

Pinanski Building One University Avenue Lowell, Massachusetts 01854 tel: 978.934.3365 fax. 978.934.4067 e-mail: Leo_Bobek@uml.edu Leo M. Bobek Reactor Supervisor

RADIATION LABORATORY

August 22, 2011

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

Re: License No. R-125, Docket No. 50-223


Pursuant to Technical Specification NRC License No. R-125 we are submitting the Annual Report for the University of Massachusetts Lowell Research Reactor.

Sincerely. Autur

Leo M. Bobek, Reactor Supervisor

ADD D NAR

University of Massachusetts Lowell Research Reactor (UMLRR)

2010-2011 OPERATING REPORT

NRC Docket No. 50-223

NRC License No. R-125

One University Avenue Lowell, Massachusetts 01854

CONTENTS

Facility History and Overview

- A. Narrative Summary
 - 1. Operation Experience and Experiments
 - 2. Facility Design Changes
 - 3. Performance Characteristics Changes
 - 4. Changes in Operating Procedures Related to Reactor Safety
 - 5. Results of Surveillance Tests and Inspections
- B. Tabulations
- C. Inadvertent and Emergency Shutdowns
- D. Major Maintenance
- E. Facility Changes Related to 10 CFR 50.59
- F. Environmental Surveys
- G. Radiation Exposures and Facility Surveys
 - 1. Personnel Exposures
 - 2. Radiation Surveys
 - 3. Contamination Surveys
- H. Nature and Amount of Radioactive Effluents
 - 1. Liquid Wastes
 - 2. Gaseous Wastes
 - 3. Solid Wastes

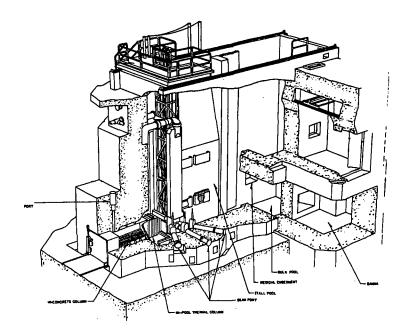
This report is submitted as required by the Technical Specification 6.6.4 of reactor license R-125 and provides the information as outlined in the specification.

Facility History and Overview

In the late 1950's, the decision was made to build a Nuclear Center at what was then Lowell Technological Institute. Its stated aim was to train and educate nuclear scientists, engineers and technicians, to serve as a multi-disciplinary research center for LTI and all New England academic institutes, to serve the Massachusetts business community, and to lead the way in the economic revitalization of the Merrimack Valley. The decision was taken to supply a nuclear reactor and a Van-de-Graaff accelerator as the initial basic equipment.

Construction of the Center was started in the summer of 1966. Classrooms, offices, and the Van-de-Graaff accelerator were in use by 1970. Reactor License R-125 was issued by the Atomic Energy Commission on December 24, 1974, and initial criticality was achieved on January 1975.

The name of the Nuclear Center was officially changed to the "Pinanski Building" in the spring of 1980. The purpose was to reflect the change in emphasis of work at the center from strictly nuclear studies. At that time, the University of Lowell Reactor became part of a newly established Radiation Laboratory. The Laboratory occupies the first floor of the Pinanski Building and performs or coordinates research and educational studies in the fields of physics, radiological sciences, and nuclear engineering. The remaining two floors of the Pinanski Building are presently occupied by various other University departments.


On February 14, 1985, the University of Lowell submitted an application to the Nuclear Regulatory Commission for renewal of the facility operating license R-125 for a period of 30 years. On November 21, 1985, the license renewal was granted as Amendment No. 9 of License R-125 in accordance with the Atomic Energy Act of 1954.

In 1991, the University of Lowell name was changed to University of Massachusetts Lowell. On August 4, 2000, the reactor was converted from high enrichment uranium fuel to low enrichment uranium fuel.

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is one of 22 research centers at the University. The University departments utilizing the laboratory include Biology, Chemistry, Earth Sciences, Physics, Mechanical Engineering, Plastics Engineering, Radiological Sciences, and Chemical/Nuclear Engineering. Several of the UMass campuses,

including the university medical center, have or continue to have research programs at the Radiation Laboratory. Much of the research is concerned with safety and efficiency in the nuclear and radiation industries, including pharmaceuticals, medical applications, health affects, public utilities, etc. However, much of the research conducted in other scientific fields that make use the unique facilities as analytical tools.

Beyond the research activities, the Laboratory's reactor and Cobalt-60 facilities are used in the educational courses of various departments within the University. It also provides these services to other campuses of the Massachusetts system, other universities in the New England area, government agencies and to a limited extent, industrial organizations in Massachusetts and the New England area, as well as numerous school science programs in the Merrimack Valley.

UMLRR Cutaway View

A. NARRATIVE SUMMARY

1. Operating Experience and Experiments

The UML research reactor is designed to produce thermal (low energy) neutrons for radioactivation and neutron radiography purposes, and fast (high energy) neutrons for radiation effects studies. Uses include neutron activation analysis research, materials atomic displacement damage studies, neutron absorption studies, short-lived radioisotope production, neutron detector studies, and neutron imaging (radiography). Education uses include a variety of lab courses in the nuclear engineering and radiological sciences programs. Tours and demonstrations are provided to several other UMass Lowell courses, as well as other universities, high schools, and various organizations.

Short lived isotopes (e.g., Al-28, Na-24) were produced for routine practicum and demonstration purposes. The reactor was used for several nuclear engineering and non-nuclear engineering laboratory exercises and demonstrations. In addition, the reactor was used for training of student operator license candidates. Two students were issued Reactor Operator licenses by the USNRC and one student was issued a Senior Reactor Operator License. Several service contract funded students (see Students Supported) and work-study students (UML Financial Aid) were provided an opportunity to work at the reactor and gain practical experience.

Over 30 organized tours were provided to UMass students, local college students, grade school students, and other groups, in addition to several individual tours. As part of emergency responder training, tours and presentations also were provided to the UML Police Department, the Lowell Fire Department, and Lowell Police Department.

2. Facility Design Changes

There were no facility design changes during the reporting period.

3. <u>Performance Characteristics Changes</u>

A water leak was detected in the pneumatic sample transfer system (rabbit-tube). The tube was isolated to prevent use and any further leakage until repairs could be made. This unscheduled maintenance is described in Section D.

One of two linear power monitoring channels has been exhibiting electronic problems resulting in several spurious scrams (Section C). A purchase negotiation is ongoing for the upgrade and replacement of this power measuring channel.

Performance of all other the reactor and related equipment has been normal during the reporting period. There were no discernable changes that would indicate any degradation of other systems or components.

4. <u>Changes in Operating Procedures Related to Reactor Safety</u>

As part of a continuing effort to update and re-format all procedures associated with the reactor, several procedures had minor revisions or updates non-substantive in nature. Such changes are kept on file and summarized for the RSSC at each meeting.

5. <u>Results of Surveillance Test and Inspections</u>

All surveillance test results were found to be within specified limits and surveillance inspections revealed no abnormalities that could jeopardize the safe operation of the reactor. Each required calibration was also performed.

B. TABULATIONS

Energy generated this period (MWD)	3.94
Critical hours	213.15
Cumulative energy to date (MWD)	42.30

C. INADVERTENT AND EMERGENCY SHUTDOWNS

There were 11 inadvertent non-emergency automatic shutdowns during the reporting period. All were due to an electronic problem associated with one of two linear power monitoring channels. The problem occurs when the unit automatically ranges from the 10kW (1% power level) range to the 100kW (10% power level) range while in the natural convection mode of operation. The problem has no safety significance and is more a nuisance for experimenters and users of the facility. Descriptions of all automatic shutdowns are noted in operator logs and are analyzed by an SRO for safety significance and technical specification requirements.

D. MAJOR MAINTENANCE

As described in A.3, maintenance was performed on the pneumatic sample transfer system to correct two leaks on the transfer tube. The tube has a terminus adjacent to the reactor core and extends to a sample transfer station located in the lower level of the reactor building. The leak was first detected when a vacuum could not be achieved in the tube for transfer of a sample. The tube was isolated and then pressure tested. Air bubbles were indicated near the tube terminus and along a flange located where the tube exits the pool structure. To affect repair, the stall end of the reactor pool was drained to access and remove the tube. Once removed, the leaks were localized – one at a weld seam near the terminus and one at a weld seam at the flange on the opposite end of the tube. Two coats of a Kevlar-based epoxy were applied to the weld seams (the same epoxy applied to leaking weld seams on the reactor pool liner in 2000). The tube was pressurized to perform a leak test and no leaks were indicated. The tube was re-installed and has been used successfully since the repair.

E. FACILITY CHANGES RELATED TO 10CFR50.59

During the reporting period, there were no facility design changes for review and approval under the 10CFR 50.59 process.

F. ENVIRONMENTAL SURVEYS

Members of the Radiation Safety Office performed an ALARA review for the 2010 calendar year with the results summarized in Sections G and H. The following actions are performed in the indicated time period as part of the UMLRR radiation safety program:

- 1. Reactor Field Surveys monthly (byproduct materials license)
- 2. Reactor Contamination Surveys monthly (byproduct materials license)
- 3. Primary water analysis weekly (SP-10)
- 4. 20 ml Secondary Water Analysis each Rx operations day (SP-10)
- 5. 3 L Secondary Water Analysis Biennially (SP-10)
- 6. liquid waste (sewer) prior to disposal (SP-10)

- 7. Rad Monitor Check each detector checked prior to each day's operations by Rx staff.
- 8. Personnel dosimetry monthly; obtained using a NAVLAP accredited dosimetry lab.
- 9. Environmental dosimetry quarterly using NAVLAP lab.

G. RADIATION EXPOSURES AND FACILITY SURVEYS

1. <u>Personnel Exposures</u>

An ALARA assessment of the UMass Lowell radiation safety program is performed annually. This review is reported to and reviewed by the Radiation Safety Committee. The 2010 ALARA goal for radiation workers at UMass Lowell was to limit the most exposed radiation worker at UML to less than 10% of the federal radiation exposure limits. In addition, the radiation safety manual requires a 100 mrem per week TEDE administrative level. No occupational exposure exceeded an ALARA limit in 2010. Personnel dosimetry was obtained by review of the 2010 Landauer dosimetry reports. These reports include, where appropriate, whole body OSL dosimetry and finger TLD dosimetry. Landauer is a NVLAP accredited dosimetry company.

OCCUPATIONAL EXPOSURES

GROUP	<u>NUMBER</u>	<u>Average</u>	<u>Average</u>
		Whole Body	Extremity
	BADGED	Dose	Dose
		<u>(<500rem)</u>	<u>(<5000 mrem)</u>
Reactor	16	Μ	М

*NOTE: 'M' indicates no detectable releases or exposure

2. <u>Radiation and Contamination Surveys</u>

A review of all 2010 Research Reactor Radiation Survey and Contamination forms found no measurable removable contamination levels in the facility. The byproduct materials license specifies contamination as \geq 500 dpm/100cm² (beta) or \geq 50 dpm/100cm² (alpha). No appreciable stray radiation fields (>2mR/hr) were identified in a free area within the reactor. Radiation levels measured in the reactor building have been typically less than 0.1 mrem/hr in general areas. Experiments have been conducted in which transient levels at specific locations have been in excess of 100 mrem/hr. Doses in these instances have been controlled by use of shielding, visual and audial notifications, and/or personnel access control. The pump room remains designated as a high radiation area during reactor operation and access is controlled.

I. NATURE AND AMOUNT OF RADIOACTIVE WASTES

1. Liquid Wastes and Gaseous Wastes

As part of UMass Lowell ALARA goals, the radiation safety office has set a campus goal of limiting exposures to members of the public to less than 10% of the federal regulatory limits. Less than 2 μ Ci of radioactive material were released through the reactor sewer (detection limits of approximately $6 \times 10^{-9} \mu$ Ci/ml). Argon-41 continues to be the only significant reactor produced radioactivity identifiable in the gaseous effluent. The reactor stack released approximately 4.1 Ci in 2010 resulting in a (conservative) estimated upper limit to the TEDE of 0.06 mrem/year to a person constantly standing 100 m from the stack.

ENVIRONMENTAL RELEASES

<u>SOURCE</u>	<u>ACTIVITY</u>	DOSE	<u>GOAL</u>
	<u>Ci</u>	mrem	<u>mrem</u>
Sewer Releases	<2×10 ⁻⁶	M*	≤10
Stack Releases	4.1	0.06	≤10

*NOTE: 'M' indicates no detectable releases or exposure

2. <u>Solid Wastes</u>

Solid wastes, primarily paper, disposable clothing, and gloves, along with other miscellaneous items have been disposed of in appropriate containers. Most of the activity from these wastes consisted of short lived induced radioactivity. These wastes were held for decay and then released if no activity remained. The remaining long lived wasted (<10 cubic feet) is stored in a designated long lived waste storage area awaiting ultimate disposal at low-level radioactive waste disposal site.