2.1 Tier 1 and Tier 2* Departures from the DCD

The following Tier 1 and Tier 2* departures result from a change in the design described in the DCD.

STD DEP T1 1.1-1, Definition of As-Built

Description

This requested departure modifies the FSAR, Tier 1, Section 1.1 definition of as-built to clarify that the determination of physical properties of an as-built structure, system, or component may be based on measurements, inspections, or tests that occur prior to installation, provided that subsequent fabrication, handling, installation, and testing do not alter the properties. This clarification is not inconsistent with the original Tier 1 definition of as-built; it simply clarifies that some physical property determinations may be performed prior to the installation of a particular structure, system, or component, providing these properties are not compromised subsequent to the determination. It should reduce the likelihood of misinterpretation regarding adequate physical property determinations when pre-installation measurements, tests, or inspections are performed. The clarification is the same as the definition of as-built proposed by the NRC staff at a meeting with the industry on December 17, 2009 and as contained in NEI 08-01 (Revision 4, Draft E) *"Industry Guidelines for the ITAAC Closure Process Under 10 CFR Part 52,"* dated February, 2010.

Evaluation Summary

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the change provides clarification that will reduce the likelihood of misinterpretation regarding adequate determination of the physical properties of structures, systems, or components during ITAAC closure, and as such is an enhancement to the design that will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The change is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the change represents an enhancement and therefore will not present an undue risk to the public health and safety. The change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (iv) is present, since the change represents an improvement based on the reduction in the likelihood of misinterpretation regarding adequate physical property determinations performed prior to structure, system, or component installation. Therefore, it will result in a benefit to the public health and safety.

(4) The special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. Specifically, the change does not reduce safety, and does not affect the configuration of the plant or the manner in which the plant is operated. Further, this departure will form the reference-COLA for future COL applicants, thus the departure will likely not affect standardization. Any reduction in standardization resulting from the change in the definition of as-built will not adversely affect safety.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP T1 2.1-2, Reactor Pressure Vessal System RIP Motor Casing Cladding

Description

This requested departure modifies the description of the RIP motor casing to clearly indicate that some portions of the motor casing have cladding.

ABWR DCD Tier 1 describes the cladding applied to the interior of the RPV and indentifies areas of the RPV where there is no cladding. Specifically, DCD Tier 1 Section 2.1.1 states that there is no cladding on the RIP motor casing. The standard ABWR design for installed applications includes stainless steel cladding at two different locations of the casing. The RIP motor casings are clad with stainless steel only in the stretch tube region (up to the motor secondary seal) and around the bottom of the RIP motor casings where they interface with the motor cover closures. The requested departure modifies the DCD Tier 1 RIP motor casing design description to be consistent with the ABWR RIP motor casing design in current use. The design description in the ABWR DCD Tier 2 Section 5.3.3.1.1.1 is also clarified for consistency with Tier 1.

Evaluation Summary

This departure changes the RIP motor casing to incorporate cladding in the stretchtube portion above the RIP secondary seal and at the bottom end of the casing near the closure of the motor cover.

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

Rev. 06

- (1) As discussed above, the design change provides protection of the RIP motor casing base metal, and as such is an enhancement to the design that therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change represents an enhancement and therefore will not present an undue risk to the public health and safety. The design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstances (iv) is present, since the design change represents an improvement based on ABWR operating experience. The change is proven effective by operating history and therefore will result in a benefit to the public health and safety.
- (4) The special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. Specifically, the design change does not reduce safety, and does not affect the configuration of the plant or the manner in which the plant is operated. Further, this departure is consistent with operating ABWR designs, and will form the reference-COLA for future COL applicants, thus the departure will likely not affect standardization. Any reduction in standardization resulting from the change in the RIP motor casing cladding will not adversely affect safety.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP T1 2.2-1, Control Systems Changes to Inputs, Tests, and Hardware

Description

The reference ABWR DCD Tier 1 Table 2.2.1 ITAAC Acceptance Criteria for Item 11 (i.e. associated with testing of one of the dual redundant non-Class 1E uninterruptible power supply at a time) states the "test signal exists in only one control channel at a time." This acceptance criterion was based upon an assumption that in the RCIS design implementation each channel of the dual-redundant RCIS controller equipment would receive power from only one associated uninterruptible power supply. However, in the final RCIS design implementation, only the power supply associated with the one non-Class 1E uninterruptible power supply being tested will become inoperable and both of the dual-redundant controller channels remain operational when this testing is conducted. The detailed RCIS design for the dual-redundant controller equipment is implemented such that each channel remains operational as long as either one of the uninterruptible power supplies is operational. There is an associated alarm condition activated when one of the uninterruptible power supplies becomes inoperable (i.e. so the operator becomes aware of this abnormal power supply status condition). A

change has been incorporated regarding the DCD Tier 1 ITAAC requirement for the RCIS related to the Acceptance Criteria associated with the testing of one of the dual redundant non-Class 1E uninterruptible power supply at a time.

Evaluation Summary

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the design change represents an improvement and therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change represents an improvement and therefore will not present an undue risk to the public health and safety and the design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (iv) is present, since the design change represents an improvement and therefore will result in a benefit to the public health and safety.
- (4) This is "standard" departure that is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization, Additionally, the design change represents an improvement in safety, and does not adversely affect the configuration of the plant or the manner in which the plant is operated.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP T1 2.3-1, Deletion of MSIV Closure and Scram on High Radiation

Description

The Scram and MSIV Automatic Closure on high MSLRM (main steam line radiation monitor) trip is deleted. This safety function is deleted for the following reasons:

 The MSLR-high trip is not specifically credited in any ABWR safety analysis. This trip was originally designed for BWRs to mitigate the effects of a control rod drop accident (CRDA). As described in Tier 2 DCD Section 15.4.10, the ABWR has no basis for the CRDA event to occur. Thus, the deletion of the automatic scram and MSL isolation results in no change in associated risk or safety margins.

U.S. BWRs have experienced spurious trips due to this function. The radiation trip setpoints can be overwhelmed by minor variations in the N-16 flow during normal operation and cause spurious trips. Elimination of the safety-related functions reduces the potential for unnecessary reactor shutdown and increases plant operational flexibility. Operators in the main control room are alerted to potential offsite releases by the MSLRM, the condenser steam jet air ejector monitor, and/or ventilation stack monitor.

Furthermore, this change has been previously approved by the NRC for U.S. BWRs based on analyses that demonstrate that safety margins are not impacted. Since the SER conditions are met for the ABWR, as explained above, no other safety analyses are required.

This departure includes the following Tier 1, Technical Specification, and Tier 2 changes.

Tier 1 Departures:

- ABWR Tier 1 DCD Figure 2.3.1, "Process Radiation Monitoring System Control Interface Diagram" is changed to remove the MSL Tunnel Area Radiation input from the plant sensors that provide input data.
- Tier 1 Table 2.7.1a has been modified to remove the main steam tunnel radiation information from the fixed position alarms, displays, and controls. This information is conveyed through other alarms, displays, and controls in the control room.

Technical Specifications Departures:

- LCO 3.3.1.1 and its associated Bases have been modified to remove the Main Steam Tunnel Radiation High functions (automatic scram and MSIV closure).
- LCO 3.3.6.1 and its associated Bases have been modified to remove instrumentation monitoring functions for post-accident monitoring (PAM) of coolant radiation in the main steamline. A continuous PAM for coolant radiation is no longer required based on BTP HICB-10.

Tier 2 Departures:

Changes have been made relative to the reference ABWR Tier 2 DCD Sections 1.2, 1A, 3.4, 5.2, 6.2, 7.1, 7.2, 7.3, 7.5, 7.6 11.5, 15.2, 18F, and 18H to revise or remove information pertaining to main steam line high radiation monitoring and process radiation monitoring system. For example, Section 11.5 is modified to move main steam line tunnel area radiation monitoring information from the section describing "monitoring required for safety and protection" to the section describing "monitoring required for plant operation."

Evaluation Summary

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the design change represents an improvement and therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change represents an improvement and therefore will not present an undue risk to the public health and safety. The design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (iv) is present, since the design change represents an improvement and therefore will result in a benefit to the public health and safety.
- (4) This is "standard" departure that is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization, Additionally, the design change represents an improvement in safety, and does not adversely affect the configuration of the plant or the manner in which the plant is operated.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP T1 2.4-1, Residual Heat Removal System and Spent Fuel Pool Cooling

Description

The reference ABWR DCD has two RHR loops connected to the Fuel Pool Cooling system with normally closed crosstie valves. During refueling outages, a crosstie valve can be opened to allow direct cooling of the fuel pool by circulation of fuel pool water through the RHR heat exchanger and returning it to the fuel pool. In addition, the RHR pumps have the capability to provide fuel pool emergency makeup water by transferring suppression pool water to the fuel pool. This change is to add the capability to allow the choice of a third loop, RHR division A, in the Augmented Fuel Pool Cooling and Fuel Pool Makeup Modes.

This addition of piping and valves will be of the same quality standard, seismic category, and ASME code as the B and C RHR loops components, along with another capability to provide makeup or cooling to the Spent Fuel Pool. Only one RHR cooling loop will be aligned for the Augmented Fuel Pool Cooling or Fuel Pool Makeup Mode at any one time. The additional loop will increase the reliability from a single failure standpoint. This design change was chosen based on improved reliability and performance.

This change provides the ability to supply fuel pool cooling or makeup from any of the three RHR loops in the Augmented Fuel Pool Cooling or Fuel Pool Makeup Modes. This will enhance capabilities and reliability to perform division outages for maintenance and other activities. Division outages will be better able to be coordinated during all plant operational Modes.

Evaluation Summary

During design detailing it was recognized that the added flexibility of having the capability to perform divisional outages in any order was a worthwhile design improvement. As an example, if Division B EDG constitutes a critical path for an outage, in order to maintain a single failure margin, work could not start until core decay heat decreased to the point that RHR Spent Fuel Pooling Assist was no longer required. By having all three divisions capable of supporting Spent Fuel Pool Cooling assist, Divisional Outages (potential critical path) could occur based on workload in the division.

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the design change represents an improvement and therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change represents an improvement and therefore will not present an undue risk to the public health and safety and the design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (iv) is present, since the design change represents an increase in redundancy and therefore will result in a benefit to the public health and safety.

(4) This is "standard" departure that is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization, Additionally, the design change represents an improvement in safety, and does not adversely affect the configuration of the plant or the manner in which the plant is operated.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP T1 2.4-2, Feedwater Line Break Mitigation

Description

This departure reduces challenges to the containment pressure design value following a feedwater line break (FWLB). The corrective design concept is a trip of the condensate pumps following an indication that a Feedwater Line Break (FWLB) in the drywell has occurred. This departure revises ABWR Tier 1, Sections 2.4.3 and 2.15, and the Tier 2 sections, including Technical Specifications, affected by the revision.

The FWLB is the limiting design basis accident for ABWR primary containment vessel (PCV) peak pressure response. This is because blowdown flows from both the reactor pressure vessel (RPV) side and the balance of plant (BOP) feedwater side contribute to the peak pressure response.

The licensing basis for ABWR is no operator actions for 30 minutes for design basis accidents, as discussed in DCD Tier 2, Subsections 6.2.1.1.3.3.1.2 and 6.2.1.1.5.6.1. With the current ABWR design, the only mitigation option available, for limiting the containment pressure, would be operator action using the non-safety trip of the condensate and/or feedwater pumps.

Therefore, high drywell pressure signals that would already be existing in the Leak Detection & Isolation (LDS) logic of the Safety System Logic & Control (SSLC) are used, in conjunction with the added differential pressure signals between the two feedwater lines, to identify a FWLB in containment and to then trip the condensate pumps.

The departure implementation of condensate pump trip improves plant safety by limiting the mass flow to the drywell after the FWLB, thereby ensuring the predicted peak pressure will not exceed the design value. This is described in Departure 6.2-2, Containment Analysis (see Departures from the General Technical Specifications) and Tier 2, Subsection 6.2.1.1.3.3.1. The instrumentation logic to initiate the trip will be an "AND" circuit to reduce the probability of false trips. That is, the logic will require excessive differential pressure between the two-feedwater lines "AND" high drywell pressure to initiate the condensate pump trip. This will reduce the negative impact on plant operation, plant reliability and availability. There would not be an impact on these by adding circuit breakers for the condensate pump supplies, because the logic will only be initiated during FWLB LOCA, the breakers will be normally closed, and additional operator actions will not be required to start the condensate pumps during

other events. The design and location of the safety related breakers are described in Tier 2, Subsection 8.3.1.1.1.

Evaluation Summary

These changes ensure that the containment pressure margins are maintained during the limiting containment pressurization accident. Consequentially, the changes decrease the risk associated with the feedwater line break inside containment. These changes maintain the same level of plant reliability and performance as described in the DCD. The changes will provide a better level of plant protection and a net benefit to the public health and safety. While this involves changes to an SSC, there are no adverse effects on any DCD design function. No procedure was changed.

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the design change represents an improvement and therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change represents an improvement and therefore will not present an undue risk to the public health and safety. The design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (iv) is present, since the design change represents an improvement and better conformance to licensing criteria (no operator action until 30 minutes) and therefore will result in a benefit to the public health and safety.
- (4) This is "standard" departure that is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization. Additionally, the design change represents an improvement in safety, and does not adversely affect the configuration of the plant or the manner in which the plant is operated.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP T1 2.4-3, RCIC Turbine/Pump

Description

The original DCD incorporated a steam turbine driven water pump that has been historically used in the United States with BWR plants. During the design detailing stage of the ABWR development, another design was chosen based on improved reliability, performance, and simplicity. The new design meets or exceeds all safety-related system performance criteria including start time, flow rate, and low steam pressure operation.

The improved design and system simplification is due to (a) monoblock design (pump and turbine within same casing); (b) no shaft seal required; (c) no barometric condenser required; (d) no oil lubrication or oil cooling system required because the system is totally water lubricated; (e) no steam bypass line required for startup; (f) simpler auxiliary subsystems; and (g) no vacuum pump and associated penetration piping or isolation valves required. The monoblock design is of horizontal, two-stage centrifugal water pump driven by a steam turbine contained in a turbine casing integral with the pump casing. The turbine wheel has a single row of blades. The pump impellers, turbine wheel and inducer are mounted on a common shaft, which is supported on two water lubricated journal bearings. The bearings are housed in a central water chamber between the turbine and pump sections and are lubricated by a supply of water taken from the discharge of the first stage impeller and led to the bearings through a water strainer. This design has been installed and is operational in international nuclear and fossil power plants as well as in maritime and military applications.

The Tier 2 impacts follow from design simplification and design classification upgrades. Changes are made to the Tier 2 mechanical, control, and testing sections. The pump is supported on the pedestals of a fabricated steel base plate by feet formed on the pump casing and central water chamber. The monoblock construction of the pump eliminates the need for alignment between the pump and the turbine. The pump and turbine can now be fabricated to ASME Section 3 requirements. The operating speed of the pump is governed by the turbine control subsystem which regulates the quantity of steam to the turbine based on discharge pressure. The main elements of the control gear are the steam stop valve, the throttle valve and the pressure governor. The pump is also provided with electrical and mechanical over speed trip mechanisms which close the steam stop valve when the speed exceeds predetermined levels. Speed measurement is provided by an electronic tachometer.

The containment penetration for the RCIC vacuum pump discharge line has been removed from the design. The fire loading in the RCIC pump room is reduced by the elimination of the lube oil subsystem and 106 liters of Class III B lube oil.

The ITAAC in 2.4.4 (c), (e), and (f) are modified to reflect the fact that the steam supply bypass valve is not used for startup and a 10-second time delay is no longer needed for the injection and steam admission valves. Also, the ITAAC 2.4.4 (i) (2) associated with the torque to the pump is deleted because of the monoblock design.

Technical Specification Table 3.3.1.4-1, ESF Actuation Instrumentation and SSLC Sensor Instrumentation item 12 d is reinstated and "RCIC Turbine exhaust diaphragm pressure" is corrected to "RCIC turbine exhaust pressure" in this item and in the bases.

A correction is made to the RCIC system performance test discussion in Subsection 12.2.12.1.9(3)(f)(iv) to clarify that the test return line discharges to the suppression pool and not the condensate storage tank.

Evaluation Summary

The events and accidents in Chapter 15 were reviewed. The analyses and conclusions presented in Chapter 15 are not affected. No negative impacts on severe accident probability or severity have been identified nor has a new type of severe accident been created. The bases in the generic Technical Specifications in Chapter 16 will be met or exceeded. This departure results in no negative impact on safety, plant operation or cost. Plant availability and reliability will improve due reduction of active and passive components. Improved turbine reliability will have a positive effect on plant safety as well as transient and startup characteristics. Changes to the RCIC ITAAC are simplications due to fewer components yet still allow demonstration of performance critical to safety.

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the design change represents an improvement and therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change represents an improvement and therefore will not present an undue risk to the public health and safety. The design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (iv) is present, since the design change represents an improvement and therefore will result in a benefit to the public health and safety.

(4) This is "standard" departure that is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization. Additionally, the design change represents an improvement in safety, and does not adversely affect the configuration of the plant or the manner in which the plant is operated.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP T1 2.4-4 RHR, HPCF and RCIC Turbine/Pump NPSH

Description

The original DCD provided a value of 50% for debris blockage of the suction strainers for purposes of assuring adequate net positive suction head (NPSH) margin for the residual heat removal (RHR) system, the high pressure core flooder (HPCF) system, and the reactor core isolation cooling (RCIC) system. This value was based on Regulatory Guide 1.82 Revision 0. The design basis for the suction strainers for STP 3&4 has been updated to RG 1.82 Rev. 3, which does not use the 50% blockage criterion, but rather provides guidance for mechanistically determining debris head loss across pump suction strainers. The associated ITAAC for the debris blockage of the suction strainers for determination of NPSH margin for the RHR system (T1 Table 2.4.1), HPCF system (T1 Table 2.4.2), and RCIC system (T1 Table 2.4.4) are revised by this departure to be consistent with this updated design basis for the STP 3 & 4 suction strainers.

This change makes the ITAAC consistent with the STP 3&4 suction strainer design and the applicable regulatory guidance. This approach is an improvement in that it uses a mechanistic evaluation for debris blockage and not an assumed value, thus providing a better representation of the debris blockage for purposes of the required NPSH margin determination.

This departure also revises Tier 2 text in 5.4 and 14.2 and figure references in 5.4 and 6.3 to the 50% blockage criterion and replaces them with reference to an analytically derived blockage based on RG 1.82 Rev. 3. This departure also revises text in Sections 6.2 and 6.3 and Appendix 6C.

Evaluation Summary

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the design change represents an improvement and therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change represents an improvement and therefore will not present an undue risk to the public health and safety and the design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (iv) is present, since the design change represents an improvement and therefore will result in a benefit to the public health and safety.
- (4) This is "standard" departure that is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization. Additionally, the design change represents an improvement in safety, and does not adversely affect the configuration of the plant or the manner in which the plant is operated.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STP DEP T1 2.5-1, Elimination of New Fuel Storage Racks From the New Fuel Vault

This departure eliminates the new fuel storage racks from the New Fuel Vault (NFV). This site specific change will result in there being only a single design for fuel storage racks, all of which are located in the spent fuel pool (SFP). These racks will store both new and spent fuel assemblies.

The reference ABWR DCD provides for new fuel storage racks in the NFV so that new fuel can be stored in the NFV after receipt inspection and subsequently moved to the SFP before being loaded in the Reactor Pressure Vessel (RPV). New fuel also could be moved directly to the SFP after receipt inspection. At STP 3&4, new fuel will always be moved directly to the SFP after receipt inspection. This reduces the number of times fuel must be handled before being loaded in the RPV. By eliminating interim storage in the NFV, the number of fuel handling evolutions is reduced, thereby reducing risk associated with fuel handling. Eliminating the new fuel racks from the design of STP 3&4 avoids the expense of design, procurement and licensing of a system that will not be used.

- <u>Tier 1 Subsection 2.5.6, Fuel Storage Facility, was modified to remove the new</u> <u>fuel storage rack descriptions.</u>
- <u>Tier 1 Table 2.5.6, Fuel Storage Facility, was modified to remove the new fuel</u> storage rack references.

- <u>Tier 2 Subsection 1.2.2.6.5 was modified to remove the new fuel storage rack</u> references
- <u>Tier 2 Subsection 1.2.2.6.6 was modified to remove the new fuel storage rack</u> references.
- <u>Tier 2 Subsection 3.1.2.6.2.2.1 was modified to remove the new fuel storage</u> rack references.
- <u>Tier 2 Subsection 3.1.2.6.3.2 was modified to remove the new fuel storage rack</u> references.
- <u>Tier 2 Section 9.1 was modified to remove the new fuel storage rack</u> references.
- <u>Tier 2 Subsection 9.1.1 was modified to remove the new fuel storage rack</u> references. Descriptions for storage of new fuel were referenced to the Spent <u>Fuel Storage descriptions in Section 9.1.2.</u>
- <u>Tier 2 Subsection 9.1.4 was modified to remove the new fuel storage rack</u> references and load paths modified to remove the new fuel storage racks as a <u>destination</u>.
- <u>Tier 2 Subsection 9.1.6.1 (COL License Information Items 9.1) was revised to</u> reference COL License Information Item 9.3 based on elimination of the New <u>Fuel Storage Racks.</u>
- <u>Tier 2 Subsection 9.1.6.2 (COL License Information Item 9.2) was revised to</u> reference COL License Information Item 9.4 based on elimination of the New <u>Fuel Storage Racks.</u>
- Tier 2 Table 9.1-8 was revised to remove reference to the new fuel vault.
- <u>Tier 2 Figure 9.1-14 was modified to remove reference to New Fuel Storage</u> <u>Racks in the New Fuel Vault.</u>
- Tier 2 Section 12.3, was modified to add reference to STP DEP T1 2.5-1.
- <u>Tier 2 Subsection 12.3.4.3 was modified to remove the new fuel storage rack</u> references.
- <u>Tier 2 Chapter 16, Technical Specifications Design Features Section 4.3, Fuel</u> <u>Storage, was modified to remove the new fuel storage rack references and to</u> <u>include a fuel storage rack center to center distance requirement in the spent</u> <u>fuel storage rack specification, 4.3.1.1</u>.

Evaluation Summary

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52. which requires that (1) the design will not result in a significant decrease in the level of safety otherwise provided by the design: (2) the exemption is authorized by law. will not present an undue risk to the public health and safety, and is consistent with the common defense and security; (3) special circumstances are present as specified in 10 CFR 50.12(a) (2); and (4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these criteria are satisfied.

- (1) <u>The change will not result in a decrease in the level of safety otherwise</u> provided by the design since new fuel will be stored in the spent fuel pool directly after receipt inspection. As described above, elimination of the option of storing new fuel in the NFV reduces the potential number of fuel handling evolutions and their associated risk, thereby increasing the level of safety.
- (2) <u>The change is not inconsistent with the Atomic Energy Act or any other</u> <u>statute and therefore is authorized by law. As stated above, the change will</u> <u>not present an undue risk to the public health and safety since reducing the</u> <u>potential number of fuel handling evolutions increases the level of safety. This</u> <u>change does not relate to security and does not otherwise pertain to the</u> <u>common defense and security.</u>
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (ii) is present since storage of new fuel in the NFV is not necessary to achieve the underlying purpose of the design certification rule (which is to store new fuel safely), and special circumstance (iv) is present since thechange represents an increase in the level of safety as discussed above and: therefore, provides a benefit to the public health and safety.
- (4) The special circumstances outweigh any decrease in safety that may result from the reduction in standardization. Specifically, since the change only eliminates one of the options for storage of new fuel, the reduction in standardization would not result in a significant decrease in safety. As described above, reducing the potential number of fuel handling evolutions represents an improvement in safety and does not adversely affect the configuration of the plant or the manner in which the plant is operated.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, NINA requests that the NRC approve this exemption.

STD DEP T1 2.10-1, Addition of Condensate Booster Pumps

Description

DCD Tier 1 Figure 2.10.2a shows the basic system configuration of the Condensate and Feedwater System (CFS) with a single symbol for condensate pumps. This departure adds a second symbol to indicate the addition of condensate booster pumps in series. The CFS system is classified as non-safety-related and does not perform a safety function. The location/arrangement of the condensate pumps and condensate booster pumps, between the condenser hotwell and the low pressure heaters, does not adversely impact the ability of the CFS to perform the function described in the Tier 1 Design Description. As part of this departure, DCD Tier 1 Figure 2.10.9, Turbine Gland Seal System, is revised to correct an obvious typographical error.

Evaluation Summary

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security: 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) <u>As discussed above, the change recognizes the use of condensate pumps</u> and condensate booster pumps. The CFS does not perform a safety function and therefore the change will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the change involves a system with no safety function and therefore will not present an undue risk to the public health and safety and the design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (ii) is present, since the design change does not affect safety. Accordingly, it is not necessary to preserve the configuration of the CFS as presented in Tier 1 in order to achieve the purpose of the ABWR design certification rule.
- (4) <u>This is a "standard" departure that is intended to be applicable to COL</u> <u>applicants that reference the ABWR DCD, thus the departure will not affect</u> <u>standardization. Additionally, the change does not adversely affect the</u> <u>configuration of the plant or adversely affect the manner in which the plant is</u> <u>operated.</u>

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52.

STD DEP T1 2.12-1, Electrical Breaker/Fuse Coordination and Low Voltage Testing

Description

The reference ABWR DCD in Tier 1 states electrical power distribution interrupting devices (circuit breakers and fuses) are coordinated such that the interrupting device closest to the fault opens first. The description of the interruption device coordination has been modified to include the acceptable industry practice with standards and codes (e.g., IEEE 141, IEEE 242, etc.). Including this provides detailed guidance for electrical system design expectations. Since protective device coordination may overlap, and the discrete coordination may not be possible, the expectation has been changed to meet the requirement to the maximum extent possible.

The reference ABWR DCD ITAAC also requires that pre-operational/start-up testing of the as-built Class 1E Electrical Power Distribution System will be conducted by operating connected Class 1E loads at their analyzed minimum voltage. DCD Table 2.12.1 (Electric Power Distribution System ITAAC) currently states that tests of the as-built Class 1E Electric Power Distribution System will be conducted by operating connected Class 1E loads at their analyzed minimum voltage. Testing in this manner for each connected Class 1E load is not practical to connect and disconnect each load, one at time to facilitate testing.

For DC loads, ITAAC require testing by operating connected Class 1E loads at both the minimum and maximum battery voltages. Tier 1 DCD Table 2.12.12 (Direct Current Power Supply ITAAC) currently states that tests of the as-built Class 1E DC system will be conducted by operating connected Class 1E loads at less than or equal to the minimum allowable battery voltage and at greater than or equal to the maximum battery charging voltage. It is not practical to perform testing in this manner. This is modified to allow performance type tests at the manufacturer's shop for the operating voltage range of Class 1E AC and DC electrical equipment prior to shipment to the site. In addition, system preoperational tests will be conducted on the as-built Class 1E AC and DC systems and test voltage results will be compare against system voltage analysis.

Evaluation Summary

For electrical loads powered at or below 120 VAC or 125 VDC, the requirement that the device closest to the fault open first is not always met, since many small loads have internal fuses/circuit breakers and there is often a minimum device size available, or the minimum circuit breaker/fuse size recommended by the vendor. In the case of high fault current, the upstream protective device may trip before the protective device connected to the small load, or both may trip at the same time. In such cases, discrete coordination may not be possible.

The extensive in-situ testing in the DCD is not necessary and is duplicated, since the voltage tests are performed by the manufacturers as part of their normal performance

and functional tests prior to shipment. In addition, testing is performed at the jobsite on electrical power distribution equipment during construction after its installation.

The events and accidents in Chapter 15 were reviewed. The analyses and conclusions presented in Chapter 15 are not affected as the alternate methods of breaker coordination and low voltage testing are judged equivalent to those in the DCD. No negative impacts on severe accident probability or severity have been identified nor has a new type of severe accident been created. The bases in the generic Technical Specifications in Chapter 16 will be met or exceeded.

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the change is intended to accomplish the same purpose as the original DCD design and therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the DCD change accomplishes the same purpose and therefore will not present an undue risk to the public health and safety. and the design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (ii) is present, since the change accomplishes the same underlying purpose as the original DCD design.
- (4) This change is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

References

- (5) IEEE 141-1993, Recommended Practice for Electric Power Distribution for Industrial Plants (IEEE Red Book)
- (6) IEEE 242 -2001, Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (IEEE Buff Book)

STD DEP T1 2.12-2, I&C Power Divisions

Description

A fourth division of safety related power has been added to the Class 1E Instrument and Control Power Supply System.

The Instrument and Control Power Supply System as described in the DCD Tier 1 provided power to three mechanical safety-related divisions (I, II and III) and not to safety-related Distributed Control and Information System (DCIS) Division IV. This departure adds a fourth regulating transformer and associated distribution panels to supply Instrument and Control Power to Division IV.

The DCIS cabinets and chassis, ECCS Digital Control and Information System cabinets and chassis, in each of the four divisions, use redundant power supplies and feeds for increased reliability and availability to allow self-diagnostics and to operate during power failures. The existing design provides three divisions such that the two feeds are uninterruptible vital AC power (uninterruptible does not mean single failure proof) and I&C power (interruptible but diesel-backed). The second I&C power feed is available to the Division IV DCIS cabinets and chassis. Most power problems can be addressed on-line and all such problems will be "non-critical" faults since no functionality will be lost.

Evaluation Summary

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the design change represents an improvement and therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change represents an improvement and therefore will not present an undue risk to the public health and safety and the design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (iv) is present, since the design change represents an improvement and therefore will result in a benefit to the public health and safety.

(4) This is "standard" departure that is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization. Additionally, the design change represents an improvement in safety, and does not adversely affect the configuration of the plant or the manner in which the plant is operated.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP T1 2.14-1, Hydrogen Recombiner Requirements Elimination

Description

10 CFR 50.44, "Combustible gas control for nuclear power reactors," was amended after the issuance of the design certification for the ABWR. The amended 10 CFR 50.44 eliminates the requirements for hydrogen control systems to mitigate a design-basis LOCA hydrogen release. As a result of this change, the use of the containment hydrogen and oxygen monitoring instrumentation in the mitigation of a design-basis LOCA is also eliminated. This change was implemented using the guidance contained within TSTF-447-A, Revision 1, "Elimination of Hydrogen Recombiners and Change to Hydrogen and Oxygen Monitors."

This departure reflects the elimination of the requirement to maintain equipment needed to mitigate a design-basis LOCA hydrogen release. This departure includes the following:

- (1) The ABWR Flammability Control System (FCS), which consists of two redundant hydrogen recombiners, is no longer required in the response to a design basis LOCA and is eliminated. In conjunction with this change, LCO 3.6.3.1, "Primary Containment Hydrogen Recombiners," which established the requirements for the FCS is deleted. LCO 3.3.6.2, "Remote Shutdown System," is modified to delete Function 17, which required remote shutdown system controls for cooling water to the FCS. Supports systems associated with the FCS are modified or deleted, as necessary, to support removal of the FCS.
- (2) The containment hydrogen and oxygen monitoring functions of the Containment Monitoring System are no longer required to function for the mitigation of a design basis LOCA. Consequently, the containment hydrogen and oxygen monitoring functions are no longer classified as Category 1, as defined in Regulatory Guide (RG) 1.97, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," Revision 4. The RG 1.97 classification of containment hydrogen and oxygen monitoring functions are changed to Category 3 for hydrogen monitoring, and Category 2 for oxygen monitoring, allowing these instruments to be re-classified as nonsafety-related. In conjunction with this change, LCO 3.3.6.1, "Post Accident Monitoring (PAM) Instrumentation," is modified to delete Functions 11 and 12, requirements for

the H_2 and O_2 analyzers in the containment drywell and wetwell. This change to LCO 3.3.6.1 is acceptable because only Category 1 PAM instruments meet 10 CFR 50.36 criteria for inclusion in technical specifications.

With the adoption of these changes, the design and other requirements for control of combustible gases satisfy the regulations in 10 CFR 50.44(c) as amended. The design and requirements for control of combustible gases are consistent with the guidance provided in Regulatory Guide 1.7, Control of Combustible Gas Concentrations in Containment, Revision 3, dated March 2007, as described below.

(1) 10 CFR 50.44(c)(1), Mixed atmosphere, requires that all containments have a capability for ensuring a mixed atmosphere during design-basis and significant beyond design-basis accidents. Section C.3 of RG 1.7 specifies that this capability may be provided by an active, passive, or combination system. Active systems may consist of a fan, a fan cooler, or containment spray.

The ABWR satisfies this requirement by a combination of active and passive capability. As indicated in the reference ABWR DCD, Section 6.2.5.1(6), the drywell and the suppression chamber will be mixed uniformly after the design basis LOCA due to natural convection and molecular diffusion. Mixing will be further promoted by operation of the containment sprays. The containment spray system consists of two RHR spray loops, each of which includes both wetwell and drywell sprays. LCO 3.6.2.4, Residual Heat Removal (RHR) Containment Spray," ensures that the active components for containment mixing are reliable, redundant, single-failure-proof, able to be tested and inspected, and remain operable with a loss of onsite or offsite power as recommended in Section C.3 of RG 1.7.

(2) 10 CFR 50.44(c)(2), Combustible gas control, requires that all containments have an inerted atmosphere or must limit hydrogen concentrations in containment during and following an accident.

The ABWR satisfies this requirement with the Atmospheric Control System (ACS), which is provided to establish and maintain an inert atmosphere within the primary containment. LCO 3.6.3.2, "Primary Containment Oxygen Concentration," ensures that the primary containment is inerted whenever reactor power is greater than 15% of rated thermal power.

(3) 10 CFR 50.44(c)(3), Equipment Survivability, requires that containments that do not rely upon an inerted atmosphere to control combustible gases must be able to establish and maintain safe shutdown and containment structural integrity with systems and components capable of performing their functions during and after exposure to the environmental conditions created by the burning of hydrogen.

This requirement is not applicable to the ABWR because the ABWR uses an inerted atmosphere to control combustible gases in the primary containment.

(4) 10 CFR 50.44(c)(4), Monitoring, requires that equipment be provided for monitoring oxygen and hydrogen in the containment. This oxygen and hydrogen monitoring equipment must be must be functional, reliable, and capable of continuously measuring the concentration of oxygen and hydrogen in the containment atmosphere following a significant beyond design-basis accident for combustible gas control and accident management, including emergency planning.

The ABWR satisfies this requirement for monitoring oxygen and hydrogen in the primary containment as described in item (k) of the reference ABWR DCD, Section 7.5.2.1, "Post Accident Monitoring System," and Table 7.5-2, "ABWR PAM Variable List," as modified by this departure. Specifically, the containment hydrogen and oxygen monitoring functions are no longer required to function for the mitigation of a design basis LOCA and are no longer classified as Category 1, as defined in RG 1.97. The oxygen and hydrogen monitors for the containment drywell and wetwell satisfy design requirements consistent with their RG 1.97 classification as Type C, Category 2 (oxygen) and Category 3 (hydrogen) instruments.

(5) 10 CFR 50.44(c)(5), Structural analysis, requires that an applicant perform an analysis that demonstrates containment structural integrity. This demonstration must use an analytical technique that is accepted by the NRC. Section C.5 of RG 1.7 specifies that that an acceptable method for demonstrating that these requirements are met for steel containments is conformance with ASME Boiler and Pressure Vessel Code (edition and addenda as incorporated by reference in 10 CFR 50.55a(b)(1)), Section III, Division 1, Subsubarticle NE-3220, Service Level C Limits, considering pressure and dead load alone (evaluation of instability is not required). Section C.5 of RG 1.7 further specifies that, as a minimum, the specific code requirements set forth should be met for a combination of dead load and an internal pressure of 45 psig.

The ABWR satisfies this requirement as indicated in ABWR DCD, Section 3.8.2.5, "Structural Acceptance Criteria," Section 19A.2.45, Containment Integrity [Item (3)(v)], and Section 19E.2.3.2, "100% Metal-Water Reaction." These sections provide a detailed description of how the ABWR containment satisfies the requirements of 10 CFR 50.44(c)(5) using methods determined acceptable in Section C.5 of RG 1.7.

Evaluation Summary

This evaluation covered Tier 1 and Tier 2 departures .

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that: 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and, 4) the special circumstances outweigh any decrease in safety

that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- This design change incorporates changes to regulations that occurred after the issuance of the design certification for the ABWR. After incorporation of these design changes, the ABWR design features and requirements for control of combustible gases will satisfy the regulations in 10 CFR 50.44(c) (Ref. 1), consistent with the guidance provided in Regulatory Guide 1.7 (Ref. 2). Therefore, this change will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change does not present an undue risk to the public health and safety. The design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (ii), and special circumstance (vi) are invoked as evidenced by the revision to 10 CFR 50.44 as the underlying purpose is still served and the revision of regulations is a material change of circumstances.
- (4) This is "standard" departure that is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption

STD DEP T1 2.15-1, Re-classification of Radwaste Building Substructure from Seismic Category I to Non-Seismic

Description

The reference ABWR DCD Section 2.15.13 states that the exterior walls of the RW/B below grade and the basemat are classified as Seismic Category I. This departure revises the seismic category of the RW/B substructure (including the Radwaste Tunnels) from Seismic Category I to non-seismic. The RW/B (including the tunnels) does not house any safety related systems or components. Regulatory Guide 1.29, Seismic Design Classification, provides a list of SSCs which have to be classified as Seismic Category I. Item p on Page 4 of the Reg. Guide says "systems, other than radioactive waste management systems, not covered by ----", shall be Seismic Category I. The phrase 'other than radioactive waste management systems' excludes these systems from the list of Seismic Category I SSCs. For the radioactive waste management system, the Reg. Guide 1.29 refers to the Reg. Guide 1.143 in Note 5. The detailed guidance for the design of the radwaste processing systems, structures,

and components is provided in Regulatory Guide 1.143. This departure commits to follow the guidance of Regulatory Guide 1.143.

Also, NUREG-1503, Section 3.8.4 states that Radwaste Building is not Seismic Category I. The NRC included this design in their review because GE elected to design the RW/B substructure as Seismic Category I.

Based on this departure, the COLA is revised to delete the description and results of RW/B (including the Radwaste Tunnels) analysis and design from those sections of the COLA which included such description because the RW/B substructure was classified as Seismic Category I structure. Examples of these deleted sections include Sections 2.5S.4, 3.7, 3.8, and Appendix 3H.3. Also, revisions have been made throughout the COLA to appropriately change the seismic classification of the RW/B (Part 7, Table 5.0-1).

Evaluation Summary

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- As discussed above, the design change conforms to current regulations and therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change does not present an undue risk to the public health and safety. The design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (ii), and special circumstance (vi) are invoked because the classification of the Radwaste Building in the reference DCD is unduly conservative and is not necessary to satisfy applicable NRC regulations or guidance.
- (4) This is "standard" departure that is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP T1 2.15-2 RBSRDG HVAC

Description

ABWR DCD Tier 1 Subsection 2.15.5, "Heating, Ventilating and Air Conditioning Systems" describes the operation and setting of the R/B Safety-Related DG HVAC System to control temperature in the diesel generator (DG) engine rooms during DG operation, and states the maximum temperature limit in the room is 50°C. However, based on applying the Ambient Design Temperature for the DG engine rooms (Tier 1 Section 5 specifies a maximum of 46.1°C) and the DG HVAC Flow Rates (Tier 2 Table 9.4.5.8.2 specifies 160,000 m3/h) as defined in other ABWR DCD sections cited, the DG engine room temperature can exceed this 50°C limit. This departure revises the DCD Tier 1 Subsection 2.15.5 DG engine room maximum temperature limit during DG operation from 50°C to 60°C.

ABWR DCD Tier 2 Subsections 9.4.5.4.1.2 and 9.4.5.5.5 describe the R/B Safety-Related Electrical Equipment HVAC System and Diesel Generator HVAC System design bases, respectively, including the maximum design temperature limit of the DG Engine rooms. This change also revises Subsections 9.4.5.4.1.2 and 9.4.5.5.5 to state that the indoor temperature in the diesel generator (DG) engine rooms during DG operation is maintained below 60°C. FSAR Tables 3I-4 and 3I-14 are revised to state that the diesel generator (DG) engine rooms maximum temperature is 60°C.

Evaluation Summary

The proposed change was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, this proposed change consists of increasing the maximum temperature limit in the DG engine rooms during DG operation. It does not change the function or intent of the R/B Safety-Related DG HVAC System or any safety related equipment in the DG engine rooms and therefore does not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) This proposed change is consistent with the Atomic Energy Act and other statutes and therefore is authorized by law. As discussed above, this proposed change does not present an undue risk to the public health and safety. This proposed change does not relate to security and does not otherwise pertain to the common defense and security.

Special circumstances are present as specified in items (ii) and (iv) of 10 CFR (3) 50.12 (a) (2). Specifically, special circumstance (ii) states, "Application of the regulation in the particular circumstances would not serve the underlying purpose of the rule or is not necessary to achieve the underlying purpose of the rule." In this case, the rule is that when the DG is operating, the R/B Safety-Related DG HVAC System and the R/B Safety-Related Electrical Equipment HVAC System maintain the temperature below a specified limit. The DCD Tier 1 Subsection 2.15.5 specifies that the maximum temperature be 50 °C. Because of the Ambient Design Temperature for the DG engine rooms (46.1°C) and the DG HVAC Flow Rates (160.000 m3/h) defined elsewhere in the DCD, the temperature in the DG room can exceed 50°C during DG operation. Therefore, the maximum temperature limit in the DG engine rooms during DG operation requires revision in order to be consistent with circumstances in the DG engine rooms. Application of the regulation as stated in the Tier 1 Subsection 2.15.5 would therefore not serve the underlying purpose of the rule.

Special circumstance (iv) is also applicable, since this departure changes the design temperature of the DG room to reflect a higher temperature environment. As such, the safety related equipment in this room will be qualified for the higher temperature and therefore will result in a benefit to public health and safety.

(4) This is a "standard" departure that is intended to be applicable to all COL applicants that reference the ABWR DCD. This departure does not adversely affect safety, the configuration of the plant, or the manner in which the plant is operated.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP T1 3.4-1, Safety-Related I&C Architecture

Description

This departure can be characterized into five primary changes.

(1) Elimination of obsolete data communication technology

The departure eliminates references to the Essential Multiplexer System (EMS) and the Non-Essential Multiplexer System (NEMS) originally envisioned in the ABWR architecture and replaces them with separate and independent system level data communication capabilities. The original concept was based on a common EMS, which could be used by multiple safety-related, digitally-based protection systems. This departure defines separate dedicated data communication functions for each safety-related digital platform, including separate and independent data communication

functions for each division within a system. Appendix 7A has been updated to reflect the separate communication capabilities.

This departure meets all the applicable regulatory requirements including Regulatory Guides, industry standards and NRC Branch Technical Positions, as shown in Part 2, Tier 2, Table 1.9S-1 and Table 1.9S-1a. Separation of a centralized communication system into separate system communication functions provides the following benefits:

- Allows the use of different (diverse) platforms for the Reactor Trip and Isolation System (RTIS) and the Engineered Safety Features Logic and Control System (ELCS). This feature allows the overall Safety System Logic and Control (SSLC) to be more resistant to common mode failure.
- Provides for a more robust communication design since a credible single failure will cause less degradation to independent communication functions than the single failure would cause in the centralized, common essential multiplexing system defined in the DCD.
- The new design is not subject to a single common cause failure disabling both the RTIS and ELCS. In the DCD design, common cause failure within the EMS would disable both RTIS and ELCS.
- Provides the flexibility to utilize communication technologies that have benefits in the areas of simplicity of function and improved independence, such as the use of "point to point" unidirectional data links.

The reference ABWR DCD identified use of the data communication standard ANSI-X3 series, Fiber Distributed Data Interface (FDDI), as the communication protocol for the EMS. FDDI is an obsolete technology and no longer appropriate for use.

The RTIS uses direct hardwired inputs to the system instead of the concept of using remote multiplexers as described in the certified ABWR DCD. This significantly reduces the complexity of data communication requirements for this system, while continuing to meet ABWR DCD functional requirements.

The ELCS continues to use remote acquisition of signal information and remote output of command information to controlled components. The ELCS will utilize serial, unidirectional, fiber optically-isolated data links instead of the FDDI protocol. The ELCS vendor's platform, including the use of unidirectional, serial data links, has been generically reviewed and approved by the NRC, as described in Topical Report WCAP-16097-P-A, Revision 0, "Common Qualified Platform Topical Report," and has operating experience in U.S. nuclear power plant safety system applications. This demonstrates that this method of communication meets the regulatory and industry standard requirements applicable to safety data communication.

The elimination of the multiplexer concept required all references to the Essential Multiplexing System (EMS) and Non-Essential Multiplexing System (NEMS) and their primary components to be replaced with a generic data communication reference. The terms EMS and NEMS were eliminated along with Remote Multiplexer Unit (RMU) and Control Room Multiplexer Unit (CMU).

The communication functions are primarily described in FSAR Sections T1 2.2, T1 2.7, T1 3.4, T2 7.2, T2 7.3 and T2 7.9S.

(2) Elimination of unnecessary inadvertent actuation prevention logic and equipment

The reference ABWR DCD described the design of the Engineered Safety Features (ESF) actuation outputs as being fully redundant within each division of the ESF digital controls systems. This design was to minimize the potential for false actuation of ESF components. In the design, each output was processed through two redundant sets of hardware and a final two-out-of-two (2/2) logic decision was to be performed on a component level. Both sets of outputs had to demand actuation before a component would actually respond. As part of the detailed design of the ABWR ESF digital controls, it was determined that only selected ESF components required the redundant actuation prevention logic.

The redundant actuation logic is only implemented for systems where false actuation of a single component can initiate false protective actions during normal plant operation. For components such as the ELCS Automatic Depressurization System (ADS), a single valve opening will depressurize the reactor. For such components, a two-out-of-two vote is required to actuate each valve, with two different programmable logic controllers and their separate input and output modules within a single division.

As a result, the redundant actuation logic is only implemented for components that may impact plant safety or operation if actuated during normal plant operation such as the ECCS functions of the ELCS as described in FSAR Section T1 3.4.

These changes are primarily described in FSAR Sections T1 3.4, T2 7.1, T2 7.3 and T2 16. Technical Specification Bases Figures B3.3.1.4-1 thru 5 also show the elimination of the unnecessary inadvertent actuation logic. The logic channel bypasses are retained as part of the design but have been removed from these figures because they are only intended to show the boundaries of the Technical Specification required surveillances and the bypasses are outside of those boundaries.

(3) Clarifications of digital controls nomenclature and systems

The reference ABWR DCD defined many functional design requirements in terms typically reserved for hardware. Examples include the terms "module,"

"unit," and "system." The terminology was corrected to refer to the requirement as a "function" to eliminate the confusion associated with purely functional requirements and not physical requirements defined in the DCD. Examples include:

- Digital Trip Module (DTM) to Digital Trip Function (DTF)
- Trip Logic Unit (TLU) to Trip Logic Function (TLF)
- Safety System Logic Unit (SLU) to Safety System Logic Function (SLF)
- Process Computer System (PCS) to Plant Computer Function (PCF)
- Essential Multiplexer System (EMS) to Essential Communication Function (ECF)
- Bypass Unit (BPU) to Bypass Interlock Function

In addition, to better define the functional design and implementation of the digital controls platforms, specific I&C system names were assigned to the ESF digital controls systems and the Reactor Protection System (RPS). The digital controls responsible for the ESF systems are designated as the ESF Logic & Control System (ELCS). The RPS functions are implemented in two separate I&C systems: the Reactor Trip & Isolation System (RTIS) and the Neutron Monitoring System (NMS). The term Safety System Logic & Control (SSLC) was clarified as a general term used to cover all of the logic and controls associated with safety-related control systems.

The nomenclature changes required updating several sections of the original DCD to be updated for the STP 3&4 COLA to make all sections consistent.

(4) Final selection of platforms changed the implementation architecture

This departure revises the implementation architecture to use configurable logic devices for NMS and RTIS in lieu of microprocessors. This platform change was necessary to incorporate available platforms that meet both the regulatory and technical requirements. These design updates are primarily described in Tier 2 Section 7.2.

(5) Testing and surveillance changes for SSLC

This departure revises the testing and surveillance descriptions for SSLC (NMS, RTIS, ELCS) consistent with the characteristics of the design platforms selected. These changes are primarily described in Tier 2 Section 7.1.

Additionally, the Chapter 16 Technical Specifications Section 3.0 is modified to reflect the above changes to the safety-related I & C architecture.

The item (3) change from hardware based to functional design requirements (i.e., PCS to PCF) resulted in an unnecessary duplication (two sets) of non-safety Video Display Units (VDUs). Therefore, a set of non-safety VDUs is deleted in FSAR Section 18.4.

Evaluation Summary

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the design change represents another method for accomplishing the same purpose and therefore will not result in a significant decrease in the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change represents an improvement and therefore will not present an undue risk to the public health and safety. The design change does not relate to security and does not otherwise pertain to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, special circumstance (ii) is present, since the design change represents another method of accomplishing the underlying purpose of the DCD.
- (4) This "standard" departure is intended to be applicable to COL applicants that reference the ABWR DCD. Therefore this departure will not result in any loss of standardization.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption and associated Technical Specification Section 3.0 changes.

STP DEP T1 5.0-1, Site Parameters

Description

The site parameters in the reference ABWR DCD were selected to bound most potential US sites. However, the STP 3 & 4 site, when site specific data is analyzed using current methodologies and standards, represents four specific departures from the generic envelope.

The site design basis flood level is increased from that specified in the DCD. The certified design site parameter for site flooding is changed from 30.5 cm below grade

to 182.9 cm above grade (grade being 1036.3 cm above mean sea level (MSL)) in order to handle a main cooling reservoir failure as a design basis event at STP.

The main cooling reservoir at the South Texas site is a non-seismic category 1 dam; hence, its failure must be assumed in the worst possible location. This results in the site design basis flood.

STP 3 & 4 safety-related SSCs are designed for or protected from this flooding event by watertight doors to prevent the entry of water into the Reactor Buildings and Control Buildings in case of a flood. Exterior doors located below the maximum flood elevation on the 12300 floor of the Reactor Building and Control Building are revised to be watertight doors. The Ultimate Heat Sink storage basin and the RSW pump houses are water-tight below the flood level.

The maximum design precipitation rate for rainfall at the STP site is calculated to increase from 49.3 cm/hr to 50.3 cm/hr based on site meteorology studies. This value is one factor in determining the structural loading conditions for roof design. ABWR Seismic Category 1 structures have roofs without parapets or parapets with scuppers to supplement roof drains so that large inventories of precipitation cannot accumulate. Therefore, the increase in maximum rainfall rate does not result in a substantial increase in the roof design loading, and therefore does not affect the design of these structures.

The humidity at the STP 3 & 4 site, as represented by wet bulb temperature, is increased from that specified in the DCD.

Wet Bulb 1% Exceedance Values	DCD	STP 3 & 4
Maximum Coincident	25°C	26.3°C
Maximum Non-coincident	26.7°C	27.3°C
Wet Bulb 0% Exceedance Values (historical limit)		
Maximum Non-coincident	27.2°C	31.3°C

The maximum dry-bulb temperature in combination with coincident wet-bulb temperature provides the state point (enthalpy of the air) that is used as design input for HVAC system design to determine cooling loads. The 1% exceedance STP site-specific state point value is not bounded by the 1% exceedance ABWR state point value.

The Control Building HVAC, Reactor Building Secondary Containment HVAC, and Reactor Building Safety Related Electrical Equipment HVAC systems are designed for an outdoor summer maximum temperature of 46°C. This temperature corresponds to the ABWR 0% exceedance value. The ABWR 0% exceedance state point bounds the STP site-specific 0% exceedance state point and the 1% exceedance state point. The reference ABWR DCD cooling loads calculated based on 0% exceedance values for Control Building HVAC, Reactor Building Secondary Containment HVAC, and Reactor

Building Safety Related Electrical Equipment HVAC systems are bounding. Therefore, the change in 1% exceedance coincident wet bulb temperature has no adverse impact on these HVAC systems.

The Radwaste Building HVAC systems have been redesigned using STP site-specific ambient temperatures and the revised HVAC design is compliant with STP 3 & 4 Characteristics.

The maximum non-coincident wet-bulb temperature is used as input for short-term performance of cooling towers and evaporative coolers. In the case of STP 3 & 4, this value is an hourly data point. The site-specific maximum non-coincident wet-bulb temperatures on an hourly basis are not bounded by the reference ABWR site parameters. However, the calculated 30-day and 24-hour consecutive maximum non-coincident wet-bulb temperatures have been determined to be less than the reference ABWR DCD non-coincident hourly value. The UHS cooling tower long-term cumulative evaporation for the postulated LOCA case has been evaluated using the STP site-specific worst-case 30 consecutive day weather data as discussed in Tier 2 FSAR Section 9.2.5.5.1. The UHS basin water temperature has been evaluated using the worst one-day (24 hour) weather data. Thus, the 0% exceedance and 1% exceedance values for non coincident wet-bulb temperatures not being bounded have no adverse impact on the STP 3 & 4 UHS analysis.

As documented in Subsections 2.5S.4.4 and 2.5S.4.7, the shear wave velocity at STP 3 & 4 site varies both horizontally in a soil stratum and vertically with elevation, and is lower than the 1,000 ft/sec minimum stated in the DCD. A site specific soil-structure interaction (SSI) analysis has been performed using the measured values of shear wave velocity, with appropriate variation to represent the variability at the site, and site specific SSE, to demonstrate that the results of the site-specific SSI are bounded by the standard plant results included in the DCD. This SSI analysis is described in Appendix 3A.

The liquefaction evaluation documented in Section 2.5S.4.8 uses the measured shear wave velocities, therefore, the results are applicable to STP 3&4 site. At-rest lateral earth pressure in non-yielding walls of structures with deep foundations such as the Reactor and Control Buildings will be determined using the method described in Reference 2.5S.4-62. In this method, the at-rest seismic lateral earth pressure computation will utilize site-specific shear wave velocity. The impact of site-specific shear wave velocity on the design of exterior walls of these structures is expected to be insignificant because their designs are controlled by the combination of requirements for in-plane and out-of-plane loads. The at-rest seismic lateral pressure only affects the out-of-plane load. Also, the at-rest pressure includes effect of hydrostatic load, surcharge load etc, in addition to the dynamic pressure caused by the earthquake.

The foundation spring constants for mat design are based on settlement calculations. In the development of settlement estimates, the representative shear wave velocity value for intervals within a soil column is only one input used in the derivation of the elastic modulus for layers within that column. Since this derived elastic modulus value is first adjusted for strain and then weighted with estimated values derived from either SPT tests (for granular material) or undrained shear strength tests (for cohesive soils) the effect of variability of shear wave velocity upon settlement calculations is significantly attenuated.

Impact of shear wave velocity on foundation spring constants and mat design is described in Section 3H.1.5.2 where it is concluded that the standard ABWR mat design is adequate for the STP site.

Evaluation Summary

These changes establish an equivalent level of site reliability and performance as described in the DCD.

This departure was evaluated per Section VIII.A.4 of Appendix A to 10 CFR Part 52, which requires that 1) the design change will not result in a significant decrease in the level of safety otherwise provided by the design; 2) the exemption is authorized by law, will not present an undue risk to the public health and safety, and is consistent with the common defense and security; 3) special circumstances are present as specified in 10 CFR 50.12(a)(2); and 4) the special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. As shown below, each of these four criteria are satisfied.

- (1) As discussed above, the design change will maintain the level of safety otherwise provided by the design.
- (2) The exemption is not inconsistent with the Atomic Energy Act or any other statute and therefore is authorized by law. As discussed above, the design change will not present an undue risk to the public health and safety. The design change does not relate to the common defense and security.
- (3) Special circumstances are present as specified in 10 CFR 50.12(a)(2). Specifically, the remedial measure of water-tight doors provides a net increase in public safety relative to the design specified in the DCD, satisfying special circumstance (iv). Additionally, the changes qualify for special circumstance (ii) in that the changes are intended to accomplish the underlying purpose of the DCD, namely to ensure that the design is able to withstand natural phenomena. Further, special circumstance (vi) is present in that material circumstances not considered during the ABWR certification was granted in location and meteorological history analysis techniques. Given the need for power in Texas, it is in the public interest to allow construction of additional reactors at the STP site.
- (4) The special circumstances outweigh any decrease in safety that may result from the reduction in standardization caused by the exemption. Specifically, the design change of adding water-tight exterior doors represents an improvement in safety, and does not affect the configuration of the plant or the manner in which the plant is operated. Therefore, the reduction in standardization resulting from the change should not adversely affect safety.

As demonstrated above, this exemption complies with the requirements in Section VIII.A.4 of Appendix A to 10 CFR Part 52. Therefore, STPNOC requests that the NRC approve this exemption.

STD DEP 1.8-1, Tier 2* Codes, Standards, and Regulatory Guide Edition Changes

Description

Tier 2, Table 1.8-20 lists reference ABWR DCD compliance with NRC regulatory guides. Table 1.8-21 lists applicability of industry codes and standards. This departure identifies Tier 2* items on these two tables that are being updated to more current revisions/editions. Those Tier 2 items that are explicitly revised in the COLA or require change due to changes in the Tier 2* items are also included.

Newer revisions of selected instrumentation and control-related Regulatory Guides are adopted to ensure more recent industry design and construction practices are used.

IEEE 603 "Standard Criteria for Safety Systems for Nuclear Generating Stations" is updated to the 1991 version. Newer editions of other selected instrumentation and control-related industry codes and standards are adopted. These editions of the standards are currently endorsed by the NRC.

Mil-Specs and other industry standards for electromagnetic inference analysis and control are updated to more current versions as this field has advanced considerably since certification.

Current approved ASME code cases per Regulatory Guide 1.84, "Design and Fabrication Code Case," Revision 33, dated 8/05 may be used in the future. With this update, Regulatory Guide 1.85, "Materials Code Case Acceptability, ASME Section III, Division 1" on ASME material code cases is obsolete and has been deleted as it is now incorporated into Revision 33 of R.G. 1.84.

The American Concrete Institute code ACI 349 is updated to the 1997 edition. The ASME Section III Division 2 is updated to the 2001 edition with 2003 Addenda. These combined recognize advances in earthquake engineering and allows efficient use of modularization during construction. Note that ASME Section III Division 1 for piping is not changed from the 1989 edition. This departure also updates Tier 2 to refer to Regulatory Guides 1.136, "Materials, Construction, and Testing of Concrete Containments," Revision 3, dated 3/07, and Regulatory Guide1.142, "Safety-Related Concrete Structures for Nuclear Power Plants" to Revision 2, dated 11/01. Also, this departure updates Tier 2 to refer to the 2006 International Building Code (IBC), deleting the 1991 Uniform Building Code (UBC). This change incorporates the requirements of Texas building code which adopted 2006 IBC.

Evaluation Summary

As a Tier 2* departure, this departure requires prior NRC approval. These updates to more current revisions/editions will increase plant reliability and performance by capturing selected advancements in engineering theory and practice since issuance of the design certification. The revisions to the Regulatory Guides are the current ones in force. The revisions to the industrial codes and standards have been approved or endorsed by the NRC. These enhancements will provide the same level of plant protection and personal safety and are a net benefit to the public health and safety. Changes to Tier 2 items are incidental to the Tier 2* changes.