babcock & wilcox nuclear energy

B&W mPower[™] Reactor Fuel System Mechanical Design Criteria MPWR-TECR-005012 Revision 000 9/23/2011

(REDACTED VERSION)

B&W mPower™ Reactor Program Babcock & Wilcox Nuclear Energy, Inc. 109 Ramsey Place Lynchburg, VA 24501

© 2011 BABCOCK & WILCOX NUCLEAR ENERGY, INC. ALL RIGHTS RESERVED. This document is the property of Babcock & Wilcox Nuclear Energy, Inc. (B&W NE)

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

Babcock & Wilcox Nuclear Energy, inc. a Babcock & Wilcox company BAW CONFIDENTIAL & PROPRIETARY

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

SIGNATURES			
Prepared By:	E. A. Barringer	Erie Baumen	9/23/11
	Name	Signature	Dáte
Reviewed By:	T.L. Lotz	Thom I to	9/23/2011
	Name	A Signature	Date
Reviewed By:	J.K. Witter	fonot K White	9/23/2011
	Name	Signature	Date
Reviewed By:	C. Poslusny	Chusten Pooluars	9/26/2011
	Name	Signature	Ďate
Approved By:	V.J. Biłovsky	In files	9/26/2011
	Name	Signature	Date

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

RECORD OF REVISION

Revision No.	Date	Preparer	Description of Changes
000	9/23/11	E.A. Barringer	Original Issue
	1		
		-	

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

TABLE OF CONTENTS

1.	INTR	ODUCTION	6
2.	FUEL	SYSTEM DESIGN SUMMARY	6
	2.1	Fuel Rods	7
	2.2	Burnable Poison Rods	8
	2.3	Fuel Assembly Structure	8
	2.4	In-core Control Components	12
3.	FUEL	SYSTEM DESIGN BASES AND CRITERIA	42
	3.1	Fuel System Design Bases Summary	42
	3.2	Design Criteria and Methodology for Evaluating Fuel System Damage	48
	3.3	Design Criteria and Methodology for Evaluating Fuel Rod and BPR Failure	61
	3.4	Design Criteria and Methodology for Evaluating Fuel Coolability	68
4.	REFE	RENCES	72

List of Figures

Figure 2.0-1 Fuel Assembly Cross-Section
Figure 2.0-2 Fuel Assembly Full-Length View
Figure 2.0-3 Fuel Assembly Interface with Reactor Upper Internals
Figure 2.1-1 Fuel Rod Schematic
Figure 2.2-1 Burnable Poison Rod24
Figure 2.3-1 Cage Assembly
Figure 2.3.1-1 Lower End Fitting
Figure 2.3.1-2 Control Rod Guide Tube Assembly to LEF Joint27
Figure 2.3.2-1 Upper End Fitting
Figure 2.3.2-2 Control Rod Guide Tube Assembly to UEF Joint
Figure 2.3.3-1 Control Rod Guide Tube Assembly
Figure 2.3.3-2 Constraint Design for End Grids on Control Rod Guide Tubes
Figure 2.3.3-3 Constraint Design for Mid Grids on Control Rod Guide Tubes
Figure 2.3.4-1 End Grid
Figure 2.3.4-2 Intermediate Spacer Grid
Figure 2.4.1-1 Type 1 Control Rod Assembly
Figure 2.4.1-2 Control Rod
Figure 2.4.1-3 Spider Assembly
Figure 2.4.1-4 Type 2 Control Rod Assembly
Figure 2.4.1-5 Hybrid Control Rod
Figure 2.4.2-1 Primary Neutron Source Rod
Figure 2.4.2-2 Secondary Neutron Source Rod
Figure 3.3.5-1 PWR PCMI Fuel Cladding Failure Criterion

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

List of Tables

Table 2.0-1	B&W mPower Fuel Assembly Design Summary	16
Table 2.4.1-1	B&W mPower Control Rod Assembly Design Summary	17
Table 2.4.2-1	B&W mPower Neutron Source Rod Design Summary	19
Table 3.1.1-1	Criteria for Fuel System Damage	45
Table 3.1.1-2	Criteria for Fuel Rod and Burnable Poison Rod Failure	46
Table 3.1.1-3	Criteria for Fuel Coolability	46

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

1. INTRODUCTION

The purpose of this technical report is to provide a description of the Babcock & Wilcox (B&W) mPower[™] fuel system design, including key design parameters and illustrations, and to present a compilation of the fuel system design bases and criteria. A Fuel System Mechanical Design Topical report, based on the design bases and criteria contained herein, will be submitted to the NRC upon completion of the detailed analyses and testing.

Section 2 of this report describes the design of the B&W mPower fuel assembly and in-core control components. The information provided in this report represents the current design; it is expected that minor changes to the design will occur during the next two years through the fuel system development and licensing process.

Section 3 describes the fuel system mechanical design bases and criteria, with a general discussion of the approach to evaluating the design relative to the criteria.

2. FUEL SYSTEM DESIGN SUMMARY

The B&W mPower fuel assembly has been designed specifically for use with the core configuration of the B&W mPower reactor. The key fuel assembly parameters are listed in Table 2.0-1. Figure 2.0-1 shows a cross-section of the fuel assembly array, and Figure 2.0-2 provides a fuel assembly full-length view.

The 17x17 fuel assembly consists of [

Babcock & Wilcox Nuclear Energy, Inc.

a Babcock & Wilcox company

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

Affidavit 4(a)-(d)]

2.1 Fuel Rods

[

] [CCI per

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

2.2 Burnable Poison Rods

Supplementary reactivity control is provided by non-integral burnable poison rods (BPRs). [

] [CCI per Affidavit 4(a)-(d)]

2.3 Fuel Assembly Structure

The fuel assembly structural skeleton consists of the upper end fitting and the cage assembly. The fuel assembly cage, shown in Figure 2.3-1, includes the lower end fitting, the control rod guide tubes, and the spacer grids.

2.3.1 Lower End Fitting

A schematic view of the lower end fitting is provided in Figure 2.3.1-1. [

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

2.3.2 Upper End Fitting

The upper end fitting is the uppermost structural component of the fuel assembly. [

Babcock & Wilcox Nuclear Energy, Inc.

a Babcock & Wilcox company	
----------------------------	--

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

2.3.3 Control Rod Guide Tube Assembly

[

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)

2.3.4 Grid Assemblies

[

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

2.4 In-core Control Components

] [CCI per

Affidavit 4(a)-(d)]

2.4.1 Control Rod Assemblies

[

[

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

2.4.2 Neutron Source Rods

[

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

Table 2.0-1 B&W mPower Fuel Assembly Design Summary

· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· ·	
	· · · /
	I
· · · · · · · · · · · · · · · · · · ·	
	······································
•	
······································	

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

Table 2.0-1 B&W mPower Fuel Assembly Design Summary (continued)

[CCI per Affidavit 4(a)-(d)]

Table 2.4.1-1 B&W mPower Control Rod Assembly Design Summary

Γ

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

· · · ·	
	· · · · · · · · · · · · · · · · · · ·

[CCI per Affidavit 4(a)-(d)]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

Table 2.4.2-1 B&W mPower Neutron Source Rod Design Summary

L	
	·
	· · · · · · · · · · · · · · · · · · ·

[CCI per Affidavit 4(a)-(d)]

©2011 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.0-1 Fuel Assembly Cross-Section

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

٦

[CCI per Affidavit 4(a)-(d)]

Figure 2.0-2 Fuel Assembly Full-Length View

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

•

Figure 2.0-3 Fuel Assembly Interface with Reactor Upper Internals

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

---[CCI per Affidavit 4(a)-(d)]

Figure 2.1-1 Fuel Rod Schematic

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-4(d)]

Figure 2.2-1 Burnable Poison Rod

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

 \square

[CCI per Affidavit 4(a)-(d)]

Figure 2.3-1 Cage Assembly

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.3.1-1 Lower End Fitting

©2011 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

Page 26 of 73

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.3.1-2 Control Rod Guide Tube Assembly to LEF Joint

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.3.2-1 Upper End Fitting

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

	Figure 2.3.2-2 Contro	Rod Guide Tube	Assembly to UEF	Joint
--	-----------------------	----------------	-----------------	-------

©2011 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

Page 29 of 73

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.3.3-1 Control Rod Guide Tube Assembly

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

_

.

[CCI per Affidavit 4(a)-(d)]

Figure 2.3.3-2 Constraint Design for End Grids on Control Rod Guide Tubes

-

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.3.3-3 Constraint Design for Mid Grids on Control Rod Guide Tubes

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

 $\left[\right]$

[CCI per Affidavit 4(a)-(d)]

Figure 2.3.4-1 End Grid

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.3.4-2 Intermediate Spacer Grid

©2011 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

Ê

Babcock & Wilcox Nuclear Energy, Inc.

а	Babcock	&	Wilcox	company	

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

٦

[CCI per Affidavit 4(a)-(d)]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.4.1-2 Control Rod
Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.4.1-3 Spider Assembly

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

•

[CCI per Affidavit 4(a)-(d)]

Figure 2.4.1-4 Type 2 Control Rod Assembly

Document No.	Title	Rev. Ņo.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.4.1-5 Hybrid Control Rod

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

]

[CCI per Affidavit 4(a)-(d)]

Figure 2.4.2-1 Primary Neutron Source Rod

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[CCI per Affidavit 4(a)-(d)]

Figure 2.4.2-2 Secondary Neutron Source Rod

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

3. FUEL SYSTEM DESIGN BASES AND CRITERIA

3.1 Fuel System Design Bases Summary

3.1.1 Design Requirements

Design requirements for the fuel system are described in the NRC Standard Review Plan (SRP) 4.2 (NUREG-0800) (Reference 4.1). These requirements are in compliance with General Design Criteria (GDC) 10, 27 and 35 of 10 CFR Part 50 Appendix A (Reference 4.2), 10 CFR Part 50.46 (Reference 4.3) and 10 CFR Part 100 (Reference 4.4). The requirements are also consistent with Section 4.2 of Regulatory Guide 1.70 (Reference 4.5) and with Section C.I.4.2 of Regulatory Guide 1.206 (Reference 4.6).

The design basis objectives of the fuel system are to ensure that:

- (a) the fuel system is not damaged as a result of normal operation or anticipated operational occurrences (AOOs);
- (b) fuel system damage is never so severe as to prevent control rod insertion when it is required;
- (c) the number of fuel rod failures is not underestimated for postulated accidents (PAs); and
- (d) core coolability is always maintained.

GDC 10 (Reactor design), within Appendix A to 10 CFR Part 50, addresses item (a) above: "The reactor core and associated coolant, control, and protection systems shall be designed with appropriate margins to ensure that specified acceptable fuel design limits are not exceeded during any condition of normal operation, including the effects of anticipated operational occurrences." Specifically, GDC 10 establishes Specified Acceptable Fuel Design Limits (SAFDLs) to ensure that the fuel system is not damaged.

With respect to the fuel system design, "not damaged" means that fuel rods do not fail, that the fuel system remains within operational tolerances, and that the functional capabilities are not reduced below those assumed in the safety analysis.

"Fuel rod failure" means that the fuel rod leaks and that the first fission product barrier (the cladding) has been breached. This criterion relates to 10 CFR Part 100, dose analysis.

"Coolability" means that the fuel assembly retains its rod-bundle geometry with adequate coolant flow passages (channels) to permit removal of residual heat even after a severe accident.

Babcock & Wilcox Nuclear Energy, Inc.

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

General requirements to maintain control rod insertability and core coolability appear repeatedly in GDC 27 (Combined reactivity control systems capability) and GDC 35 (Emergency core cooling). Specific coolability requirements for the loss-of-coolant accident (LOCA) are provided in 10 CFR Part 50.46.

To address these requirements, design criteria for the fuel system are categorized with respect to:

- (A) fuel system damage
- (B) fuel rod and burnable poison rod failure
- (C) fuel coolability

The complete set of design criteria required in SRP 4.2 (Reference 4.1) are listed in Table 3.1.1-1 to Table 3.1.1-3. Criteria related to fuel system damage and their applicability to fuel system components are summarized in Table 3.1.1-1. Criteria related to the failure of fuel rods and burnable poison rods are summarized in Table 3.1.1-2. Criteria related for fuel coolability and their applicability to fuel system components are summarized in Table 3.1.1-3.

Section 3.2 of this report presents a review of the B&W mPower fuel rod and fuel assembly design bases and criteria. It is noted that for some requirements related to postulated accidents, the Design Control Document (DCD) is referenced for the detailed discussion of the requirement.

3.1.2 Plant Conditions for Fuel System Design

Plant conditions for fuel assembly design are categorized according to expected frequency of occurrence and by type, as follows:

- (1) Normal operation (NO)
- (2) Anticipated Operational Occurrences (AOOs)
- (3) Postulated Accidents (PAs)

Normal operation typically includes the following events that are expected frequently or are performed regularly in the course of power operation, refueling, maintenance, and maneuvering of the plant (Reference 4.7):

Startup Shutdown (hot and cold) Refueling Hot standby Power operation Operational maneuvers Plant heatup and cooldown

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

Load change

Operation with permissible deviations

Anticipated operational occurrences, as defined in 10 CFR Part 50, Appendix A, are those conditions of operation that are expected to occur one or more times during the life of the nuclear plant. Postulated accidents are unanticipated occurrences. That is, they are postulated but are not expected to occur during the life of the nuclear power plant.

Analyses of AOOs and PAs are categorized according to type so that analysts can compare them on common bases, effect, and safety limits. Such comparisons can help to identify limiting event and cases for detailed examination, and eliminate non-limiting cases from further consideration.

AOOs and PAs are grouped into the following seven types (Reference 4.7):

- (1) Increase in heat removal by the secondary system
- (2) Decrease in heat removal by the secondary system
- (3) Decrease in reactor cooling system (RCS) flow rate
- (4) Reactivity and power distribution anomalies
- (5) Increase in reactor coolant inventory
- (6) Decrease in reactor coolant inventory
- (7) Radioactive release from a component or subsystem

The events for AOOs and PAs for the B&W mPower plant will be categorized in Chapter 15 (Transient and Accident Analysis) of the DCD to specify the limiting event for fuel system integrity.

Document No.	Title	Rev. No.
MPWR-TECR-005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

Table 3.1.1-1 Criteria for Fuel System Damage

SRP A (A)	Acceptance Criteria for Fuel System Damage				Related Chapter/Section to be Reviewed in DCD
1.A.i	Cladding Stress			 	Section 4.2 (Fuel System Design)
	Cladding Strain			 	Section 4.2 (Fuel System Design)
	Loading Limits				Section 4.2 (Fuel System Design)
1.A.ii	Cladding and Component Fatigue				Section 4.2 (Fuel System Design)
1.A.iii	Fretting Wear				Section 4.2 (Fuel System Design)
1.A.iv	Cladding and Component Oxidation, Hydriding, CRUD				Section 4.2 (Fuel System Design) Effects of CRUD discussed in Sections 4.3 and 4.4
1.A.v	Dimensional Changes				Section 4.2 (Fuel System Design)
1.A.vi	Rod Internal Pressure (no cladding liftoff, no hydride reorientation)				Section 4.2 (Fuel System Design)
	Rod Internal Pressure (DNB propagation)				Section 4.2 (Fuel System Design)
1.A.vii	Assembly Liftoff				Section 4.2 (Fuel System Design) and Hydraulic load evaluation discussed in Section 4.4
1.A.viii	Control Rod Reactivity Insertability				Section 4.2 (Fuel System Design)

[CCI per Affidavit 4(a)-(d)]

Γ

Babcock & Wilcox Nuclear Energy, Inc.

a Babcock & Wilcox company

Document No.	Title	Rev. No.
MPWR-TECR-005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

Table 3.1.1-2 Criteria for Fuel Rod and Burnable Poison Rod Failure

SRP Acceptance Criteria for ((B) Fuel Rod Failure				Related Chapter/Section to be Reviewed in DCD
1.B.i	Hydriding (Internal)			Section 4.2 (Fuel System Design)
	Hydriding (External from corrosion)			Section 4.2 (Fuel System Design)
1.B.ii	Cladding Collapse			Section 4.2 (Fuel System Design)
1.B.iii	Overheating of Cladding			Section 4.2 (Fuel System Design) Section 4.4 (Thermal and Hydraulic Design)
1.B.iv	Overheating of Fuel Pellet			Section 4.2 (Fuel System Design) Chapter 15 (Transient and Accident Analysis)
1.B.v	Excessive Fuel Enthalpy			Chapter 15 (Transient and Accident Analysis)
1.B.vi	Pellet-Clad Interaction (PCI and PCMI)			Section 4.2 (Fuel System Design)
1.B.vii	Bursting			Chapter 15 (Transient and Accident Analysis)
1.B.viii	Mechanical Fracture			Section 4.2 (Fuel System Design)

[CCI per Affidavit 4(a)-(d)]

Table 3.1.1-3 Criteria for Fuel Coolability

Document No.	Title	Rev. No.
MPWR-TECR-005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000
~		

		·			
SR (C) F	P Acceptance Criteria for				Related Chapter/Section to be Reviewed in DCD
1.C.i	Cladding Embrittlement (PCT <2200°F, oxidation <17% ECR)			 	Chapter 15 (Transient and Accident Analysis)
1.C.ii	Violent Expulsion of Fuel (Criteria in SRP 4.2, Appendix B)				Chapter 15 (Transient and Accident Analysis)
1.C.iii	Generalized Cladding Melting				Chapter 15 (Transient and Accident Analysis)
1.C.iv	Fuel Rod Ballooning (Methods in RG 1.157)				Chapter 15 (Transient and Accident Analysis)
1.C.v	Structural Deformation (Criteria in SRP 4.2, Appendix A)				Chapter 15 (Transient and Accident Analysis)

[CCI per Affidavit 4(a)-(d)]

.

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

3.2 Design Criteria and Methodology for Evaluating Fuel System Damage

Fuel system damage requirements apply to normal operation and AOOs. To meet the requirements of GDC 10 as it relates to SAFDLs for normal operation, including AOOs, fuel system damage criteria are specified for all known damage mechanisms.

Fuel damage criteria ensure that fuel system dimensions remain within operational tolerances and that functional capabilities are not reduced below those assumed in the safety analysis. When applicable, the fuel damage criteria consider high burnup effects based on irradiated material properties.

- 3.2.1 Cladding Stress
- (1) Design Basis

[

] [CCI per Affidavit 4(a)-(d)]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

(3) Design Evaluation

[

per Affidavit 4(a)-(d)]

] [CCI

Document No.TitleRev. No.MPWR-TECR-
005012B&W mPower™ Reactor Fuel System Mechanical Design
Criteria000

- 3.2.2 Cladding Strain
- (1) Design Basis
-]

] [CCI per Affidavit 4(a)-(d)]

- (2) Design Criteria
- [

] [CCI per Affidavit 4(a)-(d)]

- (3) Design Evaluation
- [

] [CCI per Affidavit 4(a)-(d)]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

3.2.3 Stress and Loading Limit for Other than Cladding

3.2.3.1 Loads Applied by Core Restraint System

(1) Design Basis

[

4(a)-(d)]

[

[

(2) Design Criteria

The design criteria associated with loads applied by the core restraint system are:

] [CCI per Affidavit 4(a)-(d)]

(3) Design Evaluation

©2011 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

] [CCI per Affidavit

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

3.2.3.2 Loads Applied in Fuel Handling and Shipping

- (1) Design Basis
- [

[CCI per Affidavit 4(a)-(d)]

(2) Design Criteria

The design criteria associated with loads applied during shipping and handling are:

[

]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per

Affidavit 4(a)-(d)]

(3) Design Evaluation

[

] [CCI per Affidavit 4(a)-(d)]

3.2.4 Cladding Fatigue

(1) Design Basis

[

] [CCI per Affidavit 4(a)-(d)]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

(2) Design Criteria

[

] [CCI per Affidavit 4(a)-(d)]

- (3) Design Evaluation
- [

] [CCI per Affidavit

] [CCI per Affidavit

4(a)-(d)]

3.2.5 Fretting Wear

(1) Design Basis

[

4(a)-(d)]

(2) Design Criteria

[

] [CCI per Affidavit 4(a)-(d)]

(3) Design Evaluation

[

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit
4(a)-(d)]	
3.2.6	Cladding Oxidation and Hydriding (and CRUD Buildup)	
(1) De	esign Basis	
[][CCI per Affidavit 4(a)-(d)]	
(2) De	esign Criteria	
[
(1) De [[] [CCI per Affidavit 4(a)-(d)] esign Criteria	

] [CCI per Affidavit 4(a)-(d)]

- (3) Design Evaluation
- I

Affidavit 4(a)-(d)]

] [CCI per

ocument No.	Title	Rev. No.
IPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	n 000
3.2.7 Dim	ensional Change	
3.2.7.1 I	Fuel Assembly Growth	
(1) Design	Basis	
[
]	[CCI per Affidavit 4(a)-(d)]	
(2) Design	Criteria	
[
Affidavit 4(
(3) Design	Evaluation	
[
		CCI por Affidavit
4(a)-(d)]		
3.2.7.2 F	Fuel Rod Axial Growth	
(1) Design	Basis	
[
] [CC] ner Affidavit 4(a)-(d)]	

(2) Design Criteria

[

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

- (3) Design Evaluation
- [

] [CCI per Affidavit 4(a)-(d)]

3.2.7.3 Rod Bowing

- (1) Design Basis
- I

] [CCI per Affidavit 4(a)-(d)]

- (2) Design Criteria
- [

[CCI per Affidavit 4(a)-(d)]

- (3) Design Evaluation
- [

]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

3.2.7.4 Dimensional Stability of Spacer Grids

(1) Design Basis

[To maintain sufficient restraint on the fuel rods and burnable poison rods during irradiation, and during loading and unloading operations for fuel assemblies, the spacer grids are designed to maintain dimensional stability during irradiation.] [CCI per Affidavit 4(a)-(d)]

(2) Design Criteria

[

[CCI per Affidavit 4(a)-(d)]

(3) Design Evaluation

[

] [CCI per Affidavit 4(a)-(d)]

3.2.8 Rod Internal Pressure

(1) Design Basis

]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

(2) Design Criteria

[

[

] [CCI per Affidavit 4(a)-(d)]

(3) Design Evaluation

[

Document No.	Title	Rev. <u>No</u> .
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per

Affidavit 4(a)-(d)]

3.2.9 Assembly Liftoff

(1) Design Basis

[

] [CCI per Affidavit 4(a)-(d)]

(2) Design Criteria

[

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit

4(a)-(d)]

(3) Design Evaluation

[

per Affidavit 4(a)-(d)]

3.3 Design Criteria and Methodology for Evaluating Fuel Rod and BPR Failure

Fuel rod failure and burnable poison rod failure apply to normal operation, AOOs, and postulated accidents. Fuel rod and burnable poison rod failure is defined as the loss of rod hermeticity. [

] [CCI

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit

The fuel rod and burnable poison rod failure criteria to be applied to the B&W mPower fuel system design are defined below.

4(a)-(d)]

3.3.1 Hydriding (1) Design Basis [] [CCI per Affidavit 4(a)-(d)] (2) Design Criteria [] [CCI per Affidavit 4(a)-(d)] (3) Design Evaluation [] [CCI per Affidavit 4(a)-(d)] 3.3.2 Cladding Collapse (1) Design Basis [] [CCI per Affidavit 4(a)-(d)] (2) Design Criteria

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000
ſ] [CCI per Affidavit 4(a)-(d)]	
(3) Design Ev	valuation	
[
] [CCI per Affidavit 4(a)-(d)]	
3.3.3 Overh	eating of Cladding	
(1) Design Ba	asis	
[
] [CCI per Affida	avit 4(a)-(d)]
(2) Design C	riteria	
[
]	[CCI per Affidavit 4(a)-(d)]	
(3) Design Ev	valuation	
[
] [CCI per Affidavit 4(a)-(d)]	
3.3.4 Overh	eating of Fuel Pellets (Melting)	
(1) Design Ba	asis	

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[

] [CCI per Affidavit 4(a)-(d)]

- (2) Design Criteria
- [

] [CCI per Affidavit 4(a)-(d)]

- (3) Design Evaluation
- [

Affidavit 4(a)-(d)]

] [CCI per

- 3.3.5 Excessive Fuel Enthalpy
- (1) Design Basis
- [

] [CCI per Affidavit 4(a)-(d)]

Babcock & Wilcox Nuclear Energy, Inc.

a Babcock & Wilcox company

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

(2) Design Criteria

[

] [CCI per Affidavit 4(a)-(d)]

(3) Design Evaluation

The detailed evaluation of this criterion is discussed in Chapter 15 (Transient and Accident Analysis) of the DCD. [

Babcock & Wilcox Nuclear Energy, Inc.

a Babcock & Wilcox company

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

]

[CCI per Affidavit 4(a)-(d)]

3.3.6 Pellet-Cladding Interaction (PCI)

(1) Design Basis

[

] [CCI per Affidavit 4(a)-(d)]

(2) Design Criteria

[

] [CCI per Affidavit 4(a)-(d)]

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

(3) Design Evaluation

The methodology for the cladding strain evaluation is described in Section 3.2.2, and that for fuel pellet and burnable poison pellet centerline melting is described in Section 3.3.4.

3.3.7 Bursting

- (1) Design Basis
- [

] [CCI per Affidavit 4(a)-(d)]

- (2) Design Criteria
- [

-] [CCI per Affidavit 4(a)-(d)]
- (3) Design Evaluation
- [

] [CCI per Affidavit 4(a)-(d)]

The details of this evaluation are discussed in Chapter 15 (Transient and Accident Analysis) of the DCD.

- 3.3.8 Fuel Rod Mechanical Fracturing
- (1) Design Basis
- I

4(a)-(d)]

- (2) Design Criteria
- [

] [CCI per Affidavit 4(a)-(d)]

] [CCI per Affidavit

Babcock & Wilcox Nuclear Energy, Inc.

a Babcock & Wilcox company

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

(3) Design Evaluation

[

] [CCI per Affidavit 4(a)-(d)]

3.4 Design Criteria and Methodology for Evaluating Fuel Coolability

Coolability, or coolable geometry, implies that the fuel assembly retains its rod-bundle geometry with adequate coolant channels to permit removal of residual heat. Reduction of coolability can result from cladding embrittlement, violent expulsion of fuel, generalized cladding melting, gross structural deformation, and extreme coplanar fuel rod ballooning.

The fuel coolability criteria described below are applied to the analysis of postulated accidents. The details of the evaluations and analyses performed to assess these are presented in Chapter 15 (Transient and Accident Analysis) of the DCD.

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

- 3.4.1 Cladding Embrittlement
- (1) Design Basis

[

] [CCI per Affidavit 4(a)-(d)]

(2) Design Criteria

[

[CCI per Affidavit 4(a)-(d)]

(3) Design Evaluation

The detailed evaluation of the design criteria for cladding embrittlement is discussed in Chapter 15 (Transient and Accident Analysis) of the DCD.

- 3.4.2 Violent Expulsion of Fuel
- (1) Design Basis
- [

] [CCI per Affidavit 4(a)-(d)]

]

(2)	Design	Criteria
-----	--------	----------

]

] [CCI per Affidavit 4(a)-(d)]

(3) Design Evaluation

The detailed evaluation is discussed in Chapter 15 (Transient and Accident Analysis) of the DCD.

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

3.4.3 Generalized Cladding Melting

[

] [CCI per Affidavit 4(a)-(d)]

3.4.4 Fuel Rod Cladding Ballooning

(1) Design Basis

[The fuel assemblies are designed such that fuel rod and burnable poison rod cladding ballooning does not preclude core coolability under postulated accident conditions.] [CCI per Affidavit 4(a)-(d)]

(2) Design Criteria

[

] [CCI per Affidavit 4(a)-(d)]

(3) Design Evaluation

In Chapter 15 (Transient and Accident Analysis) of the DCD, burst strain and flow blockage of Zircaloy-4 cladding are properly taken into account in the LOCA evaluation.

The possibility of DNB propagation is assessed in the non-LOCA evaluation.

- 3.4.5 Structural Deformation
- (1) Design Basis
- [

] [CCI per Affidavit 4(a)-(d)]

(2) Design Criteria

Under combined SSE and LOCA event loads:

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

[

] [CCI per Affidavit 4(a)-(d)]

(3) Design Evaluation

[

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

] [CCI per Affidavit 4(a)-(d)]

4. References

4.1	U.S. Nuclear Regulatory Commission, Standard Review Plan (NUREG-0800) Section 4.2, Revision 3, March 2007.
4.2	10 Code of Federal Regulation, Part 50 Appendix A
Babcock & Wilcox Nuclear Energy, Inc. a Babcock & Wilcox company

Document No.	Title	Rev. No.
MPWR-TECR- 005012	B&W mPower™ Reactor Fuel System Mechanical Design Criteria	000

4.3	10 Code of Federal Regulation, Part 50.46
4.4	10 Code of Federal Regulation, Part 100
4.5	U.S Nuclear Regulatory Commission, Regulatory Guide 1.70, Section 4.2.
4.6	U.S. Nuclear Regulatory Commission, Regulatory Guide 1.206
4.7	ANSI/ANS-57.5-1996, "Light Water Reactors Fuel Assembly Mechanical Design and Evaluation," 1996.
4.8	ASME Boiler and Pressure Vessel Code, Section III, Subsection NG (2007 Edition with 2008 Addenda).
4.9	B. Watkins and D.S. Wood, "The Significance of Irradiation-Induced Creep on Reactor Performance of Zircaloy-2 Pressure Tube Applications - Related Phenomena for Zirconium and its Alloys," ASTM STP 458, American Society for Testing and Materials, pp. 226-240, 1969.
4.10	D.S. Wood and B. Watkins, "A Creep Limit Approach to the Design of Zircaloy-2 Reactor Pressure Tubes at 275 C," Journal of Nuclear Materials, 41, 327-340, May 1971.
4.11	Falcon Fuel Rod Performance Code Version 1.0, copyright 2010, Electric Power Research Institute, Inc.
4.12	American Standards and Test Methods (ASTM) C776-06, "Standard Specification for Sintered Uranium Dioxide Pellets".