C FORM 195		··· .	U.S. NU	CLEAF	REGULATORY COMMISSION	DOCKET NUMBER 50 - 263
		DE PAR	T 50 DOCKET	MATI	RIAL	FILE NUMBER
:			FROM: Northern States Power Company			DATE OF DOCUMENT 8/29/77
Mr. Victor Stello			Minneapolis, Minnesota L. O. Mayer			DATE RECEIVED 8/31/77
ETTER ZNO	ORIZED		PROP		INPUT FORM	NUMBER OF COPIES RECEIVED
	LASSIFI	ED .				3 SIGNED
SCRIPTION				ENCL	OSU RE	
				i	onsists of response nformation concernin ontainmentnotor	ng the Mark I
			•			
		• •	(2-P)		(1/4" <u>)</u>	
			(2-1)			
LANT NAME: Montice RJL	110 8/31/	77	•			
SAFETY			FOR ACTION	/INFO	the second s	MORE (LTR)
ASSIGNED AD:	<u></u>	DAVIS	······	+	ASSIGNED AD: V BRANCH CHIEF:	
BRANCH CHIEF: (7 PROJECT MANAGER:	┹┈┼╸	DAVIS	•	++	PROJECT MANAGER:	
LICENSING ASSIST	NT:				LICENSING ASSISTAN	Τ:
			<u></u>	╉╋	B. HARLESS	
1			INTERNAL	DISTE		
REG FILES		SY STEMS	SAFETY	TI	PLANT SYSTEMS	SITE SAFETY &
NRC PDR		HEINEMAN			TEDESCO	ENVIRON ANALYSIS
$1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $		SCHROEDE	R		BENAROYA	DENTON & MULLER
1 = (2)				Z	LAINAS	
T&F(2) OFLD LTR GOSSICK & STAFF LT		ENGINE			LAINAS IPPOLITO	DENTON & MULLER CRUTCHFIELD
I & F (2) OFLD LTR GOSSICK & STAFF LT HANAUER		ENGINER	ERING		LAINAS	DENTON & MULLER
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> HANAUFR MTPC	e	ENGINEI KNIGHT BOSNAK	ERING		LAINAS IPPOLITO F. ROSA	DENTON & MULLER CRUTCHFIELD ENVIRO TECH.
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> , HANALIER MTPC CASE <u>LTR</u>		ENGINEI KNIGHT BOSNAK SIHWELI	RING		LAINAS IPPOLITO	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> , HANALIER MTPC CASE <u>LTR</u> BOYD <u>LTR</u>	e	ENGINER KNIGHT BOSNAK SIHWELI PAWLIC	RING		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> , HANALIER MTPC CASE <u>LTR</u>	E	ENGINER KNIGHT BOSNAK SIHWELI PAWLICE	CRING		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> , HANAIJFR MTPC CASE <u>LTR</u> BOYD <u>LTR</u> DE YOUNG <u>LTR</u>		ENGINEH KNIGHT BOSNAK SIHWELI PAWLICH GUIN REACTOR	CRING CI BEET		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EI SENHUT SHAO BAER	DENTON & MULLER CRUTCHFIELD ENVIRO TECH, ERNST BALLARD YOUNGBLOOD SITE TECH.
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> , HANALIER MT PC CASE <u>LTR</u> BOYD <u>LTR</u> DE <u>YOUNG</u> <u>LTR</u> PROJECT MANAGEMENT SKOVHOLT P. COLLINS	2	ENGINEH KNIGHT BOSNAK SIHWELI PAWLICH GUIN REACTON ROSS NOVAK	CI BERT R SAFETY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO BAER BUTLER (2)	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD YOUNGBLOOD
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> , HANAUFR MT PC CASE <u>LTR</u> BOYD <u>LTR</u> DE <u>YOUNG</u> <u>LTR</u> PROJECT MANAGEMENT SKOVHOLT P. COLLINS HOUSTON		ENGINER KNIGHT BOSNAK SIHWELI PAWLICH GUIN REACTOR ROSS NOVAK ROSZTUC	CI BERT R SAFETY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EI SENHUT SHAO BAER	DENTON & MULLER CRUTCHFIELD ENVIRO TECH, ERNST BALLARD YOUNGBLOOD SITE TECH.
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> , HANAUFR MTPC CASE <u>LTR</u> BOYD <u>LTR</u> DE <u>LOUNG</u> <u>LTR</u> PROJECT MANAGEMENT SKOVHOLT P. COLLINS HOUSTON MELTZ		ENGINEH KNIGHT BOSNAK SIHWELI PAWLICH GUIN REACTON ROSS NOVAK	CI BERT R SAFETY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO BAER BUTLER (2)	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD YOUNGBLOOD SITE TECH. GAMMILL (2)
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> HANAIJER MTPC CASE <u>LTR</u> BOYD <u>LTR</u> DE <u>YOUNG</u> <u>LTR</u> PROJECT MANAGEMENT SKOVHOLT P. COLLINS HOUSTON MELTZ HELTEMES		ENGINER KNIGHT BOSNAK SIHWELI PAWLICH GUIZ REACTOI ROSS NOVAK ROSZTOC CHECK	CI BERT R SAFETY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO BAER BUTLER (2)	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD YOUNGBLOOD SITE TECH. GAMMILL (2) SITE ANALYSIS VOLLMER BUNCH
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> , HANAUFR MTPC CASE <u>LTR</u> BOYD <u>LTR</u> DE <u>LOUNG</u> <u>LTR</u> PROJECT MANAGEMENT SKOVHOLT P. COLLINS HOUSTON MELTZ		ENGINEN KNIGHT BOSNAK SIHWELI PAWLICH GUIN REACTON ROSS NOVAK ROSZTOC CHECK	ERING CI BEET R SAFETY ZY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO BAER BUTLER (2)	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD YOUNGBLOOD SITE TECH. GAMMILL (2) SITE ANALYSIS VOLLMER BUNCH J. COLLINS
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> HANAIJER MTPC CASE <u>LTR</u> BOYD <u>LTR</u> DE <u>YOUNG</u> <u>LTR</u> PROJECT MANAGEMENT SKOVHOLT P. COLLINS HOUSTON MELTZ HELTEMES		ENGINER KNIGHT BOSNAK SIHWELI PAWLICE GUIN REACTOR ROSS NOVAK ROSZTOC CHECK AT&I SALTZMA RUTBERG	ERING CI BERT R SAFETY ZY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO BAER BUTLER (2)	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD YOUNGBLOOD SITE TECH. GAMMILL (2) SITE ANALYSIS VOLLMER BUNCH J. COLLINS KREGER
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> , HANAIJER MT PC CASE <u>LTR</u> BOYD <u>LTR</u> DE <u>YOUNG</u> <u>LTR</u> PROJECT MANAGEMENT SKOVHOLT P. COLLINS HOUSTON MELTZ HELTEMES SK		ENGINER KNIGHT BOSNAK SIHWELI PAWLICE GUIA REACTO ROSS NOVAK ROSZTOC CHECK AT&I SALTZMA RUTBERG EXTERNA	ERING CI BERT R SAFETY ZY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO BAER BUTLER (2)	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD YOUNGBLOOD SITE TECH. GAMMILL (2) SITE ANALYSIS VOLLMER BUNCH J. COLLINS KREGER CONTROL NUMBER
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> HANAIJER MTPC CASE <u>LTR</u> BOYD <u>LTR</u> DE <u>YOUNG</u> <u>LTR</u> PROJECT MANAGEMENT SKOVHOLT P. COLLINS HOUSTON MELTZ HELTEMES SK		ENGINER KNIGHT BOSNAK SIHWELI PAWLICH GUII REACTOI ROSS NOVAK ROSZTOC CHECK AT&I SALTZMA RUTBERG EXTERNA	ERING CI BERT R SAFETY ZY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO BAER BUTLER (2)	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD YOUNGBLOOD SITE TECH. GAMMILL (2) SITE ANALYSIS VOLLMER BUNCH J. COLLINS KREGER CONTROL NUMBER
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> HANAIJER MTPC CASE <u>LTR</u> BOYD <u>LTR</u> DE <u>YOUNG</u> <u>LTR</u> PROJECT MANAGEMENT SKOVHOLT P. COLLINS HOUSTON MELTZ HELTEMES SK LPDR: <u>MINNEGFO</u> TIC		ENGINER KNIGHT BOSNAK SIHWELI PAWLICE GUIA REACTO ROSS NOVAK ROSZTOC CHECK AT&I SALTZMA RUTBERG EXTERNA	ERING CI BERT R SAFETY ZY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO BAER BUTLER (2)	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD YOUNGBLOOD SITE TECH. GAMMILL (2) SITS ANALYSIS VOLLMER BUNCH J. COLLINS KREGER CONTROL NUMBER 70150 4
I & F (2) OFLD <u>LTR</u> GOSSICK & STAFF <u>LT</u> HANAHER MTDC CASE <u>LTR</u> BOYD <u>LTR</u> DE <u>YOUNG</u> <u>LTR</u> PROJECT MANAGEMENT SKOVHOLT P. COLLINS HOUSTON MELTZ HELTEMES SK LPDR: <u>MINEGEO</u> TIC NAT LAB		ENGINER KNIGHT BOSNAK SIHWELI PAWLICH GUII REACTOI ROSS NOVAK ROSZTOC CHECK AT&I SALTZMA RUTBERG EXTERNA	ERING CI BERT R SAFETY ZY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO BAER BUTLER (2)	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD YOUNGBLOOD SITE TECH. GAMMILL (2) SITE ANALYSIS VOLLMER BUNCH J. COLLINS KREGER CONTROL NUMBER 777243029/
I & E (2) OFLD $\angle T & \\ GOSSICK & STAFF \angle T \\ HANAIJER MTPC CASE \angle T & \\ DE & UNC & \angle T & \\ PROJECT MANAGEMENT SKOVHOLT P_ COLLINS HOUSTON MELTZ HELTEMES SK LPDR: MINNEGEO TIC$		ENGINER KNIGHT BOSNAK SIHWELI PAWLICK REACTOR ROSS NOVAK ROSZTOC CHECK AT&I SALTZMA RUTBERG EXTERNA MAC NSIC	ERING CI BERT R SAFETY ZY		LAINAS IPPOLITO F. ROSA OPERATING REACTORS STELLO EISENHUT SHAO BAER BUTLER (2)	DENTON & MULLER CRUTCHFIELD ENVIRO TECH. ERNST BALLARD YOUNGBLOOD SITE TECH. GAMMILL (2) SITS ANALYSIS VOLLMER BUNCH J. COLLINS KREGER CONTROL NUMBER 70150 4

,

NORTHERN STATES POWER COMPANY

MINNEAPOLIS, MINNESOTA 55401

August 29, 1977

Mr Victor Stello, Director Division of Operating Reactors c/o Distribution Services Branch, DDC, ADM U S Nuclear Regulatory Commission Washington, DC 20555

小山口的山

Dear Mr Stello:

MONTICELLO NUCLEAR GENERATING PLANT Docket No. 263 License No. DPR-22

Removal of Drywell-Wetwell Differential Pressure Controls

On August 23, 1977 representatives of Northern States Power Company met with members of your staff to review progress of the Mark I Containment modifications at Monticello. We also addressed the NRC criteria for removal of differential pressure controls which were transmitted to us with a letter from Mr D K Davis, dated May 19, 1977. Enclosure (1) contains copies of the view graphs used during our presentation during the August 23 meeting.

During this meeting we were informed by your staff that to remove differential pressure controls we must either demonstrate compliance with the criteria in the May 19 letter or the loads must be less than code allowable. It is shown in Tables 2.2-2 and Tables 2.2-3 of enclosure (2) that at the maximum torus water level the strength ratios of all critical structural elements are either less than 0.5 or code allowable. The loads used to derive these ratios were determined in accordance with the information contained in the May 19 letter.

Since the Staff criteria for removal of differential pressure controls are satisfied at Monticello we hereby withdraw our License Amendment Request dated April 15, 1977 and our License Amendment Request dated November 5, 1976, which was superseded by the April 15 submittal, and the commitments contained in our March 1, 1976 letter to you on this subject. The amendment requests contained revisions to the Technical Specifications covering the drywell to suppression chember differential pressure, containment water volume and differential pressure instrumentation.

For your information, we have provided the strength ratios of the critical structural elements at the maximum torus water level without delta-P and without the 1.33 multiplier. This information is contained in Tables 2.2-la, 2.2-2a and 2.2-3a of enclosure (2), and demonstrates that all elements meet code allowable or are very close to it. The 1.33 multiplier was dropped for this case on the

772430291

NORTHERN STATES POWER COMPANY

Mr Victor Stello Page 2 August 29, 1977

basis of the information presented to your staff by General Electric on August 24, 1977, which demonstrated that the pool swell loads from the one quarter scale test program are approximately 80% of the values reported in the Short Term Program Report.

Yours very truly,

for PE

L O Mayer, PE Manager of Nuclear Support Services

LOM/LLT/ak

cc: J G Keppler G Charnoff MPCA - Attn: J W Ferman

UNITED STATES NUCLEAR REGULATORY COMMISSION

NORTHERN STATES POWER COMPANY

MONTICELLO NUCLEAR GENERATING PLANT

Docket No. 50-263

License No. DPR-22

LETTER DATED AUGUST 29, 1977 RESPONDING TO NRC REQUESTS FOR INFORMATION ON CONTAINMENT DESIGN

Northern States Power Company, a Minnesota corporation, by this letter dated August 29, 1977 hereby submits information in response to NRC requests for information concerning the Mark I Containment.

This request contains no restricted or other defense information.

NORTHERN STATES POWER COMPANY

Wachter

Vice President, Power Production & System Operation

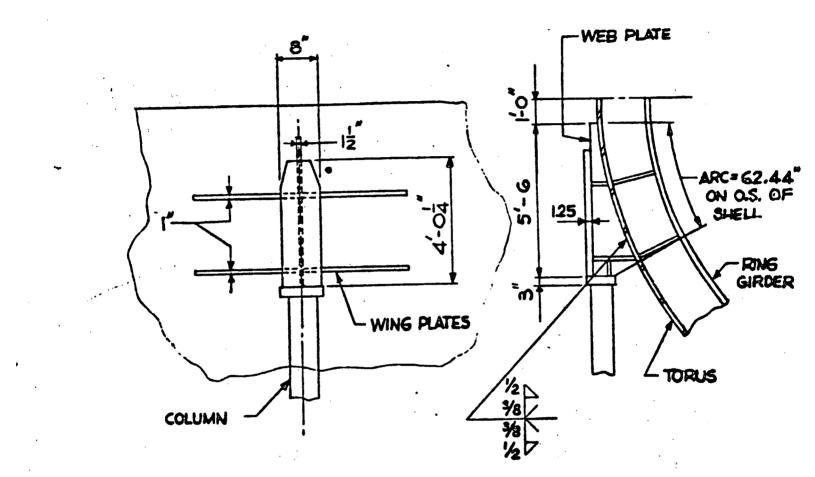
On this 29th day of August, 1977 , before me a notary public in and for said County, personally appeared L J Wachter, Vice President, Power Production and System Operation, and being first duly sworn acknowledged that he is authorized to execute this document on behalf of Northern States Power Company, that he knows the contents thereof and that to the best of his knowledge, information and belief, the statements made in it are true and that it is not interposed for delay.

TORUS SUPPORT COLUMN CONNECTION

PURPOSE OF REINFORCEMENT

COMPLETE SUPPORT REINFORCEMENT CHAIN

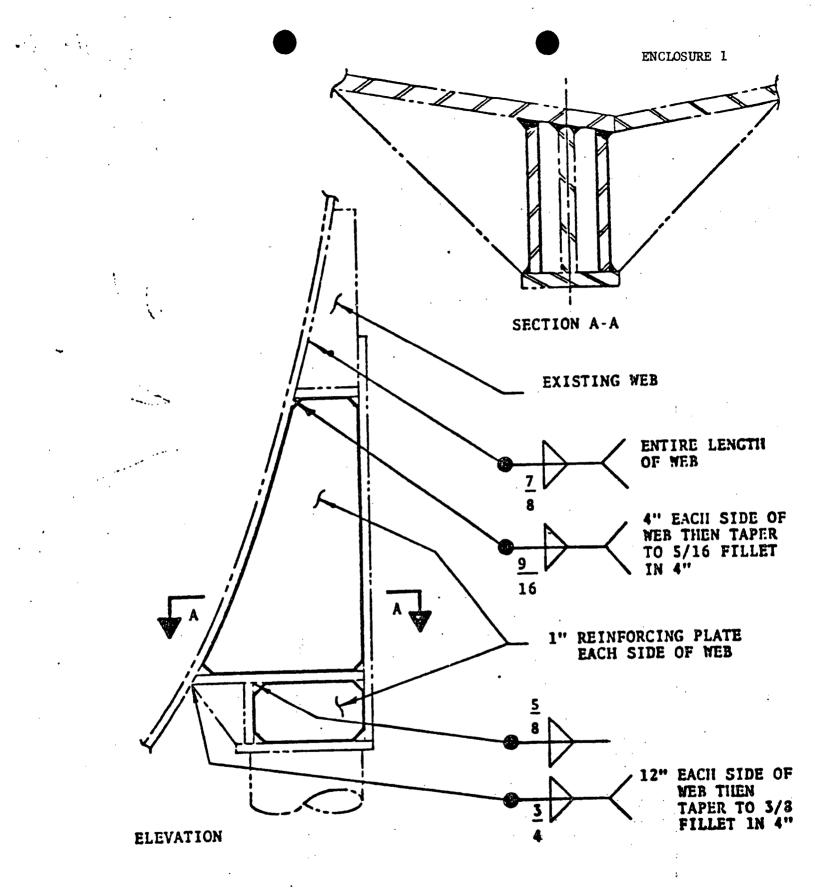
PIN CONNECTION AT BASE OF COLUMN AND COLUMNS HAVE BEEN PREVIOUSLY REINFORCED


LOAD BASIS FOR STRENGTH RATIO CALCS.

PLANT UNIQUE ANALYSIS REPORT (SHORT TERM PROGRAM)

- POOL SWELL + DEAD LOAD + SEISMIC WAP

IS COL. = 654.4K OS COL. = 847.2K


-1-

UNREINFORCED SUPPORT COLUMN TO SHELL CONNECTION

-2-

REINFORCED SUPPORT COLUMN TO SHELL CONNECTION

TORUS SUPPORT CAPACITIES

COMPONENT	CODE ALLOWABLE	ULTIMATE	STRENGTH RATIO
SHELL CONNECTION	940K	2820K	0.30
COLUMN	1189K	-3288K	0.26
PIN CONNECTION	993K	296 0K	0.29

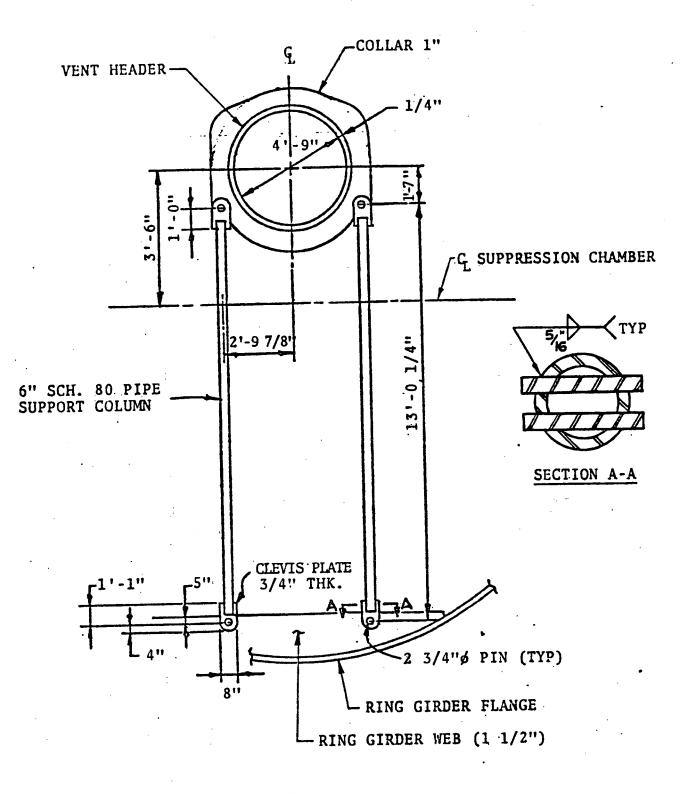
STP DOWNWARD LOAD W/ \triangle P FOR O.S. COLUMN = 847K

SUMMARY

INCREASED SIZE OF EXISTING WELDS TO FULLY DEVELOP STRENGTH OF 1 1/2" WEB PLATE

ADDED 1" REINFORCING PLATES PARALLEL TO EXISTING WEB

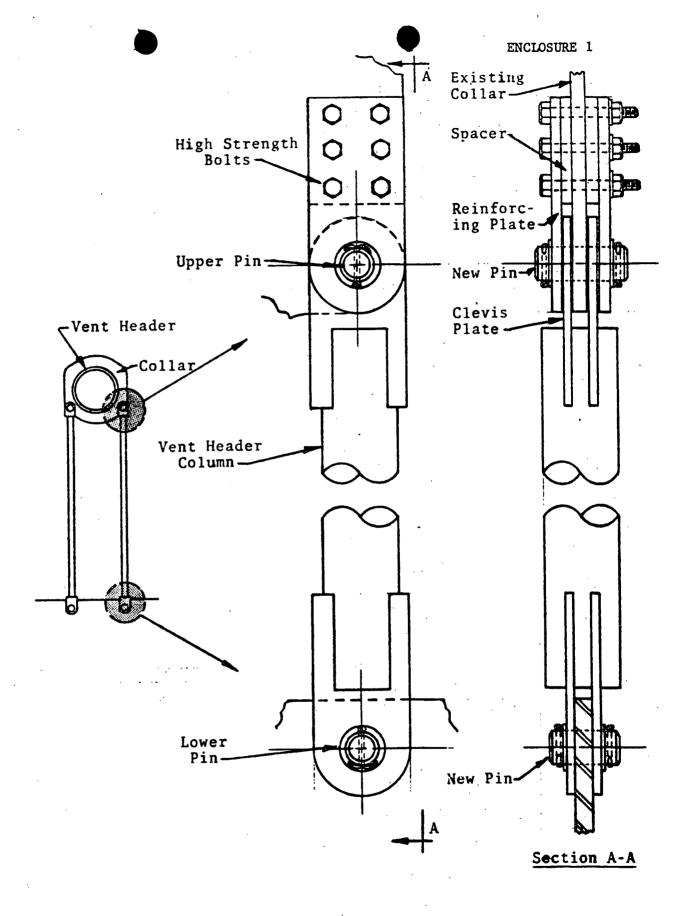
PERFORMED FINITE ELEMENT ANALYSIS OF
 REINFORCED CONNECTION

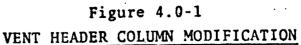

REPLACED APPROXIMATE MANUAL CALCULATION OF CONNECTION STRENGTH WITH ACCURATE COMPUTER ANALYSIS

INCREASED CODE ALLOWABLE STRENGTH OF CONNECTION TO BE NEAR THAT OF COLUMN AND PIN CONNECTION AT BASE OF COLUMN

VENT HEADER SUPPORT COLUMN CONNECTION

- PURPOSE
 - INCREASE CONNECTION CAPACITY TO BE NEAR THAT OF COLUMN IN TENSION
 - CONNECTION CAPACITY 74 KIPS
 - PIPE COL. CAPACITY 151 KIPS


- LOAD BASIS
 - PLANT UNIQUE ANALYSIS REPORT (SHORT TERM PROGRAM)
 - POOL SWELL IMPACTING VENT HEADER
 MAX. NET TENSION = 131 KIPS



÷ ;.

Figure 3.3-1 VENT HEADER SUPPORTS

-7-

CODE ALLOWABLE CAPACITY

1 1 2

ELEMENT	STRESS	UNREINF.	REINF.
COLLAR	SHEAR	88 ^K	220 ^K
UPPER PIN	SHEAR	143 ^K	911 ^K
	BEARING	74 ^K	141 ^K
	BENDING	140 ^K	926 ^ĸ
PIN PLATE	TENSION	134 ^K	134 ^к
	SHEAR	132 ^K	132 ^K
	WELD SHEAR	223 ^K	223 ^K
PIPE COL.	TENSION	151 ^ĸ	151 ^K
LOWER PIN	SHEAR	143 ^K	548 ^K
	BEARING	111 ^ĸ	141 ^K
	BENDING	117 ^K	449 ^ĸ
RING WEB	SHEAR	138 ^K	138 ^K

SYSTEM UNREINFORCED CAPACITY = 74^{K} REINFORCED CAPACITY = 132^{K}

-9-

ULTIMATE CAPACITY

ELEMENT	STRESS	UNREINF.	REINF.
COLLAR	SHEAR	276 ^K	690 ^K
UPPER PIN	SHEAR	606 ^K	1885 ^K
	BEARING	308 ^к	462 ^K
	BENDING	373 ^K	2469 ^K
PIN PLATE	TENSION	548 ^ĸ	548 ^K
	SHEAR	413 ^K	413 ^K
	WELD SHEAR	589 ^K	589 ^K
PIPE COL.	TENSION	462 ^ĸ	462 ^K
LOWER PIN	SHEAR	606 ^K	1134 ^K
	BEARING	462 ^K	462 ^K
	BENDING	313 ^K	1197 ^K
RING WEB	SHEAR	431 ^K	431 ^K

SYSTEM UNREINFORCED CAPACITY = 276^{κ} REINFORCED CAPACITY = 413^{κ}

-10-

VENT HEADER SUPPORT CAPACITIES

.

· · · · · ·	CODE ALLOWABLE	ULTIMATE	STRENGTH MATE RATIO		
PRIOR TO REINFORCEMENT	74K	276K	0.47		
AFTER REINFORCEMENT	132K	413K	0.32		

STP LOAD = 131 KIPS

•

۰, i

DRYWELL/WETWELL DIFFERENTIAL PRESSURE REMOVAL

• NRC CRITERIA

DETERMINE LOADS W/O △ P USING STP REPORT ADDENDUM 2

INCREASE LOADS W/O △P BY 33%

LIMITING STRENGTH RATIO = 0.50

TABLE 2.1-1

TORUS SUPPORT COLUMN MAXIMUM COMPRESSIVE LOADS

1 ·	· 2	3	4	5	6	7
COLUMN	POOLSWELL LOAD (ΔΡ) (KIPS) (1)	ADJUSTED POOLSWELL LOAD (KIPS) (2)	STEEL & WATER LOAD (KIPS) (1)	VERTICAL SEISMIC LOAD (KIPS) (1)	HORIZONTAL SEISMIC LOAD (KIPS) (1)	TOTAL LOAD (KIPS) (3)
INSIDE	493.3	795.3	147.6	8.8	4.7	956.4
OUTSIDE	655.9	1057.4	172.6	10.4	8.3	1248.7

AT MINIMUM WATER LEVEL

NOTES:

• • • •

- (1) NSP-01-140, Table 6.1.1-1, minimum submergence, Reference 2
- (2) "Acceptance Criteria for the Removal or Reduction of Drywell-Wetwell Differential Pressure Controls"
 - $493.3 \times \left(\frac{1}{.825}\right) \times (1.33) = 795.3$ $655.9 \times \left(\frac{1}{.825}\right) \times (1.33) = 1057.4$
- (3) Summation of columns 3, 4, 5, and 6

TABLE 2.1-2

DOWNWARD LOADS

ULTIMATE CAPACITIES AND STRENGTH RATIOS

AT MINIMUM WATER LEVEL

	1	2	3	4
	COMPONENT	LOAD (KIPS) (1)	STP ULTIMATE CAPACITY (KIPS)	ULTIMATE STRENGTH RATIO
	SHELL CONNECTION		2820 (2)	. 34
INSIDE	COLUMN	956.4	3140 (3)	. 30
I	PIN CONNECTION		2960 (3)	. 32
	SHELL CONNECTION		2820 (2)	.44
OUTSIDE	COLUMN	1248.7	3288 (3)	. 38
0	PIN CONNECTION		2960 (3)	. 42

NOTES:

•

- (1) Adjusted no ΔP load for minimum submergence from Table 2.1-1
- (2) Capacities per NSP-01-176, Reference 4
- (3) Capacities per NSP-01-140, Reference 2

TABLE 2.1-3

STRESS INTENSITIES AND STRENGTH RATIOS

FOR RING AND SHELL AT MINIMUM WATER LEVEL

1	2	3	4	5	6	7	8	9
COMPONENT		STRESS NSITY SI) (1)	ADJUSTED STRESS I (KS	NTENSITY	САР	LTIMATE Acity KSI)		MATI: 11 RATIO
	P _L	P _L + Q	PL	P _L + Q	P _L	P _L + Q	P _L	P _L + Q
RING	16.6	16.6	23.9	23.9	76.0	76.0	. 31	.31
SHELL	21.6	24.0	32.2	36.2	76.0	76.0,	. 4 2	.48

NOTES:

- (1) Stress from NSP-01-140 for minimum submergence with Δp (1.0 psi), Reference 2.
- (2) Pool Swell loads without Δp increased by 1/3 and added to dead load plus seismic
- (3) $P_1 = Local primary membrane stresses$
- (4) Q = Secondary stresses

ENCLOSURE 1

ENCLOSURE 1

Table 2.2-1

TORUS SUPPORT COLUMN MAXIMUM COMPRESSIVE LOADS

1	2	3	4	5	6	7
COLUMN	POOLSWELL LOAD (ΔP) (KIPS) (1)	ADJUSTED POOLSWELL LOAD (KIPS) (2)	STEEL & WATER LOAD (KIPS) (3)	VERTICAL SEISMIC LOAD (KIPS) (3)	HORIZONTAL SEISMIC LOAD (KIPS) (3)	TOTAL LOAD (KIPS) (4)
INSIDE	530.9	855.9	164.0	9.8	5.2	1034.9
OUTSIDE	705.9	1138.0	191.8	11.6	9.2	1 3 50.6

AT MAXIMUM WATER LEVEL

NOTES:

(1) NSP-01-168, Table 2, Maximum submergence, Reference 5

(2) "Acceptance Criteria for the Removal or Reduction of Drywell-Wetwell Differential Pressure Controls"

$$530.9 \times (\frac{1}{.825}) \times (1.33) = 855,9$$

705.9 x
$$(\frac{1}{.825})$$
 X $(1.33) = 1138.0$

- (3) Table 2, NSP-01-168
- (4) Summation of Columns 3, 4, 5, and 6

TABLE 2.2-2

DOWNWARD LOADS

ULTIMATE CAPACITIES AND STRENGTH RATIOS

AT MAXIMUM WATER LEVEL

	1	2	3	4
	COMPONENT	LOAD (KIPS) (1)	STP ULTIMATE CAPACITY (KIPS)	ULTIMATE STRENGTH RATIO
	SHELL CONNECTION		2820 (2)	. 37
INSIDE	COLUNN	1034.9	3140 (3)	. 33
1	PIN CONNECTION		2960 (3)	.35
·	SHELL CONNECTION		2820 (2)	. 48
OU'TS I DE	COLUMN	1350.6	3288 (3)	.41
<u></u>	PIN CONNECTION		2960 (3)	.46

NOTES:

- (1) Adjusted no AP load for maximum submergence from Table 2.2-1
- (2) Capacities per NSP-01-176, Reference 4
- (3) Capacities per NSP-01-140, Reference 2

-17-

STRUCTURAL CAPACITY SUMMARY

-18

- TORUS SUPPORT COLUMN CONNECTIONS HAVE BEEN REINFORCED
- VENT HEADER SUPPORT COLUMN CONNECTION REINFORCEMENT IS PLANNED
- NRC CRITERIA FOR △P REMOVAL DURING
 SRV DISCHARGE TEST IS SATISFIED

TABLE 2.2-3

STRESS INTENSITIES AND STRENGTH RATIOS

FOR RING AND SHELL AT MAXIMUM WATER LEVEL

1	2	3	4	5	6	7	8	9
COMPONENT	MAXIMUM STRESS INTENSITY (KSI) (1)		ADJUSTED MAXIMUM STRESS INTENSITY (KSI) (2)		Y CAPACITY ST			MATE H RATIO
:	PL	P _L + Q	PL	$P_{L} + Q$	PL	P _L + Q	PL	$P_L + Q$
RING	16.6	16.6	25.4	25.4	76.0	76.0	. 33	. 33
SHELL	21.6	24.0	34.4	38.7	76.0	76.0	.45	MEETS CODE

NOTES:

19-

(1) Stress from NSP-01-140 for minimum submergence with Δp (1.0 psi), Reference 2.

- (2) Pool swell loa's with Δp increased by 1/3 and added to dead load plus seismic
- (3) $P_1 = Local primary membrane stresses$
 - (4) Q = Secondary stresses

ENCLOSURE 1

TABLE 2.2-3A

STRESS INTENSITIES AND STRENGTH RATIOS

r1		-	4	5	6	7	8	9
1 COMPONENT	2 MAXIMUM INTEN WITHOU (ksi)	SITY	4 CODE ALI STRESS IN (ksi)	OWABLE	STP ULT CAPAC (ks	CITY	STRE RAT	NGTH
	P L	P _L +Q	P _L	P _L +Q	P _L	P _L +Q	P _L	P _L +Q
RING	20.5	20.5	19.3	57.8	76.0	76.0	1.06	.35 MEETS CODE
SHELL	26.9	30.1	28.95	57.8	76.0	76.0	.93 MEETS CODE	.52 MEETS CODE

FOR RING AND SHELL AT MAXIMUM WATER LEVEL

NOTES:

÷

- (1) Pool swell loads without Δp added to dead load plus seismic
 - (2) NSP-01-140
 - (3) P_L = Local primary membrane stresses
 - (4) Q = Secondary stresses

NSP-11-019 Revision 1 ENCLOSURE 2

NSP-11-019 Revision 1

TABLE 2.2-2

DOWNWARD LOADS

ULTIMATE CAPACITIES AND STRENGTH RATIOS

AT MAXIMUM WATER LEVEL

1		2	3	4	5	6
COMPONENT		LOAD CODE ALLOWABL LOAD (KIPS) (1) (KIPS)		ULTIMATE CAPACITY (KIPS)	CODE ALLOWABLE RATIO	ULTIMATE CAPACITY RATIO
INSIDE	SHELL CONNECTION		940 (2)	2820 (2)	1.10	. 37
	COLUMN	1034.9	1117 (3)	31 2 1 (3)	.93	MEETS CODE
	PIN CONNECTION		993 (3)	2960 (3)	1.04	. 35
OUTSIDE	SHELL CONNECTION		940 (2)	2820 (2)	1.44	. 48
	COLUMN	1350.6	1166 (3)	3172 (3)	1.16	.43
	PIN CONNECTION		993 (3)	2960 (3)	1.36	.46

NOTES:

a vệ v 🕾.

- (1) Adjusted no ΔP load for maximum submergence from Table 2.2-1
- (2) Capacities per NSP-01-176, Reference 4
- (3) Capacities per NPS-01-140, Reference 2

TABLE 2.2-3

STRESS INTENSITIES AND STRENGTH RATIOS

FOR RING AND SHELL AT MAXIMUM WATER LEVEL

1	2	3	4	5	6	7	8	9
COMPONENT	ADJUSTED MAXIMUM STRESS INTENSITY (ksi) (1)		CODE ALLOWABLE STRESS INTENSITY (ksi) (2)		STP ULTIMATE CAPACITY (ksi)		STRENGTH RATIO ULTIMATE\CODE	
	P _L	P _L + Q	P _L	$P_L + Q$	P _L	P _L + Q	P _L	P _L + Q
RING	25.4	25.4	19.3	57.8	76.0	76.0	1.32	.44 MEETS CODE
SHELL	34.4	38.7	28.95	57.8	76.0	76.0	1.19 .45	.67 MEETS CODE

NOTES:

မှု

- (1) Pool swell loads without ΔP increased by 1/3 and added to dead load plus seismic
- (2) NSP-01-140
- (3) P_L = Local primary membrane stresses
- (4) Q = Secondary stresses

NSP-11-019 Revision 1

ENCLOSURE

N

ENCLOSURE 2

TABLE 2.2-1A

NSP-11-019 Revision 1

TORUS SUPPORT COLUMN MAXIMUM COMPRESSIVE LOADS

1	2	3	. 4	5	6	7
COLUMN	POOLSWELL LOAD ΔP (kips) (1)	POOLSWELL LOAD WITHOUT ΔP (kips)(2)	STEEL & WATER LOAD (kips) (3)	VERTICAL SEISMIC LOAD (kips)(3)	HORIZONTAL SEISMIC LOAD (kips)(3)	TOTAL LOAD (kips) (4)
INSIDE	530.9	643.5	164.0	9.8	5.2	822.5
OUTSIDE	705.9	855.6	191.8	11.6	9.2	1068.2

AT MAXIMUM WATER LEVEL

NOTES:

- (1) NSP-01-168, Table 2, Maximum submergence, Reference 5
- (2) Determination of Poolswell Load without Drywell-Wetwell differential pressure
 - $530.9 \times (\frac{1}{.825}) = 643.5$

$$705.9 \times (\frac{1}{.825}) = 855.6$$

- (3) Table 2, NSP-01-168
- (4) Summation of Columns 3, 4, 5, and 6

NSP-11-019 Revision 1

TABLE 2.2-2A

DOWNWARD LOADS

ULTIMATE CAPACITIES AND STRENGTH RATIOS

AT MAXIMUM WATER LEVEL

1		2	3	4	5	6
COMPONENT		LOAD (KIPS). (1)	CODE ALLOWABLE LOAD (KIPS)	ULTIMATE CAPACITY (KIPS)	CODE ALLOWABLE RATIO	ULTIMATE CAPACITY RATIO
INSIDE	SHELL CONNECTION		940 (2)	2820 (2)	.88	MEETS CODE
	COLUMN	822.5	1120 (3)	.3131 (3)	.73	MEETS CODE
	PIN CONNECTION		993 (3)	2960	.83	MEETS CODE
OUTSIDE	SHELL CONNECTION		940 (2)	2820 (2)	1.14	. 38
	COLUMN	1068.2	1178 (3)	3236 (3)	.91	MEETS CODE
	PIN CONNECTION		99 3 (3)	2960 (3)	1.08	. 36

NOTES:

- (1) Poolswell Load without ΔP for maximum submergence from Table 2.2-1A
- (2) Capacities per NSP-01-176, Reference 4
- (3) Capacities per NSP-01-140, Reference 2