ACCELERATED DISTRIBUTION DEMONSTRATION SYSTEM

PV INFORMATION DIGTRIDIT DECUT CYCMEN

		THIOR	ALTON	DISTRIBUTION SISTE	M (KID	3)	
ACCESSIO FACIL:5 AUTH.N. MINECK, RECIP.1 MURLEY,	N NBR:9010250431 0-331 Duane Arnold AME AUTHOR D.L. Iowa Ele NAME RECIPIE T.E. Office o	DOC.D Energy AFFILIA ctric L NT AFFI f Nucle	ATE: Cent TÍON ight LIATI ar Re	90/10/15 NOTARIZED er, Iowa Electric L & Power Co. ON actor Regulation, D	: NO ight &	DOCK Pow 0500 r (Post 87	ET # 0331 0411
SUBJECT	: Responds to Gene Acceptable Inser	ric Ltr vice Te	89-0 stina	4, "Guidance on Dev Programs."	elopin	3	R
ום דפתים דם		CODIEC			,	38	Ι
TITLE: (OR Submittal: Inse	rvice I	nspec	tion/Testing/Relief	from	ASME Code	- D
NOTES:							S
	RECIPIENT ID CODE/NAME	COPIE LTTR	S ENCL	RECIPIENT ID CODE/NAME	COP: LTTR	IES ENCL	/
	PD3-3 LA HALL,J.R.	1 2	0 2	PD3-3 PD	1	1	A
INTERNAL:	ACRS	б	6	AEOD/DSP/TPAB	1	1	D
	NRR/DET/ECMB 9H	1	1	NRR/DET/EMEB 7E	1	1	D
	NUDOCS-ABSTRACT	1	1	OC/LFMB	1	0	
	OGC/HDS2	1	0	REG=F-I-BE		1	S
	RES/DSIR/EIB	1	1 (_		
EXTERNAL:	EG&G BROWN, B	1	1	EG&G RANSOME,C	1	1	
	NRC PDR	1	1	NSIC	1	1	

NSIC

1

1

1

NOTE TO ALL "RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTE! CONTACT THE DOCUMENT CONTROL DESK, ROOM PI-37 (EXT. 20079) TO ELIMINATE YOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEED!

TOTAL NUMBER OF COPIES REQUIRED: LTTR 22 ENCL 19

Α D

R

Ι

D

S

/

- D
- S

Iowa Electric Light and Power Company October 15, 1990

NG-90-2454

Dr. Thomas E. Murley, Director Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Attn: Document Control Desk Mail Station P1-137 Washington, DC 20555

Subject:	Duane Arnold Energy Center Docket No: 50-331
	Op. License No: DPR-49
	Response to NRC Generic Letter 89-04,
	"Guidance on Developing Acceptable
	Inservice Testing Programs"
Reference:	1) Meeting Summary - Inservice Testing
	Program Relief Requests, August 8, 1990
,	(TAC No. 76095) dated September 7, 1990
	from J. R. Hall (NRC)
	2) Letter from D. Mineck (Iowa Electric)
	to T. Murley (NRC) dated January 5, 1990
	(NG-90-0030)

File: A-101b, A-286e

Dear Dr. Murley:

Revision 9 of the Duane Arnold Energy Center (DAEC) Inservice Testing (IST) Program was submitted on January 5, 1990, in response to NRC Generic Letter 89-04, "Guidance on Developing Acceptable Inservice Testing Programs." The relief requests included in Revision 9 were the subject of a meeting on August 8, 1990, between members of the NRC staff, it's Contractor and Iowa Electric personnel. The agreements reached during this meeting were confirmed during a conference call on August 16, 1990 and documented in the meeting summary (Reference 1). We have revised the relief requests accordingly.

9010250431 901015 **PDR** ADOCK 05000331 PNU

000333

Attachment 1 contains the revised ASME IST Relief Requests PR-001, PR-005, PR-012, PR-015, VR-003, VR-006, VR-012, VR-013, VR-017, VR-021, VR-031 through VR-035, and VR-050. PR-015 is a new Relief Request added as a result of dividing PR-005 into two separate relief requests. Relief Requests PR-010, VR-004, VR-039, VR-043 through VR-048, and VR-052 are, hereby, withdrawn.

Attachment 1 also contains Relief Requests VR-005 and VR-053 which were not discussed at the meeting. VR-005 was submitted with Revision 9, but has been subsequently revised. VR-053 is a new relief request. The need for this relief request was identified during the revision and review process.

As agreed, Relief Requests PR-013, VR-051 and VR-007 will be revised and resubmitted to the NRC by December 31, 1990. Additional information on Relief Requests PR-013 and VR-051 is provided in Attachment 2.

Very truly yours,

) I Min

Daniel L. Mineck Manager, Nuclear Division

DLM/CJR/pjv+

Attachments: 1) Duane Arnold Energy Center IST Program Relief Requests 2) Additional Information on Relief Requests PR-013 and VR-051

cc: C. Rushworth

L. Liu

L. Root

R. McGaughy

J. R. Hall (NRC-NRR)

A. Bert Davis (Region III) NRC Resident Office

Commitment Control No. 900297, 900299

RELIEF REQUEST NO. PR-001 TYPE 4

PUMP NUMBER:

Attacnment 1

35 pages

Diesel Fuel Oil Transfer 1P-44A, 1P-44B

SECTION XI REQUIREMENT:

Measure pump vibration amplitude quarterly. (IWP-3100)

BASIS FOR RELIEF:

The diesel fuel oil pumps and motors are submerged inside the diesel fuel oil tank (1T-35) and thus are inaccessible for the purpose of taking such measurements. The installation of accelerometers on the pumps is deemed impractical due to the environmental conditions involved and the impracticality of removing the pumps periodically to calibrate and/or repair the accelerometer. Additionally, since the accelerometers would be inaccessible, any abnormal indications from the equipment might be related to a hardware problem that could not be verified without the removal of the pump.

ALTERNATE TESTING:

The Diesel Fuel Oil Transfer Pumps are included in the Duane Arnold Energy Center Preventive Maintenance Program and are removed, disassembled, inspected and rebuilt every other outage. The pumps are inspected for signs of mechanical wear or vibration induced damage. Detailed measurements with a micrometer are taken and the condition of the pump is compared with the manufacturer's tolerances. Any adverse conditions are noted and corrected before the pumps are reassembled and placed back into service. Proper pump operation is verified by conducting the quarterly pump surveillance prior to the pump being declared operable.

The results of the most recent inspection (November 1988) revealed that the pumps are in "like new" condition after more than fourteen years of service.

Bearing vibration measurements are taken to detect (indirectly) evidence of mechanical degradation. Duane Arnold's preventive maintenance activities are tailored to inspect (directly) for evidence of degradation. No additional testing is necessary because Duane Arnold's combination of historical data and preventive maintenance is superior to the indirect test required by the Code. The pumps will be disassembled and inspected in accordance with the DAEC Preventive Maintenance Program.

RELIEF REQUEST NO. PR-005 TYPE 4

PUMP NUMBER:

System Pump Number

River Water	1P-117A,	1P-117B,	1P-117C,	1P - 117D
Core Spray	1P-221A,	1P-221B	·	
RCIC	1P-226			
RHR	1P-229A,	1P-229B,	1P-229C,	1 P-229 D

SECTION XI REQUIREMENT:

The resistance of the system shall be varied until either the measured differential pressure or the measured flow rate equals the corresponding reference value. (IWP-3100)

BASIS FOR RELIEF:

Operating experience has shown that flow rates (independent variables during inservice performance testing) for these pumps cannot be readily duplicated with the present flow control systems. Flow control for these systems can only be accomplished through the operation of relatively large gate and globe valves as throttling valves. Because these valves are not generally equipped with position indicators which reflect percent open, the operator must repeatedly "jog" the motor or air operator to try to make minor adjustments in flow rate. These efforts, to exactly duplicate the reference values, would require excessive valve manipulation which could ultimately result in damage to valves or operators.

ALTERNATE TESTING:

The alternative approach calls for the establishment of reference values for flow rate and differential pressure during a reference value test. The reference flow rate (Q_r) and differential pressure (dP_r) define a point on the pump performance curve as shown in Figure PR-005.1. The solid line in Figure PR-005.1 represents the pump curve which exists during the reference value test.

If the pump characteristics were to degrade during time, the pump would operate on a different curve as represented by the broken line in Figure PR-005.1. Given that Q_r cannot be duplicated exactly in subsequent tests, inservice tests will be performed by taking two sets of measurements and establishing a dP which corresponds to Q_r for the inservice test as described.

RELIEF REQUEST NO. PR-005 (Continued)

After the pump has run for at least five minutes, a flow rate will be obtained which is lower than the reference flow rate (Q_r) but greater than a specified lower limit as established in the Test Procedure. When the lower flow rate (Ql) is established, the suction pressure during testing (P_{il}) and the discharge pressure (P_{dl}) will be measured. The differential pressure (dP_1) corresponding to the lower flow rate is computed by:

 $dP_1 = P_{d1} - P_{i1}$

After the test quantities corresponding to Q_1 have been recorded, the flow rate is adjusted to a value higher than Q_r but less than a specified upper limit as established in the test procedure. When the higher flow rate (Q_h) is established, the suction pressure and discharge pressure will be measured and the differential pressure (dP_h) corresponding the Q_h will be computed.

As shown in Figure PR-005.1, two points have been established that define a small portion of the pump curve. By linear interpolation between the two points, a differential pressure corresponding to Q_r can be computed.

The general equation at the line between points (Q_1, dP_1) and (Q_h, dP_h) is:

dP = a - bQ

Writing the above equation in terms of Q_1 , dPp_1 , Q_h and dP_h , and solving for Q_r yields:

 $dP=dP_{1}+(-----)(Q_{h}-Q_{r})$ (Eq.1) $Q_{h}-Q_{1}$

Assuming that the pump curve is nearly linear between Q_1 and Q_h , Equation 1 gives an accurate value for dP which corresponds to Q_r . This precise value of dP obtained analytically can then be compared to the Alert and Required Action limits which are computed using dP_r.

The major assumption in the approach described above is that the pump curve is nearly linear between Q_1 and Q_h . Therefore, values for Q_1 and Q_h should fall within a narrow range of Q_r , so that the curve in that range approaches linearity. The appropriate flow rate range between the lower and upper procedural limits have been determined on a pump by pump basis.

3

RELIEF REQUEST NO. PR-005 (Continued)

FLOW RATE

Figure PR-005.1

Alternate Testing Approach for Determination of Hydraulic Change

RELIEF REQUEST NO. PR-012 TYPE 3

PUMP NUMBER:

<u>System</u>

Pump Number

Core Spray Residual Heat Removal Service Water High Pressure Coolant Injection

Reactor Core Isolation Cooling

1P-211A, 1P-211B 1P-22A, 1P-22B, 1P-22C, 1P-22D 1P-216 1P-226

....

SECTION XI REQUIREMENT:

The full-scale range of each instrument shall be three times the reference value or less. (IWP-4120)

BASIS FOR RELIEF:

In several instances the accuracy of installed flow rate instrumentation does not meet the requirements of IWP-4110. In these instances, temporary instrumentation is used to replace less accurate panel meters. However, the available electronic instruments suitable for this service generally do not meet the range limitations imposed by IWP-4120, in that the instrument ranges exceed the respective reference values by greater than a factor of 3. Since the accuracies of the instruments used for the inservice test are based on the actual indicated reading and not on full-scale range of the instruments, this is considered to be acceptable. The specific systems affected are listed below:

SYSTEM	REF. VALUE	INST. RANGE (1)
Core Spray	30 ma	0-200 ma
RHR S e rvice Water	30 mv	0-200 mv
H.P. Coolant Inj.	50 mv	0-200 mv
RCIC	50 mv	0-200 mv

(1) Based on FLUKE Model 8024B Digital Multimeter

ALTERNATE TESTING:

No alternate method of measurement is proposed.

RELIEF REQUEST NO. PR-015 TYPE 4

PUMP NUMBER:

<u>System</u> <u>Pump Number</u>

HPCI 1P-226

SECTION XI REQUIREMENT:

The resistance of the system shall be varied until either the measured differential pressure or the measured flow rate equals the corresponding reference value. (IWP-3100)

BASIS FOR RELIEF:

Operating experience has shown that flow rates (independent variables during inservice performance testing) for the HPCI pump cannot be readily duplicated with the present flow control systems. Efforts to exactly duplicate the reference values would require excessive valve manipulation which could ultimately result in damage to valves or operators. In order to perform accurate trending and data analysis, the use of an accurate reference value is very important. The complexities of the flow control systems found within these systems make it extremely difficult to exactly duplicate the reference values.

ALTERNATE TESTING:

Pump differential (discharge) pressure and flow rate will be evaluated using a reference value test derived pump curve. The reference value test pump curve will cover a limited range of pump operation. The reference value test pump curve will be restricted to an operating regime that is representative of accident conditions, or conditions that are the most sensitive indicator of pump degradation.

Based on the reference value test pump curve, a series of "parallel" acceptance criteria curves will be established for Required Action Range and Alert Range limits. Both upper and lower limits will be established.

Detailed Technical Description

The reference value curve (Figure PR-015.1, the solid line) will be established by measuring five (5) to eight (8) sets of differential pressure/flow data when the equipment is known to be operating acceptably. The measurements will be distributed (as uniformly as possible) across the entire range of potential inservice test conditions.

RELIEF REQUEST NO. PR-015 (Continued)

The reference value curve will be computed using a third order polynomial regression technique that employs a least-squares fit of the data by successive polynomials of order 1 through 3. The standard deviation about the regression line will be evaluated for each case. The resulting reference value curve is expressed as a third order polynomial in the general form:

 $y=a_3x^3+a_2x^2+a_1x+a_0$

, where

y : dependent variable x : independent variable

The Required Action and Alert Range Curves (Figure PR-015.1) will be scaler multiples of the reference value curve:

- 0 1.075 Upper Required Action Range Limit (the upper dotted line)
- o 1.05 Upper Alert Range Limit (the upper dashed line)
- 0 0.94 Flow Lower Alert Range Limit, or
- 0.93 Differential Pressure Lower Alert Range Limit (the lower dashed line)
- o 0.90 Lower Required Action Range Limit (the lower dotted line)

Since the typical curve (Figure PR-015.1) may be subject to interpretation, a tabular summary (Figure PR-015.2) of the acceptance criteria will actually be used to evaluate the inservice test results.

The measurements taken during an inservice test will be restricted. Only test measurements within the envelope of reference value test measurements will be acceptable. The inservice test differential pressure/flow will be plotted on the pump curve (Figure PR-015.1), noted on the acceptance criteria table (Figure PR-015.2), and included in the permanent test records.

Finally, the combined differential pressure/flow test measurement will be evaluated for changes from test-to-test. While the "points" on the curve cannot be trended in a meaningful way, the differential pressure/flow data can be

7

RELIEF REQUEST NO. PR-015 (Continued)

"normalized". The normalized value can be trended across time to determine whether pump hydraulic performance is degrading (Figure PR-015.3). The normalized value of differential pressure/flow is defined as a ratio:

$$y_n = \frac{y}{a_3 x^3 + a_2 x^2 + a_1 x + a_0}$$

, where

- y_n : normalized dependent variable
- y : actual test measurement of the dependent variable
- x : actual test measurement of the independent variable

Figure PR-015.1

PR-015 (Cont

RELIEF REQUEST PR-015 (Continued)

*******	**** IOWA EL	ECTRIC LIGHT DUANE ARN	AND POWER COM	IPANY *** pcP INTER	RISIM-IST **
				****	********
	INSERVICE	TEST ACCEPTA	NCE CRITERIA	FOR * DA	TE: 09/20/90
PUMP NUMBER :	1P-216 R	EFERENCE TEST	: 028	* PA	GE: 1
********	*********	*********	**********	***********	*********
	DEFSSIL	PRESSURE	PRESSURE	PRESSURE	PRESSURE
	UPPER	UPPER	11000010	LOWER	LOWER
	REQUIRED	ALERT		ALERT	REQUIRED
	ACTION	RANGE	EXPECTED	RANGE	ACTION
FLOW RATE	LIMIT	LIMIT	VALUE	LIMIT	LIMIT
2.900.000	1.214.654	1,186,406	1,129,911	1.050.817	1,016.920
2,908,475	1.213.495	1,185,274	1,128.832	1,049.814	1,015.949
2,916.949	1,212.329	1,184.135	1,127.747	1,048.805	1,014.973
2,925.424	1,211.155	1,182.989	1,126.656	1,047.790	1,013.990
2,933.898	1,209.975	1,181.836	1,125.558	1,046.769	1,013.003
2,942.373	1,208.788	1,180.677	1,124.454	1,045.743	1,012.009
2,950.847	1,207.595	1,179.511	1,123.344	1,044.710	1,011.009
2,959.322	1,206.394	1,178.338	1,122.227	1,043.671	1,010.004
2,967.797	1,205.187	1,177.159	1,121.104	1,042.627	1,008.993
2,976.271	1,203.972	1,175.973	1,119.974	1,041.576	1,007.977
2,984./46	1,202.751	1,1/4./80	1,118.838	1,040.520	1,000.954
2,993.220	1,201.523	1,1/3.381	1,11/.090	1 038 389	1,005.920
3,001.095	1 199 046	1,172.374	1 115 392	1 037 314	1,003,853
3,010.170	1 197.798	1 169.942	1,114,230	1.036.234	1.002.807
3,027,119	1,196,542	1,168,715	1,113,062	1.035.148	1.001.756
3,035,593	1,195,280	1,167,482	1,111.888	1,034.056	1,000.699
3,044.068	1,194.010	1,166.242	1,110.707	1,032.958	999.636
3,052.542	1,192.734	1,164.996	1,109.520	1,031.853	998.568
3,061.017	1,191.451	1,163.742	1,108.326	1,030.743	997.494
3,069.492	1,190.161	1,162.482	1,107.126	1,029.627	996.413
3,077.966	1,188.864	1,161.215	1,105.920	1,028.505	995.328
3,086.441	1,187.560	1,159.942	1,104.707	1,027.377	994.236
3,094.915	1,186.249	1,158.661	1,103.487	1,026.243	993.138
3,103.390	1,184.931	1,157.374	1,102.261	1,025.103	992.035
3,111.864	1,183.606	1,156.080	1,101.029	1 022 805	990.920
3,120.339	1 100 036	1 153 472	1 098 545	1 021 647	988.691
3,120.014	1 179 591	1 152,158	1 097.294	1.020.483	987.564
3 145 763	1,178,238	1,150,837	1,096.035	1.019.313	986.432
3,154,237	1,176.879	1,149,509	1.094.771	1,018.137	985.294
3,162.712	1,175.512	1,148.175	1,093.500	1,016.955	984.150
3,171.186	1,174.139	1,146.833	1,092.222	1,015.767	983.000
3,179.661	1,172.759	1,145.485	1,090.938	1,014.573	981.845
3,188.136	1,171.372	1,144.130	1,089.648	1,013.373	980.683
3,196.610	1,169.977	1,142.769	1,088.351	1,012.167	979.516
3,205.085	1,168.576	1,141.400	1,08/.048	1,010,954	9/8.343
3,213.339	1 146 762	1 130 643	1 084 431	1 008 512	975 070
3 230 500	1 164 331	1 137 253	1 083 099	1.007.282	974.789
3,238,983	1,162,902	1,135,858	1,081,769	1.006.045	973.592
3,247,458	1,161,466	1.134.455	1,080.433	1,004.803	972.390
3,255.932	1,160.023	1,133.045	1,079.091	1,003.555	971.182

٠,

RELIEF REQUEST PR-015 (Continued)

*********	**** IOWA EL	ECTRIC LIGHT DUANE ARN	AND POWER COM	IPANY *** pcF INTER	RISIM-IST **
PUMP NUMBER :	INSERVICE 1P-216 R	TEST ACCEPTA EFERENCE TEST	NCE CRITERIA C: 028	FOR * DA * PA	TE: 09/20/90 GE: 2
FLOW RATE	PRESSURE UPPER REQUIRED ACTION LIMIT	PRESSURE UPPER ALERT RANGE LIMIT	PRESSURE EXPECTED VALUE	PRESSURE LOWER ALERT RANGE LIMIT	PRESSURE LOWER REQUIRED ACTION LIMIT
3,264.407 3,272.881 3,281.356 3,289.831 3,298.305 3,306.780 3,315.254 3,323.729 3,322.203 3,340.678 3,349.153 3,349.153 3,357.627 3,366.102 3,374.576 3,383.051 3,391.525 3,400.000	1,158.573 1,157.116 1,155.652 1,154.181 1,152.703 1,151.217 1,149.725 1,148.226 1,146.720 1,145.207	1,131.629 1,130.206 1,128.776 1,127.339 1,125.895 1,124.445 1,122.987 1,121.523 1,120.052 1,118.574 1,117.089 1,115.597 1,114.099 1,112.593 1,111.081 1,109.562	1,077.742 1,076.387 1,075.025 1,073.656 1,072.281 1,070.900 1,069.512 1,068.117 1,066.716 1,065.309 1,063.895 1,062.474 1,059.613 1,058.172 1,055.725	1,002.300 1,001.040 999.773 998.500 997.222 995.937 994.646 993.349 992.046 990.737 989.422 988.101 986.773 985.440 984.100 982.755 981.403	969.968 968.748 967.522 966.291 965.053 963.810 962.561 961.306 960.045 958.778 957.505 958.778 957.505 956.226 954.942 953.651 952.355 951.053 949.745

Figure PR-015.2

۰.

RELIEF REQUEST NO. VR-003

SYSTEM:

Residual Heat Removal

COMPONENTS:

V-19-0149 V-20-0082

CATEGORY:

A/C

FUNCTION:

These values open to provide a pathway for LPCI flow into the recirculation system and close to isolate the RHR system from the high pressure of the recirculation system.

TEST REQUIREMENT:

Check valves shall be exercised at least every 3 months. (IWV-3521)

BASIS FOR RELIEF:

These valves cannot be stroked during power operation because the RHR pumps cannot develop sufficient head to overcome recirculation system pressure. These valves cannot be manually stroked during operation because they are located in the drywell and are inaccessible.

One of these values is partially stroked during Cold Shutdown for the operation of the shutdown cooling mode of RHR. This is only a partial stroke test as the normal flow rate in this mode is only 4000 gpm versus a maximum required accident flow rate of 14,400 gpm. While shifting system operation to the idle loop is possible, it is a time consuming operation. In order to change loops and inject cooling flow through the other loop, more than 8 hours of preparation and lineup work would be required of the control room personnel, assuming no other testing/duties ongoing at the time.

A full stroke test of these values cannot be performed with flow at Cold Shutdown because it would be necessary to test two channels/loops of a safety system at the same time. Current guidance only allows the operation of one train of a safety system for surveillance purposes.

RELIEF REQUEST NO. VR-003 (Continued)

These values cannot normally be manually exercised at Cold Shutdown because the containment is inerted with nitrogen. In order to gain personnel access to the drywell, the nitrogen must be vented (normally a 16 - 24 hour operation). The containment must be re-inerted before the plant is restarted (another 16 - 24 hour operation). Inerting and de-inerting the drywell solely for the purpose of value testing is excessively burdensome.

ALTERNATE TESTING:

One of these valves will be partially stroked to the open position each cold shutdown.

V-19-0149 and V-20-0082 will be exercised to the full open position using a mechanical exerciser and the torque measurements recorded on a refueling outage basis.

RELIEF REQUEST NO. VR-005 TYPE 4

SYSTEM:

Various

COMPONENTS:

PSV-1911	PSV-2122	PSV-2609	PSV-4439B
PSV-1952	PSV-2129	PSV-3221A	PSV-4439C
PSV-1975	PSV-2223	PSV-3221B	PSV-4439D
PSV-1988	PSV-2228	PSV-3222A	PSV-4439E
PSV-2043	PSV-2301	PSV-3222B	PSV-4439F
PSV-2057	PSV-2430	PSV-3223A	PSV-4842
PSV-2068	PSV-2474	PSV-3223B	
PSV-2102	PSV-2501	PSV-4336	
PSV-2109	PSV-2607	PSV-4439A	

CATEGORY:

С

FUNCTION:

These valves provide overpressure protection to the associated system components.

TEST REQUIREMENT:

Safety and relief valves shall be tested in accordance with Subsection IWV-3510.

BASIS FOR RELIEF:

ANSI/ASME OM-1-1981, "Requirements for Inservice Performance Testing of Nuclear Power Plant Pressure Relief Devices", was developed to supersede the requirements of Subsection IWV-3510. This standard is more definitive and better suited to operational testing than is ASME/PTC 25.3-1976 which is referenced in IWV-3512.

ALTERNATE TESTING:

Safety and relief valves will be tested in accordance with the requirements of ANSI/ASME OM-1-1981.

RELIEF REQUEST NO. VR-006

SYSTEM:

Nuclear Boiler

COMPONENTS:

<u>Reactor Relief Valves</u>	Solenoid Valves
PIS No.	PIS No.
PSV-4400*	SV-4400
PSV-4401	SV-4401
PSV-4402*	SV-4402
PSV-4405*	SV-4405
PSV-4406*	SV-4406
PSV-4407	SV-4407

*Automatic Depressurization System (ADS)

CATEGORY:

B/C for the relief valves B for solenoid valves

FUNCTION:

The functions of the relief valves are to (1) open upon receipt of an ADS signal to blowdown the reactor vessel (for the ADS valves only), (2) act as primary system safety valves actuating on high system pressure or by manual actuation from the Control Room, and (3) to close to maintain the primary boundary and system pressure prevent uncontrolled depressurization of the reactor (stuck open relief valve). The function of the solenoid valves is to energize upon receipt of a manual or ADS actuation signal and, in so doing, vent the poppet valve assembly causing the associated main valves to open.

TEST REQUIREMENTS:

Exercise valves every three months (IWV-3412 (a)).

Evaluate stroke times with respect to the previously measured stroke time (IWV-3417 (a)).

BASIS FOR RELIEF:

These values can only be tested at very low reactor power levels with primary system pressure greater than 50 psig. The test sequence requires an Operator to:

a. Open at least one turbine bypass valve and discharge main steam directly to the condenser,

RELIEF REQUEST NO. VR-006 (Continued)

- b. Actuate the relief valve and observe the corresponding closure of the turbine bypass valve (pressure control on the turbine bypass valve is fairly quick to respond, ~1-1/2 seconds), and the response of pressure switches and thermocouples downstream of the relief valve.
- c. Close the relief valve and observe the corresponding opening of the turbine bypass valve and the response of pressure switches and thermocouples downstream of the relief valves.

Each relief valve actuation produces hydrodynamic loads which are transmitted to the suppression Pool (Torus). The Duane Arnold Mark I Containment, Plant Unique Analysis Report (PUAR) fatigue evaluation is based on 740 relief valve actuations with normal operating conditions (i.e, 740 actuations for testing purposes). Quarterly testing of the subject valves would result in 4 (quarters) x 40 (years) x 6 (valves) = 960 test actuations, which would exceed the approved design basis.

Finally, the failure of any relief value to close would cause an uncontrolled rapid depressurization of the primary system (stuck open relief value transient). The resulting severe thermal gradients in the reactor vessel are not desirable, and should be minimized.

These values should not be tested during cold shutdowns in order to reduce the number of challenges to safety/relief values as recommended by NUREG-0737 and the BWR Owners Group Evaluation of NUREG-0737 Item II.K.3.16, Reduction of Challenges and Failures of Relief Values.

The subject values are fast acting values (normally exercise in less than 2 seconds) and they do not have stem/disk position indicators.

PROPOSED ALTERNATE TESTING:

At least half of these valves will be removed, tested, disassembled, inspected and rebuilt every cycle in accordance with Technical Specification 4.6.D.1. Stroke timing of the solenoid actuators is performed by Wyle Labs. Comparison to previously measured stroke time will not be performed. The subject valves will be exercised once every refueling outage during plant startup.

RELIEF REQUEST NO. VR-012

SYSTEM:

Control Rod Hydraulic

COMPONENTS:

V-17-0083 V-17-0096

CATEGORY:

A/C

FUNCTION:

Valves V-17-0083 and V-17-0096 prevent backflow through the reactor recirculation pumps seal purge line. They also function as primary containment isolation valves.

TEST REQUIREMENTS:

Exercise every three (3) months (CT-CC) IWV-3521.

BASIS FOR RELIEF:

These simple check values cannot be remotely operated. They are located inside primary containment and are not accessible for testing during reactor operation. These values cannot be exercised by utilizing the outside drywell test lines because air would be introduced into the reactor recirculation pump seals which could cause the pump bearings to be damaged.

These values cannot normally be manually exercised at Cold Shutdown because the containment is inerted with nitrogen. In order to conduct a test of these values, downstream manual block values inside containment would require closing in order to ensure that air is not introduced into the pump seals. In order to gain personnel access to the drywell, the nitrogen must be vented (normally a 16 - 24 hour operation). The containment must be re-inerted before the plant is restarted (normally a 16 - 24 hour operation). Inerting and de-inerting the drywell solely for the purpose of value testing is excessively burdensome.

ALTERNATE TESTING:

These values will be exercised during leak testing conducted at refueling in accordance with DAEC Technical Specification 4.7.A.2.C (Appendix J, Type C tests).

RELIEF REQUEST NO. VR-013

SYSTEM:

Control Rod Drive (CRD) Hydraulic

COMPONENTS:

SV-1840	Α	&	В	V-17-0062		
CV-1849				V-18-0118	thru	0206
CV-1850				V-18-0919	thru	1007
SV-1855				V-18-1453	thru	1541
SV-1856						
SV-1868	Α	&	В			
SV-1869	Α	&	В			

CATEGORY:

Category B -- CV-1849, CV-1850, SV-1840 A & B, SV-1855 and SV-1856

Category C -- V-17-0062, V-18-0118 thru 0206, V-18-0919 thru 1007 and V-18-1453 thru 1541

FUNCTION:

SV-1840	-	Backup	scram	valves;	ble	eed o	ff	scram	air	
A & B		header	upon	receiving	уa	SCRA	Μs	signal	from	the
		reactor	r prot	ection sy	yste	em.				

- CV-1849 Opens with SCRAM signal to pressurize lower side of CRD piston from accumulator.
- CV-1850 Opens with SCRAM signal to vent top of CRD piston to scram discharge header.
- SV-1855 & Pilot valves for CV-1849 & CV-1850, SV-1856 respectively. Open on SCRAM signal to vent air operators.
- V-17-0062 Back-up SCRAM check valves; ensure the venting of the screen valve pilot air header if SV-1840B has a plugged vent port with the air supply isolated.
- V-18-0118 Prevent bypassing SCRAM water (from the accumulator) to charging water header (if depressurized); open to charge accumulators following SCRAM.
- V-18-0919 Prevent backflow into cooling water header thru 1007 during SCRAM; allow cooling water circulating during normal operation.

RELIEF REQUEST NO. VR-013 (Continued)

V-18-1453 - Open to allow flow from top of CRD pistons to thru 1541 the SCRAM discharge header.

SV-1868-Safety related pilot valves for CV-1859A & BA & B andand CV-1867A & B. Open on SCRAM signal toSV-1869vent air operators.A & B

TEST REQUIREMENTS:

Exercise and time air-operated and solenoid valves every three months (BTO, BTC). IWV-3411, IWV-3413, IWV-3417.

Exercise check valves every three months (CT-CO, CT-CC) IWV-3521. The corresponding fail-safe test is discussed in VR-017.

BASIS FOR RELIEF:

Individual testing of the backup scram valves SV-1840A and SV-1840B requires modifying the electrical configuration of the reactor protection system by jumpers, etc. and inserting a scram signal to each valve -- a complex test.

Testing of valves SV-1840A, SV-1840B, V-17-0062 would require or result in depressurization of the SCRAM air header and the initiation of a full SCRAM signal. Testing of valves SV-1868A, SV-1868B, SV-1869A, and SV-1869B would require the initiation of a full SCRAM signal. Valves CV-1849, CV-1850, SV-1855, SV-1856, and V-18-1453 thru 1541 can only be tested by scramming each individual control rod. Due to the extensive effort and operational constraints associated with scram testing, this is impractical to accomplish on a quarterly basis or even during cold shutdown periods.

Closure testing of valves V-18-0118 thru 0206 require that the control rod drive pumps be stopped to depressurize the charging water header. This test will not be performed during power operation because stopping the pumps results in loss of cooling water to all control rod drive mechanisms and seal damage could result. In addition, stopping the control rod drive pumps stops the flow of seal purge water to the reactor recirculation pumps seals which could result in seal damage due to the ingestion of dirt from an unclean piping system. This test cannot be performed during each cold shutdown because one of the recirculation pumps is usually kept running. USNRC Generic Letter 89-04, Attachment 1, Position 7, provides pre-approval for this testing frequency.

RELIEF REQUEST NO. VR-013 (Continued)

Proper operation of the check valve V-18-0919 is monitored during plant operation. Failure of any of these valves manifests itself in abnormal operation of the associated control rod drive which would be noted (and corrected) by the plant staff.

ALTERNATIVE TESTING:

Proper operation of these values is demonstrated by testing performed during plant operation or each refueling outage. SV-1840 A & B are tested once per operating cycle as required by a commitment (NG-84-0825). During the test, value operation is locally observed upon initiation of a manual scram. This testing of the backup SCRAM values meets the requirements of NUREG-0979, "Safety Evaluation Report Related to the Fuel Design Approval of the GESSAR II, BWR/6 Nuclear Island Design."

Valves SV-1840A and SV-1840B will be tested at each refueling by inserting a SCRAM signal and monitoring that the valves energize to vent the air header. Check valve V-17-0062 is verified to open when SV-1840A and SV-1840B energize and vent. In order for air to exhaust from both SV-1840A and SV-1840B, check valve V-17-0062 must fully open. Valves SV-1868A and SV-1868B, SV-1869A, and SV-1869B will be tested at each refueling by initiating a SCRAM signal to the valves and verifying that the de-energized CRD supplies air to the main valves (CV-1867A, CV-1867B, CV-1859A and CV-1859B).

SV-1840A, SV-1840B, CV-1849; CV-1850; SV-1855, SV-1856, and V-18-1453 thru V-18-1541.

These values are tested once each operating cycle per DAEC Technical Specifications, Section 4.3.C. Following each refueling outage, all operable control rods are SCRAM time tested from the fully withdrawn position with nuclear system pressure above 950 psig. The time-position performance of each control rod and all rods collectively are compared against the acceptance criteria established for various rod insertion positions per DAEC Technical Specifications, Section 3.3.C.

V-18-118 thru V-18-206 -

Once each operating cycle, the CRD charging header is depressurized and HCU accumulator levels monitored over a period of time. Proper operation of these valves is verified by each accumulator remaining in a charged condition during the test.

V-18-919 thru V-18-1007 -

RELIEF REQUEST NO. VR-013 (Continued)

During normal plant operation at power, each partially or fully withdrawn operable control rod is exercised one notch at least once each week (Technical Specification, Section 4.3.A.2.a). Excessive backleakage through these valves would prevent rod movement.

SV-1868 A & B and SV-1869 A & B -

These values are tested with the associated main values (CV-1859A & B and CV-1967A & B). The main values are exercised closed and the stroke times are verified to be within specified limits, during the Mode Switch Placed in Shutdown test, performed every refueling.

RELIEF REQUEST NO. VR-017

SYSTEM:

All Systems

COMPONENTS:

All solenoid and air operated valves equipped to fail open or closed.

Note: There are no other valve operator types with fail safe requirements.

CATEGORY:

A and B

FUNCTION:

Upon loss of actuator power (electrical or pneumatic), the valve must stroke to its fail-safe position.

TEST REQUIREMENTS:

When practical, valves with fail-safe actuators shall be tested by observing the operation of the valves upon loss of actuator power. (IWV-3415)

BASIS FOR RELIEF:

Solenoid valves which control the air supply to air-operated valves and direct solenoid-operated valves must stroke to their fail-safe position upon interruption of their electric power or air supply. (FST)

De-energizing the solenoid valve has the same effect as loss of electrical power or loss of control air. Therefore, stroking the valve from the Control Room (BTO, BTC) to its fail-safe position constitutes a fail-safe test for most valves.

ALTERNATE TESTING:

For most configurations, normal stroking (BTO, BTC), to the fail-safe position of valves equipped to fail open or closed constitutes an FST. No additional testing of these valves is necessary.

.

RELIEF REQUEST NO. VR-017 (Continued)

Where complicated Fail Safe configurations exist, or where test solenoids are provided, a separate fail safe test, utilizing the proper solenoids and/or methods are used to verify true fail-safe operation. The following valves are tested to their fail safe position by means <u>other</u> than normal stroking:

MSIVs	-	CV-4412,	CV-4413,	CV-4415,	CV-4416,
		CV-4418,	CV-4419,	CV-4420,	CV-4421

CRD - CV-1849, CV-1850

*Service Water - CV-4909, CV-4914, CV-4915

*Note: A modification is planned to install necessary controls for the individual fail-safe testing of these valves. This modification will be complete by July 5, 1991.

RELIEF REQUEST NO. VR-021

SYSTEM:

High Pressure Coolant Injection (HPCI) Reactor Core Isolation Cooling (RCIC)

COMPONENTS:

V-23-0001 V-25-0001

CATEGORY:

С

FUNCTION:

These check values are 14 inch, swing check values with the value hinge pins mounted in the value body. These values prevent backflow into the suppression pool in the event of a pump suction shift from the condensate storage tank (CST) to the suppression pool. They open to provide flow from the suppression pool to the HPCI or RCIC pumps.

TEST REQUIREMENTS:

Exercise every three months (IWV-3521).

BASIS FOR RELIEF:

As noted in USNRC Generic Letter 89-04, Attachment 1, Position 2, there is no convenient method for verifying the ability of these valves to swing to the full-open or full-closed positions. The system test piping circuits utilize the CST for pump suction rather than the suppression pool. Taking suction from the suppression pool during testing is undesirable because, in so doing, torus water would be transferred to the condensate storage tank. Torus water is not demineralized, thus the entire condensate storage tank inventory would require processing following each test which would result in additional radioactive waste.

For the reasons noted above, these values cannot be opened. Therefore, they cannot be stroked from the open to the fully closed position (i.e., a close test during quarterly testing could only demonstrate that the value stayed closed). As a result, full-closed testing also cannot be done quarterly.

Since these values do not normally see system conditions which cause them to change position, no wear-induced degradation is expected.

RELIEF REQUEST NO. VR-021 (Continued)

ALTERNATIVE TESTING:

In lieu of the code-required full stroke test, valve operability will be demonstrated by disassembling the valve in accordance with USNRC Generic Letter 89-04, Attachment 1, Position 2. Each refueling outage, the valve will be disassembled and the disc will be verified to swing freely to the open and closed positions. A reverse flow closure test of these valves will be conducted following reassembly.

RELIEF REQUEST NO. VR-031

SYSTEM:

Neutron Monitoring

COMPONENTS:

1S266/CK

CATEGORY:

A/C

FUNCTION:

This valve provides containment isolation for the nitrogen purge portion of the TIP system.

TEST REQUIREMENTS:

Check valves shall be exercised at least once every three months, except as provided by IWV-3522. (IWV-3521)

BASIS FOR RELIEF:

This value is a simple check value and the only practical method to verify closure is by performing a leak test. conducting such test every three months or at cold shutdown is excessively time consuming and difficult.

In order to perform a leak test, the TIP purge line must be separated at a flange by maintenance technicians which results in a breach of primary containment integrity. Therefore, this test cannot be performed quarterly during plant operation. The LLRT rig must be set up and connected to the system. The leak rate test itself would require approximately 20 manhours to complete. General area dose rates near these valves at cold shutdown are approximately 200 Mr/hour. The man-Rem exposure per test (4 man-Rem) plus the significant wear and tear on the system caused by breaking the flanges make this test impractical to perform at cold shutdown or on a quarterly basis.

ALTERNATE TESTING:

This valve will be exercised to the closed position during leak testing conducted once each cycle in accordance with DAEC Technical Specification 4.7.A.2.c. (Appendix J, Type C leak test).

RELIEF REQUEST NO. VR-032

SYSTEM:

Containment Atmosphere Monitoring System

COMPONENTS:

SV-8101A	SV-8106A
2A-8TOTR	SV-8106B
SV-8102A	SV-8107A
SV-8102B	SV-8107B
SV-8103A	SV-8108B
SV-8103B	SV-8108B
SV-8104A	SV-8109A
SV-8104B	SV-8109B
SV-8105A	SV-8110A
SV-8105B	SV-8110B

CATEGORY:

Α

FUNCTION:

These values provide containment isolation for the containment atmosphere monitoring system.

TEST REQUIREMENTS:

The stroke time of all power-operated valves shall be measured. (IWV-3413 (b), IWV-3417 (a))

BASIS FOR RELIEF:

These values are not provided with individual position indicators and meaningful stroke time measurements cannot be taken.

ALTERNATIVE TESTING:

These values will be exercised and their positions verified every three months. Stroke times will not be measured.

RELIEF REQUEST NO. VR-033

SYSTEM:

Core Spray

COMPONENTS:

V-21-0072 V-21-0073

CATEGORY:

С

FUNCTION:

These check values provide a flow path for core spray to the reactor vessel and prevent backflow from the reactor vessel to the core spray system.

TEST REQUIREMENTS:

Check valves shall be exercised at least once every three months, except as provided in IWV-3522. (IWV-3521)

BASIS FOR RELIEF:

These check valves are normally closed. To open the valves, the core spray pumps must be operated at rated flow discharging directly into the reactor vessel. This cannot be done during normal operation because the core spray pumps are not capable of overcoming reactor pressure.

Core spray injection during cold shutdown with the reactor head in place is impractical due to the difficulty of controlling reactor vessel water level. Core spray injection at rated flow would result in a vessel level increase of approximately 30" per minute. With the injection going into the vessel shroud region and a high rate of change in water level and a possible difference in level between the shroud region and the main vessel, it would very easily be possible to flood the main steam lines or overpressurize the reactor vessel (with regard to the pressure/temperature fracture prevention criteria) if this test were performed at Cold Shutdown with the head in place.

ALTERNATIVE TESTING:

These valves will be exercised at each refueling outage by verifying that each division of core spray can deliver rated flow to the reactor vessel.

RELIEF REQUEST NO. VR-034

SYSTEM:

Neutron Monitoring Post-Accident Sampling System (PASS) RHR Sample Lines

COMPONENTS:

1S260A/BALL	SV-4594A	SV-1972
1S260B/BALL	SV-4594B	SV-1973
1S260C/BALL	SV-4595A	SV-2051
	SV-4595B	SV-2052
	SV-8772A	
	SV-8772B	

CATEGORY:

Α

FUNCTION:

The TIP System values function as containment isolation for the TIP tube penetrations.

The PASS system values provide a flow path for post-accident sampling of the reactor recirculation system and return of the sample flowstream to the torus.

The RHR Sample valves provide a flow path for post-accident sampling of the RHR system.

TEST REQUIREMENTS:

Evaluate stroke times in accordance with IWV-3417 (a).

BASIS FOR RELIEF:

It is impractical to apply the requirements of IWV-3417 (a) to valves with stroke times less than 2 seconds without installing sophisticated timing devices. Operator reaction times could easily vary by .5 seconds or more, thereby invalidating the 50% criteria for increasing the surveillance frequency. As noted in USNRC Generic Letter 89-04, Attachment 1, Position 6, power operated valves with normal stroke times of 2 seconds or less are "rapid-acting valves". Relief may be granted from the requirements of Section XI, Paragraph IWV-3417 (a) for these valves provided the licensee assigns a maximum limiting value of full-stroke time of 2 seconds to these valves and, upon exceeding this limit, declares the valve inoperable and takes corrective action in accordance with IWV-3417 (b).

RELIEF REQUEST NO. VR-034 (Continued)

ALTERNATIVE TESTING:

Stroke times for these valves will be measured. Valves exceeding the maximum allowable stroke time of 2 seconds will be declared inoperable. The results of this test will be evaluated with respect to the maximum allowable stroke time but will not be compared to previous tests per the criteria set forth above or in IWV-3417 (a).

RELIEF REQUEST NO. VR-035

SYSTEM:

Emergency Service Water (ESW)

COMPONENTS:

CV-1956A	CV-2080
CV-1956B	CV-2081

CATEGORY:

B

FUNCTION:

CV-1956 A & B open to provide a return path for ESW cooling water from the control building chillers. CV-2080 and CV-2081 are ESW supply valves to the emergency diesel generators.

TEST REQUIREMENTS:

Evaluate stroke times in accordance with IWV-3417 (a).

BASIS FOR RELIEF:

CV-1956A & B are actuated by the starting logic of the associated emergency service water pump, with no individual control handswitch. Also, there are no position indicators for these valves. The test sequence requires an operator to be stationed at the valves, which are physically separated from the pumps, to measure the stroke time of the valve. The operator starts timing upon announcement of the ESW pump start and stops timing based upon the cessation of valve stem movement. For these reasons, precise stroke time measurements are impractical. CV-2080 and CV-2081 do not have position To measure the stroke times of these valves the indication. operator starts timing upon operation of the handswitch for the valve and stops timing based upon cessation of valve stem movement. Thus precise stroke time measurements are impractical

ALTERNATIVE TESTING:

These values will be exercised every three months. During this testing, value operation will be observed, and a stroke time estimated based on value stem movement. Because the stroke time is estimated, the results of this test will be evaluated with respect to the maximum allowable stroke time but will not be compared to the previous tests per the criteria set forth above or in IWV-3417 (a).

RELIEF REQUEST NO. VR-050

SYSTEM:

Containment Atmosphere Control

COMPONENTS:

CV-4327A	CV-4327F
CV-4327B	CV-4327G
CV-4327C	CV-4327H
CV-4327D	

CATEGORY:

A/C

FUNCTION:

These are the pressure suppression chamber to drywell vacuum breaker valves which open to equalize the pressure between the two volumes should the drywell pressure decrease below that of the suppression chamber. These valves in conjunction with the torus to reactor building vacuum breakers protect the drywell if the drywell pressure becomes less than the reactor building.

TEST REQUIREMENTS:

Check valves shall be exercised at least once every three months, except as provided by IWV-3522. (IWV-3521)

Valves that are normally closed during plant operation and whose function is to open on reversal of pressure differential shall be tested by proving that the disk moves promptly away from the seat when the closing pressure differential is removed and flow through the valves is initiated, or when a mechanical opening force is applied to the disk. If the test is made without flow through the valve, a mechanical exerciser shall be used to move the disk. The force or torque delivered must be limited to less than 10% of the equivalent force..., except that for vacuum breaker valves, the exerciser force or torque delivered to the disk may be equivalent to the desired functional pressure differential force. This implies that force or torque measurements are required.

BASIS FOR RELIEF:

These values are located inside the torus and, as such, are not accessible for obtaining the required measurements during reactor operation or during cold shutdown. In order to gain access to the torus, the containment would require de-

RELIEF REQUEST NO. VR-050 (Continued)

inerting, a 36" hatch would need to be removed, and temporary lighting and walkways would need to be installed. Upon completion of testing, this process would be reversed and a local leak rate test of the torus hatch would be required.

ALTERNATE TESTING:

(e. 61

These valves will be partially stroked quarterly during plant operation using installed air operators without any quantitative set point measurements. Additionally, each will be tested to the open and closed positions using a mechanical exerciser and obtaining setpoint measurements at least once each refueling cycle.

RELIEF REQUEST NO. VR-053

SYSTEM:

A side Control Building HVAC Instrument Air Supply

COMPONENTS:

V-73-006, V-73-007

CATEGORY:

С

FUNCTION:

To isolate the normal instrument air supply line from the back-up emergency air supply line, on a loss of normal instrument air.

TEST REQUIREMENTS:

Check valves shall be exercised at least once every three months (IWV-3520).

BASIS FOR RELIEF:

The system is only required to have one isolation valve. Total backflow leakage through the line these valves are on must be limited to a specific maximum amount. The valves are installed with no test connections between the valves so that a pressure decay or leak rate test on the individual valves is not possible. Therefore, testing of the individual valves is not possible without disassembly of the valve. Repeated disassembly of the valve will destroy the brass body and not permit reassembly. These valves have no known failures due to leakage.

ALTERNATIVE TESTING:

These values will be back flow tested as one unit every three months. A pressure decay test will be performed on the system to verify that total back leakage through these two values does not exceed a specific maximum amount. Attachment 2

υ

ADDITIONAL INFORMATION ON RELIEF REQUESTS PR-013 AND VR-051

PR-013

• .

Pumps which may require expanded limits for flow or differential pressure:

Reactor Core Isolation Cooling	1P-226
High Pressure Coolant Injection	1P-216
A and B River Water Screen Wash	1P-112A & B
A. B. C and D River Water Supply	1P-117A, B, C & D
A and B Standby Liquid Control	1P-230A & B

VR-051

Additional valve testing which can be performed after valve reassembly:

Valve_Number	<u>Test Type</u>	<u>STP No.</u>
V-22-63	CT-CC, CT-PO	BS-01
V-22-64	CT-CC, CT-PO	BS-01
V-24-46	CT-CC, CT-PO	BS-01
V-24-47	CT-CC, CT-PO	BS-01
Valve Number	<u>Test Type</u>	STP No.
V-22-28	CT-PO	45D001
V-22-29	CT-PO	45D001
V-22-21	CT-CC, CT-PO	BS-01, 45D001
V-22-22	CT-CC, CT-PO	BS-01, 45D001
V-24-12	CT-PO	45E001
V-24-09	CT-PO	45E001
V-24-10	CT-PO	45E001

Additional testing for valves V-25-06, V-23-14, V-20-06, V-20-08, V-19-14 and V-19-16 is currently being studied.