

SCE&G • Santee Cooper Shaw • Westinghouse Electric Company

Licensee Perspective on ITAAC Completion Process

NRC Commission Briefing August 30, 2011 Alan Torres, SCE&G

Topics

- Requirements for ITAAC Performance
- Utility's Role
- ITAAC Completion Process
- Transition to Operation
- CIP Task Force Efforts

Requirements for ITAAC Performance

- 10 CFR Part 52 ITAAC provide reasonable assurance that the facility "has been constructed and will be operated in conformance with the License."
- ITAAC originate from the COL, including those from the referenced DCD, and ESP (if applicable)
 - There are approximately 900 ITAAC per unit for V.C. Summer 2&3

Requirements for ITAAC Performance

- The technical work for ITAAC completion is performed in accordance with normal work processes, requirements, and guidance:
 - 10 CFR 50 Appendix B
 - NRC Regulatory Guides
 - ASME Code Section III
 - ANSI, IEEE, AWS, ACI and other Industry Standards
 - Licensee Programs and Procedures

Utility's Role

- The licensee is ultimately responsible for all activities
 - Self-performance of some ITAAC (Emergency Planning, Physical Security Program)
 - Provide direct oversight of ITAAC performance by the Reactor Vendor and Constructor (Westinghouse/Shaw Consortium)

 The utility will be the primary interface to facilitate NRC Inspection of ITAAC activities under IMC-2503

- Inspections, Tests, and Analyses are performed in accordance with normal work processes
 - Not all ITAAC are safety-related, but all ITAAC are performed under the Licensee's QA program
 - Extra visibility is provided on ITAAC activities due to their regulatory significance
 - Identification on project schedules
 - Highlighted within construction work documents and pre-operational test procedures
 - Emphasized in procurement technical requirements

- ITAAC Closure Notifications prepared in accordance with NEI 08-01 and RG 1.215
 - Work continues with the CIP Task Force to refine the ITAAC Closure process and develop additional examples
 - Planning to mitigate
 the expected "surge"⁸⁰
 in ITAAC Closure
 Notifications late in
 construction

- The Staff has proposed new requirements for post-closure ITAAC notifications
 - Supplemental ITAAC closure notifications
 re: ITAAC Maintenance
 - All ITAAC Complete notification
- Consistent with NEI 08-01 (July 2010)
- NEI provided comments on the proposed rule and draft regulatory guide DG-1250

- Licensee's programs will be used to maintain ITAAC (per NEI 08-01)
 - Problem Identification and Resolution
 - Construction/Maintenance
 - Configuration Control
 - Quality Assurance
- NRC Notification when:
 - Material error or omission in ITAAC Closure Notification
 - Design Change is implemented because the ITAAC acceptance criteria can no longer be met
 - Licensee activities materially affect the ITAAC Determination Basis

Transition to Operation

- All ITAAC are met. The as-built configuration of the plant is verified to meet the requirements of the COL
- Commission can make finding under 10 CFR 52.103(g) allowing fuel load and operation
- Additional clarity/regulatory guidance needed for requirements associated with interim operation under 10 CFR 52.103(c)

CIP Task Force Efforts

- Preparation of additional example ITAAC Closure Notifications to reduce uncertainty in the closure process
- Streamlining processes and clarifying expectations to assist with the surge in ITAAC Closure Notifications late in construction

Preparations for ITAAC -Vogtle 3&4 Experience

Chuck Pierce Southern Nuclear Operating Company Nuclear Development Licensing Manager August 30, 2011

Preparations for ITAAC Closure

- Constructive public interactions with NRC (SECY-11-0111)
 - NRC Construction Inspection Program
 - NRC Region II
 - Simulated ITAAC Closure and Verification
 Demonstration sponsored by DOE
- ITAAC closure process development and oversight
 - Contractor interactions and oversight
 - Ongoing development of process

Early Construction Experience

LWA value

- Limited scope construction program development
- Early exercise of ITAAC process
- Contractual alignment Licensee is Responsible

3

- Licensee oversight

Vogtle 3 and 4 Status

- ITAAC Underway
 - RPV charpy
 - Type tests
 - Backfill shear wave velocity
 - Waterproof membrane
- First ITAAC Closure Notification submittal soon

ITAAC Process – The Challenge Ahead

5

Units 3&4 Nuclear Development

8/30/2011

ITAAC Process – The Challenge Ahead

ITAAC Type Assessment

6

- Engineering Analysis
- Components
- Construction Type Test
- Pre-Operational Tests
- Site Specific

UNITS 3&4 Nuclear Development

8/30/2011

ITAAC Process – The Challenge Ahead

20% of ITAAC have higher levels of complexity

<u>Design Commitment</u>	Inspections, Tests, or Analyses	Acceptance Criteria
The Class 1E equipment identified in Table 2.1.2-1 as being qualified for a harsh environment can withstand the environmental conditions that would exist before, during, and following a design basis accident	Type tests, analyses, or a combination of type tests and analyses will be performed on Class 1E equipment located in a harsh environment.	A report exists and concludes that the Class 1E equipment identified in Table 2.1.2-1 as being qualified for a harsh environment

ITAAC Process – Recent Lessons Learned

Waterproof membrane ITAAC

Design Commitment	Inspections, Tests, <u>Analyses</u>	Acceptance Criteria
The friction coefficient to resist sliding is 0.7 or higher	Testing will be performed to confirm that the mudmat- waterproof-mudmat interface beneath the Nuclear Island basemat has a minimum coefficient of friction to resist sliding of 0.7	A report exists and documents that the as-built waterproof system (mudmat-waterproofing- mudmat interface) has a minimum coefficient of friction of 0.7 as demonstrated through material qualification testing.

8

Moving Forward

- Major area of focus between industry and NRC
- Progress continues to be made
 - Closure process maturing
 - Maintenance process developing
- Future demonstration projects may be appropriate to obtain greater clarity

10

ITAAC lead plant approach for standard plant inspections

NRC Commission Briefing on ITAAC

Westinghouse Non-Proprietary Class 3

TOPICS

- Westinghouse Role in ITAAC Process
- Progress on Generic ITAAC Issues
- Application of Lessons Learned
- Standardization and the Fleet Approach

2

Westinghouse Role in ITAAC Process

- Westinghouse/Shaw Consortium is the EPC provider for the complete AP1000[®] standard plant
- Consortium will complete all "Standard Plant" ITAAC under Licensees' oversight
 - Planning
 - Status Tracking
 - Performance
 - Documentation
 - ITAAC Completion Package Preparation
 - Maintenance

Generic ITAAC Issues – Steady Progress

estinghouse

- 2007 New Rules on ITAAC Closure
- 2008 NEI 08-01 ITAAC Closure Guidance
- 2010-11 ITAAC Maintenance Guidance
- 2010-11 ITAAC Closure & Verification Demonstration Project
- 2011-12 Application of Lessons Learned

Industry Task Force coordinated by NEI Working with NRC Staff

ITAAC Demonstration Project

- Six AP1000 ITAAC selected to demonstrate the ITAAC Closure process
 - NRC Inspection of simulated performance of ITAAC activities
 - Licensee submittal of ITAAC closure letters
 - NRC verification of ITAAC closure
 - Examination of the surge in ITAAC closure letters late in construction
 - Identification and documentation of Lessons Learned

5

ITAAC Demonstration Project – Lessons Learned

- Project was a very useful learning experience, identifying several opportunities for improvement
- Five main categories of Lessons Learned
 - 1. Roles/Interfaces: HQ, Region II CCI, Licensee
 - 2. Information Management Systems (Licensee and NRC)
 - 3. Resolve differing interpretations of ITAAC
 - Ongoing CIP Task Force Discussions
 - Update NEI 08-01 with additional guidance when necessary
 - 4. Assuring Sufficient Information in ITAAC Closure Letters
 - 5. Mitigate impact of ITAAC Surge

Lesson Learned – Closure Letter Information

7

- <u>Lesson</u> Different expectations on closure letter content for ITAAC without a similar NEI 08-01 example resulted in re-submittal of closure letters
- <u>Goal</u> Provide additional confidence and certainty in the content of ITAAC closure letters
- <u>Activity</u> "Expanded ITAAC Closure Notification Project"
 - Westinghouse/NEI will prepare approximately 30 additional example letters
 - More than 80% of AP1000 ITAAC will be represented
 - Letters reviewed with NRC staff at CIP Task Force Public Meetings
 - Letters added to NEI 08-01 after mutual NRC/NEI concurrence

Lesson Learned – Forecast ITAAC Surge

Vestinghouse

Westinghouse Non-Proprietary Class 3

Lesson Learned – ITAAC Surge Mitigation

- <u>Lesson</u> By their nature, ITAAC require verification of the as-built plant, and therefore most occur late in construction
- Goal Mitigate the challenges associated with this surge
- Factors Identified During Demo Project
 - Work frequently occurs well in advance of Closure Letter submittal (Example: ASME ITAAC)
 - Many of the latest ITAAC are pre-operation tests, which involve a well understood process with significant NRC Inspector involvement
- Additional Activities In-Progress
 - Detailed planning for each ITAAC
 - Focus on process efficiency
 - Leverage CIP Task Force work to reduce process uncertainty

Standardization and the Fleet Approach

- ITAAC Closure Plans for each Standard Plant ITAAC
- Equipment Qualification applicable to all AP1000 units
 - Standard EQ Documentation Package used as basis for closing seismic and harsh environment qualification ITAAC for each unit
- First/First-3 of a Kind Pre-Operational Testing
 - Demonstration of key functional capabilities unique to AP1000
 - Apply stringent standard technical requirements to justify applicability to all units and regulatory frameworks

BRIEFING ON INSPECTIONS, TESTS, ANALYSES, AND ACCEPTANCE CRITERIA (ITAAC) - RELATED ACTIVITIES

Bill Borchardt Executive Director for Operations August 30, 2011

Agenda

- Introduction Michael Johnson
- Overview Laura Dudes
- NRC's Construction Inspection
 Program James Beardsley
- Execution of the CIP Alan Blamey
- ITAAC Closure Mark Kowal

Construction Inspection Program Update

Laura A. Dudes, Director Division of Construction Inspection and Operational Programs

Program Accomplishments

- Transition to execution
- Program structure and procedures
- Assessment process
- Vendor inspection program

Areas of Focus

- ITAAC closure verification
- Construction business processes
- Vendor program improvements
- Advanced reactor inspection program
- Safety culture

New Nuclear Plant Construction Inspection Program (CIP)

Jim Beardsley Chief, Construction Inspection Program Branch Office of New Reactors

CIP Infrastructure

- Technical Assistance Requests

 Between the inspectors and HQ
- Construction Inspection Program Information Management System (CIPIMS)
 - Planning, scheduling and reporting
- Verification of ITAAC Closure, Evaluation and Status (VOICES)

CIP Accomplishments

- Inspection procedures are approved and ready for use
- A construction inspection support contract is in place to provide specialization and capacity
- Processes and procedures are on track to support ITAAC Closure

Planning, Scheduling, and Execution of the Construction Inspection Program

Alan Blamey Region II Center for Construction Inspection

Construction Inspection Infrastructure

- CIPIMS
- Primavera
- Scalable platforms

Preparing to Conduct Construction Inspections

- Inspection planning
- Inspection scheduling
- Reconciliation

CIPIMS Upgrade

- Based on OIP and inspector input
- Maintain inspector focus on field inspection
- Support ITAAC closure and ITAAC inspection program management

AP-1000 Sanmen Experience

- Verify / validate NRC ITAAC inspection process
- Inspection of off-site module fabrication
- Agile response to schedule changes

Transition to Program Execution

- Resident inspectors stationed at Vogtle and VC Summer
- Receiving construction schedules
- ITAAC inspections underway
- Continue to gain experience executing the inspection program

ITAAC Closure

Mark Kowal, Chief Technical Specifications and ITAAC Branch

ITAAC Quality and Inspectability

- Promote common understanding
- Frequent dialogue with applicants and stakeholders
- RIS 2008-05, Rev. 1 (2010)
- NRO technical reviewer training

ITAAC Closure Verification

- Office Instruction drafted
- Exercised process during:
 - Internal counter-part meetings
 - Public meetings
 - ITAAC closure demonstration exercise

ITAAC Closure Demonstration

- Participants: DOE, NRC, NEI,
 Southern, and Westinghouse
- Inspections at Vogtle site and Westinghouse headquarters
- Tested main aspects of ITAAC closure processes

ITAAC Closure Demonstration

- Successful in identifying lessons learned and challenges
- ITAAC interpretations
- Next steps and future ITAAC closure work
- 52.103(g) finding recommendation process under development

Summary

- Transitioning from development to implementation
- Continue to be forward looking
 and proactive
- ITAAC are first of a kind; we will adjust as needed to address any emerging challenges

Acronyms

- **LWA Limited Work Authorization**
- **TAR Technical Assistance Request**
- **OIP Oversight Infrastructure Program**
- **RIS** Regulatory Information Summary
- **DOE** Department of Energy
- **NRC** Nuclear Regulatory Commission
- **NEI Nuclear Energy Institute**

• Acronyms

ITAAC Inspections, Test, Analysis, and Acceptance Criteria

CIPMS Construction Inspection Program Information Management System

VOICES Verification of ITAAC Closure Evaluation and Status