EXHIBIT B

License Amendment Request Dated August 2, 1989

Docket No. 50-263

License No. DPR-22

Exhibit B consists of marked up pages from the Monticello Technical Specifications showing the proposed changes listed below:

8908140302 89080 ADŪČK

PDR

050

<u>Page:</u>

Page ii, Table of Contents Page vi, List of Tables Page 170, Section 3.7.D.1 Page 171, Sectons 3.7.D.2 and 4.7.D.2 Page 171a, Sections 3.7.E and 4.7.E Page 172, Table 3.7.1 Page 173, Table 3.7.1, continued Page 174, Table 3.7.1, continued Page 182, Section 3.7.D "Primary Containment Isolation Valves", Bases

[]

		Page
3.4 and 4.4	Standby Liquid Control System	93
	A. Normal Operation	93
	B. Operation with Inoperable Components	94
	C. Volume-Concentration Requirements	95
	C. VOTUME-CONCENCTACION REQUITEMENTS	
	3.4 and 4.4 Bases	99
3.5 and 4.5	Core and Containment Cooling Systems	101
	A. Core Spray System	101
	B. LPCI Subsystem	103
	C. RHR Service Water System	106
	D. HPCI System	108
	E. Automatic Pressure Relief System	100
		109
	F. RCIC System	111
	G. Minimum Core and Containment Cooling	110
	System Availability	112
	H. Recirculation System	114
	I. Deleted	1
	3.5 Bases	115
	4.5 Bases	120
3.6 and 4.6	Primary System Boundary	121
	A. Reactor Coolant Heatup and Cooldown	121
	B. Reactor Vessel Temperature and Pressure	122
	C. Coolant Chemistry	123
•	D. Coolant Leakage	125
	E. Safety/Relief Valves	120
	F. Deleted	127
		100
	G. Jet Pumps	128
	H. Snubbers	129
	3.6 and 4.6 Bases	144
3.7 and 4.7	Containment Systems	156
	A. Primary Containment	156
	B. Standby Gas Treatment System	166
	C. Secondary Containment	169
	D. Primary Containment Isolation Valves	170
	E. Combustible Gas Control System	1772
	3.7 Bases	175
	4.7 Bases	183
	H./ Dages	100

.

۰

 \mathbf{i}

LIST OF TABLES

<u>Table N</u>	<u>o.</u>	<u>Page</u>
3.1.1	Reactor Protection System (Scram) Instrument Requirements	28
4.1.1	Scram Instrument Functional Tests - Minimum Functional Test Frequencies for Safety Instrumentation and Control Circuits	32
4.1.2	Scram Instrument Calibration - Minimum Calibration Frequencies for Reactor Protection Instrument Channels	34
3.2.1	Instrumentation that Initiates Primary Containment Isolation Functions	49
3.2.2	Instrumentation that Initiates Emergency Core Cooling Systems	52
3.2.3	Instrumentation that Initiates Rod Block	57
3.2.4	Instrumentation that Initiates Reactor Building Ventilation Isolation and Standby Gas Treatment System Initiation	59
3.2.5	Instrumentation that Initiates a Recirculation Pump Trip and Alternate Rod Injection	60
3.2.6	Instrumentation for Safeguards Bus Degraded Voltage and Loss of Voltage Protection	60a
3.2.7	Instrumentation for Safety/Relief Valve Low-Low Set Logic	60Ъ
3.2.8	Other Instrumentation	60 d
3.2.9	Instrumentation for Control Room Habitability Protection	6 0e
4.2.1	Minimum Test and Calibration Frequency for Core Cooling, Rod Block and Isolation Instrumentation	61
(-3.7.1	Primary Containment Isolation	172
3.8.1	Radioactive Liquid Effluent Monitoring Instrumentation	189i
3.8.2	Radioactive Gaseous Effluent Monitoring Instrumentation	198k
4.8.1	Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements	198m
4.8.2	Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements	19 8n
4.8. 3	Radioactive Liquid Waste Sampling and Analysis Program	19 8 p
4.8.4	Radioactive Gaseous Waste Sampling and Analysis Program	198s

REV_115_5/30/89

3.0	LIMITING CONDITIONS FOR OPERATION	4.0	SURVEI	LLANCE REQUIREMENTS
D.	reactor core, operations with a potential for reducing the shutdown margin below that specified in specification 3.3.A, and handling of irradiated fuel or the fuel cask in the secondary containment are to be immediately suspended if secondary containment integrity is not main- tained. Primary Containment Isolation Valves Primary Containment Isolation Valves Primary Containment Isolation Valves I. During reactor power operating conditions, all isolation valves [listed in Table 3.7.1] and all primary system instrument line flow check valves shall be operable except as specified in 3.7.D.2.	D.	1. The sur	y Containment Isolation Valves e primary containment isolation valve cveillance shall be performed as follows: At least once per operating cycle the operable isolation valves that are
	as specified in 5.7.0.2.			power operated and automatically initiated shall be tested for simulated automatic initiation and closure times.
			b.	At least once per operating cycle the primary system instrument line flow check valves shall be tested for proper operation.
			c.	At least once per quarter
	· · ·			(1) All normally open power-operated isolation valves (except for the main steam line power-operated isolation valves) shall be fully closed and reopened.

<<u>REV_54_3/27/81</u>-

3.0 LIMITING CONDITIONS FOR OPERATION	4.0 SURVEILLANCE REQUIREMENTS
 LIMITING CONDITIONS FOR OPERATION In the event any isolation valve specified in Table 3.7.1 becomes inoperable, reactor operation in the run mode may continue provided at least one valve in each line having an inoperable valve is closed. If Specification 3.7.D.1 and 3.7.D.2 cannot be met, initiate normal orderly shutdown and have reactor in the cold shutdown condition within 24 hours. 	 4.0 SURVEILLANCE REQUIREMENTS c. At least once per quarter - Continued (2) With the reactor power less than 75% of rated, trip main steam isolation valves (one at a time) and verify closure time. d. At least once per week the main steam-line power-operated isolation valves shall be exercised by partial closure and subsequent reopening. 2. Whenever an isolation valve (Isted in Table 3.7.1) is inoperable, the position of at least one fully closed valve in each line having an inoperable valve shall be recorded daily. Primary Containment automatic 3. A isolation valve (Isted in Table 3.7.1) shall be demonstrated Operable prior to returning the valve to service after maintenance, repair, or replacement work is performed on the valve or its associated actuator, control, or power circuit by performance of a cycling test and verification of operating time. 4. The seat seals of the drywell and suppression chamber 18-inch purge and vent valves shall be replaced at least once every five years.

3.0 LIMITING GAS CONTROL SYSTEM	4.0 SURVEILLANCE REQUIREMENTS			
 E. Combustible Gas Control System 1. Two separate and independent Combustible Gas Control System trains shall be operable at all times whenever the reactor is in the run mode except as specified in 	 E. Combustible Gas Control System 1. At least once an operating cycle, perform the following: a. Calibrate the following instrumentation 			
 Section 3.7.E.2 and 3.7.E.3 below. 2. After one of the Combustible Gas Control System train(s) is made or found to be inoperable for any reason, restore the inoperable train to operable status within 30 days or submit a special report to the Commission within the next 30 days which includes the following information: Identification of the inoperable equipment or subsystems and the reason for inoperability 	 and control circuits 1. Inlet flow indicator 2. Total Flow indicator 3. Return gas high temperature 4. High reaction chamber temperature b. Perform a resistance to ground test on all heater electrical circuits c. Verify through a visual examination that there is no evidence of abnormal conditions. 			
 Action(s) to be taken to restore equipment to operable status, and Summary description of action(s) taken to prevent recurrence. 	 At least once every six months verify the recombiner reaction chamber operability by verifying that the outlet temperature exceeds 600°F within one hour and that heater current is within 5% of rated current when the power setting is increased to maximum. 			
3. With both of the Combustible Gas Control Control System trains inoperable for any reason, restore at least one train to operable status within 30 days or initiate an orderly shutdown of the reactor and be in the cold shutdown condition within 24 hours.	 3. The leak tightness of the recombiners and associated piping shall be verified during each shutdown when a Type A overall integrated containment leakage test is required by either: a. Venting the recombiner trains to the containment during the Type A test, or h. Performing a separate leakage test of both recombiner trains and adding the results to the Type A test leakage. 			

Next Page is 175

1752 172 REV 85-12/3/85

3.7/4.7

	T	Num	per of	Maximum	
Isolation Group	Valve Identification	Va Inboard	alves 0utboard	Operating Time (Sec)	Normal Position
1	Main Steam Line Isolation	4	4	5*	Open
1	Main Steam Line Drain	1	1	60	Closed
1	Recirculation Loop Sample Line	1	1	60	Open
2	Drywell Floor Drain		2	60	Open
2	Drywell Equipment Drain		2	60	Open
2	Drywell Vent	DELE	1 E 2	15**	Closed
2	Drywell Vent Bypass	DEL	1	15**	Closed
2	Drywell Purge Inlet		. 2	15**	Closed
2	Drywell and Suppression Chamber Air Makeup		1	15**	Closed
2	Suppression Chamber to Drywell N ₂ Recirculation		1	60	Closed
2	Suppression Chamber Vent		2	15**	Closed
2	Suppression Chamber Vent Bypass		1	15**	Closed
2	Suppression Chamber Purge Inlet		1	15**	Closed
2	Shutdown Cooling System	1	1	120	Closed

		TABLE 3.7.1, cc			
	PRIMA	ARY CONTAINMENT	ISOLATION		
					· · · · · · · · · · · · · · · · · · ·
Isolation Croup	Valve Identification		per of alves Outboard	Maximum Operating Time (Sec)	Normal Position
2	Shutdown Cooling System		1	120	Closed
2	Shutdown Cooling System	DELE	E 1	120	Closed
2	Reactor Head Cooling	1	1	120	Closed
2	Combustible Gas Control	\square	8	60	Closed
3	Cleanup Demineralizer System	1	Í Í	40	0pen
3	Cleanup Demineralizer System		1	40	Open
4	HPCI Turbine Steam Supply	1	1	40	Open
5	RCIC Turbine Steam Supply	1	1	30	Open
NOTE: Is	olation Groupings are as follows:			\sim	
Gre	oup 1: The valves in Group 1 are 1. Reactor low low water 2. Main steam line high 3. Main steam line high 4. Main steam line tunne 5. Main steam line low p	level radiation flow l high temperat	ture	wing conditions	:
Gr	Group 2: The actions in Group 2 are initiated by any one of the following conditions: 1. Reactor low water level 2. High Drywell pressure				
NOTE: Man	ual override is provided to permit	CGCS operation	n during Grou p	II isolation.	

	TABLE 3.7.1, continued
	PRIMARY CONTAINMENT ISOLATION
	DELETE
Group 3:	The actions in Group 3 are initiated hy reactor low water level or high drywell pressure.
Group 4:	Isolation values in the high pressure coolant injection system (HPCI) are closed upon any one of the following signals: 1. HPCI steam line high flow 2. HPCI steam line low pressure 3. High temperature in the vicinity of the HPCI steam line
Group 5:	Isolation valves in the reactor core isolation cooling system (RCIC) are closed upon any one of the following signals: 1. RCIC steam line high flow
	 RCIC steam line low pressure RCIC steam_line low pressure High temperature in the vicinity of the RCIC steam line

Bases Continued:

ł

While only a small amount of particulates are released from the primary containment as a result of the loss of coolant accident, high-efficiency particulate filters before and after the charcoal filters are specified to minimize potential particulate release to the environment and to prevent clogging of the charcoal adsorbers. The charcoal adsorbers are installed to reduce the potential release of radioiodine to the environment. The in-place test results should indicate a system leak tightness of less than 1% bypass leakage for the charcoal adsorbers using halogenated hydrocarbon and a HEPA filter efficiency of at least 99% removal of DOP particulates. Laboratory carbon sample test results indicate a radioactive methyl iodide removal efficiency for expected accident conditions. Operation of the standby gas treatment circuits significatly different from the design flow will change the removal efficiency of the HEPA filters and charcoal adsorbers. If the performance requirements are met as specified, the calculated doses would be less than the guidelines stated in 10 CFR 100 for the accidents analyzed.

D. Primary Containment Isolation Valves

Double isolation values are provided on lines penetrating the primary containment. Closure of one of the values in each line would be sufficient to maintain the integrity of the pressure - Containment, suppression system Automatic initiation is required to minimize the potential leakage paths from the containment in the event of a loss-of-coolant accident. Details of the Isolation values are discussed in Section 5.2 and from the potential between of the potential solution Primary Containment automatic isolation values, including maximum operating time is given in USAR Table 5.231

The function of the Combustible Control System (CGCS) is to maintain oxygen concentrations in the post-accident containment atmosphere below combustible concentrations. Oxygen may be generated in the hours following a loss of coolant accident from radioalysis of reactor coolant.

The Technical Specifications limit oxygen concentrations during operation to less than four percent by volume during operation. The maintenance of an inert atmosphere during operation precludes the build-up of a combustible mixture due to a fuel metal-water reaction. The other potential mechanism for generation of combustible mixtures is radioalysis of coolant which has been found to be small.

A special report is required to be submitted to the Commission to outline CGCS equipment failures and corrective actions to be taken if inoperability of one train exceeds thirty days. In addition, if both trains are inoperable for more than 30 days, the plant is required to shutdown until repairs can be made.

3.7 BASES

EXHIBIT C

License Amendment Request Dated August 2, 1989

Docket No. 50-263

License No. DPR-22

Exhibit C consists of revised pages for the Monticello Technical Specifications including the proposed changes.

. .

. . .

<u>Page:</u>

		Page
3.4 and 4.4	Standby Liquid Control System	93
	A. Normal Operation	93
	B. Operation with Inoperable Components	94
	C. Volume-Concentration Requirements	95
	3.4 and 4.4 Bases	99
3.5 and 4.5	Core and Containment Cooling Systems	101
	A. Core Spray System	101
	B. LPCI Subsystem	103
	C. RHR Service Water System	106
	D. HPCI System	108
	E. Automatic Pressure Relief System	109
	F. RCIC System	111
	G. Minimum Core and Containment Cooling	
	System Availability	112
	H. Recirculation System	114
	I. Deleted	
	3.5 Bases	115
	4.5 Bases	120
3.6 and 4.6	Primary System Boundary	121
	A. Reactor Coolant Heatup and Cooldown	121
	B. Reactor Vessel Temperature and Pressure	122
	C. Coolant Chemistry	123
	D. Coolant Leakage	126
	E. Safety/Relief Valves	120
	F. Deleted	127
	G. Jet Pumps	128
	H. Snubbers	120
	3.6 and 4.6 Bases	144
3.7 and 4.7	Containment Systems	156
	A. Primary Containment	156
	B. Standby Gas Treatment System	166
	C. Secondary Containment	169
	D. Primary Containment Isolation Valves	170
	E. Combustible Gas Control System	172
	3.7 Bases	175
	4.7 Bases	183

\$

LIST OF TABLES

٠

<u>Table N</u>	<u>lo.</u>	<u>Page</u>
3.1.1	Reactor Protection System (Scram) Instrument Requirements	28
4.1.1	Scram Instrument Functional Tests - Minimum Functional Test Frequencies for Safety Instrumentation and Control Circuits	32
4.1.2	Scram Instrument Calibration - Minimum Calibration Frequencies for Reactor Protection Instrument Channels	34
3.2.1	Instrumentation that Initiates Primary Containment Isolation Functions	49
3.2.2	Instrumentation that Initiates Emergency Core Cooling Systems	52
3.2.3	Instrumentation that Initiates Rod Block	57
3.2.4	Instrumentation that Initiates Reactor Building Ventilation Isolation and Standby Gas Treatment System Initiation	59
3.2.5	Instrumentation that Initiates a Recirculation Pump Trip and Alternate Rod Injection	60
3.2.6	Instrumentation for Safeguards Bus Degraded Voltage and [.] Loss of Voltage Protection	60a
3.2.7	Instrumentation for Safety/Relief Valve Low Low Set Logic	60Ъ
3.2.8	Other Instrumentation	60d
3.2.9	Instrumentation for Control Room Habitability Protection	60e
4.2.1	Minimum Test and Calibration Frequency for Core Cooling, Rod Block and Isolation Instrumentation	61
3.8.1	Radioactive Liquid Effluent Monitoring Instrumentation	189i
3.8.2	Radioactive Gaseous Effluent Monitoring Instrumentation	198k
4.8.1	Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements	198m
4.8.2	Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements	198n
4.8.3	Radioactive Liquid Waste Sampling and Analysis Program	198p
4.8.4	Radioactive Gaseous Waste Sampling and Analysis Program	198s

vi

,

3.0 LI	IMITING CONDITIONS FOR OPERATION	4.0 SURVEILLANCE REQUIREMENTS
D. Pri	reactor core, operations with a potential for reducing the shutdown margin below that specified in specification 3.3.A, and handling of irradiated fuel or the fuel cask in the secondary containment are to be immediately suspended if secondary containment integrity is not main- tained. imary Containment Automatic Isolation Valves During reactor power operating conditions, all Primary Containment automatic isolation valves and all primary system instrument line flow check valves shall be operable except as specified in 3.7.D.2.	 D. Primary Containment Automatic Isolation Valves 1. The primary containment automaticisolation valve surveillance shall be performed as follows: a. At least once per operating cycle the operable isolation valves that are power operated and automatically initiated shall be tested for simulated automatic initiation and closure times.
		b. At least once per operating cycle the primary system instrument line flow check valves shall be tested for proper operation.
		c. At least once per quarter
		 (1) All normally open power-operated isolation valves (except for the main steam line power-operated isolation valves) shall be fully closed and reopened.
		170

.

.

3.0 LIMITING CONDITIONS FOR OPERATION	4.0 SURVEILLANCE REQUIREMENTS
	 c. At least once per quarter - Continued (2) With the reactor power less than 75% of rated, trip main steam isolation valves (one at a time) and verify closure time. d. At least once per week the main steam-line prover proved isolation walves.
	line power-operated isolation valves shall be exercised by partial closure and subsequent reopening.
 In the event any Primary Containment automatic isolation value becomes inoperable, reactor operation in the run mode may continue provided at least one value in each line having an inoperable value is closed. 	 Whenever a Primary Containment automatic isolation valve is inoperable, the position of at least one fully closed valve in each line having an inoperable valve shall be recorded daily.
 If Specification 3.7.D.1 and 3.7.D.2 cannot be met, initiate normal orderly shutdown and have reactor in the cold shutdown condition within 24 hours. 	3. A Primary Containment automatic isolation valve shall be demonstrated Operable prior to returning the valve to service after maintenance, repair, or replacement work is performed on the valve or its associated actuator, control, or power circuit by performance of a cycling test and verification of operating time.
	4. The seat seals of the drywell and suppression chamber 18-inch purge and vent valves shall be replaced at least once every five years.

.0 I	IMITING GAS CONTROL SYSTEM	4.0 SURVEILLANCE REQUIREMENTS
i. Co	ombustible Gas Control System	E. Combustible Gas Control System
1.	Two separate and independent Combustible Gas Control System trains shall be operable at all times whenever the reactor is in the run mode except as specified in Section 3.7.E.2 and 3.7.E.3 below.	 At least once an operating cycle, perform the following: a. Calibrate the following instrumentation and control circuits
2.	 After one of the Combustible Gas Control System train(s) is made or found to be inoperable for any reason, restore the inoperable train to operable status within 30 days or submit a special report to the Commission within the next 30 days which includes the following information: 1) Identification of the inoperable equipment or subsystems and the reason for inoperability, 	 Inlet flow indicator Total Flow indicator Return gas high temperature High reaction chamber temperature Perform a resistance to ground test on all heater electrical circuits Verify through a visual examination that there is no evidence of abnormal condition
_	 Action(s) to be taken to restore equipment to operable status, and Summary description of action(s) taken to prevent recurrence. 	2. At least once every six months verify the recombiner reaction chamber operability by verifying that the outlet temperature exceeds 600°F within one hour and that heater current is within 5% of rated current when the power setting is increased to maximum.
3.	With both of the Combustible Gas Control Control System trains inoperable for any reason, restore at least one train to operable status within 30 days or initiate an orderly shutdown of the reactor and be in the cold shutdown condition within 24 hours.	 3. The leak tightness of the recombiners and associated piping shall be verified during each shutdown when a Type A overall integrated containment leakage test is required by either a. Venting the recombiner trains to the containment during the Type A test, or b. Performing a separate leakage test of both recombiner trains and adding the results

٠

172

,

• > 1 2 2

².

Bases Continued:

While only a small amount of particulates are released from the primary containment as a result of the loss of coolant accident, high-efficiency particulate filters before and after the charcoal filters are specified to minimize potential particulate release to the environment and to prevent clogging of the charcoal adsorbers. The charcoal adsorbers are installed to reduce the potential release of radioiodine to the environment. The in-place test results should indicate a system leak tightness of less than 1% bypass leakage for the charcoal adsorbers using halogenated hydrocarbon and a HEPA filter efficiency of at least 99% removal of DOP particulates. Laboratory carbon sample test results indicate a radioactive methyl iodide removal efficiency for expected accident conditions. Operation of the standby gas treatment circuits significantly different from the design flow will change the removal efficiency of the HEPA filters and charcoal adsorbers. If the performance requirements are met as specified, the calculated doses would be less than the guidelines stated in 10 CFR 100 for the accidents analyzed.

D. Primary Containment Isolation Valves

Double isolation values are provided on lines penetrating the primary containment. Closure of one of the values in each line would be sufficient to maintain the integrity of the Primary Containment. Automatic initiation is required to minimize the potential leakage paths from the containment in the event of a loss-of-coolant accident. Details of the Primary Containment isolation values are discussed in Section 5.2 of the USAR. A listing of all Primary Containment automatic isolation values including maximum operating time is given in USAR Table 5.2-3b.

E. Combustible Gas Control System

The function of the Combustible Control System (CGCS) is to maintain oxygen concentrations in the post-accident containment atmosphere below combustible concentrations. Oxygen may be generated in the hours following a loss of coolant accident from radioalysis of reactor coolant.

The Technical Specifications limit oxygen concentrations during operation to less than four percent by volume during operation. The maintenance of an inert atmosphere during operation precludes the build-up of a combustible mixture due to a fuel metal-water reaction. The other potential mechanism for generation of combustible mixtures is radioalysis of coolant which has been found to be small.

A special report is required to be submitted to the Commission to outline CGCS equipment failures and corrective actions to be taken if inoperability of one train exceeds thirty days. In addition, if both trains are inoperable for more than 30 days, the plant is required to shutdown until repairs can be made.