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UNITED STATES

NUCLEAR REGULATORY COMMISSION
WASHINGTON, D.C. 20555-0001

Errata

NUREG-1953, “Confirmatory Thermal-Hydraulic to Support Specific Success Criteria in the
Standardized Plant Analysis Risk Models — Surry and Peach Bottom,” published
September 2011

Page 10 incorrectly lists the modeled power level for Peach Bottom as 3,458 MWt. The modeled
power was in fact the correct power level (as of 2011) of 3,514 MWi.

The following equations were inadvertently omitted from page 13:
Cumulative Probability of Failure =1 — (1 — Pp)™, or

Cumulative Probability of Failure = 1 — (1 — piritialy(q — pSubseauentyn-1

Footnote 20 (pg. 39) should be read with the knowledge that the MELCOR model would not
account for the effect of ambient pump room temperature on the pump bearing temperature.

The Peach Bottom analyses that credit reactor core isolation cooling (RCIC) in automatic mode
use a setpoint for high-vessel-level shutoff which is 10 inches (0.25m) below the actual plant
value. This is not expected to have a significant effect on the presented results, in that it will
affect the specifics of the frequency and duration of RCIC duties, but not whether or not RCIC is
able to maintain core cooling.

Some plots in the report have accident parameter signatures (i.e., time histories) that are
partially or completely obscured by overlying signatures (e.g., the figure at the top of page A-7).
In viewing these figures, the reader must use cues to recognize this overlap. For example, in
the figure at the bottom of page A-7, it can be discerned that the 3 steam generators’ pressures
overlie one another because: (i) there is no departure at time zero, where the three pressures
would be roughly the same and (ii) the curves do diverge at the end of the simulation.

Similarly, some plots contain signatures where the values are zero for the entire simulation.
These are included because the zero value in and of itself provides information (e.g., confirms
that a system was appropriately disabled for a simulation where it is assumed to be unavailable,
shows that a low-pressure pump was dead-headed for the entire simulation). Such situations
can generally be discerned by discolored x-axes.

Finally, the following abbreviation was inadvertently omitted:

. SPR — Containment spray
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ABSTRACT

In a limited number of cases, thermal-hydraulic success criteria from the suite of standardized
plant analysis risk (SPAR) models have apparent inconsistencies when compared to
counterpart licensee probabilistic risk assessments (PRAs), other relevant SPAR models (i.e.,
models for similar plants), or relevant engineering studies. These inconsistencies are a natural
outcome of the SPAR development process, and often reflect the apparent inconsistencies seen
across licensee PRAs for similar plants. Even so, the U.S. Nuclear Regulatory Commission
(NRC) staff wants to strengthen the technical basis for the SPAR models by performing targeted
additional engineering analysis. The identified success criteria are for both pressurized-water
reactors (PWRs) and boiling-water reactors (BWRs). This report describes MELCOR analyses
performed to augment the technical basis for supporting or modifying these success criteria.
The success criteria contained herein are intended to be confirmatory in nature, and while
suitable for their intended use in supporting the SPAR models they are not intended to be used
by licensees for risk-informed licensing submittals.

This report first provides a basis for using a core damage surrogate of 2,200 degrees
Fahrenheit (1,204 degrees Celsius) peak cladding temperature. Following this discussion are
descriptions of the major plant characteristics for the two plants used for this analysis (Surry
Power Station and Peach Bottom Atomic Power Station) and the MELCOR models used to
represent these plants. Finally, the report presents the results of many MELCOR calculations
and compares these results to the corresponding sequences and success criteria in the SPAR
models for Surry and Peach Bottom.

The results provide additional timing information for many sequences, confirm many of the
existing SPAR model modeling assumptions, and support a few specific changes. Specific
changes that have been made to the SPAR models as a result of these analyses are:

. For six SPAR models corresponding to three-loop “high-head” Westinghouse PWRs:

- Reduction of the adequate venting capability for feed and bleed from two power-
operated relief valves (PORVs) to one PORV.

- Adjustment of the sufficient injection flow during the early stages of a large-break
loss-of-coolant accident from two accumulators to one accumulator or one high-
head safety injection pump.

o For SPAR models corresponding to BWR Mark Is and Mark lls:
- Credit for two control rod drive (CRD) pumps providing adequate core cooling
flow following the initial successful operation of the high-pressure coolant

injection system or reactor core isolation cooling system.

- Credit for one CRD pump providing adequate core cooling for injection late in the
accident sequence (if not already included).

Some additional changes supported by the MELCOR analysis are not implemented because

they are limited by other SPAR modeling assumptions (e.g., timing of core damage relative to
battery depletion for station blackout sequences).






FOREWORD

The U.S. Nuclear Regulatory Commission’s standardized plant analysis risk (SPAR) models are
used to support a number of risk-informed initiatives. The fidelity and realism of these models is
ensured through a number of processes, including cross-comparison with industry models,
review and use by a wide range of technical experts, and confirmatory analysis. The following
report, prepared by staff in the Office of Nuclear Regulatory Research in consultation with staff
from the Office of Nuclear Reactor Regulation, experts from ldaho National Laboratory, and the
agency'’s senior reactor analysts, represents a major confirmatory analysis activity.

One of the key strengths and challenges of probabilistic risk assessment (PRA) models is the
integration of modeling capability from different disciplines, including human performance,
thermal-hydraulics, severe accident progression, nuclear analysis, fuels behavior, structural
analysis, and materials analysis. This report investigates the thermal-hydraulic aspects of the
SPAR models, with the goal of further strengthening the technical basis for decisionmaking that
relies on the SPAR models. This analysis employs the MELCOR computer code, using plant
models developed as part of the State-of-the-Art Reactor Consequence Analyses project. This
report uses these models for a number of scenarios with different assumptions. In many cases,
the operator response is not modeled in order to establish minimal equipment needs or
bounding operator action timings. The report clearly articulates all assumptions and limitations.

The analyses summarized in this report provide the basis for confirming or changing success
criteria in the SPAR models for the Surry Power Station and Peach Bottom Atomic Power
Station. Further evaluation of these results was also performed to extend the results to similar
plants. In addition, future work is planned to perform similar analysis for other design classes.
In addition, work is planned to scope other aspects of this topical area, including the degree of
variation typical in common PRA sequences and the quantification of conservatisms associated
with core damage surrogates. The confirmation of success criteria and other aspects of PRA
modeling using the agency’s state-of-the-art tools (e.g., the MELCOR computer code) is
expected to receive continued focus as the agency moves forward in this area.
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1. INTRODUCTION AND BACKGROUND

The success criteria in the U.S. Nuclear Regulatory Commission’s (NRC’s) standardized plant
analysis risk (SPAR) models are largely based on the success criteria used in the associated
licensee probabilistic risk assessment (PRA) model.” Licensees have used a variety of
methods to determine success criteria, including conservative design-basis analyses and more
realistic best-estimate methods. Consequently, in some situations plants that should behave
similarly from an accident sequence standpoint have different success criteria for specific
scenarios. This issue has been recognized for some time, but until recently the infrastructure
was not in place at the NRC to support refinement of these success criteria.

To facilitate improvements in this area, the NRC staff ran MELCOR calculations for specific
sequences to provide the basis for confirming or changing the corresponding SPAR models.
This analysis used the Surry Power Station (Surry) and the Peach Bottom Atomic Power Station
(Peach Bottom). The staff chose these plants because of the availability of mature and well-
exercised MELCOR input models arising from the State-of-the-Art Reactor Consequence
Analyses (SOARCA) project. The sequences analyzed are not necessarily the most probable
sequences because of the assumed unavailability of systems or the assumed lack of operator
action. This situation is an appropriate effect of the nature of this work (i.e., the informing of
particular pieces of the PRA model). In all cases, this report gives these assumptions in the
results description.

This report summarizes the analyses that have been performed, including the following topics:

. the basis for the core damage definition employed

o major plant characteristics for Surry and Peach Bottom

. a description of the two MELCOR models used

. results of various MELCOR calculations

. application of the MELCOR results to the Surry and Peach Bottom SPAR models, as

well as to the SPAR models for other similar plants

The success criteria contained herein are intended to be confirmatory in nature, and while
suitable for their intended use in supporting the SPAR models they are not intended to be used
by licensees for risk-informed licensing submittals.

In some cases, success criteria are based on other sources, such as NRC studies (e.g., NUREG/CR-5072,
“Decay Heat Removal Using Feed and Bleed for U.S. Pressurized Water Reactors,” issued June 1988
(NRC, 1988)).






2. DEFINITION OF CORE DAMAGE

To perform supporting analysis of success criteria, it is necessary to define what is meant by
core damage (i.e., sequence success versus failure) because no universal quantitative definition
of core damage exists. The American Society of Mechanical Engineers (ASME)/American
Nuclear Society (ANS) PRA standard RA-Sa-2009, “Standard for Level 1/Large Early Release
Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications,” issued

March 2009 (ASME/ANS, 2009) defines core damage as “uncovery and heatup of the reactor
core to the point at which prolonged oxidation and severe fuel damage are anticipated and
involving enough of the core, if released, to result in offsite public health effects.” The standard
later requires the analysis to specify the plant parameters used to determine core damage in
Section 2-2.3, “Supporting Requirement SC-A2” (ASME/ANS, 2009). The core damage
surrogate provides the linkage between the qualitative definition above and the quantitative,
measurable computer code outputs. The surrogate is necessary since a full Level 3 PRA is not
being performed.

For this analysis, the staff ran a number of MELCOR calculations to identify a realistically
conservative core damage surrogate. This report does not thoroughly describe the MELCOR
models used for this part of the project for the following reasons:

o All results are relative, meaning that a change in the model would generally not be
expected to affect the delta-time between the surrogate core damage definition and the
onset of rapid cladding oxidation (which is in fact another surrogate, as described further
below).

o The model is based on the general-purpose models used in the SOARCA project, which
will be documented thoroughly as part of that project.

The analysis used MELCOR version 1.8.6 (NRC, 2005) to assess several possible surrogate
definitions for a variety of pressurized-water reactor (PWR) and boiling-water reactor (BWR)
accident sequences. For the PWR (Surry Power Station), the following sequences were
analyzed:

. station blackout with a 182 gallons per minute (gpm) (0.689 cubic meters per minute
(m®min)) per reactor coolant pump (RCP) seal leak rate?

. station blackout with a 500 gpm (1.89 m*/min) per RCP seal leak rate

. hot-leg loss-of-coolant accident (LOCA) for 2-inch (in.) (5.1-centimeter (cm)),
4-in.(10.2-cm), and 10-in. (25.4-cm) equivalent diameter break sizes

For the BWR (Peach Bottom Atomic Power Station), the following sequences were analyzed:

. station blackout

Note that the seal leakage assumptions used in this analysis differ from those used in the SOARCA project
(see additional discussion in Section 6.4). Also note that the leakage rate provided here is the leakage rate
at full system pressure. As the system depressurizes, the leak rate will decrease.



. recirculation line LOCA for 2-in. (5.1-cm), 6-in. (15.2-cm), and 10-in. (25.4-cm)
equivalent diameter break sizes

Because no universal definition of core damage exists, the definition used here for comparison
with the surrogates will be the temperature at which the transition occurs in the Urbanic-Heidrick
zirconium/water reaction correlation (i.e., a peak cladding temperature (PCT) of approximately
1,580 degrees Celsius (C) (2,876 degrees Fahrenheit (F)) to 1,600 degrees C

(2,912 degrees F)). This is the point at which the reaction becomes more energetic, and
significant oxidation of the cladding is more likely.

A number of potential surrogates that have traditionally been used in PRAs, several of which are
called out in the PRA standard (Section 2-2.3) (ASME/ANS, 2009) were considered. These
included various parameters associated with collapsed reactor vessel water level, peak core-
exit thermocouple temperature, and PCT. Figure 1 shows the results of the MELCOR
calculations to investigate these surrogates. The ordinate axis is the time that the proposed
surrogate (e.g., 1,204 degrees C (2,200 degrees F)) is reached, relative to the time that the
zirconium/water transition temperature range (1,580 degrees C to 1,600 degrees C) is reached.
In all cases but one (the surrogate representing a core exit thermocouple temperature greater
than 1,200 degrees F plus a 30-minute offset), the proposed surrogate is reached before the
oxidation transition temperature (see “Time Rapid Core Damage” in Figure 1). A PCT of

1,204 degrees C (2,200 degrees F) achieves all of the following characteristics:

. It always precedes oxidation transition.

o It is not overly conservative.

. It is equally applicable for both PWRs and BWRs.

. The timing between 1,204 degrees C (2,200 degrees F) and oxidation transition is

relatively similar among the different sequences analyzed.

. It is consistent with the criteria contained in Title 10 of the Code of Federal Regulations
(10 CFR) 50.46, “Acceptance Criteria for Emergency Core Cooling Systems for Light-
Water Nuclear Power Reactors” (10 CFR, 2007).

With regard to the latter bullet, the conservatism (i.e., safety margin) in 10 CFR 50.46 is due to
uncertainty in large-break loss-of-coolant accident (LBLOCA) thermal-hydraulic analysis. For
PRA usage, the margin has, in part, a different reason: the desire to have a specific criterion
that can be used for all sequences combined with overall analysis uncertainty. For the reasons
stated above, a PCT of 1,204 degrees C (2,200 degrees F) is the surrogate used to define core
damage for the MELCOR analyses in this report.
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3. RELATIONSHIP TO THE AMERICAN SOCIETY OF MECHANICAL
ENGINEERS/AMERICAN NUCLEAR SOCIETY PROBABILISTIC
RISK ASSESSMENT STANDARD

Core damage specification is one of several aspects of success criteria analysis covered by the
ASME/ANS PRA standard (ASME/ANS, 2009). Although the present project is confirmatory in

nature, it is still prudent to cross-check the effort against the PRA standard requirements (see
Table 1). Capability Category Il is used for comparison, since this is the category identified in
Regulatory Guide 1.200, Revision 2, “An Approach for Determining the Technical Adequacy of
Probabilistic Risk Assessment Results for Risk-Informed Activities,” issued March 2009, as
current industry good practice (NRC, 2009). Because the current report focuses primarily on
the actual thermal-hydraulic and accident progression analysis and defers the actual PRA
model changes for a subsequent report, there are some cases where the comparison to the
standard has limited applicability. Table 1 notes these instances as appropriate.

Table 1 Comparison of this Project to the ASME/ANS PRA Standard

PRA Standard Supporting
Requirement for Capability
Category Il

This Project

SC-A1: Use provided core
damage definition or justify
the definition used.

SC-A2: Specify the
quantitative surrogate used
for core damage and provide
basis.

The standard provides a qualitative core damage definition. The
definition used here is believed to be consistent with the definition, but is
necessarily quantitative. The basis for the definition (in terms of
quantitative accident analysis and comparison of alternatives) is
provided. Sensitivity calculations of direct current (dc) power recovery
during station blackout have demonstrated that there is not excessive
margin in the definition used.

SC-A3: Specify success
criteria for each safety
function for each accident
sequence.

The existing SPAR model essentially satisfies the requirement. Any
changes proposed to the success criteria should not inappropriately
remove criteria for important safety functions; this is believed to be the
case.

SC-A4: I|dentify systems
shared by units and how they
perform during initiating
events affecting both units.

In the context of this project, this requirement only applies to changes in
which the success criteria is modified to include systems that are shared
by multiple units that were not previously in the success criteria. This is
not believed to be the case for any of the changes proposed.

SC-AS5: Specify the mission
times being used (and use
appropriate mission times).

These calculations use an overall mission time of 24 hours, when
appropriate. For most calculations, either a stable condition has been
reached before 24 hours or core damage has been predicted before
24 hours.

SC-A6: Confirm that the
bases for the success criteria
are consistent with the
operating philosophy of the
plant.

Many of the specific sequences that are being quantified assume few
operator actions. By design, these sequences presume a lack of
operator action and do not agree with the operating philosophy of the
plant (e.g., emergency operating procedures (EOPs)). In cases in which
operator action is being modeled, and in all cases involving system
operation, significant effort has been made to ensure that the analyses
appropriately mimic the operation of the plant. Cases with ambiguity or
limitations are noted. Additional effort has been taken to look at the
EOPs, have senior staff review the analyses, have lead SOARCA
analysts review the analyses, and so forth.

SC-B1: Use realistic generic
analyses evaluations.

For this project, the use of realistic plant-specific analyses means that
Capability Category Il is being met, though the last clause in Category lli
about using no assumptions that could yield conservative criteria is
debatable.




PRA Standard Supporting
Requirement for Capability
Category |l

This Project

SC-B2: Do not use expert
judgment except when
sufficient information /
analytical methods are
unavailable.

Other than cases in which MELCOR models are based on expert
judgment, or judgment is used for selecting operator timings, these
analyses do not use expert judgment. Some judgment will be inevitable
when the analyses are translated to specific changes in the success
criteria for other, similar plants.

SC-B3: Use analysis that is
appropriate to the scenario
and contains the necessary
level of detail.

This requirement is clearly met by the use of MELCOR on a sequence-
by-sequence basis for the sequences being studied.

SC-B4: Use appropriate
models and codes, and use
them within their limits of
applicability.

MELCOR is not formally assessed in the same manner as a design-basis
analysis code, but it does undergo some of the same steps

(e.g., comparison of results against relevant experimental results). The
documentation for this project provides some high-level information about
this assessment but does not attempt to make a comprehensive
argument for MELCOR’s applicability. In general, MELCOR is
considered an appropriate tool for this application. In the case in which
its applicability is most ambiguous (i.e., LBLOCA), the extent of
calculation margin is addressed.

SC-B5: Confirm that the
analyses results are
reasonable and acceptable.

All analyses have been reviewed by multiple experienced engineers to
confirm that the results are reasonable and acceptable. In addition, the
results for many analyses have been compared to similar analyses
performed by the SOARCA project. The SOARCA lead PWR analyst
reviewed all results in the interim report. Results for station blackout
were compared to similar Westinghouse calculations. Results for Surry
feed and bleed were compared to similar TRACE calculations.

SC-C1: Document the
analyses to support PRA
applications, upgrades, and
peer review.

The analyses are being comprehensively documented. The judgment
used in applying the analyses as the basis for making specific SPAR
model changes will be documented separately.

SC-C2: Document the
overall analysis
comprehensively, including
consideration of a provided
list of documentation areas.

In general, the level of documentation being provided with these analyses
is consistent with this Supporting Requirement. The one area that is
currently weak is the discussion of limitations of MELCOR. Specific
MELCOR applicability assessments for each initiator are beyond the
scope of this confirmatory analysis.

SC-C3: Document the
sources of model uncertainty
and related assumptions.

This has not been formally done, except that a general sense of modeling
uncertainty prompted some of the additional analyses (e.g., RCP seal
LOCA model). Another aspect that has received consideration is the
relationship between uncertainty and the margin in a given calculation.
For example, MELCOR may have higher uncertainty in the modeling of
LBLOCAs. Of the 15 Surry LOCA cases with a break size 215 cm (6 in.),
the highest PCT for a case that was deemed to be successful is

812 degrees C (1,494 degrees F), about 400 degrees C below the core
damage definition. This suggests that, for these cases, a higher degree
of uncertainty is acceptable because there is significant margin.




4. MAJOR PLANT CHARACTERISTICS

The following subsections describe the aspects of the analyzed plants that are germane to the
analysis performed in this report.

4.1 Surry Power Station

To the level of detail needed for this analysis, Surry Units 1 and 2 were considered to be
identical. Each unit is a three-loop Westinghouse with a subatmospheric containment. Each
has three high-head safety injection (HHSI) pumps and two low-head safety injection (LHSI)
pumps. The latter are also required for high-pressure recirculation (in order to provide sufficient
net positive suction head (NPSH) to the high-head pumps when using the containment sump as
a water source). The minimum technical specification refueling water storage tank (RWST)
volume is 387,100 gallons (gal) (1,470 cubic meters (m®)). The water source for the emergency
core cooling system (ECCS) automatically transfers from the RWST to the containment sump
when the RWST water level drops below 13.5 percent.® This transfer operation takes

2.5 minutes because of the time it takes for the sump isolation valves to fully open.*

The containment spray system in injection mode relies on two pumps rated at 3,200 gpm

(12.1 m*min) per pump (which includes approximately 300 gpm (1.14 m*/min) per pump of
bleed-off flow®) and draws from the RWST. Containment spray automatically actuates at

25 pounds per square inch absolute (psia) (0.17 megapascal (MPa)) containment pressure, and
the operators are directed by the EOPs to secure (and reset) containment sprays once
containment pressure drops back below 12 psia (0.083 MPa). The containment spray system in
recirculation mode uses four pumps (two in containment and two outside of containment) that
are each rated at 3,500 gpm (13.2 m*/min) and take suction from the containment sump.® Table
2 summarizes major plant characteristics.

Note that the relationship between RWST volume and percent inventory is not intuitive because zero
percent corresponds to about 14,000 gal (53 ma), 13.5 percent corresponds to 66,000 gallons (250 m3),
about 97 percent corresponds to the technical specification limit, and 100 percent corresponds to

399,000 gal (1,510 m3). Also note that switchover requires two-out-of-four RWST low level signals
coincident with Recirculation Mode Transfer switches selected in the proper position.

The MELCOR input model does not model the effects of this delay in terms of RWST inventory reduction.
This bleed-off flow goes to the suction of the outside containment recirculation spray pumps to ensure that
adequate NPSH is available.

Note that successful sump recirculation function requires containment heat removal through the recirculation
spray system.



Table 2 Major Plant Characteristics for Surry

Characteristic Value

Design Type Three-loop Westinghouse
Containment Type Subatmospheric

Power Level 2,546 MWt

Number of HHSI Pumps Three

Number of HHSI Trains Two

Shutoff Head for HHSI 5,905 ft / 2,560 psi (17.65 MPa)
Lowest PORV Opening/Closing Setpoint 2,350 psi (16.2 MPa) / 2,260 psi (15.6 MPa)
Number of Cold-Leg Accumulators One per loop (three total)
Nominal Operating Pressure 2,250 psia (15.5 MPa)
1RWST Volume Technical Specification 387,000 gal (1,470 m°)

The power level used in this report is the power level before the October 2010 measurement
uncertainty recapture power uprate of 1.6%. In general, the results in this report are not expected to
be sensitive to a power change of this amount, or the potential adjustments to protection system,
control system, and operating procedure set-points associated with the change. However, this is a
qualitative assertion, as only the calculations in Section 6.2 consider a higher power level (and in
that case it is a much higher power level).

4.2 Peach Bottom Atomic Power Station

As with Surry, to the level of detail needed for this analysis, Peach Bottom Units 2 and 3 were
considered to be identical. Both are General Electric BWR/4s with Mark-I containment. Peach
Bottom’s reactor core isolation cooling (RCIC) system has a capacity of 600 gpm (2.3 m*/min) at
150 to 1,150 pounds per square inch gage (psig) (1.0 to 7.9 MPa). The high-pressure coolant
injection (HPCI) system capacity is 5,000 gpm (18.9 m*/min). The condensate storage tank
(CST) is the preferred source until a low level in the CST (less than 5 feet (1.5 meters)) causes
an automatic switchover to the suppression pool. The RCIC and HPCI turbines will
automatically trip with a high turbine exhaust pressure of 50 psig and 150 psig (0.34 and

1.03 MPa), respectively. RCIC and HPCI systems will automatically isolate with a low steamline
pressure of 75 psig (0.51 MPa). RCIC and HPCI pump bearings are rated for 210 degrees F
(99 degrees C). The high-capacity low-pressure coolant injection (LPCI) system has a shutoff
head of 295 psig (2.0 MPa). The volume of the CST is 200,000 gal (756 m®). The suppression
pool has a technical specification maximum temperature limit of 95 degrees F (35 degrees C)
and a volume of 127,300 cubic feet (3,605 m*). Major plant characteristics are summarized in
Table 3.

Table 3 Major Plant Characteristics for Peach Bottom

Characteristic Value

Design Type General Electric Type 4
Containment Type Mark 1

Power Level 3,458 MWt

RCIC Capacity 600 gpm (2.27 m°/min)
HPCI Capacity 5,000 gpm (18.9 m°/min)
Lowest SRV Opening/Closing Setpoint in 1,133.5 psid' (7.81 MPa) /
Relief Mode 1,099.5 psid (7.58 MPa)
Nominal Operating Pressure 1,050 psia (7.24 MPa)
1Suppression Pool Inventory 952,000 gal (3,605 m°)

Pounds per square inch differential (psid) is the differential pressure in psi between the main
steamline and the wetwell.
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5. MELCOR MODEL

5.1 Plant Representation

The Surry and Peach Bottom models used for this analysis are based on the models utilized in
the SOARCA study. Efforts to ensure that the models appropriately reflect the as-built, as-
operated plant included discussions with plant operation and engineering staff, site visits, and
review of plant documentation and operating procedures. Detailed documentation of the
models will be provided in the near future as part of that project and is therefore not duplicated
in this report. In some cases, additional information (e.g., additional containment spray trip
logic) was added to the SOARCA model to address systems and sequence characteristics
needed for this study that were not needed for the SOARCA study. For RCP seal leakage, the
models used in this analysis differ from those used in the SOARCA analysis. The modeling of
RCP seal leakage is described in the section on the Surry station blackout analysis later in this
report (Section 6.4). Below is a brief overview of the Surry and Peach Bottom models, followed
by some discussion of MELCOR’s validation base.

Appendix A of this report outlines the basic features of the Surry model. Included are the
reactor trip signals modeled, the ECCS injection setpoints, the HHSI and LHSI pump curves,
details of the switchover of ECCS suction from the RWST to the containment sump,
accumulator characteristics, containment spray system characteristics, containment fan cooler
characteristics, and relief valve setpoints.

Figure 2 shows a plan view of the MELCOR model for the Surry reactor coolant system (RCS).
All three RCS loops are modeled individually. The detailed nodalization of the RCS loop piping
as well as the reactor core and vessel upper plenum allows modeling of the in-vessel and hot-
leg counter-current natural circulation during core heatup. This feature has been shown to be
relevant even within the temperature ranges of interest in the analysis (i.e., those preceding
core damage). The RCPs are tripped on power failure or voiding (related to pump vibration) in
the loop.” The core region is nodalized into 10 axial thermal response nodes (the MELCOR
core package (COR)) mapped to 5 axial hydrodynamic volumes (the MELCOR control volume
hydrodynamics package (CVH)), and is comprised of 5 radial rings. Safety systems are
modeled using injection points, and the relevant portions of the reactor protection system and
control systems are modeled using MELCOR control functions. For the secondary side, both
turbine-driven auxiliary feedwater (TD-AFW) and motor-driven auxiliary feedwater (MD-AFW)
are modeled (including provisions for water level control). The core decay power is based on a
number of ORIGEN calculations for each radial ring. The containment is divided into nine
control volumes representing the major compartments. Containment sprays and fan coolers are
also modeled.

Since the present analyses do not credit operator actions to trip the RCPs early in the transient (for cases in
which procedures would direct this action), a global void fraction in the vicinity of the pumps of 10 percent is
selected to represent a condition in which pump cavitation would prompt shutdown of these pumps. A
system-level code such as MELCOR does not have the capability to directly model actual pump
performance under degraded conditions.
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Figure 2 Plan View of the Surry MELCOR RCS Model

Figure 3 shows a schematic of the Peach Bottom MELCOR model, including the reactor
pressure vessel (RPV), wetwell, and safety systems. The drywell (not shown) has four control
volumes representing the pedestal, lower drywell, upper drywell, and upper head regions. The
vessel (excluding the core region) is represented by seven control volumes with connections to
various safety systems, including control rod drive injection (CRD), RCIC, HPCI, low-pressure
core spray (LPCS), and residual heat removal (RHR) (vessel injection and containment cooling
modes). The models for HPCI and RCIC include separate control volumes for the turbine
exhausting into the suppression pool. All safety relief valves (SRVs), including dedicated
automatic depressurization system (ADS) valves, are modeled with flowpaths on two steamlines
(a single steamline A and a combined steamline for B, C, and D). The core nodalization is
similar to the Surry model, with 10 axial levels (with a 2:1 COR:CVH ratio) and five radial rings.
Like the Surry model, the core decay power is based on a number of ORIGEN calculations for
each radial ring. Because very few changes were made to the SOARCA model, Appendix B of
this report does not include the same introductory plant model information for Peach Bottom as
Appendix A does for Surry.
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Figure 3 Schematic of the Peach Bottom RCS Nodalization

To model failure of pressurizer power-operated relief valves (PORVs) or SRVs, one of three

approaches is used, as designated in the boundary condition descriptions for each case: (1) the
relief valve cannot stick open, (2) the relief valve sticks open on the first lift, or (3) the relief valve
sticks open after n lifts, where n is a user-prescribed number. The purpose of the third
approach is to provide intermediate results (relative to the two extremes), for assessing the

variation in plant response. Generally speaking, the SPAR models treat the situation in a binary
fashion—the valve is either stuck open or it is not.

For the purposes of this analysis, a simplified treatment of valve cycling and failure is adopted
for this intermediate situation. Table 4 and Table 5 provide a synopsis of the basis for the
values used for Surry, including the specific value used for each type of valve. These tables
also provide comparative values from the Surry Individual Plant Examination and a more recent
relief valve reliability study (NRC, 2011). The values in Table 5 are tabulated using the following

formulas:
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where Pp equals the probability of failure per demand and n equals the number of lifts. This
report used a median value (cumulative probability equal to 0.5). Two key limitations associated
with the way this report treats failures due to valve cycling are (1) the use of a constant failure
probability per demand and (2) the assumption that the failure probability is the same regardless
of whether the valve is passing steam, water, or a two-phase mixture.

Table 4 Comparison of Failure per Demand Probabilities for Surry Stuck-Open Valves

Probability of Sticking Open per Demand
Surry NUREG/CR-7037 | NUREG/CR-7037 | Circa2096Surry
Individual . . PRA
Automatic Demand Liquid Demand .

Plant (Initial/Subsequent) (InitiaI/Subsequent)1 (used in the
Valve Examination present analyses)
ﬁggﬁ;‘”zer 0.0123 0.00495 / 0.00275 0.0625 / 0.000715 0.0028
Main
Steamline 0.0123 0.00295/0.0109 N/A 0.0058
PORV
Pressurizer 2
SRV 0.0123 0.5/ N/A N/A 0.0027
Main
Steamline 0.0123 0.0270/0.00254 N/A 0.0027
SRV

il

could be given.

2

withessed, so no estimates could be given.

No liquid demands were witnessed for the main steamline valves or for the SRVs, so no estimates

Note that only four demands were observed. No subsequent demands on the pressurizer SRV were

Table 5 Comparison of Number-of-Lifts Values for Surry Stuck-Open Valves

# of Lifts for Cumulative Probability of Sticking Open = 0.5
Surry Circa 2006 Surry
Individual NUREG/CR-7037 NUREG/CR-7037 PRA
Plant Automatic Demand Liquid Demand (used in the
Valve Examination present analyses)
Pressurizer
PORV 56 251 880 247
Main Steamline
PORV 56 64 N/A 119
Pressurizer 2
SRV 56 1 N/A 256
Main Steamline
SRV 56 263 N/A 256

T

, could be given.

witnessed, so this value is highly sensitive to the availability of sparse data.

No liquid demands were witnessed for the main steamline valves or for the SRVs, so no estimates

Note that only four initial demands and no subsequent demands on the pressurizer SRV were

The value used for Peach Bottom was 187 lifts, which corresponds to a cumulative failure
probability of 0.5 for a probability of failure per demand of 0.0037, in comparison to the values
from NUREG/CR-7037, which gave an observed behavior after scram value of 956 lifts. (These
values correspond to a failure per demand of 7.08x10*and 7.25x10™, for initial and subsequent
demands.) For the liquid demand, the observed behavior in NUREG/CR-7037 after scram had
a value of 79 lifts, which corresponds to a failure per demand of 8.77x10. For both Surry and
Peach Bottom, the values used for failure of the relief valves due to cycling may differ from the
values used in the SOARCA study. It is also useful to point out that the valve temperatures
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associated with the high-temperature seizure failure mechanism being considered under the
SOARCA study correspond to fuel temperatures reached after significant heatup (generally at or
beyond the time of initial core damage). Since the present study only considers the phase of
the accident up and until the start of core damage, this valve failure mechanism is not believed
to be relevant for this analysis.

5.2 MELCOR Validation

The MELCOR code is designed to run best-estimate accident simulations (NRC, 2005). The
code has been assessed against a number of experiments and plant calculations. The current
test suite for MELCOR contains over 170 separate input decks. MELCOR has been used for
final safety analysis report audit calculations (related to engineered safety feature design and
performance, containment design and performance, design-basis accident analysis, and severe
accident analysis); the post-September 11, 2001, security assessments; and the SOARCA
project. It has also been used to assess significance determination process issues. For these
reasons, it is an ideal tool to use in this project.

Specific experiments and plant calculations relevant to this project for which MELCOR has been
assessed include the following:

. Quench experiment 11, simulating a small-break loss-of-coolant accident (SBLOCA)
with late vessel depressurization to investigate response of overheated rods under
flooding conditions (Hering, 2007)

. the Three Mile Island Unit 2 accident (NRC, 1980)
. loss-of-fluid test (LOFT) LP-FP-2, simulating an LBLOCA (Adams, 1985)
. Russian Academy of Sciences MEI experiments involving a spectrum of LOCA sizes to

study critical flow and vessel response (e.g., Dementiev, 1977)

o NEPTUN experiments to test pool boiling models and void fraction treatment
(NRC, 1992)

o General Electric level swell and vessel blowdown experiments characterizing single- and
two-phase blowdown, liquid carryover, and water level swell (e.g., Appendix A to
NRC, 1981)

o General Electric Mark 11l tests with steam blowdown into the suppression pool

investigating vent clearing and heat transfer models

o containment thermal-hydraulic phenomena studied in various experimental facilities,
including Nuclear Power Engineering Corporation for mixing and stratification (e.g.,
NUPEC, 1993), Heissdampfreaktor for blowdown into containment, and Carolinas-
Virginia Tube Reactor for steam condensation in the presence of noncondensables
(SNL, 2008)

. small-scale experiments to test condensation models, including Wisconsin flat plate
experiments (e.g., Huhtinemi, 1993) and Dehbi tests
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6. MELCOR RESULTS

The detailed results for Surry and Peach Bottom are provided in Appendices A and B,
respectively.® The following subsections summarize these results in a standard format: (1) a
brief description of the scenario, (2) a list of key assumptions and operator actions, (3) a table of
results, and (4) a table of the timing to key events.

The analysis evaluated a number of different scenarios. The following scenarios were analyzed
for Surry:

. SBLOCAs to investigate the time available until RWST depletion and core damage

. feed and bleed (during loss of all feedwater) to investigate the number of pressurizer
PORVs and HHSI pumps needed

. steam generator tube rupture (SGTR) events to provide updated accident sequence
timings

o station blackout events to provide updated accident sequence timings

. medium- and large-break LOCAs to look at the systems needed for successful inventory

control during the injection phase
The following scenarios were analyzed for Peach Bottom:

. inadvertent open relief valve cases to investigate the effects of various sources of high-
pressure injection

o station blackout events to investigate the time for alternating current (ac) power
recovery, the time for suppression pool heatup, and the times associated with the loss of
turbine-driven high-pressure systems

In many cases, the analyzed sequence progressions make assumptions about the unavailability
of systems and about operator actions that are not taken. These assumptions often stem from
the particular sequence in the event tree that is being studied, which may not be the most
probable sequence. In other cases, these characteristics are not included because of resource
constraints. In all cases, the relevant subsections below note these assumptions. Section 6 of
this report places these analyses in the context of the associated SPAR models.

6.1 Small-Break Loss-of-Coolant Accident Dependency on Sump Recirculation

(Surry)

This series of cases investigates the timing to RWST depletion (and thus switchover to
recirculation) for SBLOCAs in which operators take very few actions. In reality, the operators
would enter procedure E-0, “Reactor Trip or Safety Injection” (e.g., verify reactor and turbine
trip, verify mitigative system availabilities and alignments), transition to E-1, “Loss of Reactor or
Secondary Cooling” (e.g., reduce RCS injection flow, initiate evaluation of plant status), and

8 Plots of reactor vessel water level in Appendices A and B show the actual water level (i.e., they include two-

phase effects where appropriate).
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later transition to ES-1.2, “Post LOCA Cooldown and Depressurization” (e.g., dump steam to
condenser, depressurize RCS to refill pressurizer).

The varied parameters are break size (0.5 in. (1.3 cm), 1in. (2.5 cm), and 2 in. (5.1 cm)), the
assumption on relief valve sticking, and containment spray function (available or not available).
In all 12 cases investigated, the break location is the horizontal section of the cold leg. In
addition, sensitivity cases were conducted to look at the effects of securing HHSI pumps
(Cases 2a and 6a) and performing secondary-side cooldown (Cases 2b and 6b). These
sensitivity cases demonstrate the impact of HHSI and secondary-side cooldown on RCS
pressure and RHR entry timing. Because of project resource considerations, the modeling uses
a simplified scoping approach and does not necessarily represent the actual plant operating
procedures.® For this reason, the results should be used with caution. Results are provided in
Table 6, Table 7, and Table 8. In addition to the key timing tables below, plots for various
results of interest are provided in Appendix A, Section A.2.

For the 2-in. (5.1-cm) breaks investigated, the RCS depressurizes as a result of the break. The
loss of high-head injection following RWST depletion (high-head recirculation was not modeled)
further reduces the primary side pressure to less than the maximum pressure for LHSI
recirculation; thus, HHSI recirculation is not necessary. The same is true for 0.5-in. (1.3-cm)
breaks when the PORYV is assumed to stick open after 247 lifts (see Table 5) because this
causes the 0.5-in. (1.3-cm) break to become a 1.9-in. (4.8-cm) break.”® Note that operator
action to reduce injection (in response to PORV cycling) and thus limit pressurizer PORV
cycling was not modeled. Also note that some cases do include throttling HHSI for the purpose
of scoping operator actions to depressurize and cool down. For the 0.5-in. (1.3-cm) cases in
which the PORYV does not stick open, the system does not depressurize. Finally, for the 1-in.
(2.54-cm) cases, the break is not large enough to cause depressurization (because of HHSI
injection) and the PORV does not open. As a result, the system pressure is still high at the time
of RWST depletion. Loss of HHSI at RWST depletion causes depressurization, but not enough
to allow for LHSI recirculation.

Key assumptions and operator actions in these calculations include the following:

. For the 0.5-in. (1.3-cm) breaks, the PORYV sticks open after 247 cycles unless (1) it does
not lift that many times (Case 6b) or (2) noted otherwise (Cases 7 and 8).

o Operators do not throttle injection for the purpose of preventing valve chattering, which is
relevant for 0.5-in. (1.3-cm) breaks.

. Operators do not take action to refill the RWST.
o Prior to RWST depletion, operators secure containment sprays (and reset to allow

subsequent actuation) in accordance with the EOPs after containment pressure drops
below 12 psia (0.083 MPa).

Specifically, for these cases the model assumes that at 30 minutes the third HHSI pump is secured and the
steam generator (SG) PORYV is opened on all three SGs to an opening fraction that will result in a cooldown
of approximately 100 degrees F per hour (55.6 degrees C per hour) on the secondary side (corresponding to
a similar cooldown on the primary side). This differs from the operating procedures that utilize more
complex approaches depending on the exact situation (e.g., isolating HHSI, establishing and controlling
normal charging flow, using pressurizer sprays).

10 The equivalent diameter of the PORV is 1.39 in. (3.53 cm).
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RCPs trip at 10-percent voiding (see Section 5.1 for more information on this modeling
assumption and Appendix D for more information on its effect).

HHSI recirculation is not modeled. Operator actions for manual cooldown and

depressurization are not modeled, except in a simplified manner for sensitivity Cases 2b
and 6b.

MD-AFW and TD-AFW is available.
Accumulators are available. Note that this assumption is not typical for SBLOCA
success criteria analysis. It is not expected to affect the end-state results, but could

affect some intermediate timings. See Appendix D for additional information.

Table 6 Surry SBLOCA Sump Recirculation Results

Secondary- Core Core
Size HHSI PORV Side Uncovery | Damage
Case (inch)5 Pumps | Treatment | Sprays | Cooldown (hr) (hr)
1 3 0 9.2 11.9"
2 1 No 7.3 9.9
2a° 3/1 N/A 2 7.9 10.0"
2b° 3/1/0 Yes No* No®
3 > 0 No No
4 3 2 No No
5 . 0 No No No
Sticks open
6 after 247 lifts No No
6a’ 0.5 3/1 2 8.8’ 9.6
6b° ' 3/1/0 N/A Yes No* No®
7 3 Does not 0 No 17.8" 25.1
8 stick open 2 14.4" 21.4

Core damage is an artifact of the assumed unavailability of HHSI recirculation.

It is assumed that two HHSI pumps are secured at 15 minutes.

It is assumed that two HHSI pumps are secured at 15 minutes, and the third pump is secured at
30 minutes, followed by secondary-side cooldown at 100 degrees F per hour (55.6 degrees C per
hour).

These cases reach RHR entry conditions (both temperature and pressure) before heatup.
1in.=254cm;2in.=5.1cm; 0.5in. =1.3 cm.

Table 7 Surry SBLOCA Sump Recirculation Key Timings (Cases 1-4)

Case1 | Case 2 | Case 2a | Case 2b | Case 3 | Case 4

Event (hr) (hr) (hr) (hr) (hr) (hr)
Reactor trip 0.03 0.03 0.03 0.03 0.01 0.01
HHSI injection 0.03 0.03 0.03 0.03 0.01 0.01
LHSI injection - 2.02 -

2.65 3.29 - 1.76

First actuation of contain. sprays - -

RWST depletion (<13.5%) 5.83 4.30 5.80 - 3.12 2.63
Spray recirculation - 4.30 5.80 - - 2.63
LHSI recirculation - - - - 3.38 2.86
Accumulator starts to inject 6.00 4.52 5.83 0.82 0.23 0.23
RCP trip (10% void) 7.38 5.76 6.73 1.41 - -
Core uncovery 9.23 7.32 7.9 - - -

Core damage

(max. temp. >2,200 °|:)1 11.9 9.93 10.0 - - -

T 2,200 °F = 1,204 °C
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Table 8 Surry SBLOCA Sump Recirculation Key Timings (Cases 5-8)

Case5 | Case6 | Case6a | Case6b | Case7 | Case 8

Event (hr) (hr) (hr) (hr) (hr) (hr)
Reactor trip 0.01 0.01 0.01 0.01 0.01 0.01
HHSI injection 0.01 0.01 0.01 0.01 0.01 0.01
LHSI injection - - - 3.49 - -
PORYV stuck open 0.83 0.83 4.65 - - -
First actuation of contain. ) 290 5.30 ) ) 3.23
sprays
RWST depletion (<13.5%) 4.14 3.43 7.45 - 8.17 5.52
Spray recirculation - 3.43 7.45 - - 5.53
LHSI recirculation 4.72 3.97 - - 26.6 -
Accumulator starts to inject 4.14 3.43 7.14 1.1 8.28 5.65
RCP trip (10% void) - 4.68 5.00 13.8 11.7 10.3
Core uncovery - - 8.77 - 17.8 14.4
Core damage
(max. tomp. 52,200 °F)’ - - 9.61 - 251 | 214

T 2,200 °F = 1,204 °C

6.2 Feed-and-Bleed Power-Operated Relief Valve Success Criteria (Surry)

The initiating event of interest for these calculations is loss of main feedwater (LOMFW).
Additionally, auxiliary feedwater is assumed unavailable. The parameter of interest is how
many pressurizer PORVs need to be available for the feed-and-bleed procedure to be effective
at removing decay heat. The injection source is HHSI (initially from RWST) and the bleed path
is the PORVs. Repeated actuation of the PORYV leads to an increase in the pressure in the
pressurizer relief tank (PRT). Following failure of the PRT rupture disk, primary side coolant
exiting the PORYV passes into containment, resulting in an increase in containment pressure.
Containment sprays actuate once containment pressure reaches the containment spray
setpoint.

For these analyses, no operator actions are modeled except for securing containment sprays.
Regarding the actual expected operator response for a loss of all feedwater event, the operators
would enter E-0, “Reactor Trip or Safety Injection” (e.g., verify reactor and turbine trip, verify
mitigative system availabilities and alignments), transition to ES-0.1, “Reactor Trip Response”
(e.g., attempt to establish feed flow, control pressurizer pressure), and later enter FR-H.1,
“‘Response to Loss of Secondary Heat Sink” (e.g., establish feed from condensate system,
manually initiate bleed and feed) based on the associated critical safety function status tree.
For the purpose of determining the effectiveness of a single PORV for removing decay heat, the
lack of operator action is conservative (i.e., delayed initiation of HHSI). However, these results
should be used with caution for determining the time to RWST depletion (and thereby
switchover to recirculation) because for that aspect this assumption may be nonconservative
(i.e., earlier initiation of HHSI may lead to earlier RWST depletion depending on the interplay
with containment spray actuation).

The cause of the reactor trip is varied for three cases to scope the effect of the different trip
criteria that exist for the set of high-head three-loop Westinghouse plants in operation. In all
cases, safety injection (Sl) does not start until an auto-SI signal occurs due to high containment
pressure. The power level is also varied to scope the effect of higher decay power, because
Surry has the lowest power level of the high-head three-loop Westinghouse plants in operation.
The cases that used a power level of 13.9 percent higher than Surry’s power level correspond to

20



a power level of 2,900 megawatts thermal (MW1t), which corresponds to the upper range of the
three-loop plants.

The analysis performed here demonstrates that one PORYV provides a sufficient bleed path to
maintain quasi-steady conditions on the primary side.” Further, it is not necessary for the
operators to manually open the PORYV, as the HHSI at Surry will cause the valve to
automatically open due to high pressure. Even in the absence of operator action, the capacity
of one HHSI pump is sufficient to remove decay heat for either the Surry or elevated

(e.g., Virgil C. Summer Nuclear Station) power levels. Nevertheless, it is important to note that
other differences between Surry and the higher power-level three-loop plants (most notably the
type of steam generator (SG)) have not been addressed.

In the absence of further operator action, these cases do eventually proceed to core damage in
these analyses because HHSI recirculation (which would actuate upon RWST depletion) is not
modeled. However, at least 8 hours is available prior to RWST depletion, and an additional 3.5
to 4 hours is available until core damage occurs. This timing information can be used to inform
related sequences that include human failure events associated with refilling the RWST or
aligning the HHSI water source to the containment sump. In addition to the results and key
timings in Table 9 and Table 10 below, plots for various results of interest are provided in
Appendix A, Section A.3.

Key assumptions and operator actions in these calculations include the following:

o Prior to RWST depletion, operators secure containment sprays (and reset to allow
subsequent actuation) in accordance with the EOPs after containment pressure drops
below 12 psia (0.083 MPa).

. HHSI recirculation is not modeled; thus, the time to core damage is driven by RWST
depletion (the timing of which is affected by the assumption that operators do not take
early action to start HHSI).

. The PORYV is aligned for automatic operation and opens when the RCS pressure
increases above the high pressure setpoint (i.e., no manual operator action). For all
calculations performed, the PORV had cycled roughly 200 times as of the time of core
damage (i.e., fewer times than required for the valve to stick open for the cycling failure
model used in this report). Were high-head recirculation to have been modeled, the
valve would have eventually reached the required number of cycles for failure. Such a
failure (if treated) would probably not impact the ability of the high-head safety injection
pumps to maintain primary-side inventory, based on a qualitative assessment of the
results in this section, as well as Cases 27 and 29 of Section 6.5.

o Manual RCS depressurization and cooldown is not modeled.
o RCPs trip at 10-percent voiding; in actuality, Function Restoration Procedure FR-H.1

would have the operators stop all RCPs. See additional information in Appendix D
regarding the sensitivity to this assumption.

" Note that for Cases 2 and 3, SRV1 briefly lifts because of the actuation of HHSI (PORV 2 was disabled for
the calculation). This brief actuation is judged to be inconsequential to the overall progression of the event.
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Table 9 Surry Feed-and-Bleed PORV Success Criteria Results

# of Core
Power Cause of Reactor Cause | #HHSI | Pressurizer | Uncovery Core
Case | Level' Trip? of SI | Pumps PORVs (hr) Damage
1 MFW trip High No’ No’
2 100% Low SG level + Cont. 1 1,65 No®
feed/steam mismatch Press
3 113.9% Low-low SG level ' 1.60 No®

100 percent equals 2,546 MWt (Surry), and 113.9 percent equals 2,900 MWt (Beaver Valley, Harris, and
Summer); 2,900 MWt is the highest present power level of the three-loop Westinghouse plants.

Low SG level is <19 percent of narrow-range span, while low-low SG level is <16 percent of narrow-range
span, based on Technical Specification 2.3-3 (January 2008).
Core uncovery and damage late in the simulation are artifacts of the assumed unavailability of HHSI

recirculation.

Table 10 Surry Feed-and-Bleed PORV Success Criteria Key Timings

Event' Case 1 (hr) Case 2 (hr) Case 3 (hr)
MFW, MD-AFW, TD-AFW unavailable 0 0 0
Reactor trip 0 0.008 (29 s) 0.008 (27 s)
SG dryout 1.11 0.63 0.58
PRT rupture disk open 1.56 0.97 0.93
Sl signal (containment pressure >1.22 bars) 1.96 1.36 1.29
RCP trip (10% void) 2.05 1.43 1.35
First actuation of containment sprays
(containment pressure >1.72 bars) 3.84 3.24 3.17
RWST depletion (<13.5%) 9.43 8.35 8.24
Core uncovery 10.90° 1.65 / 9.54° 1.60 / 9.42°
Core1damage (max. temp. >2,200 °F) 13.53 11.80 11.68

1.22 bars = 0.122 MPa; 1.72 bars = 0.172 MPa; 2,200 °F = 1,204 °C.

2

For Case 1, the core comes close to uncovering around the time of S| actuation, then later does

uncover after the loss of HHSI. For Cases 2 and 3, the core uncovers early in the accident,
recovers prior to significant heatup, and later uncovers again (due to the loss of HHSI).

6.3 Steam Generator Tube Rupture Event Tree Timing (Surry)

These calculations assess the time available to take corrective actions for events involving
spontaneous (as opposed to accident-induced or consequential) tube rupture events. In
addition to the results and key timings in Table 11 and Table 12 below, plots for various results
of interest are provided in Appendix A, Section A.4. For reference, the effective leak size of a
one-tube rupture is about a 1-in. (2.5 cm) effective diameter. Past operating experience for
SGTR events suggests that, in some cases, the time between the initiating event and initiation
of RHR can be significant (e.g., this timing ranges from 3.25 hours to 21.5 hours for the events
covered in a study conducted in the mid-1990s)'?. Here, very few operator actions are
assumed. In reality, the operators would be expected to enter E-0, “Reactor Trip or Safety
Injection” (e.g., verify reactor and turbine trip, verify mitigative system availabilities and
alignments), transition to E-3, “Steam Generator Tube Rupture” (e.g., initiate RCS cooldown,
depressurize RCS and terminate Sl to minimize primary-to-secondary leakage), and later
transition to one of three post-SGTR procedures (based on plant conditions).

12

“Steam Generator Tube Failures,” NUREG/CR-6365, April 1996.
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Even with few operator actions assumed, the results provided below show that the availability of
secondary-side heat removal allows a substantial amount of time for corrective actions. At

24 hours, the fuel temperatures for all five cases are stable at less than 550 degrees F

(288 degrees C), although additional actions would be eventually required (e.g., refilling the
CST). For the first three cases, the faulted SG relief valves are not allowed to stick open,
despite cycling a large number of times (e.g., >15,000). For Cases 4 and 5, the faulted SG
relief valve sticks open after 119 cycles (see Table 5), which occurs within the first hour for both
cases. Even in these cases, the availability of Sl early in the accident and MD-AFW later in the
accident results in times to core damage greater than 24 hours.

Key assumptions and operator actions in these calculations include the following:

Main steamline isolation valves close on reactor trip.

Operators secure either one or two HHSI pumps at 15 minutes (depending on the case)
and manually control auxiliary feedwater to maintain SG level (standard practice).

For Cases 1 through 3, the faulted SG PORYV does not stick open regardless of the
number of lifts and regardless of whether it passes water. In all other situations, the SG
PORVs stick open after 119 cycles (see Table 5).

HHSI recirculation is not modeled.

RCPs trip at 10-percent voiding.

Manual isolation of the faulted SG is not assumed (i.e., operators fail to perform this
action).

Manual actions to model long-term heat removal (EOP Emergency Contingency Action
(ECA) 3.1/3.2) are not modeled.

Table 11 Surry SGTR Results

Nominal Break
Flow Prior to Core Core
No. HHSI SG PORV TD- MD- Loss of HHSI Uncovery | Damage
Case | Tubes | Pumps | Treatment | AFW | AFW (kg/sec) (hrz (hrz
1 1 30 No No
2 5 V2| Does ;:;1 50 — 60 No’ NG’
3 ] 3/1 Yes® 23 No® No°
4 3/ Sticks open 30 - 40 No® No®
5 5 after 119 lifts 60 - 70 No® No®

Logic was added to address numerical instability (by limiting the flow area to smooth the liquid flow
through the faulted SG PORV).

TD-AFW is lost within the first hour for all cases due to flooding of the steamline.

The response is based on a 24-hour mission time.
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Table 12 Surry SGTR Key Timings

Event Case 1 (hr) | Case 2 (hr) | Case 3 (hr) | Case 4 (hr) | Case 5 (hr)
Reactor Trip 0.048 0.012 0.048 0.048 0.012
HHSI initiates (3 pumps) 0.051 0.013 0.051 0.051 0.013
1 of 3 HHSI pumps secured 0.25 0.25 N/A 0.25 0.25
2 of 3 HHSI pumps secured N/A N/A 0.25 N/A N/A
TD-AFW shut down' 0.70 0.32 0.75 0.70 0.32
Faulted SG PORYV stuck open N/A N/A N/A 0.76 0.35
RWST depletion (<13.5%)" 10.68 5.58 14.06 8.41 4.69
Accumulator injection N/A N/A N/A 8.62 0.94
RCP trip (10% void) 17.81 11.71 20.20 12.44 5.02
Emergency CST empty® > 24 hours >24 hours | >24 hours | >24 hours 22.20
> 24 hours

Core damage
T

TD-AFW shuts down due to filling of the steamline and flooding of the pump.
2 Recall that since the RCS leak location is the ruptured SG tube(s), a substantial amount of water is

expelled from the system via the SG relief valves (rather than into containment) and is thus unavailable

for containment sump recirculation.
3 Depletion of the emergency CST (96,000 gal (363 m3)), which is the normal injection source for AFW,

stops MD-AFW.

6.4 Pressurized-Water Reactor Station Blackout (Surry)

A number of simulations were run for station blackout sequences to investigate the effects of
RCP seal failures, SRV operation, and TD-AFW availability and operation on the time available
to recover ac power and re-establish core cooling. Along with the above variations in system
conditions and responses, some other factors that affect the time to core damage are the time
to battery depletion (loss of direct current (dc) power), the time to depletion of the emergency
CST tank (for cases with TD-AFW available), the system pressure, and the occurrence of
natural circulation (Case 4). Cases 4 and 6 assume dc power is always available, which mimics
successful “blind feeding” of the SGs using TD-AFW following the loss of dc (see (West., 2008)
for more information on this topic). Meanwhile, Cases 9 and 10 assume the loss of TD-AFW at
4 hours, which equals the station blackout coping time for Surry from NUREG-1776, “Regulatory
Effectiveness of the Station Blackout Rule,” issued August 2003 (NRC, 2003a).

In the EOPs, the operators would first enter E-0, “Reactor Trip or Safety Injection” (e.g., verify
reactor and turbine trip, verify ac emergency buses energized), which would direct them to
ECA-0.0, “Loss of All AC Power” (verify AFW flow, try to restore power to any ac emergency
bus). If ac power is recovered, the operators will transition to ECA-0.1, “Loss of All AC Power
Recovery without SI Required” and/or ECA-0.2, “Loss of All AC Power Recovery with S
Required” (e.g., restore necessary injection sources, restore component cooling). If ac power is
not recovered and the core-exit thermocouples rise past 1,200 degrees F (649 degrees C), the
operators will transition to SACRG-1, “Severe Accident Control Room Guideline Initial
Response” (e.g., check if RCS should be depressurized, determine containment spray

requirements).

The Surry SPAR model does not credit operation of auxiliary feedwater following battery
depletion. Further, the SPAR model assumes core damage at the time of battery depletion
(i.e., no further opportunity for recovering ac power and averting core damage). This
assumption exists because dc power is an integral part of ac power recovery, in that it provides
the control power to operate electrical distribution system breakers in order to bring electrical
power into the power block following a station blackout. Alternate sources of dc control power
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are required once batteries are depleted in a station blackout sequence, but this issue is not
further explored in this report.

The RCP seal leakage rates and timing are taken from the Westinghouse Owners Group
(WOG) 2000 seal leakage model for “new” high-temperature seals used in the current Surry
SPAR model, which is described in WCAP 15603, “WOG 2000 Reactor Coolant Pump Seal
Leakage Model for Westinghouse PWRs,” issued May 2003 (West., 2003), as modified by the
NRC staff's associated April 2003 safety evaluation report (NRC, 2003b).”® The safety
evaluation report for WCAP-15603 makes a few modifications to the WCAP-15603 model,
including the disallowance of credit for the third RCP seal. The resulting model has outcomes
associated with four possible leakage rates for use in PRAs, with the onset of increased leakage
occurring at 13 minutes in all cases. Table 13 reproduces the leakage rates and their
conditional probabilities, along with some associated timings from the Westinghouse
Emergency Response Guidelines as reproduced in the Surry SPAR v3.52 model documentation
of July 2008. The current analysis ran cases for three of these leakage sizes (21 gpm per pump
(0.079 m*min), 182 gpm per pump (0.689 m*min), and 500 gpm per pump (1.89 m*/min))."

Table 13 Reactor Coolant Pump Seal Leakage Details

Leak Time to Core Uncovery Based on
Rate at Westinghouse Emergency Response
>13 Guidelines'
Minutes Conditional Without
Seq. # (gpm)2 Probability Depressurization With Depressurization
1 21 0.79 ~13 hours ~22 hours
3 76 0.01 ~7 hours ~9 hours
2 182 0.1975 ~3 hours ~5 hours
4 480 0.0025 ~2 hours ~2.5 hours

Assumes availability of TD-AFW
21 gpm =0.079 m®/min; 76 gpm =0.29 m*/min; 182 gpm = 0.689 m*/min; 480 gpm = 1.82 m*/min

The results of the present analysis are in good agreement with those from the Westinghouse
Emergency Response Guidelines (Table 13). For analogous cases (i.e., those with TD-AFW
available and no secondary-side depressurization) the following conditions apply:

. Time to core uncovery is about 1.5 hours for the largest leakage rate of 500 gpm/RCP
(1.89 m*/min/RCP), as compared to 2 hours in the Westinghouse calculations.

. Time to core uncovery is about 4 hours for the intermediate leakage rate of
182 gpm/RCP (0.68 m®*min/RCP), as compared to 3 hours in the Westinghouse
calculations.

. Time to core uncovery is about 13 hours for the normal leakage rate of 21 gpm/RCP

(0.079 m*/min/RCP), which is identical to the Westinghouse calculations.

This is the same model that is invoked in a later PRA guidance topical report, WCAP-16141, “WOG 2000
RCP Seal Leakage PRA Model Implementation Guidelines for Westinghouse PWRSs,” issued August 2003.
In accordance with convention, these leak rates correspond to full system pressure. Actual leak rates will be
substantially lower once system pressure decreases. Note that the figures for RCP seal leakage in
Appendix A are designed to demonstrate this fact. An unfortunate side effect of plotting these leakage rates
as a volumetric flow rate (as opposed to a mass flow rate) is that the plots go off scale once the flow
becomes two phase.
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The current MELCOR calculations demonstrate an additional 0.5 to 3 hours between the time of
core uncovery and the time of core damage.

Topical report WCAP-16396-NP, “WOG 2000 Reactor Coolant Pump Seal Performance for
Appendix R Solutions,” issued January 2005 (West., 2005), discusses why the NRC’s safety
evaluation of the WOG 2000 model—and the WOG 2000 model itself—result in conservative
estimates of RCP seal leak rates. These conservatisms are associated with both the leak rates
assumed and the timing of seal failure (which is reported to vary from 8 minutes to 40 minutes,
as compared with the 13 minutes used in the WOG 2000 model). This topical report
quantitatively assesses the effects of these conservatisms on accident progression timings
(specifically, the time for loss of pressurizer level and core uncovery). The topical report
concludes that the conservatisms can substantially affect the assessment of coping strategies,
but that the conservatisms are “unlikely to affect any conclusions drawn from PRA models for
internal events from at-power conditions” (West., 2005) These conclusions led to the decision
not to request NRC review of a less conservative model. If applied in this case, these
conclusions suggest that the timings to core damage calculated are conservative, but that these
conservatisms will not affect the overall conclusions drawn from the models. Even so, the
potential conservatisms could affect intermediate PRA results, such as the human error
probability associated with a particular action.

For the timing of ac power recovery needed to avert core damage, two sensitivity cases were
run for Case 1:

. recovery of HHSI at 2.14 hours (i.e., at the onset of core damage based on a PCT of
2,200 degrees F (1,204 degrees C))

. recovery of HHSI at 1.64 hours (i.e., half an hour before core damage)

As shown in Figure 5, the sensitivity case in which HHSI was recovered at 2.14 hours occurred
too late to avert fuel melting. For the case in which HHSI was recovered at 1.64 hours, recovery
of injection was sufficient to avert fuel melting.” A best-estimate time could be developed by
running calculations using an intermediate time (e.g., 15 minutes) for this case, as well as
running similar sensitivities for other cases. In addition to the results and key timings in

Table 14 through Table 17, and Figure 4 below, plots for various results of interest are provided
in Appendix A, Section A.5.

Key assumptions and operator actions in these calculations include the following:

. Operators manually control auxiliary feedwater to maintain SG level (standard practice).

. DC power is always available for control of TD-AFW for Cases 4 and 6 (i.e., mimics
successful blind feeding).

. Operator actions to refill the emergency CST are not modeled.

. SRV sticks open on the first lift for some cases (as specified below).

Note that the sensitivity studies correspond to a case in which the seals fail at 13 minutes. As such, failure
of the seals from thermal shock upon recovery of seal cooling is not pertinent to this particular case. In
addition, Surry has proceduralized isolation of the RCP seals as part of ECA-0.0, “Loss of All AC Power.”
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For cases with RCP seal failure, failure is assumed to occur at 13 minutes. '

Manual operator actions for rapid secondary-side depressurization are not modeled.

Table 14 Surry Station Blackout Results

Seal
Leakage
Rate’ after Seal
Failure Failure SRV Core Core
(gpm®per | Time | Stuck Uncovery | Damage
Case pump) (min) Open TD-AFW ac/dc (hr) (hr)
1 - 1.4 2.1
ac recovery
1a . 14 2.1
500 13 Fails to start ZtCngCgslejrr)sl
1o N/AZ at 1.6 hours 1.4 -
2 Available 1.6 2.3
3 Fails to start 2.3 3.4
Available; successful
4 o1 ] blind feeding 13.3 16.3
5 t Fails to start - 2.1 2.6
15 lift Available; successful
6 blind feeding 13.0 13.8
7 Fails to start 2.0 3.1
8 182 13 N/A? Available 3.9 4.8
9 21 ) Available; lost at dc lost at 8.4 10.9
10 150 lift 4 hours 4 hours 8.1 8.8

The leakage rate provided here is the leakage rate at full system pressure. As the system depressurizes,
the leak rate decreases.
The model is set to stick the valve open after 256 lifts, but the valve does not lift that many times for these

calculations.

500 gpm = 1.89 m*/min;182 gpm = 0.689 m*/min; 21 gpm = 0.076 m*/min.

16

Note that this differs from the seal failure model used in the SOARCA project, which employed a more
mechanistic approach (saturated conditions at the pump) to model the timing of seal failure.
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Figure 4 PCT Signatures for all Surry Station Blackout Cases

Table 15 Surry Station Blackout Key Timings (Cases 1-2)

Case 1a Case 1b
Event' Case 1 (hr) (hr) (hr) Case 2 (hr)

Reactor trip, RCP trip, MFW/TD-AFW/MD-AFW 0 0 0 0
Seal leakage (21 gpm/pump) 0 0 0 0
Seal failure (500 gpm/pump) 0.22 0.22 0.22 0.22
Primary side SG tubes water level starts to 0.52 0.52 0.52 0.52
decrease

Primary side SG tubes dry 0.96 0.96 0.96 0.98
SG dryout 1.16 1.16 1.16 -
Core uncovery 1.40 1.40 1.40 1.63
Gap release 1.92 1.92 - 2.15
Core damage (max. temp. >2,200 °F) 2.14 2.14 - 2.25

! 500 gpm = 1.89 m°/min; 21 gpm = 0.076 m*/min; 2,200 °F = 1,204 °C.
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Table 16 Surry Station Blackout Key Timings (Cases 3-6)

Case 3 Case4 | Case5 | Case6
Event' (hr) (hr) (hr) (hr)

Reactor trip, RCP trip, MFW/TD-AFW/MD-AFW 0 0 0 0

Seal leakage (21 gpm/pump) 0 0 0 0

Primary side SG tubes water level starts to decrease 1.92 5.38 1.52 5.42
Emergency CST depleted - 7.97 - 7.97
Primary side SG tubes dry 2.03 11.30 1.66 11.30
SG dryout 1.19 11.77 1.19 11.80
SRV sticks open N/A N/A 1.45 12.71
Core uncovery 2.28 13.31 2.06 13.03
Gap release 2.96 14.83 242 13.60
Core damage (max. temp. >2,200 °F) 3.40 16.33 2.57 13.80

! 21 gpm = 0.076 m°/min; 2,200 °F = 1,204 °C.
Table 17 Surry Station Blackout Key Timings (Cases 7-10)
Case 7 Case 8 | Case9 | Case 10
Event' (hr) (hr) (hr) (hr)

Reactor trip, RCP trip, MFW/TD-AFW/MD-AFW 0 0 0 0

Seal leakage (21 gpm/pump) 0 0 0 0

Seal failure (182 gpm/pump) 0.22 0.22 - -

TD-AFW assumed lost at battery depletion - - 4 4

Primary side SG tubes water level starts to decrease 1.04 1.01 5.62 5.63
Primary side SG tubes dry 1.52 2.22 6.58 6.58
SG dryout 1.22 - 7.13 712
SRV sticks open N/A N/A N/A 7.67
Core uncovery 1.98 3.88 8.37 8.10
Gap release 2.63 4.00 9.48 8.59
Core damage (max. temp. >2,200 °F) 3.09 4.77 10.85 8.77

! 182 gpm = 0.689 m°/min; 21 gpm = 0.076 m*/min; 2,200 °F = 1,204 °C.
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Figure 5 Surry Injection Recovery Sensitivity Cases

6.5 Pressurized-Water Reactor Medium- and Large-Break Loss-of-Coolant
Accident Initial Response (Surry)

The final set of Surry sequences investigated combinations of accumulators, HHSI, and LHSI
for a spectrum of LOCA break sizes for the early phase of the accident (e.g., the first few hours).
Break sizes from 2 in. (5.1 cm) to a double-ended break were analyzed, as shown in Table 19.
Although some calculations are simulated into the long-term cooling phase, the calculations are
only intended to inform success criteria for the early injection phase of the accident.

By convention, the breakdown in the LOCA spectrum for most Westinghouse PWRs is 0.5 in.
(1.3 cm) to 2in. (5.1 cm) (SBLOCA), 2 in. (5.1 cm) to 6 in. (15.2 cm) (medium-break LOCA
(MBLOCA)), and 6 in. (15.2 cm) and greater (LBLOCA). The break location for the current
analyses is always the horizontal section of the cold leg in the pressurizer loop. Very few
operator actions are modeled. In reality, the operators would enter E-0, “Reactor Trip or Safety
Injection” (e.g., verify reactor and turbine trip, verify mitigative system availabilities and
alignments) and transition to E-1, “Loss of Reactor or Secondary Coolant” (e.g., check if
containment sprays should be secured and reset, check if accumulators should be isolated).
Depending on the course of the accident, the operators would then transition to one of several
ES-1.x series supplemental emergency procedures.

As can be seen below, some of these accidents progress very quickly, with core uncovery
taking place within the first minute (for LBLOCAs). Since quickly evolving accidents can be
more challenging to simulate from a thermal-hydraulic standpoint, it is of interest to look at the
degree of margin between the PCT (for cases that are deemed successful) and the core
damage definition being used. Table 18 presents these figures, demonstrating that the highest
MBLOCA PCT (for a success case) is 483 degrees F (268 degrees C) from the core damage
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definition used here, and the highest LBLOCA PCT (for a success case) is 706 degrees F

(392 degrees C) from the core damage definition. This demonstrates that there is significant
margin in these cases, which helps to counteract the additional model uncertainty that might be
expected for these quickly evolving accidents. In addition to the key timings in Table 20 through
Table 26 below, plots for various results of interest are provided in Appendix A, Section A.6.

Table 18 PCT Ranges for Accumulator Success Cases

Range of PCT for Success Range of Margin:
Range of Break Size Cases 2,200 °F PCT (1,204 °C PCT)
MBLOCA (2 in. to 575-1,717 °F 483-1,625 °F
6in.) (302936 °C) (268—902 °C)
LBLOCA (6 in. to 575-1,494 °F 706-1,625 °F
double-ended) (302-812 °C) (392-902 °C)

The results in Table 19 are distilled here to identify the minimal equipment needed to avoid core
damage during the injection phase. For MBLOCAs, the minimal equipment is the following:

o For 6-in. (15.2-cm) breaks, the analyses demonstrate that any two of the following three
would be adequate: one HHSI, one accumulator in an intact loop, and one LHSI, with or
without AFW.

o For 4-in. (10.2-cm) breaks, Case 13 demonstrates that one accumulator in an intact loop

and one LHSI are not adequate, leaving two remaining success paths that are
successful for this break size: one HHSI and one accumulator in an intact loop, or one
HHSI and one LHSI, with or without AFW.

. For 2-in. (5.1-cm) breaks, both of the above criteria are sufficient, with or without AFW.

The resulting minimal equipment success criteria for the injection phase for MBLOCAs is

one HHSI and either one accumulator in an intact loop or one LHSI. Note that the former
criterion would not be sufficient for the recirculation phase because LHSI is necessary to
accomplish HHSI recirculation. AFW is not needed for success for an MBLOCA for the injection
phase; the break size is large enough to remove decay heat.

For LBLOCAs, the minimal equipment is the following:

o For 6-in. (15.2-cm) breaks, the analyses demonstrate that any two of the following three
would be adequate: one HHSI, one accumulator in an intact loop, and one LHSI, with or
without AFW.

. For 8-in. (20.3-cm) breaks, Cases 3, 18, and 23 confirm the above.

. For 10-in. (25.4-cm) breaks, Cases 4, 19, and 24 confirm the above.

° For a double-ended break, Case 10 demonstrates that only LHSI is necessary. A case

was not run to determine if one HHSI and one accumulator in an intact loop would have
been sufficient. As noted above, such a combination would not permit recirculation.

The resulting minimal equipment success criteria for the injection phase for LBLOCAs are
one LHSI and either one accumulator in an intact loop or one HHSI. AFW is not needed for
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success for an LBLOCA,; the break size is large enough to remove decay heat and the system
fully depressurizes.

Key assumptions and operator actions in these calculations include the following:

o The break is in the horizontal section of the cold leg in the pressurizer loop.
. The RCPs trip at 10-percent voiding.
. HHSI recirculation is not modeled. Operator actions to depressurize and perform

secondary side cooldown are not modeled.

. Containment sprays are available for all cases (same actuation pressure and operator
actions to secure as in Section 6.1 and 6.2).

Table 19 Surry MBLOCA and LBLOCA Results

Break Time of Initial Core Damage
Case Size ﬁ::ssl Acfum :fuL:S; AFW?' | Core Uncovery | During Injection

(in.)* P ' P (hr) Phase? (hr)
9 1 0 0 0.42 No”
15 0 2 1 Ves 0.41 0.73
20 5 1 1 0 0.42 No”
21 1 0 1 0.42 No®
27 1 1 0 No 0.38 No”
29 1 0 1 0.38 No®
1 1 0 1 0.09 No
11 1 0 0 0.09 No”
12 0 0 1 Ves 0.10 0.27
13 4 0 1 1 0.10 0.27
14 0 2 1 0.10 No
22 1 1 0 0.09 No”
25 1 0 1 No 0.09 No
28 1 1 0 0.09 No”
2 1 0 1 0.04 No
5 0 0 1 0.04 0.16
6 0 1 1 Yes 0.04 No
7 5 1 0 0 0.07 0.28
8 1 1 0 0.08 No”
16 1 0 1 0.04 No
17 1 1 0 No 0.06 No”
26 0 1 1 0.04 No
3 1 0 1 0.02 No
18 8 1 1 0 0.01 No”
23 0 1 1 0.03 No
4 1 0 1 Yes 0.01 No
19 10 1 1 0 0.01 No”
24 0 1 1 0.02 No
10 | Double- 0 0 1 0.02 No

ended

Conventionally, AFW is not needed for success for an LBLOCA,; the break size is large enough to
remove decay heat and the system fully depressurizes.

Note that core damage eventually occurs (or would occur, in cases in which the calculation was
terminated early) because of the inability to go to HHSI recirculation (due to the unavailability of LHSI)
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or, more directly, from the lack of a low-pressure injection source. Recall that the present calculations
are focused only on the injection phase success criteria.

pressure is not sufficiently low prior to core damage to allow for LHSI recirculation.

2in.=51cm;4in.=10.2cm; 6in. =15.2cm; 8in. =20.3cm; 10 in. = 25.4 cm.

For these cases, core damage eventually occurs because HHSI recirculation is not modeled, and the

Table 20 Surry MBLOCA and LBLOCA Key Timings (2-in. Breaks)

Case 9 Case 15 Case 20 | Case 21 Case 27 Case 29

Event (hr) (hr) (hr) (hr) (hr) (hr)
Reactor trip 0.01 0.003 0.01 0.01 0.01 0.01
HHSI injection 0.01 - 0.01 0.01 0.01 0.01
RCP trip (10% void) 0.28 0.07 0.28 0.28 0.18 0.17
First actuation of 114 ) 121 114 0.94 0.94
containment sprays ) ) ) ) )
Core uncovery
(water < TAF) 0.42 0.41 0.42 0.42 0.38 0.38
LHSI injection - - - 6.39 - 6.17
Zﬁf&?ﬁéﬁfﬁ?ﬂ!?@ 0.44 073 | o044 0.44 0.40 0.40
(max. temperature) (592 K) | (1,477 K)) (592 K) (592 K) (592 K) (592 K)
Core covered 0.87 N/A 0.8 0.87 0.75 0.75

T

for core damage—2,200 °F (1,204 °C).

Actual peak temperature would be higher; this value corresponds to the surrogate used in this project

Table 21 Surry MBLOCA and LBLOCA Key Timings (4-in. Breaks Group 1)

Case 1 (hr) Case 11 Case 12 Case 13
Event (hr) (hr) (hr)

Reactor trip 0.003 0.003 0.003 0.003
HHSI injection 0.003 0.004 - -
RCP trip (10% void) 0.04 0.04 0.04 0.04
First actuation of containment 0.08 0.08 0.07 0.07
sprays
Core uncovery (water < TAF) 0.09 0.09 0.10 0.10
LHSI injection 0.29 - 0.33 0.45
t'\g;’“zr‘;rt'zjgat?rgmg (max 0.34 0.53 0.27 0.27

P 9 : (982 K) (1,200K) | (1,477K") | (1477 K")
temperature)
Core covered 0.38 >0.83 N/A N/A

T

project for core damage—2,200 °F (1,204 °C).
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Table 22 Surry MBLOCA and LBLOCA Key Timings (4-in. Breaks Group 2)

Case 25 Case 28
Event Case 14 (hr) | Case 22 (hr) (hr) (hr)

Reactor trip 0.003 0.003 0.003 0.003
HHSI injection - 0.004 0.004 0.004
RCP trip (10% void) 0.04 0.04 0.04 0.03
First actuation of 0.07 0.08 0.08 0.07
containment sprays
Core uncovery (water < TAF) 0.10 0.09 0.09 0.09
LHSI injection 0.73 - 0.30 -
t'\gﬁqxl['gr‘;%gat?n‘j;zg (max 0.73 0.21 0.32 0.26

’ (1,183 K) (807 K) (1,054 K) (721 K)
temperature)
Core covered 0.79 0.39 0.39 0.41

Table 23 Surry MBLOCA and LBLOCA Key Timings (6-in. Breaks Group 1)

Event Case 2 (hr) | Case 5 (hr) | Case 6 (hr) Case 7 (hr)
Reactor trip 0.002 0.002 0.002 0.002
HHSI injection 0.002 - - 0.002
RCP trip (10% void) 0.02 0.02 0.02 0.02
First actuation of containment sprays 0.03 0.03 0.03 0.03
Core uncovery (water < TAF) 0.04 0.04 0.04 0.07
LHSI injection 0.13 0.14 0.18 -
Maximum cladding temperature timing 0.15 0.16 0.16 0.28
(maximum temperature) (774 K) (1,477 K" (990 K) (1,477 K"
Core covered 0.19 N/A 0.20 N/A

T

for core damage—2,200 °F (1,204 °C).
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Table 24 Surry MBLOCA and LBLOCA Key Timings (6-in. Breaks Group 2)

Event Case 8 (hr) | Case 16 (hr) | Case 17 (hr) | Case 26 (hr)
Reactor trip 0.002 0.002 0.002 0.002
HHSI injection 0.002 0.002 0.002 -
RCP trip (10% void) 0.02 0.02 0.02 0.02
First actuation of containment sprays 0.03 0.03 0.03 0.03
Core uncovery (water < TAF) 0.08 0.04 0.06 0.04
LHSI injection - 0.13 - 0.18
Maximum cladding temperature timing 0.04 0.152 0.04 0.13
(maximum temperature) (592 K) (775 K) (575 K) (931 K)
Core covered 0.10 0.19 0.12 0.22
Table 25 Surry MBLOCA and LBLOCA Key Timings (8-in. Breaks)
Case 3 Case 18 Case 23
Event (hr) (hr) (hr)
Reactor trip 0.002 0.002 0.002
HHSI injection 0.002 0.002 -
RCP trip (10% void) 0.009 0.009 0.01
First actuation of containment sprays 0.01 0.01 0.01
Core uncovery (water < TAF) 0.02 0.01 0.03
LHSI injection 0.07 - 0.08
i\i/ln?;ggum cladding temperature 010 0.40 007
(maximum temperature) (851K) (1,085 K) (792 K)
Core covered 0.14 0.91 0.11
Table 26 Surry MBLOCA and LBLOCA Key Timings (210-in. Breaks)
Case 4 (hr) Case 19 Case 24 Case 10
Event (hr) (hr) (hr)
Reactor trip 0.001 0.001 0.001 0.001
HHSI injection 0.001 0.001 - -
RCP trip (10% void) 0.008 0.008 0.006 0.001
First actuation of containment sprays 0.008 0.008 0.008 0.005
Core uncovery (water < TAF) 0.01 0.008 0.02 0.022
LHSI injection 0.04 - 0.05 0.005
l\iﬂn?i)::gum cladding temperature 0.08 0.30 0.04 0.036
(maximum temperature) (850 K) (835K) (640K) (1,043 K)
Core covered 0.12 0.87 0.06 0.053
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6.6 Inadvertent Open Relief Valve Success Criteria (Peach Bottom)

The first scenario of interest for Peach Bottom deals with an inadvertent/stuck-open relief valve.
For most of these simulations, at time zero the reactor trips, feedwater trips, and a safety relief
valve (SRV1) opens. In actuality, the plant would not be expected to trip, but would instead be
manually tripped by the operators due to high suppression pool temperature if they were unable
to reclose the stuck-open valve. Two sensitivity cases scope the effects of the assumption that
the reactor and feedwater trip at time zero. LPCI is available for all cases and the main steam
isolation valves (MSIVs) close shortly after reactor trip (see Table 28)"". The availability of
RCIC, HPCI, and CRD injection is varied to assess their effects.

This analysis models very few operator actions. In reality, the operators would execute their
procedures. A number of different procedure paths are possible, depending on available
equipment. In general, the following procedures would apply:

. Conditions will prompt the operators to attempt to reclose the open SRV.

° High suppression pool temperature will prompt the operators to start the residual heat
removal system in suppression pool cooling mode in accordance with T-102, “Primary
Containment Control.”

o Low vessel level will prompt the alignment or recovery of frontline injection sources
(e.g., RCIC), and, if insufficient, alternative injection sources (e.g., high-pressure service
water) in accordance with T-101, “RPV Control,” and T-111, “Level Restoration,” along
with supporting procedures.

) If conditions continue to degrade, the operators will perform an emergency
depressurization to allow low-pressure injection.

The calculations summarized in Table 27 and Table 28 demonstrate that any of the injection
options considered will prevent heatup before depressurization to LPCI entry. In the case of
HPCI, the injection capacity is such that depressurization to LPCI entry does not occur for

9 hours. For cases with only CRD injection, CRD prevents significant heatup even when the
second CRD pump is not started until 20 minutes after the initiating event. For cases with no
high-pressure injection, the system still depressurizes to LPCI entry conditions before core
damage would occur, with a maximum cladding temperature of 939 degrees C

(1,722 degrees F).

The above results are subject to the assumption that suppression pool temperature is not
significantly elevated by the time of natural depressurization to LPCI conditions, such that low-
pressure injection drawing from the suppression pool would be unavailable due to NPSH
concerns (i.e., the somewhat stylized nature of assuming the reactor trips at time zero). To
investigate this assumption, two sensitivity cases were run in which the reactor continues to
operate at power until an automatic trip signal is reached. These sensitivity cases were run for
the more limiting of the CRD cases (Case 4). In Case 4a, feedwater is tripped at time zero, and
in Case 4b, feedwater continues to run. For Case 4a, the reactor automatically tripped at eight
seconds, leading to a PCT that is 110 degrees C higher than in Case 4, but still more than

500 degrees C below the onset of core damage. For Case 4b, because of the continued

v Due to the way the MSIVs are modeled in the MELCOR model, MSIVs effectively close when the pressure

in the main steamline drops below 994 psia (6.85 MPa), or due to low RPV water level (for Case 4a).
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availability of feedwater, there is no core cooling concern and the reactor does not automatically
trip until 46 minutes. By the time the reactor trips (on high drywell pressure), the suppression
pool temperature has already exceeded multiple technical specification limits (as prescribed in
Section 3.6.2.1) that would have prompted operator action. Specifically, at 95 degrees F

(35 degrees C), the technical specifications initiate increased monitoring and action to reduce
temperature. At 110 degrees F (43 degrees C), the technical specifications require that the
reactor be tripped “immediately.” Finally, at 120 degrees F (49 degrees C), the technical
specifications require the reactor to be depressurized with a completion time for this action of
12 hours (NRC, 2003c). The significance of this case is that despite the assumption that the
operators do not take the above actions, the suppression pool temperature does not reach the
NPSH limit until greater than 5 hours (the CRD continues to provide sufficient injection after this
point).

In addition to the key timing tables below, plots for various results of interest are provided in
Appendix B, Section B.1.

Key assumptions and operator actions in these calculations include the following:

. Operator actions to reclose the SRV, start RHR in suppression pool cooling mode, and
perform an emergency depressurization are either not initiated or are unsuccessful.

. Reactor trip (mimicking an early manual scram), feedwater trip, and one SRV stuck open
occurs at time zero (except for Cases 4a and 4b).

. RCIC is run in inventory control mode.

. Post-scram CRD flow ranges from 110 gpm (0.416 m*min) at high pressure (1,020 psia
(7.0 MPa)) to 180 gpm (0.681 m*/min) at low pressure (14.7 psia (0.1 MPa)) for one
pump, or 210 gpm (0.795 m®min) to 300 gpm (1.14 m*min) for two pumps %

. RCIC and HPClI isolate on low steamline pressure of 75 psig (0.52 MPa).

No operator action is required to achieve the flow rate cited for one pump. The pre-SCRAM flow rate is 60
gpm (0.227 m3/min) for one pump. SCRAM results in the automatic opening of inlet valves on the individual
CRD hydraulic control units, which increases the flow to 110 gpm (0.416 m“/min) for one pump. The
operators can also open throttle valves to increase the flow further, but this action is not considered in this
analysis.
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Table 27 Peach Bottom Inadvertent Open SRV Results

FW, Core Core
SPC, | Uncovery | Damage
Case | RCIC | HPCI CRD LPCI | LPCS | ac/dc ADS (hr) (hr)
1 Yes No No No No
2 Yes No No
1att=0and
3 2 at No 0.41 No
No t=10 min Yes No ac/dc
4 No 1att=0and 0.37 No
4a’ 2 at 20 min 0.29 No
4b’ after scram FW No No
5 No No 0.32 No
! For this case, the reactor was allowed to scram based on a reactor protection system trip signal,
rather than attime t = 0.
Table 28 Peach Bottom Inadvertent Open SRV Key Timings (Cases 1-5)
Case1 | Case2 | Case3 | Case4 | Cased4a | Casedb | Case5
Event (hr) (hr) (hr) (hr) (hr) (hr) (hr)
SRV1 open 0 0 0 0 0 0 0
Reactor trip 0 0 0 0 <0.01" 0.76 0
MSIVs close <0.01 | <0.01 | <0.01 <0.01 <0.01 0.79 0
Downcomerlevelfirstreaches | g7 | 007 | 007 | 007 | 003 N/A 0.07
RQIC/HPCI first started (CST 008 008 ) ) ) ) )
injection mode)
2" CRD pump started - - 0.17 0.33 0.33 1.09 -
Downcomer level reaches L1 0.37 8.93 0.32 0.32 0.24 N/A 0.26
Downcomer level below TAF 0.37 8.93 0.35 0.33 0.25 N/A 0.28
S;‘%’ rgg;:f;gspg?' temp. 040 | 061 | 042 | 042 0.41 0.30 0.40
LPCI first started 0.51 8.93 0.59 0.58 0.53 N/A 0.57
RCIC/HPCI pump isolation:
low steamline pressure 0.82 5.59 - - - - -
< 0.52 MPa (75 psi%)
tll(li;-rl;)“mlt reached” (no action 45 4.0 > 12 > 12 5.0 0.57 > 12
RHR pump isolation - NPSH 9.6 11.1 >1° >1° >10° 5.4 >1°
t'\gam"g;‘r:%giﬂgmg (max No No | 078 | 076 | 067 No 0.75
temperature) heatup | heatup | (786 K) | (830 K) | (941 K) | heatup | (1,212 K)
.

Reactor trips at 8 seconds on low RPV level.

2
3

pressure.

The simulation was stopped prior to reaching this condition.
The HCTL limit is based on suppression pool temperature, suppression pool level, and RPV

6.7 Boiling-Water Reactor Station Blackout (Peach Bottom)

These calculations investigate variations in the availability of injection sources, the behavior of
the SRVs (failure to close), manual operator actions to implement heat capacity temperature
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limit (HCTL)-based depressurization'®, and the time to battery depletion. For reference, the
Peach Bottom coping time listed in NUREG-1776 is 8 hours (NRC, 2003a). Here, very few
operator actions are modeled. In reality, the operators would enter special event procedure
SE-11, “Station Blackout,” based on plant conditions. This procedure would have the operators
attempt to recover ac power from the grid and diesel generators and request configuration of the
Conowingo station blackout line. The procedure would also direct the operators to shed loads
to extend battery availability, take steps to extend HPCI or RCIC operation, and depressurize
once plant conditions permitted. Concurrently, the EOPs would direct the operators to maintain
level, stabilize pressure, and cooldown, as achievable.

A sensitivity case was performed to look at the effect of recovery, similar to the Surry station
blackout sensitivities described in Section 6.4. Except as noted, most cases assume that dc
power is always available, which is an intentional modeling artifact to investigate timing. No
EOP manual actions are modeled except for HCTL-based depressurization.

For cases in which both HPCI and RCIC are unavailable, core damage occurs at 0.8 or

1.2 hours, depending on the assumption about a stuck-open SRV. Recovery of injection at the
time of core damage was demonstrated to quickly arrest heatup. For cases in which dc is lost
after 2 hours, core damage occurs at 4 to 5 hours. For cases in which the SRV sticks open
after 187 lifts (see Table 5) or HCTL depressurization is performed, core damage ranges from
7 to 11 hours. (Note that the operators would initiate HCTL depressurization to protect
containment even without a low-pressure injection source.) For cases in which the SRV does
not stick open and HCTL depressurization is not performed, RCIC or HPCI fails after
approximately 14 or 16 hours (depending on which is assumed available) because of CST
depletion, and core damage occurs after 19 hours. In these cases, switchover to the
suppression pool is not permitted because the NPSH limit has already been exceeded?.
Considering all cases, the time lag from uncovery of the top of active fuel (TAF) to the time of
core damage ranges from 0.5 to 1.8 hours. In addition to the results and key timings in

Table 29 to Table 32 below, plots for various results of interest are provided in Appendix B,
Section B.2.

Key assumptions and operator actions in these calculations include the following:

RCIC and HPCI (when available) are run in inventory control mode.
DC power is always available for control of HPCI and RCIC, except as noted.
Post-accident alignment of CRD is not credited.

9 For an SRV sticking open due to cycling, the lowest setpoint SRV (SRV/1) is the relevant SRV. For HCTL
depressurization, the highest setpoint SRV (SRV/11) is the relevant SRV. Note that in the MELCOR model
these valves have the same effective leak area.

For cases such as these where RCIC or HPCI is operated for an extended period of time without room
cooling, failure due to pump bearing temperature can become a concern. However, for the analysis
performed here, temperatures did not approach the pump bearing rating assumed in the MELCOR model
(210 degrees F (99 degrees C)).

20
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Table 29 Peach Bottom Station Blackout Results

SRV HCTL Core Core
Sticks Depress | Uncovery | Damage

Case | RCIC | HPCI ac/dc Open? ? (hr) (hr)
1 - No' 0.5 1.2
ac recovery at 2
1a No 1o y No No 0.5 1.2
2 No - Att=0 0.3 0.8
3 dc is always 17.7 19.4
4 Yes available No Yes 6.0 7.2
5 2 hr of dc 3.3 4.3
6 dc is always At 187 lifts No 6.0 7.2
! available 175 193
8 No Yes 9.3 10.8
9 No Yes 2 hr of dc 3.8 4.9
10 deisalways | aiqg7iifts | NO 9.2 10.7

available

For this case, the SRV does not stick open until after core damage, so this assumption does not
affect the outcome.
Recovery of injection upon reaching 2,200 degrees F (1,204 degrees C) quickly arrests further

heatup.
Table 30 Peach Bottom Station Blackout Key Timings (Cases 1, 1a, and 2)
Case 1 Case 1a Case 2
Event (hr) (hr) (hr)
Reactor trip, MSIV closure 0 0 0
Downcomer level reaches L2 0.16 0.16 0.16
Downcomer level reaches L1 0.50 0.50 0.27
Downcomer level below TAF 0.50 0.50 0.27
Gap release: 900 °C (1,652 °F) 1.02 1.02 0.69
Core damage: max. temp. >1,204 °C 1.17 1.17 0.79
(2,200 °F)
HPCI, RCIC, CRD injection start - 1.17 -
ADS actuated - 1.24 -
Downcomer level recovers above TAF - 1.27 -
SRV sticks open due to high # of cycles 1.75 - -
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Table 31 Peach Bottom Station Blackout Key Timings (Cases 3-6)

Event Case 3 (hr) | Case 4 (hr) | Case 5 (hr) Case 6 (hr)

Reactor trip, MSIV closure 0 0 0 0
Downcomer level first reaches L2 0.16 0.16 0.16 0.16
RCIC started (CST injection mode) 0.17 0.17 0.17 0.17
RCIC fails due to loss of dc - - 2.00 -

o 2.46 (no 2.46 (no 2.46 (no
HCTL limit reached action t;ken) 2.46 action t;ken) action t;ken)
SRV sticks open due to high # of ) ) ) 2 47
cycles )
RCIC NPSH limit exceeded’ 12.67 - - -
RCIC pump isolation: low steam
line pressure < 0.52 MPa (75 psig) ) 3.90 ) 3.92
RCIC injection ends due to CST 14.43 ) ) )
level <5 ft (1.5 m) )
Downcomer level reaches L1 17.68 5.61 3.25 5.62
Downcomer level below TAF 17.68 5.61 3.25 5.62
Gap release: 900 °C (1,652 °F) 19.06 6.99 4.04 7.00
Core damage max. temp.
>1,204 °C (2,200 °F) 19.42 717 4.25 7.18
Exhaust pressure exceeded: 20.14 ) ) )

0.35 MPa (50 psig)
T

Switchover to the suppression pool is not permitted after this point.

Table 32 Peach Bottom Station Blackout Key Timings (Cases 7-10)

Event Case 7 (hr) | Case 8 (hr) | Case 9 (hr) | Case 10 (hr)
Reactor trip, MSIV closure 0 0 0 0
Downcomer level first reaches L2 0.16 0.16 0.16 0.16
HPCI started (CST injection mode) 0.17 0.17 0.17 0.17
HPCI fails due to loss of dc - - 2.00 -
SRV sticks open due to high # of ) ) ) 253
cycles '

- 2.67 (no 2.67 (no 2.67 (no

HCTL limit reached action t;ken) 2.67 action t;ken) action t;ken)
HPCI NPSH limit exceeded' 12.07 - - -
HPCI pump isolation: low steam
line pressure < 0.52 MPa (75 psig) ] 572 ] 561
HPCI injection ends due to CST 16.05 ) ) )
level < 5 ft (1.5 m) )
Downcomer level reaches L1 17.53 8.97 3.82 8.94
Downcomer level below TAF 17.53 9.06 3.82 8.94
Gap release: 900 °C (1,652 °F) 18.96 10.59 4.63 10.46
Core damage max. temp. 19.31 10.8 4.85 10.68

>1,204 °C (2,200 °F)

Exhaust pressure exceeded:
1.04 MPa (150 psig)

T
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7. APPLICATION OF MELCOR RESULTS TO SURRY AND
PEACH BOTTOM SPAR MODELS

Table 33 and Table 34 below map the MELCOR calculations presented in Section 6 with the
most closely corresponding SPAR model®' sequences and provide the relative risk contribution
of these sequences. Note that at the initiator heading level (e.g., LOMFW), the right-most
column gives the relative contribution of all SPAR sequences from that initiator class (e.g.,
9.97 percent), while the subsequent rows give the relative contributions from the subset of
sequences studied in this report (e.g., LOMFW-16 = 9.32 percent). Regarding loss of offsite
power / station blackout, the initiator class relative contribution is for all loss of offsite power
events (e.g., switchyard centered), whereas the analyses in this report focus on station blackout
events. Finally, for the station blackout sequences, the nomenclature of having multiple
sequence numbers reflects transfers amongst two or more event trees. For instance,
“‘LOOP-17-45" indicates the sequence with end-state #17 from the LOOP event tree, which
transfers to the SBO event tree and results in end-state #45 from that event tree. All relevant
event trees are provided in Appendix C.

It is also of interest to look at the quantitative timings to core uncovery and ac power recovery
used in the Surry SPAR model relative to those from the present analysis (as provided in
Section 6.4). Table 35 provides this comparison. A key difference between the SPAR model
and the present analyses arises for sequences with AFW available and a stuck-open relief
valve. SPAR assumes that the relief valve sticks open early in the event, whereas in the
present analyses, the relief valves are not challenged (when AFW is available) until much later
(e.g., 8 hours). This difference results in a very large delta in the time to core damage. A
second key difference is the SPAR assumption that offsite power must be recovered before
battery depletion (i.e., no opportunity for preventing core damage following battery depletion), as
compared to the present analysis in which the calculation is continued beyond battery depletion
until the core damage surrogate is reached.

2 When the majority of the analysis documented in this report was performed, the active versions of the SPAR

models were v3.52 (Surry) and v3.50 (Peach Bottom). These are the models that are discussed in this
section. In the intervening evaluation and documentation phase of the project, these models were updated
to the 8.x models presently used with SAPHIRES, which included some data and unrelated modeling
changes. As such, the relative risk contribution and sequence numbering for particular sequences would be
different for these newer models, but the overall concepts and proposed modifications discussed in this
section are unchanged. The actual model changes made as a result of this project were implemented in
December 2010 through February 2011.
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Table 33 Ma

ping of MELCOR Analyses to the Surry 1 & 2 SPAR (v3.52) Model

Percentage as Part

Percentage as

SPAR of Initiator Class Part of Total
Sequence CDF (Internal Internal Event
(see App. C) MELCOR Calculations Events) CDF
SBLOCA—Section 6.1 of this report 2.05%
SLOCA-1 Cases 2b, 6b N/A—Success Path | NJA—Success Path
SLOCA-9 Cases 1,2,2a,3,4,5,6,6a,7,8 1.05% 0.02%
LOMFW Feed and Bleed—Section 6.2 of this report 9.97%
LOMFW-16' All Cases 93.39% 9.32%
SGTR—Section 6.3 of this report 13.83%
SGTR-12 All Cases 37.26% 5.15%
LOOP / Station Blackout—Section 6.4 of this report 43.69%
LOOP-17-42 Cases 6, 10 0.11% 0.05%
LOOP-17-15-7 Case 4 <0.01% <0.01%
LOOP-17-15-10 | Case 9 0.06% 0.03%
LOOP-17-21 Case 8 0.05% 0.02%
LOOP-17-39 Case 2 <0.01% <0.01%
LOOP-17-45 Cases 1,3,5,7 6.51% 2.85%
MBLOCA—Section 6.5 of this report 1.70%
MLOCA-6 Cases 1,2,7,8,9, 11, 20, 21, 22 69.21% 1.18%
MLOCA-9 Cases 16, 17, 25, 27, 28, 29 <0.01% <0.01%
MLOCA-14 Cases 14, 15 <0.01% <0.01%
MLOCA-16 Cases 5, 6, 12, 13, 26 17.41% 0.30%
LBLOCA—Section 6.5 of this report 0.06%

Cases 2, 3,4,5,6,7, 8,10, 16,

17,18, 19, 23, 24, 26 3.50% <0.01%

LLOCA-8
1

The feed-and-bleed fault tree is used for many event trees. The relative contribution of the LOMFW

sequence studied to the overall core damage frequency (CDF) is on the same order of magnitude or

higher than the frequency associated with other sequences that include a failure of feed and bleed. The
only other sequence with a higher CDF is a loss of ac bus 1J (22 percent higher). In addition, there is a
non-station-blackout LOOP sequence that includes failure of feed and bleed, and the summation of the

four types of LOOP (e.g., switchyard centered) results in a CDF equivalent to the LOMFW sequence.
Note that the latter sequence uses a modified fault tree (FAB-L) specific to the LOOP event tree. All
other sequences that include failure of feed and bleed are a factor of four or more lower.
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Table 34 Mapping of MELCOR Analyses to the Peach Bottom 2 SPAR (v3.50) Model

SPAR Percentage as Part Percentage as
Sequence MELCOR of Initiator Class CDF Part of Total
(See App. C) Calculations (Internal Events) Internal Event CDF
Inadvertently Open Relief Valve—Section 6.6 of this report 2.86%
IORV-14 Cases 1, 2 N/A—Success Path N/A—Success Path
IORV-44 Cases 3, 4, 4a, 4b, 5 4.47% 0.13%
LOOP / Station Blackout—Section 6.7 of this report 5.75%
LOOP-31-9 Cases 3, 4 <0.01% <0.01%
LOOP-31-30 Case 5 16.86% 0.97%
LOOP-31-45 Case 8 <0.01% <0.01%
LOOP-31-51 Cases 7,9 0.51% 0.03%
LOOP-31-57 Cases 1, 1a 2.14% 0.12%
LOOP-31-59-6 | Cases 6, 10 0.01% <0.01%
LOOP-31-59-7 | Case 2 0.04% <0.01%

Table 35 Comparison of Surry Station Blackout Results to the SPAR Model

SPAR (v3.52) Model This Report
SPAR Basis
for Time to Required Time to Time to
Core Time for Core Core
Uncovery Power Uncovery | Damage
Conditions Sequence # (hr) Recovery (hr) (hr) (hr)
AFW available w/
stuck-open SRV w/ LOOP-17-42 0.5 1 8-13 9-14

21 gpm/RCP leak

AFW available w/o
stuck-open SRV w/ LOOP-17-15-7/10 15 4 8-13 11-16
21 gpm/RCP leak

AFW available w/o
stuck-open SRV w/ LOOP-17-21 3 3 4 5
182 gpm/RCP leak
AFW available w/o

stuck-open SRV w/ LOOP-17-39 2 2 1.6 2.3
500 gpm/RCP leak
AFW unavailable LOOP-17-45 0.5 1 1.4-2.3 2.1-3.4

! SPAR assumes a maximum time to recover power from station blackout of 4 hours, which is related to

assumed battery depletion (and an assumed inability to control AFW or restore offsite power following
loss of dc).

Table 36 and Table 37 below (1) summarize the scenarios that have been investigated,

(2) recap the boundary and initial condition variations studied using MELCOR, (3) highlight the
relevant parts of the existing Surry and Peach Bottom SPAR success criteria, and (4) discuss
potential changes to these models based on the MELCOR analysis (including identifying
whether these changes have or have not been made). In addition, the table identifies cases in
which these results were applied to SPAR models for other, similar plants.
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8. CONCLUSION

This project defined a realistically conservative core damage definition surrogate based on
accident simulations. The project performed MELCOR analyses for two plants (Surry and
Peach Bottom), looking at a range of initiating events and sequences. These results have been
mapped to specific, realized changes for relevant SPAR models. The NRC is continuing to
work in this area and continues to seek opportunities to engage internal and external
stakeholders.
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APPENDIX A

SURRY MELCOR ANALYSES






A.1 Summary of Surry Model Changes

A11 Surry Model

The Surry input deck is generally consistent with the model used in the State-of-the-Art Reactor
Consequence Analyses (SOARCA) project. For the present application, however, a number of
modifications are made to control the reactor trip and the engineered safety features, including
the emergency core cooling system (ECCS) and containment sprays. In addition, the treatment
of reactor coolant pump (RCP) seal leakage is also different. The general setpoints and
operation of the systems are described below.

Reactor Trip

Table 1 indicates the conditions for reactor trip (i.e., if any condition becomes true, then the
reactor is tripped).

Table 1 Conditions for Reactor Trip

Condition Comments

1 Loss of power

2 ECCS actuation See ECCS signals

3 MFW trip’ Scram or loss of power or manual

4 TCV closure

5 RCP trip Loss of power or loop void >10%

6 HHSI activation ECCS signal + power available

7 LHSI activation ECCS signal + power available

8 High RCS pressure >2,400 psia (16.55 MPa)

9 Low RCS pressure <1,815 psia (12.51 MPa)

10 High PRZ level >44 .97 ft (26.26 m in MELCOR model)

11 Low PRZ level <12.51 ft (16.36 m in MELCOR model)

12 High loop Dt >75 °F (41.67 °C)

13 Manual Time based

! Several different configurations were found just among the three-loop high-head Westinghouse
plants in terms of whether a main feedwater (MFW) trip would result in a turbine trip and
subsequent reactor trip. The trip in the Surry MELCOR model is potentially dated. For these
reasons, additional calculations were run in the loss of all feedwater section of this report to
address the (perhaps more common) situation in which a reactor trip would not occur until the
reactor protection system trip signal(s) related to steam generator water level.

Emergency Core Cooling System

The high-head safety injection (HHSI), as well as the low-head safety injection (LHSI) and
containment sprays in the injection mode, draw water from the refueling water storage tank
(RWST). Once the RWST is depleted, the LHSI suction is switched over to the containment
sump.

The ECCS actuation signals for HHSI and LHSI are as follows (i.e., if any of the conditions are
satisfied, then both systems are activated):

. pressurizer (PRZ) pressure (less than 1,775 pounds per square inch gage (psig)
(12.2 megapascals (MPa)))



° high steamline differential pressure (greater than 120 pounds per square inch differential
(psid) (0.83 MPa))

° high containment pressure (greater than 17.7 pounds per square inch absolute (psia)
(0.122 MPa))

. manual operator action
In addition, power must be available.

The condition for high steam flow and either low steamline pressure (less than 525 psig
(3.62 MPa)) or low average temperature (Tavg) (543 degrees Fahrenheit (F)
(284 degrees Celsius (C))) is not modeled.

High-Head Safety Injection

HHSI flows are delivered to the cold legs of the Surry model (control volumes 240/340/440). All
three HHSI pumps at Surry are assumed to start on HHSI activation.” Total HHSI flow is
portioned equally between the three cold legs. HHSI pump performance is given in Table 2
below as HHSI flow per pump (gallons per minute (gpm)) (Byron Jackson Test T-30705-3,
5-13-69).

Table 2 High-Head Safety Injection Flow per Pump

Feet (Meters) gpm (m°/min) Comment
0 (0) 615 (2.33) Runout
1,600 (488) 550 (2.08)

2,500 (762) 500 (1.89)

3,275 (998) 450 (1.70)

3,950 (1,204) 400 (1.51)

4,500 (1,372) 350 (1.32)

4,950 (1,509) 300 (1.14)

5,300 (1,615) 250 (0.946)

5,600 (1,707) 200 (0.757)

5,800 (1,768) 150 (0.568) Rated
5,900 (1,798) 100 (0.379)

5,905 (1,800) 0(0) Shutoff

Low-Head Safety Injection

LHSI flows are delivered to the cold legs of the Surry model (control volumes 240/340/440).
The two LHSI pumps at Surry are assumed to start on LHSI activation. Total LHSI flow is
portioned equally between the three cold legs. LHSI pump performance is given in Table 3
below as LHSI flow per pump (gpm) (Byron Jackson Test T-31192-1, 11-10-69).

The present MELCOR model assumes that all three HHSI pumps inject upon receiving a safety injection (SI) signal
(one pump on the H bus and two pumps on the J bus). This (perhaps atypical) capability is based on interactions with the
licensee and is corroborated by particular references (e.g., the emergency operating procedures). The model does not
account for the potential reduction in overall flow injection created by three pumps injecting through two trains. However,
this modeling assumption is actually conservative in the present analysis because the three-pump alignment is only used
for the small- break loss-of-coolant accident (LOCA) and steam generator tube rupture scenarios, in which the effect of
RWST depletion and lack of system depressurization are more relevant than the core cooling (because adequate core
cooling would be provided by fewer pumps).
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Table 3 Low-Head Safety Injection Flow per Pump

Feet (Meters) | gpm (m*/min) Comment
0 (0) 4,000 (15.1) Runout
188 (57.3) 4.000 (15.1)

213 (64.9) 3,500 (13.2)

240 (73.2) 3,000 (11.4)

269 (82.0) 2.500 (9.46)

296 (90.2) 2.000 (7.57)

321 (97.8) 1,500 (5.68)

342 (104) 1,000 (3.79)

356 (109) 500 (1.89)

365 (111) 0 (0) Shutoff

The RWST level must also be above 13.5 percent (RWST-to-sump switchover starts at

13.5 percent and takes 2.5 minutes). After LHSI from the RWST is terminated, a model is
activated for LHSI from the reactor sump using the same pump curve. Sump water availability
and water temperature are checked.

Accumulators

Accumulators are also modeled as mass and enthalpy injected into cold leg component control
volumes 240, 340, and 440. The initial water volume per accumulator is 975 cubic feet (ft°)
(27.6 cubic meters (m®)) with an initial nitrogen cover gas volume of 475 ft* (13.5 m®). The
minimum operating pressure is given as 600 psig (4.137 MPa). All three accumulators are
assumed to behave identically in that they are all modeled by a single set of control functions.

Containment Sprays

The injection sprays use two pumps that can operate at 2,900 gpm each (a rated flow of

3,200 gpm per pump minus bleed-off flow of 300 gpm per pump) (11 m®min). The droplet size
released by the spray headers is 1 millimeter (mm). The pumps deliver water from the RWST at
45 degrees F (280.4 Kelvin (K)), the maximum temperature allowed by the technical
specifications, until the RWST water reaches 13.5 percent. The following three headers are in
the dome:

(1) the first at 95.50 feet (ft) (29.1 meter (m)) elevation with 88 nozzles
(2) the second at 142.40 ft (43.4 m) elevation with 73 nozzles
(3) the third at 143.75 ft (43.82) elevation with 73 nozzles

The delay from spray signal to full operation is less than 15 seconds. The recirculation sprays
are modeled by two pumps identical to the injection mode. The cooler duty is 55,534,520 British
thermal units per hour (BTU/hr) each (two per pump, four total), which translates to

16.276 megawatts (MW) per cooler (65.1 MW total). Headers are common with those of the
injection system. The containment sprays are initiated at a pressure of 25 psia (0.17 MPa) and
are secured (while in injection mode) when the pressure is less than 12 psia (0.0827 MPa).

Containment Fan Coolers



The recirculation system has three 75,000-standard cubic feet per minute (scfm) recirculation
fans (35.4 cubic meters per second (m%s). The total volumetric flow rate is 225,000 scfm
(106.2 cubic meters per second (m?/s)). The system is supplied with 2,000 gpm

(135.91 kilograms per second (kg/s)) at 70 degrees F (294 K) component cooling water until
containment temperature and pressure are high enough or until pumps become submerged, at
which point the systems goes to chilled cooling water. MELCOR monitors the liquid level, vapor
temperature, and pressure in the lower dome (control volume 50) and initiates the fans when
the correct parameters are met. The fan inlet and discharge is within the “basement” (control
volume 5). The MELCOR input model contains a “low capacity” fan and a “high capacity” fan.
Both recognize the same parameters, with the difference being that the high-capacity fan is
turned on at a higher temperature. The low-capacity fans have a secondary coolant mass flow
rate of 300 pounds per second (Ib/s) (135.9 kg/s), and the high-capacity fan has a secondary
coolant mass flow rate of 831 Ib/s (377.1 kg/s).

Reactor Coolant Pumps

The pumps operate at a rated head of 280 ft (85.3 m) of water at 650 degrees F

(343 degrees C), 2,235 psig, which is 6.80x10° pascals. The pumps are tripped on either loss
of power or high void (assumed to be 10 percent in the MELCOR model). Appendix D provides
more information with respect to the sensitivity of the calculations to this latter assumption.
Power-Operated Relief Valve and Safety Relief Valve Setpoints

The opening and closing pressures for the group of pressurizer power-operated relief valves
(PORVs) and safety relief valves (SRVs) modeled in the MELCOR input are given in Table 4
below.

Table 4 Opening and Closing Pressures for PORV and SRV

Opening Pressure in MPa (psi) | Closing Pressure in MPa (psi)
PORV-1 16.2 (2,350) 15.55 (2,255)
PORV-2 16.3 (2,364) 15.65 (2,270)
SRV-1 17.23 (2,499) 16.54 (2,399)
SRV-2 17.33 (2,514) 16.64 (2,413)
SRV-3 17.43 (2,528) 16.74 (2,428)
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A.2

Small-Break Loss-of-Coolant Accident Dependency on Sump Recirculation

Analysis Summary

Table 5 through Table 7 provide results for this portion of the analysis.

Table 5 Surry SBLOCA Sump Recirculation Results

Secondary- Core Core
Size HHSI PORV Side Uncovery | Damage
Case | (inch)’ | Pumps | Treatment | Sprays | Cooldown (hr) (hr)
1 3 0 9.2 11.9"
2 1 No 7.3 9.9
2a° 3/1 N/A 2 7.9 10.0"
2b° 3/1/0 Yes No* No®
3 2 0 No No
4 3 2 No No
5 . 0 No No No
Sticks open
6 after 247 lifts No No
6a’ 0.5 3/1 2 8.8' 9.6
6b° ' 3/1/0 N/A Yes No* No®
7 3 Does not 0 No 17.8" 25.1
8 stick open 2 14.4" 21.4

Core damage is an artifact of the assumed unavailability of HHSI recirculation.
It is assumed that two HHSI pumps are secured at 15 minutes.
It is assumed that two HHSI pumps are secured at 15 minutes, and the third pump is secured at
30 minutes, followed by secondary-side cooldown at 100 degrees F (55.6 degrees C) per hour).
These cases reach RHR entry conditions (both temperature and pressure) before heatup.

1in.=254cm;2in.=5.1cm; 0.5in. =1.3 cm.

Table 6 Surry SBLOCA Sump Recirculation Key Timings (Cases 1-4)

Case1 | Case 2 | Case 2a | Case 2b | Case 3 | Case 4

Event (hr) (hr) (hr) (hr) (hr) (hr)
Reactor trip 0.03 0.03 0.03 0.03 0.01 0.01
HHSI injection 0.03 0.03 0.03 0.03 0.01 0.01
LHSI injection - - - 2.02 - -
First actuation of contain. sprays - 2.65 3.29 - - 1.76
RWST depletion (<13.5%) 5.83 4.30 5.80 - 3.12 2.63
Spray recirculation - 4.30 5.80 - - 2.63
LHSI recirculation - - - - 3.38 2.86
Accumulator starts to inject 6.00 4.52 5.83 0.82 0.23 0.23
RCP trip (10% void) 7.38 5.76 6.73 1.41 - -
Core uncovery 9.23 7.32 7.9 - - -
Core damage
(max. temp. 2,200 °F)' 19 ] 993 | 100 - - -

T 2,200 °F = 1,204 °C.




Table 7 Surry SBLOCA Sump Recirculation Key Timings (Cases 5-8)

Case5 | Case6 | Case6a | Case6b | Case7 | Case 8

Event (hr) (hr) (hr) (hr) (hr) (hr)
Reactor trip 0.01 0.01 0.01 0.01 0.01 0.01
HHSI injection 0.01 0.01 0.01 0.01 0.01 0.01
LHSI injection - - - 3.49 - -
PORYV stuck open 0.83 0.83 4.65 - - -
First actuation of contain. ) 290 5.30 ) ) 3.23
sprays
RWST depletion (<13.5%) 4.14 3.43 7.45 - 8.17 5.52
Spray recirculation - 3.43 7.45 - - 5.53
LHSI recirculation 4.72 3.97 - - 26.6 -
Accumulator starts to inject 4.14 3.43 7.14 1.1 8.28 5.65
RCP trip (10% void) - 4.68 5.00 13.8 11.7 10.3
Core uncovery - - 8.77 - 17.8 14.4
Core damage
(max. tomp. 52,200 °F)’ - - 9.61 - 251 | 214

T 2,200 °F = 1,204 °C.
Notes

For Cases 5 and 6, PORV1 cycles initially and then gets stuck open because of the number of
cycles (247 cycles). The equivalent diameter for the PORYV is 1.387 inches, so it depressurizes
and goes to LHSI recirculation mode.

Cases 2a, 2b, 6a, and 6b are sensitivity calculations to demonstrate the impact of HHSI
injection and secondary cooldown on reactor coolant system (RCS) pressure and to determine
the residual heat removal (RHR) entry conditions. They may not represent actual plant
operating procedures.



A.2.1
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A.2.2 Case 2: 1-Inch Break LOCA with Sprays
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A.2.2.1 Case 2a: 1-Inch Break LOCA with Sprays and Secure Two HHSI Pumps
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A.2.2.2 Case 2b: 1-Inch Break LOCA with Sprays, Secure HHSI Pumps, and Secondary
Cooldown
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A.2.3 Case 3: 2-Inch Break LOCA without Sprays
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A.2.4 Case 4: 2-Inch Break LOCA with Sprays
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A.2.5 Case 5: 0.5-Inch Break LOCA without Sprays
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A.2.6
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A.2.6.1 Case 6a: 0.5-Inch Break LOCA with Sprays and Secure HHSI Pumps
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A.2.6.2  Case 6b: 0.5-Inch Break LOCA with Sprays, Secure HHSI Pumps, and Secondary
Cooldown
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A.2.7 Case 7: 0.5-Inch Break LOCA without Sprays and PRZ PORV Not Stuck Open
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A.2.8 Case 8: 0.5-Inch Break LOCA with Sprays and PRZ PORV Not Stuck Open
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A3

Feed-and-Bleed PORV Success Criteria

Analysis Summary

Table 8 and Table 9 provide results for this portion of the analysis.

Table 8 Surry Feed-and-Bleed PORV Success Criteria Results

# of Core
Power Cause of Reactor Cause | #HHSI | Pressurizer | Uncovery Core
Case | Level' Trip? of SI | Pumps PORVs (hr) Damage
1 00 MFW trip High No® No®
() Low SG level + 3
2 feed/steam mismatch F?r 222 1 1.65 No
3 113.9% Low-low SG level ' 1.60 No®

100% equals 2,546 MWt (Surry) and 113.9% equals 2,900 MWt (Beaver Valley, Harris, and Summer);
2,900 MWt is the highest present power level of the three-loop Westinghouse plants.
Low SG level is <19% of narrow-range span, while low-low SG level is <16% of narrow-range span, based

on Technical Specification 2.3-3 (NRC, 2003).

Core uncovery and damage late in the simulation are artifacts of the assumed unavailability of HHSI

recirculation.

Table 9 Surry Feed-and-Bleed PORV Success Criteria Key Timings

Event’ Case 1 (hr) Case 2 (hr) Case 3 (hr)
MFW, MD-AFW, TD-AFW unavailable 0 0 0
Reactor trip 0 0.008 (29 s) 0.008 (27 s)
SG dryout 1.11 0.63 0.58
PRT rupture disk open 1.56 0.97 0.93
Sl signal (containment pressure >1.22 bars) 1.96 1.36 1.29
RCP trip (10% void) 2.05 1.43 1.35
First actuation of containment sprays
(containment pressure >1.72 bars) 3.84 3.24 3147
RWST depletion (<13.5%) 9.43 8.35 8.24
Core uncovery 10.90° 1.65/9.54° 1.60/9.42°
Core1damage (max. temp. >2,200 °F) 13.53 11.80 11.68

1.22 bars = 0.122 MPa; 1.72 bars = 0.172 MPa; 2,200 °F = 1,204 °C.

For Case 1, the core comes close to uncovering around the time of Sl actuation and then later does
uncover after the loss of HHSI. For Cases 2 and 3, the core uncovers early in the accident,
recovers prior to significant heatup, and later uncovers again (due to the loss of HHSI).
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A.3.1 Case 1: 100-Percent Power, Reactor Trip at Time Equals Zero
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A.3.2 Case 2: 100-Percent Power, Anticipatory Reactor Trip
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A.3.3 Case 3: 113.9-Percent Power Level, Reactor Trip on Low-Low SG Level
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A4

Steam Generator Tube Rupture Event Tree Timing

Analysis Summary

For Section A.4.1 through Section A.4.5, operators fail to (1) isolate faulted steam generator
(SG), (2) depressurize and cool RCS, and (3) extend ECCS duration by refiling RWST or cross-
connection to other unit's RWST. Loop A has the faulted SG. Table 10 and Table 11 provide
results for this portion of the analysis.

Table 10 Surry SGTR Results

Nominal Break
Flow Prior to Core Core
No. HHSI SG PORV TD- MD- Loss of HHSI Uncovery | Damage
Case | Tubes | Pumps | Treatment | AFW | AFW (kg/sec) (hr) (hr)
1 1 3/2 Does not 30 No_ No_
2 5 stick open’ , 50 — 60 No’ No’
3 1 3/1 Yes 23 No’ No’
4 3/ Sticks open 30 - 40 No® No®
5 5 after 119 lifts 60 - 70 No’ No’
! Logic was added to address numerical instability (by limiting the flow area to smooth the liquid flow
through the faulted SG PORV).
2 TD-AFW is lost within the first hour for all cases due to flooding of the steamline.
8 Based on a 24-hour mission time.
Table 11 Surry SGTR Key Timings
Event Case 1 (hr) | Case 2 (hr) | Case 3 (hr) | Case 4 (hr) | Case 5 (hr)
Reactor Trip 0.048 0.012 0.048 0.048 0.012
HHSI initiates (3 pumps) 0.051 0.013 0.051 0.051 0.013
1 of 3 HHSI pumps secured 0.25 0.25 N/A 0.25 0.25
2 of 3 HHSI pumps secured N/A N/A 0.25 N/A N/A
TD-AFW shut down' 0.70 0.32 0.75 0.70 0.32
Faulted SG PORYV stuck open N/A N/A N/A 0.76 0.35
RWST depletion (<13.5%)" 10.68 5.58 14.06 8.41 4.69
Accumulator injection N/A N/A N/A 8.62 0.94
RCP trip (10% void) 17.81 11.71 20.20 12.44 5.02
Emergency CST empty’ >24 hours >24 hours >24 hours >24 hours 22.20
Core damage >24 hours

! TD-AFW shuts down due to filling of the steamline and flooding of the pump.

2 Recall that since the RCS leak location is the ruptured SG tube(s), a substantial amount of water is
expelled from the system via the SG relief valves (rather than into containment) and is thus unavailable for
containment sump recirculation.

3 Depletion of the emergency condensate storage tank (CST) (96,000 gal (363 ms)), which is the normal
injection source for auxiliary feedwater (AFW), stops MD-AFW.
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A.4.1

Case 1: One Tube and Secure One HHSI Pump
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A.4.2 Case 2: Five Tubes and Secure One HHSI Pump
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A4.3

Pressure [MPa]

Total Flow (kg/s)

Case 3: One Tube and Secure Two HHSI Pumps
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A4d4.4 Case 4: One Tube, Secure One HHSI Pump and Stuck-Open SG PORV
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A.4.5 Case 5: Five Tubes, Secure One HHSI Pump, and Stuck-Open SG PORV
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A5 Pressurized-Water Reactor Station Blackout

Analysis Summary

The station blackout sequence is similar to the SOARCA analysis. In all cases, there is 21 gpm
existing leakage, but in some cases seal failure at 13 minutes leads to either 182 gpm or

500 gpm leakage. Note that this is different from how RCP seal failure is modeled in the
SOARCA project. For the modeling of stuck-open pressurizer SRV, there are two choices:

(1) SRV sticks open based on number of cycles or (2) the valve does not recluse after the first
lift-off. Note that none of the cases reach the 256-lift criterion before core damage.

Section A.5.1 reports two sensitivity calculations: (1) initiation of three HHSI pumps at

2.14 hours (when core damage occurs) and (2) initiation of three HHSI pumps at 1.64 hours
(half an hour earlier). Section A.5.1.1 shows that core damage would continue for the former
case, while Section A.5.1.2 shows that there is sufficient time and injection flow rate to avert fuel
melting and arrest core heatup in the latter case. Table 12 through Table 15 below provides
results for this portion of the analysis.

Table 12 Surry Station Blackout Results

Seal
Leakage
Rate' after Seal
Failure Failure SRV Core Core
(gpm3 per Time Stuck Uncovery | Damage
Case pump) (min) Open TD-AFW ac/dc (hr) (hr)
1 - 14 2.1
ac recovery
1a . 1.4 2.1
500 13 Fails to start 2t02r.e1023;rr§
1o N/AZ at 1.6 hours 14 -
2 Available 1.6 2.3
3 Fails to start 2.3 3.4
Available; successful
4 o1 ] blind feeding 13.3 16.3
5 t Fails to start - 2.1 2.6
15 ift Available; successful
6 blind feeding 13.0 13.8
7 Fails to start 2.0 3.1
8 182 13 N/A? Available 3.9 4.8
9 21 ) Available; lost at dc lost at 8.4 10.9
10 15 Iift 4 hours 4 hours 8.1 8.8

The leakage rate provided is the leakage rate at full system pressure. As the system depressurizes, the
leak rate decreases.

The model is set to stick the valve open after 256 lifts, but the valve does not lift that many times for these
calculations.

500 gpm = 1.89 m>/min; 182 gpm = 0.689 m%min; 21 gpm = 0.076 m®/min.
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Table 13 Surry Station Blackout Key Timings (Cases 1-2)

Case 1a Case 1b
Event' Case 1 (hr) (hr) (hr) Case 2 (hr)
Reactor trip, RCP trip, MFW/TD-AFW/MD-AFW 0 0 0 0
Seal leakage (21 gpm/pump) 0 0 0 0
Seal failure (500 gpm/pump) 0.22 0.22 0.22 0.22
Primary-side SG tubes water level starts to 0.52 0.52 0.52 0.52
decrease
Primary-side SG tubes dry 0.96 0.96 0.96 0.98
SG dryout 1.16 1.16 1.16 -
Core uncovery 1.40 1.40 1.40 1.63
Gap release 1.92 1.92 - 2.15
Core damage (max. temp. >2,200 °F) 2.14 2.14 - 2.25
! 500 gpm = 1.89 m°/min; 21 gpm = 0.076 m*/min; 2,200 °F = 1,204 °C.
Table 14 Surry Station Blackout Key Timings (Cases 3-6)
Case 3 Case4 | Case5 | Case6
Event' (hr) (hr) (hr) (hr)
Reactor trip, RCP trip, MFW/TD-AFW/MD-AFW 0 0 0 0
Seal leakage (21 gpm/pump) 0 0 0 0
Primary-side SG tubes water level starts to decrease 1.92 5.38 1.52 5.42
Emergency CST depleted - 7.97 - 7.97
Primary-side SG tubes dry 2.03 11.30 1.66 11.30
SG dryout 1.19 11.77 1.19 11.80
SRV sticks open N/A N/A 1.45 12.71
Core uncovery 2.28 13.31 2.06 13.03
Gap release 2.96 14.83 242 13.60
Core damage (max. temp. >2,200 °F) 3.40 16.33 2.57 13.80
! 21 gpm = 0.076 m°/min; 2,200 °F = 1,204 °C.
Table 15 Surry Station Blackout Key Timings (Cases 7-10)
Case 7 Case 8 | Case9 | Case 10
Event' (hr) (hr) (hr) (hr)
Reactor trip, RCP trip, MFW/TD-AFW/MD-AFW 0 0 0 0
Seal leakage (21 gpm/pump) 0 0 0 0
Seal failure (182 gpm/pump) 0.22 0.22 - -
TD-AFW assumed lost at battery depletion - - 4 4
Primary-side SG tubes water level starts to decrease 1.04 1.01 5.62 5.63
Primary-side SG tubes dry 1.52 2.22 6.58 6.58
SG dryout 1.22 - 7.13 712
SRV sticks open N/A N/A N/A 7.67
Core uncovery 1.98 3.88 8.37 8.10
Gap release 2.63 4.00 9.48 8.59
Core damage (max. temp. >2, 200 °F) 3.09 4.77 10.85 8.77

! 182 gpm = 0.689 m*/min; 21 gpm = 0.076 m*/min; 2,200 °F = 1,204 °C.
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A.5.1
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SG Boiler Water Level [m]
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A.5.1.1

Total Flow (kg/s)

Reactor Water Level (m)

Case 1a: Three HHSI Pumps at 2.14 Hours
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Ab.1.2

Total Flow (kg/s)

Reactor Water Level (m)
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A.5.2 Case 2: Station Blackout with Turbine-Driven Auxiliary Feedwater (500 gpm)
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A.5.3 Case 3: Station Blackout without Turbine-Driven Auxiliary Feedwater (21 gpm)
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A5.4 Case 4: Station Blackout with Turbine-Driven Auxiliary Feedwater (21 gpm)
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Integral Water Mass [kg]
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Reactor Water Level (m)
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A.5.5

Pressure [MPa]

SG Boiler Water Level [m]

Case 5: Station Blackout without Turbine-Driven Auxiliary Feedwater
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Seal Leakage (gpm)

Integral Water Mass [kg]
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A.5.6 Case 6: Station Blackout with Turbine-Driven Auxiliary Feedwater (21 gpm);
Stuck-Open Relief Valve
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Water Volume (gal)

24

22 - —c|
20

. \
. \

14 \
12 \

\_

10
0 10000 20000 30000 40000 50000 60000

time [sec]

120000

100000

80000 \\
60000

40000 \

20000 \\\\\\\\
0

0 10000 20000 30000 40000 50000 60000
time [sec]

A-116



Seal Leakage (gpm)
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A.5.7 Case 7: Station Blackout without Turbine-Driven Auxiliary Feedwater
(182 gpm)
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A.5.8 Case 8: Station Blackout with Turbine-Driven Auxiliary Feedwater (182 gpm)
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A.5.9 Case 9: Station Blackout with Turbine-Driven Auxiliary Feedwater (21 gpm)
and 4-Hour Direct Current
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A.5.10 Case 10: Station Blackout with Turbine-Driven Auxiliary Feedwater (21 gpm)
and 4-Hour Direct Current; Stuck-Open Relief Valve
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A.6 Pressurized-Water Reactor Medium- and Large-Break LOCA Initial
Response

Analysis Summary

For all LOCA scenarios, containment fan coolers and containment sprays are available. The
break is assumed to occur in the horizontal part of the cold leg in Loop A (pressurizer loop).
Table 16 through Table 23 below provide results for this portion of the analysis.

Table 16 Surry MBLOCA and LBLOCA Results

Break Time of Initial Core Damage
Case Size ﬁﬂ:lssl Acfum ﬁul'r:s; AFW?" | Core Uncovery | During Injection

(inch)* P : P (hr) Phase? (hr)
9 1 0 0 0.42 No”
15 0 2 1 Yes 0.41 0.73
20 5 1 1 0 0.42 No”
21 1 0 1 0.42 No®
27 1 1 0 No 0.38 No”
29 1 0 1 0.38 No®
1 1 0 1 0.09 No
11 1 0 0 0.09 No”
12 0 0 1 Yes 0.10 0.27
13 4 0 1 1 0.10 0.27
14 0 2 1 0.10 No
22 1 1 0 0.09 No”
25 1 0 1 No 0.09 No
28 1 1 0 0.09 No”
2 1 0 1 0.04 No
5 0 0 1 0.04 0.16
6 0 1 1 Yes 0.04 No
7 5 1 0 0 0.07 0.28
8 1 1 0 0.08 No”
16 1 0 1 0.04 No
17 1 1 0 No 0.06 No”
26 0 1 1 0.04 No
3 1 0 1 0.02 No
18 8 1 1 0 0.01 No”
23 0 1 1 0.03 No
4 1 0 1 Yes 0.01 No
19 10 1 1 0 0.01 No”
24 0 1 1 0.02 No

Double-
10 ended 0 0 1 0.02 No

Conventionally, AFW is not needed for success for an LBLOCA; the break size is large enough to
remove decay heat and the system fully depressurizes.

Note that core damage eventually occurs (or would occur, in cases in which the calculation was
terminated early) because of the inability to go to HHSI recirculation (due to the unavailability of LHSI)
or, more directly, from the lack of a low-pressure injection source. Recall that the present calculations
are focused only on the injection phase success criteria.

For these cases, core damage eventually occurs because HHSI recirculation is not modeled, and the
pressure is not sufficiently low prior to core damage to allow for LHSI recirculation.

4 2in.=51cm;4in.=10.2cm; 6in. =15.2cm; 8in. =20.3cm; 10 in. = 25.4 cm.
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Table 17 Surry MBLOCA and LBLOCA Key Timings (2-Inch Breaks)

Event Case 9 Case 15 Case 20 Case 21 Case 27 Case 29
(hr) (hr) (hr) (hr) (hr) (hr)

Reactor trip 0.01 0.003 0.01 0.01 0.01 0.01
HHSI injection 0.01 - 0.01 0.01 0.01 0.01
RCP trip (10% void) 0.28 0.07 0.28 0.28 0.18 0.17
First actuation of
containment sprays 1.14 - 1.21 1.14 0.94 0.94
Core uncovery
(water <TAF) 0.42 0.41 0.42 0.42 0.38 0.38
LHSI injection - - - 6.39 - 6.17
t“gﬁq"gg;;%gaﬁdrg;:‘]g 0.44 073 | o044 0.44 0.40 0.40
(max. temperature) (592 K) | (1,477 K)) (592 K) (592 K) (592 K) (592 K)
Core covered 0.87 N/A 0.8 0.87 0.75 0.75

! Actual peak temperature would be higher; this value corresponds to the surrogate used in this project

for core damage, 2,200 °F (1,204 °C).

Table 18 Surry MBLOCA and LBLOCA Key Timings (4-Inch Breaks Group 1)

Case 1 (hr) Case 11 Case 12 Case 13
Event (hr) (hr) (hr)
Reactor trip 0.003 0.003 0.003 0.003
HHSI injection 0.003 0.004 - -
RCP trip (10% void) 0.04 0.04 0.04 0.04
First actuation of containment 0.08 0.08 0.07 0.07
sprays
Core uncovery (water <TAF) 0.09 0.09 0.10 0.10
LHSI injection 0.29 - 0.33 0.45
t'\gfnx'zr‘;rt'zjfi?n‘:mg (max 0.34 0.53 0.27 0.27
P 9 : (982 K) (1,209K) | (1,477K") | (1,477K")
temperature)
Core covered 0.38 >0.83 N/A N/A

T

project for core damage, 2,200 °F (1,204 °C).

Actual peak temperature would be higher; this value corresponds to the surrogate used in this

Table 19 Surry MBLOCA and LBLOCA Key Timings (4-Inch Breaks Group 2)

Case 25 Case 28

Event Case 14 (hr) | Case 22 (hr) (hr) (hr)
Reactor trip 0.003 0.003 0.003 0.003
HHSI injection - 0.004 0.004 0.004
RCP trip (10% void) 0.04 0.04 0.04 0.03
First actuation of 0.07 0.08 0.08 0.07
containment sprays
Core uncovery (water <TAF) 0.10 0.09 0.09 0.09
LHSI injection 0.73 - 0.30 -
t'\gﬁq""gr‘;r&;'aﬁdnﬂgzg (max 0.73 0.21 0.32 0.26
¢ | (1,183 K) (807 K) (1,054 K) (721 K)
emperature)
Core covered 0.79 0.39 0.39 0.41
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Table 20 Surry MBLOCA and LBLOCA Key Timings (6-Inch Breaks Group 1)

Event Case 2 (hr) | Case 5 (hr) | Case 6 (hr) Case 7 (hr)
Reactor trip 0.002 0.002 0.002 0.002
HHSI injection 0.002 - - 0.002
RCP trip (10% void) 0.02 0.02 0.02 0.02
First actuation of containment sprays 0.03 0.03 0.03 0.03
Core uncovery (water <TAF) 0.04 0.04 0.04 0.07
LHSI injection 0.13 0.14 0.18 -
Maximum cladding temperature timing 0.15 0.16 0.16 0.28
(maximum temperature) (774 K) (1,477 K" (990 K) (1,477K")
Core covered 0.19 N/A 0.20 N/A

T

for core damage, 2,200 °F (1,204 °C).

Actual peak temperature would be higher; this value corresponds to the surrogate used in this project

Table 21 Surry MBLOCA and LBLOCA Key Timings (6-Inch Breaks Group 2)

Event Case 8 (hr) | Case 16 (hr) | Case 17 (hr) | Case 26 (hr)
Reactor trip 0.002 0.002 0.002 0.002
HHSI injection 0.002 0.002 0.002 -
RCP trip (10% void) 0.02 0.02 0.02 0.02
First actuation of containment sprays 0.03 0.03 0.03 0.03
Core uncovery (water <TAF) 0.08 0.04 0.06 0.04
LHSI injection - 0.13 - 0.18
Maximum cladding temperature timing 0.04 0.152 0.04 0.13
(maximum temperature) (592 K) (775 K) (575 K) (931 K)
Core covered 0.10 0.19 0.12 0.22
Table 22 Surry MBLOCA and LBLOCA Key Timings (8-Inch Breaks)
Case 3 Case 18 Case 23
Event (hr) (hr) (hr)
Reactor trip 0.002 0.002 0.002
HHSI injection 0.002 0.002 -
RCP trip (10% void) 0.009 0.009 0.01
First actuation of containment sprays 0.01 0.01 0.01
Core uncovery (water <TAF) 0.02 0.01 0.03
LHSI injection 0.07 0.08
i\illn?i);:gum cladding temperature 010 0.40 0.07
(maximum temperature) (851K) (1,085K) (792 K)
Core covered 0.14 0.9 0.1
Table 23 Surry MBLOCA and LBLOCA Key Timings (210-Inch Breaks)
Case 4 (hr) Case 19 Case 24 Case 10
Event (hr) (hr) (hr)
Reactor trip 0.001 0.001 0.001 0.001
HHSI injection 0.001 0.001 - -
RCP trip (10% void) 0.008 0.008 0.006 0.001
First actuation of containment sprays 0.008 0.008 0.008 0.005
Core uncovery (water <TAF) 0.01 0.008 0.02 0.022
LHSI injection 0.04 - 0.05 0.005
i\i/ln?i)ggum cladding temperature 008 0.30 0.04 0.036
(maximum temperature) (850 K) (835K) (640K) (1,043 K)
Core covered 0.12 0.87 0.06 0.053
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A.6.1

Containment Pressure [bar]
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Case 1: 4-Inch Break LOCA, One HHSI, One LHSI, and No ACC
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Maximum Core Temperature [K]
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A.6.2 Case 2: 6-Inch Break LOCA, One HHSI, One LHSI, and No ACC
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A.6.3 Case 3: 8-Inch Break LOCA, One HHSI, One LHSI, and No ACC
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Containment Water Level [m]
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A.6.4 Case 4: 10-Inch Break LOCA, One HHSI, One LHSI, and No ACC
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Maximum Core Temperature [K]
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A.6.5

Containment Pressure [bar]

Pressure [MPa]

Case 5: 6-Inch Break LOCA, No HHSI, One LHSI, and No ACC
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Containment Water Level [m]
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Maximum Core Temperature [K]
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A.6.6

Containment Pressure [bar]

Pressure [MPa]

Case 6: 6-Inch Break LOCA, No HHSI, One LHSI, and One ACC
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A.6.7

Containment Pressure [bar]

Pressure [MPa]

Case 7: 6-Inch Break LOCA, One HHSI, No LHSI, and No ACC
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Maximum Core Temperature [K]
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A.6.8 Case 8: 6-Inch Break LOCA, One HHSI, No LHSI, and One ACC
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A.6.9

Containment Pressure [bar]

Pressure [MPa]

Case 9: 2-Inch Break LOCA, One HHSI, No LHSI, and No ACC
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A.6.10 Case 10: Double-Ended Cold-Leg Break LOCA, No HHSI, One LHSI, and No
ACC
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A.6.11

Containment Pressure [bar]

Pressure [MPa]

Case 11: 4-Inch Break LOCA, One HHSI, No LHSI, and No ACC
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A.6.12

Containment Pressure [bar]

Reactor Pressure [MPa]

Case 12: 4-Inch Break LOCA, No HHSI, One LHSI, and No ACC
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A.6.13 Case 13: 4-Inch Break LOCA, No HHSI, One LHSI, and One ACC
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A.6.14 Case 14: 4-Inch Break LOCA, No HHSI, One LHSI, and Two ACC
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Containment Water Level [m]
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Maximum Core Temperature [K]
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A.6.15

Containment Pressure [bar]

Reactor Pressure [MPa]

Case 15: 2-Inch Break LOCA, No HHSI, One LHSI, and Two ACC
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Containment Water Level [m]

Reactor Water Level (m)
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A.6.16 Case 16: 6-Inch Break LOCA, One HHSI, One LHSI, and No ACC, without
Auxiliary Feedwater
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Maximum Core Temperature [K]

1700

1500

1300

1100

900

700

500

300

—TCL
——TFU

- = ]---2200F

e

0 1000

2000

A-200

3000

time [sec]

4000

5000

6000



A.6.17

Containment Pressure [bar]
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Case 17: 6-Inch Break LOCA, One HHSI, No LHSI, and One ACC, without
Auxiliary Feedwater
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A.6.18

Containment Pressure [bar]

Pressure [MPa]

Case 18: 8-Inch Break LOCA, One HHSI, No LHSI, and One ACC
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Maximum Core Temperature [K]
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A.6.19

Containment Pressure [bar]

Pressure [MPa]

Case 19: 10-Inch Break LOCA, One HHSI, No LHSI, and One ACC
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Maximum Core Temperature [K]
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A.6.20

Containment Pressure [bar]

Pressure [MPa]

Case 20: 2-Inch Break LOCA, One HHSI, No LHSI, and One ACC
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Maximum Core Temperature [K]
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A.6.21

Case 21: 2-Inch Break LOCA, One HHSI, One LHSI, and No ACC
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Maximum Core Temperature [K]
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A.6.22

Case 22: 4-Inch Break LOCA, One HHSI, No LHSI, and One ACC
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Maximum Core Temperature [K]
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A.6.23 Case 23: 8-Inch Break LOCA, No HHSI, One LHSI, and One ACC
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A.6.24

Containment Pressure [bar]

Pressure [MPa]

Case 24: 10-Inch Break LOCA, No HHSI, One LHSI, and One ACC
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A.6.25 Case 25: 4-Inch Break LOCA, One HHSI, One LHSI, No ACC, without Auxiliary
Feedwater
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A.6.26

Containment Pressure [bar]

Pressure [MPa]

Case 26: 6-Inch Break LOCA, No HHSI, One LHSI, and One ACC, without

Auxiliary Feedwater

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

18

16

14

12

10

N

—SG-A
—Dome H

[\
L\

—]
1000 2000 3000 4000 5000
time [sec]
—SGA
—SGB|]
—SGC
—PRZ |
= - ]
~—
1000 2000 3000 4000 5000
time [sec]

A-237



1000

—ACC
900 | —LHSI (inj)
—LHSI (rec)
800 Y |—HHSI (inj)
=—BRK

700 A

600

500

400

Total Flow (kg/s)

300

200

100

0 1000 2000 3000 4000 5000
time [sec]

450000

—RWST
400000 SPR 1

—LHSI
350000 _\\\\\\\\\ ——HHS|
300000
250000 \\\\\\

200000

Water (gal)

N

100000

~.
150000 j:::::::>>
—

N
N
;
50000 ////,f/’////
0 —
0 1000 2000 3000 4000 5000

time [sec]

A-238



Containment Water Level [m]

Reactor Water Level (m)

— Sump

1.8 11— Cavity

1.6

14 e —

1.2 /

sl [\ /

0:6 /

wl |

0 1000 2000 3000 4000
time [sec]

5000

20

18

—PRZ

—DC
—Ring 1

16

14

~— BAF
— TAF

12

0 1000 2000 3000 4000
time [sec]

A-239

5000




Maximum Core Temperature [K]

1700

—TCL

1500 4 .|~ PO oo
-=-=-2200F

1300

1100

900 A\

[

500

700 L/

300

1000

2000 3000

A-240

time [sec]

4000

5000



A.6.27 Case 27: 2-Inch Break LOCA, One HHSI, No LHSI, and One ACC, without
Auxiliary Feedwater
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A.6.28

Containment Pressure [bar]

Pressure [MPa]

Case 28: 4-Inch Break LOCA, One HHSI, No LHSI, and One ACC, without
Auxiliary Feedwater
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A.6.29

Reactor Pressure [MPa]

Case 29: 2-Inch Break LOCA, One HHSI, One LHSI, and No ACC, without

Auxiliary Feedwater
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APPENDIX B

PEACH BOTTOM MELCOR ANALYSES






B.1

Inadvertent Open Relief Valve Success Criteria

Analysis Summary

Table 1 and Table 2 below provide results for this portion of the analysis.

Table 1 Peach Bottom Inadvertent Open SRV Results

FW, Core Core
SPC, | Uncovery | Damage
Case | RCIC | HPCI CRD LPCI | LPCS | ac/dc ADS (hr) (hr)
1 Yes No No No No
2 Yes No No
1att=0and
3 2 at No 0.41 No
No t=10 min Yes No ac/dc
4 No 1att=0and 0.37 No
4a' 2 at 20 min 0.29 No
4b' after SCRAM FW No No
5 No No 0.32 No
! For this case, the reactor was allowed to scram based on a reactor protection system trip signal, rather
than attime t = 0.
Table 2 Peach Bottom Inadvertent Open SRV Key Timings (Cases 1-5)
Case1 | Case2 | Case3 | Case4 | Cased4a | Case4b | Case5
Event (hr) (hr) (hr) (hr) (hr) (hr) (hr)
SRV 1 open 0 0 0 0 0 0 0
Reactor trip 0 0 0 0 <0.01" 0.76 0
MSIVs close <0.01 | <0.01 | <0.01 <0.01 <0.01 0.79 0
Downcomer level firstreaches | 907 | 007 | 007 | 007 | 003 N/A 0.07
RQIC/HPCI first started (CST 0.08 0.08 ) ) ) ) )
injection mode)
2" CRD pump started - - 0.17 0.33 0.33 1.09 -
Downcomer level reaches L1 0.37 8.93 0.32 0.32 0.24 N/A 0.26
Downcomer level below TAF 0.37 8.93 0.35 0.33 0.25 N/A 0.28
fﬁ’g”ﬁ,ﬁ?'o” pool temp. 040 | 061 | 042 | 042 0.41 0.30 0.40
LPCI first started 0.51 8.93 0.59 0.58 0.53 N/A 0.57
RCIC/HPCI pump isolation:
low steamline pressure 0.82 5.59 - - - - -
<0.52 MPa (75 psig)
P 3 P
gg;l{)“mlt reached” (no action 45 4.0 > 12 > 12 50 0.57 > 12
RHR pump isolation - NPSH 9.6 11.1 > 1° > 1° > 10° 5.4 >1°
t“gfnxgzr‘;%giﬂg:ﬂg (max No No | 078 | 076 | 067 No 0.75
temperature) heatup | heatup | (786 K) | (830 K) | (941 K) | heatup | (1,212 K)
&

Reactor trips at 8 seconds on low RPV level.

2
3

B-1

The simulation was stopped before reaching this condition.
The HCTL limit is based on suppression pool temperature, suppression pool level, and RPV pressure.




B.1.1 Case 1: Safety Relief Valve Opening and Reactor Core Isolation Cooling
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B.1.2 Case 2: Safety Relief Valve Opening and High-Pressure Coolant Injection
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B.1.3 Case 3: Safety Relief Valve Opening and CRD 2 at 10 Minutes
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B.1.4
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B.1.4.1 Case 4a: Safety Relief Valve Opening, CRD 2 at 20 Minutes, and No Reactor Trip at
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B.1.4.2  Case 4b: Safety Relief Valve Opening, CRD 2 at 20 Minutes, and No Reactor or
Feedwater Trip att=0
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B.1.5 Case 5: Safety Relief Valve Opening
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B.2 Boiling-Water Reactor Station Blackout

Analysis Summary

Table 3 through Table 6 below provide results for this portion of the analysis.

Table 3 Peach Bottom Station Blackout Results

SRV Core Core
Sticks HCTL Uncovery | Damage
Case | RCIC | HPCI ac/dc Open? Depress? (hr) (hr)
1 - No' 0.5 1.2
ac recovery at 2
1a No o y No No 0.5 1.2
2 No - Att=0 0.3 0.8
3 dc is always 17.7 194
4 Yes available No Yes 6.0 7.2
5 2 hr of dc 3.3 4.3
6 dc is always At 187 lifts No 6.0 7.2
7 available 17.5 19.3
8 No Yes 9.3 10.8
9 No Yes 2 hr of dc 3.8 4.9
10 deisalways | aiqg7jifts | NO 9.2 10.7
available

For this case, the SRV does not stick open until after core damage, so this assumption does not
affect the outcome.
Recovery of injection upon reaching 2,200 °F (1,204 °C) quickly arrests further heatup.

N

Table 4 Peach Bottom Station Blackout Key Timings (Cases 1, 1a, and 2)

Case 1 Case 1a Case 2

Event (hr) (hr) (hr)
Reactor trip, MSIV closure 0 0 0
Downcomer level reaches L2 0.16 0.16 0.16
Downcomer level reaches L1 0.50 0.50 0.27
Downcomer level below TAF 0.50 0.50 0.27
Gap release: 900 °C (1,652 °F) 1.02 1.02 0.69
Core damage: max. temp. >1,204 °C 1.17 1.17 0.79
(2,200 °F)
HPCI, RCIC, CRD injection start - 1.17 -
ADS actuated - 1.24 -
Downcomer level recovers above TAF - 1.27 -
SRV sticks open due to high # of cycles 1.75 - -
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Table 5 Peach Bottom Station Blackout Key Timings (Cases 3—6

Event Case 3 (hr) | Case 4 (hr) | Case 5 (hr) Case 6 (hr)

Reactor trip, MSIV closure 0 0 0 0
Downcomer level first reaches L2 0.16 0.16 0.16 0.16
RCIC started (CST injection mode) 0.17 0.17 0.17 0.17
RCIC fails due to loss of dc - - 2.00 -

- 2.46 (no 2.46 (no 2.46 (no
HCTL limit reached action t;ken) 246 action t;ken) action t;ken)
SRV sticks open due to high # of ) ) ) 247
cycles '
RCIC NPSH limit exceeded’ 12.67 - - -
RCIC pump isolation: low
steamline pressure <0.52 MPa - 3.90 - 3.92
(75 psig)
RCIC injection ends due to CST 14.43 ) ) )
level <5 ft (1.5 m) )
Downcomer level reaches L1 17.68 5.61 3.25 5.62
Downcomer level below TAF 17.68 5.61 3.25 5.62
Gap release: 900 °C (1,652 °F) 19.06 6.99 4.04 7.00
Core damage max. temp.
>1,204 °C (2,200 °F) 19.42 717 4.25 7.18
Exhaust pressure exceeded: 20.14 ) ) )

0.35 MPa (50 psig)
T

Switchover to the suppression pool is not permitted after this point.

Table 6 Peach Bottom Station Blackout Key Timings (Cases 7-10)

Event Case 7 (hr) | Case 8 (hr) | Case 9 (hr) | Case 10 (hr)
Reactor trip, MSIV closure 0 0 0 0
Downcomer level first reaches L2 0.16 0.16 0.16 0.16
HPCI started (CST injection mode) 0.17 0.17 0.17 0.17
HPCI fails due to loss of dc - - 2.00 -
SRV sticks open due to high # of ) ) ) 253
cycles )

. 2.67 (no 2.67 (no 2.67 (no

HCTL limit reached action tz(aken) 2.67 action tz(aken) action tz(aken)
HPCI NPSH limit exceeded' 12.07 - - -
HPCI pump isolation: low
steamline pressure <0.52 MPa - 5.72 - 5.61
(75 psig)
HPCI injection ends due to CST 16.05 ) ) )
level <5 ft (1.5 m) )
Downcomer level reaches L1 17.53 8.97 3.82 8.94
Downcomer level below TAF 17.53 9.06 3.82 8.94
Gap release: 900 °C (1,652 °F) 18.96 10.59 4.63 10.46
Core damage max. temp. 19.31 10.8 4.85 10.68

>1,204 °C (2,200 °F)

Exhaust pressure exceeded:
1.04 MPa (150 psig)

T
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B.2.1 Case 1: Station Blackout with No Injection
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B.2.1.1 Case 1a: Station Blackout with No Injection and Power Recovery at Core Damage
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B.2.2 Case 2: Station Blackout and Safety Relief Valve Open att =0
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B.2.3 Case 3: Station Blackout and Reactor Core Isolation Cooling

Note: By the time reactor core isolation cooling (RCIC) injection stops from condensate storage
tank (CST) depletion at 14.4 hours, the RCIC pump net positive suction head (NPSH) limit has
already been exceeded at 11.6 hours.
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B.2.4 Case 4: Station Blackout and RCIC and HCTL Depressurization
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B.2.5

Reactor Pressure [MPa]

Reactor Water Level (m)

Case 5: Station Blackout and RCIC and 2-Hour Direct Current
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B.2.6 Case 6: Station Blackout and RCIC and SRV Stuck Open
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B.2.7

Case 7: Station Blackout and High-Pressure Coolant Injection

Note: By the time high-pressure coolant injection (HPCI) injection stops from the CST at

16.05 hours, the HPCI pump NPSH limit has already been exceeded at 12.07 hours.
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B.2.8

Reactor Pressure [MPa]

HCTL Depressurization Flow Rate [kg/s]

Case 8: Station Blackout and HPCI and HCTL Depressurization
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B.2.9

Reactor Pressure [MPa]

Reactor Water Level (m)

Case 9: Station Blackout and HPCI and 2-Hour Direct Current
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B.2.10 Case 10: Station Blackout and HPCI and SRV Stuck Open
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APPENDIX C

EVENT TREE MODELS FOR SURRY AND PEACH BOTTOM






C.1  Surry Event Trees

This section provides the relevant event trees from the Surry (v3.52) Standardized Plant
Analysis Risk model dated November 2009. These event trees show the sequences described

in the main report.
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C.2 Peach Bottom Event Trees

This section provides the relevant event trees from the Peach Bottom (v3.50) Standardized
Plant Analysis Risk model dated October 2009. These event trees show the sequences
described in the main report.
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APPENDIX D

RESPONSE TO PUBLIC COMMENTS






D.1 Introduction

In November 2010, the U.S. Nuclear Regulatory Commission (NRC) issued a draft of
NUREG-1953 for a 30-day public comment period. In December 2010, the NRC extended the
comment period to February 28, 2011, in response to an external request. Exelon Nuclear
(Exelon, 2010) and the Nuclear Energy Institute (NEI, 2011) submitted comments to the agency.
The following sections respond to each comment received, and NUREG-1953 has been
modified as necessary to address some concerns. The comments were helpful not only for
improving the utility of this report, but also for providing insights for future analyses.






D.2 Comments from Exelon Nuclear Dated December 15, 2010

D.21 Plant Representation in MELCOR

Section 5.1 of the draft NUREG states that the core nodalization assumed 10 axial by 5 radial
regions. Further clarification on this investigation to the sensitivity of this assumed nodalization
scheme would help demonstrate the impact of this assumption.

NRC Response

The nodalization used in the Surry model follows a well-established nodalization convention for
the use of MELCOR in reactor applications. Past sensitivity studies have shown this
nodalization to reproduce the necessary physics for the types of accidents being considered in
this report.

D.2.2 Stuck Open Safety Relief Valves

The State-of-the-Art Reactor Consequence Analyses (SOARCA) project identified a significant
sensitivity to Safety Relief Valves (SRVs) sticking open due to elevated gas temperatures.
Further clarification on how this impacts the current success criteria analysis would be
beneficial.

NRC Response

Regarding the issue of relief valves sticking open due to elevated gas temperatures, the
elevated temperatures at the valve necessary to prompt this concern were not seen until the
time of core damage. Since the present study only considers the phase of the accident up to
the start of core damage, this valve failure mechanism is not believed to be relevant here.
Section 5.1 of the main report now addresses this issue.

D.2.3 Reactor Coolant Pump Manual Trip

It appears that a credit was not assumed for operator actions to trip the Reactor Coolant Pumps
(RCPs) manually. Itis recommended that a sensitivity be included to demonstrate the impact of
manual actions to trip the RCPs in accordance with the existing guidance.

NRC Response

The staff agrees with the need to assess this impact. To that end, the staff revisited this issue
for each of the initiators considered for Surry and developed the following simplified criteria:

. For small-break loss-of-coolant accidents (SBLOCASs), manual RCP trip is covered in
E-0, “Reactor Trip or Safety Injection” and E-1, Loss of Reactor or Secondary Cooling”.
For the Surry procedures used in this study, the RCPs will be tripped when reactor
coolant system subcooling reaches 30 degrees Fahrenheit (F) (16.7 degrees Celsius
(C)) if at least one charging pump is running. The situation for depressurization and
cooldown cases would be more complicated. Two cases from the main report were re-
run using the above criteria to assess the effect. Table 1 and Table 2 provide the results
of these calculations.



E-0, “Reactor Trip or Safety Injection” and FR-H.1, “Response to Loss of Secondary
Heat Sink” cover manual RCP trip for loss-of-all feedwater events. We assume that the
RCPs will be tripped between 5 to 15 minutes following reactor trip, based on data from
a recent Halden study that investigated crew response to this initiator as presented in
(Coyne 2009). For simplicity, 10 minutes is used for the trip criteria. One of the cases
from the main report was re-run, and results are provided in Table 3.

Manual RCP trip for steam generator tube rupture (SGTR) is covered in E-0, “Reactor
Trip or Safety Injection” and early in E-3, “Steam Generator Tube Rupture”." We
assume that the RCP trip criteria would not be reached during the E-0 and early E-3
execution, and it is not a continuous action in E-3. Based on this, we do not assume that
operators trip the RCPs, even as a sensitivity.

Manual RCP trip for station blackout is not relevant since the RCPs require alternating
current (ac) power.

E-0, “Reactor Trip or Safety Injection” and E-1, “Loss of Reactor or Secondary Coolant”
cover manual RCP trip for medium-break loss-of-coolant accidents (MBLOCAs) and
large-break loss-of-coolant accidents (LBLOCAs). The RCPs will be tripped when
subcooling reaches 30 degrees F (16.7 degrees C) if at least one charging pump is
running. However, for these cases, the 10-percent void criteria assumed in the
MELCOR model is reached early (latest case is approximately 17 minutes). For the
purposes of these calculations, it is judged that additional sensitivities are not required.

As cited above, the following sensitivity studies were completed to demonstrate the impact of
manual actions to trip the RCPs in accordance with the existing guidance. The impact on the
time to key events, including the time to core damage, was very small.

Table 1 SBLOCA Case 2 with RCP Trip at 30 °F (16.7 °C) Subcooling

Time (hr)

Event 2 2c
Reactor trip 0.03 0.03
HHSI injection 0.03 0.03
First actuation of containment sprays
(containment pressure >1.72 bars) 265 2.65
RWST depletion (<13.5%) 4.30 4.30
Spray recirculation 4.30 4.30
Accumulator start to inject 4.52 4.52
RCP trip (30 °F (16.7 °C) subcooled) - 5.03
RCP trip (10-percent void) 5.76 -
Core uncovery 7.32 7.40
Core damage (max. temp. >2,200 °F) 9.93 10.1

! 1.72 bars = 0.172 MPa; 2,200 °F = 1,204 °C.

depressurization and cooldown has been initiated.

D-4

Note that the Surry E-3 procedure specifically directs operators to disregard RCP trip criteria once




Table 2 SBLOCA Case 8 with RCP Trip at 30 °F (16.7 °C) Subcooling

Time (hr)
Event 8 8a
Reactor trip 0.01 0.01
HHSI injection 0.01 0.01
First actuation of containment sprays
(containment pressure >1.72 bars) 3.23 3.23
RWST depletion (<13.5%) 5.52 5.52
Spray recirculation 5.53 5.53
Accumulator start to inject 5.65 5.65
RCP trip (30 °F (16.7 °C) subcooled) - 6.35
RCP trip (10% void) 10.3 -
Core uncovery 14.4 14.3
Core damage (max. temp. >2,200 °F) 21.4 21.4
! 1.72 bars = 0.172 MPa; 2,200 °F = 1,204 °C.
Table 3 LOMFW Case 2 with RCP Trip at 10 Minutes
Time (hr)
Event 2 2a
MFW, MD-AFW, TD-AFW unavailable 0 0
Reactor trip 0.008 0.008
(29 sec) (29 sec)
MCP trip (10 min) - 0.17
SG dryout 0.63 0.65
PRT rupture disk open 0.97 0.96
Sl signal (containment pressure >1.22 bars) 1.36 1.31
RCP trip (10% void) 1.43 -
First actuation of containment sprays 3.24 3.10
(containment pressure >1.72 bars) ) '
RWST depletion (<13.5%) 8.35 8.10
Core uncovery 1.65/9.54° 9.26
Core damage (max. temp. >2,200 °F) 11.80 11.47

1

) 1.22 bars = 0.122 MPa; 1.72 bars = 0.172 MPa; 2,200 °F = 1,204 °C.

For Case 2, the core uncovers early in the accident, recovers prior to significant heatup, and later
uncovers again (due to the loss of HHSI).

D.24 General Comments

The draft NUREG summarizes best estimate analyses for Surry and Peach Bottom success
criteria. The NUREG provides adequate details to describe the sequences being investigated
and provides a clear summary of the results. In addition, the results are summarized in terms of
the proposed changes to the current SPAR model assumptions.

A detailed comparison of these results with those from the Modular Accident Analysis Program
(MAPP4) code is currently underway as an Electric Power Research Institute (EPRI) sponsored
project. That comparison effort may reveal additional insights, the results of which are expected
to be communicated to the NRC when they are completed.



NRC Response
We acknowledge this activity and will consider the results when they are made available.






D.3 Comments from the Nuclear Energy Institute Dated February 23, 2011

D.3.1 Description of Major Plant Characteristics

In the description of the major plant characteristics in Section 4.1, it is suggested that for Surry,
it be noted that successful sump recirculation function requires containment heat removal
through the recirculation spray system.

NRC Response
A note to this effect has been added in Section 4.1 of the main report.

D.3.2 Plant Representation in MELCOR

In describing the plant representation used for the study, it is stated that the core nodalization
assumed 10 axial and 5 radial regions. Clarification of the sensitivity of this nodalization
assumption would be helpful in illustrating its impact.

NRC Response
Exelon Nuclear also submitted this comment. Please see the NRC’s response in Section D.2.1.

D.3.3 Small-Break Loss-of-Coolant Accident Case Assumptions

It appears that accumulator injection was credited for all SLOCA cases discussed in this report;
however, probabilistic risk assessments normally do not credit accumulator injection for SLOCA
mitigation. The impact of this should be explored before issuance of the final NUREG.

NRC Response

An examination of the various cases run for SBLOCA determined that the crediting of the
accumulators was not expected to affect whether the simulation went to core damage or to a
stable end state. However, in some cases the assumption may have affected other aspects of
the results. Specifically, in cases 1, 2, 5, 6, and 6a, the accumulators injected after refueling
water storage tank (RWST) depletion and, therefore, may have affected the time between
RWST depletion and core damage. In cases 2b, 3, 4, and 6b, the accumulators injected before
RWST depletion and, therefore, may have had an effect on the time to RWST depletion.
Crediting the accumulators is not expected to have made a significant difference in even the
intermediate results for cases 2a, 7, and 8. Since no changes were made to the SPAR models
based on the SBLOCA results (see Section 7 of the main report), sensitivity calculations were
not performed to assess the effect of this assumption. However, cautionary statements now
appear in multiple places in the main report to highlight the potential effect the accumulators
might have on some of the intermediate results.

D.34 Additional Sensitivities to Consider

While the work described in the draft NUREG involved extensive analysis evaluating
sensitivities, the industry suggests two other sensitivities to consider. The first is the impact of



crediting manual actions to trip the Reactor Coolant Pumps in accordance with existing
guidance, as such credit was not assumed in the analysis. The second suggested sensitivity
that the industry suggests evaluating is the impact of the Safety Relief Valves at Peach Bottom
sticking open due to elevated gas temperatures, as the State-of-the-Art Reactor Consequence
Analysis identified this as a significant sensitivity.

NRC Response

Exelon Nuclear also submitted these comments. Please see Sections D.2.2 and D.2.3 for the
NRC’s response.
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