ENCLOSURE 1

U.S. Army Corps of Engineers, "Flood-Fighting Structures Demonstration and Evaluation Program: Laboratory and Field Testing in Vicksburg, Mississippi," July 2007

General Investigation Research and Development Program

Flood-Fighting Structures Demonstration and Evaluation Program: Laboratory and Field Testing in Vicksburg, Mississippi

Fred Pinkard, Thad Pratt, Donald Ward Tina Holmes, Julie Kelley, Landris T. Lee, George Sills, Eric Smith, Perry A. Taylor, Nalini Torres, Lillian Wakeley, and Johannes Wibowo July 2007

Flood-Fighting Structures Demonstration and Evaluation Program: Laboratory and Field Testing in Vicksburg, Mississippi

Fred Pinkard, Thad Pratt, Donald Ward

Coastal and Hydraulics Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Tina Holmes, Julie Kelley, Landris T. Lee, George Sills, Eric Smith, Perry A. Taylor, Nalini Torres, Lillian Wakeley, Johannes Wibowo

Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited.

ABSTRACT: Within the United States, sandbags have traditionally been the product of choice for temporary, barrier type flood-fighting structures. However, sandbag structures are labor intensive and time consuming to construct. Therefore, a need exists for more expedient, cost effective, temporary barrier type flood-fighting technologies. In 2004, Congress directed the U.S. Army Corps of Engineers to devise real-world testing procedures for Rapid Deployment Flood Wall (RDFW) and other promising alternative flood-fighting technologies. In response to that directive, the U.S. Army Engineer Research and Development Center (ERDC) developed a comprehensive laboratory and field-testing program for RDFW and two other flood-fighting products. Those two products, Portadam and Hesco Bastion, were selected on technical merit from proposals submitted by companies who manufacture temporary, barrier type flood-fight products. A standard sandbag structure was also tested in both the laboratory and field to provide a baseline by which the other products could be evaluated.

During 2004, laboratory and field testing was conducted in Vicksburg, MS, under stringent testing protocols. The lab testing was conducted in a modified wave basin at ERDC. The field testing was conducted at the Vicksburg Harbor. The lab and field protocols included both performance parameters and operational parameters. These tests will provide the flood-fighting community results that will assist in the selection of the product that best fits their temporary, barrier type flood-fighting needs.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN TO THE ORIGINATOR.

Contents

Conversion Factors, Non-SI to SI Units of Measurement	xxiii
Preface	xxiv
Executive Summary	xxvi
Introduction	xxvi
Laboratory Testing	xxvii
Laboratory Testing - Results	xxvii
Field Testing	
Field Testing - Results	xxvix
Product Costs	
Product Summaries	xxxi
Acronyms and Abbreviations	xxxii
1—Introduction	1
Introduction	1
Background	1
Project authority	1
Report format	2
Scope of Work	2
Project description	2
Laboratory testing	3
Construction	4
Engineering	5
Environmental	
Product Selection Criteria and Process	5
2—Laboratory Testing and Evaluation of Expedient Flood-Fighting	Barriers 9
Introduction	9
Experiment Overview	
Testing Equipment and Procedure	
Test facility layout and construction	
Test facility instrumentation	
Testing protocol	25

Selection Criteria for Field Test Site	17
-Site Selection, Characterization, Instrumentation, and Field Testing	17
Summary of laboratory tests	17
Caution about product selection	
Summary and Conclusions from Laboratory Tests	17
Environmental aspects	
Disassembly and reusability	16
Maintenance and repair	16
Debris impact test	
Levee overtopping test	
Hydrodynamic tests	
Hydrostatic head tests	14
Performance	14
Construction	
Design	
Portadam Levee Tests	
Environmental aspect	12
Disassembly and reusability	11
Maintenance and repair	11
Debris impact test	11
Levee overtopping test	
Hydrodynamic tests	
Hydrostatic head tests	9
Performance	9
Construction	
Design	
RDFW Levee Tests	
Environmental aspects	
Disassembly and reusability	
Maintenance and repair	
Debris impact test	
Levee-overtopping test	
Hydrodynamic tests	
Hydrostatic head tests	
Performance	
Construction	
Design	
Hesco Bastion Concertainer Levee Tests	5
Environmental aspects	
Disassembly and reusability	
Maintenance and repair	
Levee-overtopping test	
Debris impact test	
Hydrodynamic tests	
Hydrostatic head tests	
Performance	
Design	
USACE Sandbag Levee Tests	
IISAC'H Sandhag Levee Tests	2'

Required Activities and Limitations for Field Demonstrations	. 176
Characterization of Field Demonstration Site	. 176
Test site location	. 176
Geologic setting	
Methods and results	
Conclusions	
Field Test Instrumentation.	
Introduction.	
Video monitoring	
Water level monitoring	
Structure dimension monitoring	
Results	
Field Installation and Performance of Sandbag Barrier	
Introduction	
Filling	
Field construction	
Testing	
Removal	
Reusability	
Summary	. 212
Field Installation and Performance of Hesco Bastion Concertainer	.214
Introduction	.214
Field construction	
Testing	
Removal	
Reusability	
Summary	
Field Installation and Performance of Rapid Deployment Flood Wall	
Introduction	
Field construction	
Testing	
Removal	
Reusability	
Summary	
Field Installation and Performance of Portadam Barrier	
Introduction	
Field construction	
Testing	
Removal	
Reusability	
Summary	. 262
-Summary and Conclusions	. 265
Summary	. 265
Laboratory and field-testing summary	
Costs	
Conclusions	
Ferences	.274

Appendix A:	Congressional Mandate and Appropriation	A1
Appendix B:	Project Management Plan	В1
Appendix C:	Lab Testing Protocol	C1
Report Docur	nentation Page	

List of Figures

Figure 2-1.	Layout of laboratory test facility11
Figure 2-2.	Sump pit containing two 4-in. pumps
Figure 2-3.	Pumping system used for overtopping, 12-indiam13
Figure 2-4.	Laboratory setup14
Figure 2-5.	Seepage and displacement data retrieved by data acquisition system
Figure 2-6.	Sump pit outflow pipes and flow meters
Figure 2-7.	Lasers and laser targets
Figure 2-7a.	Lasers and their targets on levee
Figure 2-7b.	Displacement data from laser 0
Figure 2-7c.	Displacement data from laser 1
Figure 2-7d.	Displacement data from laser 2
Figure 2-7e.	Displacement data from laser 3
Figure 2-7f.	Displacement data from laser 4
Figure 2-7g.	Displacement data from laser 5
Figure 2-7h.	Displacement data from laser 6
Figure 2-7i.	Displacement data from laser 7
Figure 2-8.	Relative movement and video monitoring system22
Figure 2-9.	Debris mpact test setup23
Figure 2-10.	Reservoir-filling system
Figure 2-11.	Pool level equipment
Figure 2-12.	Wave generator and equipment
Figure 2-13.	Separate wave conductivity rod, coordinating waves with seepage
Figure 2-14.	USACE Seattle District standard sandbag levee design

Figure 2-15.	Hogan Manufacturing sandbag filling machine used to build 2002 sandbag levee	28
Figure 2-16.	Walla Walla District standard sandbag levee design	29
Figure 2-17.	Walla Walla and Seattle Districts' design for placing sandbags	30
Figure 2-18.	2002 levee, as-built	30
Figure 2-19.	Sandbagging operation	32
Figure 2-20.	Gradation of sand used for filling sandbags	.33
Figure 2-21.	Lap stacking sandbags during construction	33
Figure 2-22.	Complete sandbag levee with partial construction crew	34
Figure 2-23.	Sandbag levee with three of eight targets ready to test	35
Figure 2-24.	Seepage per linear foot at 1-ft head and under static conditions	36
Figure 2-25.	Seepage per linear foot at 2-ft head and under static conditions	36
Figure 2-26.	Seepage per linear foot at 32.4 in. (95% H) of head and under static conditions	.37
Figure 2-27.	Damage done during calibration of wave machine	38
Figure 2-28.	Sandbag levee after repair	39
Figure 2-29.	Seepage with dynamic testing at 66 percent levee height and 3-in. waves for 7 hr	. 39
Figure 2-30.	Seepage with dynamic testing at 66 percent levee height and 7- to 9-in. waves	.40
Figure 2-31.	Seepage with dynamic testing at 66 percent levee height and 10- to 13-in. waves	.41
Figure 2-32.	Seepage with dynamic testing at 80 percent levee height and 3-in. waves for 7 hr	.41
Figure 2-33.	Seepage with dynamic testing at 66 percent levee height and 7- to 9-in. waves	. 42
Figure 2-34.	Seepage with dynamic testing at 66 percent levee height and 10- to 13-in. waves	
Figure 2-35.	12- and 16-in. logs at point of impact	. 44
Figure 2-36.	Seepage and overtopping	45
Figure 2-37.	Sandbag levee prior to overtopping	. 45
Figure 2-38.	Sandbag levee progressive failure while testing	. 46
Figure 2-39.	Sandbag levee after failure	. 47
Figure 2-40.	Sandbag levee autopsy after overtopping	.47
Figure 2-41.	Sandbag levee damage and levee after field repair 1	. 48
Figure 2-42.	Damage to levee during 10- to 13-in. waves, water at	49

Figure 2-43.	Heavy equipment used to disassemble sandbags and waste sandbags	49
Figure 2-44.	Hesco Bastion Concertainer basket units, assembled and empty	51
Figure 2-45.	Hesco levee layout	52
Figure 2-46.	Training session for Hesco assembly team	52
Figure 2-47.	Expanding and positioning units	53
Figure 2-48.	Fastening units together	54
Figure 2-49.	Top view of angled unit at intersection of left and center walls.	54
Figure 2-50.	Cable ties at joint connections	55
Figure 2-51.	Right concrete wall abutment	55
Figure 2-52.	Securing flaps against concrete floor	56
Figure 2-53.	Filling with sand	56
Figure 2-54.	Shoveling sand into unit	57
Figure 2-55.	Leveling and compacting sand within each unit	57
Figure 2-56.	Filled with sand, view from left concrete wall abutment	58
Figure 2-57.	View from pool side	58
Figure 2-58.	Sealing concrete wall abutment with aerosol foam	59
Figure 2-59.	Expanded foam at abutment with concrete wall	60
Figure 2-60.	Laser target	61
Figure 2-61.	Center wall displacement monitoring system	61
Figure 2-62.	Seepage-flow rate per linear foot at 1-ft pool elevation (33% H)	63
Figure 2-63.	View of left wall water saturation	63
Figure 2-64.	Close-up of seepage through vertical joint between units	64
Figure 2-65.	Seepage flow rate per linear foot at 2-ft pool elevation (66% H)	64
Figure 2-66.	View from front	
Figure 2-67.	Seepage flow rate per linear foot at 95 percent pool elevation	
Figure 2-68.	Seepage flow rate per linear foot, small wave at 66 percent pool elevation	
Figure 2-69.	Left wall and center wall intersection	66
Figure 2-70.	Seepage flow rate per linear foot, medium wave at 66 percent pool elevation	67
Figure 2-71.	Seepage flow rate per linear foot, high wave at 66 percent pool elevation	67
Figure 2-72.	Center wall wave erosion	68

Figure 2-73.	Sand eroded from top of center wall	. 68
Figure 2-74.	Covering top of wall with tarp to prevent further erosion	. 69
Figure 2-75.	Securing with cable ties	69
Figure 2-76.	Seepage rate per linear foot, small wave at 80 percent pool elevation	70
Figure 2-77.	Seepage at vertical joint and wall base	70
Figure 2-78.	Seepage flow rate per linear foot, medium wave at 80 percent pool elevation	71
Figure 2-79.	View of left and center walls	71
Figure 2-80.	Seepage flow rate per linear foot, high wave at 80 percent pool elevation	72
Figure 2-81.	Wave overtopping along center wall	72
Figure 2-82.	Seepage flow rate per linear foot during overtopping	73
Figure 2-83.	Overtopped levee structure, view from right wall	73
Figure 2-84.	Overtopped levee structure, view from left wall	74
Figure 2-85.	Seepage flow rate per linear foot during impact tests	74
Figure 2-86.	Log impact zone on center wall, pool side	75
Figure 2-87.	Repair 1, view along right wall	76
Figure 2-88.	Added sandbag along left wall	77
Figure 2-89.	Cutting cable ties and removing top cover	78
Figure 2-90.	Preparing to remove center partition pin	78
Figure 2-91.	Removing center partition pin	79
Figure 2-92.	Preparing to pull unit apart	79
Figure 2-93.	Pulling unit apart	80
Figure 2-94.	Outer wall removed from one unit on right wall	80
Figure 2-95.	Removing sand pile	81
Figure 2-96.	Stacked units ready for reuse	81
Figure 2-97.	RDFW grid unit	83
Figure 2-98.	RDFW levee layout	84
Figure 2-99.	Pallet containing grid units	85
Figure 2-100.	Training session	85
Figure 2-101.	Removing and preparing to expand a grid unit	86
Figure 2-102.	Laying expanded grid unit on floor	86
Figure 2-103.	Connecting two grid units together	87
Figure 2-104.	Left concrete wall abutment, viewed from protected side	87
Figure 2-105	Intersection of left and center walls viewed from protected side	. QQ

Figure 2-106.	View of grid unit connection method	88
Figure 2-107.	Connecting right wall to center wall grid cells, viewed from pool side	89
Figure 2-108.	Beginning second grid layer from right concrete wall abutment	89
Figure 2-109.	Third grid unit layer at right wall and center wall junction, viewed from pool side	90
Figure 2-110.	Top grid layer installed along center wall/left wall buttress as viewed from pool side	90
Figure 2-111.	Installation of toe grid on pool side of right wall	91
Figure 2-112.	Completed grid installation on left wall	91
Figure 2-113.	Begin sand fill on left wall	92
Figure 2-114.	Tamping sand into cells along center wall, viewed from pool side	92
Figure 2-115.	Mixing cement and sand for placement in toe grid cells	93
Figure 2-116.	Shoveling mixture into left wall toe grid cells	94
Figure 2-117.	View of left concrete wall abutment from pool side	94
Figure 2-118.	Completed sand and mixture fill, left concrete wall abutment	95
Figure 2-119.	View of left wall/center wall buttress from pool side	95
Figure 2-120.	Completed sand and mixture fill viewed from pool side	96
Figure 2-121.	Mixture fill and tamping in center wall toe grid	96
Figure 2-122.	Right wall buttress viewed from pool side	97
Figure 2-123.	Right concrete wall abutment completed sand and mixture fill, viewed from pool side	.97
Figure 2-124.	Typical laser target installation	98
Figure 2-125.	Seepage flow rate per linear foot at 1-ft pool elevation	99
Figure 2-126.	View from pool side	99
Figure 2-127.	View from protected side	99
Figure 2-128.	View looking down at left wall	00
Figure 2-129.	Seepage flow rate per linear foot at 2-ft pool elevation (66% H)	01
Figure 2-130.	View of seepage under left wall	01
Figure 2-131.	Sand subsidence in outer grid cells along center wall	02
Figure 2-132.	Left concrete wall abutment	02
Figure 2-133.	View from pool side	103
Figure 2-134.	Seepage flow rate per linear foot at 95 percent pool elevation 1	03
Figure 2-135.	View of seepage under structure	04

Figure 2-136.	View looking down left wall	. 104
Figure 2-137.	Seepage flow rate per linear foot, small wave at 66 percent pool elevation	. 105
Figure 2-138.	Left wall buttress	. 106
Figure 2-139.	Right wall buttress	. 106
Figure 2-140.	Seepage flow rate per linear foot, medium wave at 66 percent pool elevation	. 107
Figure 2-141.	Wave impact against center wall	. 107
Figure 2-142.	Seepage flow rate per linear foot, large wave at 66 percent pool elevation	. 108
Figure 2-143.	Surface erosion from wave action	. 108
Figure 2-144.	Seepage flow rate per linear foot, small wave at 80 percent pool elevation	. 109
Figure 2-145.	View immediately after test showing some sand settling on left wall surface	. 109
Figure 2-146.	Seepage flow rate per linear foot at medium wave and 80 percent pool elevation	. 110
Figure 2-147	Sporadic wave overtopping at intersection of left and center walls	. 110
Figure 2-148	Sporadic wave overtopping at intersection of right and center walls	. 111
Figure 2-149.	Surface erosion on left wall at conclusion of test	. 111
Figure 2-150.	Close-up of surface erosion on left wall	. 112
Figure 2-151.	Waves overtopping left wall	. 112
Figure 2-152.	Seepage flow rate per linear foot, high wave at 80 percent pool elevation	. 113
Figure 2-153.	Waves overtopping center wall	. 113
Figure 2-154.	Close-up of center wall after test was concluded	. 114
Figure 2-155.	Close-up at intersection of left and center walls	. 114
Figure 2-156.	Seepage flow rate per linear foot during overtopping	. 115
Figure 2-157.	Overtopped levee	. 115
Figure 2-158.	View along left wall	. 116
	Eroded sand deposited on floor	
Figure 2-160.	Impact test setup	. 118
Figure 2-161a		
Figure 2-161		
Figure 2-162.	Scooping up eroded sand along toe grid units	. 119

Figure 2-163	Vacuuming sand out of toe grid units	120
Figure 2-164.	Shoveling out sand/cement mixture from toe grid units and pulling out grid	. 120
Figure 2-165.	Removing toe grid materials	. 121
Figure 2-166.	Cleaning out remaining toe grid materials	.121
Figure 2-167.	Removing sand from top of wall	. 122
Figure 2-168.	Removing sand using vacuum cleaner	. 122
Figure 2-169.	Removing sand using shovels	. 123
Figure 2-170.	Removed sand from outer grid cells	. 123
Figure 2-171.	Loosening grid unit to reduce frictional resistance from sand	. 124
Figure 2-172.	Pulling grid unit in an upward fashion	. 124
Figure 2-173.	Loosened grid unit	. 125
Figure 2-174.	Loosening attached grid units	. 125
Figure 2-175.	Removing grid units from wall	. 126
Figure 2-176.	Disassembling grid unit for future reuse	. 126
Figure 2-177.	Reusable grid units ready for cleaning, refolding, and stacking	. 127
Figure 2-178.	Continuation of sand removal using shovels	. 128
Figure 2-179.	Preparing to remove one of second layer grid units	. 128
Figure 2-180.	Removing a grid unit	. 129
Figure 2-181.	Bottom layer removal assistance provided by small loader	. 129
Figure 2-182.	Removing grid unit/sand combination	. 130
Figure 2-183.	Some nonreusable grid units	. 130
Figure 2-184.	Nonreusable grid units, sand, and sand/cement mixture ready for disposal	. 131
Figure 2-185.	Portadam levee layout	. 133
Figure 2-186.	Air temperature monitor	. 133
Figure 2-187.	Apron sandbag filling operation	. 134
Figure 2-188.	Transporting sandbags	. 134
Figure 2-189.	Connection at lower leg of frames	. 135
Figure 2-190.	Frame 2 × 6 heel stop	. 135
Figure 2-191.	Beginning frame installation from right abutment wall	. 136
Figure 2-192.	Frame installation against heel stop from left abutment wall	. 136
Figure 2-193.	Frame bracket	. 137
Figure 2-194.	Installing frame at 90-deg corner	. 138

Figure 2-195.	Frames at 60-deg corner, front view	138
Figure 2-196.	Completed frame assembly	139
Figure 2-197.	Offloaded vinyl tarp sections to begin unrolling operation	139
Figure 2-198.	Unrolling tarp section	140
Figure 2-199.	View of sandbags placed between each frame opening	140
Figure 2-200.	Hairpin cotter for securing two vinyl tarp sections together	141
Figure 2-201.	Securing two tarp sections together with hairpin cotters	141
Figure 2-202.	Rolling seam	142
Figure 2-203.	Hook and loop fastening seam flap	142
Figure 2-204.	Vinyl tarp seam connection complete	143
Figure 2-205.	Pulling vinyl tarp up to frame	143
Figure 2-206.	Typing tarp to frame	144
Figure 2-207.	Taping apron to concrete floor and placing sandbags over tape	144
Figure 2-208.	Expandable foam treatment at vinyl tarp apron edge	145
Figure 2-209.	Expandable foam treatment at concrete wall abutment	145
Figure 2-210.	Sandbags and 2×4 along concrete wall abutment	146
Figure 2-211.	Portadam® levee construction completed	146
Figure 2-212.	Laser target mount	147
Figure 2-213.	Installing one of laser targets	147
Figure 2-214.	Pool elevation sensor placed on center apron	148
Figure 2-215.	Air bubbles beneath apron	149
Figure 2-216.	Under-apron seepage at 1-ft hydrostatic test	149
Figure 2-217.	Seepage flow rate per linear foot at 1-ft pool elevation (33% H)	150
Figure 2-218.	Seepage flow rate per linear foot at 2-ft pool elevation (66% H)	150
Figure 2-219.	View of right wing from pool side, 2-ft hydrostatic head	151
Figure 2-220.	Seepage flow rate per linear foot at 95 percent pool elevation	151
Figure 2-221.	View of right wing from pool side at 95 percent pool elevation	152
Figure 2-222.	Seepage flow rate per linear foot, small waves at 66 percent pool elevation	153
Figure 2-223.	View of right wall, small waves at 66 percent height	153
Figure 2-224.	Seepage flow rate per linear foot, medium wave at 66 percent	154

Figure 2-225.	Wave action from medium waves at 66 percent height	. 154
Figure 2-226.	Seepage flow rate per linear foot, high wave at 66 percent pool elevation	. 155
Figure 2-227.	Wave action from high waves at 66 percent height	. 155
Figure 2-228.	Wave action from high waves at 66 percent height, view inside left wall	.156
Figure 2-229.	Seepage flow rate per linear foot, low wave at 80 percent pool elevation	. 156
Figure 2-230.	Aborted wave test showing wave overtopping along left wall	. 157
Figure 2-231.	Seepage flow rate per linear foot, medium waves at 80 percent pool elevation	. 158
Figure 2-232.	7- to 9-in. wave test showing wave overtopping	. 158
Figure 2-233.	Seepage flow rate per linear foot, high waves at 80 percent pool elevation	. 159
Figure 2-234.	10- to 13-in. wave test showing wave overtopping along center wall (partial view)	. 159
Figure 2-235.	10- to 13-in, wave test showing wave overtopping along center wall	. 160
Figure 2-236.	Seepage flow rate per linear foot during overtopping	. 160
Figure 2-237.	View of overtopped left wall	. 161
Figure 2-238.	Center wall overtopping	. 162
Figure 2-239.	Log impact	. 163
Figure 2-240.	Puncture from small log impact	. 163
Figure 2-241.	Water inflow after large log impact	. 164
Figure 2-242.	View of gash caused by large log	. 164
Figure 2-243.	Seepage flow rate versus pool elevation	. 165
Figure 2-244.	Removing and restacking periphery sandbags	. 166
Figure 2-245.	Unhooking and separating two vinyl tarp sections	. 166
Figure 2-246.	Removing vinyl tarp ties from frame	. 167
Figure 2-247.	Removing vinyl tarp section for restacking on pallet	.167
Figure 2-248.	Removing and restacking frame sandbags	. 168
Figure 2-249.	Disassembling frame brackets with socket wrench	. 168
Figure 2-250.	Removing top bars for frame removal	. 169
Figure 2-251.	Restacking frames and collecting bracket hardware for site removal	169
Figure 2-252.	Labor man-hours for each levee system	. 171

Figure 2-253.	Seepage flow rate comparisons for hydrostatic tests	172
Figure 2-254.	Hydrodynamic wave testing at 66 percent water elevation	173
Figure 2-255.	Hydrodynamic wave testing at 80 percent water elevation	173
Figure 2-256.	Repair labor man-hour comparisons	174
Figure 3-1.	Location of field test site at the Vicksburg Harbor	177
Figure 3-2.	Abandoned channel area in 1955, previous to turning basin construction	178
Figure 3-3.	Vicksburg Harbor elevation profiles	179
Figure 3-4.	EM-31 data with DCP and CPT location	182
Figure 3-5.	Flood-control structures in place over geophysical data	184
Figure 3-6.	StarDot® 1.2 megapixel net camera	185
Figure 3-7.	Example DVR software screen	185
Figure 3-8.	Camera layout for construction phase and beginning of test phase	186
Figure 3-9.	Camera layout after sandbag structure was inundated	187
Figure 3-10.	Typical dual camera mount	187
Figure 3-11.	Concrete sump with fixed-mount staff gage and capacitance water level sensor	188
Figure 3-12.	Staff gages positioned outside structure for visually monitoring water level changes	189
Figure 3-13.	Wave staff water level wiring configuration and dimensions	190
Figure 3-14.	Data acquisition unit packaged inside case	190
Figure 3-15.	DAU enclosure enlarged to include battery power supply	192
Figure 3-16.	DAU mounted on an elevated stand	192
Figure 3-17.	RDFW structure dimensions	193
Figure 3-18.	RDFW structure side view	194
Figure 3-19.	USACE sandbag structure dimensions	194
Figure 3-20.	Sandbag structure viewed from river side	195
Figure 3-21.	Sandbag structure viewed from side	195
Figure 3-22.	Hesco structural dimensions	196
Figure 3-23.	Hesco structure side view	196
Figure 3-24.	Hesco structure viewed from river	197
Figure 3-25.	Portadam structure dimensions	197
Figure 3-26.	Portadam structure viewed from river side	198
Figure 3-27.	RDFW seepage data	199
Figure 3-28	USACE sandhag seenage data	199

Figure 3-29.	Hesco seepage data	200
Figure 3-30.	Portadam seepage data	200
Figure 3-31.	Seepage rate as a function of wetted perimeter area	201
Figure 3-32.	Seepage rate as function of water elevation	201
Figure 3-33.	Hogan Automatic-Speed Sandbagger	203
Figure 3-34.	Unloading from flatbed truck	204
Figure 3-35.	Laying first row of bags	204
Figure 3-36.	Partially completed riverward face, first row	205
Figure 3-37.	Placement of second row	205
Figure 3-38.	Rain water collected inside structure	205
Figure 3-39.	Water being pumped from structure	205
Figure 3-40.	Area being backdragged to reduce mud	206
Figure 3-41.	Measuring height of structure	206
Figure 3-42.	Completed 3-ft structure	206
Figure 3-43.	Required 1-ft raise	206
Figure 3-44.	Completed sandbag structure	206
Figure 3-45.	4 June 2004, 1.0 ft of water against structure	207
Figure 3-46.	5 June 2004, 2.3 ft of water against structure	207
Figure 3-47.	6 June 2004, 3.3 ft of water against structure	207
Figure 3-48.	7 June 2004, structure overtopping	207
Figure 3-49.	7 June 2004, seepage through structure	208
Figure 3-50.	7 June 2004, overtopped structure	208
Figure 3-51.	Sandbag seepage collection tank	208
Figure 3-52.	Seepage through structure	209
Figure 3-53.	Seepage on protected side	209
Figure 3-54.	Seepage rates for field test sandbag structure	209
Figure 3-55.	Attached plastic sheeting to east tieback of sandbag structure	209
Figure 3-56.	Plastic sheeting over riverward face	210
Figure 3-57.	Structure after being submerged	210
Figure 3-58.	Riverward face	210
Figure 3-59.	East side of structure	211
Figure 3-60.	East tieback section	211
Figure 3-61.	Removal of east tieback section	211
Figure 3-62.	Sandbags removed by front-end loader	211

Figure 3-63.	Bulldozer piling up sandbags	211
Figure 3-64.	Dozer and front-end loader	211
Figure 3-65.	Disposal site	212
Figure 3-66.	Structure completely removed	212
Figure 3-67.	Hesco Bastion Concertainer as delivered to Vicksburg	215
Figure 3-68.	Hesco Bastion field site prior to construction	215
Figure 3-69.	Hesco Bastion training session	216
Figure 3-70.	Installation of base row units	216
Figure 3-71.	Structure constructed on graded ground and grass/weeds	216
Figure 3-72.	Installation of joint pins	217
Figure 3-73.	Construction of base row tieback section	217
Figure 3-74.	Filling base row with sand	217
Figure 3-75.	Installing top row units	218
Figure 3-76.	Filling top row units with sand	218
Figure 3-77.	Sand fill in top row units	218
Figure 3-78.	Riverward face of completed structure	219
Figure 3-79.	Completed structure from protected side	219
Figure 3-80.	4 June 2004, no water against structure	220
Figure 3-81.	5 June 2004, 0.3 ft of water against structure	220
Figure 3-82.	6 June 2004, 1.3 ft of water against structure	220
Figure 3-83.	7 June 2004, 2.1 ft of water against structure	220
Figure 3-84.	8 June 2004, 2.7 ft of water against structure	220
Figure 3-85.	9 June 2004, 3.1 ft of water against structure	220
Figure 3-86.	10 June 2004, 3.5 ft of water against structure	221
Figure 3-87.	11 June 2004, 4.0 ft of water against structure	221
Figure 3-88.	Hesco Bastion seepage collection tank	221
Figure 3-89.	Seepage through joints	222
Figure 3-90.	Seepage on protected side	222
Figure 3-91.	Attaching plastic sheeting to riverward face of Hesco Bastion structure	223
Figure 3-92.	Attempt to reduce seepage using bentonite	224
Figure 3-93.	Removing center connection pins	225
Figure 3-94.	Removing zip ties	225
Figure 3-95.	Removal of top row half units	225
Figure 3-96.	Riverward face of structure	225

Figure 3-97.	Removal of top row sand	226
Figure 3-98.	Removal of sand from around base row units	226
Figure 3-99.	Removal of base row half units	226
Figure 3-100.	Removal of half units with front end loader	227
Figure 3-101.	Removal of joint connection pins with front-end loader	227
Figure 3-102.	Removed units on pallet	227
Figure 3-103.	Removed units on trailer	227
Figure 3-104.	Units damaged during removal process	228
Figure 3-105.	RDFW as delivered to Vicksburg	232
Figure 3-106.	DFW site back-dragged prior to construction	232
Figure 3-107.	RDFW training session	232
Figure 3-108a.	Unpacking of RDFW units	232
Figure 3-108b.	Installation of RDFW base row	232
Figure 3-108c.	Interlocking of RDFW units	232
Figure 3-109.	Installation of tieback section	233
Figure 3-110.	Installation of riverward face and tieback section	233
Figure 3-111.	Stair stepped tieback section	233
Figure 3-112.	Filling of west tieback section units	233
Figure 3-113.	Filling of riverward face and east tieback section units	234
Figure 3-114.	Installation of top row units	234
Figure 3-115.	Sand fill in completed structure	234
Figure 3-116.	Riverward face of completed structure	234
Figure 3-117.	Completed RDFW structure	235
Figure 3-118.	River level day before testing began, 4 June 2004	235
Figure 3-119.	River level at beginning of testing process	235
Figure 3-120.	Seepage behind RDFW structure	236
Figure 3-121.	Seepage collection in sump tank	236
Figure 3-122.	Fill material washed out of units	236
Figure 3-123.	Shifting of units	236
Figure 3-124.	Replacing sand washed out or lost from shifted units	237
Figure 3-125.	Trackhoe replacing sand field	237
Figure 3-126.	Using RDFW unit to contain sand boil	237
Figure 3-127.	Contained sand boil	237
Figure 3-128.	RDFW structure before overtopping	238
Figure 3-129	Overtonning of RDFW structure	238

Figure 3-130.	Final overtopping of RDFW structure	238
Figure 3-131.	Air compressor	239
Figure 3-132.	Hand-held vacuum device (consolidated sand)	239
Figure 3-133.	Hand-held vacuum device and water hose (saturated sand).	240
Figure 3-134.	Sand removal from RDFW structure with water hose and compressed air	240
Figure 3-135.	Rented vacuum truck	240
Figure 3-136.	Shovel used to remove sand	240
Figure 3-137.	Removing sand with shovels	240
Figure 3-138.	Empty units	240
Figure 3-139.	Vacuuming sand	241
Figure 3-140.	Removal of sand from truck	241
Figure 3-141.	RDFW units after removal	241
Figure 3-142.	Removal with backhoe	241
Figure 3-143.	RDFW preparing for shipment	241
Figure 3-144.	Damaged RDFW unit	242
Figure 3-145.	Portadam as delivered to Vicksburg	246
Figure 3-146.	Supporting frame with bolts, clamps, and link bars (hardware)	246
Figure 3-147.	Structure frame constructed on graded and undisturbed ground	246
Figure 3-148.	Making a 90-degree turn	247
Figure 3-149.	Unrolling liner membrane	248
Figure 3-150.	Seam between liner membrane sections	248
Figure 3-151.	Liner membrane tied to support frame	248
Figure 3-152.	Excavating trench for liner leading edge	249
Figure 3-153.	Liner leading edge placed in trench	249
Figure 3-154.	Burying liner leading edge	249
Figure 3-155.	Placing sandbags on liner leading edge	249
Figure 3-156.	Required Portadam raise	250
Figure 3-157.	Completed Portadam structure	250
Figure 3-158.	4 June 2004, no water against structure	251
Figure 3-159.	5 June 2004, 0.3 ft of water against structure	251
Figure 3-160.	6 June 2004, 1.3 ft of water against structure	251
Figure 3-161.	7 June 2004, 2.1 ft of water against structure	251
Figure 3-162.	8 June 2004, 2.7 ft of water against structure	251

Figure 3-163.	9 June 2004, 3.1 ft of water against structure	251
Figure 3-164.	10 June 2004, 3.5 ft of water against structure	252
Figure 3-165.	11 June 2004, structure overtopped	252
Figure 3-166.	Portadam seepage collection tank	252
Figure 3-167.	Sagging liner	253
Figure 3-168.	Sagging liner repair (repair 1)	253
Figure 3-169.	Sagging liner repair (repair 2)	254
Figure 3-170.	Typical preparation for overtopping	254
Figure 3-171.	Reduced protection due to sinking of supporting frame	255
Figure 3-172.	Sagging of liner between supporting frame members	255
Figure 3-173.	Stressed liner seam	255
Figure 3-174.	Overtopping of Portadam structure	256
Figure 3-175.	Testing complete	256
Figure 3-176.	Portadam structure after protected side filled with water	256
Figure 3-177.	Portadam structure prior to removal	257
Figure 3-178.	Removing liner membrane from supporting frame	258
Figure 3-179.	Disassembling supporting frame (bolts and clamps)	258
Figure 3-180.	Disassembling supporting frame	258
Figure 3-181.	Carrying frame members to staging area	259
Figure 3-182.	Removal staging area	259
Figure 3-183.	Disconnecting two sections of liner	260
Figure 3-184.	Laborers removing liner from excavated trench	260
Figure 3-185.	Forklift removing liner from excavated trench	260
Figure 3-186.	Folding liner	261
Figure 3-187.	Rolling folded liner	261
Figure 3-188.	Liner placed on pallet	261
Figure 3-189.	Loading Portadam frame members and hardware onto trailer	261
Figure 3-190.	Portadam site with only sandbags remaining	262
Figure 3-191	Portadam site after removal complete	262

List of Tables

Table ES-1.	Effort Required to Construct, Repair, and Remove Flood-Fighting Structuresxxvii
Table ES-2.	Seepage Rates During Static Head Testsxxviii
Table ES-3.	Structure Damage During Laboratory Testingxxviii
Table ES-4.	Effort Required to Construct, Raise 1 ft, and Remove Flood-Fighting Structuresxxix
Table ES-5.	Seepage Ratesxxix
Table ES-6.	Structure Damage/Reusability During Field Testingxxx
Table ES-7.	Summary of Vendor Furnished Products Costs (March 2004)
Table ES-8.	Summary of USACE Purchased Products Cost (January 2005)xxx
Table ES-9.	Observed Product Strengths and Weaknessesxxxi
Table 1-1.	Vendor Proposals6
Table 2-1.	Summary of Log Impact Damage
Table 2-2.	Summary of Estimated Product Reusability Immediately After Disassembly
Table 2-3.	Summary of Environmental Concerns
Table 3-1.	Sandbag Structure Field Testing Summary213
Table 3-2.	Costs for Sandbag Structure
Table 3-3.	Field Test Seepage Rates – Hesco Bastion
Table 3-4.	Hesco Bastion Damage
Table 3-5.	Hesco Bastion Field Testing Summary229
Table 3-6.	Costs for Hesco Bastion Concertainer
Table 3-7.	Field Test Seepage Rates – RDFW
Table 3-8.	RDFW Field Testing Summary243
Table 3-9.	Costs for RDFW
Table 3-10.	Field Test Seepage Rates – Portadam
Table 3-11.	Portadam Field Testing Summary
Table 3-12.	Costs for Portadam
Table 4-1.	Laboratory Test Summary
Table 4-2.	Field Test Summary

Table 4-3.	Cost for Flood-Fighting Products	271
Table B1.	Project Delivery Team	B6
Table B2.	Field and Laboratory Testing Schedule	B12
Table B3.	Required Funding Schedule	B13

Conversion Factors, Non-SI to SI Units of Measurement

Multiply	Ву	To Obtain
feet	0.3048	meters
inches	0.0254	meters
ounces (mass)	0.02834952	kilograms
pounds (mass)	0.45359237	kilograms

Preface

This report describes research conducted by the U. S. Army Engineer Research and Development Center (ERDC) through the General Investigation Research and Development (GI R&D) Program for prototype testing of temporary barrier-type flood-fighting structures. The project was funded by the U.S. Army Corps of Engineers (USACE) Flood Control and Coastal Emergency (FCCE) Program and leveraged with the GI R&D technical programs.

In the 2004 Energy and Water Development Bill, Congress directed USACE to develop a comprehensive laboratory and field testing program for the scientific assessment of Rapid Deployment Flood Wall® (RDFW) and "other promising alternative flood-fighting technologies." This report describes the congressionally mandated testing and evaluation program for three commercial flood-fighting products and sandbags.

Laboratory and field testing were conducted from March to August 2004. The laboratory testing was completed in a wave research basin at ERDC, Vicksburg, MS, and included construction, testing, and removal protocols. Field testing was accomplished at a site north of Vicksburg, on the southern bank of the turning basin of the Vicksburg Harbor.

A Project Delivery Team (PDT) was established to serve for both laboratory and field testing and included a Technical Director, Program Manager, co-Principal Investigators (PI's), and engineering support staff. In addition, the PDT included advisors from the USACE Districts including the GI R&D Program Product Selection Committee, Emergency Management personnel assigned by Headquarters, USACE (HQUSACE), and local sponsor representatives as recommended by District PDT participants. A complete listing of the Team and their responsibilities can be found in Appendix B within the Project Management Plan.

The ERDC representation on the project development team (PDT) combined the wide range of expertise of the Coastal and Hydraulics Laboratory (CHL) and the Geotechnical and Structures Laboratory (GSL). Dr. Donald Ward (CHL) and Dr. Johannes Wibowo (GSL) led the laboratory testing. Fred Pinkard (CHL) and George Sills (GSL) led the field testing. Other ERDC team members included Perry (Pat) Taylor, Tina Holmes, Landris (Tommy) Lee, Nalini Torres, Eric Smith, Terry Jobe, Lester Flowers, Julie Kelley, Cheri Loden, and Dr. Lillian Wakeley from GSL; Thad Pratt, Thomas Murphy, Calvin Buie, Terry Waller, Christopher Callegan, Mike Kirklin, and Charlie Little from CHL; David Daily from ITL; and Jackie Brown, Kel Shurden, Eddie Stewart, Bill Waldrop, Carl Warner, Paul Williams, and Howard Zeigler from the U.S. Army Engineer District, Vicksburg.

The following authors listed alphabetically wrote sections of the report; Ms. Holmes, Ms. Kelley; Messrs Lee, Pinkard, Pratt, Sills, Smith, and Taylor; Ms. Torres; and

Drs. Wakeley, Ward, and Wibowo. The overall report was assembled and prepared by Messrs. Sills, Taylor, and Pinkard, with assistance from Ms. Kelley. Dr. Wakeley was principal technical reviewer and report coordinator. J. Holley Messing, Coastal Engineering Branch, CHL, formatted this report. Dr. Jack Davis, ERDC Technical Director for Flood and Coastal Storm Damage Reduction, provided a detailed review of the draft report.

Joan Pope, Office Chief of Engineers Program Director for Civil Works and formerly ERDC Technical Director for Flood and Coastal Storm Damage Reduction, provided overall guidance for the project, beginning with the congressional mandate and continuing through PDT selection, planning, technical accomplishment, and reporting. The PDT is grateful to Ms. Pope for providing vision and continuity throughout this many-faceted project.

From CHL, general supervision for this project was provided by James R. Leech, Chief, River Engineering Branch; Dennis Markle, former Chief, Harbors, Entrances, and Structures Branch; Dr. Rose Kress, Chief, Navigation Division; Dr. William D. Martin, Deputy Director, CHL; and Thomas W. Richardson, Director, CHL. From GSL, Dr. Joseph Koester, Chief, Geotechnical and Earthquake Engineering Branch; Dr. Lillian Wakeley, Chief, Engineering Geology and Geophysics Branch; Dr. Robert L. Hall, Chief, Geosciences and Structures Division; and Dr. David Pittman, Director, GSL, provided general supervision.

Dr. James R. Houston was Director of ERDC. COL Richard B. Jenkins was Commander and Executive Director.

Executive Summary

Introduction

Within the United States, sandbags have traditionally been the product of choice for temporary, barrier type flood-fighting structures. Sandbags are readily available and familiar to the general public. However, sandbag structures are labor intensive and time consuming to construct. The U.S. Army Corps of Engineers (USACE) has long been aware of the need to develop more expedient, cost-effective, temporary flood-fighting technologies. Therefore, the USACE continues to encourage the development of innovative products to decrease long-term costs and increase the effectiveness of flood fighting.

In the 2004 Energy and Water Development bill, Congress recognized the need for expedient, temporary barrier type flood-fighting technology. The U. S. Army Engineer Research and Development Center (ERDC) was directed to develop real-world testing procedures for Rapid Deployment Flood Wall (RDFW) and other promising alternative flood-fighting technologies. In response to that directive, ERDC developed a comprehensive laboratory and field testing program for the scientific evaluation of the products.

Three commercially available flood-fighting products plus sandbags were tested in the laboratory and at the Vicksburg Harbor field site in Vicksburg, MS. Rapid Deployment Flood Wall (RDFW) was tested due to the congressional directive. RDFW is granular filled, plastic grid units that connect together with both horizontal and vertical tabs to form a continuous structure. Each RDFW unit is 4 ft long by 4 ft wide by 8 in. high. Sandbags were tested since they are the standard temporary barrier type floodfighting product used by the Corps of Engineers. The two "other promising alternative technologies" were selected through a competitive process based on technical merit. An advertisement was placed on the FedBizOpps Web page requesting technical proposals for temporary, barrier type flood-fighting products. As a result of the advertisement, nine proposals were received. A five-member team, consisting of hydraulic, geotechnical, and emergency management disciplines, evaluated the proposals against a set of technical criteria developed prior to issuing the advertisement. Final selection of the alternative technologies was made by the evaluation team and then approved by the study Project Delivery Team (PDT). Based on the technical evaluation, Portadam and Hesco Bastion Concertainers® were selected as the products that provided the best overall combination of technical soundness, operational functionality, and economic feasibility. Portadam consists of an impermeable membrane liner that is supported by a steel frame. Hesco Bastion Concertainers are granular-filled, membrane-lined wire baskets that are pinned together to form a continuous structure.

Laboratory Testing

Laboratory testing of Portadam, Hesco Bastion Concertainer, RDFW, and sandbag structures was conducted in a wave research basin at ERDC. The products were tested in a controlled laboratory setting, but under conditions that emulate real-world flood fighting. The structures were tested consecutively under identical conditions. Stringent construction, testing, and removal protocols were developed for the laboratory. The protocol for the laboratory testing included both performance parameters (hydrostatic testing, hydrodynamic testing with waves and overtopping, and structural debris impact testing with a floating log) and laboratory setting operational parameters (time, manpower, and equipment to construct and disassemble, suitability for construction and disassembly by unskilled labor, fill requirements, ability to construct around corners, disposal of fill material, damage, repair, and reusability).

The laboratory testing included the construction of skewed u-shaped structures. The length of the structures varied from approximately 69 ft to about 81 ft. Due to the restrictive height of the research basin walls, the height of each structure was limited to approximately 3 ft. Laboratory testing of the structures was initiated in March 2004 and completed during August 2004. The sandbag structure was tested first in the laboratory followed in order by the Hesco Bastion Concertainer structure, the RDFW structure, and finally, the Portadam structure.

Laboratory Testing – Results

Tables ES-1 through ES-3 present the pertinent laboratory testing results. The results show that the sandbag structure took much longer (205.1 man-hours) to construct than the other three structures. The RDFW structure was the most difficult to remove taking more than three times longer (42 man-hours) than any of the other structures. The laboratory results also show that the RDFW structure had the lowest seepage rates while the Hesco Bastion structure had much higher seepage rates than the other three structures. Table ES-2 includes seepage rates for 1 ft, 2 ft, and 95 percent head. The 1-ft head means that a 1-ft-deep static pool was against the structure during testing. The 2-ft head included a 2-ft-deep static pool against the structure while the 95 percent head included a static pool depth that was equal to 95 percent of the structure height. Each structure sustained varying degrees of damage during testing. This damage is summarized in Table ES-3.

Table ES-1 Effort Required to Construct, Repair, and Remove the Flood- Fighting Structures							
Structure	Construction Repairs Removal (man-hours) (man-hours)						
Sandbags	205.1	6.0	9.0				
Hesco Bastion	20.8	1.8	13.4				
RDFW	32.8	4.6	42.0				
Portadam 24.4 2.0 4.4							

Table ES-2 Seepage Rates During Static Head Tests					
Structure	1-ft Head (gpm/ft)	2-ft Head (gpm/ft)	95 Percent Head (gpm/ft)	Average (gpm/ft)	
Sandbags	0.05	0.23	0.54	0.27	
Hesco Bastion	0.39	0.94	1.81	1.05	
RDFW	0.02	0.08	0.10	0.07	
Portadam	0.10	0.14	0.14	0.13	
Note: gpm/ft = gallons per minute per linear foot of structure.					

Table ES-3 Structure Damage During Laboratory Testing		
Structure Observed Damage		
Sandbags	Repeatedly damaged by waves Failed during overtopping	
Hesco Bastion	Minor sand settling and washout Some bending of wire during debris impact	
RDFW	Minor sand settling Significant washout along edges and toe Toe damaged during large waves or overtopping 10 percent of structure broken	
Portadam	Impermeable liner torn during debris impact	

Field Testing

During May 2004, Portadam, Hesco Bastion Concertainer, RDFW, and sandbag structures were constructed at a field site at the Vicksburg Harbor. Each structure was generally u-shaped with an approximately 100-ft riverward face. The structures were originally constructed high enough to hold back 3 ft of water. Each structure was then required to be raised high enough to hold back 4 ft of water to demonstrate that the structures could be raised if used in a situation where floodwaters continue to rise.

The Vicksburg Harbor site is within the backwater area of the Mississippi River, which insures relatively reliable, predictable water levels. Soil conditions indicated that the Vicksburg Harbor site contained suitable substrate that was consistent over a sufficiently large area. The field test site is located on Government property, requiring no rights of entry or easements and security was already provided. The site is also adjacent to the U. S. Army Engineer District, Vicksburg Mat Sinking Unit where a large, available labor force and heavy construction equipment were available to construct the four test structures. The structures were constructed on individually prepared sites. The specific site on which each structure was constructed was determined by a random drawing.

By the first week of June 2004, water levels were sufficient to begin testing. Unlike the laboratory testing, the four structures were tested at the field site concurrently. As the water levels rose, seepage was determined for each structure by collecting the seepage water in a concrete tank on the protected side of each structure. The seepage rates were calculated by determining the change in volume in the collection tank over time. Testing

continued until the structures overtopped. By July 2004, the water levels had receded enough that the structures were removed. The structures in the field were constructed, tested, and removed in accordance with established protocols.

The field testing allowed a complete assessment of operational concerns such as construction right of way requirements, adaptability to varying terrain, ease of construction and removal (time, manpower, equipment) seepage, fill requirements, repair, reusability, and ability to raise.

Field Testing - Results

Tables ES-4 through ES-6 present the pertinent field testing results. The results show that the sandbag structure was time consuming to construct, requiring much longer time than the other three structures. Table ES-4 includes the time to construct each structure to its initial height to hold back 3 ft of water. The effort to raise included the time to increase the height of each structure to hold back 4 ft of water. As occurred in the lab testing, the RDFW structure took much longer to remove and the Hesco Bastion structure had much higher seepage rates. The seepage rates in Table ES-5 are based on a wetted area of the structure. Wetted area was used since the ground elevations at the base of the structures varied. Therefore, for a given river stage, each structure would have a different height of water against it. All three of the vendor products performed well during the field testing with all three having high rates of reusability (Table ES-6).

Table ES-4 Effort Required to Construct, Raise, and Remove the Flood-Fighting Structures			
Structure	Construction (man-hours)	Raise (man-hours)	Removal (man-hours)
Sandbags	419.8	33.3	3.5
Hesco Bastion	34.7	22.8	36.3
RDFW	39.4	9.0	113.4
Portadam	25.6	0.6	12.6

Table ES-5 Seepage Rates					
Wetted Area of		Seepage Rate (gal/hr)			
Structure (sq ft)	Sandbags	Hesco Bastion	RDFW	Portadam	
100	0	300	50	200	
200	0	2300	200	300	
300	50	3900	700	500	
400	300	6000	900	550	
500	800		1500	600	
600	3200			600	

Table ES-6 Structure Damage / Reusability During Field Testing		
Structure Observed Damage		
Sandbags	Began to deteriorate (bags not to specs) All disposed	
Hesco Bastion	Bent some panels and coils during removal Over 95 percent reusable	
RDFW	Broke some pieces during testing and removal Over 90 percent of pieces reusable	
Portadam	None – 100 percent reusable	

Product Costs

Even if a product performs well, the flood-fighting community is not likely to use the product unless it is cost-effective. In order to make a fair comparison of costs, each product vendor was asked to provide the cost of constructing and removing 1,000 linear ft of their product, 3 ft high in Vicksburg. These costs include purchase of the product, fill material, labor, and equipment rental. The furnished costs show that the cost of the products, especially for the RDFW and Portadam products far outweigh the combined cost of the fill material, labor, and equipment rental. Table ES-7 provides a summary of the vendor furnished product cost. During January 2005, the Corps purchased approximately 5,000 lft, 4 ft high of each of the products. These products were purchased for pilot testing and to be stored and made available during real-world floods to any Corps District that chooses to use them. Table ES-8 provides a summary of the cost of those products.

Table ES-7 Summary of Vendor Furnished Products Cost (March 2004)			
Product	Product Description	Product Cost	Product Cost Per Linear Foot
Hesco Bastion	67 3'x3'x15' units at \$394/unit (1005 feet)	\$26,398	\$26.27
RDFW	1,450 4'x4'x8" units at \$95/unit (1015 feet)	\$137,750	\$135.71
Portadam	3' high frames, liner, hardware	\$71,300	\$71.30

Table ES-8 Summary of USACE Purchased Products Cost (January 2005)			
Product	Product Description	Product Cost	Product Cost Per Linear Foot
Hesco Bastion	336 4'x3'x15' units at \$488/unit (5,040 ft)	\$163,968	\$32.53
RDFW	8,700 4'x4'x8" units at \$95/unit (5,075 ft)	\$826,500	\$162.86
Portadam	4' high frames, liner, hardware	\$473,595	\$94.72

Product Summaries

The lab and field testing conducted during 2004 revealed several product strengths and weaknesses. These are presented in Table ES-9.

Table ES-9 Observed Product Strengths and Weaknesses			
Product	Strengths	Weaknesses	
Sandbags	Low product cost Conforms well to varying terrain Low seepage rates Can be raised if needed	Labor intensive and time consuming to construct Not reusable	
Hesco Bastion	Ease of construction / removal (time and manpower) Low product cost Reusable Can be raised if needed	Significant right of way required due to granular fill placed with machinery perpendicular to the structure High seepage rates	
RDFW	1. Ease of construction (time and manpower) 2. Low seepage rates 3. Reusable 4. Can be raised if needed 5. Height flexibility (8-in units)	Significant right of way required due to granular fill placed with machinery perpendicular to the structure High product cost Labor intensive and time consuming to remove	
Portadam	Ease of construction / removal (time, manpower, and equipment) Low seepage rates No required fill Reusable Limited total ROW required (footprint + construction work area)	Punctured during laboratory debris impact test Cannot be raised in a typical application Not applicable for high wind use without anchoring	

The laboratory and field testing pertinent information has been placed on a publicly accessible Web page to assist locals in the selection of products that best meet their temporary, barrier style flood-fighting needs. The Web site address is http://chl.erdc.usace.army.mil/ffs.

Acronyms and Abbreviations

A/D Analog to Digital

AR-Number Army Regulation Number

ASCII American Standard Code for Information Interchange

AVI Audio Video Interleave

CHL Coastal and Hydraulics Laboratory

cu yd cubic yards

deg degrees diam diameter

DPW Directorate of Public Works

DVR Digital Video Recording

EM Emergency Management

EM-Number Engineering Manual Number

ERDC U. S. Army Engineer Research and Development Center ERDC-WES U. S. Army Engineer Research and Development Center –

Waterways Experiment Station

FCCE Flood Control and Coastal Emergencies

FedBizOpps Federal Business Opportunities

FHSS Frequency-Hopping Spread System

ft feet

GI R&D General Investigation Research and Development

gph gallons per hour gpm gallons per minute

gpm/lft gallons per minute per linear foot

GSL Geotechnical and Structural Laboratory

GUI Graphic User Interface

HQ USACE Headquarters, U.S. Army Corps of Engineers

Hr hours Hz cycles

IEEE Institute of Electrical and Electronic Engineers

in. inches

JPEG Joint Photographic Experts Group

LAN Local Area Network

lft Linear feet

lin. Linear inches

MB Mega-Bits

MC Micro Controller

MHz Mega-Cycles

min minutes

mpbs Megabits per second

mph miles per hour mW milli-Watt

NGVD National Geodetic Vertical Datum

PDT Project Delivery Team
PI Principal Investigator

PI's Principal Investigators

PMP Project Management Plan

lb/ft² pounds per square foot

PVC Polyvinyl Chloride

RDFW Rapid Deployment Flood Wall

rpm revolutions per minute

RS232 Recommended Standard Number 232

sec seconds

SP (Sand) Uniformly Graded

STP Standard Testing Protocol

Towns Technologies and Innovations for Urban Watershed Networks

USACE U.S. Army Corps of Engineers

V volts

VDC Volts Direct Current

WDAT Wireless Data Acquisition Transmitter

1 Introduction

Introduction

Sandbag barriers traditionally have been the method of choice to raise the height of levees and to protect infrastructure from rising floodwaters. Sandbag structures are labor intensive and time consuming to construct. However, sandbags are readily available and are familiar, and therefore acceptable, to the general public. The U.S. Army Corps of Engineers (USACE) has used sandbags routinely in flood fights for decades, during which time the USACE has been aware of the need to find more rapid and still cost-effective methods of constructing temporary flood barriers.

Early in 2004, Congress tasked the U. S. Army Engineer Research and Development Center (ERDC) to "devise real-world testing procedures for ... promising alternative flood-fighting technologies...." This report describes the selection and testing of a temporary, barrier style flood-fighting products in laboratory and field conditions and at prototype scale. The products tested included standard sandbags as well as three commercially available flood-fighting products.

Background

Project authority

ERDC conducted research and developed a laboratory procedure for the prototype testing of temporary barrier-type flood-fighting structures intended to increase levels of protection during floods. The Rapid Deployment Flood Wall (RDFW) is one commercial product example of this type of structure. Per direction from Congress in the Energy and Water Development Bill for 2004:

The Nation deserves the best, most reliable, most economical tools which technology can provide for the protection of its citizenry and their property when confronted with natural disaster. The conferees are aware of the preliminary testing of the Rapid Deployment Flood Wall at the Engineering Research and Development Center in Vicksburg, Mississippi. This technology has shown promise in the effort to fight floods. Its proponent's claim, and preliminary tests tend to confirm, that it can be cost-effective, quick to deploy, and superior to traditional sandbags in protecting property from flood damages totaling millions in dollars each year. The conferees therefore direct the Corps of Engineers, within funds available in the Flood Control and Coastal

Emergencies account, to act immediately to devise real-world testing procedures for this and other promising alternative flood fighting technologies, and to provide a status report to the Committees on Appropriations within 180 days of enactment of this legislation.

(See Appendix A)

To address this congressional directive, ERDC has tested the RDFW and two other flood-fighting technologies using previously developed laboratory test protocol to compare the effectiveness of each product under carefully controlled laboratory test conditions. In addition, controlled field tests were conducted. In both the laboratory and field, a standard sandbag levee was constructed to provide a baseline by which the other products could be compared. This report describes the facilities, test procedures, and results for both the laboratory and field tests.

Report format

This report is divided into four chapters plus appendices. Chapter 1 is an introduction and general description of the project, and describes the selection process by which two "promising alternative flood-fighting products" were selected for testing along with the RDFW. Chapter 2 describes the laboratory portion of the project including description of test facilities, testing protocol, and results. Chapter 3 includes the field testing portion of the project including site selection and characterization, testing, and results. Chapter 4 provides the laboratory and field testing summary and conclusions. Appendix A to the report includes the congressional mandate directing the USACE to perform the work described herein. Appendix B includes the Project Management Plan and lists members of the Project Delivery Team (PDT). Appendix C provides the laboratory testing protocol.

Scope of Work

Project description

A research basin and testing protocols from previous research activities were used to test the flood-fighting products. The draft standardized protocol for prototype-scale laboratory testing of temporary barrier-type flood-fighting products was used, which includes both performance parameters (hydrostatic testing, hydrodynamic testing with waves and overtopping, and structural impact testing with a floating log) and laboratory-setting operational parameters.

For both the laboratory and field testing, quantifiable operational data such as manhours for construction and disassembly, special equipment requirements, and quantity of fill material were recorded. Representatives from the testing PDT evaluated the test structures for qualitative operational factors such as suitability for construction by unskilled labor, suitability for construction on sloping or uneven ground, susceptibility to end effects or undercutting, long-term durability and repairability, and reasonableness of special equipment or materials when considering use at a remote location. Susceptibility of product materials to puncture or tear and ability to make repairs in the field were evaluated qualitatively. The ability to increase structure height to hold back one additional foot of water after its initial construction was evaluated at the field test site

only. Disposal, reusability, and storage requirements of the structure and material were evaluated, and any previous real-world experience with the technology was documented.

During previous research, a standard sandbag flood barrier was tested in the research basin using a modified standard test protocol to develop baseline data to which data from other types of structures can be compared. The modification to the standard test protocol includes changes to the structure alignment to allow testing of oblique angles with the wave generator.

After the baseline sandbag data were collected in the research basin, the current project tested the RDFW and two other products in the same facility using the modified standard test protocol. Results of all laboratory testing have been posted on a publicly accessible Web site along with information on man-hours and special equipment required to construct and disassemble the flood-fighting structure, and reusability of the materials. That Web site address is http://chl.erdc.usace.army.mil/ffs. The selection criteria and process for the two additional flood-fighting products is described later in this chapter in the "Product Selection Criteria and Process" section.

Concurrent with the research basin experiments, barriers using the same four technologies were constructed on a field site at Vicksburg, MS, where conditions representative of real-world flood-fighting were expected. The four technologies were tested at the field site concurrently. Results of the field testing have also been posted on the Web site. The field tests allowed a complete assessment of operational concerns such as construction of the structure on uneven or sloping ground, end effects or tiebacks, and undercutting.

Non-ERDC members of the PDT observed the tests, advised ERDC members on the appropriateness of elements of the test, and provided input to the reporting. They also were asked to provide summary documentation on any real-world experience they may have with the technologies being tested, and will review the final report.

Laboratory testing

In the research-basin tests, the products were tested in a controlled laboratory setting. Product vendors were required to arrive at the test facility with all specialized equipment and supplies. The Government furnished all typical construction equipment. The vendors were required to have a representative on site to direct the construction and removal of their structures. The structures were constructed and removed by a labor force furnished by the Government. ERDC and other members of the PDT observed and documented the selected protocol-defined metrics associated with the construction and removal. Selected ERDC and PDT members observed the time required to install the test wall and any special equipment requirements. After construction, the vendor was not allowed to adjust the structure during any of the tests specified in the protocol. The protocol does allow the vendor access to the structure a maximum of three times between tests for a limited length of time if such access is required. Any such access to the structure was recorded. A delivery service contract was signed between each vendor and ERDC prior to the study and guidelines for vendor involvement and responsibilities were specified in that document. As all testing costs will be borne by the Government, this contract assured government ownership and responsibility for distribution of the testing results.

The PDT recognized that supplementary tests might be required for a specific structure to supply information deemed crucial to evaluation of the structure. The test

plan allowed that these supplementary tests would be conducted in a manner that would not interfere with the standardized testing protocol. An example of a test that could be conducted in addition to the standardized testing protocol is evaluation of seepage rates on a structure with a punctured or torn seepage membrane.

The products were tested at a field site that experiences backwater impacts from the Mississippi River. The Mississippi River stage was monitored and the time window for product installation was selected based on the predicted date of a river level high enough to inundate the flood barriers being tested.

Vendors were allowed to preposition material at a government-furnished site in the Vicksburg, MS, area. Each selected vendor was contacted and given a notice to proceed to install his barrier. Each vendor was required to install the barrier at the field site within 5 calendar days from the time the notice to proceed was received. The following requirements and information were provided to each vendor:

Each vendor will be provided with a marked 25-ft right of way for construction. Each barrier must be constructed within a 15-ft-wide footprint for the structure within the 25-ft right of way. Actual right-of-way used by each vendor within the provided 25-ft right of way will be measured and reported. The Government will install a large buried concrete tank on the protected side of each vendor's barrier to collect seepage water. Each vendor is required to adapt their construction to overcome any problems that might arise from the tank. The Government will prepare four separate work areas at the field test site for installation of four different temporary barrier-type structures. A random drawing will be conducted to determine which product is constructed on each area.

Construction

For the laboratory testing, each structure was constructed by laborers from the ERDC-WES (Waterways Experiment Station) Department of Public Works (DPW). While skilled at numerous construction tasks, the laborers were not familiar with the vendor products being tested. Each manufacturer provided one person to train and oversee the construction crew. There were no restrictions on number of laborers or equipment operators that could be used, but only one representative of the vendor could work with the crew. Restrictions on heavy equipment (front end loaders, fork lifts, etc.) were based only on what could safely be used at the test facility. However, total manhours and types of equipment used were recorded and included in this report. The vendor was responsible for construction and removal, transportation, and delivery of its product.

For field-testing, the vendors were required to furnish the appropriate quantity of their flood-barrier material. Unskilled laborers from the U. S. Army Engineer District, Vicksburg, were provided by the Government to construct and remove the structures. This labor force worked under the direction of a vendor representative. Subsequent to completion of all testing, the structures were removed. If the vendors anticipated that their product and materials were reusable, then they were requested to direct removal so as to maintain the reusability of the product. The Government monitored both the installation and removal. The planned field test sections were u-shaped or half-box-shaped structures with the riverward face of the structure a minimum 100 ft long. Test sections were placed along the channel bank line and tied back into high ground. The

length of the tieback sections varied but did not exceed 50 ft in length. The tiebacks had to be long enough that the riverward face of the structures overtopped before the tiebacks flanked.

Additional construction information provided to each vendor included the following:

The Government will grade to bare ground a portion of the field-test-site footprint for the barrier structures prior to installation of the selected vendors' products. The Government reserves the right to artificially wet the field-test site prior to the vendors' installation of their products to best simulate possible real-world flood-fight conditions. Each vendor's product must be sufficiently high to protect against 3 ft of water against the structure. The vendors also will be required to raise his structure during the testing to a height required to protect against 4 ft of water. Each vendor can use the method of his choice to achieve this raise.

Engineering

ERDC activities included engineering support of the testing procedures, instrumentation, observation, and analysis of the structural response to the flood forces, and reporting of the results. ERDC personnel did not assist with construction or removal of the structure.

ERDC engineers and technicians conducted the field and laboratory tests including operation and maintenance of pumps and valves, operation of the wave generator, and operation of the automated data control and processing computers and equipment.

Instrumentation for the laboratory tests included a laser measurement system for determining seepage rates through the structure, laser measurements of deflection of the structure at various key locations, and capacitance wave rods to measure incident wave conditions during hydrodynamic testing. In addition, continuous video recordings were made from two angles during the entire test period, plus additional video and still shots to document all phases of construction, disassembly, and testing.

Instrumentation for the field tests included capacitance rods for measuring water elevation within the structures and external to the structures and for incident wave conditions. Also, continuous high resolution digital camera captures were recorded from two cameras positioned on each structure. Additional video and still shots also documented the construction and disassembly of each structure as well as the actual testing of the structures. The instrumentation also included the development of a method for determining seepage rates that was based on wetter surface area of the structures.

Environmental

The PDT included an environmental engineer who was tasked to issue an environmental opinion concerning use and disposal of products used in the tests. The plan was to include consideration that the product may have become coated or the fill material may have absorbed contaminants due to exposure to floodwaters.

Product Selection Criteria and Process

The Corps was directed by Congress to develop real-world testing procedures for Rapid Deployment Flood Wall (RDFW) and other promising flood-fight technologies.

Due to the need for timely laboratory and field testing of these technologies, the decision was made to test two other products. To select these two products, the PDT issued a solicitation for technical proposals for temporary, barrier-type flood-fight products during March 2004 on the FedBizOpps Web page. Nine vendors provided proposals in response to this solicitation. The vendors' products can be classified as one of three general types. The first type is an impermeable membrane liner either with or without a supporting frame. The second type is a granular-filled container. The third type is water-filled bladders. Of the nine submitted proposals, four were impermeable membrane liners, two were sand-filled containers, and three were water-filled bladders. Table 1 provides a summary of the vendor proposals.

Table 1-1 Vendor Proposals			
Vendor	Product Name	Type Product	
Portadam	Portadam	Impermeable-membrane liner with supporting frame	
Water Guard Pallet Barrier	Water Guard Pallet Barrier	Impermeable-membrane liner with supporting frame	
Hendee	Rapidam	Impermeable-membrane liner	
Megasecur	Water Gate	Impermeable-membrane liner	
Hesco Bastion	Concertainer	Granular-filled, fabric-lined wire baskets	
West Wind Levee	The Wall	Granular-filled membrane bag	
Aqua Levee	Aqua Levee	Water-filled bladder	
Hydrosolutions	Protecdam	Water-filled bladder	
Flood Master	Flood Buster	Water-filled bladder	

The vendors' proposals were evaluated by a multidisciplinary team on technical criteria. The criteria were developed by the PDT prior to the issuance of the solicitation. The evaluation team consisted of three ERDC researchers and two Corps District employees. The ERDC researchers were Fred Pinkard (ERDC-CHL, research hydraulic engineer), Thad Pratt (ERDC-CHL, research physicist), and Jim Warriner (ERDC-GSL, research geotechnical engineer). The two District team members were Larry Buss (Omaha District, hydraulic engineer) and Matt Hunn (St. Louis District, emergency management civil engineer).

The evaluation criteria required the proposals to be technically sound, operationally functional, and economically feasible. The evaluation criteria, as provided to potential vendors, are furnished as follows.

a. Documentation shall be furnished that the barrier structure can be installed and removed in the footprint defined in the scope of work for both the field and laboratory deployment. The installation and removal of the structure must be performed using whatever equipment would normally be necessary to install and remove the structure as designed. The vendor must provide enough detail in their installation/removal plan to adequately define all logistical aspects including all labor and equipment requirements for the installation and removal processes. In responding to this item the vendors must cover at a minimum:

- (1) Product's physical footprint requirements (length/width/minimum turns or radius considerations) and construction right of way requirements for field test installation and removal.
- (2) Durability.
- (3) Ease of construction.
- (4) Constructed of environmentally acceptable materials (include materials safety data sheets if applicable).
- (5) Time required to install at field site.
- (6) Manpower required to install at field site.
- (7) All equipment required to install at field site.
- (8) Time required for removal at field site.
- (9) Manpower required for removal at field site.
- (10) Additional equipment required for removal at field site.
- (11) Adaptability to varying terrain.
- (12) Environmental considerations at removal to include contamination from floodwaters.
- (13) Physical storage requirements including space and other considerations such as exposure to elements (sunlight, temperature, acid rain, etc.). Storage space requirements should be provided for a volume of the vendor's product that is required to protect a 1,000-ft-long section with 3 ft of water against it.
- (14) Seepage through section joints for a 1,000-ft-long section with 3 ft of water against it.
- (15) Seepage through product barrier for a 1,000-ft-long section with 3 ft of water against it.
- (16) Fill requirements.
- (17) Detailed cost and time estimate to construct a 1,000-ft-long section that would hold back 3 ft of water against it based on federally published labor costs for the Vicksburg, MS, area.
- b. The vendor's proposal must provide engineering details about the barrier structure to show that the structure has the ability to withstand hydrostatic and uplift forces, has adequate anchoring, and provides a factor of safety against sliding and overturning with 3 ft of water against it (to include if anchoring is provided). The vendor should provide an engineering opinion as to the

- performance of its product against debris and wave impact and resistance to tearing or breaking during installation and removal.
- c. Documentation shall be furnished as to how the barrier structure will perform on a freshly graded surface, a grass surface, and a finished concrete surface. Both the freshly graded surface and the grass surface will be present at the field test site. For the laboratory testing, the structure will be constructed on finished concrete.
- d. The vendor must provide sufficient details for plans of how to repair and maintain their barrier structure during the field test process.
- e. The vendor must provide documentation as to how their barrier structure will perform against 3 ft of water against it. They will also have to show in sufficient detail how they will raise the level of their structure by whatever means possible to protect against an additional foot of floodwater during the field-testing process.

As a result of the evaluations, the Portadam and Hesco Bastion products were selected as the promising flood-fight technologies to be tested along with the RDFW and sandbags. The Portadam proposal had the best overall combination of technical soundness, operational functionality, and economic feasibility. Hesco Bastion's proposal while technically sound and operationally functional was especially strong in economic feasibility. Contracts with both Portadam and Hesco Bastion were signed on 21 April 2004.