINS: Well, regardless of whether
14	the material is within spec or without of spec, if
15	it's different from the limits they absolutely have to
16	recalculate.
17	MEMBER SKILLMAN: Thank you.
18	MR. JENKINS: But I mean if they're out of
19	spec, that raises different questions.
20	MEMBER SKILLMAN: Yes, I assure you I
21	understand this very, very thoroughly.
22	MR. JENKINS: Right.
23	MEMBER SKILLMAN: I understand what it
24	means in terms of building the vessel and having the
25	pressure-temperature limits for the specific vessel.
ļ	1

(202) 234-4433

	122
1	MR. JENKINS: Right.
2	MEMBER SKILLMAN: But the phrase "if
3	required" triggered in my mind what would drive that
4	action? What is it that drives the action? And
5	you've answered it, and I thank you.
6	MR. JENKINS: Okay.
7	MEMBER SKILLMAN: But I assure you I am
8	very familiar with this. I'm curious how the staff
9	was going to handle the "if required" hook that is in
10	that phrase, hence my question.
11	MR. JENKINS: All right.
12	MEMBER SKILLMAN: Thank you.
13	MR. JENKINS: That's all I have.
14	MEMBER BROWN: You said "if they follow
15	the methodology." I'm going to bounce back. In other
16	words, you said it's a slim, very, very slim that they
17	won't have to recalculate if they will meet the
18	definitions within the DCD exactly or within whatever
19	the narrow band is?
20	MR. JENKINS: Yes.
21	MEMBER BROWN: And the comment or
22	statement was then that they then have to recalculate
23	and they submit that result and report back to NRC.
24	MR. JENKINS: Right.
25	MEMBER BROWN: But as long as they say we
ļ	

(202) 234-4433

	123
1	used the same method you don't even have to look at
2	it. If they used the same method, you get the report
3	this is not a nasty comment.
4	MR. JENKINS: No, I know.
5	MEMBER BROWN: It's just a regulatory
6	you're not required to and you're not required to
7	answer them. In other words, you don't have to
8	MR. JENKINS: We're not required to answer
9	them, that's correct.
10	MEMBER BROWN: And you may not even check
11	that they applied the methodology correctly since they
12	didn't do it, is that correct also? I mean, they just
13	say they followed the method that's
14	MR. JENKINS: I think my colleagues have
15	some comments.
16	MR. DOWNEY: This is Steve Downey.
17	Yes, if they update their pressure-
18	temperature limits with the plant-specific materials
19	from the procured vessel, we don't have to review the
20	Pressure-Temperature Report, write a safety evaluation
21	or what have you. But when they submit that updated
22	information, we will check to make sure that the
23	methodology has not changed that would not trigger a
24	review.
25	MEMBER BROWN: I understand the
I	I

(202) 234-4433

	124
1	methodology issue. But I mean you don't even check to
2	see that the numbers that they plugged in and the
3	methodology they used you end up getting the same
4	results and nobody checks it. Whereas, when you were
5	doing the DCD you actually went through, or at least
6	CHAIR CORRADINI: They audited it. They
7	didn't check every calculation. Let's be clear.
8	MEMBER BROWN: And here he didn't even say
9	they were audited. So I'm just you know, it was
10	audited at one time. It's just a matter of the numbers
11	changed and nobody outside DTE looks at it, has to
12	look at it or audit it or anything else unless they
13	change the methodology.
14	So, you answered my question.
15	MR. JENKINS: Okay.
16	MEMBER BROWN: I didn't say I agreed with
17	it; just you answered my question. Okay? Thank you.
18	MR. HALE: Any further questions?
19	CHAIR CORRADINI: Nothing for you guys.
20	So let me turn back to Adrian.
21	Those other things that you were going to
22	get, or I have nothing immediate that you were going
23	to get back to us on. There are some other things
24	that are going to take longer. But does GEH or anybody
25	have any other things that they want to mention at
I	

(202) 234-4433

			125
1	this point or	are we going to stop for	the moment?
2	М	R. MUNIZ: I think we are	going to stop
3	for the momen	t.	
4	C	HAIR CORRADINI: Okay. S	o we'll get back
5	together afte	r lunch at 12:30. So we'	ll take a lunch
6	break. Be bac	k at 12:30. Thanks.	
7	(Whereupon, at 11:20 a.m.	a lunch recess
8	until 12:28 p	.m.)	
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
	(202) 234-4433	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701	(202) 234-4433

	126
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	12:28 p.m.
3	CHAIR CORRADINI: Okay. Why don't we get
4	started? We're going to start off with Chapter 17
5	from Detroit Edison.
6	MR. SMITH: Next page.
7	As we've done in other sections, these are
8	the sections that we had COL items. The rest of them
9	were Supplemental Information of Chapter 17. So next
10	one, and I'll go through each one.
11	So Section 17.1 the Quality Assurance
12	During Design. It ends up referring to Chapter 17.5,
13	which is the Quality Assurance Program applied during
14	the COLA preparation and site-specific design
15	activities. And that ultimately ends up referring to
16	the Quality Assurance Program description that's in
17	17.88.
18	Next slide, please.
19	Quality Assurance During Construction and
20	Operations. Again, also refers to 17.5 or the QA
21	Program. And that also refers to the 17.5 for the QA
22	Program applied to design activities required to adopt
23	the certified design deferment for a specific plant
24	implementation.
25	Everything's governed by the same Quality

Assurance Program description is, I think, the bottom line here.

3 17.3, which is the Quality Assurance 4 Program description, it refers to Section 17.5 again to provide a Quality Assurance Program description 5 describing the overall project or assurance program. 6 So in 17.4, this is where we get into 7 8 Reliability Assurance Program during the design phase. 9 And we addressed an RAI associated with this and we 10 had a standard COL item that basically said we had no site-specific structure systems or components that 11 would be within the scope of the Reliability Assurance 12 Program beyond those that are already included within 13 14 the scope of the DCD. 15 We had a description of the Operational 16 Reliability Assurance Program that referenced other There was an issue identified with the 17 programs. standard COL item as far as its implementation date 18 19 for the Design Reliability Assurance Program in that it had an original implementation milestone of prior 20

to fuel load, which when you look at it in retrospect doesn't make any sense. But I think my predecessor also had had that same foible in it. So we went through the round of RAIs and the ultimate resolution, again, was that there are no site-specific structure

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

127

	128
1	systems and components beyond the scope of the DCD
2	that should be in the Design Reliability Assurance
3	Program.
4	MEMBER STETKAR: There is a silence here.
5	Okay. I just wanted to make sure everybody stopped
6	talking.
7	I'm going to hold off. I have an opinion
8	on the site-specific issue of that. I've got a
9	different question, though. It's my understanding, I
10	went back and I looked a Revision 9 of the DCD last
11	night just to make sure I didn't misspeak.
12	It's my understanding that the DCD process
13	to populate the RTNSS list, essentially the scope of
14	things that we're talking about here, used numerical
15	screening criteria from the risk assessment and the
16	values of those screening criteria were Fussell-Vesely
17	importance greater than or equal to 0.01 or a Risk
18	Achievement Worth greater than five. And that's
19	documented in DCD Rev 5, Rev 9 Section 17.4.26. So
20	those were the numerical values that they used.
21	We questioned GEH about those numerical
22	values. We questioned the staff about those numerical
23	values to some extent during our review of the DCD,
24	and I don't need to go into details of those
25	discussions.
11	

(202) 234-4433

	129
1	The question is that not all, because I'm
2	aware of one that I believe with the exception of
3	ESBWR and perhaps one other is one center, everybody
4	else in the design certification process is using
5	screening criteria of Fussell-Vesely importance of
6	.005, a factor of two lower and a Risk Achievement
7	Worth of two, a factor of 2½ lower. Meaning that if
8	they apply those criteria in principle to your RTNSS
9	list or the population of equipment, you're
10	controlling them to the Reliability Assurance Program
11	would be larger could be larger might be larger.
12	We don't know, you know because we haven't actually
13	seen those numerical values or how they were done.
14	There's also qualitative input from a group, so we
15	didn't go and investigate that process.
16	Now the question I have is you committed
17	to the Maintenance Rule Program, obviously.
18	MR. SMITH: Yes.
19	MEMBER STETKAR: You've committed to an
20	NEI document basically that describes the template for
21	the Maintenance Rule Program. To my knowledge
22	everybody who has applied the Maintenance Rule Program
23	uses the screening criteria .005 and 2.0. The
24	question is when you transition from this list of
25	things that you've included from the DCD by reference,
I	

(202) 234-4433

	130
1	incorporated by reference, to a Maintenance Rule
2	Program will you have different screening criteria and
3	what implications does that have about this transition
4	of the reliability assurance from the generic DCD to
5	a plant-specific operating Reliability Assurance
6	Program? That's sort of the generic concern.
7	Now a specific question that you may have
8	to go back what screening criteria is Unit 2 using?
9	MR. SMITH: I don't know offhand. Sorry.
10	MEMBER STETKAR: Okay. I'd be really
11	curious because
12	CHAIR CORRADINI: You're not just look for
13	a value, you're looking for consistency?
14	MEMBER STETKAR: Both, indeed, yes. Yes.
15	Because if something is important, you know it's a
16	relative importance measure. If something has this
17	relative importance of .005 to risk at Unit 2 and
18	that's deemed as important, why should something that
19	is of equal relative importance on Unit 3 not be
20	deemed also risk-significant regardless of what your
21	absolute measure is? So I'm looking for this relative
22	thing, because I'm aware that most I can't say
23	everybody because I obviously haven't looked at
24	everybody in the Maintenance Rule Programs. But every
25	time I see those numbers, they're the .005 Fussell-
	I

(202) 234-4433

	131
1	Vesely and 2.0 for Risk Achievement Worth. So that's
2	sort of my question that, you know moving from this
3	point forward do we run into inconsistencies perhaps?
4	MR. SMITH: Do you have a comment?
5	MR. MILLER: Okay. You know, we did
6	discuss this at pretty good length during the DCD
7	discussions, right? And I believe at that point we
8	mentioned that if you use the standard values with a
9	new plant with very low core damage frequency, then at
10	one half of one percent of the importance gets you
11	down to where essentially everything that's in the PRA
12	model is now risk-significant. And the concern there
13	was, which is a valid concern for the Maintenance
14	Rule, is you want to differentiate low risk and high
15	risk. If you have everything in the high risk, then
16	your resource allocations are not necessarily
17	MEMBER STETKAR: And the Maintenance Rule
18	tends to throw everything into the high risk category.
19	MR. MILLER: Yes.
20	MEMBER STETKAR: Because it's just easy
21	enough to do that.
22	MR. MILLER: Yes. So because PRA is one
23	part of the Maintenance Rule, right, and that there
24	are other criteria deterministic that all get wrapped
25	up by the expert panel, then it's really the expert
I	I

(202) 234-4433

panel with the NEI guidance is the final deciding factor on it.

MEMBER STETKAR: Yes, I understand that. 3 4 And I think where we left on the DCD is we took a look 5 at the list of things that are cited in, I think, it's 6 19A of the DCD, and that list at least qualitatively 7 seemed reasonable and since we weren't making any 8 progress on the numerical screening values. So, sort 9 of the reasonableness of that list I think was the 10 basis for our coming to a conclusion that it was probably okay for the DCD. But I'm now a little bit 11 more concerned. You know, there's this whole issue of 12 D-RAP versus -- D- versus O-RAP versus Maintenance 13 14 So this transition process going forward I want Rule. to understand a little bit more because it is in the 15 context of sort of a couple of different parts of 16 17 Chapter 17, but it is addressed in Chapter 17.

18 MEMBER ABDEL-KHALIK: John, I'm sort of 19 curious as to your concern about consistency with Unit 20 2 given that both units will have totally different 21 risk profiles.

22 MEMBER STETKAR: I don't care what the 23 risk profile is. I care about if something is deemed 24 to be risk-significant -- let me go away from the 25 absolute numbers so when we talk about numbers we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	133
1	understand.
2	If something contributes ten percent of
3	the risk of my plant and I determine that that is
4	risk-significant, then if something that is ten
5	percent of the risk at my plant, something is ten
6	percent of the risk at your plant. You got a PWR, I
7	got a BWR. It doesn't make any difference; it's a
8	determination that something that accounts for ten
9	percent of the risk is determined to be risk-
10	significant regardless of the absolute value, whether
11	it's ten to the minus two core damage frequency or ten
12	to the minus 20 core damage frequency
13	MEMBER ABDEL-KHALIK: And I'm not sure I
14	agree with that.
15	MEMBER STETKAR: Okay. But there are
16	differences of opinion and that gets into the whole
17	risk method
18	CHAIR CORRADINI: That's where we had our
19	fun discussion previously.
20	MEMBER STETKAR: That's right. That's
21	right. I mean, they understand, and it's honestly a
22	little bit more of a concern for me in terms of
23	transitioning from the DCD RTNSS list and what
24	criteria were applied to populate that list. And if
25	you're wholesale adopting the Maintenance Rule Program
I	1

(202) 234-4433

	134
1	which has a lot of history now in terms of consistency
2	of application and programmatic backing, if there are
3	differences in those selection criteria, you know in
4	principle you could get into the Maintenance Rule and
5	say "Oh, my God, you know we have to either change the
6	population of the equipment that's under the
7	Maintenance Rule or do something about categorizing
8	things in high risk or low risk categories, or
9	something. So I'm curious about how that's going to
10	be done so that we avoid this notion of, you know a
11	step change, for example from the certified design
12	RTNSS list versus the eventual Reliability Assurance
13	list.
14	MR. MILLER: So I understand you, is that
15	the question?
16	MEMBER STETKAR: The question is how will
17	that list of equipment, what criteria will be used
18	going forward, numerical criteria? Because there's
19	some bullets in there that says, you know obviously
20	the risk importance measures, they're not cited in the
21	FSAR. It's simply a goal if it says if it's one of
22	the attributes that you use, and it is. It's only one
23	of the attributes. But it's the only numerical. How
24	will they be used at Firma Unit 3 going forward when
25	you transition from the DCD RTNSS list that you've
I	I

(202) 234-4433

(202) 234-4433

	135
1	incorporated by reference at least for the COL going
2	forward into the Operating Reliability Assurance
3	Program or, you know the Maintenance Rule.
4	MR. MILLER: Okay. Well if I can just
5	state, that whole process of course is directed by 10
6	CFR 50.65, right? So that it would be subject to
7	inspection by that. And there they recommend you
8	follow a certain guidance. The decisions at that
9	point would be made by DTE and their expert panel.
10	And they have the ability through their guys as to
11	what they decide on what is high and low risk-
12	significant.
13	MEMBER STETKAR: I mean, you know
14	obviously floating around here in the background is
15	suppose that panel when they do that determines that
16	it is, I'll use the word "prudent" to double the size
17	of the list of equipment that's in the Maintenance
18	Rule Program? What implications are there then
19	looking back? Should there have been some sort of
20	quality assurance placed on all of your nonsafety
21	Quality Assurance Program in terms of procurement of
22	those components at this stage of the game? You know,
23	which is the whole reason why the staff wanted these
24	claims about do you have any site-specific items at
25	the COL stage so that they could be tracked.
ļ	I

(202) 234-4433

	136
1	MR. MILLER: Okay. So what you're talking
2	about is
3	MEMBER STETKAR: I just want to make sure
4	that there's going to be a consistent approach going
5	forward and that people have thought about that.
6	MR. MILLER: All right.
7	MEMBER STETKAR: And how you're going to
8	wrestle with that. Because, as you said, in principle
9	if you do apply the numerical values that I cited, the
10	RTNSS list as it exists now could be I don't know
11	how much larger it would be. I honestly don't.
12	MR. MILLER: The D-RAP list includes RTNSS
13	and risk-significant, just for verification.
14	MEMBER STETKAR: Okay.
15	MR. MILLER: Yes, I know what you're
16	talking about. Okay.
17	CHAIR CORRADINI: Okay? Let's move on.
18	MEMBER STETKAR: I don't think we're going
19	to go through it today.
20	CHAIR CORRADINI: We should move on.
21	MEMBER STETKAR: As long as they
22	understand the kind of concern, we got it. So,
23	thanks.
24	MR. SMITH: All right. Next slide.
25	So 17.5 Quality Assurance Program

137 1 description during design certification, Early Site Permits and new license applicants. So we report to 2 3 the DCD Section 17.1 for the Quality Assurance for the 4 design certification activities. And we've provided 5 a summary of quality assurance applied during the preparation of the Fermi pre-COLA and the QAPD for the 6 7 plant-specific implementation - plant-specific 8 implementation, construction and operations follows on Quality Assurance 9 the NEI template Program 10 description. And then finally the Maintenance Rule 11 Program which we've touched on a little bit. Aqain, 12 we've incorporated the generic NEI template for new 13 14 plants and we've described them as supplements, the 15 relationships with other programs and we also have a reference to the Cable Monitoring Program that we 16 17 talked about when we talked about Chapter 8 in the last meeting. 18 19 And that's all I have in Quality Assurance in Chapter 17. 20 Questions by other 21 CHAIR CORRADINI: 22 members? Okay. Let's move on to the staff. 23 Jerry, are 24 you going to kick us off. 25 HALE: We're here to present SER MR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	Chapter 17 with no open items, Quality Assurance. I'm
2	here with George Lipscomb and Todd Hilsmeirs. They'll
3	be presenting the site-specific portions of this.
4	Section 17.0 Introduction. 17.1 Quality
5	Assurance During Design. 17.2 Quality Assurance
6	During Construction and Operations. 17.3 Quality
7	Assurance Program Description. These sections were
8	all IBR. Some of this will also be discussed later as
9	we move into the 17.5, the Quality Assurance Program
10	Description.
11	So, moving right along to 17.4 the
12	Reliability Assurance Program with Todd Hilsmeier.
13	MR. HILSMEIER: Thank you, Jerry.
14	FSAR Section 17.4 incorporated by
15	reference Section 17.4 the ESBWR DCD and also
16	addressed the two COL items, which will be discussed
17	in the next two slides.
18	Section 17.4 of the SER has no open items
19	and one notable confirmatory item related to COL item
20	17.4-1-A on the site-specific list of risk-significant
21	SSCs.
22	Next slide.
23	This slide presents the staff's review of
24	COL item 17.4-1-A. Under this COL item the list of
25	risk-significant SSCs in the DCD or the RAP list
ļ	I

(202) 234-4433

1 should be updated for the site plant-specific information and design features. And in the FSAR the 2 3 Applicant specified a commitment to address the COL 4 item prior to initial fuel load. However, this should 5 be addressed prior to the detailed design in 6 construction phases of the plant because the 7 nonsafety-related RAP SSCs are subjected to the 8 Quality Assurance controls in accordance with SRP 9 Section 17.5 Part D.

10 Therefore the staff proposed an RAI requesting the Applicant to update the RAP list for 11 and plant-specific information design 12 site and 13 features. And in response to the RAI the Applicant 14 stated that the Fermi RAP list is incorporated by reference to the DCD and that new additional RAP SSCs 15 were identified because the ESBWR PRA bounds the 16 17 Fermi's site and plant-specific information and design And this was confirmed under the Chapter 19 features. 18 19 review.

Furthermore, no departures from the DCDimpacted the PRA or RAP list.

And lastly, the RAP SSCs are subjected to the Quality Assurance controls in accordance with the Quality Assurance Program description. And then the staff found Applicant's response was acceptable and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	the FSAR would be revised accordingly, which is
2	Confirmatory item 17.04-2.
3	MEMBER STETKAR: Todd, when I read through
4	the section of the FSAR I think there was also a
5	mention that there's a and I think it was repeated
6	in the SER during the discussion. I don't have it
7	right here in front of me. But something to the
8	effect that the list of risk-significant SSCs will be
9	confirmed via ITAAC. The quote actually is in your
10	SER.
11	MR. HILSMEIER: Right.
12	MEMBER STETKAR: What does that mean "will
13	be confirmed via ITAAC"? That means after the COL
14	before fuel load somebody goes out and confirms the
15	list of risk-significant SSCs.
16	MR. HILSMEIER: Right.
17	MEMBER STETKAR: That sort of feeds into
18	a little bit of what I was just talking about, that at
19	some point between the COL and fuel load somebody will
20	confirm, whatever that means, the list of risk-
21	significant SSCs. The Applicant, or at that time the
22	Licensee, will then transition into a Maintenance Rule
23	Program that has a list of things that are monitored
24	under the Maintenance Rule.
25	MR. HILSMEIER: Right.
Į	I

(202) 234-4433

	141
1	MEMBER STETKAR: So I'm curious about what
2	that word "confirm" means and how that transition
3	process works, and more importantly from the staff
4	perspective. I was just mentioning suppose during
5	either that confirmation, whatever that means, or
6	during the implementation of the Maintenance Rule
7	Program the list gets bigger?
8	MR. HILSMEIER: Right.
9	MEMBER STETKAR: What implications are
10	there to the staff? Is that a concern?
11	MR. HILSMEIER: As we discussed in many
12	previous ACRS meetings, that RAP list
13	CHAIR CORRADINI: Nice going, but the
14	Detroit people weren't here to hear it, so they can
15	hear it.
16	MR. HILSMEIER: Yes. It's a live list, so
17	as updates are made to the PRA or design changes made
18	to the plant, the RAP list needs to be updated. And
19	that's part of D-RAP process. And the D-RAP ITAAC the
20	main purpose is to ensure that the RAP SSCs are
21	subjected to the D-RAP activities. And if we inspect
22	that D-RAP ITAAC, we would also be ensuring that the
23	D-RAP list is kept up to date since it is a live list.
24	And that's what I interpret as the confirmed.
25	MEMBER STETKAR: I think the original
I	

(202) 234-4433

	142
1	process envisioned that the list would start out this
2	big because there is a lot of uncertainties in
3	simplified PRA.
4	MR. HILSMEIER: Right.
5	MEMBER STETKAR: And as you got more into
6	the design, more design details, more refined PRA that
7	the inference was that perhaps the population of
8	equipment in that list would reduce such that, you
9	know you might be conservatively applying QA
10	requirements during the initial phases of procurement
11	that perhaps you could lax later.
12	MR. HILSMEIER: Yes.
13	MEMBER STETKAR: I don't think the process
14	originally envisioned that it might start out small
15	and get bigger.
16	MR. HILSMEIER: That can happen, and for
17	some design centers it most likely will happen because
18	the design certification developed a very conservative
19	list of risk-significant SSCs.
20	CHAIR CORRADINI: Does "conservative" mean
21	smaller than it might be or does "conservative" mean
22	larger than it should be?
23	MR. HILSMEIER: Certainly that the design
24	certification list is larger than it most likely could
25	be. And for the very early design center, one of the
ļ	I

(202) 234-4433

143 1 first ones, the list is smaller than what it is expected to be. And so --2 CHAIR CORRADINI: And not just this design 3 4 center? No, not this design 5 MR. HILSMEIER: center. I don't know if I should say the design 6 7 center. 8 CHAIR CORRADINI: No, no, no, no. MEMBER STETKAR: We sort of know which one 9 it is. 10 CHAIR CORRADINI: Yes, we're aware. 11 MR. HILSMEIER: However, the COL that's 12 referencing that design center has a process to update 13 14 the list, which will make it bigger. For the ESBWR I 15 expect the list to stay relatively the same, not 16 change too much. 17 CHAIR CORRADINI: But John's question, I mean this is a whole realm that I don't get. But 18 19 John's question is if something wasn't on the list but falls into the list by this analysis, just a thing --20 21 MR. HILSMEIER: Right. CHAIR CORRADINI: -- then how do you kind 22 of back out the QA relative to what wasn't there and 23 24 now it --MR. HILSMEIER: The Applicant, or at this 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	144
1	time the Licensee, would need to ensure that the
2	quality assurance controls are met for any new RAP
3	SSCs added.
4	CHAIR CORRADINI: And back in time, right?
5	MR. HILSMEIER: Right. They would need to
6	make sure that an analogy would be similar to like
7	the commercial dedication process. Taking a
8	commercial piece of equipment and ensuring that it
9	meets quality assurance controls. A similar process
10	to that.
11	CHAIR CORRADINI: Okay.
12	MR. HILSMEIER: You raised a point during
13	the Applicant's presentation about Maintenance Rule
14	using risk-important criteria as different from the
15	ESBWR. And that was in my mind when we reviewed the
16	ESBWR. And it's on my mind, I mean it's not just
17	applicable to Maintenance Rule and RAP.
18	In PRA-land there's different
19	methodologies for identifying risk-significant
20	components for different applications. Like the 10
21	CFR 56.09 process has one methodology for identifying
22	risk-significant SSCs. The Maintenance Rule has
23	another process. So there's a lot of inconsistencies.
24	CHAIR CORRADINI: Okay.
25	MR. HILSMEIER: Office of New Reactors has
	I

(202) 234-4433

	145
1	an ongoing effort to update our endorsements of NUMARC
2	93-01 and 10 CFR 50.69 for new reactors to address
3	these issues like the different risk-important
4	measures that are used between new reactors and
5	operating reactors. That's an ongoing effort. And so
6	it's possible that for NUMARC 93-01 it may be updated.
7	MEMBER STETKAR: But at the moment, I mean
8	they've essentially incorporated because they've
9	incorporated any 7-A, or whatever it is, which
10	incorporates NUMARC 93-01, it references it.
11	MR. HILSMEIER: Right. Right.
12	CHAIR CORRADINI: And so right now Detroit
13	is tied into whatever is in those documents.
14	MR. HILSMEIER: Right.
15	CHAIR CORRADINI: Because that's basically
16	what they characterize their Maintenance Rule Program
17	as.
18	MR. HILSMEIER: Yes. And it shouldn't
19	interfere with the Maintenance Rule process because
20	basically the SSCs in scope of Maintenance Rule would
21	be the RAP SSCs which uses a RAW of 5 and a Fussell-
22	Vesely of .001. But then it would also include SSCs
23	based on NUMARC 93-01 which is a RAW of 2 and a
24	Fussell-Vesely .005.
25	MEMBER STETKAR: Right. And then well,
ļ	I

(202) 234-4433

	146
1	you've said enough. You've at least given me some
2	confidence. The staff is obviously aware of the
3	issue.
4	MR. HILSMEIER: Yes.
5	MEMBER STETKAR: And it's evolving,
6	apparently.
7	MR. HILSMEIER: The next slide presents
8	the staff's review of COL item 71.4-2-A. And under
9	this COL item the Applicant should describe a process
10	for integrating RAP into the operational programs to
11	maintain their reliability, the availability of the
12	RAP SSCs during plant operation. And the Applicant
13	proposed to integrate RAP into the Maintenance Rule
14	Program consistent with RG 1.160 which endorses NUMARC
15	93-01. And also the Applicant proposed to integrated
16	RAP into the Quality Assurance Program in accordance
17	with the Quality Assurance Program description. And
18	also integrate RAP into inservice inspection,
19	inservice testing, surveillance testing and
20	maintenance programs. And the staff found this
21	process to be acceptable and meets recommendations
22	contained in the RAP guidance.
23	And the next section is Section 17.5 that
24	will be presented by George.
25	MR. HALE: Are there any questions on the
I	1

(202) 234-4433

	147
1	Reliability Assurance Program?
2	CHAIR CORRADINI: I think we're okay.
3	MR. LIPSCOMB: I'm George Lipscomb, Office
4	of New Reactors in the Quality and Vendor Branch.
5	I was asked to talk for just a few minutes
6	to try to answer a question from earlier. Do you want
7	to go ahead and do that first before I go onto 17.5?
8	My understanding of the question, I wasn't
9	here when it was asked, but my understanding of the
10	question had to do with what types of steps is the NRC
11	taking, what kind of a plan down the road for how
12	we're going to look at receipt of safety-critical
13	items. And I think the example I was given was like
14	a reactor pressure vessel. And so that's my
15	understanding of the question, so hopefully
16	CHAIR CORRADINI: Anybody want to hone
17	that question? I think you got it approximately
18	right.
19	MR. LIPSCOMB: Approximately right?
20	CHAIR CORRADINI: Yes.
21	MR. LIPSCOMB: Sound good?
22	CHAIR CORRADINI: Yes.
23	MR. LIPSCOMB: Okay. So basically it's
24	going to be a combination of inspection activities
25	from the NRC perspective, because there will be
I	

(202) 234-4433

regional folks, residents that will be site. What we'll be using is a inspection manual chapters. There's primarily going to be the ITAAC procedure, which falls under inspection manual chapter 2503. But then there's also the program part of it with the Quality Program which falls under 2504.

7 Primarily, if you're looking at the 8 receipt of something, that would be under a quality 9 program, an Appendix B program. We would be looking 10 at in the ITAAC matrix. And to give you an example of how we would be doing that from a reactor pressure 11 vessel example if you look at inspection procedure 65-12 001 there's a lot of attachments to that. It's a 13 14 fairly big matrix, if you want to think of it that 15 way, where there's about 20 different areas that get 16 into the design, those kinds of things. And then the 17 other part of the matrix has to do with how you're going to look at things: The verification, the 18 19 receipt if you will.

20 So, these attachments within 65-001 have to do 21 with the specific inspections.

22 So to give you an example for like a 23 pressure vessel if you were to pull the inspection 24 procedure for that and take a look at the various 25 areas under ITAAC, you'd be looking at verifying that:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	149
1	The purchased RPV and internal components
2	were in accordance with the design, that's one area;
3	That the RPV was properly stored and
4	handled in accordance with approved procedures;
5	The install was within accordance with
6	design drawings;
7	That the procedures for protecting the
8	installed vessel were being followed.
9	So those are kind of examples along with
10	the documentation and identification of problems that
11	would go with that. So that would be kind of an
12	example of how we as the NRC would be providing that
13	oversight. Of course, then the Licensee or the
14	Applicant the Licensee at that point would have the
15	primary responsibility under Appendix B with our
16	oversight.
17	Does that kind of answer the question?
18	CHAIR CORRADINI: It does for me.
19	MEMBER ARMIJO: Pretty straightforward.
20	CHAIR CORRADINI: Yes.
21	MR. LIPSCOMB: Okay. For 17.5 I just want
22	to take a couple of minutes and talk about the
23	contents of the application, go into what we did for
24	review and then the conclusions that we drew from that
25	review.
I	1

(202) 234-4433

150 1 As far as the contents, by reference the ESBWR DCD Section 17.5 is incorporated. 2 There are 3 three COL informational items. They basically all have 4 to do with putting together a program for the various 5 different phases whether it's design or construction 6 and operations. And then there is a supplemental 7 information, Supplement 17.5-2 which provides quite a 8 bit of amplifying Quality Assurance Program 9 information and the time period that that information 10 is supplied by the Applicant for us from the beginning of the project in January of 2007 through 11 December of 2009. 12 One important item of note is that the 13 14 QAPD that was supplied is based on the NEI template, 15 NEI 06-14A, Revision 7. And that particular revision 16 the staff determined that was acceptable format and adequate guidance for a QA Program to meet 17 the requirements of Appendix B. And that's documented by 18 19 a staff SER. Next slide. 20 So far as the review if you want to think 21 about we kind of looked at two different areas, if you 22 will. One is the QAPD itself and since it's based on 23 24 the NEI template, if there was deviations from that 25 approved template that the staff had looked at.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	And then the second area had to do with
2	some areas that were kind of outside the scope of that
3	QAPD. These might be, like, preapplication
4	activities. And to give you an example it would be,
5	like, did it meet the intent of RG 1.206, which I'll
6	go over in a few minutes, and also do we have adequate
7	assurance that Appendix B was met. So we used a
8	combination of both licensing RAIs and inspection
9	activity to take a look at those two main areas.
10	So, to give you an example of the first
11	couple of bullets, first like three bullets on here,
12	have to do with the QAPD. We compared the QAPD to the
13	NEI template, looked for deviations from the template.
14	As part of that we were confirming that the COL items
15	have been addressed and the ESBWR DCD was further
16	addressed by the Applicant. And that it had adequate
17	program guidance.
18	So, those three areas were handled kind of
19	in the review of the QAPD. And of the RAIs we issued,
20	probably about half of them were issued in that
21	particular area.
22	The other two bullets have to do with the
23	other areas kind of outside, if you will. One of them
24	was meeting the intent of RG 1.206, specifically
25	Regulatory Position C.1.17.5.3 which has to do with
ļ	I

(202) 234-4433

oversight and control of contractor activities. Specifically it says that the FSAR will delineate the QA functions delegated to other organizations. In addition, it must describe how the Applicant will retain responsibility for and maintain control over portions of the QA Program delegated to other organizations.

8 So, when we looked at that in the case of 9 the Fermi application, we wanted to see that there was 10 that control, and that would be both pre-application 11 and post-application. And we wanted to ensure that the 12 appropriate Appendix B criteria had been met.

So we used a combination of RAIs in this area to get additional information and inspection activity. We concluded an inspection in August of 2009. And then we resolved those inspection violations that were issued as a result of that inspection through the inspection process. So there was a combination of RAIs and inspection.

Next.

As a result of considering all the information both in the licensing and the inspection realm, we determined that:

24 The FSAR met the regulatory requirements;25 That the oversight activities had met the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

20

	153
1	intent of RG 1.206, Regulatory Position C.1.17.5.3;
2	They addressed the COL items;
3	And that the inspection violations were
4	appropriately closed; and
5	There were no open or confirmatory items
6	in 17.5
7	MR. HALE: Any questions on the QAPD?
8	CHAIR CORRADINI: Okay.
9	MR. HALE: If not, move onto 7.6
10	Maintenance Rule. Todd?
11	MR. HILSMEIER: Yes. FSAR Section 17.6
12	is incorporated by reference to the generic template
13	in NEI 07-02A, which is a generic template for Section
14	17.6 in a COL application. And NEI 07-02A meets the
15	requirements of FSAR 17.6 and has been approved by
16	NRC.
17	And there's no open items or confirmatory
18	items associated with this section.
19	MR. HALE: Any question on the Maintenance
20	Rule?
21	CHAIR CORRADINI: Committee members? No.
22	Let's move on.
23	MR. HALE: Thank you. That concludes the
24	staff presentation of Chapter 17.
25	CHAIR CORRADINI: So we'll move on to 19.
I	

	154
1	First we'll do everything but the Appendix in open
2	session. So the Detroit DTE people are back up.
3	What we'll probably do is we'll go through
4	the open session, take a break so we can close the
5	session for addressing the Appendix. Okay?
6	MR. SMITH: Okay. So we're going to now
7	talk about Chapter 19 Probability Risk Assessment and
8	Severe Accidents. And this is a list of Chapter
9	topics. I'm not going to read through the list.
10	Go to the next page.
11	Section 19.2 PRA Results and Insights.
12	The first one was related to the as-built such as the
13	systems and components, seismic margin capability.
14	And we have a comparison analysis that we've committed
15	to do prior to fuel load in the as-built
16	configuration.
17	Next slide.
18	And then summary of the plant-specific PRA
19	review. As a supplemental item we looked at a number
20	of things that we compared with the ESBWR PRA:
21	Loss of preferred power frequency;
22	Loss of service water frequency;
23	Seismic fragilities;
24	Other known site-specific issues such as
25	unique off-site consequences; and
l	I

(202) 234-4433

	155
1	Internal flooding associated with the Yard
2	Area.
3	And our review concluded that the risk
4	ESBWR PRA provides a reasonable representation of the
5	Fermi 3 site parameters and conditions.
6	Next slide, please.
7	So our conclusions. We have no departures
8	from the DCD that affect the ESBWR PRA. The only
9	departure we have is related to the configuration of
10	the low level of the radwaste building to expand below
11	over radwaste storage capacity.
12	And our plant-specific review is
13	summarized in Appendix 19AA of the FSAR.
14	MEMBER STETKAR: Okay. If you could go
15	back to this is going to take a while.
16	MR. SMITH: Okay.
17	MEMBER STETKAR: You're going to go back
18	to slide 4.
19	MR. SMITH: Right.
20	MEMBER STETKAR: Let's talk about the
21	first bullet: Loss of preferred power frequency. How
22	many times has Firma Unit 2 lost off-site power from
23	any cause during its operation?
24	MR. SMITH: During its total operation
25	life?
I	I

```
(202) 234-4433
```

	156
1	MEMBER STETKAR: Yes.
2	MR. SMITH: I don't know the total.
3	MEMBER STETKAR: I'd be interested. I know
4	you lost it at least once during the Northeast
5	Blackout.
6	MR. SMITH: Yes.
7	MEMBER STETKAR: It was characterized as
8	a partial lost during the tornadoes. I didn't go all
9	the way back to '8 to find out.
10	MR. SMITH: Yes.
11	MEMBER STETKAR: And just one event in the
12	years of its operation gives you a mean frequency that
13	is somewhat higher than the frequency that's used in
14	the DCD PRA. That one event gives you a somewhat
15	higher frequency. If you've had two events, you'll be
16	more than twice as high and from a different mix of
17	causes.
18	MR. SMITH: Yes.
19	MEMBER STETKAR: So I'm really interested
20	from the actual operating experience how many times
21	you've lost off-site power. That's just a question to
22	kind of give
23	MR. SMITH: Okay.
24	MEMBER STETKAR: Because you said you did
25	a frequency comparison, but I don't have any numbers
ļ	l

(202) 234-4433

Í	157
1	or anything.
2	MR. SMITH: Can you speak to that or do we
3	need to take this back?
4	MEMBER STETKAR: And I know where all your
5	numbers came from.
6	MR. SMITH: Yes.
7	MEMBER STETKAR: I know where the DCD
8	numbers
9	MR. MILLER: That's right. You know where
10	the DCD numbers came from.
11	Let me just go over the process. Of
12	course, we look at it generically. The DTE PRA staff
13	assessed their plant-specific history and compared it
14	against that of
15	MEMBER STETKAR: Yes. That's what I'm
16	asking about is I'd like to see what that comparison
17	is.
18	MR. MILLER: Okay. Well, that would be
19	within the DTE staff. I would just like to add,
20	though, that the requirement for a plant-specific PRA
21	prior to fuel load would incorporate any new operating
22	experience, it would incorporate any new loss of off-
23	site power events.
24	MEMBER STETKAR: I guess, and I'm going to
25	ask the staff when they come up, I'm troubled by this
	I

(202) 234-4433

	158
1	notion of this thing is being called a plant-specific
2	PRA. It is not a plant-specific PRA. It has nothing to
3	do whatsoever with a plant-specific PRA. It is the
4	design certification PRA accepted by this COL
5	Applicant.
6	MR. MILLER: Purely.
7	MEMBER STETKAR: They will have a plant-
8	specific PRA before fuel load when indeed they meet
9	all of the requirements to do a real PRA.
10	MR. MILLER: That's the one I'm referring
11	to.
12	MEMBER STETKAR: Yes. Okay. Well,
13	they're calling this a plant-specific PRA, the thing
14	that is right now is called in the COL FSAR a plant-
15	specific PRA. The term is "incorporation of DCD
16	Chapter" this is in the COL FSAR. "Incorporation
17	of DCD Chapter 18 into the FSAR satisfies the
18	requirement of 10 CFR 52.79(a)(46) for a description
19	of the plant-specific PRA and its results." So this
20	is being characterized as the plant-specific PRA and
21	its results. I don't believe that, but those are just
22	words.
23	What I want to do is examine whether or
24	not what level of reviews of both the plant
25	information that I can glean, how that information was
	1

(202) 234-4433

indeed compared with the DCD PRA to form the basis for the conclusions, at least on three of the five bullets that are on the slide in front of us. So I've asked about the loss of off-site power. I'd like to see that comparison.

The second one is the loss of service 6 7 water frequency. I'm not so much concerned about the 8 loss of service water initiating event frequency. I'm 9 concerned about the fact that the DCD PRA has 10 absolutely no relevance to the actual configuration and operation of the plant service water system as I 11 understand the way it will be operated. In fact, there 12 are qualitative statements in the FSAR that say "Well, 13 14 we're probably more reliable than the DCD PRA because 15 we normally cool through the normal cooling tower." I don't know if that's true, but there's a statement 16 17 that says you do that.

The DCD PRA does not model that line. It 18 19 does not model the status of the valves in the line that connect the return flow either to the normal 20 cooling tower basin or to the mechanical draft cooling 21 tower fans. So I ask you, are you going to keep the 22 PSWS aligned to the mechanical draft cooling towers 23 24 during normal operation or not? If the answer is no, 25 then the DCD PRA is completely wrong because it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

1 assumes that one mechanical draft cooling tower is always running. You know, it doesn't have start 2 3 failures for those fans. It assumes that all of the 4 valves and all of the cross-tie lines are always 5 normally open. Those valves are modeled at all. They can't all be normally open if you're going to the 6 7 normal cooling tower, which there's a statement in the 8 FSAR that says that you will normally be aligned to 9 the normal cooling tower. 10 So it's not at all clear. And I can glean this from looking at what's written. I don't actually 11 know how you're going to operate the system, but it's 12 pretty clear that the DCD PRA model for that system is 13 14 inconsistent with at least information I can glean 15 from both the DCD and your Chapter 9 information on 16 the PSWS in the FSAR. 17 MR. MILLER: Okay. MEMBER STETKAR: Now, do I believe that 18 19 the differences affect the use of that DCD PRA to give me some general assurance that the level of risk from 20 the plant is much lower than the level of risk of 21 currently operating plants? No, I don't think the 22 differences would affect that generic conclusion. 23 24 If I wanted to get really precise about how different it is, then it would affect that generic 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

160

1 conclusion and I can't say that the DCD PRA is necessarily conservative because I have no idea of 2 3 what the stuff that is not modeled or the different 4 configurations might contribute. And that's a bit of 5 my concern about characterizing this thing as a plant-6 specific PRA because if it doesn't model the 7 alignments that seem to be documented in the FSAR, 8 then it's not even a design-specific PRA. 9 So that's an area of concern that I think 10 you need to look at, in particular for the PSWS. Not the loss of service water frequency. I didn't some 11 back of the envelope calculations and they're about 12 right. They're okay. 13 14 CHAIR CORRADINI: So, John, can I -- I 15 assume that DTE stipulates what the characterization 16 is, that this is still the generic DCD PRA until they-17 MEMBER STETKAR: Well, they characterize it as a plant-specific PRA. 18 19 CHAIR CORRADINI: But it's not. It can't 20 be. No, it's not. It can't 21 MEMBER STETKAR: 22 be. CHAIR CORRADINI: You guys agree? 23 24 MEMBER STETKAR: And it's the result of a plant-specific PRA, and that there's nothing from any 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

161

	162
1	specific features of their design that would change
2	the conclusions on the DCD PRA.
3	MR. MILLER: So the intent of what they
4	performed here was a review of the plant-specific
5	features that may be different than what is in the
6	generic certified PRA, okay?
7	And just for clarification, another thing
8	I'd like to clarify is that the DCD, you've
9	characterized the modeling of the service water in the
10	DCD as inadequate. And I believe you mean with
11	respect to the plant-specific features at Fermi 3.
12	MEMBER STETKAR: No. It's inadequate with
13	respect to the design features that I can look at at
14	the DCD deadline. Cross-tie valves are not modeled at
15	all.
16	MR. MILLER: Yes. But the problem is
17	because it is a design certification PRA. Every plant
18	has a unique service water design. That is up to the
19	plant owner, okay? We cannot possibly model all of
20	those, so we develop a general model.
21	MEMBER STETKAR: I'm sorry, Gary. I'm
22	staring at identical drawings in the DCD Chapter 9 and
23	the FSAR Chapter 9. They are precisely identical with
24	the exception that in the DCD Chapter 9 there's a
25	little bubbly thing around the part that doesn't have
I	I

(202) 234-4433

	163
1	the bubbly thing around it. They're absolutely
2	identical. So there was no need in the DCD PRA to say
3	we don't know what the done design is going to look
4	like, because you could have at least modeled the
5	design that was in the bubbly thing.
6	MR. MILLER: I'm not sure I understand.
7	I mean, this is representing every plant. This is the
8	design certification for every ESBWR.
9	MEMBER STETKAR: I understand that. The
10	design certificate PRA models the plant service water
11	system, a plant service water system, the design
12	certification plant service water system. But it is
13	not a complete model of that system.
14	MR. MILLER: Okay.
15	MEMBER STETKAR: Because it does not
16	include a number of valves in that system. Now, you
17	know if Detroit Edison had decided to reconfigure that
18	system, then they would have needed to go look at
19	their actual configuration. If they wanted to put in
20	12 pumps and 800 valves or two pumps and no valves,
21	that obviously would have been a departure. There is
22	actually no departure from the certified design in the
23	configuration of the plant service water system in
24	terms of numbers of pumps, numbers of valves,
25	configuration of piping, numbers of cooling towers.

(202) 234-4433

Í	164
1	There's no difference. What there seems to be,
2	though, is a difference in the actual operating
3	configuration of that system
4	MR. MILLER: Okay.
5	MEMBER STETKAR: as it's characterized
6	in the FSAR compared to the assumptions about the
7	operating configuration of that system that are made
8	in the DCD PRA. There's some very, very explicit
9	assumptions about this.
10	MR. MILLER: Yes, there will be
11	differences. So
12	MEMBER STETKAR: And the question is do
13	the differences make a different? I don't know.
14	MR. MILLER: Well, I think you hinted
15	earlier that you didn't think they did, but
16	MEMBER STETKAR: You know, it's my own
17	personal opinion and it's certainly not ACRS,
18	certainly not anyone on the Subcommittee. For the
19	purpose of the DCD PRA to give the staff, to give the
20	ACRS, to give the public confidence that the level of
21	safety for the ESBWR is significantly improved from
22	current operating plants. And I didn't say a factor
23	of 101.23. I just said significantly improved.
24	MR. MILLER: Yes.
25	MEMBER STETKAR: I don't personally
	I

(202) 234-4433

	165
1	believe that the differences in this particular system
2	would affect that conclusion.
3	MR. MILLER: Yes.
4	MEMBER STETKAR: Numerically I do believe
5	the difference, you could measure the differences
6	between 101.23 versus 85.62.
7	MR. MILLER: Okay.
8	MEMBER STETKAR: But that's a difference.
9	MR. MILLER: Right.
10	MEMBER STETKAR: Whether it's significant,
11	you know that's somebody else's. My argument about
12	characterizing this as a plant-specific PRA and that
13	there is no difference is a bit of a concern, given
14	the nature of the DCD PRA.
15	So, I guess what I'm asking Detroit is in
16	the same sense of the loss of off-site power, the
17	LOPP, loss of preferred power frequency I'd like to
18	see how you did that comparison. I'd like a little
19	bit more confidence about how you compared the
20	operating configuration, at least as I understand from
21	the system that you're planning to install compared to
22	the assumptions that are built into the design
23	certification PRA, and how you did that.
24	MR. MILLER: Okay.
25	MEMBER STETKAR: Because all I can read in
I	

	166
1	the FSAR is some pretty high level qualitative stuff.
2	Now, the third one that I have to be
3	honest is a little bit more concern. This is
4	something I can point to
5	CHAIR CORRADINI: So, John, I'm trying to
6	capture this because you guys went back and forth and
7	I was there, and then I digressed.
8	MEMBER STETKAR: The concern is that
9	Detroit Edison has made an assertion that there are no
10	significant differences.
11	CHAIR CORRADINI: And you want to see the
12	analysis that shows it?
13	MEMBER STETKAR: I want to see what's the
14	basis for that conclusion.
15	CHAIR CORRADINI: Right. Okay.
16	MEMBER STETKAR: It would be more obvious
17	if the actual configuration, you know the number of
18	pumps were different were the actual configuration of
19	the system were different. But even within this
20	context the normal alignments seem to be different.
21	And the normal alignments being different could
22	introduce drastically different failure modes,
23	drastically different success criteria even compared
24	to what's applied in the DCD PRA.
25	MR. MILLER: Drastically different?
	1

(202) 234-4433

	167
1	MEMBER STETKAR: Yes, yes. Because the DCD
2	PRA basically says the success criteria are any two
3	pumps to any one cooling tower which presumes that
4	both the discharge cross-tie valves are always open
5	and can never be closed and the return cross-tied
6	valves between the cooling towers are always open and
7	cannot never be closed. Otherwise, the success
8	criteria don't match up. You get combinations of pumps
9	that don't line up with cooling load. The Train A
10	pumps can be successful, but they're isolated from the
11	Train B cooling loads, you don't have cooling to Train
12	В.
13	MR. MILLER: Right.
14	MEMBER STETKAR: And vice versa on the
15	return trip.
16	MR. MILLER: Again, but it was the intent
17	for the plant-specific or the design certification
18	PRA
19	CHAIR CORRADINI: For the GEH DCD one to
20	match any particular site.
21	MR. MILLER: Yes. Right.
22	CHAIR CORRADINI: Just so I capture it,
23	your point is that you want to see the basis by which
24	there's not a concern?
25	MEMBER STETKAR: I want to see the basis
	I

(202) 234-4433

	168
1	for right. I want to see what evaluation Detroit
2	Edison made
3	CHAIR CORRADINI: Right.
4	MEMBER STETKAR: now that they've
5	adopted this flow path picture and they've made
6	statements about how that system will be normally
7	configured that is the only way it can work
8	consistently with their statements is it leads to
9	inconsistencies in the PRA model.
10	CHAIR CORRADINI: Right.
11	MEMBER STETKAR: Or, you know, the
12	applicability of the DCD PRA model to that normal
13	alignment.
14	MR. MILLER: But you had another one?
15	MEMBER STETKAR: I do. On what's
16	characterized as internal flooding associated with the
17	Yard Area, I will characterize that as external
18	flooding.
19	The DCD PRA explicitly does not model
20	external flooding, doesn't quantify external flooding.
21	There's a statement that says "external flooding
22	events are reasonably precluded from the ESBWR
23	Probabilisitic Flood analysis based on adherence to
24	the design conditions set forth in the envelope of
25	ESBWR Standard Plant Site Parameters of DCD Tier 2.
	I

(202) 234-4433

	169
1	CHAIR CORRADINI: Chapter 2.
2	MEMBER STETKAR: They didn't quantify
3	external flooding.
4	The discussion of Yard flooding in the
5	FSAR says: "Consideration of site-specific external
6	flooding would have no impact on the PRA results and
7	conclusions."
8	CHAIR CORRADINI: Yard flooding means
9	between the switchyard and the plant?
10	MEMBER STETKAR: Think of Lake Erie making
11	the site look like a big Lake Erie.
12	CHAIR CORRADINI: Got it.
13	MEMBER STETKAR: I mean, it's
14	characterized as the Yard because the Yard is a site-
15	specific feature. But it's
16	CHAIR CORRADINI: Whether it's off-site or
17	on-site, your point is it's a controlled area but it's
18	flooded.
19	MEMBER STETKAR: The Yard is outside, and
20	they said the Yard is outside.
21	CHAIR CORRADINI: Okay.
22	MEMBER STETKAR: Now, the qualitative
23	arguments that are made in the FSAR are that the only
24	things that might be affected in the Yard are a couple
25	of stand pipes for the fire protection system and
	I

```
(202) 234-4433
```

1 they're above design basis flood level and plant grade is above design basis flood level. Well, PRA doesn't 2 care about design basis flood level. PRA cares about 3 4 a flooding hazard curve: What is the frequency of 5 flooding up to a certain elevation and at some point 6 the water spills over into buildings. Now, if that 7 frequency is ten to the minus 200, that's fine. But 8 that's a site-specific analysis. It depends on your 9 flooding hazard sources, it depends on metrology, it 10 depends on whether you've got the world's worst biggest dam next to your site, which you don't. 11 And I'm interested here, too, in seeing 12 what type of an evaluation was done of the site-13 14 specific flooding hazard to reach the conclusion that 15 essentially it's impossible to have a flood at the 16 site that can flow water into buildings that contain 17 any equipment in the PRA. And I will tell you that the condensate and feedwater systems are in the PRA, 18 19 and they're in the turbine building. So it's not related to only safety-related buildings. 20 It's kind of flood damage anything that's in the PRA. 21 22 And if there's some measurable frequency that occurring, then I'm not sure about 23 the of 24 conclusion that consideration of external flooding can

have no impact on the PRA results. So I'm curious,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

170

	171
1	again, you know it's sort of the same thing of what
2	technical analysis were performed to look at the site-
3	specific flooding characteristics at the Fermi site to
4	draw that conclusion that there was no need to add
5	external flooding into the DCD PRA.
6	MR. SMITH: Understand. Thanks.
7	CHAIR CORRADINI: So, can I just
8	interject? So in all three cases we're going to have
9	to see something you're going to have to go off and
10	gather or at least get to us so that we understand
11	better.
12	MEMBER STETKAR: Right.
13	CHAIR CORRADINI: Okay. Do you have more?
14	MEMBER STETKAR: No, I'm done.
15	CHAIR CORRADINI: Other questions? Okay.
16	MEMBER STETKAR: Oh
17	CHAIR CORRADINI: That's why I waited with
18	baited breathe here.
19	MEMBER STETKAR: No, I don't think I do.
20	Hold on just a second. It's a good thing about taking
21	notes is I don't forget. The bad thing is no, I do
22	not have any more. Thank you.
23	CHAIR CORRADINI: Okay. Staff will be
24	coming up and have their turn.
25	Is Steve not Steve. Is Raj going to
	I

	172
1	start us off? Who is going to start us off?
2	MR. ANAND: Me.
3	CHAIR CORRADINI: Okay.
4	MR. ANAND: My name is Raj Anand. I'm one
5	of the Project Managers working on the Fermi 3 COL
6	application.
7	Today we plan to discuss Fermi Chapter 19,
8	the PRA Results and Severe Accidents Evaluation and
9	LOLA SER Review.
10	These SERs have no open items.
11	Chapter 19 provides the Fermi PRA and a
12	severe accident evaluation and corresponding
13	regulatory requirements.
14	Attachment 19-A to Chapter 19 SER is loss
15	of large area of the plant due to explosion or fire is
16	in a public domain.
17	Attachment 19-B LOLA SER is a non-public
18	as well as some of the documents which are referenced
19	in Attachment 19-A includes security-related
20	information. The staff plans to discuss the non-
21	public portion of the LOLA SER after the break in a
22	closed-door meeting.
23	The technical review of the Chapter 19 PRA
24	and severe accident is Mark Caruso and Jim Xu is an
25	expert on seismic is also joining us on the table.
I	I

(202) 234-4433

	173
1	Now I would turn it over to Mark to
2	discuss Chapter 19 PRA and the severe accident
3	evaluation.
4	MR. CARUSO: Thank you, Raj.
5	Do you want to go to the next slide?
6	The first slide here is a summary of the
7	pertinent regulations that apply. The only one I
8	really want to talk about here is the second one,
9	52.79(d) where it basically says that if the COL is
10	referencing a design certification, then at COL
11	licensing time he's required to start with the DCD
12	design PRA and update to address site and design
13	specific parameters and features.
14	The other area requirements so that's
15	really been the focus of this review is on the
16	those specific parameters and features that are
17	those features and parameters that are site/design-
18	specific. The other requirements here are addressed
19	by the Applicant by way of incorporating a ESBWR DCD
20	by reference.
21	The next slide summarizes the guidance.
22	I think you're all familiar with Interim Staff
23	Guidance COL/DC-ISG-03. I think we've discussed that
24	with you in the past. It supplements the guidance
25	that's in the SRP and Regulatory Guide 1.206.
ļ	I

(202) 234-4433

	174
1	What we're showing for the site that
2	margins evaluation, we have values for application
3	COL-DC-ISG-20, and Jim Xu joins me and we'll be taking
4	about the seismic margins analysis in a little bit.
5	MEMBER STETKAR: Mark, Detroit Edison will
6	do a quantitative seismic PRA before fuel load, is
7	that correct? Because, you know it's required
8	basically under 50.71(h)(1).
9	MR. CARUSO: If there's a consensus
10	standard.
11	MEMBER STETKAR: And there is for seismic.
12	MR. CARUSO: Then there will be.
13	MEMBER STETKAR: Okay.
14	MR. CARUSO: It's required.
15	MEMBER STETKAR: For the seismic margins
16	discussion, I mean it's something they have to do
17	because it's required, but that's this interim stopgap
18	comparison until the seismic people perform some type
19	of
20	MR. CARUSO: I think that's going on.
21	MEMBER STETKAR: Okay.
22	MR. CARUSO: So this slide is a summary,
23	basically sort of in review. The Applicant
24	incorporated a Certified Design PRA and Severe
25	Accident Evaluation by reference. And in their
	1

(202) 234-4433

1 application they initially indicated that -- they cite site-specific parameters and design features were 2 enveloped out by a Certified Design PRA. 3 But there 4 were no detail at all on that, they issued RAIs to 5 obtain supporting site-specific evaluation. And the Applicant provided a discussion of 6 what those 7 parameters were and features and their reasons for 8 concluding that they were bounded by a Certified 9 Design PRA.

And we looked at those bases. Now these are the plant-specific parameters and features that we were just talking about with the Applicant. Well, they describe their bases.

And they looked at this loss of off-site power frequency for Unit 2 and they compared it with was in the DCD, and found that it was lower and concluded that it was bounding. Now they didn't provide us the numbers --

19 MEMBER STETKAR: You just said they found it was lower. It can't be lower. The value that's 20 used in the DCD is 3.59 times ten to the minus two per 21 If I just take one event, the 22 year from all causes. great Northeast Blackout in August 14, 2003 and divide 23 24 it -- I'll even give them that they've operated through 2011; in 23 years of operating experience that 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	176
1	comes out to be 4.35 times ten to the minus two, which
2	is larger than 3.59. So if they're indicating and
3	that's from only grid-related events. I don't want to
4	get into the four different categories.
5	So if their comparison concluded that it's
6	smaller, I'm even more interested to think to see
7	what that comparison was. Because that event alone,
8	had there been no other events.
9	MR. CARUSO: Well, I agree. I didn't ask
10	them. I didn't probe that.
11	MEMBER STETKAR: Okay.
12	MR. CARUSO: I felt that they were
13	probable capable of figuring out what their loss of
14	off-site power frequency was and it didn't occur to me
15	to dig deep into that.
16	MEMBER STETKAR: Anyway, you've gone
17	through it.
18	MR. CARUSO: And, I mean the idea that
19	well what if it was a little bit higher, would I care?
20	Right. I would care, but how much would I care? So,
21	you know I considered how important it was the loss of
22	off-site power in ESBWR. And, of course, this plant
23	is a passive plant and so it's not so important as it
24	is in other plants.
25	MEMBER STETKAR: Exactly.
	I

(202) 234-4433

MR. CARUSO: And for all these parameters, 2 my focus was do I have, you know reasonable confidence that they're not way far off. Because to me the review at this point in time is really about is there something really different about this plant compared to the ESBWR design that I would be concerned about. 6 And that tempered the depth of our review.

8 And Ι also considered, you know the 9 particular planning that we're talking about, you know 10 in the scheme of things in terms of risk, how important is it? How important is service water 11 When does it come in? Basically it comes 12 failure? into the FAPCS. The FAPCS needs service water to run 13 14 because FAPCS runs on the diesels and stuff.

15 The thing about service water is that it's 16 running out of time, so it's not a system where you --17 MEMBER STETKAR: It is, but if it has to be reconfigured for certain events, you get valve 18 19 failures in there that are modeled at all in PRA. And we don't need to take up the Subcommittee's time on 20 certain discussions of members. I think that's kind of 21 22 pointless. But the question is that I heard then 23 comparisons done to draw certain that were 24 conclusions. And I quess what I'm doing is challenging a bit about the level of depth that went 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

5

7

1 into those comparisons and to support those conclusions. You know, do I believe that the 2 3 unavailability of plant service water is going to 4 increase by a factor of a 1,000 or could it change 5 same? It probably would -- you know would it be 6 higher? I don't know. But that's the --7 MR. CARUSO: I felt their description of 8 their system in terms of arguments about the 9 attributes of their liabilities were good ones, were 10 strong ones compared to what's out there, which was basically modeled --11 MEMBER But again, that's 12 STETKAR: absolute, 13 comparisons of it's not necessarily 14 relatively in the context of this particular PRA. 15 The other thing is that we MR. CARUSO: 16 don't -- you know, in this particular review we don't 17 -- you know we're not reviewing the PRA. It's not our charter to --18 19 MEMBER STETKAR: I understand. MR. CARUSO: -- dig in and say did they 20 get the exact right number for the loss of off-site 21 22 power frequency MEMBER STETKAR: Understood. 23 24 MR. CARUSO: So I quess I'm trying to give you a sense of the area we're coming from in terms of 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

178

	179
1	our review and what our objectives are and what drives
2	us. And not that I you know, I mean I value that
3	you're challenging these things, too. I mean, I don't
4	think they provided us all that much. They certainly
5	didn't provide us with vigorous technical analysis
6	to
7	MEMBER STETKAR: Well, honestly, Mark, in
8	terms of the three things that raised I'm personally
9	a bit more interested in the last one about external
10	flooding
11	MR. CARUSO: Okay.
12	MEMBER STETKAR: that could have I
13	don't know. I have to be careful about what I
14	hypothesized, but of the three issues the external
15	flooding could conceivable have a large numerical
16	impact on the overall assessed risk. You know, I'm
17	not inferring that it would challenge the notion that
18	the plant is much safer than currently operating
19	designs, but in terms of site-specific issues that
20	could affect your understanding of the results of the
21	design certification risk assessment and the
22	contributors to that risk, the external flooding to me
23	is I'm not going to talk about seismic stuff
24	because we're all well aware of the seismic issues.
25	But that is the one area where numerically it could be
Į	I

(202) 234-4433

	180
1	different.
2	MR. CARUSO: Well, and we looked into
3	Chapter 2 to the design of the plant and the flooding
4	evaluation that was there and considered that in terms
5	of likelihood of expectation of something, some
6	flooding condition quite drastic that would be pouring
7	into buildings and that sort of thing. And I think
8	our feeling was that their discussion of the flood
9	zones and what they expected in the flood zones was
10	reasonable. And there's nothing out there, like you
11	say. The issue is not what's in the Yard, because
12	there's nothing in the Yard that has any power.
13	MEMBER STETKAR: There's nothing in the
14	Yard. That's right.
15	MR. CARUSO: It's is it going to go to
16	buildings and what it's going to take out. And,
17	again, you start to think about ESBWR and you think
18	about how it's designed.
19	We spent a fair amount of time considering
20	right after Fukushima what flooding issues there might
21	be with the ESBWR in particular batteries, that sort
22	of thing. And if you look at the overall design,
23	again you find that they're very well protected
24	against flooding.
25	MR. TONACCI: Mr. Chairman
I	1

(202) 234-4433

	181
1	MR. CARUSO: And so
2	MR. TONACCI: Can we have IOU to come to
3	back on these topics?
4	MEMBER STETKAR: We don't need to belabor
5	the issues.
6	MR. CARUSO: Okay. Fine.
7	CHAIR CORRADINI: You guys were having a
8	discussion. We will let it go on for a minute or
9	more. Okay. Let's keep on going.
10	MR. CARUSO: All right. So the seismic
11	margins evaluation Jim was the reviewer on that and
12	he's going to present.
13	MR. XU: I think there's confusion about
14	this type of plant-specific PRA. I think that the
15	scope for COL was to satisfy 52.79(d)(1) which is
16	actually the DCD PRA to incorporate the site-specific
17	features.
18	MEMBER STETKAR: The terminology is
19	MR. XU: I know, but they're not required
20	to do PRA per 50.79(h)(1) you know before fuel.
21	MEMBER STETKAR: That's right. And that
22	will be a plant-specific
23	MR. XU: That will be a plant-specific
24	PRA. This is just the gap we need to fill, you know
25	between the
I	

(202) 234-4433

	182
1	MEMBER STETKAR: There's one applicant
2	that characterizes this thing as the COL PRA.
3	MR. XU: Yes. That's probably not the
4	MEMBER STETKAR: That's actually the term
5	that they use.
6	MR. XU: Right. So for seismic margins,
7	the scope of the COL is to accurately achieve a PRA
8	base to estimate and to incorporate the site-specific
9	features. In this case the Fermi site is hard rock
10	which is very simple and meaningful one. And the GMLS
11	for Fermi is fully enveloped by the CSDRS per the
12	ESBWR DC. So in this case their seismic margins is
13	covered by the extended design and geotechnical
14	characteristic for the site are also falling into the
15	generic site profile of the DC.
16	So, you know based on that you know,
17	according to our guidance, the ISG-20, that satisfies
18	the steps that need to be taken to operate the DC
19	to bring the DC towards the zero state. So that's how
20	we conclude their analysis, although it's very
21	minimal, is satisfactory. Although the HCLPF values
22	for all the structure systems components and the
23	sequences will have to be confirmed prior to fuel
24	load. That activity the Licensee will have fulfill.
25	MEMBER STETKAR: Well, I mean, they'll
ļ	I

(202) 234-4433

	183
1	have to have fragility curves and they're have to have
2	hazard curves
3	MR. XU: Yes. They will have to develop
4	fragility curves and other things.
5	MEMBER STETKAR: That's down the line.
6	MR. XU: And do a rock bound.
7	So that's pretty much discussed for
8	seismic margins.
9	MR. CARUSO: We talked about flooding the
10	Yard. The plant-specific surface water flooding. In
11	the ESBWR they assume that there's just one flood zone
12	and all the pumps are failed, which needs to be
13	bounded.
14	So the conclusions are the Applicant has
15	addressed the required information related to PRA
16	results and insights, and Severe Accidents evaluation.
17	And we concluded the Chapter 19 is acceptable, it
18	confirms to regulatory requirements.
19	CHAIR CORRADINI: Other questions by the
20	Committee?
21	MEMBER BROWN: Yes.
22	CHAIR CORRADINI: Charlie?
23	MEMBER BROWN: It's not a question.
24	CHAIR CORRADINI: Go ahead.
25	MEMBER BROWN: It's an observation.
ļ	I

	184
1	CHAIR CORRADINI: I asked for questions,
2	not observations.
3	MEMBER BROWN: It's a concern. A concern.
4	Okay. And I'm going to roll it back to a discussion
5	that we had from yesterday. And I've listened to the
6	interchange on the PRAs and the fact, you know the
7	unrelated number that was used apparently didn't
8	reflect
9	MEMBER STETKAR: Well, be careful.
10	MEMBER BROWN: Well, I mean it's a small
11	number, but I mean it's a number. The number was
12	higher than it was in the DCD or whatever the quoted
13	number was. And yet and here's "the site-specific
14	PRA" coming around and they used the process that the
15	numbers were wrong, at least for that one particular
16	piece.
17	So if they're using the process, then we
18	don't have to check to make sure that it's okay that
19	it was applied properly and that the numbers and the
20	inputs and the assumptions are valid based on the
21	actual plant-specific, it's not checked.
22	The same thing applied I heard earlier on
23	the PTLR report that as long as they use the method
24	and they do their plant-specific PTLR curves,
25	hazardous material characteristics, but as long as
	I

(202) 234-4433

they use the method we don't have to look at them, and we don't because it's assumed that they got the values.

4 Now I'm going to step back into the sort 5 of discussion that we had yesterday on this plant, the Detroit plant using this or at least they proposed 6 7 this as the risk-informed issues under tech specs. 8 And one of the arguments there is if they get into a 9 potential system out of service or maintenance, 10 whatever they have to do with it and they can't complete it in time, as long as it's within a certain 11 period of time they do an analysis based on the PRA 12 that they have for the systems, that they can extend 13 14 that completion time up to a certain other time.

So the PRAs are being used for decision 15 16 processes. I don't know how many circumstances, but at 17 least in that circumstance but yet nobody has checked to see that the PRA that was initially inspected with 18 19 has actually used the proper assumptions, the numbers were plugged in correctly, et cetera, et cetera, or 20 even audited. Now they can be, but it doesn't mean 21 And the story was that as long 22 that they have been. as you use the method or as long as they use the 23 24 process they're not checked.

So consistent with our concern and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

Í	186
1	observation about how these things are being used
2	CHAIR CORRADINI: So just to move
3	MEMBER BROWN: It's not an action item,
4	Mike.
5	CHAIR CORRADINI: I understand.
6	MEMBER BROWN: I'm just making that at an
7	observation.
8	CHAIR CORRADINI: But I mean this is
9	observation, correct?
10	MR. CARUSO: Well, for risk-informed tech
11	specs, I mean any risk-informed application we will
12	look at the PRA for that.
13	Now I think if you're talking about
14	this is not newly this is not Firma
15	MEMBER STETKAR: Yes, I was going to say
16	this discussion is
17	CHAIR CORRADINI: I don't know if it's
18	germane to this.
19	MEMBER BROWN: It's a new reactor.
20	CHAIR CORRADINI: Okay. But I don't want
21	to
22	MR. CARUSO: I think your other examples
23	are right on the money. But that one I'm not
24	MEMBER BROWN: Look, all these vast realm
25	of methods, processes and regulations, have been on
	I

1 the Committee for a little over three years, so I don't pretend to know all those nuances. I hear 2 process. I hear methods and all the rest of it and 3 4 decisions are being made with that, yet I don't get a 5 lot of comfort out of how much that the applicants or doing, or the licensees is then having their changes 6 7 from the design basis checked after the fact. I just 8 don't hear a lot about that. It's a concern to me. 9 IT may not be a concern to the other 10 members, but it is to. Mike, that's the observation I had over 11 the the two days and after listening to 12 last discussion today on at least two technical subjects. 13 14 CHAIR CORRADINI: Okay. Point taken. 15 Other members comments or questions? 16 All right. Before we go to break, I was 17 just informed that we have members of the public on line that may have questions, comments. 18 19 MR. BROWN: It's open. 20 CHAIR CORRADINI: It's open? I'm sorry. I didn't hear the beep. 21 So is there a member of the public that 22 needs to make a statement? Okay. 23 24 MEMBER STETKAR: Ask if there's anybody 25 out there.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

187

	188
1	CHAIR CORRADINI: Is there anybody out
2	there?
3	MEMBER STETKAR: If there's anybody on the
4	line, just say something, make some noise so we know
5	the line is actually open.
6	CHAIR CORRADINI: Okay. So nobody's out
7	there either.
8	MEMBER STETKAR: Well, maybe but the line
9	may be closed.
10	CHAIR CORRADINI: It is open.
11	MR. BROWN: You can hear the noise. Yes.
12	CHAIR CORRADINI: All right. There are no
13	comments. There is nobody out there.
14	At this point we'll take a break until
15	2:15 in closed session.
16	(Whereupon, a 1:55 p.m. a recess to resume
17	at 2:11 p.m. in Closed Session until 3:21 p.m.)
18	CHAIR CORRADINI: So we're in open
19	session.
20	So, here's what I've got. In terms of
21	Chapter 5 let me just well, while I compare
22	notes, let me take notes and let me go around the room
23	first with the Committee and see if there's additional
24	things that either amplify what I've written down or
25	review things that I've missed. Can we start with Tom
I	1

(202) 234-4433

	189
1	and we'll just go around.
2	CONSULTANT KRESS: You don't want general
3	comments now, you just want to know
4	CHAIR CORRADINI: No, I want general
5	comments, specific things that you're concerned about,
6	anything that's on your mind.
7	CONSULTANT KRESS: Oh, okay. Well, I can
8	do that.
9	CHAIR CORRADINI: Well, then I'd welcome
10	it.
11	CONSULTANT KRESS: Okay. Well, my first
12	comment is I think we were little hard on staff. I
13	think they did a good job of knowing what the
14	regulations are and what the guidance on these for
15	COLAs are, and that they did a pretty good job of
16	actually reviewing the things and showing the
17	appropriate things we're doing. So, I didn't want to
18	leave the impression that the staff had not done a
19	good job.
20	One of the issues that I was particularly
21	interested in following up on is the hydrogen problem,
22	particularly burning and how much hydrogen gets to the
23	control room. And I'd like to know more about how
24	it's calculated, what are the chi over q values for
25	hydrogen.
ļ	

(202) 234-4433

	190
1	CHAIR CORRADINI: Tom, this is in general.
2	Just for clarification, this is in general or
3	particularly because of the issue we raised with the
4	hydrogen water chemistry system?
5	CONSULTANT KRESS: It's in general.
6	CHAIR CORRADINI: General. Okay.
7	CONSULTANT KRESS: And then the hydrogen
8	water chemistry is probable high on my list.
9	CHAIR CORRADINI: Okay. That's fine.
10	Thank you.
11	CONSULTANT KRESS: I think I agree with
12	John Stetkar on the question of consistency and use of
13	importance factor to determine RTNSS and SSCs. I
14	think I'd like to see that consistency.
15	And I agree with him on the concept of
16	you're interested in preserving relative risk and not
17	absolute.
18	I don't have much to say about LOLAs. I
19	didn't want to say too much. But one of the things
20	that I don't know if it exists or not, I think there
21	should be some general sense of requirements that are
22	not specific but such things as, you know they're okay
23	to have a defense-in-depth requirement. You need to
24	have a list of things, like you need to be able to
25	possibly restore power and you need to be able to get
	I

(202) 234-4433

	191
1	water on-site and pump it. You need to be able to
2	have a communication with the various responders. You
3	need to have a designated leader in case you have a
4	catastrophic event. You need to have the off-site
5	ability to track events, which may have to do with
6	having portable measurement equipment to know what's
7	happening.
8	CHAIR CORRADINI: These are things that
9	may or may not be NEI guidance?
10	CONSULTANT KRESS: No. I don't know what's
11	in NEI guidance.
12	CHAIR CORRADINI: That's what I was trying
13	to get at.
14	CONSULTANT KRESS: These are a list of
15	general things. I think such list needs to exist, but
16	I haven't seen it.
17	Let's see if I have anymore things. I
18	think that's about all I have.
19	CHAIR CORRADINI: Graham?
20	CONSULTANT WALLIS: Well, I thought until
21	we got to the LOLA, everything was pretty
22	straightforward really. I mean, I don't think we gave
23	the staff a hard time.
24	CHAIR CORRADINI: Okay.
25	CONSULTANT WALLIS: I think we gave them

(202) 234-4433

	192
1	an easier time than usual.
2	CONSULTANT KRESS: Oh, okay.
3	CONSULTANT WALLIS: Because everything was
4	sort of straightforward, really. There was very
5	little
6	CHAIR CORRADINI: Tom's getting soft. He
7	thought you were being too
8	CONSULTANT WALLIS: Nothing of any concern
9	until we got to the closed session.
10	CHAIR CORRADINI: Okay. Sorry, did you
11	have more?
12	CONSULTANT WALLIS: That's it, no.
13	CHAIR CORRADINI: Sam?
14	MEMBER ARMIJO: I agree with Graham. I
15	think the idea of an incorporation by reference is the
16	right way you know it's worked here. We forgot. We
17	started asking question that we had already asked
18	previously on the design certification work. It's
19	okay to raise them again, but those are settled,
20	particularly things like the vessel and embrittlement
21	and things like that. It's all in the DCD, so we just
22	got to look at them again.
23	Except for the Chapter 19, which is pretty
24	murky to me and it will probably always stay murky.
25	The best I can say there is you put together a list of
I	I

(202) 234-4433

	193
1	equipment and actions that will be nice to do, good to
2	have in the event of some event that you can't predict
3	and you got to be flexible. And that's the best I can
4	say from that. You're probably going to see more of
5	that with response for Fukushima. But that's it.
6	CHAIR CORRADINI: Okay. Said?
7	MEMBER ABDEL-KHALIK: I have no additional
8	comments.
9	CHAIR CORRADINI: Nothing.
10	MEMBER STETKAR: Nothing.
11	MEMBER STETKAR: Nothing more. I'm not
12	going to say what I've already said three times a
13	fourth time.
14	CHAIR CORRADINI: Charlie?
15	MEMBER BROWN: Nothing more.
16	CHAIR CORRADINI: Okay. So let me tell
17	you what I've got down here.
18	On Chapter 5 I did not have anything that
19	either DTE or staff were going to come back to us.
20	It's just notes to myself about things such they've
21	committed to the hydrogen water chemistry.
22	In Chapter 16 what I heard was that there
23	are tech specs and surveillance for vacuum breakers,
24	but they're going to be determined by testing that has
25	been committed to by GEH. So it's nothing to come

(202) 234-4433

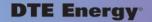
	194			
1	back to us, I just want to keep that on the burner as			
2	we come back when our next Subcommittee meeting will			
3	be on, I think, Chapter 9 and 3 will be there. I'm			
4	looking at Adrian. I can't remember what's on November			
5	30th.			
6	MR. MUNIZ: Chapter 9, 11, 12 and 13.			
7	CHAIR CORRADINI: Okay. So not 3? Three			
8	is still to come. So everyone remind themselves in			
9	2012 they'll have the fun of Chapter 3.			
10	Hazardous gases, Dick had to depart, but			
11	he wanted to make sure the comment wa that even though			
12	staff feels that given the analyses in terms of			
13	hydrogen transport and associated control room			
14	habitability issues are set, even though it may not			
15	even be safety-grade, it may make good sense and good			
16	practice to have some sort of monitoring of that.			
17	Again, noting that comes out of that.			
18	Material specs we talked about.			
19	And they hydrogen water chemistry system			
20	and hydrogen transport, just to generalize what Tom			
21	said, I think we are owed something there. And what			
22	I've written down, I think I've captured it, was that			
23	we want to some something relative to analysis of the			
24	hydrogen water chemistry, it's impact in terms of			
25	release whether it be due to habitability which they			
	I			

(202) 234-4433

	195			
1	say is not a problem, but potential combustion. All			
2	right? And what I heard and DTE can correct me if I			
3	misheard, was that a lot of this is still roughly			
4	designed, generally designed so details are yet to be			
5	determined. But we would like to hear more about			
6	that, particularly in terms of combustion.			
7	For Chapter 17 I wrote down the kV and			
8	risk-importance measures and I put it as a comment.			
9	I didn't hear as anything they have to come back and			
10	talk about.			
11	MEMBER STETKAR: Well, I'd like to hear			
12	how they've thought through that process of			
13	transitioning from			
14	CHAIR CORRADINI: In terms of?			
15	MEMBER STETKAR: the existing D-RAP			
16	list that's incorporated by reference at this stage to			
17	the Maintenance Program			
18	CHAIR CORRADINI: Okay.			
19	MEMBER STETKAR: which they have a firm			
20	commitment. I mean, they've made references to NEI			
21	guidance and documents that are in turn endorsed by			
22	that guidance that indeed have different numerical			
23	criteria, at least as they're applied. I mean, how			
24	they're going to make the transition			
25	CHAIR CORRADINI: I'm sorry, you're right.			
	I			

(202) 234-4433

	196			
1	MEMBER STETKAR: is something I'd like			
2	to hear about.			
3	And then finally in Chapter 19 I think the			
4	biggest set of things is we wanted to hear a little			
5	bit more about the justification, the bases by which			
6	loss of off-site power, loss of service water and			
7	particularly flooding. I don't know whether it's			
8	internal or external. Let's say flooding on the			
9	property are not a concern.			
10	CHAIR CORRADINI: We want to see more of			
11	the technical basis.			
12	MEMBER STETKAR:			
13	You know, decisions were reached. We want to			
14	know what were the actual basis for that conclusion.			
15	CHAIR CORRADINI: Right.			
16	MEMBER STETKAR: And some of them were			
17	more detailed than the quite qualitative arguments			
18	that are at least present in the FSAR and echoed in			
19	the SER.			
20	CHAIR CORRADINI: Okay. So in terms of			
21	Chapter 6 with hydrogen and in terms of Chapter 19			
22	about that, I think those are the two things that are			
23	kind of open to hear back from DTE when they're ready			
24	to discuss it with us.			
25	Other than that, I want to thank Detroit			
ļ	I			


(202) 234-4433

	197				
1	Edison and the staff again. I think it went pretty				
2	well. And I don't have any other issues or questions.				
3	Our next Subcommittee meeting is November				
4	30th. As Adrian said, we're going over 9, 11, 12 and				
5	13 and that's on the morning of the 30th.				
6	I just want to remind everybody that				
7	sounds like a light load, but Chapter 9 is cats, dogs;				
8	it's a lot of stuff. Okay. So please, it's going to				
9	be a large thing to look through and be ready.				
10	We have it arranged so that we can				
11	actually go a little bit into the afternoon before we				
12	start the Thermal Hydraulics Subcommittee. All right?				
13	Other then that, thank you all. Meeting is				
14	adjourned.				
15	(Whereupon, at 3:32 the Subcommittee				
16	meeting was adjourned.)				
17					
18					
19					
20					
21					
22					
23					
24					
25					

Fermi 3 COLA Presentation to ACRS Subcommittee Resolution to Chapter 8 Open ACRS Questions

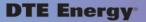
Chapter 8 Open ACRS Questions

- Do the switchyard breakers have one or two closing coils?
- Provide description of off-site transmission system, including the following:
 - Describe the routing where Fermi 2 and Fermi 3 share a common transmission corridor.
 - Identify the physical separation between the Fermi 2 and the Fermi 3 transmission lines where the lines share common transmission towers.

Do the switchyard breakers have one or two closing coils?

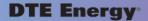
• Each switchyard breaker has a single closing coil.

Considerations for restoring off-site power


- Switchyard is arranged in a breaker and a half configuration.
- Design of the Switchyard minimizes probability of single incidence of equipment failure causing the simultaneous or subsequent loss of both preferred power circuits (PPS) – IEEE 765-2002, "IEEE Standard for Preferred Power Supply (PPS)."
 - The design process will include detailed evaluations of system restoration.
 - Evaluations will include considerations of the ability to restore off-site power from at least one transmission line to the unit.

Provide description of off-site transmission system, including the following:

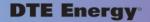
- Describe the routing where Fermi 2 and Fermi 3 share a common transmission corridor. Include figure(s) that show locations, spacing and orientation.
- Identify the physical separation between the Fermi 2 and the Fermi 3 transmission lines where the lines share common transmission towers.

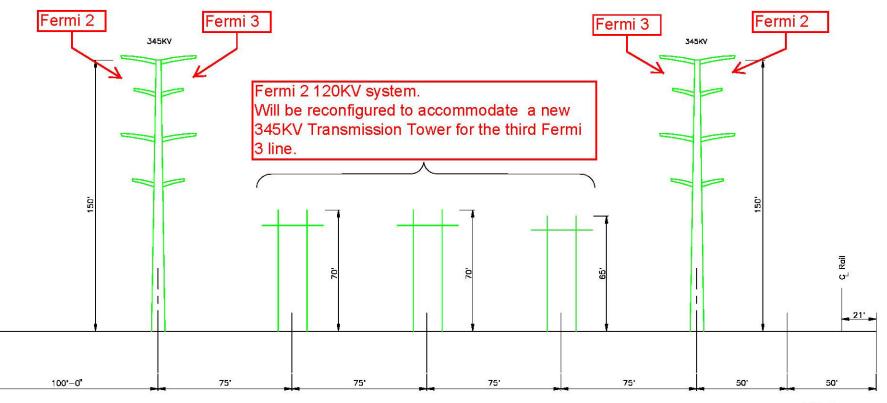


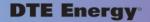
Fermi 2 Transmission System

- 345 kV Transmission System
- 120 kV Transmission System
- Common Right of Way
- Sufficient spacing of the lines such that collapse of either of the 345 kV towers would not interrupt the other 345 kV line

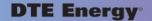
Fermi 3 Transmission System


- 345 kV Transmission System
- Common Right of Way
- Sufficient spacing such that failure of any one 345 kV tower or pole due to structural failure can at most disrupt and cause loss of power distribution to itself and an adjacent line

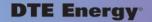

Transmission System Routing (345 kV Lines)



Fermi 2 and 3 Common Corridor Tower Spacing



Fermi 2 and 3 Common Corridor – Looking West



Fermi 2 and 3 Common Corridor – Looking East

Fermi 2 and Fermi 3 Common Transmission Tower

- Fermi 2 and Fermi 3 Lines are Hung on Opposite Sides of 345 kV Transmission Tower.
- Separation between Fermi 2 and Fermi 3 345 kV transmission lines on common transmission tower are either 30 (shortest arms) or 45 feet (longer arms).
- Separation meets National Electrical Safety Code and ITC*Transmission* requirements.

Fermi 3 COLA Presentation to ACRS Subcommittee Chapter 5

Chapter 5, Reactor Coolant System and Connected Systems Chapter Topics

Addresses the following sections (Incorporates the DCD by Reference with Standard COL Items and Standard Supplemental Information).

- 5.2 Integrity of Reactor Coolant Pressure Boundary
- 5.3 Reactor Vessel
- 5.4 Component and Subsystem Design

- 5.2 Integrity of Reactor Coolant Pressure Boundary
- STD SUP Identifies ASME Codes applicable to preservice and inservice inspection and testing programs. Same Code Editions as specified in the DCD.
- STD COL Identifies that all Class 1 austenitic or dissimilar metal welds are included in the referenced certified design.
- STD COL Provides preservice and inservice inspection and testing program descriptions and implementation milestones.

- 5.2 Integrity of Reactor Coolant Pressure Boundary (continued)
- STD COL Describes processes to preserve accessibility to piping systems to enable nondestructive examination (NDE) of ASME Code Class 1 austenitic and dissimilar metal welds during inservice inspection.
- STD COL Describes procedures that will be used for leak detection monitoring.

5.3 Reactor Vessel

- STD COL The pressure-temperature curves are developed in accordance with the Pressure Temperature Limit Report (PTLR). Commitment to update pressure-temperature curves prior to fuel load to reflect the plant specific material properties, if required.
- STD COL Describes the reactor vessel material surveillance program.
- STD SUP Plant operating procedures will be developed to implement the pressure-temperature curves.

- 5.4 Component and Subsystem Design
- STD SUP **Descriptions included for:**
 - Operating procedures will provide guidance to preclude water hammer in Reactor Water Cleanup/Shutdown Cooling System.
 - Reactor Coolant System (RCS) Vents.
 - Human factors analysis of the control room displays for the RCS vents is included in DCD Chapter 18.
 - Operating procedures will be developed to govern use of the vents.

Presentation to the ACRS Subcommittee

Fermi Unit 3 COL Application Review

SER Chapter 5 with No Open Items "Reactor Coolant System and Connected Systems"

October 21, 2011

Summary of Technical Discussion Points for Fermi 3 COL Chapter 5

	FSAR Section	Summary of Supplemental Information
5.1	Summary Description	J. Hale (IBR Section)
5.2	Integrity of Reactor Coolant Pressure Boundary	J. Hale (IBR Sections 5.2.1, 5.2.2, 5.2.3, & 5.2.5)
5.2.4	Preservice & Inservice Inspection & Testing of Reactor Coolant Pressure Boundary	T. Steingass (Site- Specific)
5.3.1	Reactor Vessel Materials	J. Jenkins (Site-Specific)
5.3.2	Pressure-Temperature Limits	J. Jenkins (Site-Specific)
5.3.3	Operating Conditions	J. Jenkins (Site-Specific)
5.4	Reactor Coolant System Component & Subsystem Design	J. Hale (IBR Section)

Section 5.2.4 – Integrity of Reactor Coolant Pressure Boundary

- COL Item 5.2-1-A: Preservice and Inservice Inspection and Testing of Reactor Coolant Pressure Boundary
- COL Item 5.2-3-A: Accessibility
- SUP Item 5.2-1: System Leakage & Hydrostatic Pressure Tests
- Post Combined License Activities:
 - ISI Implemented prior to commercial service (COM 13.4-024)
 - PSI Completion prior to initial plant startup (COM 13.4-026)
- Staff Conclusion:
 - The applicant has adequately addressed COL and Supplemental information regarding Fermi 3 COL FSAR.
 3

Section 5.3.1 – Reactor Vessel Materials

- COL Item 5.3-2-A: Supplemented RVSP Description
- COL Item 16.01-1-A 5.6.4-1: Pressure-Temperature Limit Curves.
- Post Combined License Activity:
 - If the test (RVSP) results indicate a change in the Technical Specifications is required, the expected date for submittal of the revised Technical Specification will be provided with the (Summary Technical) report. (COM 5.3.001)
- The applicant identified the following license condition:
 - A complete reactor vessel material surveillance program will be developed prior to fuel load.
- Staff Conclusion:
 - The applicant has adequately addressed COL and Supplemental information regarding Fermi 3 COL FSAR.

Section 5.3.2 – Pressure-Temperature Limits

- COL Item 16.0-1-A 5.6.4-1: Pressure-Temperature Limit Curves
- Pressure-Temperature Limit Report (Technical Report) submitted by the applicant.
- Post Combined License Activities:
 - Prior to fuel load, the pressure-temperature limit curves will be updated to reflect plant-specific material properties, if required (COM 5.03-002).
- Staff Conclusion:
 - The applicant has adequately addressed COL and Supplemental information regarding Fermi 3 COL FSAR.

Section 5.3.3 – Reactor Vessel Integrity

- SUP Item 5.3-1: Operating Conditions
 - Development of plant procedures is addressed in Section 13.5, "Plant Procedures", and requires compliance with Technical Specifications to ensure that P-T limits are not exceeded.
- Staff Conclusion:
 - The applicant has adequately addressed COL and Supplemental information regarding Fermi 3 COL FSAR.

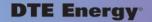
Chapter 5 – Conclusions

In conclusion, with the exception of the confirmatory items identified, the staff has confirmed that the applicant has addressed the relevant information as specified in the referenced ESBWR DCD. In addition, the staff concludes that the applicant has met the applicable regulations and is in conformance with applicable guidance with respect to Reactor Coolant Pressure Boundary, Reactor Vessel Materials, Pressure-Temperature Limits, and Reactor Coolant System Components and Subsystems.

SER with No Open Items Chapter 5.0

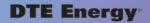
Questions/Comments

Fermi 3 COLA Presentation to ACRS Subcommittee Chapter 16



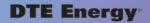
Chapter 16, Technical Specifications

Fermi 3 Technical Specifications implement the generic technical specifications (GTS) in the ESBWR Design Certification.


Fermi 3 addresses the COL items in the GTS consistent with the guidance of Interim Staff Guidance (ISG) DC/COL-ISG-08, "Necessary Content of Plant-Specific Technical Specifications When a Combined License is Issued."

COL Items Addressed in Fermi 3 Technical Specifications

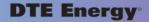
- Fifty-two (52) total COL Items that address twentythree (23) topics.
- Of the 23 topics, three (3) are considered sitespecific.
- Remaining topics are addressed as standard COL items.



Chapter 16, Technical Specifications

Topics Addressed in Fermi 3 Technical Specifications COL Items

- Flexibility for Slow Control Rod Scram Times
- Concentration of Sodium Pentaborate
- Hazardous Chemicals
- Pressure and Temperature Limits Report (PTLR)
- Minimum Critical Power Ratio Main Turbine Bypass System
- Main Turbine Bypass Valve
- Minimum Critical Power Ratio SCRRI/SRI
- Plant Location
- Non-licensed Operators for Two Units
- Minimum Qualification Standards for Unit Staff
- Guidance Documents for Procedures



Chapter 16, Technical Specifications

Topics Addressed in Fermi 3 Technical Specifications COL Items (continued)

- Temporary Outdoor Liquid Storage Tanks
- Exemptions for Regulatory Guide 1.163
- Multi-Unit Site Reporting Options
- Annual Radiological Environmental Operating Report Format
- Additional Core Operating Limits for COLR
- Response Time Testing
- Minimum and Nominal Control Rod Scram Accumulator Pressure
- Acceptance Criteria for Battery Charger Testing
- Acceptance Criteria for Verification for Fully Charged Battery
- Battery Cell Parameters
- Battery Margin for Aging Factor and State of Charge Uncertainty
- Setpoint Control Program Methodology and Implementation

Site-Specific COL Items

- Hazardous Chemicals Based on site-specific analyses Fermi 3 does not require safety-related instrumentation to monitor the control room for toxic hazards.
- Plant Location The location of Fermi 3 is provided.
- Multi-Unit Site Reporting Options Allows for a single submittal for a multiple-unit station for the annual radiological environmental operating report and radioactive effluent release report.

Protecting People and the Environment

Presentation to the ACRS Subcommittee (PM SLIDE)

Fermi Unit 3 COL Application Review

Chapter 16.0 SER with no Open Items "Technical Specifications"

October 21, 2011

Protecting People and the Environment

Discussion Points for Technical Specifications (TS) Fermi Unit 3

Торіс	Presenter
 COLA Part 2 — FSAR Section 16.0 (IBR Section) Supplemental information (STD SUP) 	J. Hale
 COLA Part 4 — Plant-specific TS (PTS) & bases COL Information Item 16.0-1-A STD COL Items and EF3 COL Items Use of site-specific information Use of bounding information Use of NRC-approved methodology and administrative program specification 	C. Harbuck
Requests for Additional Information (RAIs)	C. Harbuck
Conclusions	C. Harbuck

COL Information Item 16.0-1-A

- DCD Table 16.0-1-A, "COL Applicant Open Items"
 - Lists 52 sets of bracketed site-specific information covering 23 topics
 - Provides guidance (Reviewer's Notes) for completing each set of site-specific bracketed information
- Staff review of PTS focused on acceptability of site-specific information; contributing branches:
 - DE: EEB, ICE2, EMB2
 - DSRA: SRSB, SBCV, SBPB
 - DCIP: CTSB, CHPB, CQVB

COL Item Resolution with Site Specific Information Option 1 of DC/COL-ISG-08

- Operational flexibility not adopted bracketed info. omitted
 - Removal of response time testing for specified components
 - Apply MCPR penalty as alternate means to meet LCO
 - Relaxed action or surveillance requirements
- Non-applicable bracketed placeholders omitted
 - Provisions for hazardous chemicals
 - Provisions for unprotected outdoor liquid rad-waste storage tanks
 - Reference to additional COLR-related LCOs
 - Exceptions to RG 1.163 in containment leakage rate test program
 - Minimum non-licensed staff for two units

COL Item Resolution with Site Specific Information Option 1 of DC/COL-ISG-08 (continued)

- Battery cell parameters
- Battery margin and aging factor for state of charge uncertainty
- Plant location description
- Administrative Controls
 - Minimum qualification standards for unit staff
 - Guidance documents for procedures
 - Annual radiological environmental operating report format for multiple unit site
 - Radioactive effluent release report format for multiple unit site

COL Item Resolution with **Useable Bounding Information** Option 2 of DC/COL-ISG-08

- RCS Pressure-Temperature (P-T) Limits
 - Definition of P-T limits report (PTLR) PTS 1.1 and PTS 3.4.4
 - RCS temperature at or below which SR 3.4.4.4 and SR 3.4.4.5 require verifying reactor vessel flange and head flange temperatures are within limits in MODE 5
 - PTLR administrative control PTS 5.6.4
 - Reference to NRC-approved P-T limits methodology NEDC-33441P, Rev 5 – PTS 5.6.4.b and PTS 3.4.4 bases
 - Confirmatory Item 16-1 to update citations from Rev 4 to Rev 5
- Battery charger test minimum duration PTS 3.8.1
- Control rod scram accumulator minimum pressure limit PTS 3.1.5 and PTS 3.9.5

COL Item Resolution with NRC Approved Methodology Option 3 of DC/COL-ISG-08

- Site-specific (or COL) information identified during DC review as candidates for resolution using Option 3
 - Limiting Safety System Settings (e.g., allowable [as-found actuation settings] values)
 - List of instrumentation functions for post-accident monitoring (PAM) variables (Type A, B, and C variables as defined in RG 1.97, Rev 4)
- Generic TS specify the following administrative control programs, which reference NRC approved methodologies
 - GTS 5.5.11, "Setpoint Control Program" includes a bracketed reference to be confirmed by the COL applicant —using Option 1
 - NEDE-33304P-A, "GEH ESBWR Setpoint Methodology," Rev 4 dated May 2010
 - GTS 5.5.14, "Post-accident Monitoring Instrumentation Program"

COL Item Resolution Requests for Additional Information

- RAI 16-1 (ICE2) Incorporate by reference PAM specifications (GTS 3.3.3.2, "PAM," GTS 5.5.14, "PAM Instrumentation Program," and GTS 5.6.5, "PAM Report"
- RAI 16-2 (EEB) Provide supporting documentation for battery float current value of 30 amps as indication of full charge
- **RAI 16-4** (CTSB) Provide correct revision of
 - NEDE-33304P-A, "GEH ESBWR Setpoint Methodology" in GTS 5.5.11, "Setpoint Control Program" – Rev 4 dated May 2010
 - NEDC-33441P-A, "GE Hitachi Nuclear Energy Methodology for the Development of ESBWR Reactor Pressure Vessel Pressure-Temperature Curves," – Rev 5 dated February 2011
- RAI 2.2.3-5 (SBPB) Justify not including technical specification provisions for protecting against hazardous chemicals

CONCLUSIONS AND FINDINGS Fermi 3 FSAR Chapters 16 & 16B Plant-specific TS and Bases

- The Staff finds that Fermi 3 FSAR Chapters 16 and 16B
 - Correctly incorporate by reference ESBWR generic DCD Chapters 16 and 16B;
 - Include acceptable site-specific TS and bases to resolve COL Information Item 16.0-1-A; and
 - Provide acceptable and complete plant-specific TS and bases.
- The Staff finds that the Fermi 3 plant-specific TS and bases are adequate for use in the operation of EF3.
- The Staff concludes that the Fermi 3 plant-specific TS and bases satisfy 50.36, 50.36a, 52.79(a)(30), and Section IV.A.2, paragraphs c and e, of the draft ESBWR DC rule appendix to 10 CFR Part 52.

Protecting People and the Environment

SER with No Open Items Chapter 16.0

Questions/Comments

Fermi 3 COLA Presentation to ACRS Subcommittee Chapter 17

- 17.1 Quality Assurance During Design
- 17.2 Quality Assurance During Construction and Operations
- 17.3 Quality Assurance Program Description
- 17.4 Reliability Assurance During Design Phase
- 17.5 Quality Assurance Program Description Design Certification, Early Site Permits and New License Applicants
- 17.6 Maintenance Rule Program

17.1 Quality Assurance During Design

EF3 SUP Refers to Section 17.5 for Quality Assurance (QA) program applied during COLA preparation and site specific design activities.

Chapter 17, Quality Assurance

- 17.2 Quality Assurance During Construction and Operation
- EF3 COL Refers to Section 17.5 for QA program applied during construction and operations phases.
- EF3 COL Refers to Section 17.5 for QA program applied to design activities required to adapt the certified plant design to Fermi 3 plant-specific implementation.

17.3 Quality Assurance Program Description EF3 COL Refers to Section 17.5 to provide a Quality

Assurance Program Description (QAPD) describing the overall project QA program.

- 17.4 Reliability Assurance Program During Design Phase
- STD COL There are no site-specific SSCs within the scope of the Reliability Assurance Program (RAP) and the quality elements for all SSCs within the scope of the Design-RAP (D-RAP) are in accordance with the QAPD.
- STD COL Provides a description of operational reliability assurance activities. Objectives are integrated into QA, maintenance, and other operational programs (e.g., ISI/IST).

- 17.5 Quality Assurance Program Description -Design Certification, Early Site Permits, and New License Applicants
- EF3 COL Refers to DCD Section 17.1 for the Quality Assurance for Design Certification activities.
- EF3 SUP Provides a summary of Quality Assurance applied during preparation of the Fermi 3 COLA.
- EF3 COL The QAPD for plant specific implementation, construction and operations is based on NEI 06-14A, "Quality Assurance Program Description."

17.6 Maintenance Rule Program

- STD COL Describes the Maintenance Rule Program by incorporating by reference NEI 07-02A, "Generic FSAR Template Guidance for Maintenance Rule Program Description for Plants Licensed Under 10 CFR Part 52."
- STD SUP Describes the relationship of the Maintenance Rule Program with reliability assurance activities.
- STD SUP Describes the condition monitoring program for underground cables.

Presentation to the ACRS Subcommittee

Fermi Unit 3 COL Application Review

SER Chapter 17 with No Open Items "Quality Assurance"

October 21, 2011

Summary of Technical Discussion Points for Fermi 3 COL Chapter 17

	FSAR Section	Summary of Supplemental Information
17.0	Introduction	J. Hale (IBR Section)
17.1	Quality Assurance During Design	J. Hale (IBR Section)
17.2	Quality Assurance During Construction & Operations	J. Hale (IBR Section)
17.3	Quality Assurance Program Description	J. Hale (IBR Section)
17.4	Reliability Assurance Program During Design Phase	T. Hilsmeier (Site-Specific)
17.5	Quality Assurance Program Description – Design Certification, Early Site Permits, & New License Applicants	G. Lipscomb (Site Specific)
17.6	Maintenance Rule Program	T. Hilsmeier (IBR Section to NEI 07-02A)

Section 17.4 – Reliability Assurance Program During Design Phase

- Summary of FSAR Section 17.4:
 - Incorporated by reference ESBWR DCD, Section 17.4
 - Addressed COL information items:
 - COL Item 17.4-1-A
 - COL Item 17.4-2-A
- Status of SER Section 17.4:
 - No open items
 - One notable confirmatory item (17.04-2)

Section 17.4 – Reliability Assurance Program During Design Phase

- Staff's Review of COL Item 17.4-1-A:
 - COL Item 17.4-1-A: Identify site-specific RAP SSCs
 - FSAR specified Commitment 17.4-001 to identify the site-specific RAP SSCs prior to initial fuel load
 - RAI 17.04-2: Site-specific RAP SSCs are subjected to QA controls and should be identified in COL application
 - Applicant's response (May 25, 2011):
 - FSAR incorporates by reference the list of RAP SSCs in ESBWR DCD, Section 17.4
 - No additional RAP SSCs identified due to the bounding nature of ESBWR PRA and no departures impacting PRA
 - RAP SSCs subjected to QA controls in accordance with QAPD
 - FSAR text to be revised accordingly (Confirmatory Item 17.04-2)

Section 17.4 – Reliability Assurance Program During Design Phase

Staff's Review of COL Item 17.4-2-A:

- COL Item 17.4-2-A: Describe process for integrating RAP into operational programs for the operations phase of the plant
- FSAR states that the RAP will be integrated into the following operational programs:
 - Maintenance Rule Program consistent with RG 1.160
 - QA Program for safety-related SSCs established through Appendix B to 10 CFR Part 50 requirements
 - QA controls for non-safety-related RAP SSCs established in accordance with Part V of SRP Section 17.5
 - Inservice inspection, inservice testing, surveillance testing, and maintenance programs

Section 17.5 – Quality Assurance Program

- COL Application Contains:
 - ESBWR DCD Section 17.5 (IBR)
 - COL Information Items:
 - COL 17.2-1-A: QA Program for the Construction and Operations Phases
 - COL 17.2-2-A: QA Program for Design Activities
 - COL 17.3-1-A: QA Program Document (QAPD)
 - Supplemental Information:
 - SUP 17.5-2: amplifying QA program information January 2007 December 2009
 - QAPD based on NEI 06-14A, Revision 7

Section 17.5 – Quality Assurance Program Description – Design Certification, Early Site Permits, & New License Applications

COL Review Included:

- Comparison of QAPD to NEI 06-14A, Revision 7
- Confirmation that all COL Information Items identified in the ESBWR DCD are addressed
- Assessment of adequate QA program guidance contained in the Fermi Unit 3 COL FSAR
- Assessment of meeting the intent of RG 1.206, Regulatory Position C.I.17.5.3 (oversight and control of contractor activities)
- Resolution of inspection violations (inspection conducted in August 2009)

Section 17.5 – Quality Assurance Program Description – Design Certification, Early Site Permits, & New License Applications

Conclusions and status of SER Section 17.5:

- FSAR met regulatory requirements
- Oversight activities met the intent of RG 1.206, Regulatory Position C.I.17.5.3
- Addressed COL items
- Closed inspection violations
- No open or confirmatory items

Section 17.6 – Maintenance Rule Program

- Applicant Submitted FSAR Section 17.6
 - Incorporated by reference NEI 07-02A, "Generic FSAR Template Guidance for Maintenance Rule Program Description for Plants Licensed Under 10 CFR Part 52"
 - No open items or confirmatory items

Chapter 17 – Conclusions

In conclusion, with the exception of the confirmatory items identified, the staff has confirmed that the applicant has addressed the relevant information as specified in the referenced ESBWR DCD. In addition, the staff concludes that the applicant has met the applicable regulations and is in conformance with applicable guidance with respect to the QA Programs, the RAP, QAPD and Maintenance Rule Programs.

Protecting People and the Environment

SER with No Open Items Chapter 17.0

Questions/Comments

Fermi 3 COLA Presentation to ACRS Subcommittee Chapter 6

Chapter 6, Engineered Safety Features: Chapter Topics

nerav

Incorporates the DCD by Reference with Standard and Site Specific COL Items – denoted with * in the following List of Sections

- 6.1 Design Bases Accident Engineered Safety Feature Materials
- 6.2 Containment Systems
- 6.3 Emergency Core Cooling Systems
- 6.4 Control Room Habitability Systems*
- 6.5 Atmosphere Cleanup Systems
- 6.6 Preservice and Inservice Inspection and Testing of Class 2 and 3 Components and Piping*

Chapter 6, Engineered Safety Features: Supplemental Information

- 6.4 Control Room Habitability Systems:
- STD COL Procedures and training for control room habitability address NRC GL 2003-01, "Control Room Habitability."
- EF3 SUP Evaluated impact of Fermi 2 Design Bases Accident to the Fermi 3 Control Room personnel.
- EF3 COL Performed toxic gas analysis of potentially hazardous chemicals and concluded that safetyrelated toxic gas monitoring is not required.

Chapter 6, Engineered Safety Features: Supplemental Information

nerav

- 6.6 Preservice and Inservice Inspection and Testing of Class 2 and 3 Components and Piping
- STD COL Describes PSI/ISI programs and Flow Accelerated Corrosion (FAC) monitoring program, including implementation milestones.
- STD COL Describes plan for maintaining accessibility for PSI/ISI Non-Destructive Examination (NDE) of Class 2 and 3 austenitic and dissimilar metal welds, including the preferred NDE method.

Chapter 6, Engineered Safety Features: Supplemental Information

- 6.6 Preservice and Inservice Inspection and Testing of Class 2 and 3 Components and Piping (continued)
- STD COL System leakage and hydrostatic pressure tests will meet applicable requirements of ASME Code for Class 2 and Class 3 Components.

Protecting People and the Environment

Fermi 3 COL FSAR

Chapter 6 Engineered Safety Features

October 21, 2011

Overview of Chapter 6 Review

- 6.1 Design Basis Accident Engineered Safety Feature Materials (IBR)
- 6.2 Containment Systems and related Appendices (IBR)
- 6.3 Emergency Core Cooling Systems (IBR)
- 6.4 Control Room Habitability Systems
- 6.5 Atmosphere Cleanup Systems (IBR)
- 6.6 Preservice and Inservice Inspection and Testing of Class 2 and 3 Components and Piping

United States Nuclear Regulatory Commission

Protecting People and the Environment

STD COL 6.4-1-A:

Control Room Habitability Area (CRHA) Procedures and Training

- Generic Letter 2003-01 and Generic Issue 83
 - COM 13.4-028 Non-Licensed plant staff training program
 - COM 13.4-016 Reactor operator training program
 - COM 13.5-002 Operating Procedures
- Applicant's Information Acceptable

EF3 COL 6.4-2-A: Toxic Gas Analysis

- GDC 19, TMI Action Plan III.D.3.4, Reg Guide 1.78 ۲
- COL FSAR Information ۲

 - N₂ (Fermi 2) and CO₂ (Fermi 3) identified (Section 2.2)
 Concentrations at CRHA intake exceed the limits (RG 1.78)
 CRHA concentrations significantly lower than the limits
- Staff Review ٠
 - RAI 02.02.03-5 (ML092750405)
 List of all toxic chemicals

 - Details of toxic gas evaluations
- **Applicant's Conclusions Acceptable** ٠
 - N₂ and CO₂ release do not pose any threat to the CR operators
 No Seismic Category I safety-related toxic gas monitors
 - required

Section 6.4 - Radiological Control Room Habitability

EF3 SUP 6.4-1

Impact of Unit 2 DBA on Unit 3 Control Room

- Fermi 3 control room doses from Fermi 2 DBAs are less than the doses from Fermi 3 DBAs.
- The Fermi 3 control room meets GDC-19.

ASME CLASS 2 AND 3 PSI/ISI

- Section 6.6 of the Fermi 3 COL FSAR addresses Preservice and Inservice Inspection and Testing of Class 2 and 3 components and piping.
- This section incorporates by reference (Section 6.6 of the ESBWR DCD, Tier 2, Revision 9) and provides additional information on the following COL items

STD COL 5.2-1-A System Pressure Tests

- The additional information states that the system leakage and hydrostatic tests will meet all requirements of the ASME Code and the limitations under 10 CFR 50.55a
- The staff concludes that the additional information agrees with the limitations for pressure testing of Class 1, 2, and 3 components in 10 CFR 50.55a and is acceptable to the staff

STD COL 6.6-1-A Augmented Inservice Inspection

- Additional information is provided in Section 6.6 to address a full description of the PSI/ISI programs and augmented programs under Section 5.2.4
- Milestones for the program are added under Section 13.4 – Operational Programs Required by NRC Regulations
- In Section 6.6.7.1 of the FSAR, the applicant addresses FAC Program Description

STD COL 6.6-1-A Augmented Inservice Inspection (cont.)

- ISI Implemented prior to commercial service (COM 13.4-024)
- PSI Completion prior to plant startup (COM 13.4-026)
- Staff concludes that the PSI/ISI and FAC programs meets SRP guidance provided in Section 6.6 of NUREG-0800, and is therefore acceptable

Protecting People and the Environment

STD COL 6.6-2-A PSI/ISI Accessibility

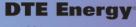
- The applicant provided a discussion about preserving accessibility of welds to meet ASME Code nondestructive examination coverage requirements
- The additional information discusses the use of radiography to obtain the examination coverage
- Staff concludes that the additional information meets SRP guidance provided in Section 6.6 of NUREG-0800 and is therefore acceptable

Protecting People and the Environment

Conclusion

- Staff's finding related to information incorporated by reference is in NUREG-1966 (ESBWR FSER)
- Staff reviewed the COL information items and additional information provided by the applicant in Chapter 6 of the COL FSAR and found them to be acceptable
- There are no open items in the staff's review of COL FSAR Chapter 6

United States Nuclear Regulatory Commission


Protecting People and the Environment

Questions/Comments

Fermi 3 COLA Presentation to ACRS Subcommittee Chapter 19

Chapter Topics:

- PRA Results and Insights
- Severe Accident Evaluations
- PRA Maintenance
- Conclusions
- Regulatory Treatment of Non-Safety Systems
- Availability Controls Manual
- Deterministic Analysis for Containment Pressure Capability
- Probabilistic Analysis for Containment Pressure Fragility
- Assessment of Malovent Aircraft Impact
- Summary of Plant-Specific PRA Review

19.2 PRA Results and Insights

- STD COL Commitment to compare as-built SSC High Confidence Low Probability of Failures (HCLPFs) to those assumed in the ESBWR seismic margin analysis.
 - DCD seismic margin for HCLPF is 1.67 times the Certified Seismic Design Response Spectra.
 - Comparison and analyses will be completed prior to fuel load.

19AA Summary of Plant-Specific PRA Review

EF3 SUP Site-specific PRA attributes were compared to the ESBWR PRA:

- Loss of Preferred Power frequency
- Loss of Service Water frequency
- Seismic Fragilities
- Other known site-specific issues such as unique offsite consequence issues (terrain, meteorological)
- Internal flooding associated with the Yard Area.

The review concluded that the ESBWR PRA provides a reasonable representation of the Fermi 3 site parameters and conditions.

19.5 Conclusions

EF3 SUP No departures are taken from the DCD that affect the ESBWR PRA.

Plant specific review is summarized in Appendix 19AA.

Incorporation of DCD Chapter 19 into the FSAR satisfies the requirement for a description of the plant-specific PRA.

United States Nuclear Regulatory Commission

Protecting People and the Environment

Presentation to the ACRS Subcommittee

Fermi Unit 3 COL Application Review

Chapter 19

PRA Results and Severe Accidents Evaluation

October 21, 2011

Staff Review Team

- Project Managers
 - Adrian Muniz, Lead PM, DNRL/BWR
 - Raj Anand, Chapter PM, DNRL/BWR
- Technical Staff
 - Mark Caruso, Sr. Reliability & Risk Engineer, DSRA/SPRA
 - Jim Xu, Sr. Structural Engineer, DE/SEB2

Regulations and Review Guidance

- 10 CFR 52.79(a)(46)

 describe plant-specific PRA and results
- 10CFR 52.79(d)(1)

- may reference design cert PRA and update to reflect site/design specific parameters and features

• 10 CFR 52.79(a)(17)

- show compliance with relevant TMI requirements

• 10 CFR 50.34(f)(i) – TMI Requirement

- Do a plant/site specific PRA to seek improvements in reliability of core and containment cooling capability

• NUREG-0800 Section 19.0 (SRP)

Regulations and Review Guidance (continued)

- Interim Staff Guidance COL/DC-ISG-03 (PRA)
- Interim Staff Guidance COL/DC-ISG-20 (Seismic Margins)
- Regulatory Guide 1.206

Discussion of Technical Review

• Plant Specific PRA & Severe Accident Evaluations

Plant Specific PRA & Severe Accidents Evaluation

- Application incorporated Certified Design PRA and Severe Accident Evaluation by reference and stated site-specific and plant-specific design features and design parameters were enveloped in Certified Design PRA.
- RAIs issued to obtain supporting site-specific evaluation.
- Applicant provided its site-specific evaluation and included results into FSAR.
- Staff reviewed applicant's site-specific evaluation and agrees with conclusion.

Plant Specific PRA – Review Issues

- loss of preferred power (LOPP) frequency
 bounded by frequency in Certified Design PRA
- loss of service water frequency
 bounded by frequency in Certified Design PRA
- site-specific terrain and meteorological data
 - high winds analysis in Certified Design PRA is bounding

Plant Specific PRA – Review Issues

- Seismic Margins
 - site ground motion response spectra and foundation input response spectra enveloped by ESBWR CSDRS
 - geotechnical profiles are characterized as a hard rock site
 - site characteristics are bounded by the ESBWR site parameters
 - Certified design Seismic Margins Analysis bounding
 - Fermi must confirm plant-specific HCLPF values bounded by values in Certified Design analysis prior to fuel load

Plant Specific PRA – Review Issues

- Plant-specific flooding of the yard
 - yard flood zone includes all outside areas of the site
 - components in yard that support a safety function are manual fire hose connections for refilling ICS/PCCS pools; connections not credited in PRA
 - Certified Design PRA flooding analysis bounding
- Plant-specific service water (SW) building flooding
 - Certified Design PRA treats SW building as one flood zone
 - all SW pumps assumed to fail for any flooding in zone
 - Certified Design PRA flooding analysis is bounding

Conclusions

- The applicant has addressed the required information relating to PRA results and insights, and Severe Accidents evaluation.
- The staff concludes that Fermi 3 FSAR Chapter 19 is acceptable and conform to regulatory requirements.

Questions/Comments