Appendix D CCNPP Employee Demographics

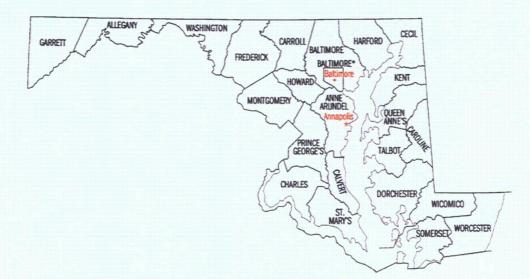
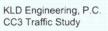



Figure D1 – Maryland County Map

Table D1- Power F	Plant Employees	Including Contractors -	- By County

Mar Salar and Salar	Street Brief Street Ba	Site Ap	oproach	
# Employees	Origin County	NB MD 2/4	SB MD 2/4	
27	Anne Arundel		27	
4	Baltimore		4	
562	Calvert	281	281	
2	Howard		2	
6	Prince Georges		6	
1	Alleghany		1	
30	Charles		30	
198	St Mary	139	59	
1	Washington		1	
2	Out of State		2	
833		420	412	
Ove	erall %	50.4%	49.6%	

		Site Approach		
# Employees	Origin County	NB MD 2/4	SB MD 2/4	
24	Anne Arundel		24	
3	Baltimore		3	
523	Calvert	262	262	
2	Howard		2	
4	Prince Georges		4	
1	Alleghany		1	
29	Charles		29	
186	St Mary	130	56	
1	Washington		1	
2	Out of State		2	
775		392	382	
Ove	erall %	50.6%	49.4%	

Table D2- Power Plant Employees Only - By County

Appendix E Construction Material Shipments

Civil Material			
Construction Equipment	500 on+500 off	1,000	shipment
Concrete Material	848,355 tons / 15 tons per shipment	56,557	shipments
Formwork	2393 tons/15 tons per shipment	160	shipment
Rebar	55,331 tons/15 tons per shipment	3,689	shipment
Structural Steel	6,261 tons/15 tons per shipment	418	shipment
Misc. Steel	1,016 tons/15 tons per shipment	68	shipment
Mod Steel	225 tons/15 tons per shipment	15	shipment
Steel Liner	1,412 tons/15 tons per shipment	94	shipment
Embedded Steel	1903 tons/15 tons per shipment	127	shipment
Siding & Roofing	2056 tons/15 tons per shipment	137	shipment
Pre engineered building	60 tons/15 tons per shipment	4	shipment
Construction Debris	12,000 tons/15 tons per shipment	800	shipment
Piping and Mechanical Material			
Large and Small bore pipe	7500 tons/15 tons per shipment	500	shipment
Large bore hangers	2788 tons/15 tons per shipment	186	shipments
Nuclear Island EM package Equipment	15,377 tons/15 tons per shipment	1,025	shipment
Turbine Island and BOP Mechanical Equipment		1,000	shipments
Consumables		1,000	shipments
Electrical Equipment			
Conduit	1,356 tons/15 tons per shipment	90	shipment
Cable Tray	73 tons/15 tons per shipment	49	shipment
Power & Control wire	4,406 tons/15 tons per shipment	294	shipment
NI Electrical Equipment	5,000 ton/15 tons per shipment	333	shipment
TI Electrical Equipment	5,000 ton/15 tons per shipment	333	shipment

Appendix F Journey to Work Census Data

Vehicle Occupancy by Profession

KLD Engineering, P.C. CC3 Traffic Study TR-427 Rev. 5

Construction Workers Automobile Usage

From the Journey-To-Work Census Data (2000)

CTPP 2000: Part 2 Table 9: Occupation by Means of transportation to work – For the state of Maryland

TAB9X221	All workers; having Construction and excavation occupations; For All 11 Categories of Means of transportation to work	122925
TAB9X222	All workers; having Construction and excavation occupations; who drove alone	81790
TAB9X223	All workers; having Construction and excavation occupations; who travel to work by 2-person carpool	21920
TAB9X224	All workers; having Construction and excavation occupations; who travel to work by 3-person carpool	6130
TAB9X225	All workers; having Construction and excavation occupations; who travel to work by 4-or-more-person carpool	3945
TAB9X226	All workers; having Construction and excavation occupations; who travel to work by Bus or trolley bus	3285
TAB9X227	All workers; having Construction and excavation occupations; who travel to work by Streetcar, trolley car, subway, or elevated	670
TAB9X228	All workers; having Construction and excavation occupations; who travel to work by Railroad or ferryboat	90
TAB9X229	All workers; having Construction and excavation occupations; who travel to work by Bicycle or walked	2050
TAB9X230	All workers; having Construction and excavation occupations; who travel to work by Taxicab, motorcycle or other means	1595
TAB9X231	All workers; having Construction and excavation occupations; who worked at home	1455

(Data Source: http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=1344&DB_Short_Name=CTPP%202000)

Based on the table above, considering the automobile mode of travel

		Vehicle	
	Workers	Occupancy	Vehicles
	81790	1	81790
	21920	2	10960
	6130	3	2043
	3945	4	986
Total	113785		95779

Average Vehicle Occupancy = No.OfWorkers/No.OfVehicles = 113785/95779 = <u>1.19</u>

Appendix G Projected Conditions During Construction

LOS Analysis Worksheets

KLD Engineering, P.C. CC3 Traffic Study This appendix contains the following:

	4 .	<u>Page</u>
٠	Derivation of volumes for No-Build (2016)	G-5
٠	September 7, 2010 meeting summary	G-20
é	December 8, 2010 meeting summary	G-23
•	Trip Distribution as provided by SHA	G-26
•	Gate Queuing analysis	G-27
•	Design concept for CC3 Access Road	G-31
•	Synchro LOS reports for CC3 Access Road	G-32
٠	SimTraffic Queuing reports for CC3 Access Road	G-34
٠	CLV Worksheets	G-36
•	Queue calculations using SHA methodology	G-44

The CLV calculations are summarized in Table G-1. Figure G-1 presents the traffic volumes and turning movements at the study intersections during the AM and PM peak hours. Figure G-2 shows added construction traffic only.

Interesting	CLV		LOS	
Intersection	AM	РМ	AM	PM
MD 2/MD 4 diverge	1879	1946	F	F
MD 231 & MD 2/MD 4	1331	1640	D	F
Calvert Beach/Ball Road & MD 2/MD 4	1764	1757	F	F
Calvert Cliffs Parkway & MD 2/MD 4	888	1546	A	E
White Sands Drive & MD 2/MD 4	782	1400	A	D
Nursery Road & MD 2/MD 4	1008	1268	В	C
Pardoe Road & MD 2/MD 4	1162	1261	C	С
Cove Point Road & MD 2/MD 4	997	1329	A	D

Table G-1 – Intersection LOS: Construction Peak (2016) Conditions

Ś.

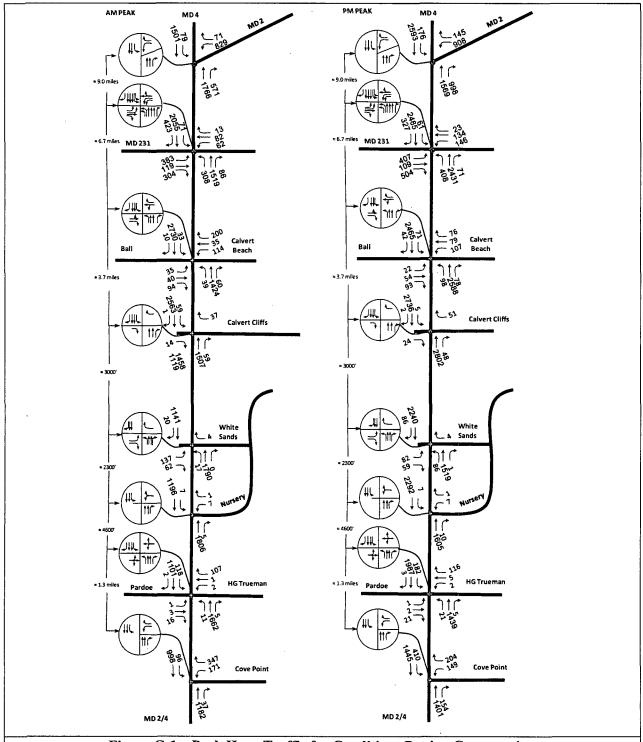
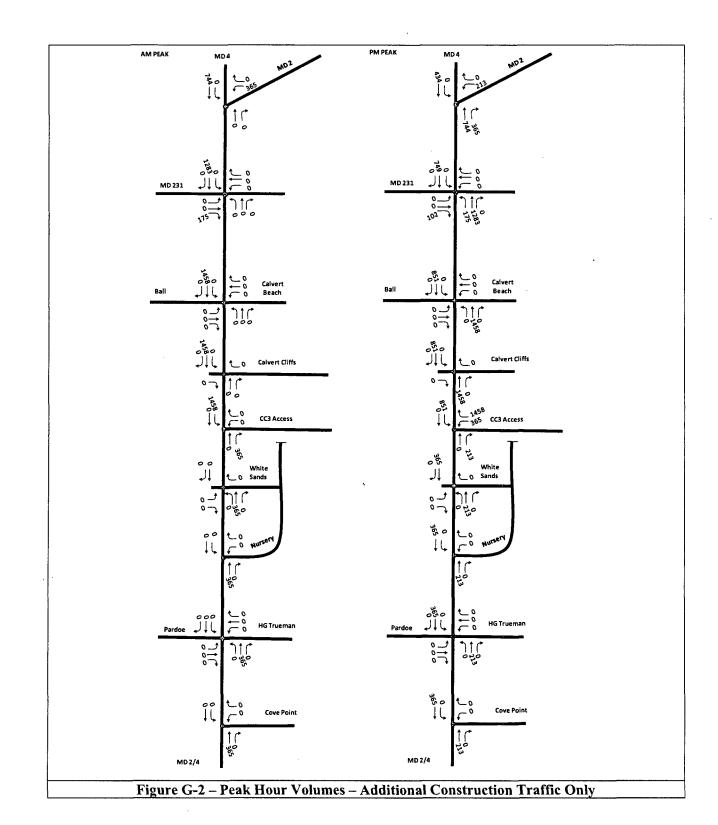
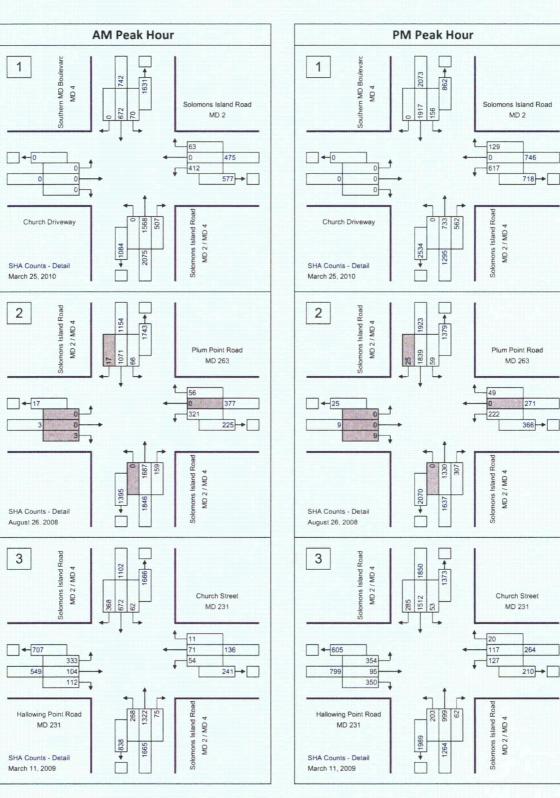



Figure G-1 – Peak Hour Traffic for Conditions During Construction

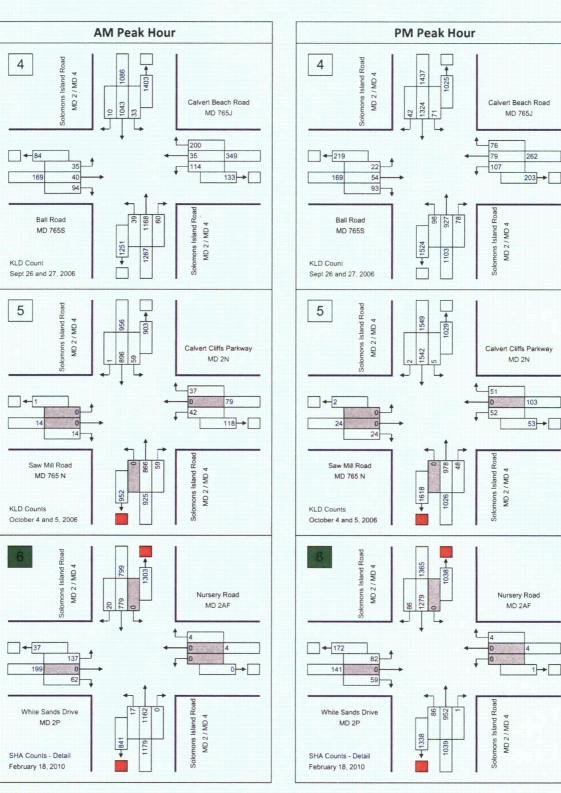
.


KLD Engineering, P.C. CC3 Traffic Study

.

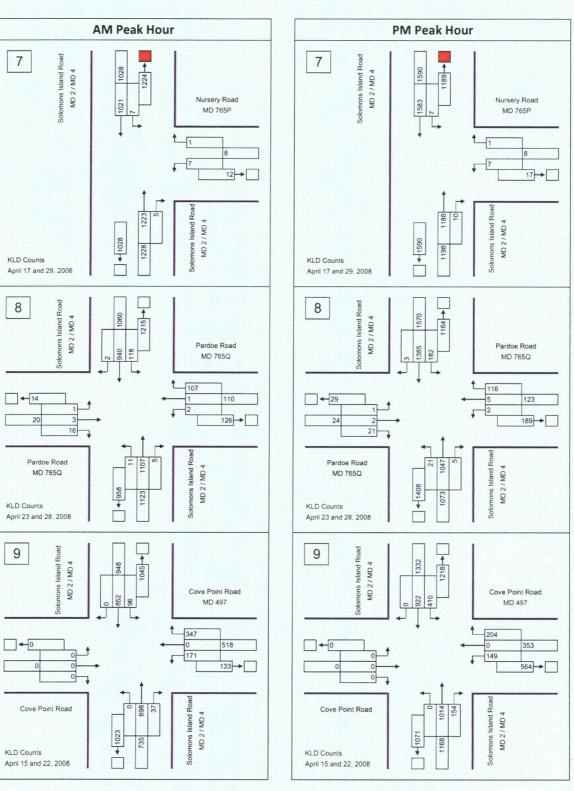
Count Data

10/18/2010 Page 1 of 21



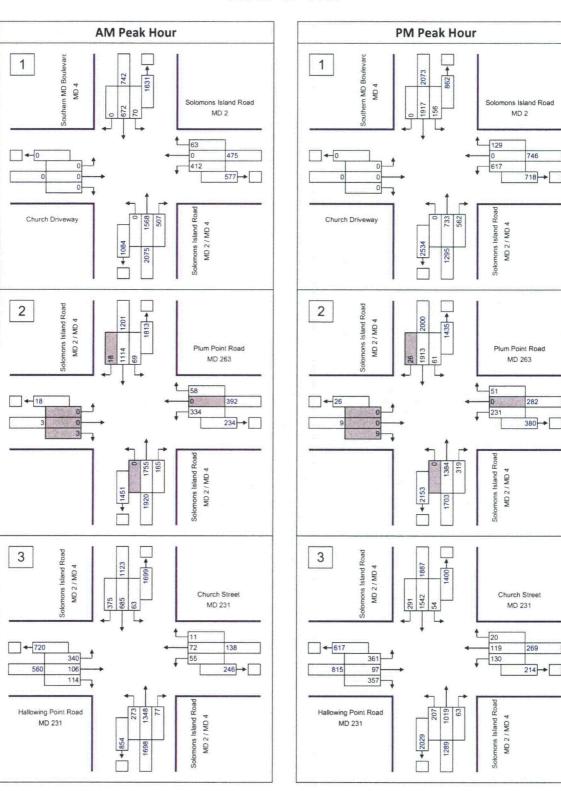
KLD Engineering, P.C. CC3 Traffic Study

Count Data


10/18/2010 Page 2 of 21

Count Data

10/18/2010 Page 3 of 21



KLD Engineering, P.C. CC3 Traffic Study TR-427 Rev. 5

Grown to 2010

10/18/2010 Page 4 of 21

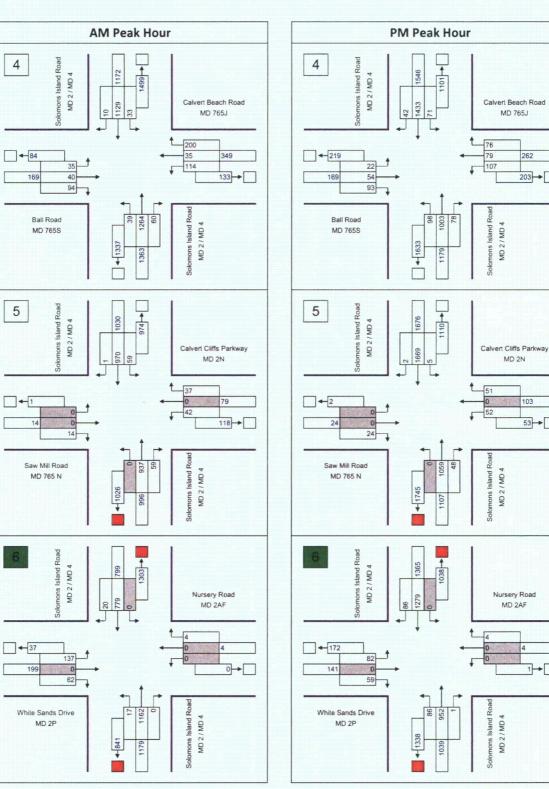
KLD Engineering, P.C. CC3 Traffic Study G-8

TR-427 Rev. 5

10/18/2010 Page 5 of 21

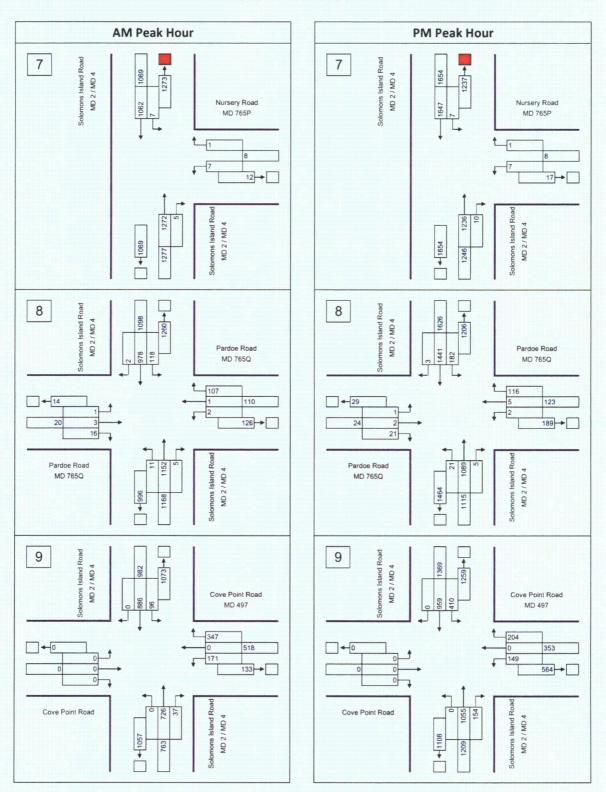
262

MD 2N


MD 2AF

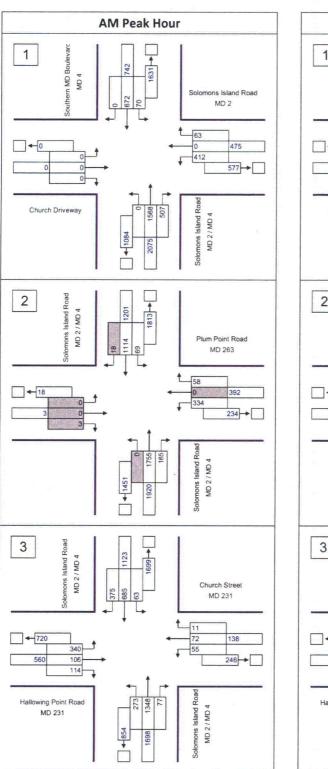
1

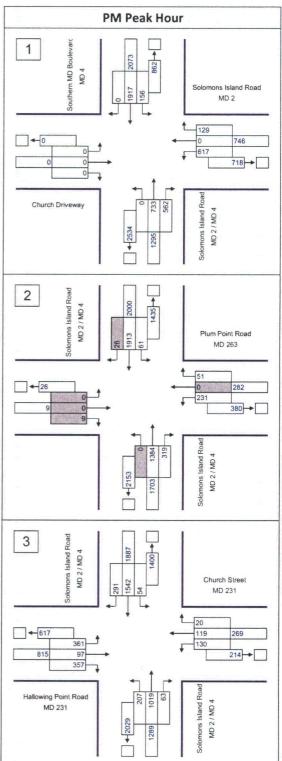
103


53

203

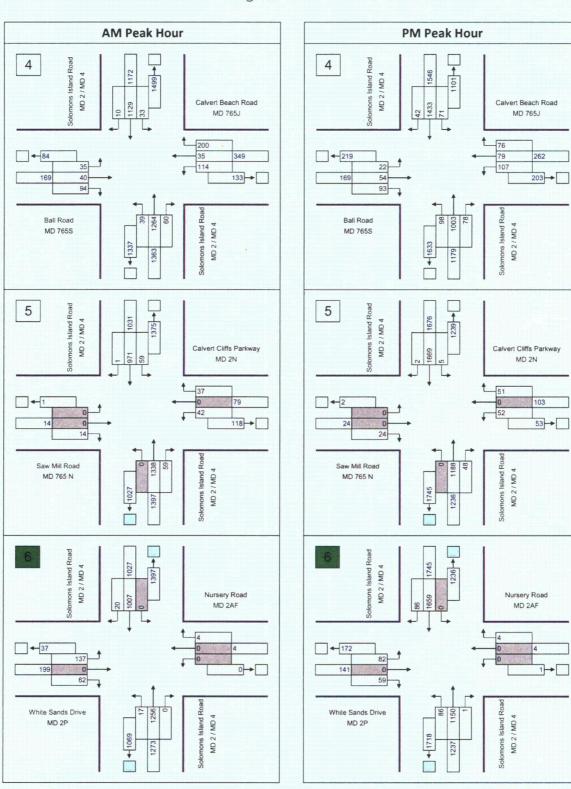
10/18/2010 Page 6 of 21

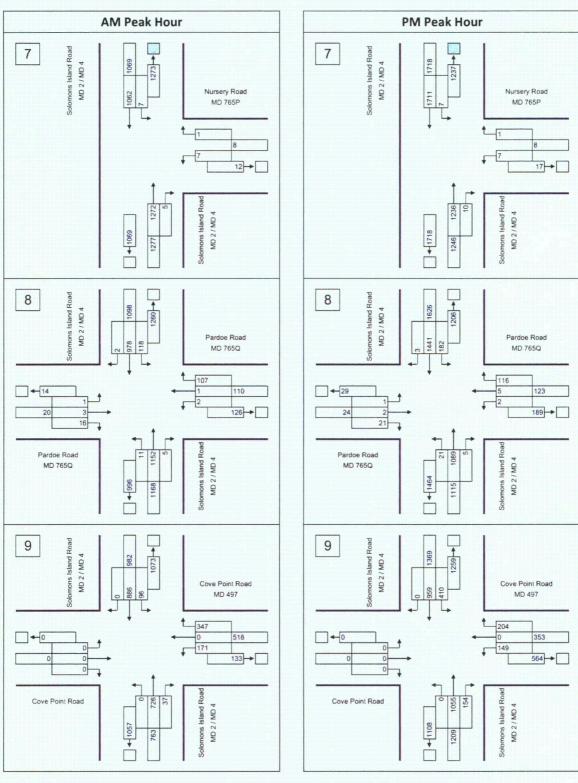



Grow thru volumes at 2% annual to 2010

KLD Engineering, P.C. CC3 Traffic Study Calvert Cliffs - Traffic Volumes - 2016.xls Existing (2010) Balanced

Existing (2010) Balanced

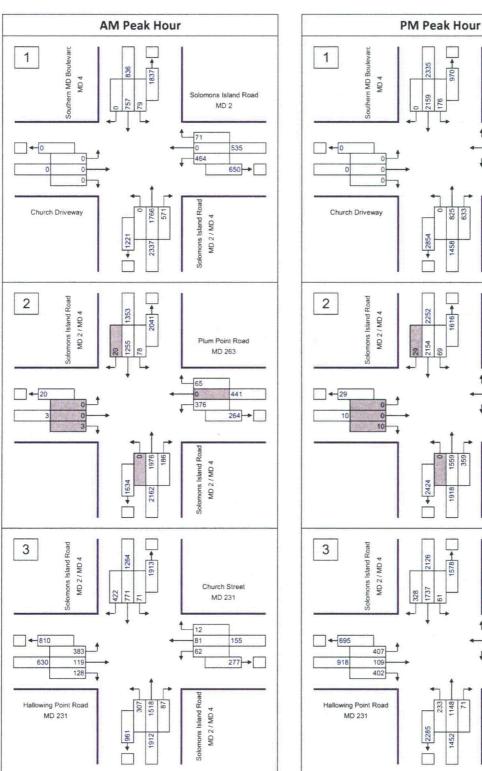

10/18/2010 Page 7 of 21

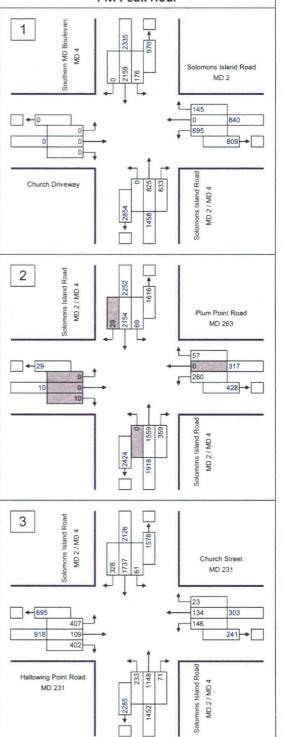

KLD Engineering, P.C. CC3 Traffic Study

Calvert Cliffs - Traffic Volumes - 2016.xls Existing (2010) Balanced 10/18/2010 Page 8 of 21

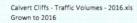
Calvert Cliffs - Traffic Volumes - 2016.xls Existing (2010) Balanced 10/18/2010 Page 9 of 21

Balanced grown volumes

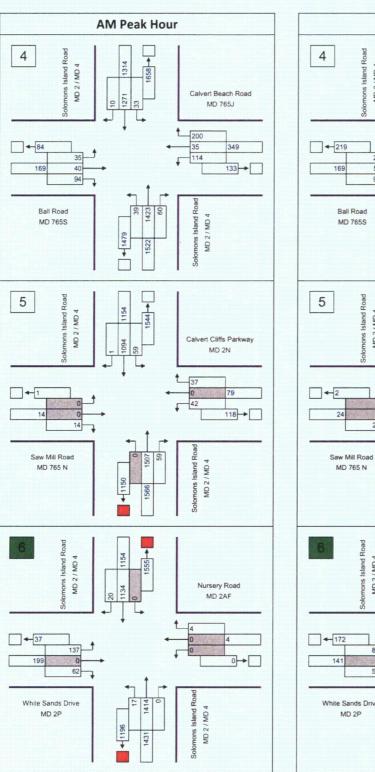

Adjusted thrus only

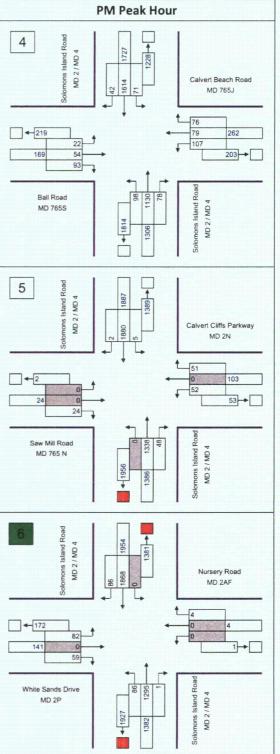

Higher values rule

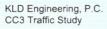
KLD Engineering, P.C. CC3 Traffic Study


Grown to 2016

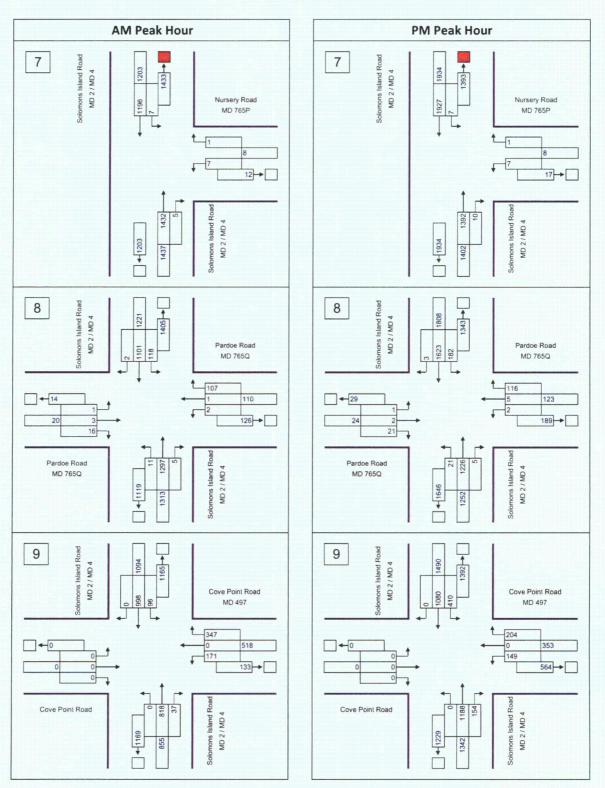
10/18/2010 Page 10 of 21






KLD Engineering, P.C. CC3 Traffic Study

10/18/2010 Page 11 of 21



10/18/2010 Page 12 of 21

Grow thru volumes at 2% annual to 2015

KLD Engineering, P.C. CC3 Traffic Study Calvert Cliffs - Traffic Volumes - 2016.xls Background (2016) Balanced

Background (2016) Balanced

10/18/2010 Page 13 of 21

Solomons Island Road

MD 2

840

809

145

695

DE

ions Island Roa

Color Color

- 57

260

Solomons Island Ro

23

146

ons Island Roa

Sol

MD 2 / MD 4

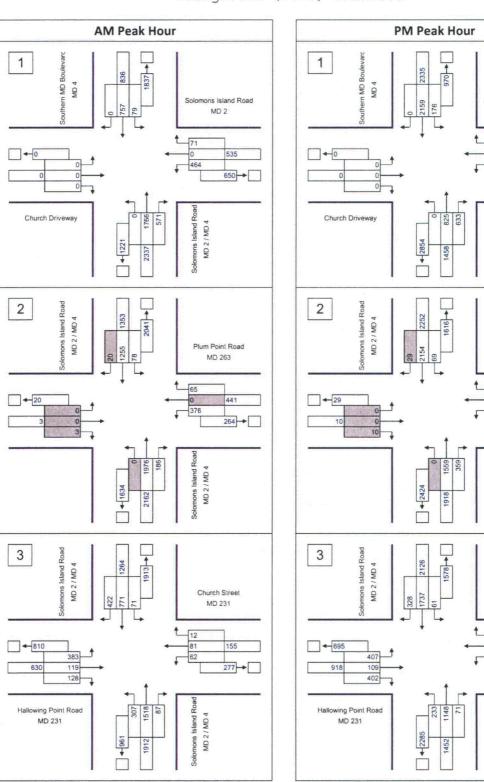
MD 2 / MD 4

Church Street

MD 231

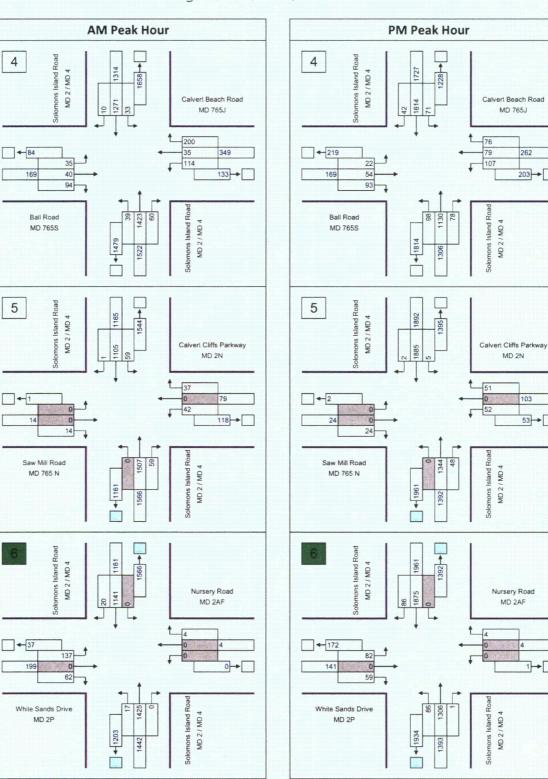
303

241


MD 2 / MD 4

Plum Point Road

MD 263


317

428

KLD Engineering, P.C. CC3 Traffic Study

Calvert Cliffs - Traffic Volumes - 2016.xls Background (2016) Balanced 10/18/2010 Page 14 of 21

KLD Engineering, P.C. CC3 Traffic Study

Calvert Cliffs - Traffic Volumes - 2016.xls Background (2016) Balanced

Background (2016) Balanced

AM Peak Hour PM Peak Hour Solomons Island Road MD 2 / MD 4 7 7 Solomons Island Road 142 1393 + 1203 1934 MD 2 / MD 4 Nursery Road Nursery Road 196 1927 MD 765P MD 765P t t -1 -1 8 -Ł t 12-17-1441 392 Island Ro MD 2 / MD 4 MD 2 / MD 4 ons Island + 1934 + 1203 1446 Suc 1402 8 8 Solomons Island Road Solomons Island Road 1405 MD 2 / MD 4 1221 MD 2 / MD 4 808 343 Pardoe Road Pardoe Road 1101 1623 18 182 MD 765Q MD 765Q 1 t 116 - 14 4-29 110 123 126 189 20 24 16 21 mons Island Road Pardoe Road nons Island Ro. Pardoe Road 297 226 MD 2 / MD 4 MD 2 / MD 4 MD 765Q MD 765Q +1119 + 1646 1313 1252 union. 9 9 Solomons Island Road Solomons Island Road 1392 1490 1094 MD 2 / MD 4 MD 2 / MD 4 1165 Cove Point Road Cove Point Road 080 410 g MD 497 MD 497 t t -347 204 -0 0 518 -0 353 171 149 1 1 133 564 0 Cove Point Road Cove Point Road ions Island Ro ions Island Ro 154 1188 MD 2 / MD 4 MD 2 / MD 4 +1169 + 1229 1342 855 Solon Solor

Adjusted thrus only

Higher values rule

KLD Engineering, P.C. CC3 Traffic Study G-19

10/18/2010 Page 15 of 21

In reply, please refer to: 20834532

MEMORANDUM

то:	Ed Miller, PE Principal Environmental Engineer Constellation Energy CPG – Environmental Services
FROM:	Tim Ryan, PE, PTOE Senior Traffic Engineer URS Corporation
DATE:	September 21, 2010
RE:	Meeting Summary UniStar CC3 Traffic Issues Meeting September 7, 2010

A meeting for the topic referenced above was held in the offices of the Maryland State Highway Administration (SHA) on September 7, 2010, starting at 11:00 AM. The following individuals attended:

Frank Coxon	SHA Engineering and Access Permits Division (EAPD)
Steven Foster	SHA EAPD
Jim Holls	SHA EAPD (WBCM)
Mike Milbradt	UniStar
Ed Miller	UniStar
Dimitri Lutchenkov	UniStar
Wayne McFall	URS
Rebecca Myrick	URS
Tim Ryan	URS

On the phone, from SHA District 5, were the following individuals:

Kim Tran	SHA
Greg Phillips	SHA
Michelle Vrikkis	SHA

The following points were discussed:

KLD Engineering, P.C. ' CC3 Traffic Study MEMORANDUM Meeting Summary September 21, 2010 Page 2

- 1. SHA's letter, responding to the July 30, 2010 Technical Memorandum for the Calvert Cliffs Nuclear Power Plant, was the first topic of discussion. UniStar expressed concern over one of the comments (discussed further below). There were no concerns with the other SHA comments; they will be incorporated into future traffic analyses.
- 2. One of SHA's comments was that 10% trucks should be assumed to enter the site from southbound MD 2/4 during the AM peak hour. Given UniStar's ability to control access to the site by any vehicle, at any time, UniStar feels that the 2% value (used in the July 30, 2010 Technical Memorandum) is more realistic. SHA expressed concern about the impacts on intersection operations and queuing on southbound MD2/4, if more trucks than anticipated arrive at the site during the peak hour. SHA also expressed concern that queuing of vehicles at UniStar's gate could extend back into MD 2/4, particularly if some vehicles are denied entry.

It was agreed that URS would perform additional Synchro/SimTraffic analyses, to determine the sensitivity of the assumed truck percentage to intersection operations, queuing on southbound MD 2/4 and queuing at the UniStar gate. The proposed gate layout and operation will be designed to minimize queues and avoid any impacts to MD 2/4. The proposed gate location will be over 4,000 feet from the White Sands/ MD 2/4 intersection. Potential mitigation strategies to accommodate unforeseen queuing will be developed. These strategies could include a truck "holding area" on the CC3 Access Road between MD 2/4 and the UniStar gate as well as "squared off" left turn lanes on southbound MD 2/4.

- 3. With regard to other parameters to be used in the Traffic Study:
 - a. At the intersection of MD 2/4 and White Sands Drive, SHA is open to either two or three southbound left turn lanes, provided that the queuing/delay criteria agreed upon at the June 11, 2010 meeting are met.
 - b. The intersection of MD 2/4 and MD 263 does not need to be addressed.
 - c. If widening to provide an additional thru lane is needed at an intersection, that additional thru lane should be carried downstream of the intersection in accordance with Figure 2C-6a of the Maryland Manual on Uniform Traffic Control Devices. The length of the additional through lane on the upstream side of the intersection should be long enough to handle the 95th percentile queue. Beyond this, additional mainline widening of MD 2/4 does not need to be considered.
 - d. SHA is still considering the trip distribution to be used north of the project site. SHA's final recommendations about this topic will be provided in about a week.

MEMORANDUM Meeting Summary September 21, 2010 Page 3

- e. Critical lane analyis should be used for all intersections, with the exception of the intersection of MD 2/4 and White Sands Drive, where Synchro/SimTraffic can be used.
- f. The Traffic Study should identify improvements necessary to provide level of service (LOS) D at all study area intersections for "2015 Build" conditions. If it appears that the extent of those improvements is unrealistic, the Traffic Study should also identify improvements that provide as close to LOS D as possible. For those intersections which are forecast to operate at LOS E or F under "2015 No Build" conditions, the Traffic Study should also identify improvements which would mitigate "Build" traffic such that the "2015 No Build" critical lane volume is maintained.
- 4. For "half signals" (such as the signal currently in operation at the MD 2 junction with MD 4), if a second left turn lane is proposed from the minor approach, the currently unsignalized thru movement should be signalized.
- 5. URS will provide plots of the vehicle turning templates for the proposed White Sands Road/ MD 2/4 intersection to the SHA.
- 6. In terms of formal agreements, SHA would strongly prefer a Letter of Intent between SHA and UniStar, rather than a Memorandum of Agreement (MOA).

URS believes that this is an accurate summary of our meeting. However, we understand that others in attendance may have different recollections. We would appreciate receiving any comments you might have within 10 calendar days of your receipt of this document. If we receive no comments within that period, we will move ahead based on the premise that this summary is completely accurate.

KLD Engineering, P.C. CC3 Traffic Study

MEMORANDUM

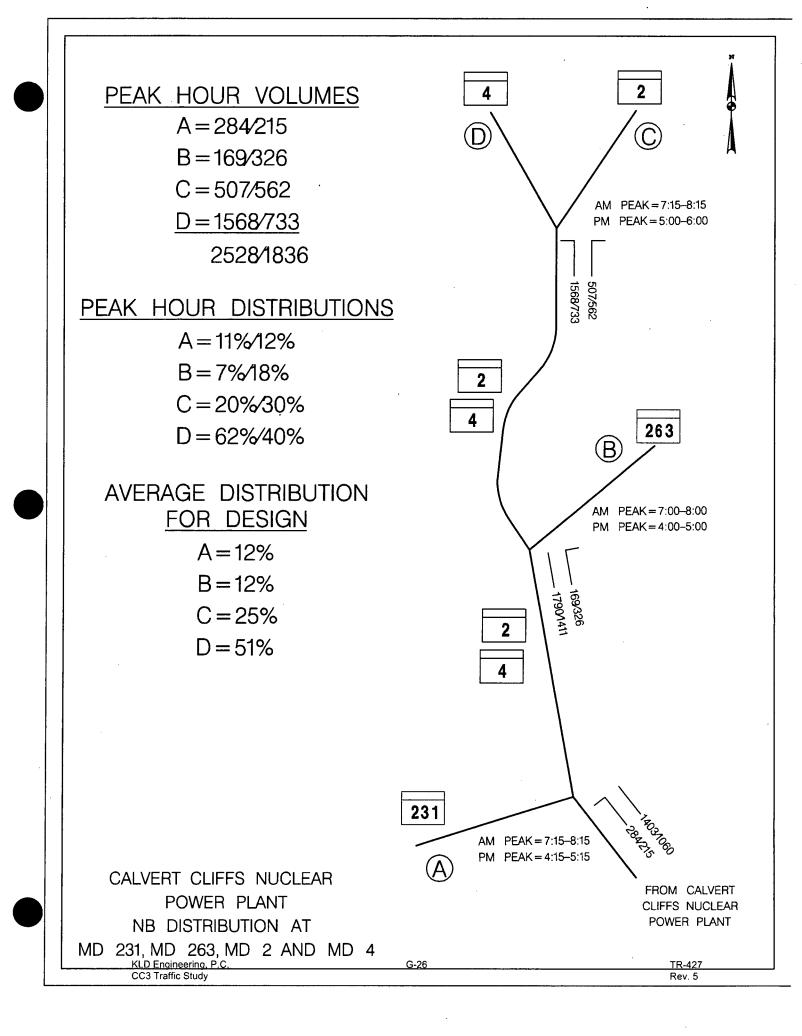
TO:	Ed Miller, PE Principal Environmental Engineer Constellation Energy CPG – Environmental Services
FROM:	Wayne McFall, PE Project Manager URS Corporation
DATE:	December 10, 2010
RE:	Draft Meeting Summary UniStar CC3 Traffic Issues Meeting December 8, 2010

A meeting for the topic referenced above was held in the offices of the Maryland State Highway Administration (SHA) on December 8, 2010, starting at 10:00 AM. The following individuals attended:

Frank Coxon	SHA Engineering and Access Permits Division (EAPD)
Steven Foster	SHA EAPD
Jim Holls	SHA EAPD (WBCM)
Mike Milbradt	UniStar
Ed Miller	UniStar
Dimitri Lutchenkov	UniStar
Tim Ryan	URS
Wayne McFall	URS

The following points were discussed:

- 1. UniStar explained that the project is still moving forward, despite the changes in corporate management of the project. The owner-applicant identified in previous submissions to various agencies has not changed.
- 2. SHA has reservations about the triple left turn lane proposed at White Sands Drive, because it is, in effect, a U-turn movement. SHA's research indicates that the efficiency of the movement could be decreased by as much as 55 percent, with resulting negative impacts on operations on MD 2/4. In addition, SHA is concerned about the possibility of sideswipe collisions due to the geometric constraints. As a result, the SHA developed a concept for a temporary at-grade intersection relocated to a point where the left turn does not result in a U-turn. The SHA provided a concept plan for this option to UniStar on December 3, 2010.


Ed Miller, PE MEMORANDUM December 10, 2010 Page 2

- 3. The SHA requested that UniStar consider a flyover ramp/bridge to provide the southbound left turn movement as an alternative to the temporary at-grade intersection. URS presented very preliminary results of analyses of a flyover, which revealed a number of complications such as potential right-of-way impacts, impacts to buildings on the east side of MD 2/4, utility impacts and the close proximity of the ramp terminus to the Saw Mill Road intersection. In addition, the construction and long term maintenance costs of providing a flyover are expected to be significantly higher than those related to providing a temporary at-grade intersection. The SHA requested a concept study of the flyover option, including an evaluation of the impacts and costs of this option versus the at-grade intersection option.
- 4. With specific regard to the relocated temporary at-grade intersection, the following points were discussed:
 - a. A break on the controlled-access line is acceptable for this location, provided the intersection will be closed after construction of CC3 is completed. An SHA administrative approval is all that is required for this temporary break.
 - b. SHA District 5, the Office of Traffic and Safety, and the SHA Administrator have agreed that this concept is feasible.
 - c. The existing left turn movement from Calvert Cliffs Parkway onto southbound MD 2/4 would need to be accommodated during the life of the temporary access intersections in one of the following ways:
 - i. Full signalization of the MD 2/4 at Calvert Cliffs Parkway intersection
 - ii. Requiring southbound left turners from Calvert Cliffs Parkway to actually turn right, and make a U-turn in the median of MD 2/4
 - iii. Internal connections on the Calvert Cliffs site, to allow those vehicles to use the temporary at-grade intersection to turn left onto southbound MD 2/4.
 - d. Any one of these three approaches would be acceptable. Unistar will investigate the corporate feasibility of the third approach.
- 5. Submission of both a Traffic Impact Study (TIS) and "Design Concepts" is now required. The Design Concepts should reflect the changes in intersection configurations proposed in the TIS. The Design Concepts for construction conditions should include a flyover, including an evaluation of the impacts and costs of this option versus the at-grade intersection option. The fly-over concept can be evaluated in two dimensions for the purposes of this study.

Ed Miller, PE MEMORANDUM December 10, 2010 Page 3

- 6. It was agreed that the TIS will be reviewed and approved in two parts. The first would deal only with construction conditions, and will be submitted first. The second, which will deal only with post-construction conditions, will be submitted at a later date.
- 7. Under "post-construction" conditions, it will be necessary for the relocated temporary at-grade intersection to be closed. As a result, access/egress for the CC3 site after construction is complete will need to be provided at White Sands Drive (with a full traffic signal), or at Nursery Road (perhaps with a partial signal), or at Calvert Cliffs Parkway (if shared access from MD 2/4 is a corporate possibility between the owners of CC1/CC2 and CC3).
- 8. The Letter of Intent (LOI) was then discussed. The SHA requested that UniStar prepare a draft LOI that will be the basis of the final Memorandum of Agreement (MOA) The SHA will prepare the final Memorandum of Agreement. Some of the issues that will be addressed in the MOA include:
 - Liability use standard language in sample MOA's
 - Roles and Responsibilities of SHA and UniStar
 - Schedule when do MD 2/4 improvements have to be complete?
 - Design submittal requirements # of review submittals?
 - SHA review response times
 - Permits
 - Construction cost responsibility (including utility relocations)
 - SHA inspection cost reimbursement (requires a surety for 15% of construction cost)
 - Right-of-way acquisition
- 9. Since the proposed MD 2/4 Split intersection improvements will require right-of-way acquisition, UniStar requested that the MD 2/4 Split intersection improvements be an SHA project in which UniStar would contribute their share of the construction cost.

URS believes that this is an accurate summary of our meeting. However, we understand that others in attendance may have different recollections. We would appreciate receiving any comments you might have within 10 calendar days of your receipt of this document. If we receive no comments within that period, we will move ahead based on the premise that this summary is completely accurate.

Satya Muthuswamy

From:	Wayne_McFall@URSCorp.com
Sent:	Tuesday, October 26, 2010 3:31 PM
To:	Satya Muthuswamy
Cc:	'BillMcShane' <bmcshane@kldcompanies.com o="," rebecca_myrick@urscorp.com,<br="">'PEPTOETimothyA.Ryan' <timothy_ryan< td=""></timothy_ryan<></bmcshane@kldcompanies.com>
Subject:	Fw: Calvert Cliffs CC3 - gate queue analysis
fyi	
Thanks,	
Wayne	
<<<<<<>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
M. Wayne McFall,	P.E.
URS	
4 North Park Drive	ə, Suite 300
Hunt Valley, MD	21030
Office Phone: (41)	0) 891-9205
Office Phone. (41)	

This e-mail and any attachments contain URS Corporation confidential information that may be proprietary or privileged. If you receive this message in error or are not the intended recipient, you should not retain, distribute, disclose or use any of this information and you should destroy the e-mail and any attachments or copies.

----- Forwarded by Wayne McFall/HuntValley/URSCorp on 10/26/2010 03:28 PM ----Wayne McFall/HuntValley/URSCorp

10/07/2010 03:02 PM

To Frank Coxon < FCoxon@sha.state.md.us>

cc <u>JHOLLS@WBCM.com</u>, 'Greg Phillips' <<u>GPhillips@sha.state.md.us</u>>, Kimberly Tran <<u>ktran@sha.state.md.us</u>>, "'Timothy_Ryan@URSCorp.com" <<u>Timothy_Ryan@URSCorp.com</u>>, Rebecca Myrick/HuntValley/URSCorp@URSCorp, "Miller, Edward A" <<u>Edward.Miller@constellation.com</u>>, Stephanie Huck/HuntValley/URSCorp@URSCORP, <u>sfoster1@sha.state.md.us</u> Subject Calvert Cliffs CC3 - gate queue analysis

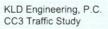
Frank,

As discussed in our meeting with the SHA on 9-7-10, URS has performed a Gate Queue Analysis, using SimTraffic, for the proposed gate for the Calvert Cliffs construction site. The SimTraffic files are too big to email. See instructions below for downloading these files.

UniStar plans to construct a gate that provides 3 lanes for entering traffic at the CC3 Gate, with a provision for widening to provide additional capacity, if required. Only workers with a permit on their vehicle will be allowed to enter the site during the AM peak period. Delivery and construction trucks and visitors will not be allowed to pass through the gate during the AM peak period. A pull-off parking area will be provided upstream of the gate, to provide waiting trucks and visitors with a separate holding area. After the AM peak period, trucks and visitors will utilize the gates.

The gate will be located approximately 3,100 feet from the proposed White Sands/ MD 2/4 intersection. One of the key

parameters is the processing time for each vehicle. Unistar's proposed gate operation for workers with permits on their vehicles will involve a quick check of the permit on the vehicle as they pass through the gate without stopping. This is expected to be less than a 7 second delay per vehicle. Even though there will be no trucks allowed through the gate during the AM peak period, the analyses includes 2% trucks, which provides a higher factor of safety for determining the queue length. Using these parameters, the analysis shows that the queue will not backup to MD 2/4.


Please use the following FTP site information for downloading the SimTraffic files.

address: <u>https://moveitdmz102.urscorp.com/</u> username: <u>ursftp@gmail.com</u> password: huntvalley01

Thanks, Wayne

This e-mail and any attachments contain URS Corporation confidential information that may be proprietary or privileged. If you receive this message in error or are not the intended recipient, you should not retain, distribute, disclose or use any of this information and you should destroy the e-mail and any attachments or copies.

Brian Damiani

From: Sent: To: Subject: Satya Muthuswamy [satya@kldcompanies.com] Friday, December 17, 2010 1:50 PM Brian Damiani Fw: Direction from UniStar to KLD

Flag Status:

Flagged

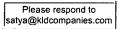
Fyi

Satya Muthuswamy, PE (OH), PTOE Senior Traffic Engineer KLD (631) 617-5650 x 216

From: Rebecca_Myrick@URSCorp.com Date: Fri, 17 Dec 2010 13:05:39 -0500 To: <satya@kldcompanies.com> Cc: 'Bill McShane'<bmcshane@kldcompanies.com>; 'Miller, Edward A'<Edward.Miller@constellation.com>; <Timothy_Ryan@URSCorp.com>; <Wayne_McFall@URSCorp.com> Subject: RE: Direction from UniStar to KLD

We did the gate queue analysis for the relocated entrance. The gate needs 4 lanes, if we assume 7 second service times.

Thanks.


Rebecca L. Myrick, PE, PTOE (formerly Rebecca L. Thomas)

URS Corporation 4 North Park Drive, Suite 300 * Hunt Valley, Maryland 21030 Office Tel: 410-785-7220 * Fax: 410-785-6818 Direct Tel: 410-891-9527 * Cell: 443-275-8083

This e-mail and any attachments contain URS Corporation confidential information that may be proprietary or privileged. If you receive this message in error or are not the intended recipient, you should not retain, distribute, disclose or use any of this information and you should destroy the e-mail and any attachments or copies.

Satya Muthuswamy <satya@kldcompanies.com>

12/17/2010 12:58 PM

To Wayne_McFall@URSCorp.com

cc 'Bill McShane' <bmcshane@kldcompanies.com>, "'Miller, Edward A'' <Edward.Miller@constellation.com>, Timothy_Ryan@URSCorp.com, Rebecca_Myrick@URSCorp.com

Subject RE: Direction from UniStar to KLD

KLD Engineering, P.C. CC3 Traffic Study 1

TR-427 Rev. 5

Queuing and Blocking Report

Intersection: 6: CC3 Access Road & Gate

Movement	EB	EB	EB	EB
Directions Served	Т	Т	Т	T
Maximum Queue (ft)	702	683	482	415
Average Queue (ft)	363	333	291	298
95th Queue (ft)	547	506	394	390
Link Distance (ft)	1188	1188	1188	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				500
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

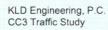
4

HCM Signalized Intersection Capacity Analysis

CC3 Access Road AM

Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	2	2	2	1	3	2	
Volume (vph)	42	0	1566	365	1458	1119	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	1900	7.0	7.0	6.0	7.0	
Lane Util. Factor	0.97		0.95	1.00	0.94	0.95	
Frt	1.00		1.00	0.85	1.00	1.00	
Fit Protected	0.95		1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3183		3539	1468	4627	3539	
Flt Permitted	0.95		1.00	1.00	0.95	1.00	
	3183		3539	1468	4627	3539	
Satd. Flow (perm)	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	0.00	Number of Cold States of Street States of Street States of States	to be a first of the second	and the second se	state of the second	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	46	0	1702	397	1585	1216	
RTOR Reduction (vph)	0	0	0	39	0	0	
Lane Group Flow (vph)	46	0	1702	358	1585	1216	
Heavy Vehicles (%)	10%	10%	2%	10%	10%	2%	
Turn Type		pm+ov		Perm	Prot		
Protected Phases	8	1	2		1	6	
Permitted Phases		8		2			
Actuated Green, G (s)	4.0		94.3	94.3	63.7	164.0	
Effective Green, g (s)	4.0		94.3	94.3	63.7	164.0	
Actuated g/C Ratio	0.02		0.52	0.52	0.35	0.91	
Clearance Time (s)	5.0		7.0	7.0	6.0	7.0	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	71		1854	769	1637	3224	
v/s Ratio Prot	c0.01		c0.48		c0.34	0.34	
v/s Ratio Perm				0.24			
v/c Ratio	0.65		0.92	0.47	0.97	0.38	
Uniform Delay, d1	87.3		39.3	27.0	57.2	1.1	
Progression Factor	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	18.5		8.8	2.0	13.2	0.1	
Delay (s)	105.8		48.1	29.0	70.4	1.1	
Level of Service	F		D	С	E	A	
Approach Delay (s)	105.8		44.5			40.3	
Approach LOS	F		D			D	
Intersection Summary							
HCM Average Control Dela	v		42.7	H	CM Level	of Service	4 Dectored
HCM Volume to Capacity ra			0.93				
Actuated Cycle Length (s)			180.0	S	um of lost	time (s)	
Intersection Capacity Utiliza	tion		90.2%			of Service	
Analysis Period (min)			15		3 23.010		
c Critical Lane Group							

c Critical Lane Group



HCM Signalized Intersection Capacity Analysis

CC3 Access Road PM

Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	2	2	2	1	3	2	
Volume (vph)	417	1458	1392	213	851	1909	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0	7.0	7.0	6.0	7.0	
Lane Util. Factor	0.97	0.88	0.95	1.00	0.94	0.95	
Frt	1.00	0.85	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3183	2584	3539	1468	4627	3539	
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3183	2584	3539	1468	4627	3539	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	453	1585	1513	232	925	2075	
RTOR Reduction (vph)	0	0	0	122	0	0	
Lane Group Flow (vph)	453	1585	1513	110	925	2075	
Heavy Vehicles (%)	10%	10%	2%	10%	10%	2%	
Turn Type	1075	pt+ov	270	Perm	Prot	L /0	
Protected Phases	8	81	2	1 Cill	1	6	
Permitted Phases	0	01	2	2		U	
Actuated Green, G (s)	24.0	83.0	85.0	85.0	53.0	144.0	
Effective Green, g (s)	24.0	77.0	85.0	85.0	53.0	144.0	
Actuated g/C Ratio	0.13	0.43	0.47	0.47	0.29	0.80	
Clearance Time (s)	5.0	0.40	7.0	7.0	6.0	7.0	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	424	1105	1671	693	1362	2831	
v/s Ratio Prot	0.14	c0.61	c0.43	033	0.20	0.59	
v/s Ratio Perm	0.14	0.01	0.45	0.07	0.20	0.33	
v/c Ratio	1.07	1.43	0.91	0.16	0.68	0.73	
Uniform Delay, d1	78.0	51.5	43.8	27.1	56.0	8.7	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	63.1	200.7	8.6	0.5	1.00	0.8	
Delay (s)	141.1	252.2	52.4	27.6	57.0	9.5	
Level of Service	141.1 F	252.2 F	52.4 D	C	57.0 E	9.5 A	
Approach Delay (s)	227.5	r	49.1	C	E	24.2	
Approach LOS	227.5 F		49.1 D			24.2 C	
	Г		U			L	
Intersection Summary	and the second of		01.7				-
HCM Average Control Dela			91.7	H	-M Leve	of Service	F
HCM Volume to Capacity r	800		1.15	~	and add a	time (1)	17.0
Actuated Cycle Length (s)	ation		180.0		um of los		17.0
Intersection Capacity Utiliza	alion		99.5%	IC	U Level (of Service	F
Analysis Period (min)			15				
c Critical Lane Group							

c Critical Lane Group

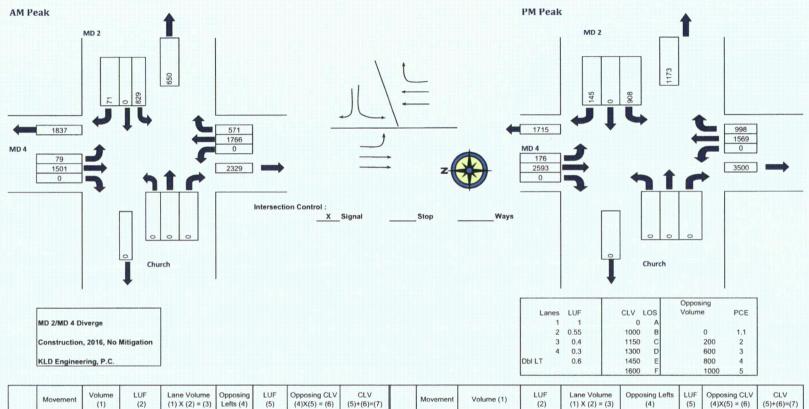
Queuing and Blocking Report

CC3 Access Road AM SimTraffic Queues

Intersection: 5: CC3 Access Road & MD 2 / MD 4

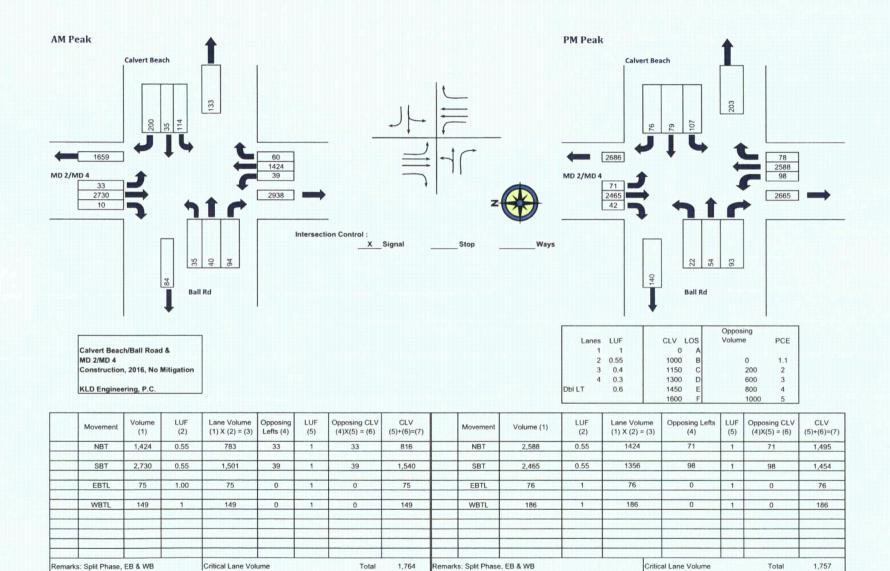
Movement	WB	WB	NB	NB	NB	SB	SB	SB	SB	SB	
Directions Served	L	L	T	T	R	L	L	L	T	T	
Maximum Queue (ft)	75	69	885	990	625	652	630	741	619	607	
Average Queue (ft)	21	26	476	484	229	490	496	536	37	44	
95th Queue (ft)	57	64	742	757	484	657	617	675	218	219	
Link Distance (ft)	1188	1188	1085	1085				1067	1067	1067	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)					600	1000	1000				
Storage Blk Time (%)				3	0						
Queuing Penalty (veh)				10	0						

KLD Engineering, P.C. CC3 Traffic Study


Queuing and Blocking Report

CC3 Access Road PM SimTraffic Queues

Intersection: 5: CC3 Access Road & MD 2 / MD 4


Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB	SB	SB	SB
Directions Served	L	L	R	R	Т	Т	R	L	L	L	Т	Т
Maximum Queue (ft)	1250	1238	325	312	682	663	625	311	345	415	463	455
Average Queue (ft)	1223	1210	322	308	447	452	80	205	230	262	219	234
95th Queue (ft)	1256	1234	329	325	617	614	256	307	340	374	338	360
Link Distance (ft)	1188	1188			1085	1085				1067	1067	1067
Upstream Blk Time (%)	37	45										
Queuing Penalty (veh)	349	424										
Storage Bay Dist (ft)			300	300			600	1000	1000			
Storage Blk Time (%)		20	38	30		1						
Queuing Penalty (veh)		285	79	62		1						

	Movement	Volume (1)	LUF (2)	Lane Volume (1) X (2) = (3)	Opposing Lefts (4)	LUF (5)	Opposing CLV (4)X(5) = (6)	CLV (5)+(6)=(7)		Movement	Volume (1)	LUF (2)	Lane Volum (1) X (2) = (3		LUF (5)	Opposing CLV (4)X(5) = (6)	CLV (5)+(6)=(7)
	NBT	1,766	0.55	971	79	1	79	1,050		NBT	1,569	0.55	863	176	1	176	1,039
	SBT	1,501	0.55	825	0123	<u> 1</u>		19-11-11-11-1 1-1-1-1-1-1-1-1-1-1-1-1-1-		SBT	2,593	0.55	1426				12/2019/12
	WBL	829	1	829	0	1	0	829		WBL	908	1	908	0	1	0	908
					-												
Rema	the:			Critical Lane Vol	lime		Total	1,879	Remar	ke:				ritical Lane Volume		Total	1,946
NBR	as RTOR, is cor ot included in CL				une		LOS V/C	F 1.17	NBR h	as RTOR, is co	ncurrent with WBL					LOS V/C	F 1.22

	MD 231		T							PM Peak	MD 231		1		
1914 MD 4 2055 423	JL L			86 1519 308 2421	Intersect	ion Control :	Signal	Ì ← Z	• Ways	2861 MD 2/MD 4 61 2485 327		407 407 109 241	504	71 2431 408 3136] →
· · · · · · · · · · · · · · · · · · ·		MD MD										MD 231			
MD 231 & MD Construction KLD Enginee	n, 2016, No I	MD Mitigation]							Lanes 1 2 3 4 Dbi LT	1 0.55 0.4	CLV LOS 0 A 1000 B 1150 C 1300 D 1450 E 1600 F	Oppos Volum		
Construction	n, 2016, No I	1	Lane Volume (1) X (2) = (3)	Opposing Lefts (4)	LUF (5)	Opposing CLV (4)X(5) = (6)	CLV (5)+(6)=(7)	Movement	Volume (1)	1 2 3 4	1 0.55 0.4 0.3	CLV LOS 0 A 1000 B 1150 C 1300 D 1450 E		e PCE 0 1.1 200 2 600 3 800 4	CLV (5)+(6)=
Construction KLD Enginee	n, 2016, No I ering, P.C. Volume	Mitigation	Lane Volume					Movement	Volume (1) 2,431	1 2 3 4 Dbi LT	1 0.55 0.4 0.3 0.6 Lane Volume	CLV LOS 0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts	Volum	e PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV	(5)+(6)
Construction KLD Enginee	n, 2016, No I ering, P.C. Volume (1)	Mitigation LUF (2)	Lane Volume (1) X (2) = (3)	Lefts (4)	(5)	(4)X(5) = (6)	(5)+(6)=(7)			1 2 3 4 Dbi LT	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3)	CLV LOS 0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4)	Volum	e PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6)	(5)+(6)
Construction KLD Enginee Movement NBT SBT	N, 2016, No I ering, P.C. Volume (1) 1,519 2,055	Hitigation LUF (2) 0.40 0.40	Lane Volume (1) X (2) = (3) 607 822	Lefts (4) 71 308	(5) 0.6 0.6	(4)X(5) = (6) 43 185	(5)+(6)=(7) 650 1,007	NBT SBT	2,431	1 2 3 4 Dbi LT (2) 0.4 0.4	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3) 972 994	CLV LOS 0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4) 61 	Volum LUF (5) 0.6	e PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6) 37 	(5)+(6) 1,00 1,23
Construction KLD Enginee Movement NBT SBT EBL	n, 2016, No I ering, P.C. Volume (1) 1,519 2,055 383	Mitigation LUF (2) 0.40 0.60	Lane Volume (1) X (2) = (3) 607 822 230	Lefts (4) 71 308 0	(5) 0.6 0.6	(4)X(5) = (6) 43 185 0	(5)+(6)=(7) 650 1,007 230	NBT SBT EBL	2,431 2,485 407	LUF (2) 0.4 0.6	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3) 972 994 244	CLV LOS 0 A 1000 B 1150 C 1300 D 1450 E 1600 F 0 0pposing Lefts (4) 61 408 0 0	Volum LUF (5) 0.6 1	e PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6) 37 	(5)+(6) 1,00 1,23 244
Construction KLD Enginee Movement NBT SBT	N, 2016, No I ering, P.C. Volume (1) 1,519 2,055	Hitigation LUF (2) 0.40 0.40	Lane Volume (1) X (2) = (3) 607 822	Lefts (4) 71 308	(5) 0.6 0.6	(4)X(5) = (6) 43 185	(5)+(6)=(7) 650 1,007	NBT SBT	2,431	1 2 3 4 Dbi LT (2) 0.4 0.4	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3) 972 994	CLV LOS 0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4) 61 	Volum LUF (5) 0.6	e PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6) 37 	

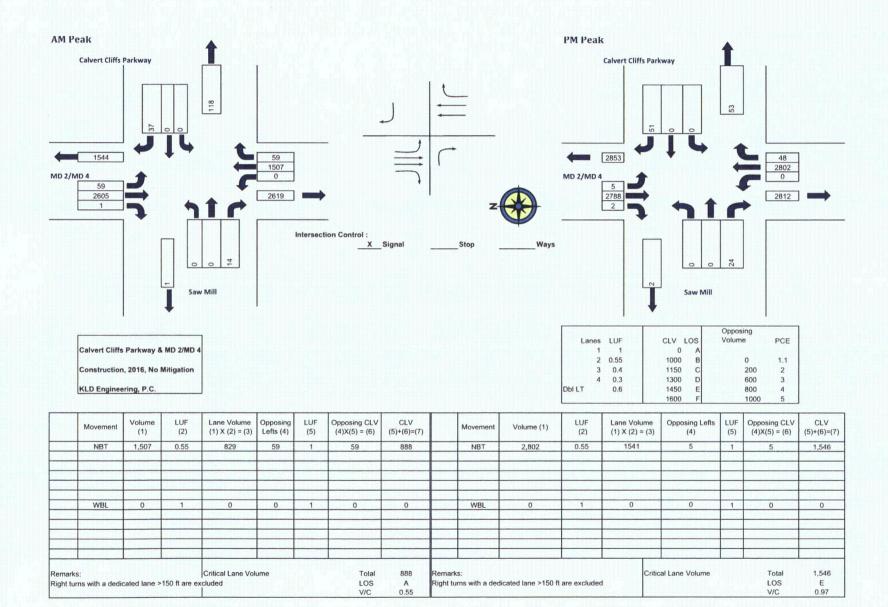
Right turns with a dedicated lane >150 ft are excluded

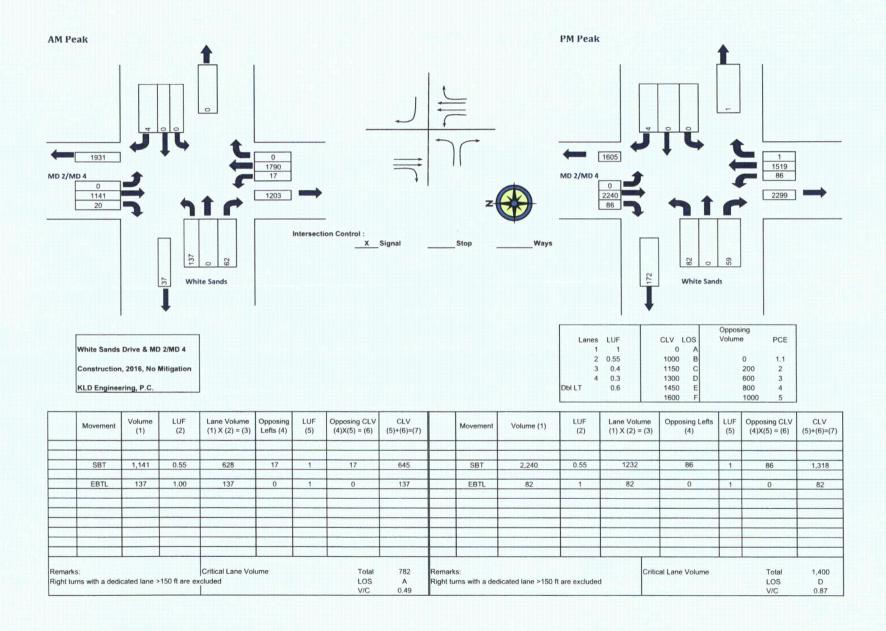
F

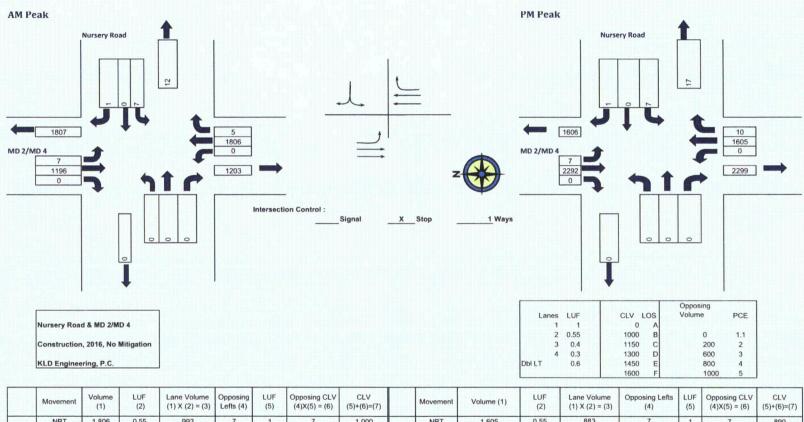
1.10

LOS

V/C


Right turns with a dedicated lane >150 ft are excluded


LOS


V/C

F

1.10

Mover	ment	Volume (1)	LUF (2)	Lane Volume (1) X (2) = (3)	Opposing Lefts (4)	LUF (5)	Opposing CLV (4)X(5) = (6)	CLV (5)+(6)=(7)		Movement	Volume (1)	LUF (2)	Lane Volum (1) X (2) = (LUF (5)	Opposing CLV (4)X(5) = (6)	CLV (5)+(6)=(7)
NB	зт	1,806	0.55	993	7	1	7	1,000		NBT	1,605	0.55	883	7	1	7	890
SB	зт	1,196	0.55	658	0	1	0	658		SBT	2,292	0.55	1260	0	1	0	1,260
WB	LR	8	1	8	0	1	0	8		WBLR	8	1	8	0	1	0	8
emarks: tight turns with	a dedica	ted lane >	150 ft are e:	Critical Lane Vol ccluded	ume		Total LOS V/C	1,008 B 0.63	Remar		ith a dedicated land	e >150 ft are		Critical Lane Volume	1	Total LOS V/C	1,268 C 0.79

			•							PM Peak	HG Truem		4		
1770 /MD 4 118 1101 2	HG Truema	J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1662 11 1119	Intersect	- - Ion Control :	Signal	Z	<u>2</u> Ways	MD 2/MD 4	1556	• 1	189	5 1439 21 2010] →
		Paro	oe 🖉								24	Pardoe	51		
HG Trueman/ Construction KLD Enginee	, 2016, No I									Lanes 1 2 3 4 Dbl LT	1 0.55 0.4	CLV LOS 0 A 1000 B 1150 C 1300 D 1450 E 1600 F	Oppos Volum		
Construction	, 2016, No I		Lane Volume (1) X (2) = (3)	Opposing Lefts (4)	LUF (5)	Opposing CLV (4)X(5) = (6)	CLV (5)+(6)=(7)	Movement	Volume (1)	1 2 3 4	1 0.55 0.4 0.3	0 A 1000 B 1150 C 1300 D 1450 E		ne PCE 0 1.1 200 2 600 3 800 4	CL1 (5)+(6)
Construction KLD Enginee	n, 2016, No M pring, P.C. Volume	Aitigation						Movement	Volume (1) 1,439	1 2 3 4 DH LT	1 0.55 0.4 0.3 0.6 Lane Volume	0 A 1000 B 1150 C 1300 D 1450 E 1600 F	Volum	PCE PCE 0 1.1 200 2 600 3 800 4 1000 5	(5)+(6
Construction KLD Enginee	v, 2016, No I ering, P.C. Volume (1)	Aitigation LUF (2)	(1) X (2) = (3)	Lefts (4)	(5)	(4)X(5) = (6)	(5)+(6)=(7)			1 2 3 4 Dbi LT	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3)	0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4)	Volum LUF (5)	PCE PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6)	(5)+(6 97
Construction KLD Enginee Movement NBT SBT	Volume (1) 1,662	Aitigation LUF (2) 0.55 0.55	(1) X (2) = (3) 914 606	Lefts (4) 118 11	(5) 1 1	(4)X(5) = (6) 118 11	(5)+(6)=(7) 1,032 617	NBT SBT	1,439 1,987	1 2 3 4 Dbl LT (2) 0.55 0.55	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3) 792 1093	0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4) 182	Volum LUF (5)	PCE PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6) 182 1	(5)+(6 97 1,1
Construction KLD Enginee Movement NBT SBT EBLTR	Volume (1) 1,662 1,101 20	Aitigation LUF (2) 0.55 0.55	(1) X (2) = (3) 914 606 20	Lefts (4) 118 11 0	(5) 1 1 1	(4)X(5) = (6) 118 11 0	(5)+(6)=(7) 1,032 617 20	NBT SBT EBLTR	1,439 1,987 24	1 2 3 4 Dbi LT (2) 0.55 0.55 0.55	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3) 792 1093 24	0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4) 182 	Volum LUF (5) 1 1	PCE PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6) 182 21 21	(5)+(6) 97 1,1 ¹ 24
Construction KLD Enginee Movement NBT SBT	Volume (1) 1,662	Aitigation LUF (2) 0.55 0.55	(1) X (2) = (3) 914 606	Lefts (4) 118 11	(5) 1 1	(4)X(5) = (6) 118 11	(5)+(6)=(7) 1,032 617	NBT SBT	1,439 1,987	1 2 3 4 Dbl LT (2) 0.55 0.55	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3) 792 1093	0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4) 182	Volum LUF (5)	PCE PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6) 182 1	(5)+(6) 97 1,1

	Cove Point		1								PM Peak	Cove Poin		1		
1529 2/MD 4 96 998 0				37 1182 0 1169	Intersect	on Control :	J L I	x	Z	A Ways	MD 2/MD 4	1605 P2		0 564	154 1401 0 1594	
		•														
Cove Point F Construction	n, 2016, No N										Lanes 1 2 3 4 Dbi LT	1 0.55 0.4	CLV LOS 0 A 1000 B 1150 C 1300 D 1450 E 1600 F	Oppos Volum		
Construction	n, 2016, No N		Lane Volume (1) X (2) = (3)	Opposing Lefts (4)	LUF (5)	Opposing CLV (4)X(5) = (6)	CLV (5)+(6)=(7)		Movement	Volume (1)	1 2 3 4	1 0.55 0.4 0.3	0 A 1000 B 1150 C 1300 D 1450 E		e PCE 0 1.1 200 2 600 3 800 4	CLV (5)+(6)=(
Construction	n, 2016, No M ering, P.C. Volume	Aitigation							Movement	Volume (1) 1,401	1 2 3 4 Dы LT	1 0.55 0.4 0.3 0.6 Lane Volume	0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts	Volum	e PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV	
Construction KLD Engined	n, 2016, No M ering, P.C. Volume (1)	Aitigation LUF (2)	(1) X (2) = (3)	Lefts (4)	(5)	(4)X(5) = (6)	(5)+(6)=(7)				1 2 3 4 Dы LT LUF (2)	1 0.55 0.4 0.3 0.6	0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4)	Volum	e PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6)	(5)+(6)=
Construction KLD Engined Movement NBT	n, 2016, No M ering, P.C. Volume (1) 1,182	Aitigation LUF (2) 0.55	(1) X (2) = (3) 650	Lefts (4) 96	(5)	(4)X(5) = (6) 96	(5)+(6)=(7) 746		NBT	1,401	1 2 3 4 Dbi LT	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3) 770	0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4)	Volum LUF (5)	e PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6) 410	(5)+(6)= 1,180
Construction KLD Engined Movement NBT	n, 2016, No M ering, P.C. Volume (1) 1,182	Aitigation LUF (2) 0.55	(1) X (2) = (3) 650	Lefts (4) 96	(5)	(4)X(5) = (6) 96	(5)+(6)=(7) 746		NBT	1,401	1 2 3 4 Dbi LT	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3) 770	0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4)	Volum LUF (5)	e PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6) 410	(5)+(6)= 1,180
KLD Engined Movement NBT SBT WBL	N, 2016, No M ering, P.C. Volume (1) 1,182 998 998	Aitigation LUF (2) 0.55 0.55	(1) × (2) = (3) 650 549 171	Lefts (4) 96 0	(5)	(4)X(5) = (6) 96 0	(5)+(6)=(7) 746 549 171	Remar	NBT SBT WBL WBR	1,401 1,445 149	LUF (2) 0.55 0.55	1 0.55 0.4 0.3 0.6 Lane Volume (1) X (2) = (3) 770 795	0 A 1000 B 1150 C 1300 D 1450 E 1600 F Opposing Lefts (4) 410 0 0 0	Volum	e PCE 0 1.1 200 2 600 3 800 4 1000 5 Opposing CLV (4)X(5) = (6) 410 0 0 0	(5)+(6)= 1,180 795 149

Location: MD 2/MD 4 Diverge

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Constructi	on, 2016, N	lo Mitigatio	on								
SBL	2016	AM	F	3	165	79	1.00	79	3.6	5.1	126
SBL	2016	PM	F	3	165	176	1.00	176	8.1	11.3	282
800 feet of	storage ava	ailable (app	roximately)								
WBL	2016	AM	F	3	165	829	1.00	829	38.0	53.2	1329
WBL	2016	PM	F	3	165	908	1.00	908	41.6	58.2	1456
450 feet of	storage ava	ailable (app	roximately)								
NBT	2016	AM	F	3	165	1766	0.55	971	44.5	62.3	1558
NBT	2016	PM	F	3	165	1569	0.55	863	39.6	55.4	1385
950 feet of	storage ava	ailable (app	roximately)	before NBT	blocks NBI	R bypass la	ne at the Ch	urch Drivev	vay		
	Queue leno	th exceeds	available s	storage							

Location: MD 2/MD 4 and MD 231

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Constructi	on, 2016, N	lo Mitigati	on								
NBL	2016	AM	D	5	135	308	0.60	185	6.9	9.7	242
NBL	2016	PM	F	5	165	408	0.60	245	11.2	15.7	393
400 feet of	storage ava	ailable (app	roximately)								
SBL	2016	AM	D	5	135	71	0.60	43	1.6	2.2	56
SBL	2016	PM	F	5	165	61	0.60	37	1.7	2.3	59
400 feet of	storage ava	ailable (app	roximately)								
EBL	2016	AM	D	5	135	383	0.60	230	8.6	12.0	301
EBL*	2016	PM	F	5	165	407	0.60	244	11.2	15.7	391
385 feet of	storage ava	ailable (app	roximately)								
WBL	2016	AM	D	5	135	62	0.60	37	1.4	2.0	49
WBL	2016	PM	F	5	165	146	0.60	88	4.0	5.6	140
360 feet of	storage ava	ailable (app I	roximately)								
	Queue len	gth exceeds	s available s	storage							

* Note - Queue storage deficiency is addressed by proposed mitigation concepts

Location: MD 2/MD 4 and Calvert Beach Road

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Constructi	on, 2016, M	No Mitigati	on								
NBL	2016	AM	F	5	165	39	1.00	39	1.8	2.5	63
NBL	2016	PM	F	5	165	98	1.00	98	4.5	6.3	157
	storage ava		Contract to an a second s	Ū	100		1.00	00	1.0	0.0	101
SBL	2016	AM	F	5	165	33	1.00	33	1.5	2.1	53
SBL	2016	PM	F	5	165	71	1.00	71	3.3	4.6	114
575 feet of	storage ava	ailable (app	roximately)								
EBTL	2016	AM	F	5	165	75	1.00	75	3.4	4.8	120
EBTL	2016	PM	F	5	165	76	1.00	76	3.5	4.9	122
300 feet of	storage ava	ailable (app	roximately)	before EBTL	blocks the	e EBR bypa	ss lane				
WBTL	2016	AM	F	5	165	149	1.00	149	6.8	9.6	239
WBTL	2016	PM	F	5	165	186	1.00	186	8.5	11.9	298
350 feet of	storage ava	ailable (app	roximately)	before WBT	L blocks th	e WBR byp	ass lane				
NBT	2016	AM	F	5	165	1424	0.55	783	35.9	50.2	1256
NBT	2016	PM	F	5	165	2588	0.55	1424	65.3	91.4	2284
SBT	2016	AM	F	5	165	2730	0.55	1501	68.8	96.3	2409
SBT	2016	PM	F	5	165	2465	0.55	1356	62.1	87.0	2175
	Queue len	gth exceeds	l s available s	storage							

Location: MD 2/MD 4 and Calvert Cliffs Parkway

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Constructi	on, 2016, N	lo Mitigatio	on								
SBL	2016	AM	A	3	100	59	1.00	59	1.6	2.3	57
SBL	2016	PM	E	3	150	5	1.00	5	0.2	0.3	7
600 feet of	storage ava	ailable (app	roximately)								
NBT	2016	AM	A	3	100	1507	0.55	829	23.0	32.2	806
NBT* 1150 feet a	2016 vailable prio	PM or to CC3 A	E access Road	3 d (approxima	150 itely)	2802	0.55	1541	64.2	89.9	2248
		th exceeds	available s	torage							

* Note - Queue storage deficiency is addressed by proposed mitigation concept

Location: MD 2/MD 4 and White Sands Drive

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Constructi	on, 2016, N	No Mitigati	on								
NBL	2016	AM	A	3	100	17	1.00	17	0.5	0.7	17
NBL	2016	PM	D	3	135	86	1.00	86	3.2	4.5	113
550 feet of	storage ava	ailable (app	proximately)								
EBTL*	2016	AM	A	3	100	137	1.00	137	3.8	5.3	133
EBTL*	2016	PM	D	3	135	82	1.00	82	3.1	4.3	108
80 feet of st	torage avai	lable (appr	oximately)								
SBT	2016	AM	A	3	100	1141	0.55	628	17.4	24.4	610
SBT	2016	PM	D	3	135	2240	0.55	1232	46.2	64.7	1617
1850 feet a	vailable pri	or to CC3 A	Access Road	d (approxima	itely)						
	Queue leng	gth exceed	s available s	storage							

* - Note that there are small storage deficiencies in the No-Build condition, Construction traffic is not loaded onto this approach.

Location: MD 2/MD 4 and Nursery Road

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Constructi	on, 2016, M	lo Mitigati	on								
SBL	2016	AM	В	3	100	7	1.00	7	0.2	0.3	7
SBL	2016	PM	С	3	120	0	1.00	0	0.0	0.0	0
570 feet of											
	Queue len	gth exceeds	s available s	torage							

Location: MD 2/MD 4 and Pardoe Road

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Constructi	on, 2016, N	lo Mitigati	on								
SBL	2016	AM	С	5	120	118	1.00	118	3.9	5.5	138
SBL	2016	PM	С	5	120	182	1.00	182	6.1	8.5	212
570 feet of	storage ava	ailable (app	roximately)								
NBL	2016	AM	С	5	120	11	1.00	11	0.4	0.5	13
NBL	2016	PM	С	5	120	21	1.00	21	0.7	1.0	25
			proximately)								
	Queue lend	ath exceeds	s available s	storage							

Location: MD 2/MD 4 and Cove Point Road

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Constructi	on, 2016, N	lo Mitigati	on								
SBL	2016	AM	A	3	100	96	1.00	96	2.7	3.7	93
SBL	2016	PM	D	3	135	410	1.00	410	15.4	21.5	538
550 feet of	storage ava	ailable (app	roximately)								
WBL	2016	AM	A	3	100	171	1.00	171	4.8	6.7	166
WBL	2016	PM	D	3	135	149	1.00	149	5.6	7.8	196
300 feet of											
	Queue leno	th exceeds	l s available s	torage							